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Today: methods for assessing
uncertainty in model fits

* Bayesian: sampling the posterior probability
distribution, in particular, Markov Chain Monte
Carlo methods

* Frequentist: non-parametric methods: bootstrap,
jackknife
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Fitting a line

Straight line model has two parameters: slope m and
intercept b

Likelihood, single point: p(yilm,b,xi,0y.) = N(yilmxi+0b,0%))
Independent data points:
yim,b,{x},{o,}) = p(yo|m,b,x0,0y0) X P(y1|m,b,x1,0y.1)X...

X p(yN_1 \m,b,xN_1 ,Gy,N-1)

Posterior:
p(m,bl{y},m.b,{x}.{o,} ~ p({y}|m,b,{x}.{o,}) x p(m,b)

Two parameters, so easy to optimize, grid-evaluate, ...



Mixture model tor outliers

o (1)
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Mixture model tor outliers

* Model outliers using a mixture model. each data
point has some probabillity g to be actually drawn
from the line, and probability (1-gi) to be drawn
from a background model ppg(yili,0y,...)

e Simple background model:
Pog(Yi[Xi,Oy.i-.) = N(Y[Yb,Vo+02y,)



Mixture model tor outliers

In this case, the likelihood is
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Mixture model tor outliers

« Parameters of the model are now: m, b, Yo, Vb, Ppb,
do, 41, ..., On-1 —> N+5 parameters!

o Efficiently exploring the posterior PDF becomes
much harder; grid-evaluation impossible!



Sampling methods for the
posterior PDF

* Most things that want to do with the PDF p(8) involve integrals over the
PDF:

 Mean = |dB p(B) B

« Median: /™" d6 p(6) = Jmedian A8 P(O)

2

Variance = [dB p(8) 8° - [[d6 p(8) 8]

Quantiles: [**""° 4@ p(B) = quantile x [d8 p(8) = quantile

« Marginalization: p(8) = Jdn p(B,n)
* None of these care about the overall normalization of p(8) [set |dB p(8) = 1]

e Therefore, can use Monte Carlo integration technigues



Monte Carlo Integration

* Multi-dimensional integral
JdB f(B) ~ V x 1/N x X f(6))
where

V = []de],

B are uniformly sampled points within the domain
of B



Monte Carlo Integration

 No need to use uniform sampling, can just as easily do

Jde f(8) =[d6 q(B) [f(B)/a(e)]
~ Vg x 1/N x 2 1(6i)/q(6)

where
Vq =[/dB q(8)] .
B; are points sampled from q(B)

e |f you choose q(8) that closely follows f(8), f(6;)/q(6;)~1
and integral will quickly converge



Monte Carlo Integration
for probabillity distributions

« Back to our integrals of the form [d8 p(B) f(8)
* Using Monte-Carlo integration

JdB p(B) f(B) = 1/N x Xif(6))

if 8i sampled from p(8), because Vp = [dB p(B) = 1
* S0 all integrals of the posterior PDF can be

performed using Monte Carlo integration, if we can
efficiently sample p(0)!




Importance sampling

Sampling p(B) is hard! So let's sample a different
distribution that is easy to sample g(6) and use

JdB p(B) f(6) = /dB q(B) p(B)/a(B) f(B)
~ 1/N x Zif(6)x p(6i)/a(6i)

The p(6i)/q(6i) are known as the importance weights
They re-weight the importance of each sample
Works well it g(0) is close to p(6), otherwise introduces

large variance: think about what happens when g(0) is
small when p(0) is large!



Importance sampling

Mackay (2003)



Importance sampling

e Useful in some contexts:

For example, somebody gave you samples from a posterior PDF
with a prior that you don't like —>

You want [d6 pyou(B|data) f(8) = |d6 p(datal®) pyou(B) f(B)

But you have samples 8; from
Prot you(B|data) = p(datal®) prot you(O)

e Cando
Jde pyou(9|data) f(e) — 1/N X Zi f(@i)X pyou(ei)/pnot you(ei)

which should be fine as long as the prior doesn’t change too much



Rejection sampling

(b)

T
Mackay (2003)

* Imagine binning p(x), then have to sample P(x) =
p(x) dx —> can sample p(x) by uniformly sampling
the area under the p(x) curve



Rejection sampling
 Have g(x) such that ¢ x g(x) always > p(x)
* g(x) easy to sample (e.g., uniform or Gaussian)
e Sample vfrom g(x) and u from Uniform(0,1)

if u< p(v)/g(v)/c: return v
else: try again

Mackay (2003)



Rejection sampling

Works well in 1D, but difficult for multi-dimensional
distributions, because volume under g(x) and that under
p(x) quickly becomes very different

Even in 1D it can be difficult to find a g(x)

Techniques like adaptive-rejection sampling for l0g-
concave distributions iteratively build up tight hull around
p(x) that allows efficient sampling (implemented in galpy!)

Importance sampling and rejection sampling useful
because each sample is independent



Markov chains

A Markov chain is a chain of randomly produced
samples (states) for which the transition probability
to the next state only depends on the current state,
not the previous history —> memoryless

 Markov chain defined by transition probability
T(x";x) which gives the probability of going to X’
when you're currently at x

e Markov Chain Monte Carlo methods construct
T(x";x) such that the chain samples a given p(x)



Metropolis-Hastings

« \Want to sample p(x)

* Proposal distribution g(x’;x) [this is not the T(x’;x) from
previous slide!]; For example, Gaussian centered on x
with some width

e Algorithm: you're at X;
1. Draw from x; from g(X:;X;)
2. Compute a = [p(xt) a(xi;xt)] / [p(xi) q(Xe;xi)]
3. It a > 1: accept xi; else: accept x; with
probabillity a
4. It accepted: Xir1 = Xi; else: Xiz1 = X



Metropolis-Hastings

Mackay (2003)



Metropolis-Hastings: special case
of a symmetric proposal distribution

Algorithm: you're at x;
1. Draw from x; from qg(X¢;Xi)
2. Compute a = [p(xq) a(xi;xi)] / [p(xi) a(xexi)]
= p(xt) / p(xi)
3. It a > 1: accept x;; else: accept x;with
probability a
4. It accepted: X1 = Xg; €lse: X1 = X

S0, If proposed state has higher probability, always accept

But can go to lower probability region with some
probability —> not an optimizer!



Metropolis-Hastings In
practice

Need to choose g(x’;x) —> often a Gaussian centered on X, with
some width, in higher dimensions typically spherical Gaussian

Width is adjustable parameter: should be O(width of p[x])
Set it too large: jump to regions with low p(x) —> reject

Set it too small: jJump to regions with very similar p(x) —> Transition
probability ~1 —> accept most, but don't explore

Typically needs a lot of adjusting; acceptance fraction = (# of times
X; =/= X;) / (total # of steps)

Theoretical work has shown that optimal acceptance fraction in 1D
= 50%, in higher-D 23% (Roberts & Gelman 1997)



Metropolis-Hastings

Need on order of
>(L/width)2 steps

to explore the PDF
(random walk)

Mackay (2003)



Markov Chain Monte Carlo
generalities

When and why do MCMC algorithms work? Important to
understand to not get tripped up In practice!

Markov Chain characterized by transition probability T(x’;x)
[for MH, this is the algorithm given]

Probability distribution g'+'(x’) of value x’ starting from
probability distribution for g'(x):

g*(x)) = | dx T(x:x) g'(x)

So T(x';x) transforms one probability distribution into
another



MCMC generalities

* For a Markov Chain algorithm to explore the
desired distribution p(x) two requirements:

* p(Xx) should be an invariant distribution of the
Markov Chain:

p(x’) = | dx T(x;x) p(x)

* Chain must be ergodic: g*+1(x) —> p(Xx) for i —> oo
(chain shouldn't be periodic, ...)
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Example: sampling a

uniform distribution

Mackay (2003)
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Detalled balance

Invariance of distribution can be ensured by detailed balance:
T(x:x)p(x) = T(x;x)p(x’) for all x, X’

Means that chain is reversible: just as likely to go from x—>x" as to
go from x'—>X

Invariance then satisfied because:
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X 90
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Sufficient, but not necessary



Metropolis-Hastings

* Pretty easy to show that MH satisfies detailed
balance, but left as exercise

* How to ensure that the chain is ergodic? One
simple way is to make sure that T(x’;x) > O for all X’

with non-zero p(x’) [non-zero prior]



Gibbs sampling

* |[n multiple dimensions, say p(x,y)

e Sample: Starting at (xi,yi)
1. Xi11 from p(x|yi)
2. Yir1 from p(y|Xi+1)
3. New (Xi+1,yi+1)

e Useful when:

e Each conditional distribution is simple (or some of them)

« \Want to sample different dimensions in different ways (MH
with different step sizes, more advanced sampling for some

parameters)



Gibbs sampling
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Metropolis-Hastings and Gibbs sampling are
nice, but typically require some adjustable
step size that can lead to an unacceptable

acceptance fraction



Samplers with less dependence
on the step size: Slice sampling

o Similar to rejection sampling and Metropolis-Hastings

* Like rejection sampling, samples the area below p(x) uniformly,
but without bounding function

e Algorithm: starting from x;:
1. evaluate p(x;)

. Draw uniform u from [0, p(X;)]
. Create interval (Xiow,Xnign) that encloses x; (stepping out)
. Loop through:

* Draw x* uniformly from [Xiow,Xnigh]

*if p(x’) > u: break and accept x’

* else: modify (Xiow,Xnigh) (Shrinking)

B~ W N

* Interval creation and modification by stepping out and shrinking
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Slice sampling
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Slice sampling: advantages

* Requires step size to set the stepping-out step, but algorithm
automatically adjust for bad choices (L ~ width of PDF):

Step too small: algorithm will take many steps to step-out, but
eventually end up O(L) away

Step too large: algorithm steps out quickly, but needs to shrink in
many steps

* Every sample accepted! No need to check acceptance fraction
(but want to monitor # of stepping-out and # shrinking iterations)

* Used to be my go-to method, still useful for some problems (e.g.,
Gaussian processes)



ENnsemple samplers

So far have considered single sample x; that gets
updated

Ensemble sampler have a state consisting of many
samples {x}i that get updated by Markovian transitions

Will focus on most popular one: affine-invariant
ensemble sampler of Goodman & Weare (2009; aka,
emcee)

Variations have different points in the ensemble at
different temperatures, ...



Affine-invariant sampler
(emcee)
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Affine-invariant sampler
(emcee)

Goodman & Weare (2009)



Affine-invariant sampler
(emcee)

Each x in {x}; is called a walker

Detailed algorithm: Starting with ensemble {x};
1. Loop through each walker k: x
2. Draw a walker x, from the set of walkers w/o k
3. Draw z from g(z)
4. Propose new xk 1= = Xk + Z(Xk - X))
5. Compute g = Z"" X p(Xi41)/P(Xk)
6. Draw uniform u from [0, 1]
7.1t g >= u: accept X, 1; else: keep Xk

3. Is called the stretch move; need to specity g(z)

It g(z) satisfies g(1/z) = z g(z), the above algorithm satisfies detailed
balance; g(z) = 1/J/z for zin [1/a,a], a free parameter



Affine-invariant sampler
(emcee)
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Affine-invariant sampler
(emcee): parallel version

 Each walker needs to be updated in series in the
previous algorithm —> can take a long time

* Naive parallelization (update all simultaneously
using their position in iteration i) fails to satisty
detailed balance

* Can split walkers into set of two, update all walkers
from one set simultaneously by only allowing
moves wrt walkers in the other set —> satisfies
detailed balance



Affine-invariant sampler
(emcee)

* Algorithm needs value for a, but just scaling that can be
left the same for all problems (works well)

* Need to watch out for non-ergodic chains!

o |t # of walkers < dimension of space, cannot sample
entire space!

e Should use # of walkers >> dimension of space to
avold getting stuck near subspace

» Like Metropolis-Hastings, possible that acceptance
fraction is very low



MCMC overview

Metropolis-Hastings: simple to implement, need to pick
proposal distribution, need to monitor acceptance fraction

Gibbs sampling: Great when (some) conditional probabilities
are simple

Slice sampling, emcee: Insensitive to step size, so good go-
to methods that don't require much supervision; good python
implementation of ensemble sampler emcee (http://
dan.iel.fm/emcee)

Not talked about: Nested sampling, Hamiltonian Monte Carlo
(uses derivatives of PDF), more complicated ensemble
samplers


http://dan.iel.fm/emcee

MCMC: burn-in

« All MCMC algorithms need to ‘burn in’: Takes some
number of steps to reach the target distribution p(x)

* Need to monitor convergence to p(x) somehow:

 Can look at In[p(x)] and how it evolves over time
—> should start randomly oscillating around
typical value

« Can compute desired integrals (e.g., mean) and
see when their value stops changing

e Can run different chains and look at variance
between those chains

 Determine when your chain has burned-in, remove
everything up to that point; samples are what follows
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MCMC: auto-correlation time

 Samples in Markov Chain are correlated, because each value
depends on the previous value

 This is okay when computing summaries of the PDF [e.g., |d®
0(8) f(6)] in that this does not introduce bias, but it does mean
that the uncertainty in the summary does not decrease as 1/4/N

* Can compute the autocorrelation function of your samples: A(1)
= <X Xiz> and determine typical value of t for autocorrelation
to become zero —> auto-correlation time t

N/t ~ # of independent samples in your chain

* Can discard non-independent samples; most summaries can
be computed using very few independent samples (~12)



Non-parametric ways to
estimate uncertainties:
Bootstrap and Jackknite



Non-parametric methods

e Bayesian inference requires good knowledge of model,
data uncertainties, and everything else involved in going
from the model —> data

* Bootstrap and jackknife attempt to quantity uncertainty
from the distribution of data itselt

* Bootstrap (not the web framework...): data {xj}sampled
from some distribution p(x), estimate as

0(x) ~ 1/Ndata x Xid(x-x;)

 Sample new data sets from this estimate of p(x)



Bootstrap

e Suppose you want to know the standard deviation of a set
of N data {x;} —> unbiased estimator

0° = 1/[N-112; [xi-<xi>]?
What is its uncertainty”

* Bootstrap: sample new data points from p(x) ~ 1/Ndata x
2i0(x-xj) —> sample N ‘new’ data points from the original

set with replacement (i.e., can sample the same one twice)

« Compute o® for each resampling —> distribution of these
o¢ is the uncertainty distribution



Bootstrap
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Jackknife

Rather than sampling with replacement, make N new data sets
by leaving out 1 data point at a time

SO {X1,X2,X3,...}, {X0,X2,X3,...}, {X0,X1,X3,...}, ...
Compute estimator 6 for each subsample, 6
Uncertainty in estimator:

0° = [N-1]/N X} (84-8a1)°

where

Oa1 = 1/N X} 6,



Robust against underestimating
one’s errors and correlated errors

Suppose you want to know the mean of a set of data that
you think have errors of 2, but really have errors of 10

100 data points: Would assign mean error 2/4/100 = 0.2;
but real error is 10/+/100 = 1

000

* Bootstrap: error=1 ol




Problem set T

e Four exercises of inference and MCMC
e Due Mar. 31

* Please let me know whether you are taking the
course for credit when you submit



Problem set 1

Statistics Mini-course Problem Set 1
Due on Thu. Mar 31

We will do some of the exercises in Hogg, Bovy, & Lang (HBL; 2010) (1008.4686), with
some slight variations. You should solve these exercises on a computer and the best way to
hand in the problem set is as an ipython notebook. Rather than sending me the notebook,
you can upload it to GitHub, which will automatically render the notebook. Rather than

starting a repository for a single notebook, you can upload your notebook as a gist, which
are version-controlled snippets of code.

If you want to upload your notebook as a gist from the command-line, you can use the
package at this http URL and use it as follows. Log into your GitHub account:

gist --login

and then upload your notebook statminicourse 2016 PS1_YOURNAME. ipynb as

gist statminicourse_2016_PS1_YOURNAME.ipynb

If you want to make further changes, you can clone your gist in a separate directory and
use it as you would any other git repository.



Problem 1: Do exercise 1 in BHL.

Problem 2: Do exercise 1, but assuming that the errors o, of neighboring data points in

are correlated with a correlation coefficient of p = 0.5. E.g., data points 15 and 16 have y mea-

2
0y,15 0°5 ay115 Uy’lﬁ )

0.50y,15 0y,16 03,16
Note that the data points in Table 1 are not sorted on z! How does the uncertainty variance

o2 on the slope change?

surements whose uncertainty is described by a covariance matrix

Problem 3: Write a Metropolis-Hastings sampler for a general one-dimensional probability
distribution p(x) with a Gaussian proposal distribution (characterized by a width parameter
that should be passed to the code) that returns a sampling and the acceptance fraction.
Test it with a Gaussian with zero mean and unit variance: plot a normalized histogram of
the samples and compare it to the analytical PDF. Then apply it to sample a probability
distribution consisting of the sum of two Gaussians with equal weights, unit variance for
each, and means 0 and 10 (again plot a histogram of the samples and the analytical PDF).
Try to find a relatively high acceptance fraction.

Problem 4: Solve exercise 6 in HBL using MCMC sampling with emcee.
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