Documentation

The goal of this research project is to examine the long-term stability of the Eridanus II star cluster in the presence of various mass Primordial Black Holes at different mass fractions of the Eri II dark matter halo. Eri II is an ultra-faint dwarf galaxy discovered by the Dark Energy Survey [1][2]. It is thought to be a distant (366 kpc from the Sun) Milky Way satellite, though this is uncertain [3]. Eridanus II has a half-light radius of $R_{1/2}=2.31 “$. Most importantly, Eri II has a star cluster at a projected distance of ~45 pc from the center of Eri II. The star cluster is fainter and more extended than is expected for star cluster in the Milky Way [4].

The Eri II system has long been an interesting test-case for dark matter modeling. For instance, dark matter (DM)-baryon interactions, such as by supernovae (SN), smoothing cusps [5] to cores [6]. There should be a lower mass bound under which a galaxy will have insufficient energy to affect the DM cusp-core transformation [7]. In cuspy profiles the star-cluster rapidly sinks to the center of the galaxy, while in a cored profile the star cluster maintains a long-term stable orbit [8]. This method has been applied to Eridanus II [9].

In application to primordial black holes, we are working to extend the analysis done in Contenta (2018) [9], but include, at various mass fractions of the Eri II halo, different initial mass function Primordial Black Hole (PBH) distributions. The dissolution of the star cluster in the presence of the PBHs would tightly constrain PBHs-as-DM. Studies of Eri II have been conducted previously, for example Carr (2016) [10]. These results have been claimed to be the strongest constraints on PBH DM, and are motivated by Fokker-Planck arguments of the effect of heating of the star cluster. However, even if the cluster gets unbound, it may still remain near the center of the dwarf and appear as a cluster, in which case the strong constraints would be incorrect. Full N-Body simulations are warranted to verify the Fokker-Planck analysis.

Attribution

DOI

If you make use of this code, please consider citing the utilipy Zenodo DOI as a software citation:

@software{utilipy:zenodo,
  author       = {nstarman},
  title        = {utilipy},
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.3491011},
  url          = {https://doi.org/10.5281/zenodo.3491011}
}

Also consider citing the following papers galpy [11], AMUSE [12] [13] [14] [15], BHTree [16], and SeBa [17] [18]

References

1

K. Bechtol, A. Drlica-Wagner, E. Balbinot, A. Pieres, J. D. Simon, B. Yanny, B. Santiago, R. H. Wechsler, J. Frieman, A. R. Walker, P. Williams, E. Rozo, E. S. Rykoff, A. Queiroz, E. Luque, A. Benoit-Lévy, D. Tucker, I. Sevilla, R. A. Gruendl, L. N. da Costa, A. Fausti Neto, M. A. G. Maia, T. Abbott, S. Allam, R. Armstrong, A. H. Bauer, G. M. Bernstein, R. A. Bernstein, E. Bertin, D. Brooks, E. Buckley-Geer, D. L. Burke, A. Carnero Rosell, F. J. Castander, R. Covarrubias, C. B. D’Andrea, D. L. DePoy, S. Desai, H. T. Diehl, T. F. Eifler, J. Estrada, A. E. Evrard, E. Fernandez, D. A. Finley, B. Flaugher, E. Gaztanaga, D. Gerdes, L. Girardi, M. Gladders, D. Gruen, G. Gutierrez, J. Hao, K. Honscheid, B. Jain, D. James, S. Kent, R. Kron, K. Kuehn, N. Kuropatkin, O. Lahav, T. S. Li, H. Lin, M. Makler, M. March, J. Marshall, P. Martini, K. W. Merritt, C. Miller, R. Miquel, J. Mohr, E. Neilsen, R. Nichol, B. Nord, R. Ogando, J. Peoples, D. Petravick, A. A. Plazas, A. K. Romer, A. Roodman, M. Sako, E. Sanchez, V. Scarpine, M. Schubnell, R. C. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, M. E. C. Swanson, G. Tarle, J. Thaler, D. Thomas, W. Wester, J. Zuntz, and DES Collaboration. Eight New Milky Way Companions Discovered in First-year Dark Energy Survey Data. \apj , 807(1):50, July 2015. arXiv:1503.02584, doi:10.1088/0004-637X/807/1/50.

2

Sergey E. Koposov, Vasily Belokurov, Gabriel Torrealba, and N. Wyn Evans. Beasts of the Southern Wild: Discovery of Nine Ultra Faint Satellites in the Vicinity of the Magellanic Clouds. \apj , 805(2):130, June 2015. arXiv:1503.02079, doi:10.1088/0004-637X/805/2/130.

3

T. S. Li, J. D. Simon, A. Drlica-Wagner, K. Bechtol, M. Y. Wang, J. García-Bellido, J. Frieman, J. L. Marshall, D. J. James, L. Strigari, A. B. Pace, E. Balbinot, Y. Zhang, T. M. C. Abbott, S. Allam, A. Benoit-Lévy, G. M. Bernstein, E. Bertin, D. Brooks, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, C. E. Cunha, C. B. D’Andrea, L. N. da Costa, D. L. DePoy, S. Desai, H. T. Diehl, T. F. Eifler, B. Flaugher, D. A. Goldstein, D. Gruen, R. A. Gruendl, J. Gschwend, G. Gutierrez, E. Krause, K. Kuehn, H. Lin, M. A. G. Maia, M. March, F. Menanteau, R. Miquel, A. A. Plazas, A. K. Romer, E. Sanchez, B. Santiago, M. Schubnell, I. Sevilla-Noarbe, R. C. Smith, F. Sobreira, E. Suchyta, G. Tarle, D. Thomas, D. L. Tucker, A. R. Walker, R. H. Wechsler, W. Wester, B. Yanny, and DES Collaboration. Farthest Neighbor: The Distant Milky Way Satellite Eridanus II. \apj , 838(1):8, 2017. arXiv:1611.05052, doi:10.3847/1538-4357/aa6113.

4

William E. Harris. A New Catalog of Globular Clusters in the Milky Way. arXiv e-prints, pages arXiv:1012.3224, December 2010. arXiv:1012.3224.

5

John Dubinski and R. G. Carlberg. The Structure of Cold Dark Matter Halos. \apj , 378:496, 1991. doi:10.1086/170451.

6

Julio F. Navarro, Vincent R. Eke, and Carlos S. Frenk. The cores of dwarf galaxy haloes. \mnras , 283(3):L72–L78, December 1996. arXiv:astro-ph/9610187, doi:10.1093/mnras/283.3.L72.

7

Jorge Peñarrubia, Andrew Pontzen, Matthew G. Walker, and Sergey E. Koposov. The Coupling between the Core/Cusp and Missing Satellite Problems. \apjl , 759(2):L42, 2012. arXiv:1207.2772, doi:10.1088/2041-8205/759/2/L42.

8

Jorge Peñarrubia, Matthew G. Walker, and Gerard Gilmore. Tidal disruption of globular clusters in dwarf galaxies with triaxial dark matter haloes. \mnras , 399(3):1275–1292, November 2009. arXiv:0905.0924, doi:10.1111/j.1365-2966.2009.15027.x.

9(1,2)

Filippo Contenta, Eduardo Balbinot, James A. Petts, Justin I. Read, Mark Gieles, Michelle L. M. Collins, Jorge Peñarrubia, Maxime Delorme, and Alessia Gualandris. Probing dark matter with star clusters: a dark matter core in the ultra-faint dwarf Eridanus II. \mnras , 476(3):3124–3136, May 2018. arXiv:1705.01820, doi:10.1093/mnras/sty424.

10

Bernard Carr, Florian Kühnel, and Marit Sandstad. Primordial black holes as dark matter. Physical Review D, 94(8):083504, October 2016.

11

Jo Bovy. galpy: A python Library for Galactic Dynamics. \apjs , 216(2):29, 2015. arXiv:1412.3451, doi:10.1088/0067-0049/216/2/29.

12

Simon Portegies Zwart, Steve McMillan, Stefan Harfst, Derek Groen, Michiko Fujii, Breanndán Ó. Nualláin, Evert Glebbeek, Douglas Heggie, James Lombardi, Piet Hut, Vangelis Angelou, Sambaran Banerjee, Houria Belkus, Tassos Fragos, John Fregeau, Evghenii Gaburov, Rob Izzard, Mario Jurić, Stephen Justham, Andrea Sottoriva, Peter Teuben, Joris van Bever, Ofer Yaron, and Marcel Zemp. A multiphysics and multiscale software environment for modeling astrophysical systems. \na , 14(4):369–378, May 2009. arXiv:0807.1996, doi:10.1016/j.newast.2008.10.006.

13

S. Portegies Zwart, S. McMillan, I. Pelupessy, and A. van Elteren. Multi-physics Simulations using a Hierarchical Interchangeable Software Interface, pages 317. Volume 453 of Astronomical Society of the Pacific Conference Series. \na , 2012.

14

Simon Portegies Zwart and Steve McMillan. Astrophysical Recipes; The art of AMUSE. \na , 2018. doi:10.1088/978-0-7503-1320-9.

15

F. I. Pelupessy, A. van Elteren, N. de Vries, S. L. W. McMillan, N. Drost, and S. F. Portegies Zwart. The Astrophysical Multipurpose Software Environment. \aap , 557:A84, September 2013. arXiv:1307.3016, doi:10.1051/0004-6361/201321252.

16

Josh Barnes and Piet Hut. A hierarchical O(N log N) force-calculation algorithm. \nat , 324(6096):446–449, December 1986. doi:10.1038/324446a0.

17

S. F. Portegies Zwart and F. Verbunt. Population synthesis of high-mass binaries. \aap , 309:179–196, May 1996.

18

S. Toonen, G. Nelemans, and S. Portegies Zwart. Supernova Type Ia progenitors from merging double white dwarfs. Using a new population synthesis model. \aap , 546:A70, October 2012. arXiv:1208.6446, doi:10.1051/0004-6361/201218966.