Quiz: cannibalism in close binary stars
star m_{1} bloats up, part (d m) of its envelope becomes dominated by the gravity of m_{2} and is transferred from m_{1} to m_{2}
-- does the binary unbind or spiral-in?
How to estimate?

- Use mass conservation? Yes $\dot{m}_{2}=-\dot{m}_{1}$

Cataclysmic Variable

- Use energy conservation? No! Energy lost
- Use angular momentum conservation?

$$
\text { For a circular orbit, } L=\frac{m_{1} m_{2}}{M} \sqrt{G M a}
$$

$$
\text { Hence, } L=L\left\langle\frac{\dot{m}_{1}}{m_{1}}+\frac{\dot{m}_{2}}{m_{2}}+\frac{1}{2} \frac{\dot{a}}{a}\right|=0
$$

Laws of Gravity III Tides

Tidal forces and the tidal bulge

Force $=$ Lunar gravity + centrifugal force*

[^0]

Tidal periods --- lunar \& solar tides

Solar tides and lunar tides have comparable heights
Rotation of the Earth causes:
semi-diurnal tides -- earth rotates every 24 hours tide rises and falls every ~ 12.4 hours dominates in atlantic coasts
diurnal tides -- dominates in some pacific coasts
resonance of tidal forcing with ocean basin
Orbital phases of the Sun and the Moon:
'spring' tides and 'neap' tides
Orbit of the Earth causes.
fortnightly tides -- moon's distance from us varies, $e=0.055$
semi-annual tides -- earth's orbit around the Sun, $e=0.017$

Tidal Height

Tides $=$ ocean tide + atmosphere tide + solid tide
Over most of the world, ocean tide ~ 0.7 metres balancing enhanced self-gravity (due to tidal bulge) with
the tidal acceleration (see extra note at end for an order-of-magnitude estimate)

Bay of Fundy: tidal height $\sim 9 \mathrm{~m}$ (highest in the world) Nearby PEI: $\sim 2.5 \mathrm{~m}$

Tidal Evolution

Ideal Earth

Total energy (orbit + spin) steadily decreases over Gyr timescale while the total angular momentum (orbit + spin) is conserved Final state: Synchronised \& circularised

Tidal Evolution Earth-Moon system

As a result of tidal dissipation:
Earth is spinning down
--angular momentum transfer--
and the Moon is receding
Observable Consequences:
lengths of day \& month are increasing
number of days in a month is decreasing
Evidence from:
laser ranging,
historical eclipse records, coral \& nautilus fossil, mud deposit
For an excellent review (by F. Verbunt), see www.astro.utoronto.ca/~mhvk/AST221/verbunt.pdf

Tidal Evolution final state

Pluto \& Charon
Orbital period: 6.387 days
Orbital period: 6.387 days
Charon spin period: 6.387 days $\mathrm{e}=0$

Earth-Moon:
orbital period: 27.32 days orbital period: 27.32 day
Earth spin period: 1 day Moon spin period: 27.32 days $\mathrm{e}=0.05$

Extra Note: Height of the Tidal Bulges

- an order-of-magnitude estimate

Tidal acceleration $\sim 2 \frac{G M}{r^{2}}\left|\frac{R_{E}}{r}\right| \sim 2 \frac{M}{M_{E}}\left(\frac{R_{E}}{r}\right)^{3} g_{E}$
Tidal bulge generates additional gravity to balances the tidal acceleration

$$
g^{\prime} \sim \frac{G\left(M_{E}+\rho h R_{E}^{2}\right)}{R_{E}^{2}}-\frac{G M_{E}}{R_{E}^{2}}
$$

$$
\text { with } \rho \sim \rho_{E}, \quad g ' \sim \frac{G M_{E}}{R_{E}^{2}} \frac{h}{R_{E}} \sim \frac{h}{R_{E}} g_{E}
$$

Equating the two, we obtain $\frac{h}{R_{E}} \sim 2 \frac{M}{M_{E}}\left|\frac{R_{E}}{r}\right|^{3}$
Moon raises tide on earth $\sim 10^{-7} R_{E} \sim 60 \mathrm{~cm}$ factor of order unity correction Sun on Earth
Earth on Moon
Earth on Sun
$\sim 25 \mathrm{~cm}$
~ 1.7 m
~ (you do it!)

Extra Note: Tidal evolution
muscle flexing --> heat generated, tidal sloshing --> heat
Total energy (orbit + spin) is steadily decreasing over Gyr timescale,
$E_{\text {tot }}=E_{\text {orb }}+E_{\text {rot }}=-\frac{G M M_{E}}{2 a}+\frac{1}{2} I_{E} \Omega_{E}^{2}+\frac{1}{2} I_{M} \Omega_{M}^{2}$
Moment of inertia: $I_{E}=r_{g, E}^{2} M_{E} R_{E}^{2}$
Spin frequency: $\Omega_{E} \equiv \frac{2 \pi}{P_{E}}$
while the total angular momentum (orbit + spin) is conserved,
$L_{\text {tot }}=\frac{M M_{E}}{M+M_{E}} \sqrt{G\left(M+M_{E}\right) a\left(1-e^{2}\right)}+I_{E} \Omega_{E}+l_{M} \Omega_{M}$
Final minimum energy state: $\frac{\partial E_{\text {tot }}}{\partial \Omega_{M}}=\frac{\partial E_{\text {tot }}}{\partial \Omega_{E}}=\frac{\partial E_{\text {tot }}}{\partial e}=0$
Hence, $\Omega_{M}=\Omega_{E}=\omega, \quad e=0 \quad$ synchronised \&
Currently: $\Omega_{M}=\omega, e \approx 0, \Omega_{E} \approx 27 \omega$ (free energy from Earth's spin)

[^0]: The centrifigal force is relevant because we are considering a rotating coordinate system fixed to Earth

