
This is your last written problem set for the course. There are two computer projects after this.

1. Here, you will write a program to construct a reasonably realistic interior structure for an ∼ 8M�
zero-age main-sequence (ZAMS) star. This is adapted from one of Frank Shu’s problems.

• Adopt the equation of state

P = (ni + ne) kT +
1

3
aT 4, (1)

where ni and ne are the number densities of atomic nuclei and electrons, respectively. Assume
all species are completely ionized, and that each metal atom (carbon, nitrogen, oxygen...) with
atomic number A contributes A/2 electrons. These assumptions are not perfect for metals
but can be largely excused since metals make but a small contribution to the gas pressure.

Express ni and ne, as well as the mean molecular weight µ, as functions of X, Y and Z. For
a population I star, a typical set of values might be X = 0.70, Y = 0.27, and Z = 0.03. So
pressure is recast as

P =
ρkT

µmH

+
1

3
aT 4, (2)

We define a parameter β = Pg/P , which measures the relative importance of gas pressure.

• For opacity, we will simply take the total opacity to be the sum of the two Rosseland mean
opacities from bound-free and electron scattering (HKV Ch. 4). Note there are two problems
with this simplification. First, in the deep interior where temperature is high, all electrons are
free and there should be no bound-free opacity; second, the true definition of the Rosseland
opacity, obtains from the integration of 1/κν over all frequencies, weighted by the blackbody
spectrum (eq. 4.22 of HKV). These two problems, however, are not severe as they seem. In
the deep interior, electron scattering is more important; the sum of the two Rosseland means
asymptotes to one or the other terms if the two terms alternately dominates at different parts
of the star. And it save us having to look up the opacity table.

• The convective core. Given the high core density and temperature, convection is very efficient.
We can take the approximation that entropy is constant there. Consult HKV §3.7 to obtain
(d lnT/d lnP )ad for a mixture of ideal gas and radiation.

• For nuclear generation, include both energy generation rates from PP and CNO burning (see
HKV Ch. 6).

Now we are armed with all the physics we need. Go ahead and write an integration code.

• First we have to choose an independent variable to integrate along. I would suggest using
logP . Contemplate why this may be superior to using, say, radius, mass (M(r)), or linear
pressure. You might also want to adopt log ρ and log T as variables, as opposed to using ρ
and T .

• Guess a central temperature and central pressure, and integrate outward the equations of
stellar structure. Assume the star is convective in the interior, until where the radiative
temperature gradient (the value of d lnT/d lnP that is sufficient to transport the nuclear



luminosity outward by radiative diffusion) falls below your calculated (d lnT/d lnP )ad. Once
this occurs, switch over to radiative flux transport and continue to integrate towards the
surface.

• The radiative photosphere is defined at a pressure

Pph =
2

3

g

κ
. (3)

You can obtain this relation by combining the equations of hydrostatic equilibrium and
radiative transfer, and by remembering the definition of the photosphere (optical depth
τ = 2/3). This pressure expression can be translated into Pph = Pph(T = Teff), where
the effective temperature is related to the nuclear luminosity as

L = 4πR2σT 4
eff . (4)

• A duet of initial guesses suggested by Frank Shu are: Tc = 2.88× 107 K, and Pc = 4.02× 1016
dyne/cm2. These guesses, when integrated outward, may not necessarily intersect the Pph =
Pph(T = Teff) you obtain above. Keep Tc fixed, and vary Pc to minimize, e.g.,| logP − logPph|.
You may use bisection or other root finding technique to find the relevant Pc (consult
“Numerical Recipes” by Press et al).

• Display your results by plotting log T , log ρ, radius, M , and luminosity, as functions of logP .

• The stellar mass you get this way may not be exactly 8M�, but you can see that if you
fine-tune Tc, you will get there. If the mass you get above is higher than 8M�, should you
raise or lower your guess for Tc?

Now we go on to analyze your computer output. Discuss

• relative importance of the PP-chain vs. the CNO-cycle in an 8M� star.

• relative importance of the bound-free, free-free and electron scattering opacity in such a star.

• relative importance of radiation pressure here.

• why a main-sequence star of intermediate (or high) mass has a convective core. Pay attention
to both the run of (d lnT/d lnP )ad with β, as well as to the radial dependence of the production
of luminosity inside the core.

• why do main-sequence stars of intermediate and high mass have radiative envelopes? Compare
the radiative temperature gradient (d lnT/d lnP for radiative diffusion) against the adiabatic
temperature gradient. What do you think would occur for more massive, and therefore, more
luminous and more radiation pressure dominated stars?



2. Structure of a shell-source star (a giant).

Evolved stars often encounter a situation in which the inner dense core has finished nuclear burning,
and is largely isothermal1, while the outer envelope expands in response to a thin nuclear burning
shell immediately outside the core. We call these stars the red giants if the star has a pure helium
core and burns hydrogen in the thin shell, or asymptotic giants if the core is carbon-oxygen and
helium (and sometimes hydrogen) burning occurs in the shell.

For a low mass star, the structure of a shell star differs from that of a white dwarf (our last problem
set) only in that the non-degenerate envelope is not geometrically thin. For a high mass star,
radiation pressure is significant in supporting the core and the shell.

Here, we (re-)derive homology relations for both low and high mass giants. Much of the materials
here are covered in: KW §19.8, 30.5, 32.2 & 33.5, and their supporting sections. I attempt to
combine them all into the same problem, to highlight the similarities and contrasts.

Let the core temperature be Tc, mass Mc, radius Rc, pressure at the core boundary be Pb; the total
stellar mass M , total radius R, and luminosity (from the shell source) L. Hydrostatic and thermal
equilibrium require that pressure and temperature at the core-envelope interface be continuous.

• The Schonberg-Chandrasehkar limit. For a core that is supported by ideal gas pressure, and
only differs from the envelope in its mean molecular weight, there is a maximum value for
the fractional mass inside the core (Schonberg-Chandrasekhar, 1942). Here, we illustrate this
mass limit by combining numerical integration and analytical scaling.

Consider an isothermal core supported by ideal gas pressure, with a finite pressure at its
surface (due to the weight of the envelope).2 Express pressure as

P =
ρkTc
µcmH

= ρc2
c , (5)

where µc is the mean molecular weight of the core, and square of the core sound speed
c2
c = kTc/µcmH . Follow §19.8 of KW to obtain the isothermal Lane-Emden equation.

In order to integrate this equation, we will need an asymptotic expression for ω ≡ Φ/c2
c at

z � 1 (notation here follows that of KW). Show that the following power series

ω ≈ z2

6
+O(z4) + ... (6)

satisfies the Lane-Emden equation for ω � 1 and z � 1. Numerically integrate the
second-order Lane-Emden equation, using the above initial condition, to obtain ω as a function
of z. Plot your density as a function of z, and show that the density can be approximated by
two different relations,

ρ ∼ ρc z = Ar � 1,

∼ ρcz
−α z = Ar � 1, (7)

1No flux goes in or out so a temperature gradient is not maintained
2This is akin to the Bonner-Ebert sphere in star formation (KW §26.2)



where ρc is the central density. Obtain the value for α. If we define a scale radius rs = 1/A, this
says that the density is roughly constant within the scale radius, but falls off as a power-law
outside of it.

Obtain the total core mass for the two separate regimes, Rc � rs or Rc � rs. In the latter
regime, core mass rises with core radius, and there is no bound to the mass, an interesting
property of the isothermal sphere.

Express the core pressure at Rc, P−, for both regimes as functions of the core mass, as well
as the core sound speed.

Now consider the envelope. Assume the core exerts a sufficiently small influence that the
envelope follows largely that of a homologous polytrope model. Obtain the following scaling
for the base pressure as a function of the base sound speed (ce),

P+ ∼
c8
e

G3M2
, (8)

where M is now the total mass of the star.

Balancing P+ and P− to obtain the following scaling

Mc

M
≤
(
µe
µc

)2

(9)

an equation that differs only by a factor of unity from eq. (30.14) of KW. Argue why this is
an upper limit to the core mass.

This is the Schonberg-Chandrasekhar mass limit. Once the core mass exceeds this limit
(Mc/M ∼ 0.1 for a helium core), the core is forced to contract into a different state, with
gravity supported by either electron degeneracy (when Tc is low, as is appropriate for a low
mass star), or by radiation pressure (when Tc is high, as is appropriate for a high mass star).
These are dealt with below.

• The core mass-luminosity relation for a low mass star (Refsdal & Weigert, A& A, 1970, 2,
426). Consider a core of non-relativistically degenerate helium surrounded by an extended
envelope of unburnt material, which is in turn supported by ideal gas pressure. If hydrogen
burning is occurring in a thin shell above the core, it is said that the luminosity of the shell
source depends uniquely on the core mass, with L ∝Mα

c and α being a large positive number.
As a result, as the post-main-sequence Sun ages and accumulates in core mass, its luminosity
rises.

Density in the degenerate core can be orders of magnitude higher than that in layer
immediately above. One can therefore safely assume that the layer above contributes
negligibly to the mass and gravity (until much beyond the burning zone). The star radius
R� Rc.

We are going to follow Refsdal & Weigert (1970) in adopting the following homology solutions
for the layer immediately above the core. Let z = r/Rc ≥ 1 (but z never reaches much greater



than unity) , they are

P = p′(z)Mαp
c Rβp

c

T = T ′(z)MαT
c RβT

c

L = L′(z)MαL
c RβL

c . (10)

All models with different Mc and Rc share the same p′(z), T ′(z) and L′(z). These scaling
conveniently provide us with the following analytical results – but why are they reasonable?
We will come back to this later.

Substituting these homology relations into the equation for hydrostatic equilibrium to obtain

αT = 1, βT = −1. (11)

Continue with this exercise and obtain the exponents for luminosity, by inserting the homology
relations into the equations of radiative transfer and nuclear generation, in particular, adopt
the electron scattering opacity and the CNO cycle, with

ε = ε0ρT
13. (12)

In the last step we adopt the dependence of Rc on Mc as that for a cold white dwarf. With
your final result for L ∝Mα

c , can you answer the following question: .....

Now let us return to the question of the homology relation in equation 10. Instead of the
reduced version there, let us make sure we are not forgetting any physical variable and adopt
the following set:

P = p′(z)Mαp
c Rβp

c M
γpRδp

T = T ′(z)MαT
c RβT

c MγTRδT

L = L′(z)MαL
c RβL

c MγLRδL (13)

Follow the same exercise as before to show that all γ and δ are necessarily zero. Or, global
stellar properties are not very important in the core mass-luminosity relation. Now after the
math, can you qualitatively explain – with a target audience of astronomy graduate students
– why giant luminosity depends almost exclusively only on core mass?

• The core mass-luminosity relation for a high mass star (Paczynski, 1970, Acta. Astron. 20,
47). We consider the extreme case when the pressure support is dominated by radiation
pressure. Show that the luminosity production of the star scales linearly with the core mass,
with the luminosity being the Eddington luminosity for the core mass.3

• Now... if I was feeling more energetic, I would have asked you the question of why the
transition from L ∝Mα (low mass core) to L ∝M (high mass core) occurs around Mc = Mch,
the Chandrasekhar mass. But, I run out of steam.

3The usual Eddington luminosity is defined for electron scattering opacity, but it can be easily generalized.


