Elliptical Galaxies,
Triaxial Potential

Schwarzschild Modelling

bulge
gas-free (largely)
old stars
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(a) Two scenarios discussed

(1) Monolithic Dissipative Collapse

= Early massive gas cloud undergoes dissipative collapse
= Huge starburst during collapse

Note: sub-mm detections of ~101° M  cold gas at z ~ 2-3 with high SFR.

= Clumpiness during collapse — violent relaxation — ~ isothermal
incomplete violent relaxation — non-isothermal & non-isotripic
= Probably rotate "rapidly" — "Disky" Ellipticals 77?

(11)) Hierarchical Mergers

= Early universe much denser: e.g. z ~ 2 density ~ 27 times higher than today.
— Mergers/interactions probably common.
= Sequence of galactic mergers, starting with pre-galactic substructures
= Galaxies continuue to grow during z ~ 1-2
Note : HST finds old ellipticals at z ~ 0.5
= Galaxies fall into clusters and merging ceases (encounter velocities too high)
= Random accretions — low AM & anisotropic — "Boxy" Ellipticals ?7?

reality likely a combination
but how do each process give rise to the observed correlations?



| I ! I i | |
0.2 b- * i
Elliptical galaxies have ool x Xe T i

varying amount of s > e x
rotation support. -0z T N -
3 -oul A _
Brighter ones have =
less. Flattened, butnot = -os} . rr -
by rotational flattening. i ' ’tt )
-1.0F ° —
: J

-1.2 - —

L -l | I l I |

-18 -19 -20 -21 — L -23 -24
' MBUI-‘

Fig. 4. —Log {Via)* against absolutc magnitude. Fllipticals arc
shown as filled circles and the bulges as crosses: (Vie)* is defined in
§ 11156,



The Sersic profile is found to describe well the
surface brightness profile for many ellipticals.
Scale-length increasing with R.
more luminous Elliptical galaxies have

I(R) = I, ewp( [(R/RE)I/“ D higher n-index (more centrally
* concentrated). Kormendy et al ‘06
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Inner region: Power-law vs. Cuspy Ellipticals

0.0 p——g—t—t———t—t power-law
v dimmer ellipticals
| \\ —5 TV T [ ' 1T —r | r rr ¢ 1t 17
| _ denser core L\
% P ‘ ' WM\ lliptical = 1
! 1 stars in very centre BR\\\ Core Ellipticals  (r, = 1) |
S | ! Coreless Ellipticals (r_, = r_. )
5 20 - Cx min
2 [ o ioersosy ¥ =
E [oncsve 9 -
el 5 ol
25 e Coon+90 8B * O
= A McDomold O 8 mV * o N
- = Sersic Fit (2.44" to 68.4") O
I I P £ B
0.0 1.0 2.0 3.0 > i
r'/4 (orcsec'/4) S
E sk
0.0 =i . Cusp.y. ~
16 [ & brighter ellipticals L
: core evacuated I
18 5 L --M32
A stars sculpted by BH" | __M87
8 20 ]
o : e Lovuer+ 05V * : 1 O 1
o - ® Louer + 05 1 0
g ppforeye k
3 : + CFHT Coss V : (r/rcx)‘/‘
L 54 |- o Bender + 08 v * . FI1G. 40.— Major-axis profiles of all of our ellipticals scaled together to
[ © Peletier + 90 V ¢ ) illustrate the dichotomy between core and coreless ellipticals. Core ellipticals
L 4 McDonold 0.8 m v * i are scaled together at ., =r;, the break radius given by the Nuker function fit
26 [~ - Sersic Fit (4.6" to 501) 3 in Lauer et al. (2007b). Coreless ellipticals are scaled together at the minimum
IS TS TR SR . radius ry;, that was used in our Sérsic fits; interior to this radius, the profile is

0.0 1.0 2.0 3.0 4.0 5.0 dominated by extra light above the inward extrapolation of the outer Sérsic fit.
r'/4 (arcsec'/*)



Faber-dackson relation: more luminous ellipticals have deeper

potentials
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Ellipticals are likely triaxial bodies: a>b > cC

2 2 2
T Y z 9
—= T 35 T 5 = T
a? b2 C
Oblate Ellipsoid Prolate Ellipsoid Triaxial (3:2:1) Ellipsoid

. systems that are rotationally supported likely axi-symmetric
(a=Db); rotation around short-axis (c)

. but systems supported by velocity dispersion do not have to be
(imagine superimposing two oblique rotating disks).



if population triaxial
a p:c=1:0.98:0.68
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Fic. 6¢—Binned distribution functions of apparent axis ratios. The histo-
gram gives the apparent axis ratios of the 171 ¢lliptical galaxies in the cbserva-
tional sammple. The points and error bars give the mean and standard deviation
expected from a sample of 171 galaxies drawn from the Gaussian function
(8, Wlth oo, =0.01, f, =098, and y, = 0.69. The two functlons have a
reduced y? score of y2/v = [.2.

see: Ryden (1992) ApJ, 396, 445R

a,b,c functions of r
— twisted Isophotes




Photometry can only go so far.

For real understanding, have to go to kinematics
(spectroscopy)

1) individual stellar orbit
2) collection of stellar orbits



Orbits in a spherical potential stay in a plane.

Figure 3.1 A typical orbit in a
spherical potential (the isochrone,

eq. 2.47) forms a rosette.




axi-symmetric potential
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Figure 3.27 The boundaries of orbits in the meridional plane approximately coincide
with the coordinate curves of a system of spheroidal coordinates. The dotted lines are
the coordinate curves of the system defined by (3.242) and the full curves show the same
orbits as Figure 3.4.



Axisymmetric potential: largely
rotation supported; conserve Lz
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Figure 3.4 Two orbits in the potential of equation (3.70) with ¢ = 0.9. Both orbits are
at energy £ = —0.8 and angular momentum L, = 0.2, and we assume vg = 1.

. logarithmic potential gives rise to flat rotation curve
. gradual precession of the orbital plane
.space allowed by ZVC not filled up -- 3rd integral
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Poincare surface of section
(visualize 3-D orbit as a 1-D motion)
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Juis Herwt Porcasd (1854-1012), Photograph feom the
frontspece of the 1913 edtion of Last Thoughts

zero velocity curve

= 0) — particle remains z=0

- circular orbit
pr=0, p.=0

re 3.5 Points generated by the orbit of the left panel of Figure 3.4 in the (R,pR)
ce of section. If the total angular momentum L of the orbit were conserved, the points
1 fall on the dashed curve. The full curve is the zero-velocity curve at the energy of
rbit. The X marks the consequent of the shell orbit.



Orbits in Non-axisymmetric potential
b =&(x,y, 2)

first consider: planar potential (2-D, no z-direction)

Logarithmic potential (2-D)

2
®p,(z,y) = v§1n (R§ + z% + %) (0<qg<1). (3.103)



centre-philic, box orbit
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Angular momentum (z-axis)
J=1rXv=uxv,—1yv,

axi-symmetric potential non-axi-symmetric potential (planar)

. = %vg In (

R? +

22 L? 2
_) + 5p2’ (3.70) O (z,y) = %'vg In (RE + 22 + Z—z) (0<g<1). (3.103)

q2

Ay

] changes sign in boxy orbit (stems from |=0 orbits)

two kinds of Jz = 0 orbits

X
-

] ~ conserved in loopy orbit (relic of axi-symmetric potential)



transition from loop to box and back: roughly corre. to changing Lz!

J changes sign in boxy orbit (stems from =0 orbits)
] ~ conserved in loopy orbit (relic of axi-symmetric potential)

Figure 3.10 A selection of loop (top row) and box (bottom row) orbits in the potential

P(g = 0.9, R, = 0.14) at the energy of Figures 3.8 and 3.9.

strobe whenever
y=0, py>0

(3.103)

orbits depicted in Figure 3.8. The isopotential surface of this energy cuts the long axis at
z = 0.7. The curves marked 4 and 1 correspond to the box and loop orbits shown in the

top and bottom panels of Figure 3.8.
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The advance of box
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Figure 3.12 When the potential @1, is made more strongly barred by diminishing g, the
proportion of orbits that are boxes grows at the expense of the loops: the figure shows the
same surface of section as Figure 3.9 but for ¢ = 0.8 rather than 0.9.



Possibility of resonant orbits
— leading to chaos

Figure 3.40 The appearance in real

space of a banana orbit (top) and

a fish orbit (bottom). In the upper
panel the cross marks the center of
the potential. Resonant box orbits
of these types are responsible for

the chains of islands in Figure 3.39.
The banana orbits generate the outer

chain of four islands, and the fish
orbits the chain of six islands further PP

in. -~ \

Figure 3.39 A surface of section for motion in ®1, (eq. 3.103) with g = 0.6.
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Non-axisymmetric potential

273D ;

| 1985MNRAS . 216. .

¢ = P(x,y, 2)

The perfect Ellipsoid (triaxial potential in the Stackel form)

2 2 2
Po where m? = " T (y/(h) La (z/qg) . (3.316)

1 +m?2)? a?

p(x) = (

equation of motion separable in the ellipsoidal coordinates
3 isolating integrals for all orbits

Elliptical galaxies with separable potentials 277

Figure 2. Ellipsoidal coordinates. The three pairs of foci are denoted by the open and filled circles and the filled

squares. (a) Surfaces of constant A are ellipsoids. The degenerate ellipsoid A = —a, inside the focal ellipse, is shaded.

(b) Surfaces of constant u are hyperboloids of one sheet. The degenerate hyperboloid u=—f, between the two

branches of the focal hyperbola, is shaded. (c) Surfaces of constant v are hyperboloids of two sheets. The degenerate de Zeeuw 85
hyperboloid v=-£ is shaded.



The perfect ellipsoid supports 4-types of orbit
Orbits 1n Triaxial Potentials 11

box orbit short—a:gi_s be orbit

outer long—axis tube orbit inner long-axis tube orbit

They are the 3-D counterparts of box and loop orbits in 2-D.
Which orbit should gas (closed-orbit) go?






Merritt ’93 : Dynamics of Elliptical Galaxies (Science) |

*spherical potential: precessing, planar motion
(motion regular)

eaxisymmetric potential: annular orbit precesses
around z-axis, donut-shaped, typically 3 integrals
of motion (motion all regular)

*triaxial potential:
when perfect ellipsoid (Stackel potential), regular

when general, often still integrals of motion | / : & |

4 family of orbits
--box: centrophilic, dominating elliptical galaxies, i
but easily perturbed by central density/BH (

--loop: centrophobic, 3-groups, have net . i) (‘




orbits in pertect ellipsoids have 3 integrals of motion:
1, 12, 13

distribution function: f(l1, I2, 13)

use spectral data to extract t
— the Schwarzschild method



Schwarzschild Modelling

Why model galaxies?

adapted from a lecture by
Dr. Anne-Marie Weijmans

* We want to understand how galaxies formed
and evolved

— star formation history

— merger and accretion events

* Look in detail at nearby galaxies, unravel
formation history (fossil record)
— ‘galactic archeology’

* Use dynamical models to
study their dynamical structure



Extracting kinematics from spectra

KO star

elliptical galaxy

1 l | 1 1 1 1 1 L L 1 l 1
9100 5200 9300

Wavelength (&)
e Galaxy spectrum is composed of stellar spectra

* Stellar spectra convolved with LOSVD
— LOSVD = line-of-sight velocity distribution

— stellar reference spectrum is shifted and broadened
mean velocity  velocity dispersion




Line-Of-Sight Velocity Distribution

* Assume LOSVD is Gaussian

all these are mapped on the sky plane;
SO a superposition of depth

— measure mean and standard deviation

* But allow for deviations from true Gaussian
— skewness E;2 asymmetrical deviations

— kurtosis §, = symmetrical deviations
— deviations caused by orbital structure

Skevwness

+ve
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An example of Skewness
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Figure 4.15 Three distributions of azimuthal velocities v, predicted for stellar popula-
tions in the solar neighborhood by the DF (4.156). The circular speed has been assumed

to be vo = 220kms~! at all radii, cgr(L) and o,(L.) are taken to be proportional to

exp(—L:/(2voRq)], while ¥ = ¥g exp(—R/Rq), with Ro/Rq = 3.2 (Table 1.2). The values
of ’tg 1/2 for the three populations are 5, 15 and 30kms—1, the largest value producing

the widest spread in vg.



real data
NGC 2434 (E]) NGC2663 (E3) NGC3706 (E3) NGC 5018 (g3

Figure 11.6 The large-scale major-axis kinematics for a sample of four giant elliptical
galaxies. The LOSVDs of these systems have been parameterized using the truncated
Gauss-Hermite expansion (§11.1.2). The dotted lines indicate the effective radius, R, for
each galaxy. The Hubble classification (shown in parentheses) is based on the galaxy's
average ellipticity outside R./2. [After Carollo et al. (1995)]



Dynamical models

* Jeans models (see previous lectures)
— only require Vand o
— analytical solutions (fast!)
— assumptions: axisymmetry and constant anisotropy

* N-body models (see John Dubinski’s lecture)

— numerical computation
— no assumptions on shape or orbital structure

— possible to evolve model (test for stability)

* Schwarzschild models (this lecture)
— orbital superposition method (faster than N-body)
— no assumptions on shape or orbital structure



Schwarzschild modeling
Schwarzschild (1979)

* Choose gravitational potential for galaxy
* Calculate orbits in that specific potential

* Find orbit combination that best reproduces
observables
— use non-lineair least square fitting
— regularize to have smooth distribution function (DF)

— fit to observed surface brightness and kinematics

* Run variety of models with different potentials,
find the one that fits best

— fit for viewing angles, mass-to-light ratio, black hole
mass, etc.

also orbits need to be self-consistent with density distribution



Orbital super-position method

t —  Stellar orbit track Image of orbit on sky

B B

images of model orbits Observed galaxy image

Cappellari et al. 2004



Why Schwarzschild models?

Schwarzschild models are very general
— no assumptions on shape, anisotropy etc.

Resulting models show structure of galaxy
— mass components, such as hidden discs
— shape and orbital structure

Schwarzschild models are relatively fast

— instead of millions of particles, follow few thousand
orbits

But: Schwarzschild models cannot deal with
evolving potentials (bars, spiral arms)

— mostly used for early-type galaxies



How to recognize a (hidden) disc

log (Flux) v o hs hg

—20-10 0 W 20 30 O-20-10 ¢ 10 20 30 W-20-10 0 1¢ 20 30 O-20-10 ¢ 10 20 30 &L-20-10 0 10 20 30 40
aroseo orcee: amosso orcee: aroaeo

Lam, Meyer & Zhao

* Velocity field shows regular rotation

* h, anti-correlates with V
— broad non-rotating distribution
— rapidly rotating narrow distribution

NGC 2592 (SDSS)

Integral Field Spectrograph (IFU)



Integral-field Spectrography

Velocity curve
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* Axisymmetric galaxy = only short axis orbits
— rotation axis always aligned with minor axis

* Triaxial galaxy = both short and long axis orbits
— rotation axis in plane of short and long axis
— projection of short axis depends on viewing angle
— rotation axis misaligned from minor axis



& | NGC 3842 b NGC 4889

y (arcsec)

X (arcsec) x (arcsec)

265 275 285 295 305 315 325 325 340 355 370 385 400 415
o (kms™) o (km s™)

Can we see a black hole in these dispersion maps?



“A Dearth of Dark Matter in Ordinary
Elliptical Galaxies”

VS

“Lost and Found Dark Matter in
Elliptical Galaxies”



No dark matter in ellipticals?
Romanowsky et al. (2003)

e Obtained PNe measurements for three
intermediate luminosity ellipticals

* Data show declining dispersion profiles

* Models required not much (if any) dark matter
to fit the observations

http://adsabs.harvard.edu/abs/20035ci...301.1696R
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Fig. 1. NGC 3379 with
109 PN line-of-sight
velocities relative to
the systemic velocity,
as measured with the
42-m William Her-
schel Telescope and
the PN.S instrument.
The symbol sizes are
proportional to the
velocity magnitudes.
A modified version of
the data is shown in
fig. S1. Similar data
were obtained for
NGC 821 and NGCC
4494 (figs. S2 and S3).
Crosses indicate re-
ceding velocities; box-
es, approaching veloc-
ities; dotted circles,
isophotes in incre-
ments of R.g.



Fig. 2. Line-of-sight ve-
locity dispersion pro-
files for three elliptical
galaxies, as a function
of projected radius in
units of R.. Open
points show planetary
nebula data (from the
PN.S); solid points
show diffuse stellar
data (72-74). The ver-
tical error bars show 1o
uncertainties in the dis-
persion, and the hori-
zontal error bars show
the radial range cov-
ered by 68% of the
points in each bin. Pre-
dictions of simple iso-
tropic models are also
shown for comparison:
a singular isothermal
halo (dashed lines) and
a constant mass-to-
light-ratio galaxy (dot-
ted lines).

NGC 821

NGC 3379




Lost & found dark matter in elliptical galaxies

A. Dekel’??, F. Stoehr’, G.A. Mamon?, T.J. Cox', G.S. Novak®’, & J.R.

Primack®

* Constructed numerical simulations of disc-

galaxy mergers to form ellipticals

* Mergers result in elongated stellar orbits
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The dark halo of NGC 3379
Weijmans et al. (2009)
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Constr‘ains from thé kinematic data

* Observing almost no rotation at large radii
— need box orbits and/or counter-rotating tube orbits
— box orbits allowed in triaxial model

* Observing an almost constant dispersion profile
— potential extra halo mass ‘hides’ on radial orbits

* Observing h, >0 at large radii
— requires radial anisotropy

— box orbits are OK
— counter-rotating tube orbits are NOT OK



