Laws of Gravity II

Kepler's three laws applicable if m<<M (one moving body, 1-body)

What if m & M are comparable?

Two moving bodies (2-body)
Use 'reduced mass'

applications: binary stars, galaxies, (dwarf) planets (pluto-chard detecting extra-solar planets, ...

Three-body...

N-body...

General problem

$$\frac{d\mathbf{r}_{i}}{dt} = \mathbf{v}_{i}, \quad \frac{d\mathbf{v}_{i}}{dt} = a_{i} = \sum_{j \neq i} \frac{\mathbf{F}_{ji}}{m_{i}} \quad \text{Hence, } \frac{d^{2}\mathbf{r}_{i}}{dt^{2}} = \sum_{j \neq i} \frac{Gm_{j}}{|r_{i} - r_{i}|^{2}} \frac{\mathbf{r}_{j} - \mathbf{r}_{i}}{|r_{j} - r_{i}|}$$

Nx3 coupled second-order differential equations!

1-body: For N=2 with $m_1 \gg m_2$, we approximate $r_1 \simeq 0$

So that
$$\frac{d^2 \mathbf{r}}{dt^2} = -\frac{GM}{r^2} \frac{\mathbf{r}}{r}$$

with $r=r_2$, $M=m_1$, and $m=m_2$

Solving this yields:

$$L = m\sqrt{GMa(1-e^2)}$$

$$E = -\frac{GMm}{2a}$$

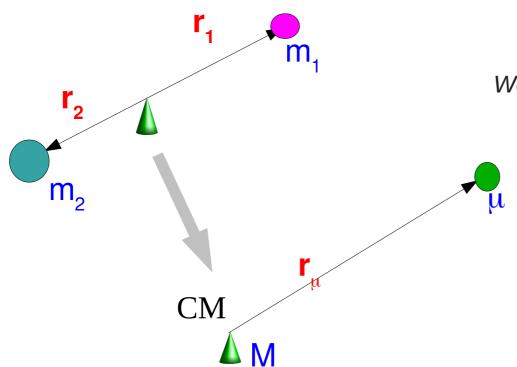
$$\frac{dA}{dt} = \frac{L}{2m} = const$$

$$P^2 = \frac{4\pi^2}{GM}a^3 \quad (K III)$$

Two-body problem:

reduce it to an equivalent one-body problem using the concept of 'reduced mass':

An imaginary particle of mass μ , distance r away from CM (center of mass) 'the reduced mass particle'



Let
$$r_{\mu} = r_1 - r_2$$
, $M = m_1 + m_2$

Let \boldsymbol{r}_{μ} , \boldsymbol{r}_{1} , \boldsymbol{r}_{2} be measured from CM

with
$$m_1 r_1 + m_2 r_2 = 0$$

We have
$$r_1 = \frac{m_2}{M} r_{\mu}$$
, $r_2 = -\frac{m_1}{M} r_{\mu}$, and

$$|\mathbf{F}_{12}| = |\mathbf{F}_{21}| = \frac{G m_1 m_2}{|r_1 - r_2|^2} = \frac{G \mu M}{r_u^2}$$

where
$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

2-body: Energy, Angular Momentum & Kepler's Laws

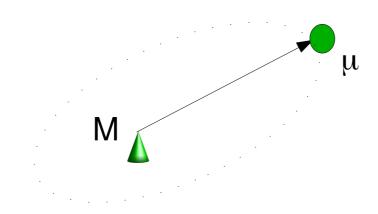
Angular momentum $\mathbf{L} = m_1 \mathbf{r}_1 \times \mathbf{v}_1 + m_2 \mathbf{r}_2 \times \mathbf{v}_2 = \mu \mathbf{r}_{\mu} \times \mathbf{v}_{\mu}$ (where $\mathbf{v}_{\mu} = \frac{d \mathbf{r}_{\mu}}{d t} = \mathbf{v}_1 - \mathbf{v}_2$)

Energy
$$E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 - \frac{Gm_1m_2}{|\boldsymbol{r}_1 - \boldsymbol{r}_2|} = \frac{1}{2}\mu v_{\mu}^2 - \frac{G\mu M}{r_{\mu}}$$

Hence, as for 1-body case $(m \ll M)$, we have

$$L = \mu \sqrt{GM a_{\mu} (1 - e^2)}, E = -\frac{G\mu M}{2a_{\mu}}$$

together with Kepler's three Laws, e.g., $P^2 = \frac{4 \pi^2}{GM} a_{\mu}^3$



General problem

$$\frac{d\mathbf{r}_{i}}{dt} = \mathbf{v}_{i}, \quad \frac{d\mathbf{v}_{i}}{dt} = a_{i} = \sum_{j \neq i} \frac{F_{ji}}{m_{i}} \quad \text{Hence, } \frac{d^{2}\mathbf{r}_{i}}{dt^{2}} = \sum_{j \neq i} \frac{Gm_{j}}{|r_{i} - r_{i}|^{2}} \frac{\mathbf{r}_{j} - \mathbf{r}_{i}}{|r_{j} - r_{i}|}$$

Nx3 coupled second-order differential equations!

1-body:

For N=2 with $m_1 \gg m_2$, we approximate $r_1 \simeq 0$

So that
$$\frac{d^2 \mathbf{r}}{dt^2} = -\frac{GM}{r^2} \frac{\mathbf{r}}{r}$$

2-body:

with $r \simeq r_2$, $M \simeq m_1$, and $\mu \simeq m_2$

For N=2 with $m_1 \sim m_2$, we use $m_1 r_1 + m_2 r_2 \equiv 0$

So that
$$\frac{d^2 \mathbf{r}}{dt^2} = -\frac{GM}{r^2} \frac{\mathbf{r}}{r}$$

with
$$r \equiv r_2 - r_1$$
, $M \equiv m_1 + m_2$, and $\mu \equiv \frac{m_1 m_2}{m_1 + m_2}$

$$L = \mu \sqrt{GMa(1-e^2)}$$

$$E = -\frac{GM\mu}{2a}$$

$$\frac{dA}{dt} = \frac{L}{2\mu} = const$$

$$P^2 = \frac{4\pi^2}{GM}a^3 \quad (K III)$$

Kepler in the astronomer's toolkit

$$GM = a^3 \left| \frac{2\pi}{P} \right|^2 = a^3 \Omega^2$$

$$v_{tot,circ} = \sqrt{\frac{GM}{a}}$$

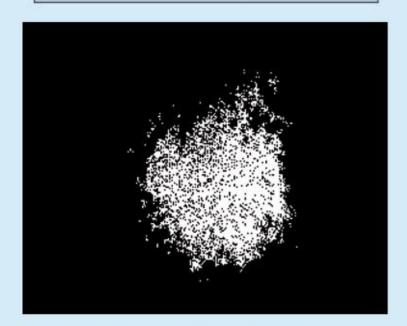
$$\frac{a_1}{a_2} = \frac{v_1}{v_2} = \frac{m_2}{m_1}, \quad \frac{a_1}{a} = \frac{v_1}{v} = \frac{m_2}{M}$$

Determine masses in binary systems

$$M_{pluto} + M_{charon} \sim 1/400 M_{E}$$

 $M_{Charon}/M_{Pluto} \sim 1/7$

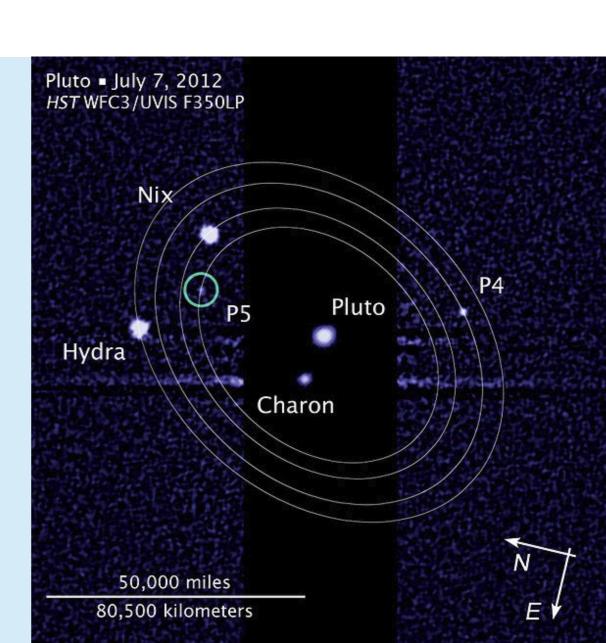
BREAKTHROUGH 1978: CHARON (Christy and Harrington)



Pluto's Satellite Charon

Orbital Parameters:

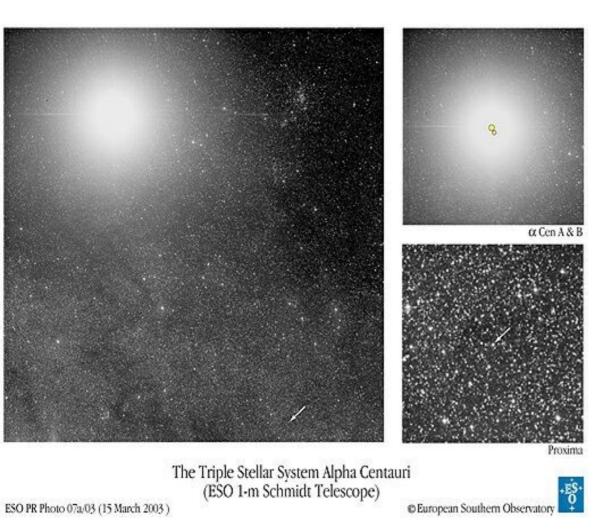
- Distance from Pluto = 17,600 km
- Orbit Period = 6.3867 days
- Circular orbit



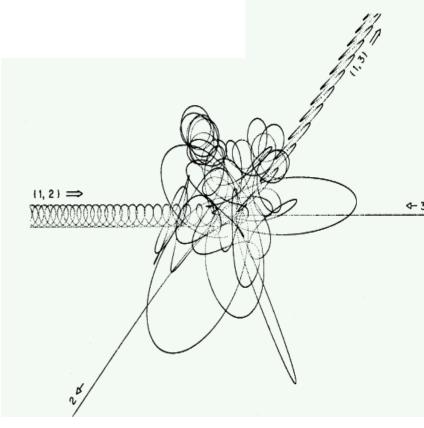
Three-body gravitational interaction:

not reducible to one-body In general, motion no longer periodic (quasi-periodic or chaotic)

our closest neighbour α-Centauri (a triple system)



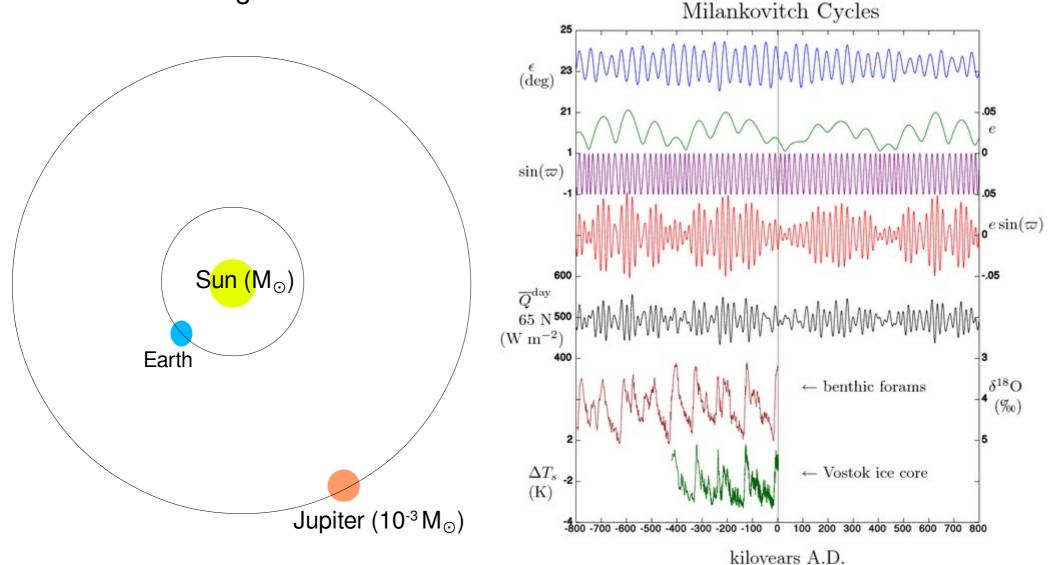
triple star encounter simulation (Hut)

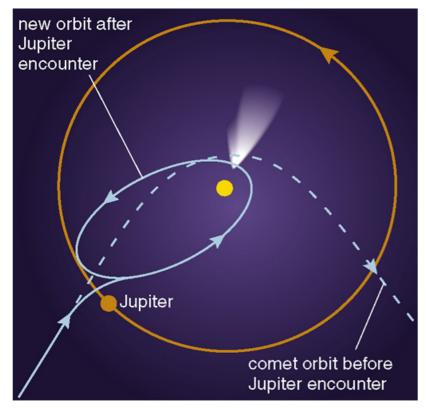


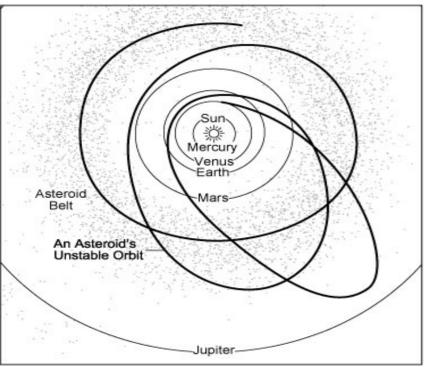
3-body (practical applications):

Stability of the Solar system
 very rich phenomenology & analytical theory -- Planetary Dynamics

Climate changes on Earth

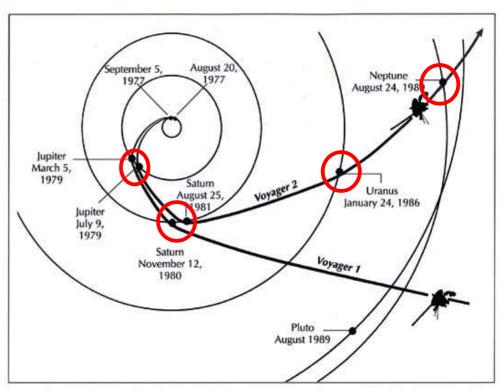






Orbital evolution of near-earth asteroids and comets.

Space travel



Voyagers getting swings from outer planets -- gravity-assist

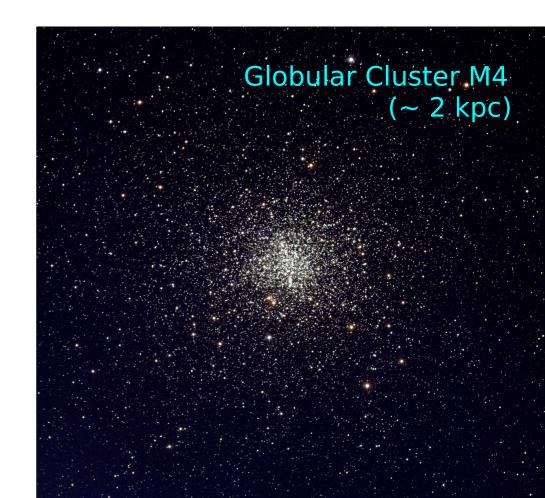
N-body

intractable analytically relies on numerical integration

globular cluster ~ 10⁶ stars

cluster of galaxies ~ 10³ galaxies

Universe ~ 10¹¹ galaxies



Quiz: cannibalism in close binary stars

star m₁ bloats up, part (d m) of its envelope becomes dominated by the gravity of m₂ and is transferred from m₁ to m₂

-- does the binary unbind or spiral-in?

How to estimate?

- Use energy conservation?
- Use angular momentum conservation?

Cataclysmic Variable

