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ABSTRACT

Four institutions are collaborating to design and build three near identical λ/∆λ ∼ 2700 cross-dispersed near-
infrared spectrographs for use on various 5-10 meter telescopes. The instrument design addresses the common
observatory need for efficient, reliable near-infrared spectrographs through such features as broad wavelength
coverage across 6 simultaneous orders (0.8 - 2.4 µm) in echelle format, real-time slit viewing through separate
optics and detector, and minimal moving parts. Lastly, the collaborators are saving money and increasing the
likelihood of success through economies of scale and sharing intellectual capital.
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1. INTRODUCTION

The availability of efficient moderate resolution near-infrared (NIR) spectrographs with wide wavelength coverage
at modern telescopes is increasingly important for such work as investigating targets identified in large-scale
imaging surveys including the Two Micron All-Sky Survey1 (2MASS) and Sloan Digital Sky Survey2 (SDSS).
These targets can be faint in the visible but bright in the NIR, such as brown dwarfs and dust obscured galaxies.
These spectrographs are also useful for the spectral follow-up of objects identified in the mid-infrared by e.g.
Spitzer Space Telescope3 and soon the Stratospheric Observatory for Infrared Astronomy (SOFIA). They are also
important for studying high redshift objects with visible rest frame diagnostic lines that have been red-shifted
into the near-infrared.

Cornell and JPL sought to design a cost-effective seeing-limited spectrograph that would excel in this spectral
follow-up or ‘triage’ role for the Palomar Observatory 200-inch telescope, for which there is no existing facility
near-infrared spectrograph. We use the term ‘triage’ because we envision astronomers using the spectrograph
to rapidly and efficiently collect spectra of a list of hitherto unknown targets culled from e.g. 2MASS or Spitzer
Space Telescope databases. Because telescope time, especially for large apertures, is a scarce resource, this
‘triage’ capability is maximized by providing as wide a simultaneous wavelength coverage as possible. Observing
efficiency is increased compared to spectrographs that require multiple instrument settings, e.g. grating rotations
or grism changes to achieve the same coverage. In addition, the stitching of adjacent spectral regions that overlap
is also improved when the various spectral regions are imaged simultaneously on the same detector. Lastly, a
separate NIR slit-viewing channel with wide field of view (FOV) is crucial for field identification and keeping an
object in the slit in real-time.

Paradoxically, there is a relative lack of instruments of this kind at modern telescopes. This led Caltech and
the University of Virginia to join Cornell and JPL in the design and fabrication of three near-identical efficient,
cost effective moderate resolution seeing limited near-infrared spectrographs. Cornell and JPL are building a
copy to be a facility instrument for the Palomar 200-inch telescope. Caltech is building a copy to be a facility
instrument for the Keck 10-meter telescopes. And the University of Virginia is building a copy to be a visiting
instrument at 5-10 meter telescopes.
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2. MULTI-INSTITUTIONAL TEAMING

The benefits of multi-institutional teaming to build near-identical copies of an instrument are real and both tan-
gible and intangible. Financially the partners save money through ‘volume’ purchases of some of the instrument
components. For example, unit costs for the spectrograph camera opto-mechanical assembly was discounted
30% when three units were purchased instead of one. Similar savings are expected for other portions of the
instrument, including the Dewar fabrication. The partners also save money through sharing one-time design
cost charges, such as design studies for stray light analysis and test AR coating runs.

On the intangible side, the sharing of intellectual capital and institutional experience through previous in-
strument work is extremely beneficial. We also expect to improve instrument performance through the sharing
of lessons learned as the various copies are commissioned.

3. DESIGN OVERVIEW

3.1. Desired Core Capabilities

• Wide simultaneous wavelength coverage (0.8 - 2.4 µm)

• Sufficient slit length for effective sky subtraction through nodding

• Sufficient spectral resolution to allow a significant fraction of pixels along the spectral orders to be free of
airglow contamination4

• Throughput maximized for K-band, but wavelength coverage to 0.8 µm to allow overlap with spectra from
red-optical CCD based instruments

• Separate slit viewing channel to enable real-time slit viewing, source identification, and near-infrared guid-
ing

• Accommodate various incoming telescope f/#’s with customizable reflective re-imaging fore-optics

3.2. Imposed Constraints

• Ensure high reliability through minimal use of moving parts

• Keep costs on the order of $1 million US

• Develop a compact Dewar design with minimal flexure that can be used at cassegrain, bent-cassegrain and
nasmyth ports with little modification

3.3. Design Trades

There is obvious tension between the first three core capabilities given a finite availability of pixels, especially
since detectors are typically the most expensive material costs in infrared instruments. We balanced our desired
capabilities and constraints by concentrating on a design that utilized two adjacent quadrants of a Rockwell
Scientific∗ HAWAII-II array (effectively 2048 x 1024) for the spectrograph. And it coincided with the reality
that an excessive number of prisms in series would be required to provide enough cross dispersion to fill 2048
pixels in the slit length direction. We are using three prisms in series to cross disperse 6 orders across 1024 pixels.
Prisms provide cross-dispersion instead of a first order grating because our wavelength coverage exceeds a factor
of two. We chose to use a grating with first order at ∼ 6.6µm so the third order peak efficiency was well centered
on K band. The blue end of the spectral coverage is driven by the rapidly dropping QE with wavelength at
0.8µm in HgCdTe detectors. The red end is driven by the edge of the K atmospheric window. The final design
is summarized in Table 1.

∗Rockwell Scientific Company, LLC, 5212 Verdugo Way, Camarillo, CA, USA
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Table 1. Instrument Design Summary

Resolution 2700

Simultaneous λ Coverage 0.8 - 2.4 µm (across 6 orders)

Nominal Slit Size on sky (Palomar 200-inch) 1.0 x 30 arcsec

Sampling 2.7 pix per resolution element (slit width)

Spectrograph Detector 2 quadrants of Hawaii-II (effectively 2048 x 1024)

Primary Disperser Reflection Grating

Cross Disperser 2 ZnSe and 1 Infrasil prism in series

Slit Viewer Band Ks

Slit Viewer Detector Hawaii-I (1024 x 1024)

Slit Viewer FOV (Palomar 200-inch) 4 x 4 arcmin

3.4. Same design for different telescopes?

Various optical and mechanical features enable nearly identical instruments to be used on different telescopes.
First, a reflective reimager based upon mis-matched off-axis paraboloids is used to convert a telescope’s incoming
f/# to a common f/10.7 at the slit (Section 4.1). Past the telescope focus, the first off-axis paraboloid collimates
the beam. After passing through a Lyot stop, another off-axis paraboloid focuses the light upon the slit. An
instrument to be used on a telescope with an f/15 beam would have a different first off-axis paraboloid installed
compared to an instrument to be used on a telescope with an f/11 beam.

Secondly, given a common f/10.7 beam falling on the slit, the plate scale change with aperture fortuitously
matches the improvement in seeing between the Palomar 200-inch (5-meter) telescope and the Keck 10-meter.
This allows the same slit and spectrograph camera to serve both telescopes. Specifically, an instrument with a
1 arcsec slit optimized for the Palomar 200-inch (5-meter) telescope, with ∼ 1 arcsec seeing, scales correctly for
use on the Keck 10-meter telescope with ∼ 0.5 arcsec seeing.

Dewar Window

Telescope
Focus

Off-Axis
Paraboloid 1

Reflective Slit
SubstrateOff-Axis

Paraboloid 2

Lyot
Stop

Figure 1. Schematic of the instrument re-imaging optics. f/16 light from the telescope enters through the sapphire Dewar
window at the left and immediately comes to a focus. Past the focus the light is reflected and collimated by an off-axis
paraboloid. After passing through the Lyot stop, the light is reflected again and focused at f/10.7 onto the reflective slit.
Telescopes of different f/# formats can be accommodated by changing the first off-axis paraboloid.
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Lastly, the Dewar cryogen tank and fill tube end point within the tank are designed to allow use of the
instrument at cassegrain, bent-cassegrain and nasmyth foci (Section 5.1).

4. OPTICS

4.1. Fore-optics

The instrument uses a traditional re-imager to produce a cold pupil stop and accomplish f/# conversion (Fig-
ure 1). Light from the telescope enters the Dewar through a square sapphire window and comes to a focus
inside the cold volume. A square field stop that defines the slit viewer field is placed at this focus. Past the
telescope focus the beam diverges and is collimated by an off-axis paraboloid and folded back towards the front
of the Dewar. This off-axis paraboloid is matched to the incoming telescope f/#. (As discussed in Section 3.4,
by simply changing this paraboloid and adjusting the position of the Lyot stop, telescopes with differing f/#’s
can be accommodated.) The collimated beam then passes through a cold Lyot stop placed at the image of
the telescope pupil. Lastly the beam is folded back and re-focused at f/10.7 onto the slit by a second off-axis
paraboloid. The slit substrate has not been designed yet but functionally it will be both reflective across the
∼ 4 x 4 arcmin slit viewer FOV at the Palomar 200-inch (∼ 2 x 2 arcmin at the Keck 10-meter) and provide for
the choice of two or three different slits with varying widths based on user’s science desires and seeing. The slit
will be tipped 30◦ along an axis parallel to the slit length to steer the reflected beam into a separate slit viewing
channel.

4.2. Spectrograph Channel

The light that is transmitted through the slit diverges at f/10.7 towards the back of the Dewar and is collimated
by another off-axis paraboloid (Figure 2). The resulting collimated beam of ∼ 73 mm diameter is folded by two

Reflective Slit
Substrate Collimator

(Off-Axis
Paraboloid)

Fold Mirrors

3 Prisms
(in series)

Reflection
Grating

7-element
Refractive Camera

Detector

Figure 2. Schematic of the spectrograph portion of the instrument. The schematic is rotated by 90 degrees in the bottom
view. Light that passes through the slit is collimated by an off-axis paraboloid and then folded by two flats for packaging
purposes. The beam is then pre-dispersed by three prisms in series before reflecting off the grating. Lastly, the dispersed
light in re-focused onto two quadrants of a HAWAII-II HgCdTe detector by a 7-element refractive camera.
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flat mirrors towards the pre-dispersing section of the spectrograph. The beam now progresses out of the plane of
the fore-optics and spectrograph collimator. Pre-dispersion is accomplished by three prisms in series, two ZnSe
prisms with 22◦ apex each and one Infrasil prism with 50◦ apex. ZnSe and Infrasil have peak partial dispersions
near 1 and 2 µm, respectively. Used in series these materials produce fairly constant separation between the 6
orders covering 0.8 - 2.4 µm.

After the prisms a plane reflection grating will disperse the light in the primary dispersion direction. A 110.5
l/mm grating replica blazed for 6.79 µm (22◦ blaze) in first order (Littrow configuration) will be purchased
from Spectra-Physics† (formerly Richardson Grating Lab). This grating will come from the same master that
produced a replica for GNIRS.5 The grating will be used with an angular deviation of 30◦ (angle between
incoming and outgoing beams).

7.9" (200 mm

Figure 3. The 7-element f/1.6 spectrograph camera designed and fabricated by Axsys IR Systems. Four materials are
used for the elements: ZnSe, Cleartran (ZnS), CaF2 and Infrasil. The diameter of the first element (CaF2) is 164 mm.
Two of the element surfaces in the camera are aspheres and one of those is a conic; the remaining surfaces are spherical.
A notch is cut from the entrance of the camera mechanical assembly to prevent vignetting of the beam between the prism
and grating.

After reflection from the grating, the collimated light is focused onto the detector by a 7-element refractive
f/1.6 camera designed by Axsys IR Systems‡ (formerly Telic Optics, Inc.). In monochromatic light the camera
is ∼ f/2.25 to produce the necessary plate scale of 0.33 arcsec/pixel at the Palomar 200-inch (0.17 arcsec/pixel
at the Keck 10-meter). But the dispersion of the gratings requires a large entrance pupil and results in an
f/1.6 system in polychromatic light. The camera utilizes four commonly used NIR materials (ZnSe, Cleartran§

(ZnS)), CaF2 and Infrasil) in a fast ‘apochromatic’ design to partially correct primary chromatic aberration and
minimize secondary spectrum (Figure 3). The remaining primary chromatic aberration is taken up by a detector
tilt of ∼ 0.9◦ along an axis parallel to the spectral orders. Two of the element surfaces in the camera are aspheres
and one of those is a conic; the remaining surfaces are spherical.

Six spectral orders are imaged onto two adjacent quadrants of the HAWAII-II detector (Figure 4) to give
nearly simultaneous wavelength coverage between 0.8 - 2.4 µm (The only gap in coverage occurs between 1.85 -
1.88 µm, an area of poor atmospheric transmission).

†Spectra-Physics, 705 St. Paul Street, Rochester, NY 14605 USA Tel: 1 (585) 262-1331.
‡Axsys IR Systems, 152 Rangeway Road, North Billerica, MA 01862 USA Tel: 1 (978) 667-4350.
§Cleartran is a water-free form of ZnS manufactured by Morton International.
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Order 3

Order 4

Order 5

Order 6

Order 7

Order 8

2048 pix

1024 pix

Figure 4. Orders 3 - 8 are imaged onto two adjacent quadrants of a HAWAII-II HgCdTe detector. Slit length is 30 arcsec
on the Palomar 200-inch (15 arcsec on the Keck-10m). The sets of three crosses shown at various wavelengths symbolize
the top, middle and bottom of the slit.

4.3. Slit Viewer Channel

Light that is not transmitted through the slit is reflected by the slit substrate into a separate slit viewing channel
(Figure 5). After a fold mirror necessary for packaging, the beam is collimated and re-imaged by a 2-element
refractive camera. Both elements are made of Cleartran (ZnS) because the camera is only used in KS band (2.0
- 2.3 µm). The first slit viewing lens collimates the beam. A Lyot Stop and KS filter are placed at the second
image of the telescope pupil, and finally another Cleartran lens re-focuses the light onto a HAWAII-1 HgCdTe
detector. Both elements have one surface that is aspheric and one that is flat.

Reflective Slit
Substrate

Fold Mirror

Collimating
Lens

Ks Filter
Camera
Lens

Detector

Figure 5. Schematic of the instrument slit viewer optics. Light that is not transmitted through the slit is reflected into
a separate slit viewing channel by the slit substrate. After a fold mirror, the beam is collimated through a Cleartran lens,
passes through a KS filter, and is re-imaged by another Cleartran lens onto a HAWAII-1 HgCdTe detector.

The slit viewing field is used for three purposes: real-time placement of the science object in the slit, field
identification, and near-infrared guiding when desired. The image plate scale is ∼ 0.24 arcsec/pixel at the
Palomar 200-inch (∼ 0.12 arcsec/pixel at the Keck 10-meter) and the FOV is 4 x 4 arcmin at the Palomar
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Table 2. Expected minimum number of suitable guide stars and galaxies in a slit viewer (4 arcmin FOV) pointing with
the instrument at the Palomar 200-inch based on 2MASS object counts near the galactic pole.

Integration Time (sec) KS mag (S/N = 5) NGalaxies (min) NStars (min)

1 17.2 8 3

10 18.4 42 3

30 19.0 76 3

200-inch (2 x 2 arcmin at the Keck 10-meter). This large FOV was chosen based on 2MASS object counts near
the galactic pole to maximize the potential for locating suitable infrared bright guide stars anywhere on the sky
(Table 2). The slit is offset from the center of the FOV by 90 arcsec at the Palomar 200-inch (45 arcsec at the
Keck 10-meter) (i.e. it is ∼ 30 arcsec at the Palomar 200-inch (∼ 15 arcsec at the Keck 10-meter) from the edge
of the slit viewer field). Were a suitable guide star not found in the initial slit viewing field, the instrument could
be rotated with respect to the telescope. A full rotation would sweep an 8 arcmin field at the Palomar 200-inch
(4 arcmin at the Keck 10-meter).

5. MECHANICS

5.1. Cryogenic Dewar

The optics and detectors will be contained within an LN2 cooled cylindrical Dewar (Figure 6). The cryogen
is held in the ‘crescent’ section of the cylinder. Bulkheads spaced along the length of the cylinder oppose the

Slit Viewer 

Dewar Window

Crescent LN2 Tank

Re-imaging 
Section

Spectrograph 
Camera

Collimator

Two Folds for 
Packaging

3 Inner Bulkheads for 
mounting optics

2 Outer 
Bulkheads for 
connecting cold 
volume with 
vacuum vessel

Figure 6. Schematic of the Dewar and opto-mechanical assembly. The cryogen is held in the ‘crescent’ section of the
cylinder. Bulkheads oppose the tendency of the crescent to open when under vacuum and provide a stable framework for
mounting optics. The three inner bulkheads supports all of the optics components and the two outer bulkheads provide
cold volume mounting points for connection to the vacuum vessel.
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Cassegrain Mounting Nasymth Mounting

Crescent Shaped
LN2 Tank

Fill Tube

Vent Tube

Aux LN2 Tank
Fill / Vent Access

Arbritray 
Cassegrain / Bent Cassegrain
Pointing

Figure 7. Schematic of the crescent shaped LN2 tank. Tank size and tube placement allows use of the Dewar at either
Cassegrain, Bent-Cassegrain, or Nasmyth telescope mounts without spillage. A nominal fill of 40% capacity will give at
least a two-day hold time.

tendency of the crescent to open when under vacuum, and provide a stable framework for mounting optics. The
three inner bulkheads form an integral unit that supports all of the optics components. The two outer bulkheads
provide cold volume mounting points for connection to the vacuum vessel.

Fill and vent tube end points within the LN2 tank are placed such that the same design can be utilized at
Cassegrain, Bent-Cassegrain and Nasmyth telescope mounts. The LN2 tank is sized such that at least two-day
hold times are achieved with cryogens filled to ∼ 40 % capacity. This capacity is defined by the position of the end
point of the fill and vent tubes within the tank for which an instrument mounted at any telescope position, with
any orientation on the sky and rotator position, will not spill cryogens (Figure 7). An auxiliary LN2 tank will
be mounted adjacent to the spectrograph camera to provide temperature control for the spectrograph detector.

The overall Dewar length is 46.5” and encircled diameter is 32”. Empty weight is ∼ 650 lb; with controllers
boxes and half-load of cryogens the system weight should be ∼ 800 lb.

5.2. Structural Considerations

Relative movement of the instrument optics due to changing gravity vectors during telescope pointing is mini-
mized by various methods (Figure 8). Radial movement of the cold volume (with respect to the vacuum shell
and telescope) is constrained using four pre-stressed hand-wound fiberglass epoxy straps that connect each cylin-
drical end cap of the vacuum vessel with the outer bulkheads of the cold volume. Axial rotation and fore-and-aft
movement of the cold volume (with respect to the vacuum shell and telescope) is also constrained through the
use of ’X’ shaped G-10 connecting tabs on either side of the long axis of the Dewar. This mounting system
should hold the 450 lbs (205 kg) within 1 mil (25 µm).

Within the cold volume the crescent shaped tank provides a stable mounting platform for the three inner
bulkheads with mounted optical components. The tank and inner bulkhead system should combine to reduce
differential movement between the slit and detector to 65 µm (1/4 slit width) for all loads during pointing.

6. STRAY LIGHT

Stray light from outside the instrument FOV will be controlled by the cold Lyot stop placed at the image of
the primary formed by the re-imaging optics prior to the slit. But light that correctly passes through the slit
can also generate stray light within the spectrograph channel such as scattering from imperfect optical surfaces.
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Figure 8. Radial movement of the cold volume is constrained using four pre-stressed hand-wound fiberglass epoxy straps
that connect each cylindrical end cap of the vacuum vessel with the outer bulkheads of the cold volume. Axial rotation
and fore-and-aft movement of the cold volume is constrained through the use of ’X’ shaped G-10 connecting tabs on either
side of the long axis of the Dewar.

Dispersion of unwanted wavelengths off of the grating is of particular concern. Most insidious from a stray light
standpoint are the beams of light diffracted by the grating at wavelengths that come to a focus just off the edge
of the detector. At these wavelengths the beams are partially vignetted by the finite sized optics within the
spectrograph camera. This vignetting gives rise to scattering from inside edges of baffles and optical element
outside edges. In particular, light from the bright thermal infrared between λ = 2.46µm (the red edge of order
3 on the detector) and wavelengths shortward of the HgCdTe cut-off (λ ∼ 2.6µm) pose the most concern. Not
only does light within this wavelength range in order 3 fall just off the edge of the detector. But light at these
wavelengths from order 2 also falls just off the opposite corner of the detector. Effective field stops surrounding
the detector will be important for preventing this light from entering the detector through the detector edges or
through ghost reflections.

We have contracted with Breault Research Organization, Inc.¶ to conduct stray light analysis of the spectro-
graph channel. This study will provide guidance on mechanical stray light mitigation, such as the best position
for baffles within the spectrograph camera, effectiveness of grooves within the camera barrel, and the most
important places for black paint.

7. DETECTORS & ELECTRONICS

7.1. Detectors

Two detectors are used in this instrument. The spectrograph channel will use two science-grade quadrants of a
Rockwell Scientific HAWAII-II PACE HgCdTe detector. Thus the active detector size will be 2048 x 1024 pixels.
As discussed in Section 5.1, an auxiliary LN2 tank will be used to enable thermal control of the spectrograph

¶Breault Research Organization, Inc., 6400 East Grant Road, Suite #350 Tucson, Arizona, 85715 USA Tel: 520-721-
0500.
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detector to a temperature slightly greater than 77K. This will provide better dark current stability and less
zero point drift. The slit viewing channel will fully illuminate a Rockwell Scientific engineering-grade HAWAII-I
PACE HgCdTe 1024 x 1024 pixel detector.

7.2. Electronics & Software

The spectrograph and slit viewing detectors will be operated by independent computer systems as well as
Generation-III controllers from Astronomical Research Cameras, Inc.‖ with separate grounds and supplies but
with a shared common shield (the Dewar). We expect to operate both systems from a common master clock
with a software provision to pause the imager to avoid electrical interference with the science readout.

The ArcVIEW software package6 will be used for the Palomar instrument. This package will require only
minor modifications to support coordinated readout of the two systems, and may be enhanced to provide either
guide signals to the telescope control system or a steady stream of sub-images containing the guide star (The
slit viewer will be used for guiding at the Palomar 200-inch). ArcVIEW is otherwise already equipped to control
these detectors, provide Fowler sampling and/or real time frame coadding, and write FITS format image files.

Figure 9. Test AR coatings for Sapphire, Fused Quartz and ZnSe obtained from Spectrum Thin Films. Transmission is
for one surface and coatings are designed for normal incidence.

8. ANTICIPATED SPECTROGRAPH PERFORMANCE

8.1. Throughput

Significant attention has been given to the refractive optics anti-reflection coatings and grating efficiencies to
maintain satisfactory throughput. Estimated peak throughput (from telescope primary through detector QE) is
∼ 19%, ∼ 23%, and ∼ 27% in J, H and K bands, respectively.

8.1.1. Anti-Reflection Coatings

The spectrograph optical train includes the 2-3 telescope mirrors, 22 refractive surfaces, six reflective surfaces,
and the detector substrate. To maximize throughput it is imperative that reflection losses be minimized through
good performance anti-reflection (AR) coatings. Very promising test AR coatings for Sapphire, Fused Quartz
and ZnSe were obtained from Spectrum Thin Films∗∗ (Figure 9): their test coatings achieved > 99% transmission

‖Astronomical Research Cameras, Inc., 3547 Camino del Rio South, Suite A San Diego, CA 92108 USA, Tel: 619-584-
7979.

∗∗Spectrum Thin Films, 100-E Knickerbocker Ave, Bohemia, NY 11716 USA, Tel: 631-589-3502.
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between 1.0− 2.5µm per surface. Coating performance for ZnS and CaF2 should be similar to that of ZnSe and
Fused Silica, resp. We hope to use coatings with this performance for the Dewar window, spectrograph camera
and slit viewing camera elements. Test coatings for the prisms have not been obtained, but we hope to use
similar performance coatings for those elements. The detector substrates do not have AR coatings, and cannot
be coated after production without risk.

8.1.2. Grating Efficiency

The reflection grating has very good efficiency. Peak efficiencies are expected to be ∼ 70%, ∼ 78% and ∼ 81%
in J, H, and K bands. These estimates are based on Spectra-Physics efficiency measurements of the grating at
near-Littrow use for several orders, and estimated performance losses incurred when the grating is used at 30 deg
angular deviation compared to a Littrow configuration using PCGRATE-2E†† software.

Table 3. Estimated spectrograph continuum sensitivity for Palomar 200-inch. Assumes S/N = 5 per resolution element,
system throughput of 0.17, 0.19 and 0.22 in J, H and K, background level between OH-lines of 70, 200 and 70 µJy/arcsec2

in J, H, and K bands, RN = 5e− and idark = 0.01e−/sec.

Band 600 sec 1800 sec 3600 sec

J 19.6 20.3 20.7

H 18.8 19.4 19.8

K 17.7 18.3 18.7

8.2. Sensitivity

Sensitivity estimates for the spectrograph at the Palomar 200-inch are listed in Table 3. The estimates assume
S/N = 5 per resolution element, system throughput of 0.17, 0.19 and 0.22 in J, H and K, background level
between OH-lines of 70, 200 and 70 µJy/arcsec2 in J, H, and K bands, RN = 5e− and idark = 0.01e−/sec.
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