logarithmic potential (spheroidal)

for a given Lz
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The epicycle approximation

Epicycle direction are always retrograde;
opposite to planetary orbits

at apo-apse, moves slower relative to circular orbit

z(t) = X cos(kt + @), y = —yX sin(kt + ) ~2Q,
= —Y sin(kt + ). T

Keplerian: X/Y = 0.5
Harmonic: X/Y = |
Galatic: X/Y ~ 0.7

2X2

_szz

&=
|||

2_
Op = 5
2
8 =

.
|||

for stars with the same guiding center orbits



The epicycle approximation

vertical frequency: Vv
radial frequency: K

rotational frequency: ()

independent measures of the potential



| st application: taking <v> of solar neighbourhood

solar B-V=0.66
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2nd application: velocity dispersion

Figure 5. Velocity dispersions for stars in different colour bins. The top
panel shows the mean rotation velocity (negative values imply lagging with
respect to the LSR) and the three main velocity dispersions. In the three
bottom panels o), = sign(a}) lof|"? is plotted for the mixed components of
the tensor a.

for stars near the mid-plane (Hipparcos data, |z| <
|00pc), Dehnen & Binney '98
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Measuring Solar so0f-o8 | e
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Figure 3. The components U, V and W of the solar motion with respect to stars with different colour B — V. Also shown is the variation of the dispersic

colour.
e
1
o
:
extrapolating back to S =0. Ignonng stars blueward of 0 .
B — V = Omag we find E . | U J

Uy = 10.00 + 036 (+0.08)
Vo=525+062 (+0.03) kms™', (20)

%
¥
¥
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0 [ - 1 1 1 l 1 L l 1 1 l;L
W, =7.17 038 (£0.09) kms', 20—
10f .W
_ , it
Dehnen & Binney ’98 ofF o .
0

Figure 4. The dependence of U, V and Won 5*. The dotted lines correspond to the linear relation fitted (V) or the mean values (U and W) for stars bl
B-V=N0



Schematic distributions of local (u,v) u: R-direction, x
v: theta-direction, y

150 e |
Old, metal-poor . Envelope
100 red dwarfs
50 |
g V | QLR
~ : \ \Q: |
Intermediate | 7Young,
—100 | population /¢ metal-rich
K giants A dwarfs
~150 — '
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v(kms_l)



the ‘asymmetric drift’

600

400

200

100

Figure 4.17 The distribution
of vy components of 4787 F
and G stars that have space
velocities in Nordstrom et al.
(2004). Stars with a high prob-
ability of having variable ra-
dial velocities are excluded.
The smooth curve shows the
distribution predicted by the
Schwarzschild DF for a popu-
lation with the same value of

—1/2 ]
v%4 ' =34kms! ]
0.06 - -
P ! d
i a :
0.02 —
o b | . 7 I ) L . o]
-150 -100 -50 0 S50

(ve—Ve)/km s

Figure 4.15 Three distributions of azimuthal velocities v, predicted for stellar popula-
tions in the solar neighborhood by the DF (4.156). The circular speed has been assumed
to be vg = 220kms~ ! at all radii, op(L.) and o.(L:) are taken to be proportional to

exp|—L;/(2vg Ry)], while £ = £y exp(—R/Ry), with Ry/Ry4 = 3.2 (Table 1.2). The values

51
of vn & for the three populations are 5, 15 and 30kms ™!, the largest value producing
the widest spread in V.
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‘asymmetric drift,
‘rotational lag’

caused by two effects:

| )rotational support
2)density radial gradient

Reid et al '09: study of masers
in star forming regions

Figure 4. Solar motion components determined from Hipparcos stars (i.e., the
reflex of the average motion of stars) vs. stellar velocity dispersion after Dehnen
& Binney (1998). Top Panel: V is the Solar Motion in the direction of Galactic
rotation (i.e., toward £ = 90°). The “asymmetric drift” is shown with the dashed
line. Middle Panel: Uy is the Solar Motion toward the Galactic center. Bottom
Panel: W5 is toward the north Galactic pole. Also plotted at 50 (km s~ ')
dispersion with open red squares are solar motion parameters obtained from
the parallax and proper motions of star forming regions, and at zero dispersion
with an open triangle is the W component inferred from the proper motion of
Sgr A* by Reid & Brunthaler (2004). Note the good agreement of the U and
Ws components between Hipparcos and this study. The large deviation of the
Vo component from the asymmetric drift from this study is not indicative of
large V5 value, but points to a significant deviation from circular orbits for very
young stars.



Different determinations of the solar peculiar motion

n

: : &

very young stars: dispersion X,
>O

20}
- S 2% 5
wow&;ﬁ k3

reflects parent cloud orbit;
moving groups...

Figure 4.21 The asymmetric drift v, for different stellar types is a linear function of the
random velocity S? of each type. The vertical coordinate is actually va + Ve, Where g o
is the azimuthal velocity of the Sun relative to the LSR (after Dehnen & Binney 1998b).

Dehnen & Binney ’98
(12,000 Hipparcos stars)
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extrapolating back to S =0. Ignonng stars blueward of
B —V = 0Omag we find

Uy, = 10.00 £ 0.36 (+0.08) kms™ ',

Vo =525+062 (£0.03) kms ', (20)
W, =7.17+038 (£0.09) kms™',

Schonrich, Binney & Dehner ’10
‘the approach to the determination of
VO by DB98... is misleading’

(in fact, very young stars define Vo
perfectly)

Uo=11.1+/-0.7 km/s
Vo=12.2+/-0.5 km/s
wo=7.3+/-0.4 km/s

Feast & Whitelock 97
(220 Cepheids)

u,= +93 km s™' (add
tions);

v,= +11.2 km s~ (adq
tions);

W, = +7.61 +0.64 km s




Motion relative to the galactic centre can be measured.
= solar peculiar motion + rotation curve

rr 1 T Y Y | ™)

Sgr A* J1745-283

Y
-~
4

i R | So rotation curve subject to
- 4\ bias in solar motion

40 | »

- 1 . A N 1 A
0 -10 -20
East Offset (mas)

Fig. 1.— Position residuals of Sgr A* relative to J1745-283 on the plane of the sky. Each
measurement is indicated with an ellipse. approximating the apparent scatter-broadened size of
Sgr A*® at 43 GHz and leo error bars, which include estimates of systematic uncertainties. The
dashed line is the wariance-weighted best-fit proper motion, and the solid line gives the orientation

of the Galactic plane, which is tilted by 31.40° east of north in J2000 coordinates (see Appendix).



Bovy et al ’12, APOGEE data

More twists v0 = 26 +/- 3 kml/s; Milky Way mass down.
Table 2
Results for Galactic Parameters and Tracer Properties
Parameter Flat Rotation Curve Power-law V.(R) = V.(Rp) (R/ Ro)‘3
Ve(Ro) (kms™1) 218+ 6 218,
B .. 0.n140.01
dV,/dR (Ro) (kms~'kpc™!) ..
A (kms~'kpc™!) 13.5*_’0]'.27
-1 -1 .
B (kms~'kpc™') —13.5%%7
(B> — A%)/(2nG) (M pc™2) .
Qo (kms™! kpc"]) 27.0‘:%:35 180
Ro (kpc) 8.174:2
Vr,o (kms™) ~10.555%
Vs.o (kms™) 242+
Vs.o — Ve (kms™!) 23.9%% % |
g o* (maS yr 1) 6.32+9.%7 6.36 5%
or(Ro) (kms™1) 31.41%1 32,2102

+0.01 +0.01
.03™ 0.06Z; 7

Ro/ hs 0 .27
X2 = 02/02 0.64+0.18




2nd application: velocity dispersion
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Figure 5. Velocity dispersions for stars in different colour bins. The top
panel shows the mean rotation velocity (negative values imply lagging with
respect to the LSR) and the three main velocity dispersions. In the three
bottom pzmc\ls oy = sign{of, ) Ioﬁ.l"? is plotted for the mixed components of
the ensor ).
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for stars near the mid-plane (Hipparcos data, |z| < B-V [mag]

|00pc), Dehnen & Binney 98



ratio of Or/0¢ also measures the gravitational potential

stars with the same guiding centres:



ratio of Or/0¢ also measures the gravitational potential

y = —yX sin(kt + a) 20
= —Y sin(kt + a). K

z(t) = X cos(kt + @),

Keplerian: X/Y = 0.5
Harmonic: X/Y = |
Galatic: X/Y ~ 0.7

e 2X2

—nzYz

&=
||I

2
OR
2
8 =

.
|||

for stars with the same guiding center orbits




Practical problem: in the solar neighbourhood, stars have
different guiding centres

Averaging over the phases « of stars near the Sun, we find

2 2>
k<X~

242

[ve — ve(Ro)]? = =2B°X>. (3.98)

Similarly, we may neglect the dependence of x on R, to obtain with equation
(3.84)
vh = 3x°X? = -2B(A - B)X*. (3.99)

Taking the ratio of the last two equations we have

% ~ 0.46. (3.100)

But stars also have different
amplitudes (X is not a
constant)

a distribution of X; centroid
and dispersion depends on
stellar ages; however...

392 W. Dehnen and J. J. Binney
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Figure 5. Velocity dispersions for stars in different colour bins. The top
panel shows the mean rotation velocity (negative values imply lagging with
respect to the LSR) and the three main velocity dispersions. In the three
bottom panels o, = sign(af, ) loil'n‘ is plotted for the mixed components of
the tensor a,]



we can measure K/Q), what about v/Q)?

A7Gp

12

measure V. —> measure local matter density
and since we are embedded in the disk...
how do we go about this task?

ratio of 0,/0¢ ?

Table 1.1 Inventory of the solar neighborhood

component volume surface luminosity  surface
density density density brightness
(Mepe™) (Mepe™@) (Lopc™™) (Leope?)
visible stars 0.033 29 0.05 29
stellar remnants 0.006 ) 0 0
brown dwarfs 0.002 2 0 0
ISM 0.050 13 0 0
total 0.09 4+ 0.01 49 + 6 0.05 29
(' dynamical 0.10£001 ) 74+6 . -

NOTES: Volume and luminosity densities are measured in the Galactic midplane and
surface density is the total within £1.1 kpc of the plane. Luminosity density and surface
brightness are given in the K band. Dynamical estimates are from §4.9.3. Most other
entries are taken from Flynn et al. (2006).



Spectral Energy Distribution
of a galaxy

galaxy = 2 star light = JL(m) dN/dm dm

In main sequence, L « m*



Stars in the Solar Neighbourhood (mostly disk stars +

SOMeE haIO Stars) | Melchior et al 07

All other kinds of stars (<1%)

— A and F stars (1%)
G stars, including
the Sun (4%)

Number density
of stars in the
local neighbourhood

K dwarfs (15%)

Figure4 The
stellar pyramid.
dim stars
outnumber
bright ones

Sp—e.ctral Energy Distribution of the solar
neighbourhood

courtesy of S. Courteau

Red dwarfs B gls , R ‘ Melchior et al ’07 -
(70 %) ' ‘ [ I]]1%%883s,
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White dwarfs
(10%)

Luminosity function
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Bruzual & Charlot ’93 “Spectral evolution of stellar populations using isochrone synthesis”
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What is the SED of an elliptical galaxy?

—“l’ T ' [

~— 1 GYR BURST
AGE 13.5 GYR

log (FA/LQA-IMONI)

Ao

TOTAL

RGB
MS

AGB

B S — |

\PN |

\ N ey
I

WD |
L |

5000

A/A

10000

20000



log (Fa/LoA "My )

100 : 1 1 1 IT]TT] T I | ]IYFII 1 I 1 ]lll]l 1 1 I ITI]E
, Sb spiral Elliptical Mrk231 (AGN) 7
10 B Sd spiral Arp220 QSO (dotted) .
[ . Infrared
NN
d 4 . ° .
' \ m 4 gives new information
) A ;
m . M | '! -
Q A |
- I l
- | !
S 0.1 § =
a 1 :
=~ . Z
M .
. B dust
3 ‘[ =TT I I T TTTT ’ (“) ¥ ..' _
0 9001 INSTANTANEOUS BURST Wl 3
é" an \J W ]
| a\ y
‘ 0.01 f -
% { 0.1 —— \ —
03 "' ]
> 'I I,”f '-..,\\NN TW»._\ :
‘ f ‘ 0.6 D
| It / P .
f 1 4
('NV e o \ L1 el 1 Lo el 1 AT N

.velength (,U'm) Sp.ec_tral energy distributions for typic_al galaxie_s -an olld
elliptical galaxy (red), two types of spiral galaxies (Sb in
. green and Sd in blue), an AGN (Markarian 231, solid black), a
’i:{(‘)(]- B 61&3” oo T QSO (dotted black), and a merging and star-bursting galaxy
' Arp 220. Template spectra are taken from Polletta et al. 2007.

A/A


http://adsabs.harvard.edu/abs/2007ApJ...663...81P

Back to the solar neighbourhood



Local Velocity Dispersions — spectral types

u: R-direction, x

v: theta-direction, y
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Formation of the Galactic Disk
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Fig. 8. a): observed AVR in W (Fig. 7) with the fitted power law. b-d):
simulated AVRs for three different disk heating scenarios (see text).
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We have two disks (thin, thick)?

Star counts (SDSS, Juric et al '08)
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Figure 1. Iron MDFs for Thick and Thin disks, after Gilm

the “G-dwarf problem
(lack of metal-poor disk stars, even at | | Gyrs)



Break-down of the epicycle approximation:

02 ®, 0P,
Dot = Pos(Rg,0)+2 ( 6RQH) r’+41 ( 5 f) 2*+0(zz%). (3.76)
(Rg0) “" /(Rg,0)

Taylor expansion fails when large x,z oscillations
(hotter populations)



Break-down of the epicycle approximation:

<v>:asymmetric drift, density gradient matters; rotational support reduced

the spring constants (K, V) no longer constants

<vA2>:ratio modified

epicycles only apply to

small dispersions
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Break-down of the epicycle approximation:

rotational lag (asymmetric drift)
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Figure 1. The rotational lag, plotted against z (left) and against the radial ve-
locity dispersion (right). The triangles, squares and crosses correspond to metal-
poor, intermediate-metallicity and metal-rich populations, respectively. The dot-
ted line in the right panel corresponds to the solar-neighborhood relation from
Dehnen & Binney (1998a) and the solid line denotes an empirical fit with the lag
equal to 0.01490; + 1.21 X 10 °c.. Figure taken from Smith et al. (2012).
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To account for these, need a new tool:
distribution function & Jeans equations



result into equation (4.4) we obtain the collisionless Boltzmann equa-

tion! 57 57 5
a_l_q.%_'_p.%:o, (4.6)

or df/dt=0

® |ntegral of motion, or any function of the integral
of motion satisfies the collisionless Boltzmann

equation.
® Regular motion has 3 integrals of motion.

® 6-D variables: 3 integrals of motion, 3 phases
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non-crossing in surface of section o

bound by a 3rd integral

3rd integral not analytical

total L almost conserved
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Figure 3.6 The total angular momentum is almost constant along the orbit shown in th

left panel of Figure 3.5. For clarity L(t) is plotted only at the beginning and end of a lon
integration.



In summary, the Jeans theorem tells us that if I4,...,I,, are n indepen-
dent integrals in a given potential, then any DF of the form f(I1), f(I1,I2),
..y f(I1,...,I,) is a solution of the collisionless Boltzmann equation. The
strong Jeans theorem tells us that if the potential of a steady-state galaxy

is such that almost all orbits are regular, then for all practical purposes the
galaxy may be represented by a DF of the form| f(I1, Is, Is){ where Iy, I, I3

are three independent isolating integrals.

BT p. 285

which distribution does a real galaxy take!?
and why?



If botential can decompose b~ bp ( R) + P, (Z )

motion conserves H, = %732 + & Z(Z)
so distribution function f — f (H 9 Lza H z)
A H,
f(H,L,,H,) = S(L.,) exp ( s ) |
oL 03

small departure from guiding centre motion

A=H—FE.(L,) ~ Hp + H,

Shu °69, physically motivated
“Schwarzschild Distribution Function”



Ly H) = S(L)exp (—23 = 7).

Op O3

Shu °69, physically motivated
“Schwarzschild Distribution Function™

this seems a reasonably good approximation for stars
in the solar neighbourhood.

but how do stars acquire this distribution?

why not other forms?
— S(Lz) corresponds to 2.(R)

— Gibbs hypothesis
— constraint: only some forms are compatible with ®(R,z)
— a result of prior heating? observationally, 3% ~ 1/2 ORr?

— certain forms maximize entropy?
— results of initial condition?



How to use Distribution Functions!?
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Figure 4.21 The asymmetric drift v, for different stellar types is a linear function of the

random velocity S? of each type. The vertical coordinate is actually va + ¥y, where T o
is the azimuthal velocity of the Sun relative to the LSR (after Dehnen & Binney 1998b).

keep taking moments... Jeans equations (1919)






The Jeans equation (1919)

ov = O(vui) 0

ot ox; .

oy ow, 0w ool
ot 28:1:7; - 8:1)_7' o0x;

the radial Jeans equation in cylindrical coordinates, steady state

d(vv%)  O(vuRT;) v —v3 8D\
or o0z Y\ r Tar)™"

(4.222a)
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Figure 4.21 The asymmetric drift v, for different stellar types is a linear function of the
random velocity S? of each type. The vertical coordinate is actually va + Ve, wWhere Uy o
is the azimuthal velocity of the Sun relative to the LSR (after Dehnen & Binney 1998b).

The radial Jeans equation:

VRV,

)-.

Vv, E —ﬁ—l— Bln(z/—z—)g) _EB(
* 2’Uc v% BlnR ’U%Z

the gradient measures...

0z

why can it apply to diff. populations?
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The vertical Jeans equation (beyond the epicycles)

1 O(RvvRv,

)

8(1/2)2)

R

OR

0z

Bz

=0,

AnGp =

0

0z

19(vv2)

v 0z

nu is tracer density, not rho

p(0) = (0.10£0.01) Mg pc—2.

Y1.1(Ro

) = (71 £ 6) Mg pc 2.

using A/F stars
Holmberg & Flynn ’00, Hlpparcos data

[ tl
100 } OA stars - }
. AF stars o //ﬁ.“lj
80 f ,.‘,//' L 1
~ /-é" jl
/7] 0
60 | / 1 2
\_4 i ) '_}//
S 40 0 consmte*t W|th...
| ' S ‘
e | ]
20 | p _ |
- "J__’-__'.-:-"-:_-l—“f Fa¥ o j‘
| P L 0 FAY
0 lo-o-erE 8 & {
L 4 1 1 i - - 4 4 4 4 4 e i i a 4 4 l 1 _|
0 o0 100 150 200
z/pc

4.26 The change in gravitational potential near the Sun between the midplane
ht z above the plane. Squares show values obtained with equations (4.276) from
ar sample of Holmberg & Flynn (2000), while the triangles are from their F-star
The full curve is a least-squares fit of a parabola: it is the internal gravitational

of a homogeneous slab with mass density 0.101 Mg pc™2. The dashed curve
e potential of Model I of §2.7.

using G/K stars

Smith, Whlteoak Evans ’12, SDSS data
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Measured mass-to-light ratios locally: (extend to +/- |.lkpc)

Table 1.1 Inventory of the solar neighborhood BT Chap. |
component volume surface luminosity surface
density density density brightness
(Mepc™@) (Mepc™?) (Lopc™) (Leopc?)
visible stars 0.033 29 0.05 29
stellar remnants 0.006 5) 0 0
brown dwarfs 0.002 2 0 0
ISM 0.050 13 0 0
total 0.09 £+ 0.01 49 + 6 0.05 29

dynamical 0.10 £ 0.01 7446 - -

NOTES: Volume and luminosity densities are measured in the Galactic midplane and
surface density is the total within 1.1 kpc of the plane. Luminosity density and surface
brightness are given in the R band. Dynamical estimates are from §4.9.3. Most other
entries are taken from Flynn et al. (2006).

in disk midplane, negligible dark matter

vertically (to +/-1.lkpc), dark matter ~ baryons



GAIA data



Next week: spirals — presentations

BT 6.1: observations;’leading/trailing’, pitch angle/winding problem,
pattern speed, angular momentum transport

Volunteers (2): Mark, Miranda

BT 6.2: Corotation resonance, Lindblad resonance, dispersion relation
for waves (either in fluid or in stellar disks),  Toomre Q”
Volunteers (2): Fei, Alex

BT 6.3: numerical results, ‘swing amplifier’
Volunteer (1): Nilu

supplementary reading:
Dynamics of Disks & Warps, Sellwood, 2010
http://arxiv.org/pdf/1006.4855v3.pdf
Dynamics of Secular Evolution, Binney, 2012
http://lanl.arxiv.org/pdf/1202.3403v | .pdf



Non-spherical potential:

triaxial

potential-density pair
stereotype motions
numerical results

BT 2.4,2.5,3.3,3.4



Summary: potentials & orbits

——




spherical potential:

Non-spherical potential: axisymmetric

Non-spherical potential: non-axisymm
planar 2-D

Logarithmic potential (2-D)

2

®p,(z,y) = v In (R;"- +z% + 5—2) (0<g<1). (3.103)



centre-phobic

centre-philic

Figure 3.8 Two orbits of a com-
mon energy in the potential @,

of equation (3.103) when vg = 1,

g = 0.9 and R. = 0.14: top, a box
orbit; bottom, a loop orbit. The
closed parent of the loop orbit is also
shown. The energy, £ = —0.337, is
that of the isopotential surface that
cuts the long axis at z = 5H..




Angular momentum (z-axis)
J=1rXxXv=uxv,— Y0,

] changes sign in boxy orbit (stems from |=0 orbits)

] ~ conserved in loopy orbit (relic of axi-symmetric potential)
1 ' 1 ' ] ' || 1

2 | | I

I

l 1 I

-

—

2,3: loopy, periodic orbit |
surprising for non-axisymmetric -

5,7: boxy, periodic orbit
purely along y=0 or x=0 |

_2 1 1 l 1 1 1 1 l 1 1 L 1 l 1 1

Figure 3.9 The (z, &) surface of section formed by orbits in ®, of the same energy as the
orbits depicted in Figure 3.8. The isopotential surface of this energy cuts the long axis at
x = 0.7. The curves marked 4 and 1 correspond to the box and loop orbits shown in the

top and bottom panels of Figure 3.8. .
Surface of section when y=0 and dydt > 0



H, = 33° + ®(z,0). (3.108)

Hx’ conserved

©
1_ —]
:;4 O_ —
-1 - -
_2 1 1 l 1 1 1 1 l 1 1 L 1 l 1 L
-0.5 0 0.5
X

Figure 3.11 The appearance of the surface of section Figure 3.9 if orbits conserved (a)
angular momentum (eq. 3.107; dashed curves), or (b) Hz (eq. 3.105; inner dotted curves),
or (c) H. (eq. 3.108; outer dot-dashed curves).



transition from loop to box
and back: roughly corre. to
changing Lz!

3,1,6,4,5,4,6,4,2
kB M e S

2 ] 1 [ 1 I I 1 l 1 I

1 - —
Figure 3.10 A selection of loop (top row) and box (bottom row) orbits in the potential i |
®y1.(¢g = 0.9, R. = 0.14) at the energy of Figures 3.8 and 3.9. 0 —

'6'¢ pue g'¢ saanB1g jo ABxous ayy 1@ (F1°0 = °Y '6°0 = 0) 1 -
renuajod a3 ut $31qa0 (Mol wojjoq) xoq puw (mor doy) dooj jo uores v O1°¢ 2an3ig L

+ 3.9 The (z, &) surface of section formed by orbits in @1, of the same energy as the
lepicted in Figure 3.8. The isopotential surface of this energy cuts the long axis at
. The curves marked 4 and 1 correspond to the box and loop orbits shown in the
| bottom panels of Figure 3.8.

what about 7?

2
®1,(z,y) = 203 1n (Rf + 2% + ?;—2) (0<g<1). (3.103)




the curves of a system of spheroidal
coordinates. The figure shows two
orbits in the potential ®;, of equa-
defined by equations (3.267) are con-

tion (3.103), and a number of curves
stant.

tentials approximately coincide with
on which the coordinates w and v

Figure 3.30 The boundaries of
loop and box orbits in barred po-
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Box/Loop — connection with the spheroidal coordinates



The advance of box
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Figure 3.12 When the potential ®;, is made more strongly barred by diminishing g, the
proportion of orbits that are boxes grows at the expense of the loops: the figure shows the
same surface of section as Figure 3.9 but for g = 0.8 rather than g = 0.9.



Possibility of resonant orbits
— leading to chaos

Figure 3.40 The appearance in real

space of a banana orbit (top) and
a fish orbit (bottom). In the upper
panel the cross marks the center of
the potential. Resonant box orbits
of these types are responsible for
the chains of islands in Figure 3.39.

The banana orbits generate the outer
chain of four islands, and the fish
orbits the chain of six islands further P N

in. -~ \

Figure 3.39 A surface of section for motion in ®1, (eq. 3.103) with g = 0.6.



Rotating bars

if potential static in time: E conserved

if potential time-varying: E not conserved
periodic (rotation)

aperiodic
E:%UZ—I—CI)
d_E:v.dv . d@:_vod@ e L |Ud_<I>:8_<I>
dt dt ' dt dr ' ot dr Ot



Lagrangian points of a rotating potential




The singular logarithmic potential in two dimensions is rep-
resented by

® = ZIn(x* + y*/b?). (2)

Miralda-Escude & Schwarzschild 89

754 MIRALDA-ESCUDE AND SCHWARZSCHILD
2 '5 ................. |- 8 —
.............................. 3
................... |
...... i
. o
. . Resonance
2.0 | TF . o .
.
.« o
- L d
* e
y LN e . .
. o ° .:.
1.5 = \\\ 16 H, et
- . .~
oo ‘.
.' P o o**°*°
. * . !
y _ ! .
.
1.0 F ! |
: .
. 21 . :
........... L Banana .
ostl NN\ A H NN e J | |
% ol & |
y
P3S4 s £ -0 Al e s
0

0 8

FiG. 1.—Surface of section for singular logarithmic potential with axis ratio b = 0.7. The invanant curves are labeled with their r_ values. Dots represent closed
rbits.
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5. 4.—Closed boxlets in the singular logarithmic potential with axis ratio b = 0.7, Left : centrophobic (stable). Right : centrophilic (unstable).
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FiG. 5—Schematic bifurcation diagram for b = 0.7. Solid lines: stable
orbits. Dashed lines: unstable orbits. Dots: bifurcations of boxlets from axial
orbits. Crosses: bifurcations of higher resonances from boxlets.
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Figure 3.27 The boundaries of orbits in the meridional plane approximately coincide
with the coordinate curves of a system of spheroidal coordinates. The dotted lines are

the coordinate curves of the system defined by (3.242) and the full curves show the same
orbits as Figure 3.4.



273D

| 1985MNRAS . 216. .

Elliptical galaxies with separable potentials 277

Figure 2. Ellipsoidal coordinates. The three pairs of foci are denoted by the open and filled circles and the filled
squares. (a) Surfaces of constant A are ellipsoids. The degenerate ellipsoid A = —a, inside the focal ellipse, is shaded.
(b) Surfaces of constant u are hyperboloids of one sheet. The degenerate hyperboloid u=-f, between the two
branches of the focal hyperbola, is shaded. (c) Surfaces of constant v are hyperboloids of two sheets. The degenerate
hyperboloid v=~§ is shaded.

de Zeeuw 85



spherical potential:

Non-spherical potential: axisymmetric

Non-spherical potential: non-axisymm.
— planar 2-D

Non-spherical potential: non-axisymm.
— triaxial



—

touching the zero
velocity surface

Figure 3.46 Orbits in a non-rotating triaxial potential. Clockwise from top left: (a) box
orbit; (b) short-axis tube orbit; (c) inner long-axis tube orbit; (d) outer long-axis tube
orbit. From Statler (1987), by permission of the AAS.
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Figure 28. Action-diagram for the three-dimensional orbits in the perfect ellipsoid. The volumes occupied by the four
families of general orbits are indicated. The locations of all limiting and transitional orbits are described in the text.
The light and dark shaded surfaces correspond to the unstable orbits in the (x, z)- and (y, z)-plane, respectively.
Dashed lines indicate simple periodic orbits that are unstable in one direction. The dotted line represents the z-axis
orbits that are unstable in two directions. The filled and open circles and squares have the same meaning as in Section
5. The diagram is equivalent to Fig. 17.
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Figure 3.45 The ratios of orbital frequencies for orbits integrated in a three-dimensional
non-rotating bar potential.



FMA was originally applied to the dynamics of planets by Jacques Lasker who in 1989 demonstrated that the
dynamics of the solar system was chaotic. FMA initially applied to accelerators by Lasker and S. Dumas (PRL
1993). Lasker and D. Robin later extended the work to the ALS.

: —Frequency map analysis and particle accelerators
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Beam Quality & Lifetime e ie
FMA - Introduction L
Sincrotrone Trieste

« The oscillating electrons in the storage ring generally obey “quasi-harmonic”
motion close to the origin for a “good working point”.

« Large amplitudes sample more non-linear fields and motion becomes diffusive -

I.e., the frequency of oscillation (tune) changes with turn number. Motion close to a
resonance also exhibits diffusion.

« Frequency map analysis examines dynamics in frequency space rather than
configuration space.

« Regular or quasi-regular periodic motion is a fixed point in frequncy space
characterised by a tune value.

« lrregular trajectories exhibit diffusion in frequency space - with the tunes changing
in time.

« The mapping of configuration space (x & y) to frequency space (Q, & Q,) will be
regular for regular motion and irregular for chaotic or diffusive motion.

« Making a map - numerlcally integrate the equations of motion for a set of initial
Condtl)tIOS'lS (x, y, x,y') and compute the frequencies as a function of time (turn
number

2ncy Map Analysis - 2 CAS - "Synchrotron Radiation and Free Electron Lasers" - Brunnen, Switzerland - 2 to 9 Jul



Beam Quality & Lifetime e ié

FMA - Introduction Garo., oot

- FMA constructs the frequency map FT : (x,y) - (Q,, Q,) from the space of initial
conditions to tune space over a finite time span T by searching for quasi-periodic

motion of the transverse motion.
« [tis independent of the initial momenta (X'y,y’,)
« |t converges as 1/T% compared to 1/T fora FFT

« For regular motion it is invariant in time otherwise the time variation of the tunes
called orbit diffusion gives a stability criterion.

« The study of the map gives information about resonances and nonlinear behaviour.

Synchrotron motion is generally ignored since the longitudinal tune compared to the transverse
tunes is much smaller

FMA was originally applied to the dynamics of planets by Jacques Lasker who in 1989 demonstrated that the
dynamics of the solar system was chaotic. FMA initially applied to accelerators by Lasker and S. Dumas (PRL
1993). Lasker and D. Robin later extended the work to the ALS.



Merritt ’93 : Dynamics of Elliptical Galaxies (Science) |

*spherical potential: precessing, planar motion
(motion regular)

eaxisymmetric potential: annular orbit precesses
around z-axis, donut-shaped, typically 3 integrals
of motion (motion all regular)

*triaxial potential:
when perfect ellipsoid (Stackel potential), regular
when general, often still integrals of motion
4 family of orbits
--boxy: centrophilic, dominating elliptical galaxies,
but easily perturbed by central density/BH
--loopy: centrophobic, 3-groups
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Figure 17. The real-space trajectory of the SO1 orbit in the Stickel potential
SP1. The upper panel shows a plan view of the galactic plane, while the S

lower panel plots height above the plane, z, against azimuthal coordinate, x / kpe
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Figure 9. Plan views of the orbits used in this section. The top panel she
14, with (a), (b) and (c) marking the positions of the cluster corresponding



Figure 3.9 Path of the star of Figure 3.7, viewed from above the Galactic plane; the orbit
started with (R = 1.3, ¢ = 0) and (R = 0, R¢ = 0.4574).



