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Today: brief intro to 
machine learning tools



Machine learning
• Techniques to learn patterns in the data in flexible way; not parameter 

inference 

• Main tasks: 

• Density estimation and clustering: What is the distribution of the data? 

• Dimensionality reduction: What are the most important dimensions in 
the data? 

• Regression: Learn to predict y(x) from (x,y) training data 

• Classification: Learn to predict classification labels L from (x,L) training 
data 

• Distinction between supervised and unsupervised learning



Density estimation
• Have data points {xi} —> what is the density ρ(x)? 

• Saw this in bootstrap: ρ(x) = 𝛴i δ(x-xi) 

• Parametric: fit ρ(x) with some functional form with 
parameters θ, e.g., ρ(x) = N(x|mean,variance) —> 
use parameter-inference techniques from L2 

• Non-parametric: Similar to sum-of-delta functions, but 
replace delta function with a different function   —> 
build ρ(x) directly from the data without parameters



Simple parametric density 
estimation

• For example, model ρ(x) as Gaussian with mean m and variance 
v 

• Data {xi}, independently drawn w/o error 

• Likelihood for individual xi: Li= N(xi|m,v) 

• Posterior PDF = Prodi Li 

• Optimizing this gives  
m = mean(xi),  
v = (N-1)/N variance(xi) 

• No closed-form when data points have individual uncertainties σi



Simple non-parametric 
density estimation: histogram
• A histogram is a form of density estimation 

• Non-parametric because histogram per se does not 
have explicit parameters 

• But have hyperparameters: location and width of bins 
that need to be chosen; hyperparameters don’t directly 
set the density, but constrain, e.g., it smoothness 

• Widely used, but often doesn’t give a good 
representation of the data, non-smooth, and difficult in 
higher dimensions



Histogram example

Ivezic et al. (2014)

Same data, different binning!



Kernel density estimation 
(KDE)

• Remember from bootstrap: ρ(x) = 𝛴i δ(x-xi) 

• Replace δ(.) with a  
 
kernel K(.) with width h  
x-xi with distance function d(x,xi): 
 
ρ(x) = 𝛴i K(d[x,xi]/hi) 

• K(.) could be: tophat function, similar to histogram, 
a Gaussian, or …



KDE example

Ivezic et al. (2014)

Tophat

Gaussian 
with different  

widths



KDE: kernels
• Kernels: symmetric functions around zero, positive 

everywhere, integrate to 1 

• Gaussian convenient,  
but has infinite support:  
need to always use all  
points to get a density  
evaluation 

• Epanechnikov optimal  
in that it gives the  
smallest expected  
mean-squared-error: 
K(r = d(x,xi)) = 3(1-r2)/4, r <= 1 Brian Amberg/Wikipedia



KDE: bandwidth
• Need to set width h of the kernel, this is a hyperparameter 

• Some rules-of-thumb based on Gaussian data: Scott’s 
rule: h = N-1/(dim+4) [if data scaled to have unit variance]  
Silverman’s rule: h = [N*(dim+2)/4]-1/(dim+4) [same scaling] 

• Other way: leave-one-out-cross-validation (see last 
lecture) 

• Or minimize Mean-Integrated-Square-Error 

• Can also have variable h that depends on the local 
density:  
h(x) = k / [ρ(x)]1/dim,  
higher density —> smaller kernel width



KDE applications
• Easy-to-use and standard tool when you need to estimate 

a density 

• Examples: 

• PDF from MCMC samples 

• You have run a bunch of simulations that give points in 
some space (e.g., stellar tracks with MESA) and want to 
estimate a density covering the whole space 

• But difficult to apply when data points have errors and 
want to deconvolve



Some examples…

Bovy et al. (2012)

MCMC chain —> KDE PDF Theoretical model points  
—> KDE density

Bovy et al. (2014)



Parametric density estimation with 
many parameters: Gaussian mixtures
• Single Gaussian: strongly constrained parametric model; 

KDE w/ Gaussian kernel: very flexible, but as many 
components as data points 

• Gaussian Mixture Model (GMM): in between: model 
density ρ(x) as sum of K Gaussians, K < N 

• Parameters: amplitudes, means, and variances of all 
Gaussians 

• ρ(x) = 𝛴k ak N(x|mk,Vk) 

• Could optimize likelihood for all parameters….



GMM and EM
• When K becomes large, many parameters —> high-dimensional 

parameter space to search for optimal solution 

• Expectation-Maximization algorithm: General algorithm to 
optimize these kinds of problems 

• Add a qik assignment variable to each data point: data point i 
drawn from component k where qik = 1 (all other qik= 0) 

• If we knew all qi, then optimizing would be easy: 
 
ak = 1/N 𝛴i qik 
meank = mean of those xi with qik = 1 
variancek = variance of those xi with qik = 1



• Expectation-maximization: Can show that following two 
steps always increase likelihood  
 
E(xpectation):  
qik = akN(xi|meank,variancek)/ [𝛴l alN(xi|meanl,variancel)] 
 
M(aximization):  
ak = 1/N 𝛴i qik 
meank = 𝛴i qik xi / 𝛴i qik 
variancek = 𝛴i qik (xi-meank)2 / 𝛴i qik 

• Always leads to at least a local maximum, convergence 
very fast in general

GMM and EM



Gaussian mixture model
• Parametric, but when K is large almost as flexible 

as a non-parametric model 

• Need to set K, the single hyper-parameter 

• Use cross-validation or AIC/BIC 

• If you are simply trying to get a good representation 
of a density, number K doesn’t matter as long as it’s 
big enough



Example

Ivezic et al. (2014)

• Be careful when interpreting components!!



Gaussian mixtures with errors: 
extreme deconvolution (XD)

• If data have individual uncertainties 
(heteroskedastic uncertainties), can still fit a 
Gaussian mixture model quickly 

• Trick is to include more hidden variables like the qik: 
true values xik if point i was drawn from component k 

• Adds a few simple update steps (Bovy et al. 2011) 

• Implemented in astroML, fast C version at github/
jobovy/extreme-deconvolution



XD example

Ivezic et al. (2014)



Clustering

• Example of unsupervised learning: given set of 
data xi, what are the clusters / classes that this data 
can be divided into? 

• Could use a density estimate and find peaks or 
clearly separated points 

• Simplest stand-by algorithm: K-means



K means
• Fix number of clusters K 

• Optimize 𝛴k 𝛴i in k |xi-mk|2 

• Like Gaussian mixture model, but with hard assignments 

• Optimization algorithm:  
1. Start with set of {mk}  
2. Assign each xi to its nearest mk 
3. Compute new mk as the mean of all of the xi    
    assigned to cluster k  
4. Go back to 2. 

• Could also use medians: K medians



K means example

Ivezic et al. (2014)



Clustering with Gaussian 
mixtures

• Can work much better 
because background 
can be fit out

Bovy et al. (2009)



Procedural clustering
• Gaussian mixture and K-means have the advantage that they 

optimize an objective function (the likelihood), so the outcome 
should not depend on how you found the optimal solution 

• Procedural clustering defines clusters in a procedural way 

• Hierarchical clustering:  
1. Start with N clusters, N=#data  
2. Join two clusters to form N-1 clusters 
3. Repeat 

• Join based on: minimum distance between clusters (minimum 
spanning tree) —> extended clusters, maximum distance between 
clusters —> compact clusters, friends-of-friends is further example



Dimensionality reduction:  
PCA and ICA



Dimensionality reduction
• Astronomical observations are by their nature high-

dimensional 

• Need to focus on most important dimensions in the 
data 

• Those dimensions are not necessarily aligned with 
observed axes, e.g., pixels in a spectrum

Ivezic et al. (2014)



Principal Component 
Analysis (PCA)

Ivezic et al. (2014)



• Data in D-dimensional space 

• Find direction with highest variance 

• Rotate such that that direction is x1 

• In the remaining (D-1)-dimensional space do the 
same: find direction with highest variance, rotate 
that to x2 

• and so on

Principal Component 
Analysis (PCA)



PCA using eigenvectors
• Can determine PCA components using eigendecomposition of the 

data’s variance tensor CX = XTX/[N-1] 

• First component r1 should minimize r1
TCXr1 and |r1| = 1: introduce 

Lagrange multiplier λ1  
 
Minimize r1

TCXr1 - λ1(r1
Tr1-1) 

 
CXr1 - λ1r1 = 0 —> r1 is an eigenvector of CX w/ eigenvalue λ1, must 
be largest eigenvalue 

• Thus, can compute eigendecomposition of CX, order eigenvectors 
by their eigenvalues 

• In practice, better done with singular-value decomposition



PCA example: galaxy 
spectra in SDSS

Ivezic et al. (2014)



PCA in practice
• Because you are rotating, technically only applies 

when all dimensions have the same units 

• If you want to apply PCA to dimensions with different 
units, need to divide out the units: subtract the mean 
and divide by typical value or ‘whiten’ by subtracting 
the mean and dividing by the data’s standard deviation 

• If data have errors, need to account for this; if they are 
different for different dimensions and/or data points, 
need to solve for PCA components iteratively



Dimensionality reduction 
with PCA

• PCA decomposition tells you which directions explain 
most of the variation in the data 

• Can cut at a certain number K <= D of PCA components 
that explain X% of the variance (K=D explains 100%) 

• If K << D, can significantly reduce the dimensionality of 
the data 

• Where to cut? Compare to expected noise level, or 
decide how much variance you want to explain, search 
for features in the (explained-variance) vs. K plot



PCA example: galaxy 
spectra in SDSS

Ivezic et al. (2014)



PCA example: galaxy 
spectra in SDSS



Independent Component 
Analysis (ICA)

• Generalization of PCA 

• Find directions in high-dimensional space, such that 
each direction’s data distribution is statistically 
independent:  
 
f(xp,yq) = f(xp) f(yq)  for some p,q 

• p=q=1: PCA (requires uncorrelated data) 

• In general: maximize non-Gaussianity of individual 
distributions f(x): kurtosis, negative entropy



ICA example: 
galaxy spectra in 

SDSS

Ivezic et al. (2014)



Other dimensionality 
reduction techniques

• Non-negative matrix factorization: similar to PCA/
ICA, but components are always positive 

• Manifold learning, e.g., locally-linear embedding: 
can deal with complex lower-dimensional  
objects in higher-dimensional space 

• t-SNE: t-distributed stochastic neighbor 
embedding: models high-dimensional space as 2D 
in such a way that points close in high-D are close 
in 2D and points far are far in both



Regression



Regression problems
• Have data set (x,y) —> y(x)? 

• Issues: 
• y has errors with known Gaussian distribution, can be different 
• y has errors with known non-Gaussian distribution 
• y has unknown errors 
• x and y have known Gaussian errors 
• x and y have unknown errors 

• Model complexity: 
• Linear —> relatively easy 
• Non-linear —> hard!



Regression: straight line
• Model is y = mx +b 

• Maximizing likelihood equivalent to solving:  
 
Y = A X, with YT = [y0,y1,…,yN-1], XT = [m,b],  
                      A = [[x0,1],[x1,1],…,[xN-1,1]] 

• No errors: X = [ATA]-1ATY 

• With errors: C = [[σ20,0,0,…,0],[0,σ21,0,…,0],…,[0,…,0,σ2N-1]]:     
X = [ATC-1A]-1ATC-1Y 

• Prediction for xnew: [xnew,1] x [[ATC-1A]-1ATC-1Y]





Regression: basis function 
fitting

• Higher-order polynomials: y = c x2 + m x + b 

• Proceed the same way, only thing different is design matrix A 

• Y = A X, with YT = [y0,y1,…,yN-1], XT = [c,m,b],  
                      A = [[x2

0,x0,1],[x2
1,x1,1],…,[x2

N-1,xN-1,1]] 

• No errors: X = [ATA]-1ATY 

• With errors: C = [[σ2
0,0,0,…,0],[0,σ2

1,0,…,0],…,[0,…,0,σ2
N-1]]:     

X = [ATC-1A]-1ATC-1Y



Regression: basis functions
• Can use many more basis functions and approach non-parametric 

regression 

• E.g., Gaussian, piecewise-polynomial 

• # of parameters grows —> need to penalize complexity 

• Maximize: log L + regularization term 

• regularization term:  
 
λ ∫dx|y’’(x)|2 —> spline  
λ |XTX| —> ridge regression  
λ |X| —> LASSO regression (prefers X = 0) 

• Need to set λ —> cross-validation etc.



Ivezic et al. (2014)



Basis function regression 
example

Ivezic et al. (2014)



Gaussian Processes (GP)
• Gaussian process is an example of an infinite-dimensional 

model, sets a prior on functions 

• GP: joint distribution of any [y(x0),y(x1),..,y(xN-1)] is 
Gaussian 

• GP: characterized by mean function m(x) and covariance 
function Cov(x1,x2) that specify this joint distribution 

• Mean and covariance function characterize by 
hyperparameters 

• Magic of Gaussians make everything easy to deal with



• Need to choose Cov(x1,x2), 
popular choice is         
σ2 x exp(-(x1-x2)2/[2h2]) with 
parameters σ and h 

• Can then draw functions 
from this Gaussian

Gaussian Processes (GP)

Ivezic et al. (2014)



• If you have some observed data (xi,yi) with error 
bars, can write down the joint distribution of 
[x0,new,x1,new,…,xK-1,new,xi0,xi1,…,x1N-1] 
and condition on x0,new,x1,new,…,xK-1,new 

• This gives the posterior distribution over functions, 
which is still Gaussian

Gaussian Processes (GP)



GP example

Rasmussen & Williams (2006)



GP math
• Joint distribution 

• Conditioning on observed points f

Rasmussen & Williams (2006)



GP algorithm

Rasmussen & Williams (2006)



Hyper-
parameters



Another GP example

Ivezic et al. (2014)



Classification



Classification
• Example of supervised learning 

• Have training data set of attributes xi with labels for 
K classes 

• Learn how to assign labels based on attributes to 
classify unknown sources 

• Example: (u,g,r,i,z) —> (quasar,star,galaxy)



Classification metrics

• Purity: fraction of objects assigned to class k that 
truly are part of class k 

• Completeness: fraction of true class-k objects that 
is assigned to class k 

• Difficult to maximize both!



Classification using density 
estimation

• Can estimate densities for each class ρk(x) = 
p(xnew|class k) using density-estimation techniques 
discussed earlier 

• Assign new classes using Bayes theorem:  
 
                               p(xnew|class m) p(class m)  
p(class m|xnew) = ————————————— 
                              𝛴k p(xnew|class k) p(class k) 

• Allows for full power of density estimation



Example with Gaussian 
mixtures

Ivezic et al. (2014)



Non-parametric classification: 
k-nearest neighbor

• Simple: Look at the k nearest neighbors in the 
training set —> assign class based on consensus 

• Requires:  
• Distance function 
• Consensus building: can assign weights to 

neighbors based on, e.g., the distance 

• Expensive for large training sets (always need to 
consider all data)



Support Vector Machines
• Find hyperplane in x that 

maximizes the distance between 
two classes 

• That hyperplane is entirely 
described by the points that lie on 
it —> support vectors 

• Labels y={-1,1}, hyperplane: 
minimize |m| subject to yi(b+mxi) 
>= 1 for all i 

• Can add loss function proportional 
to distance if data cannot be 
separated —> hyperparameter

Ivezic et al. (2014)



SVM example

Ivezic et al. (2014)



SVM: kernel trick
• Hyperplane: linear 

• Can make boundary non-linear using the kernel 
trick 

• Requires the dual representation of the optimization 
problem for SVM… 

• Replace all dot products with K(x,x’) with K a kernel 
(e.g., Gaussian)



SVM kernel trick example

Ivezic et al. (2014)


