
Stars: beyond the Main Sequence

-0.5

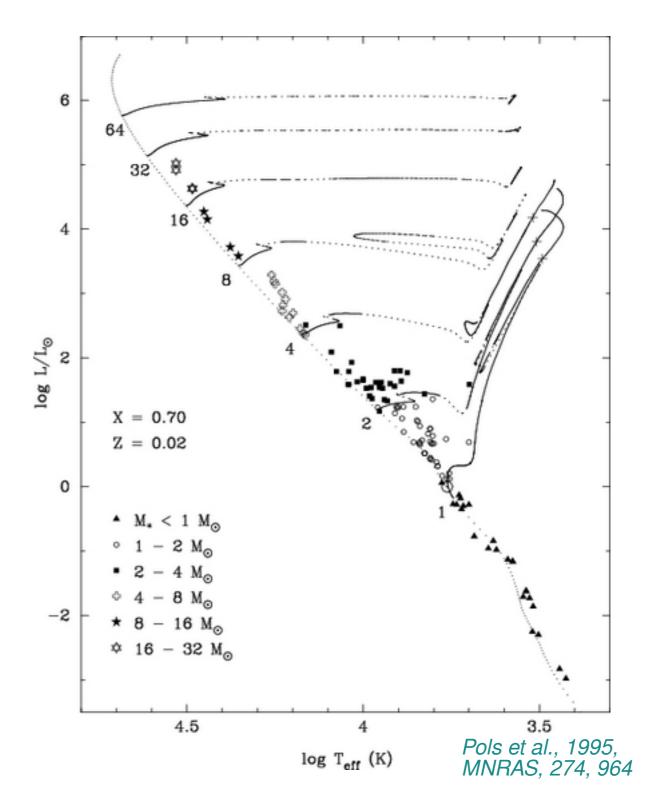
O

0.5

B - V [mag]

1.0

1.5

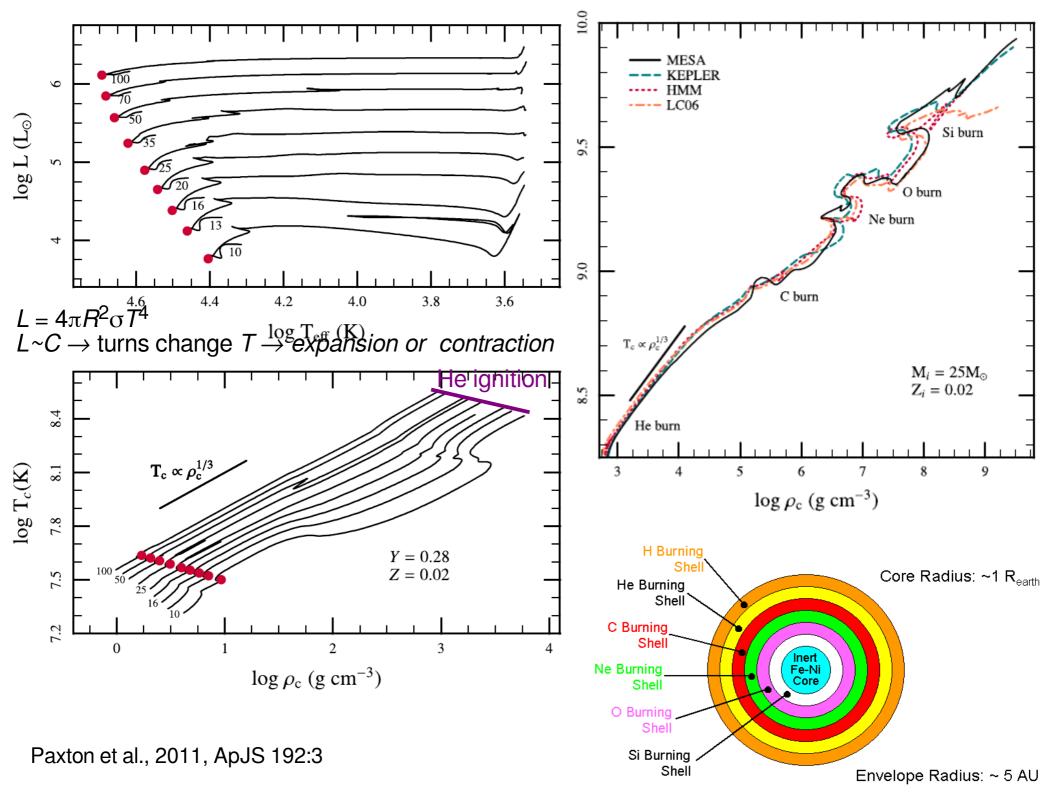

Hipparcos HRD

Understanding stellar structure & evolution (a success story of 20th century astrophysics)

Founded on theory:
 hydrostatic equilibrium
 nucleosynthesis
 radiative transport (photon-matter interaction)
 equation of state (behaviour of matter)
 classical physics + quantum mechanics

Confirmed by observations:
 absorption spectra, spectral types
 color-magnitude diagram,
 stellar pulsation, binary stars, stellar clusters...

Evolutionary tracks: what happens depends on mass



A star becomes a giant (much bigger & brighter) after the MS

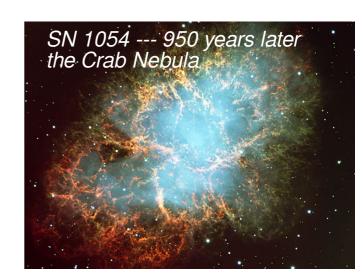
Main-sequence: sun 70% H, 28% He to start with
 Core-hydrogen burning phase lasts ~ 80-90% of total life-time.
 More massive stars live shorter (Sun ~ 10¹⁰ yrs)
 Subtle rise in Luminosity as Helium fraction increases (why?, μ -> HE!)

2) Core-hydrogen exhaustion: the end of the Main Sequence Helium burning requires higher temperature (why?, $\sim 10^8$ K) Core contracts in thermal timescale ($t_{KH} \sim E_{th}/L$, why not t_{dyn} ?) For mass above ~ 2 M $_{\odot}$, heats up sufficiently to ignite He; Below, core becomes degenerate first (next lecture)

3) Shell (around core) heats up to 10⁷ K
Shell burning H → He
For low-mass stars, rate >> main-sequence -> giant (next lecture)

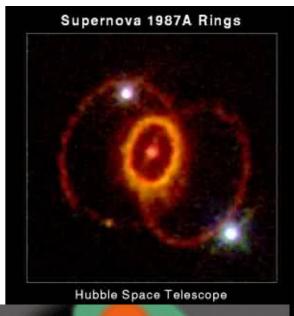
High-mass star (M > 8 M_{\odot}) fusion all the way from H \rightarrow Fe

Fuel	T_c	$ ho_{ m c}$	Time	L_{V}/L_{\odot}	For 25 M_{\odot} star:
	(K)	(g/cm ³) (yr)			
Н	4x10 ⁷	5	7x10 ⁶	small	\sim 20 R $_{\odot}$, \sim 10 ⁵ L $_{\odot}$, few 10 ⁶ yr
He	2x10 ⁸	700	5x10 ⁵	small	(MS: as O&B spectral types)
C	6x10 ⁸	$2x10^{5}$	600	8.3	
Ne	1.2x10 ⁹	4x10 ⁶	1	6.5×10^3	giants: \sim 500 R $_{\odot}$, \sim 10 ⁵ L $_{\odot}$
O	1.5x10 ⁹	$1x10^{7}$	0.5	1.9x10 ⁴	(core & shell burning, onion-shells,
Si	$2.7x10^9$	$3x10^{7}$	1 day	3.2x10 ⁶	centre burned till Fe)

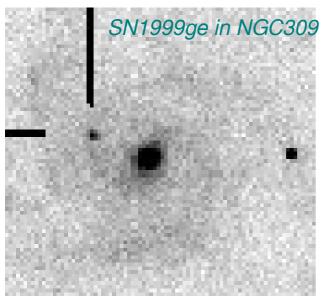

Supernova: $T_c > 5x10^9$ K, nuclei photo-disintegrated (undo all previous burning, neutrinos escape)

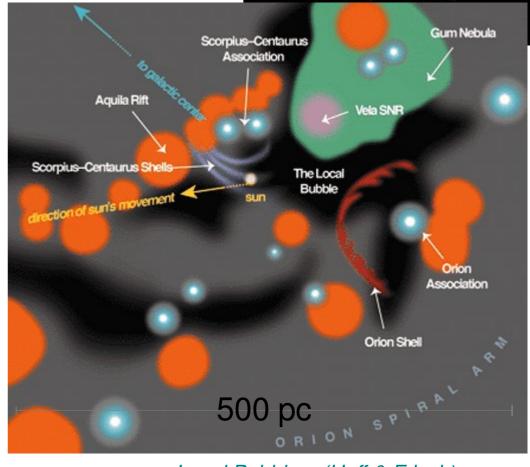
```
Neutron Stars (neutrons only \sim 1.4 \text{ M}_{\odot}, \sim 10 \text{ km}) or Black Holes (space-time singularity, even photons cannot escape)
```

+ Supernova remnant (~1-10 M_{\odot} , expansion @ ~10000 km/s, shines for ~ 10^4 yr) net effect of a star's life:mass loss + SN -- metal enrichment of the interstellar medium


Supernova ---- irreversible violent collapse

- 1) Past Fe, nuclear burning endothermic, the very hot (~5x109 K) core (~5000 km) loses pressure support because:
 - a) photo-disintegration of nuclei undo previous nuclear fusion, Fe + $\gamma \rightarrow \alpha's + p^+ + n$
 - b) electron capture into neutrons *e- squeezed into p+, loose e- degen. P, produce* v
 - c) neutrino leakage out of the star $\sigma \sim 10^{-48} \, \text{m}^2$, reaction irreversible core collapse proceeds in dynamical time-scale: $\tau_{\text{dyn}} \sim 1/(G\rho)^{1/2} \sim 10 \, \text{sec}$ not thermal time-scale (like low-mass star cores)
- 2) Core collapse (to ~ 10 km) induces Supernova explosion total SN energy: release of grav. energy ~ 10^{46} J unbinding the envelope ~ 10^{44} J (ejecta final kinetic energy ~ 10^{42} J) photons: 10^{10} L $_{\odot}$ (~ $L_{\rm galaxy}$) for ~10 days ~ 10^{44} J SN 1054 (Crab Nebula, ~ 2kpc): ancient Chinese reports: seen during day time 99% of the energy: neutrinos (v) $L_{\rm v}$ ~ 10^{19} L $_{\odot}$ SN 1987A (Large Megellanic Cloud): 11 v detected supernova remnant: SN ejecta hits interstellar gas
- 3) Neutron star supported by neutron degeneracy pressure plus strong force
- 4) Current investigations:
 Why do SN explode? Does it leave a NS or BH?
 NS are born with $v \sim 300$ km/s, what kicks it?
 Some NS with ultrastrong magnetic fields; why?




SN 1987A in the Large Magellanic Cloud..... and 4 years later

after before

SN rate: ~ 1/50yr/galaxy last observed one in Milky Way: 1640 (Kepler) (two further younger remnants known)

Local Bubble (Huff & Frisch)