Stars: beyond the Main Sequence

-0.5

0.5

B - V [mag]

2.0

Hipparcos HRD

Star's life: Protracted battle with gravity

To supp

To support weight:

⇒ need high pressure

→ need high temperature

⇒ will loose energy

⇒ need energy source:

- Gravitational contraction

- Nuclear fusion

Ultimately, Can something else than thermal pressure balance gravity?

Degeneracy for a White Dwarf or degenerate core

using wave-particle duality

$$M=1M_{\odot}$$
, $R=6000$ km, electron mean spacing $d \sim \frac{1}{n_e^{1/3}} \sim 10^{-12}$ m

De Broglie wavelength
$$\lambda \sim \frac{h}{p} \sim \frac{h}{m_e v} \sim 10^{-12} m \left| \frac{10^9 K}{T} \right|^{1/2}$$
 $\Rightarrow typically \ \lambda > d \ in \ white \ dwarfs$

- 1. Wave nature of electrons becomes relevant
- 2. Electrons are fermion: they do not like to be close; this exclusion provides pressure

electron degeneracy pressure: $P \propto n_e^{5/3} \propto \rho^{5/3} \rightarrow R \propto M^{-1/3}$ Sirius B (1 M_{\odot}) smaller than typical white dwarfs (0.6 M_{\odot})

(compare with MS: P = nkT plus $T \sim constant \rightarrow R \propto M$)

Can $M \rightarrow \infty$? No, would need $v > c \rightarrow$ Chandrasekhar limit: $M < 1.4 M_{\odot}$

White dwarfs are supported against gravity by pressure from degenerate electrons (ions irrelevant). This pressure depends only on density, not on temperature. -- also centre of evolved low-mass stars, brown-dwarfs, Jupiter, metals...

Ultimately, Can something else than thermal pressure balance gravity?

Below ~0.08 M_☉, objects become degenerate before becoming hot enough to ignite H fusion → **Brown dwarfs**

Below ~0.013 M_{\odot} , no fusion at all (not even D) \rightarrow *Planet?*

Paxton et al., 2011, ApJS 192:3

Low-mass star (M < 8 M_{\odot})

gradual exhaustion of H & He ends due to mass loss

Main sequence Core H burning; for $\sim 1 M_{\odot}$, $dM/dt \sim 10^{-14} M_{\odot}/yr$, live $\sim 10^{10} \, yr \, (M/M_{\odot})^{-3}$

Red Giant

Dense core + tenuous envelope; ~100 R_☉, ~10⁸ yr, shell H burning,

mass loss dM/dt ~ 10⁻⁷ M_☉/yr; envelope convective, core shrinks (why?)

Red clump/Horizontal Branch $T_{\rm core}$ ~10⁸ K, He fuses in core, but H shell dominates L; ~10% of main-sequence lifetime; move to blue if metal-poor

Asymptotic Giant C/O core + extremely tenuous envelope, ~600 R_☉;

~ 10^6 yr, 10^5 L $_{\odot}$, shell He/H burning, He shell flashes;

end of AGB: dM/dt ~ 10⁻⁵ M_☉/yr, removes whole envelope

White dwarf Dense C/O, ~0.6 M_☉, ~ 0.01 R_☉, e⁻ degeneracy,

cools from $\sim 10^5$ K to few 10^3 K in $\sim 10^{10}$ yr

+planetary nebula Few 0.1 M_☉, expansion speed ~20 km/s, fluoresces for ~10⁴ yr

Net effect of a star's life: mass loss → metal enrichment of the interstellar medium

Evolutionary tracks: what happens depends on mass

$$L = 4 \pi R^2 \sigma T^4$$

Main-sequence

Earlier: lower L; paradox of the 'faint young sun'

Red giant branch

Shell H burning around degenerate He core. Dense core sets properties of shell; e.g., $T \sim M_{\rm core}/R_{\rm core}$. Thus, core determines L. Star has to transport this \rightarrow large radius increase.

As core increases, so does T (and L drastically; why?)

Until He ignites → He flash

From http://www.ngcsu.edu/Academic/Sciences/physics/jones/astr1020home/evoltracks.htm

$$L = 4 \pi R^2 \sigma T^4$$

Main-sequence

Earlier: lower L; paradox of the 'faint young sun'

Red giant branch

Shell H burning
Big, luminous (cook planets)

Red clump/Horizontal branch Core He burning Core bigger $\rightarrow T_{\text{shell}}$ lower

→ less luminous, less big Hotter if metal-poor

Asymptotic Giant branch

Shell H & He burning Luminosity increases with increasing core mass, star becomes very big.

Ends when L so high that envelope blown off

From http://www.ngcsu.edu/Academic/Sciences/physics/jones/astr1020home/evoltracks.htm

$$L = 4 \pi R^2 \sigma T^4$$

Main-sequence

Earlier: lower L; paradox of the 'faint young sun'

Red giant branch

Shell H burning
Big, luminous (cook planets)

Red clump/Horizontal branch Core He burning Bit less big & luminous Hotter if metal-poor

Asymptotic Giant branch

Shell H & He burning Very big (engulfing planets)

White Dwarf branch

Naked stellar core Born very hot Cools off slowly

From http://www.ngcsu.edu/Academic/Sciences/physics/jones/astr1020home/evoltracks.htm

Extra Notes: Planetary Nebula

1) what are they?

Transient fluorescence around new-born, hot white dwarfs Live ~10⁴ yr Where is the gas from? Slow expansion (20 km/s)

2) what are the colors?

'False colors,' montage of narrow-band images e.g.,red --> N I green--> Hα blue --> O III

3) why aren't they all spherical?

Rotation? Binaries?

Extra Notes: degeneracy pressure

- 1. Wave nature of electrons becomes relevant
- 2. Electrons are fermion: they do not like to be close; this exclusion provides pressure

Pauli's exclusion principle:
$$(\Delta x_i)^3 (\Delta p_i)^3 \sim \hbar^3$$

Fermi momentum:
$$p_F \sim \frac{1}{\Delta X_i} \sim n_e^{1/3}$$

Fermi energy:
$$E_F = \frac{1}{2} m_e v_F^2 = \frac{1}{2} \frac{p_F^2}{m_e} \propto n_e^{2/3}$$

Pressure:
$$P \propto n_e E_F \propto n_e^{5/3} \propto \rho^{5/3}$$

$$\rightarrow R \propto M^{-1/3}$$

(compare with MS: P = nkT plus $T \sim constant \rightarrow R \propto M$)

Can $M \rightarrow \infty$? No, would need $v > c \rightarrow$ Chandrasekhar limit: $M < 1.4 M_o$