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Today

• Goodness-of-fit, model selection, cross-validation 

• Outliers, robust statistics
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How do we decide which 
model is the best model?

• Chi-squared keeps improving as we increase the 
model’s complexity 

• But clear that we are overfitting! 

• To determine the best model, need to figure out 
which model makes the data the most probably    
—> model selection 

• Goodness-of-fit: is the data likely given the model?



Goodness-of-fit:  
General approach

• Given the model, simulate what the data would be 
like —> simulated data 

• Compare this to the actual data that you have 

• If the simulated data is very different from the 
actual data —> not a good fit! 

• From simulated data, can reject that the data was 
generated by the model at X% confidence —> 
frequentist method at heart



Comparing simulated and 
actual data

• Large number of data summaries to chose from! 

• Can look at plots, but for automated analysis 
require some low-dimensional summary 

• Most popular:             ,             , or look at  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Chi-squared/ degree-of-
freedom

• Most popular approach to goodness-of-fit uses chi-
squared divided by the number of degrees of 
freedom 

• Chi-squared here =  

• Number of degrees of freedom = # data points - # 
of fit parameters 

• Where does this come from? When does it apply?
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Chi-squared distribution
• Distribution of sum of squares of k independent standard 

normal variables (those from N(x|0,1)) 

• Form: 

• Mean: k 

• Variance: 2k 

• Basis for chi-squared-per-degree-of-freedom goodness-of-
fit 

• Central limit theorem: for k →∞, p(x|k) → N(x|k,2k)
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Chi-squared distribution

Ivezic et al. (2014)



• If the likelihood is Gaussian: e.g., p(yi|m,b,xi,σy,i) = N(yi|mxi
+b,σ2y,i) 

• Then we have: -2 ln L = 𝛴i chii^2  , e.g., = 𝛴i [(yi-mxi-b)/σy,i]2 

• and chii ~ N(0,1) 

• Therefore, 𝛴i chii^2 is distributed as a chi-squared 
distribution 

• If we have fit K parameters to N data, only N-K of these 
chii^2 are independent —> 𝛴i chii^2 is chi-squared 
distributed with N-K degrees of freedom

Chi-squared/ degree-of-
freedom



• Mean = N-K = dof 

• Variance = 2(N-K) = 2 dof 

• Central limit theorem:  
for N-K →∞, p(x|N-K) → N(x| N-K,2[N-K]) 

• Therefore, expected value of chi2/dof ~ 1 

• But really should be comparing chi2 to dof with 
typical scatter √2dof

Chi-squared distribution 
with N-K degrees of freedom



Chi-squared distribution

Ivezic et al. (2014)



• Assumptions one more time! 

• Likelihood is Gaussian —> for Gaussian uncertainties 
means that the model must be linear (e.g., polynomial) 

• Must believe the uncertainties 

• #dof must be large —> large data limit 

• Almost never directly applies in practice! But for well-
constrained parameters, any model space approx. 
linear near the best-fit —> widespread use of chi2/dof

Chi-squared/ degree-of-
freedom



• If the likelihood (data uncertainty) is not Gaussian or the 
model is not linear, chi2/dof does not technically apply 
(except in the limit discussed on the previous slide) 

• So could just directly simulate the data (e.g., linear-fit):  
1. For best fit model parameters (m,b)  
2. Simulate data: y = mx +b  
3. Draw random uncertainties and add them to y  
4. Compute chi2 
5. Repeat to form p(chi2) 
6. Where does chi2 for the actual data lie in this distribution? 

• Similar with other summaries (don’t need to use chi2)

Chi-squared/ degree-of-freedom for 
non-linear / non-Gaussian models



• chi2/dof can be used to select the best model 
among linear models 

• Idea is that when overfitting, chi2 will be 
suspiciously close to zero 

• When underfitting, chi2 will be large 

• Best model makes the data most likely —> peak 
of chi2 distribution —> chi2/dof ~ 1

Model selection using chi-
squared/ degree-of-freedom



Detour: difference between 
Delta chi2 and chi2/dof

• chi2 comes up in model fitting and goodness-of-fit 

• -2 ln L = chi2 = 

• Find best fit, can compute 

• With uniform prior: ln p(m,b|data)  
= -chi2/2 ~  

• Again, chi-squared distribution, but now with K 
degrees of freedom
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• Suppose you have 1 parameter (e.g., fit constant y 
=b rather than y = m x + b) 

• p(b|data) = Chi2(Δchi2,1 dof) 

• 68% confidence limit on b: that value for which 
Δchi2 = 1

Detour: difference between 
Delta chi2 and chi2/dof



• Suppose you have 2 parameters (e.g., linear fit y = 
m x + b) 

• p(m,b|data) = Chi2(Δchi2,2 dof) 

• 68% confidence limit on (m,b): that ellipse for 
which Δchi2 = 2.3

Detour: difference between 
Delta chi2 and chi2/dof



Detour: difference between 
Delta chi2 and chi2/dof

Numerical recipes 3rd edition



• Delta chi2 used for finding uncertainty limits 

• Don’t use Delta chi2 / dof for this! limits will always 
be much wider 

• chi2 / dof for model selection and goodness-of-fit

Detour: difference between 
Delta chi2 and chi2/dof



Model selection with AIC
• AIC = Akaike Information Criterion 

• AIC = -2 ln L + 2 K = chi2 + 2 K 

• Delta AIC = Asymptotically the amount of information 
lost when using worse model G1 than better model G2 

• Corrections for finite sample sizes depend on model; 
for 1D, linear, Gaussian model  
 
2K(K+1)/(N-K-1)
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Bayesian model selection
• Bayesian method are very bad at goodness-of-fit 

• Application of Bayes’s theorem only allows to distinguish between 2 
different models, no real concept of ‘good model’ 

• Bayes’s theorem for models: model1= linear, 2=quadratic 
 
p(linear|data) ~ p(data|linear) p(linear)  
p(quadratic|data) ~ p(data|quadratic) p(quadratic) 

• Likelihoods in these equations are marginalized over parameters of each 
model (c = quadratic coeff.) —> marginalized likelihood 
 
p(data|linear) = ∫dm d b p(data|m,b) p(m,b|linear) 
p(data|quadratic) = ∫dc dm d b p(data|m,b,c) p(m,b,c|quadratic) 
 
These were in the denominator of Bayes’s theorem for p(m,b|linear) before!



• Can then compute odds ratio:  
                           p(linear|data) 
odds ratio = —————————- 
                      p(quadratic|data) 
 
and select the model with the highest odds 

• Requires prior over models [p(linear) and p(quadratic)] 
                         p(data|linear)              p(linear)  
odds ratio = ————————   x   —————  
                      p(data|quadratic)      p(quadratic) 
 
                  = Bayes-factor x prior-ratio 

• If not strong preference, select based on Bayes-factor

Bayesian model selection



• Flip coin n times, get k heads —> is it fair? 

• Bayesian needs alternative model! Make that model: 
constant probability for heads that is unknown 

• So two models: p=0.5 and p=unknown

Bayesian model selection: 
Example: is a coin fair?

Ivezic et al. (2014)



• Evidence = p(data|model1) =  
∫dparams p(data|params) p(params|model1) 

• Nested sampling: MCMC technique that returns the 
evidence 

• If the posterior is close to Gaussian: Laplace 
approximation around max P*(x) with covariance 
matrix A:  

Bayesian model selection:  
How to compute the evidence



Bayesian Information 
Criterion (BIC)

• If the posterior is part of the exponential family of 
PDFs (Gaussian, chi-squared, beta, Bernoulli, …) 
can approximate 
 
Evidence ~ BIC = -2 ln L + K ln[N]  
 
for K parameters and N data points 

• Similar to AIC, but Bayesian :-)
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Cross-validation
• All previous methods require many assumptions 

• Take approach similar to bootstrap and jackknife before, using the 
data themselves to generate ‘new’ data 

• Cross-validation is very similar to jackknife:  
 
1. Generate N data sets that leave out 1 data point at a time 
[{x1,x2,x3,…}, {x0,x2,x3,…}, {x0,x1,x3,…}, …]  
 
2. Fit the model to each data set 
 
3. Compute the likelihood of the data point that was left out: Li  
 
4. Cross validation likelihood Lcval = Prodi Li
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Cross-validation: 
advantages

• Makes sense and does not make strong 
assumptions (just that all data points are typical) 

• Easy to implement, but can be expensive if each fit 
is expensive (can use leave-N-out instead) 

• Robust against certain types of under/
overestimates of the uncertainties (similar to 
bootstrap)
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Outliers, robustics 
statist



Hogg, Bovy, & Lang (2010)



Handling outliers
• Important! Outliers can wreak havoc to model 

fitting, model validation, model selection 

• Beware of simple cuts. Obvious outliers can be 
removed (e.g., cosmic rays), but cutting out data 
points induces selection function near actual data 

• Typically best to model outliers w/ simple models 

• Or can soften the likelihood for small values (large 
values of chi2)



Softened chi2
• Standard chi2 strongly punishes large deviations from the 

mode, can make this smaller 

• X = 𝛴i |chii| 

•   

• Any heavier-tailed distribution (e.g., student t) 

• Changes the likelihood of every point, so reduces 
sensitivity to all points 

• Make most sense if you think you do not understand your 
uncertainties very well
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Modeling outliers

• Can use mixture model: some probability that the 
data are inliers and some probability that the data 
are outliers 

• Make sense if you think there are two classes of 
data 

• We discussed this in the last class



Mixture model for outliers

Hogg, Bovy, & Lang (2010)

Posterior requires prior on qi, introduces new parameter Pb



• Can be marginalized over individual qi individually

Mixture model for outliers

Hogg, Bovy, & Lang (2010)



• Can be marginalized over individual qi individually

Mixture model for outliers

Hogg, Bovy, & Lang (2010)

Inliers

Outliers



• Works well in general: 

• Simple model, e.g., Gaussian with some free mean 
and variance 

• Halo when looking at disk kinematics 

• … 

• More expensive than softening the objective function, 
because additional parameters, but retain more 
information

Mixture model for outliers



Robust statistics
• Most frequentist and Bayesian methods have a lot 

of assumptions about the distribution of the data 

• Robust statistic is robust to deviations in the 
assumptions, e.g., deviations from Gaussian 
uncertainties, mis-estimated uncertainties, outliers 

• Typically better to properly model one’s 
uncertainties and outliers, but robust statistics 
useful in general data handling



Median
• Mean is a bad estimator for the central location of 

the data if the uncertainties are non-Gaussian and 
have long-tail (~outliers) 

• Single bad measurement will throw off the mean 

• Median = 50% quantile, does not care if you shift a 
point much further away —> robust against outliers 

• Median is minimum of X = 𝛴i |chii| = 𝛴i |yi-median| 
objective function



Estimates of spread
• Similar to mean, standard deviation is not robust against 

outliers 

• Interquartile range [25%,75%] is robust, similar to the 
median (or any other range of quantiles near the center) 

• Median absolute deviation:  
MAD = median (|Xi-median(Xi)|) 

• For Gaussian: std. dev. = 1.4826 MAD, generally useful 
to transform any robust range to its Gaussian equivalent


