
Directory All A-Z
A
Biographical Info
Biographical Info
I am interested in the study of the birth and evolution of binary stars and planetary systems, dynamics of astrophysical disks, physics of circumstellar dust, with occasional diversions to binary blackholes and AGNs
B
Biographical Info
My research is focused on understanding the structure and formation of galaxies, in particular the Milky Way. I use data from large surveys to investigate the distribution of stars in the Milky Way and how this distribution depends on the age and chemical composition of stars, which allows me to identify the basic processes that govern the formation and evolution of the Milky Way and disk galaxies like it. I am also interested in using the observed kinematics of stars to infer the distribution of mass—dark matter in particular—in our Galaxy. I am an active member of the APOGEE survey, which uses high-resolution, high signal-to-noise infrared spectroscopy to investigate the structure of the bulge and disk regions of the Milky Way, as well as many other topics in stellar and galactic astrophysics.
C
Biographical Info
My thesis work is focused on understanding the magnetic properties of the interstellar medium (ISM) within our Galaxy. In particular, I am interested in understanding how the Galactic magnetic field connects between different phases and spatial scales within the ISM. I am also interested in interstellar extinction in star forming regions where the ISM is primarily molecular. To do this, I am using optical and infrared photometry to study stellar extinction curves within a nearby giant molecular cloud with the goal of more accurately characterizing the ISM dust properties.
Biographical Info
D
E
Biographical Info
My research is in the interdisciplinary field of astrostatistics, and I am jointly-appointed between the Department of Astronomy & Astrophysics and the Department of Statistical Sciences. I am interested in using and developing modern statistical methods for astronomy applications to answer fundamental questions about the universe. For example, I use hierarchical Bayesian analysis to study the dark matter halo of the Milky Way and other galaxies, and am developing new time series analysis methods to learn about the internal structure of stars.
F
G
Biographical Info
My main goal is to understand why the Universe is magnetic. By measuring the polarised radio signals from millions of distant galaxies over the entire sky, I aim to transform our understanding of magnetism in galaxies, clusters and in diffuse intergalactic gas. I also study the ways in which celestial objects change, flicker, flare and explode. I am working to provide a new understanding of the many different populations of transient and variable phenomena, and to develop the novel source-finding and classification algorithms needed to find rare and unusual behaviour in very large data sets. In the next decade, all of this work will culminate in the Square Kilometre Array, a next-generation radio telescope that will answer fundamental questions about the Universe.
H
Biographical Info
My research focuses on theoretical cosmology and statistical methods in cosmology. I am a member of the Atacama Cosmology Telescope collaboration and the Simons Observatory, which are studying the cosmic microwave background (or CMB) at very sharp angular resolution to unlock the secrets of the early universe and the period of star formation. I use this data to answer questions about the structure of the universe, its initial conditions and its eventual fate using data.
I am also a member of the Dark Energy Science Collaboration of LSST, which is a telescope under construction in Northern Chile, and will scan the sky to deliver a vast amount of cosmic transients. I work on the supernova science with LSST to use the photometric data (without a spectrum of the object) to answer questions about dark energy.
I’m passionate about science communication and outreach, and the intersection of art and science – so contact me if you’re interested in collaboration!
Biographical Info
I study the formation of planets, their interiors and planetary orbital dynamics. My goal is to determine how formation and orbital interactions influence the population of rocky exoplanets in terms of orbital and physical properties. I am also interested in the implications of these findings on exoplanet habitability. I depend primarily on numerical simulations of orbital dynamics and planetary interiors with the occasional use of observations of solar system and extra-solar bodies.
I
J
Biographical Info
K
L
Biographical Info
Biographical Info
I was born and raised in Shanghai, China. I received my bachelor degree in astronomy at the University of Science and Technology of China (USTC). My research interests cover a wide range but focus on galaxies. In my spare time, you can see me playing badminton/swimming/jogging. I enjoy traveling in different countries and visiting museums.
M
Biographical Info
Biographical Info
My primary research interest in theoretical astrophysics is the study of the structure and evolution of planets, accretion discs and stars. The fluid dynamics of these objects is a topic I particularly enjoy exploring, through a combination of analytical and numerical simulation work.
Biographical Info
Biographical Info
N
Biographical Info
Biographical Info
I study both the cosmic microwave background and the galactic star formation using a number of
balloon born instruments (BLASTpol, Spider, BIT).
O
P
Biographical Info
I grew up in the Twin Cities, Minnesota, and did my undergrad in physics and astronomy at the University of Minnesota. My hobbies have variously included hiking, biking, ultimate frisbee, lindy hop, and keeping tropical freshwater fish in my office. I am of the strong opinion that extreme cold such as that found in Minnesota and Canadian winters feels better than the mild-yet-humid cold of marginally-warmer climates, and that having strong seasonal climate variations builds character.
Biographical Info
Biographical Info
Natalie Price-Jones did her undergraduate in astrophysics at the University of Toronto. She has served for two years as a co-director of the AstroTours program, and is currently the co-president of the Graduate Astronomy Students Association. In her time off, she’s an avid fan of science fiction and a stationery collector.
R
S
T
V
Biographical Info
The characterisation of the low-mass planets: super-Earths and mini-Neptunes. The former are planets that are mostly solid, either rocky or icy in composition, while the latter posses also a volatile
envelope. My goal is to determine if planets with masses between 1-15 Earth-masses are scaled up versions of Earth, or scaled-down versions of Neptune in terms of their composition, evolution and physical properties.
Biographical Info
I am interested in compact objects, stars and binaries, their structure, formation and evolution, and their use to infer fundamental physical properties. My research is based on observations, but includes interpretation, theory and numerical modelling as required. Currently, I am trying to use neutron stars to study physics in conditions out of reach of terrestrial experiment, and to solve associated astronomical puzzles. I’ve become particularly intrigued by the possibilities of extremely high resolution astrometry offered by pulsar scintillation.
Biographical Info
My primary research interests involve the Large Scale Structure (LSS) in the Universe. By studying its properties and evolution, we can make firm statements about the physical processes which must have been active. Despite — or perhaps because of — its size, the LSS is difficult to observe, and specialized instruments and surveys are required to study it. I work on two such instruments, the South Pole Telescope (SPT), and the Canadian Hydrogen Intensity Mapping Experiment (CHIME).