Pre-telescope era ----- 'pre-history' in astronomy

Telescope era (1609-):

Lense: parallel lights are bent by the lense to a single point

Lense:

lights from different directions are bent by the lense to different points

Lense:

an image forms at the focal plane

human eyes operate at optical wavelength, pupil size ~ 0.6 cm with an angular resolution of ~ 20 arcseconds

pre-telescope precision; a lion @ 10km away ~ 100 arcseconds

A **telescope** is a light collecting and focusing device.

1) collecting power number of photons collected goes as d²

2) size determines angular resolution

larger size: better resolution

(diffraction rings: photons are waves)

Diffraction limit (best angular resolution) of various telescopes:

		d(cm)	~ I (cm)	1.22 l/d (")
Very Large Array	radio :	3.6×10^6 2	20 1.3"	
(SIRTF Keck (Hubble (human eye (55mm camera	infrared optical optical optical optical	85 1000 5 240 0.6 5.5	5 x 10 ⁻³ 5 x 10 ⁻⁵	15" 0.01" 0.05") 0.0") 2.5" << 20")
Chandra	X-ray	10	1 x 10 ⁻⁷	0.002"

1 arcsecond = 1/60 arcminute = 1/3600 degree (1 deg = width of index finger if arm stretched out)

```
a lion @ 10km away: \sim 100" (if pupil is 10 times smaller...) a movie screen @ the Moon: \sim 0.01" a galaxy @ the end of the observable universe: \sim 0.5" (but also very dim) size (event-horizon) of the Galactic centre black-hole: \sim 0.000002"
```


Keck (foundation) telescopes, 10meter

Las Campanas, Chile (Magellans, ~ 2500m)

Betelgeuse

Why do stars twinkle?

while planets don't....

```
--- why Gemini (8m) is not as good as Hubble (2.4m)
```

- 1) atmosphere is turbulent nearer the ground (~ 10km thick) the troposphere
- 2) lights from a star (point source) is scattered around to look like a fuzz ball "seeing" ~ radius of the fuzz

4) large telescopes are not built on beaches, but high atop mountains, or in high deserts, to minimize "seeing"

median seeing:

Richmond Hill, Toronto: 1.7"

Mauna Kea, Hawaii (4.2km): 0.65"

Paranal, Chile (2.4km): 0.64" Dome C, Antarctica(4km) 0.2"

5) going to space removes all atmospheric seeing

Keck 10 meter telescope on Hawaii(4.2km): 0.65" Hubble 2.4 meter telescope(600km): 0.05" (diffraction-limit)

can also be beaten by a new technique: adaptive optics

Two basic modes of observations:

Spectroscopy: measure the spectrum of light from one direction, obtain chemical composition, temperature, velocity.... (like a prism)

Imaging: take pictures

Light received (focused) by the telescope is recorded on a CCD (charge-coupled-device)

Canada-Hawaii-France Telescope 100 million pixel CCD

photon --> electrons --> charge level

CCD was first applied in astronomy to substitute photographic plates *(reusable, fast, accurate)*

Motion of stars near the Galactic centre – there is a black-hole ~ 3 million solar masses

This is obtained using an infrared telescope, because visible (optical) light is thoroughly absorbed by the intervening dust

An infrared telescope need to be cooled down to a low temperature, otherwise it glows glaringly...

Radio Telescopes

- 1) radio can penetrate the atmosphere
- 2) your cell-phone is a 'radio telescope'
- 3) radio telescopes are much cheaper to build (radio photons have longer wavelengths)
- 4) radio telescopes do not suffer from 'seeing', but ones needs to collect a LOT of photons (radio photons have lower energies, diffraction limit) so they need to be much larger than optical ones
- 5) it's easier to build many small telescopes than a single large one, observe 'en masse' (interferometry)

VLBA (*very-large-baseline-array*): use the ~ whole earth

Square Kilometer Array Radio Telescopes: present & future (conceptual designs) Arecibo 300m Radio telescopes (Puerto Rico)

SOFIA(Infrared)

The Hubble Space Telescope

- 1) avoid atmospheric distortion
- 2) can observe in ultraviolet
- 3) expensive, difficult to service each service mission~ 1 Billion dollars

More exotic telescopes: e.g. neutrino telescopes

Sudbury neutrino observatory (Canada)

Super-Kamiokande (Japan)

Gravitational-Wave telescopes

- --- mergers (NS-NS, NS-BH, WD-BH, BH-BH....)
- --- gravitational waves from early universe

Laser Interferometer Gravitational-wave observatory (LIGO) 40km arm length Hanford, Washington State

Space version (LISA)

Even using stars as our telescopes....

MILLISECOND PULSAR TIMING ARRAY - 2001

