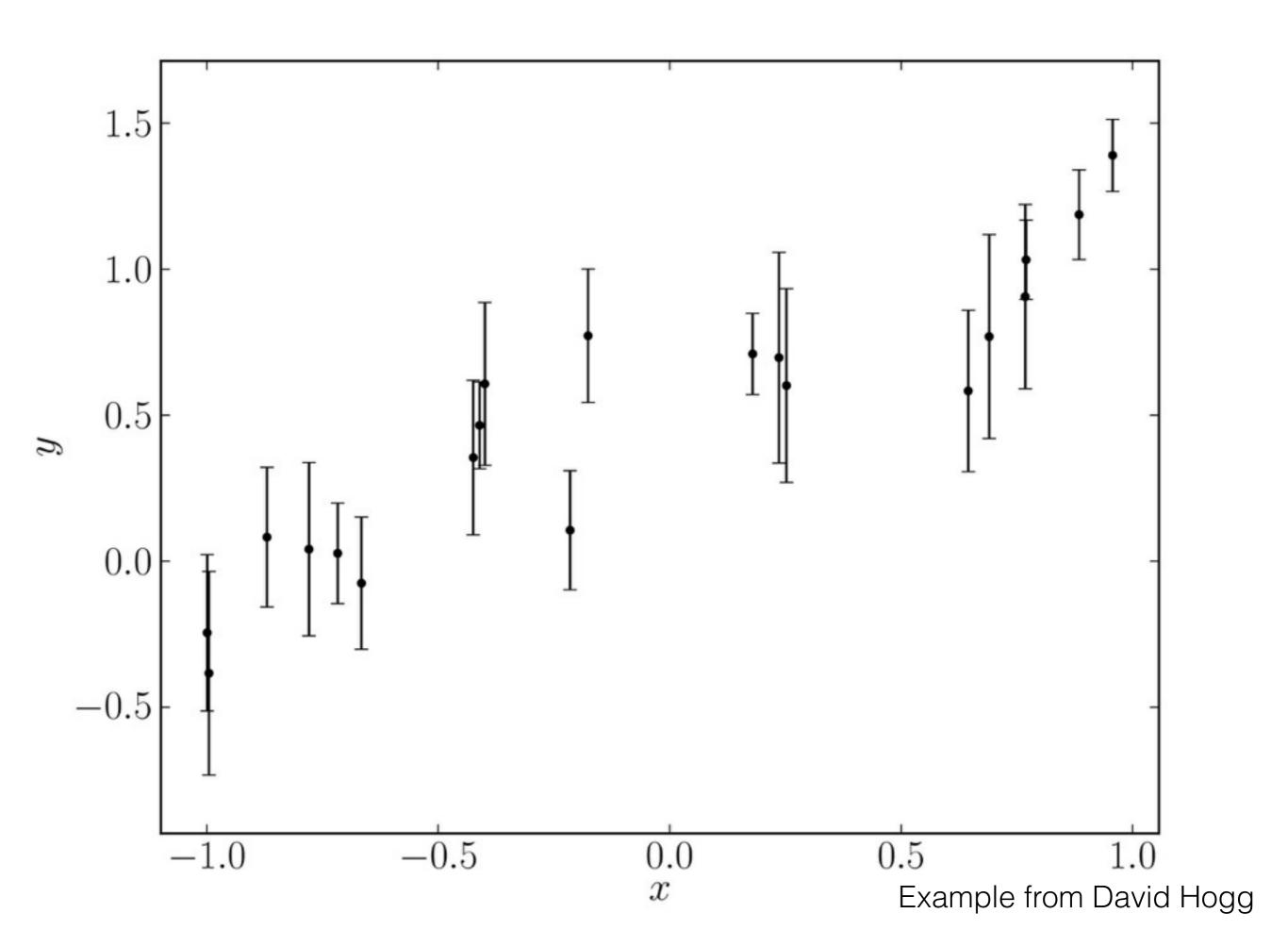
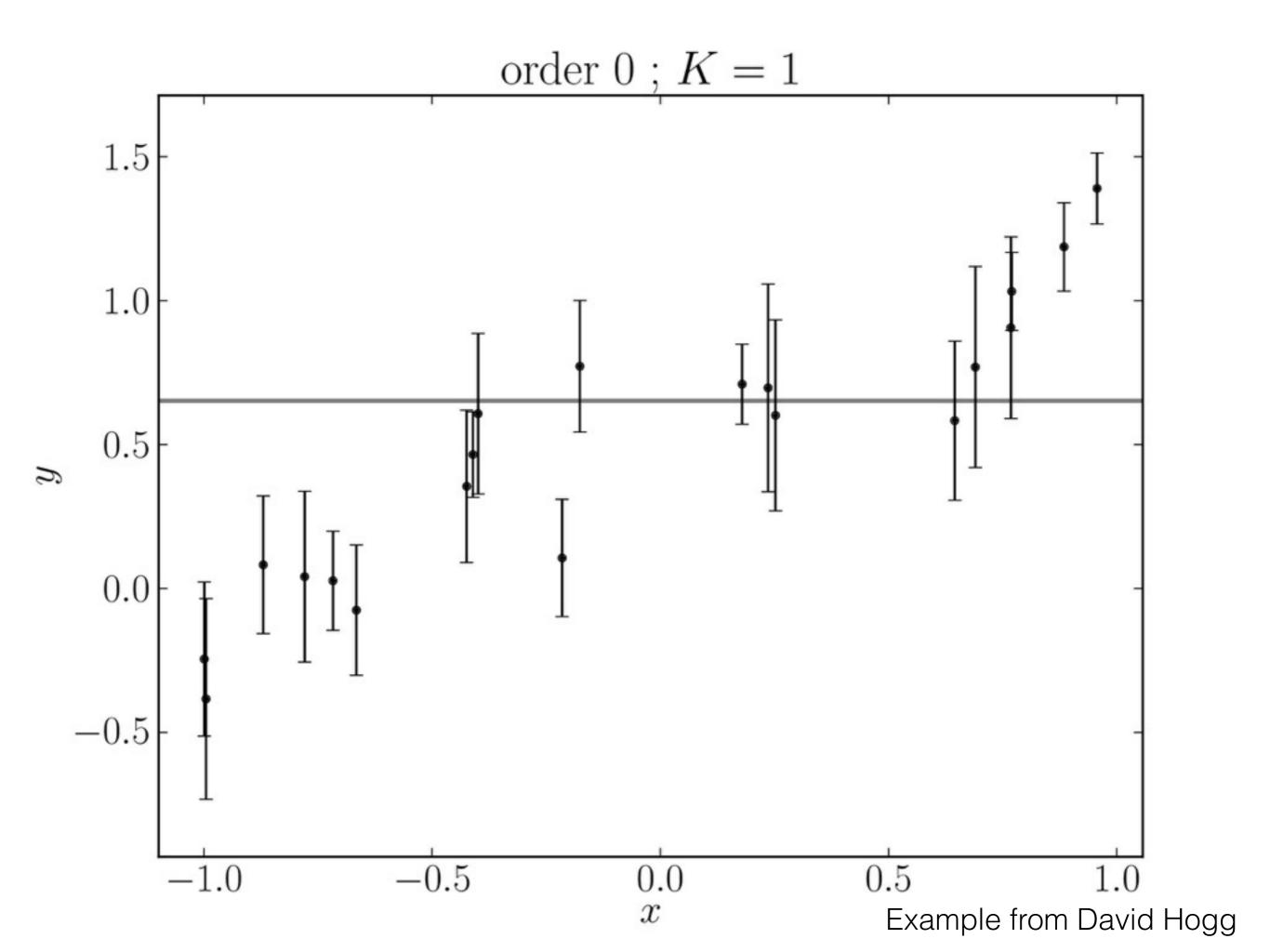


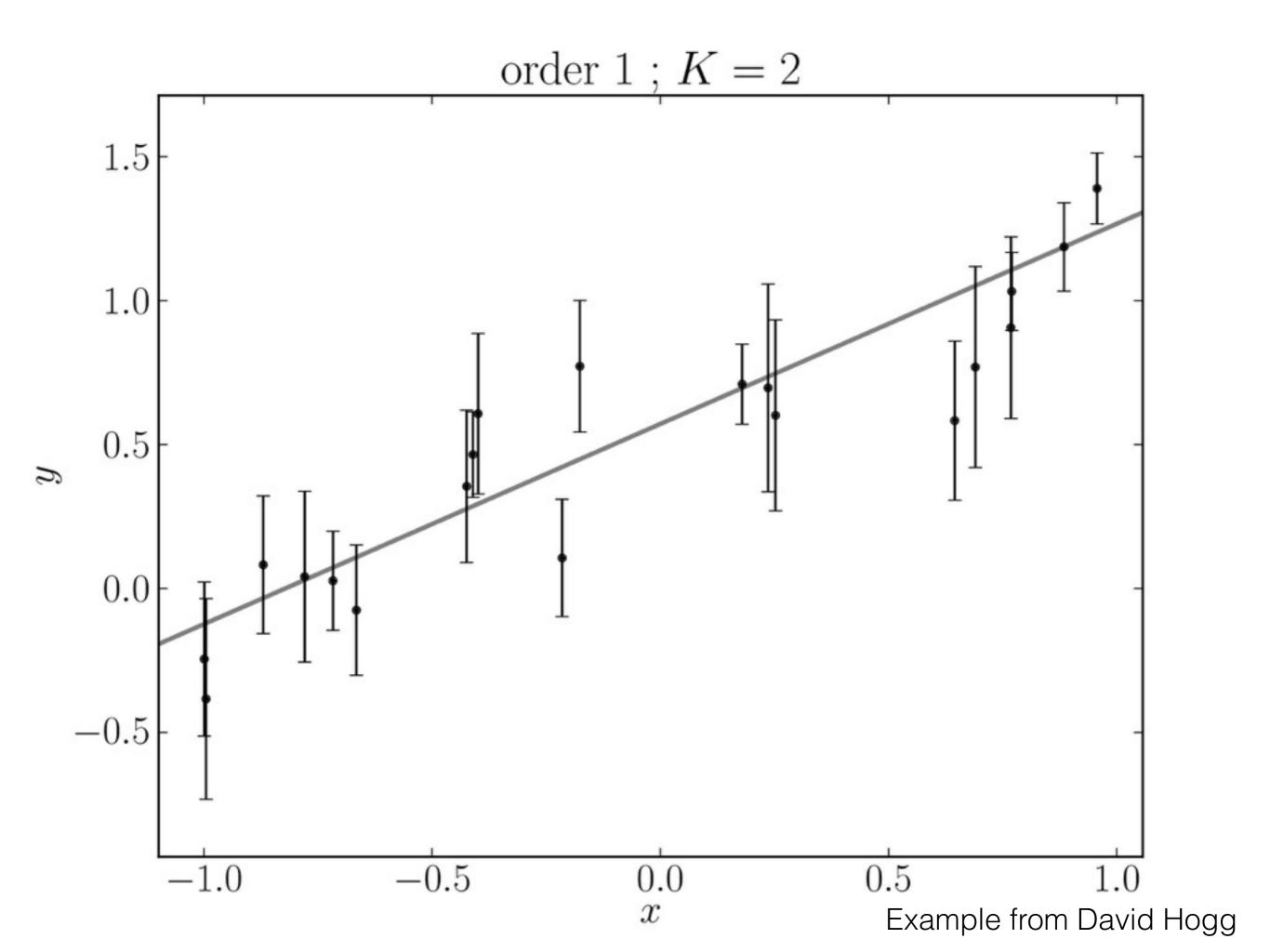
Today

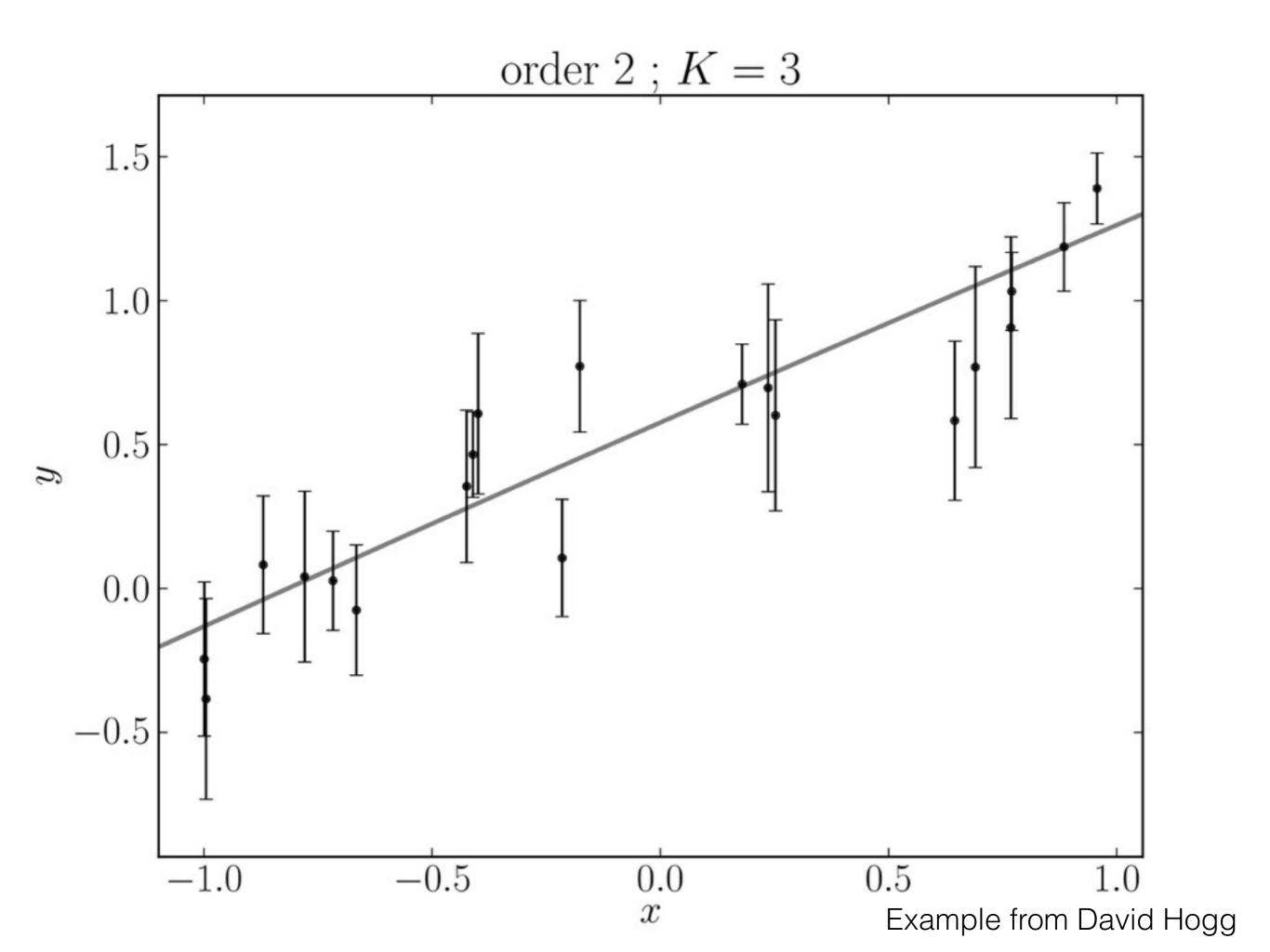
Goodness-of-fit, model selection, cross-validation

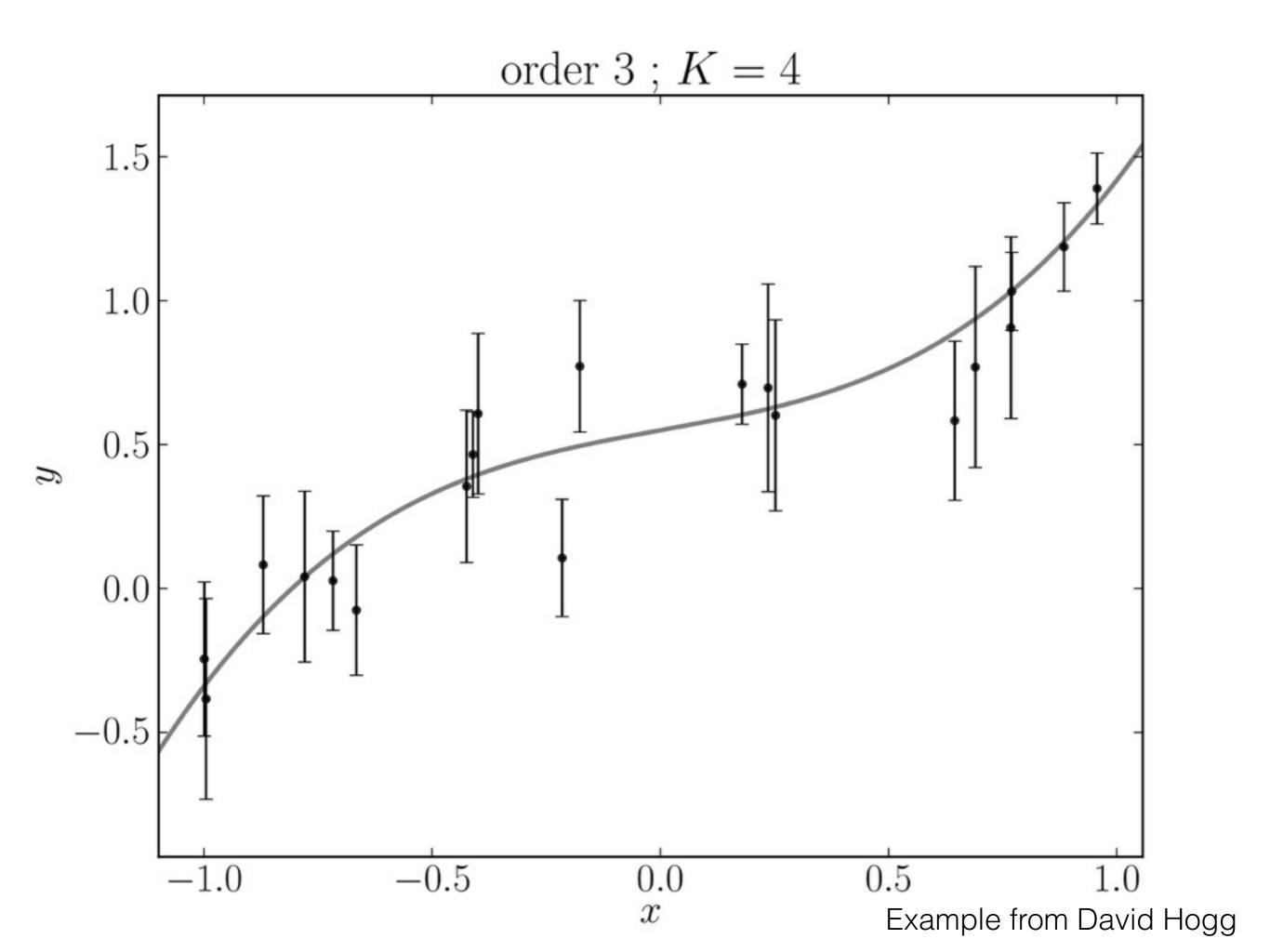
•

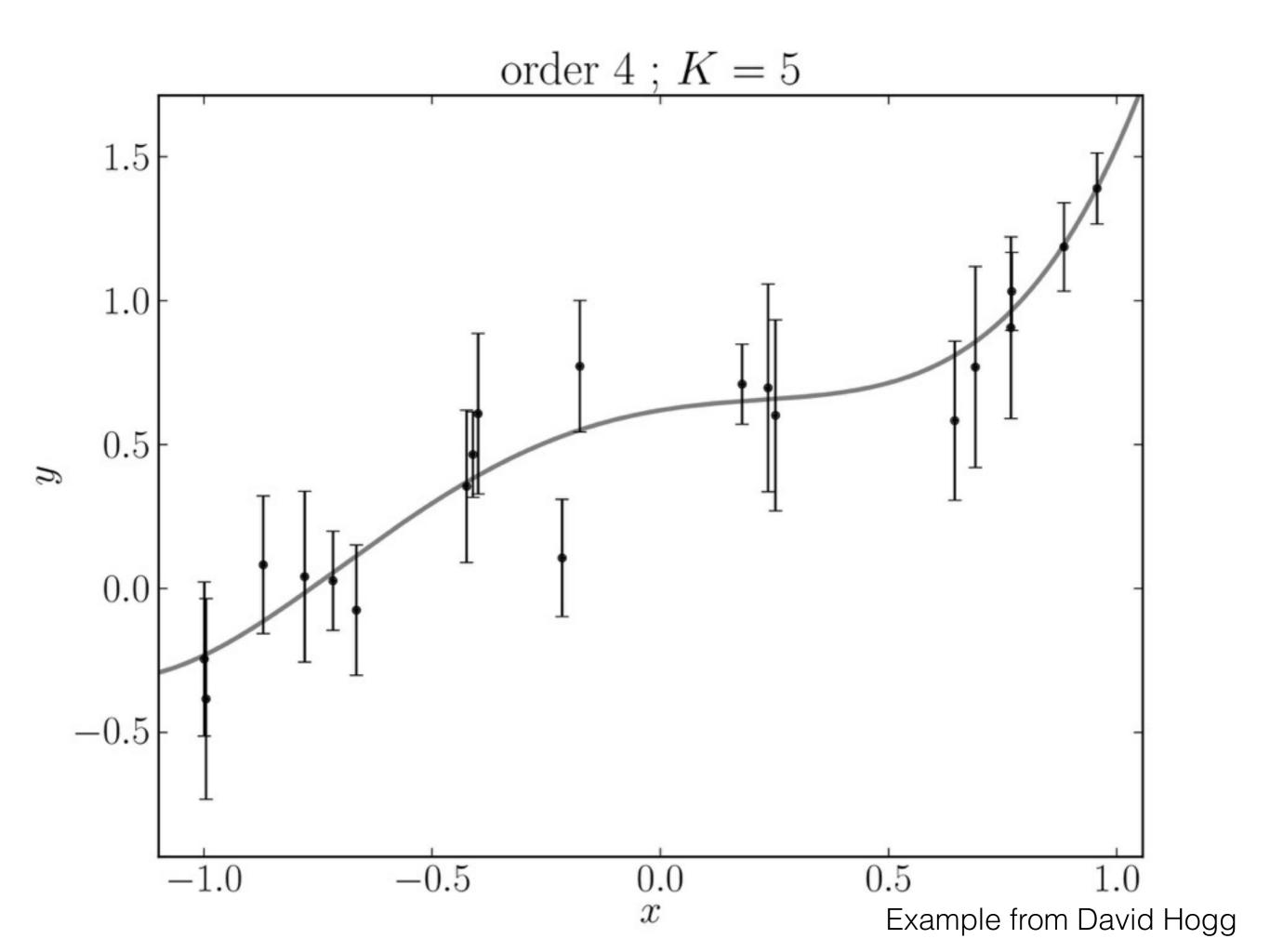


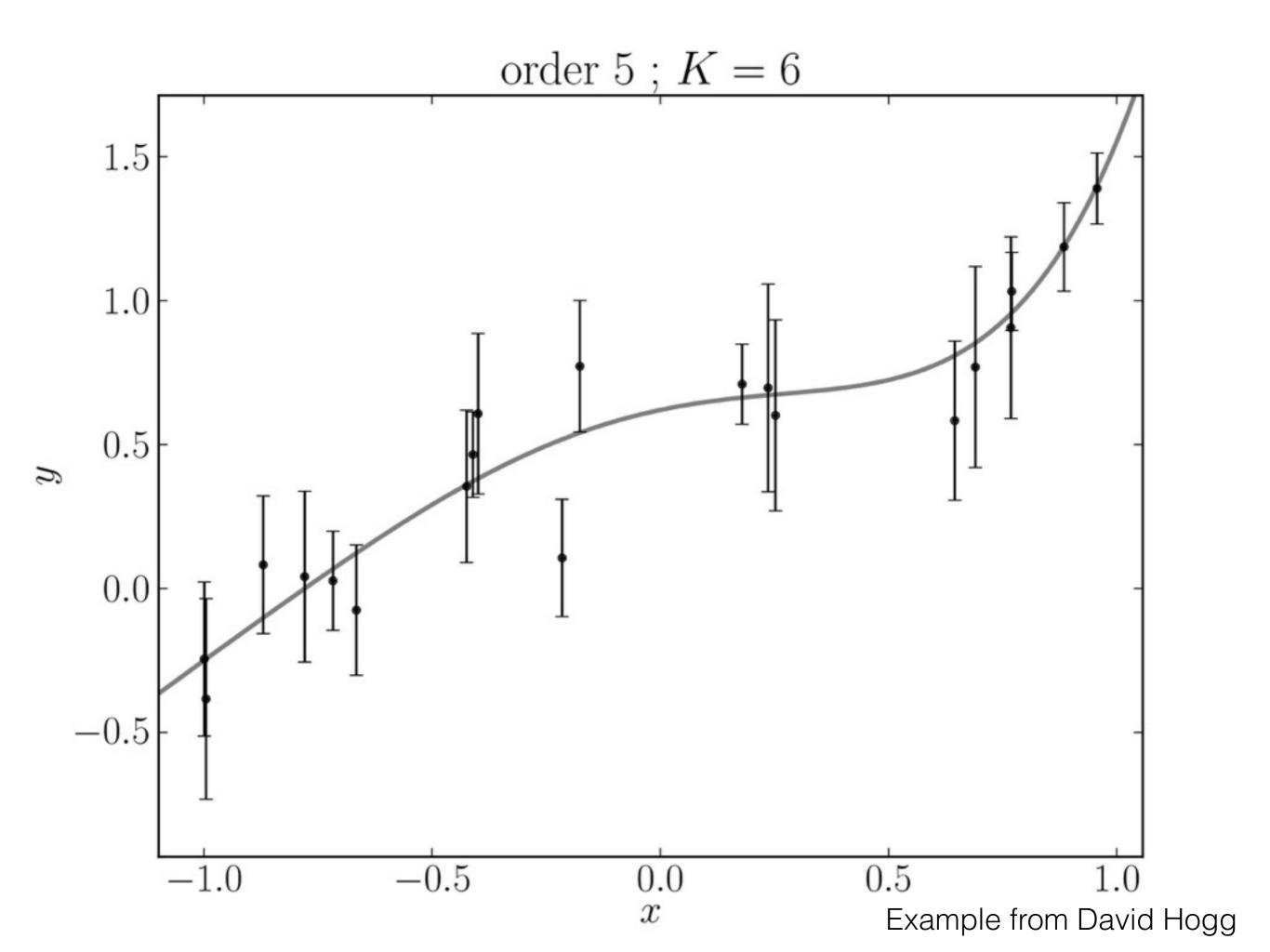


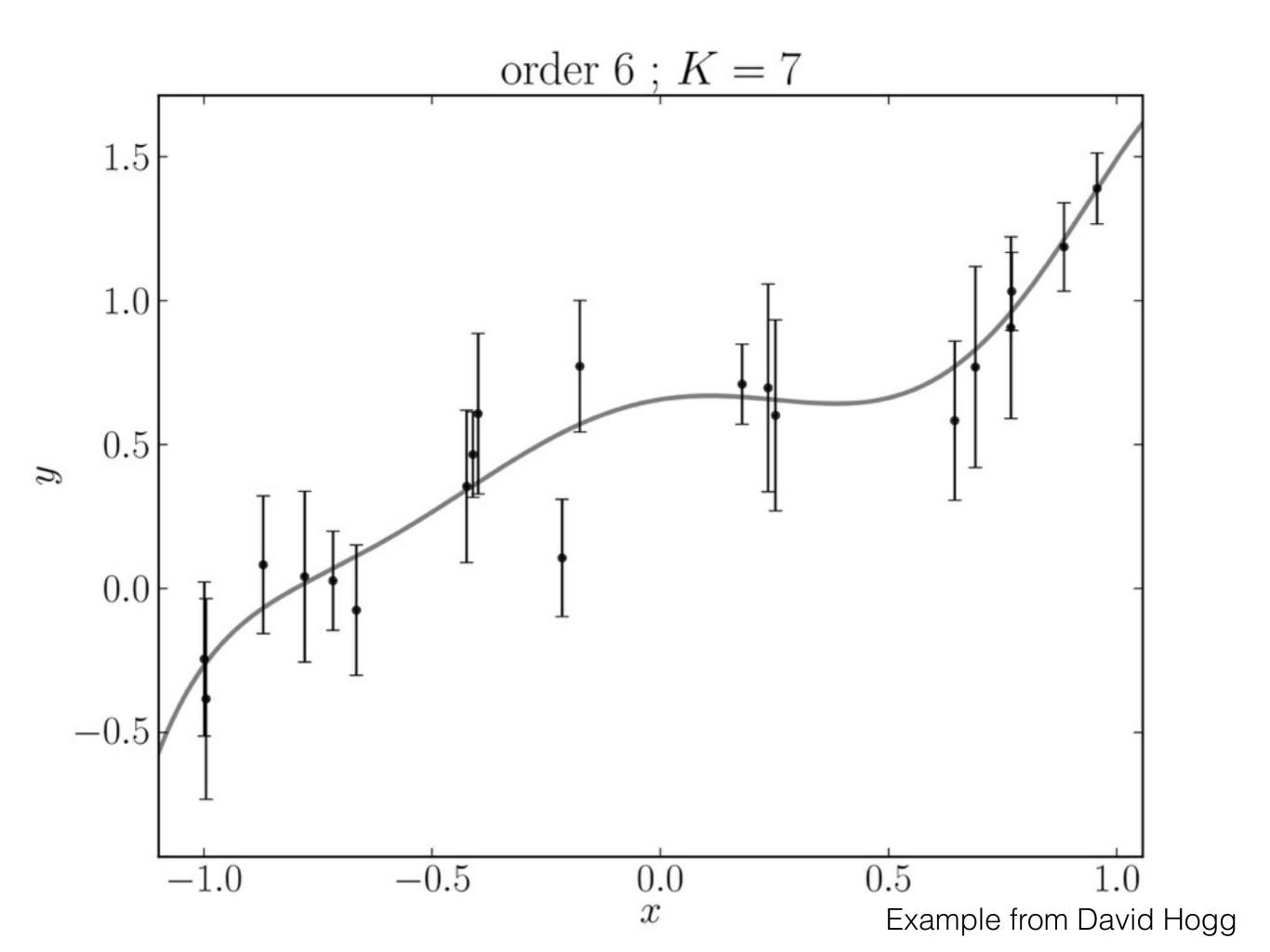


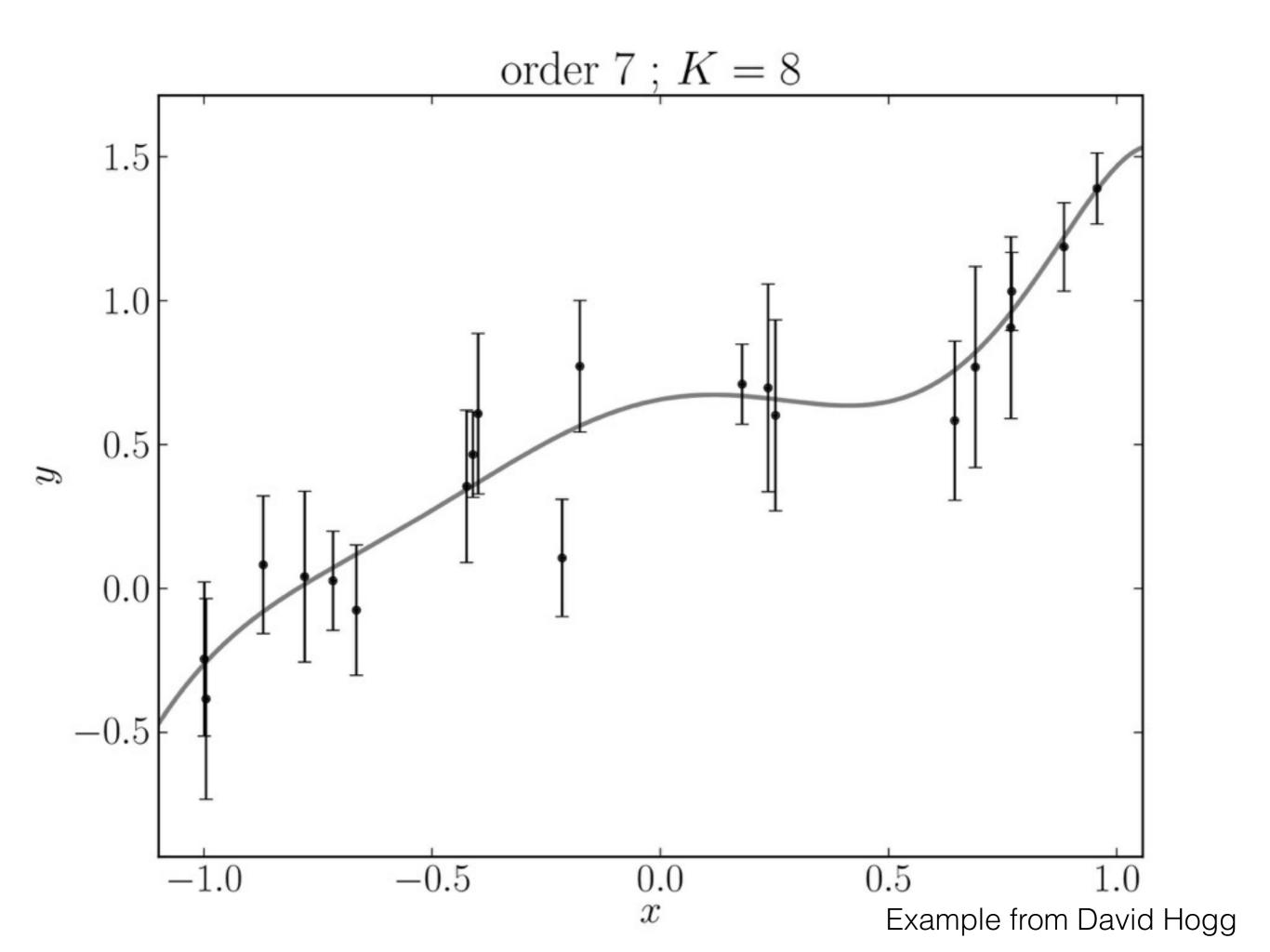


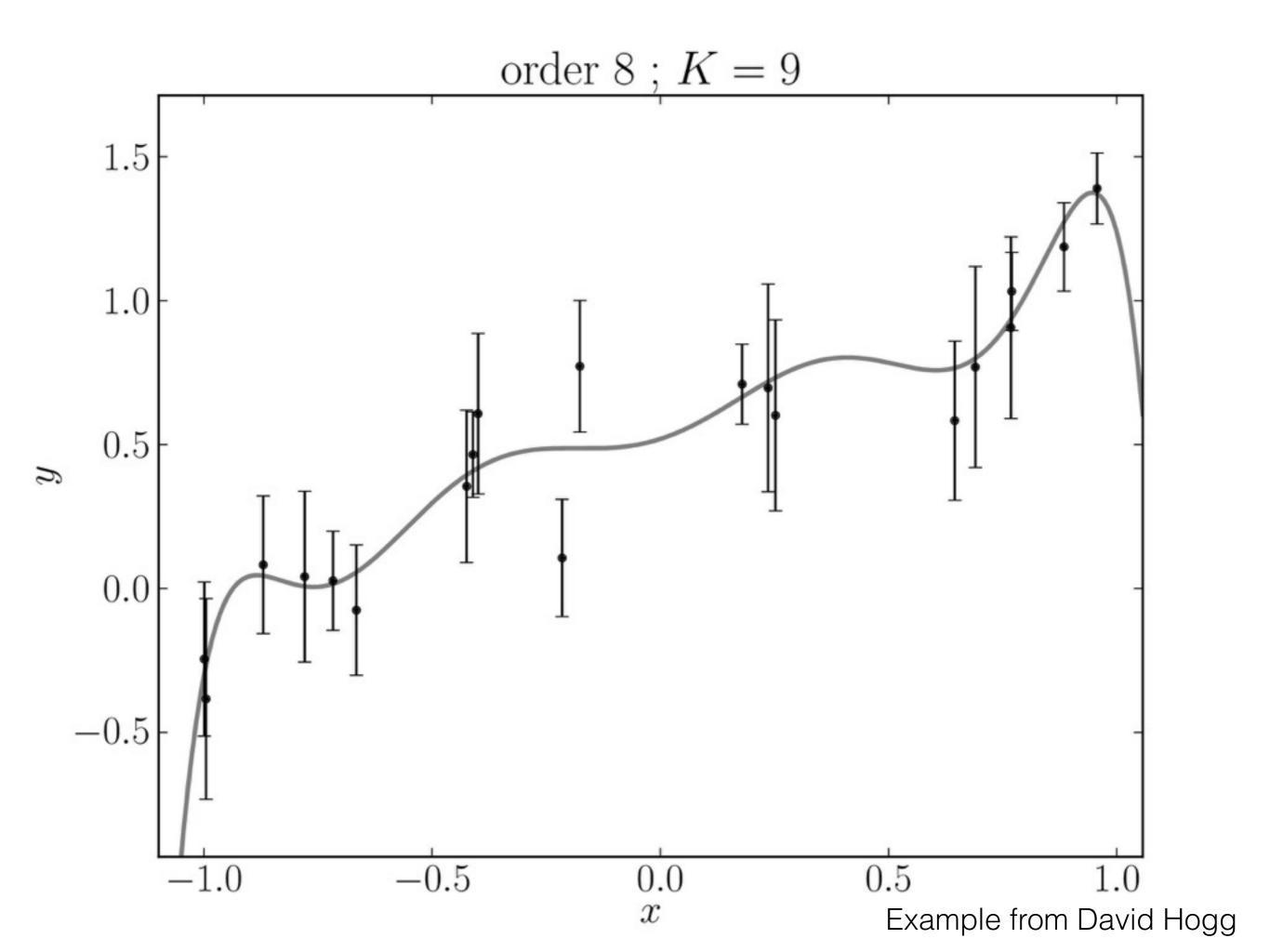


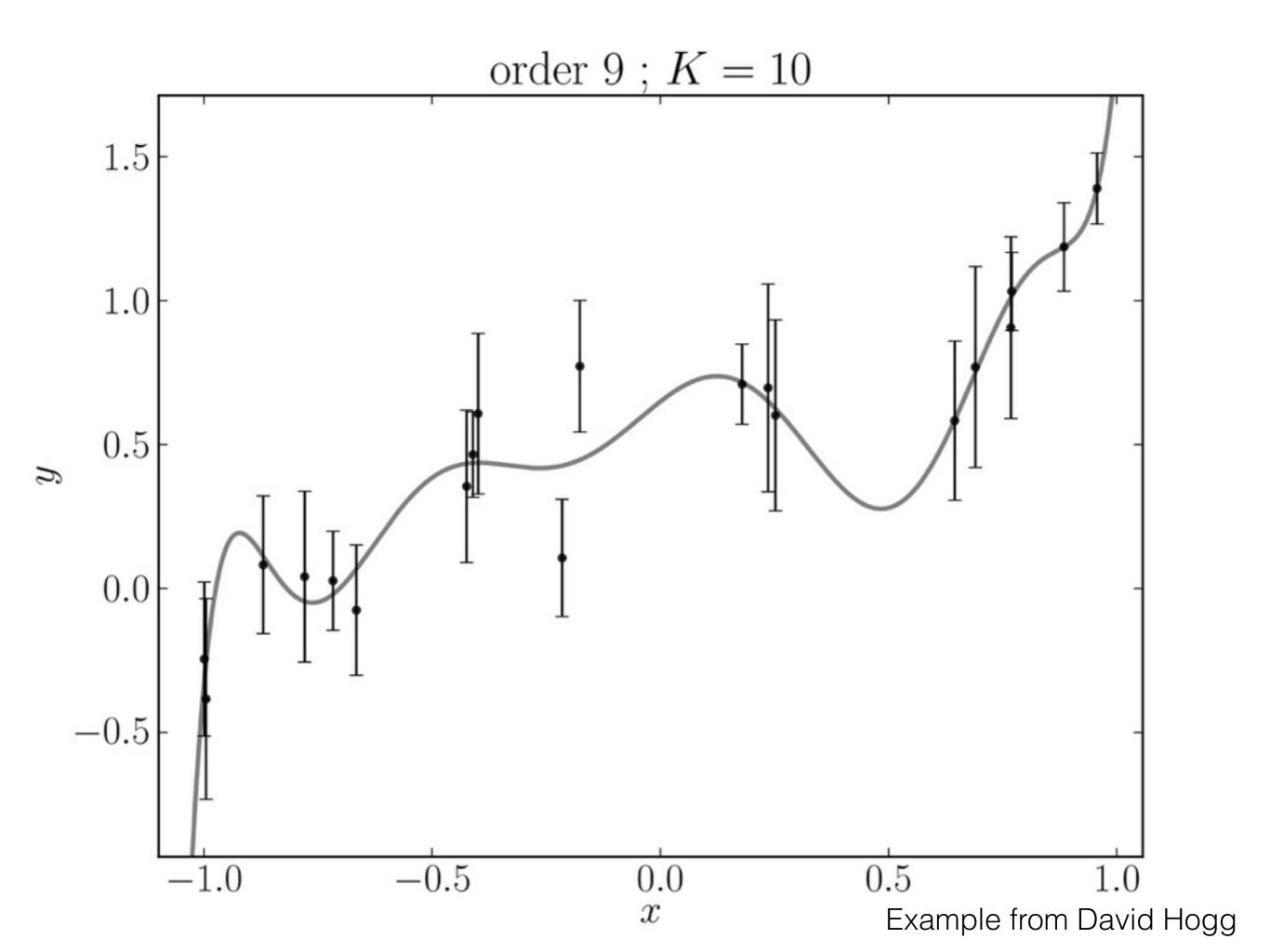


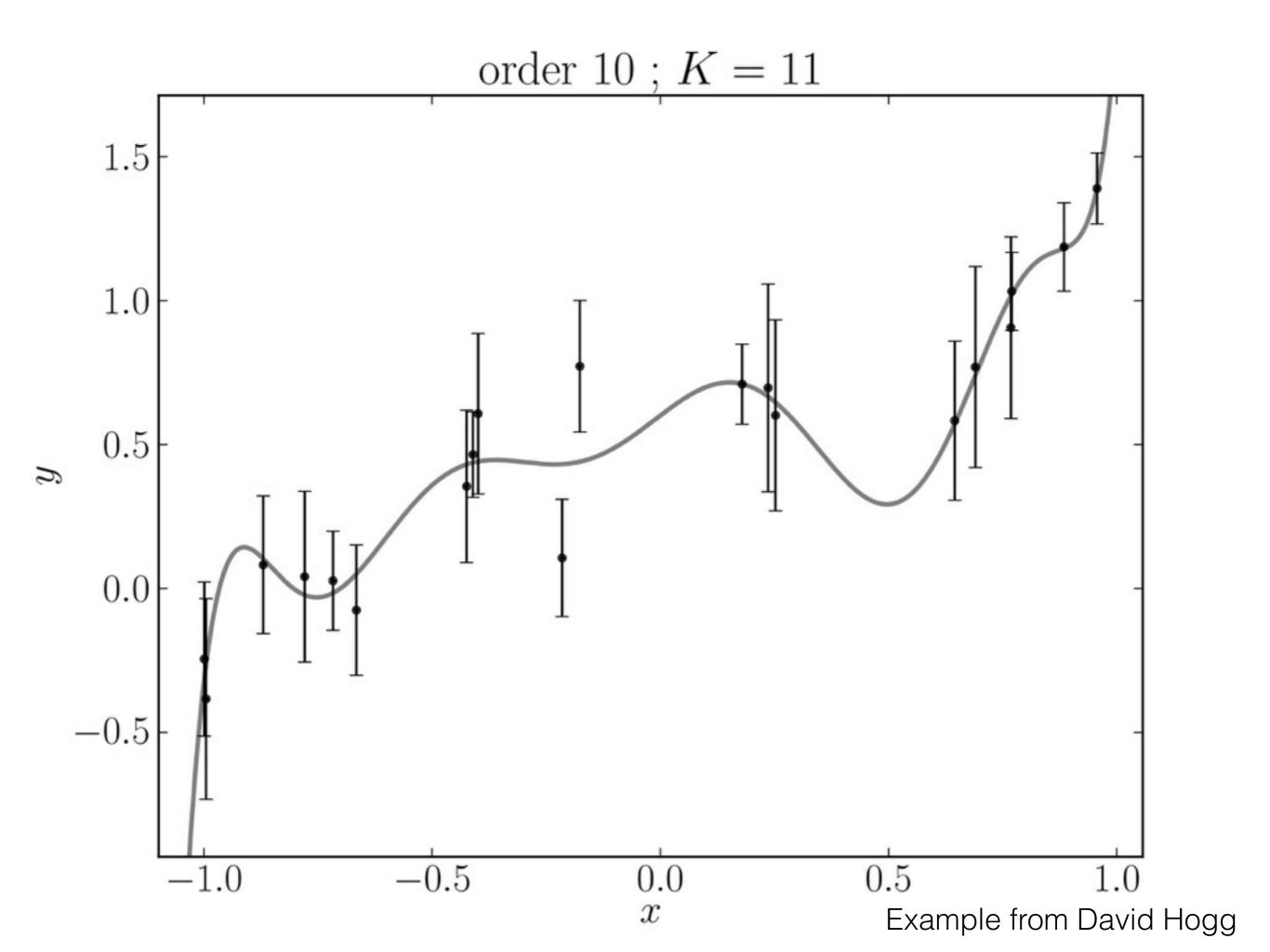


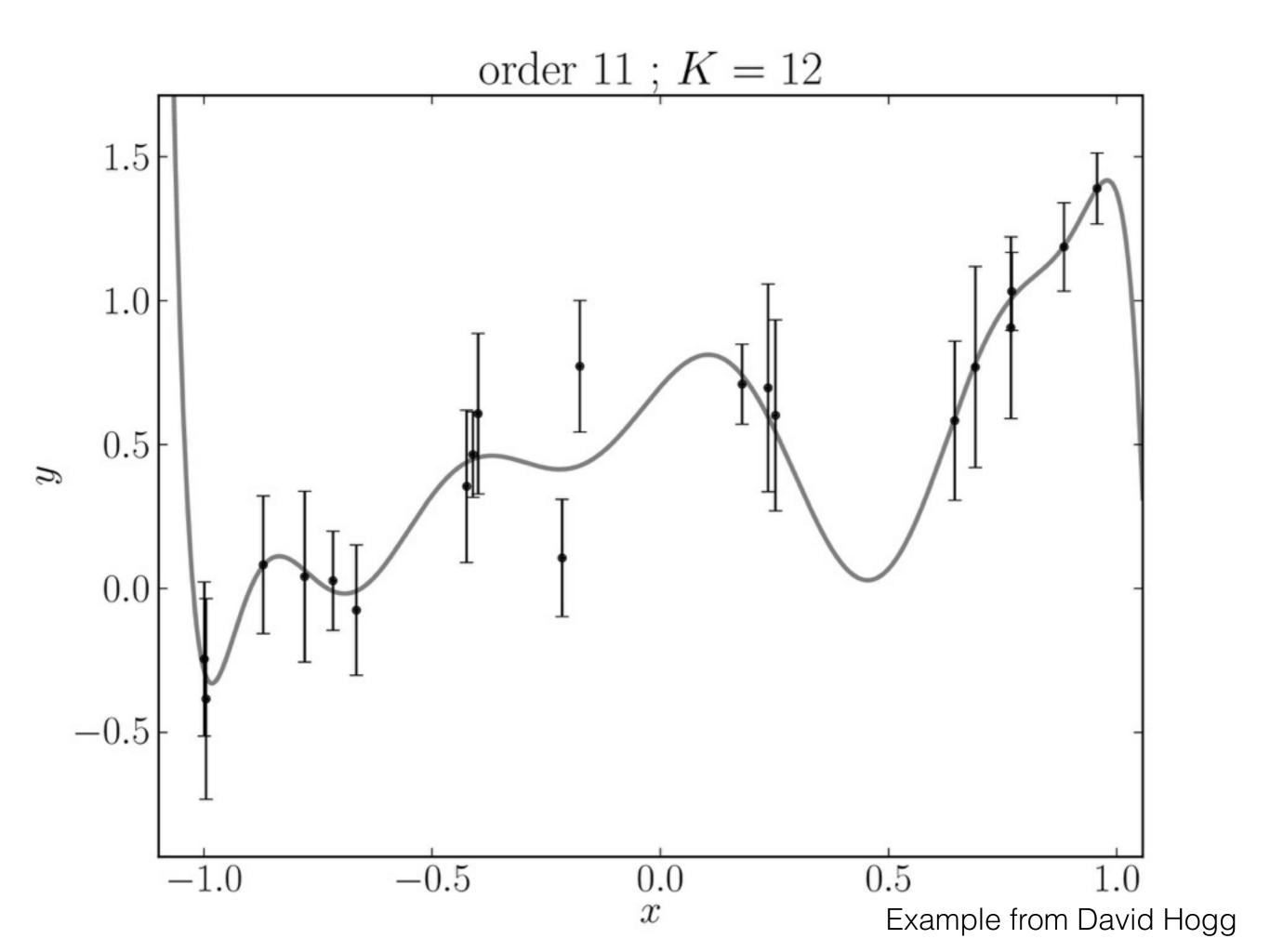


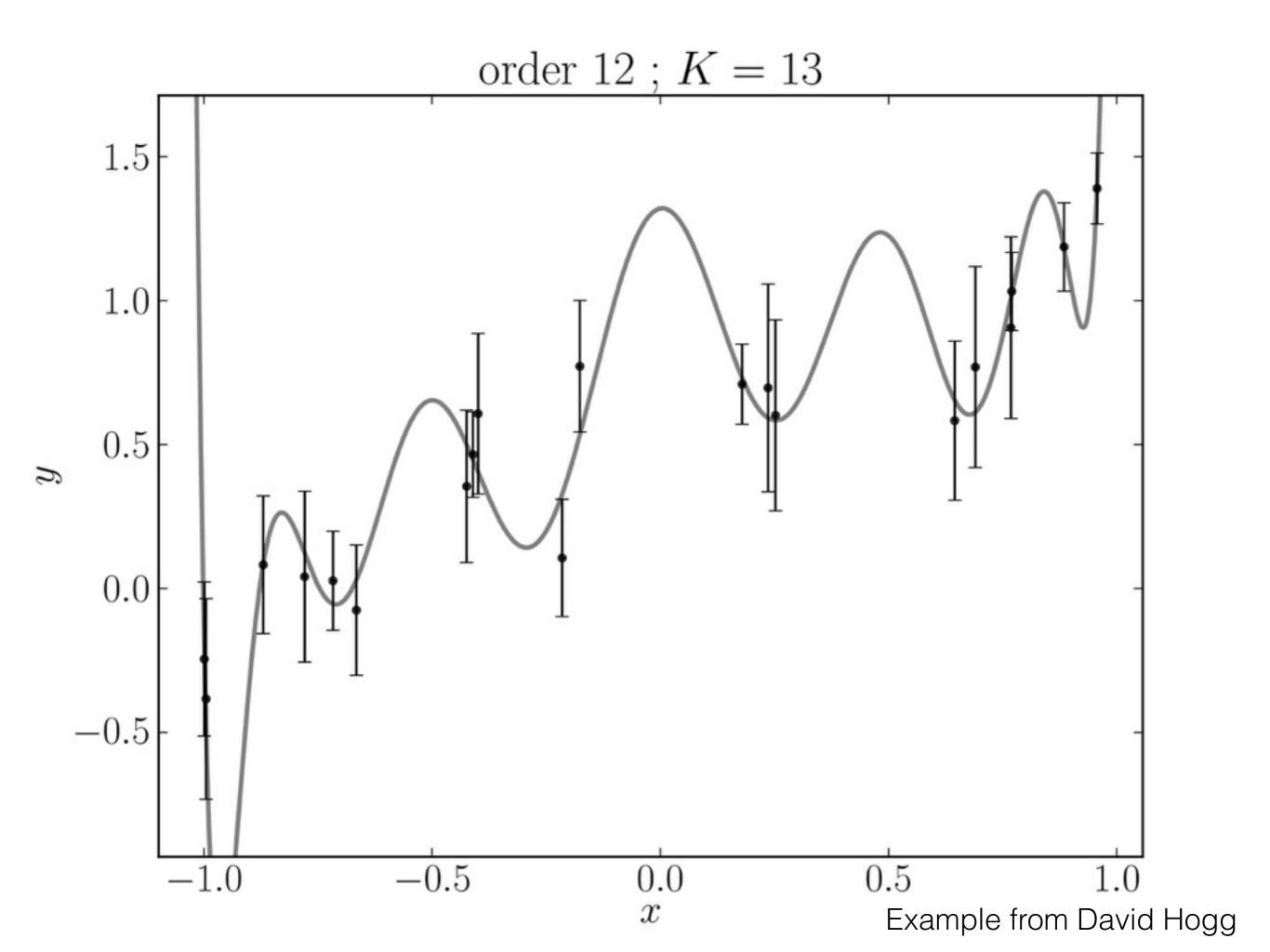


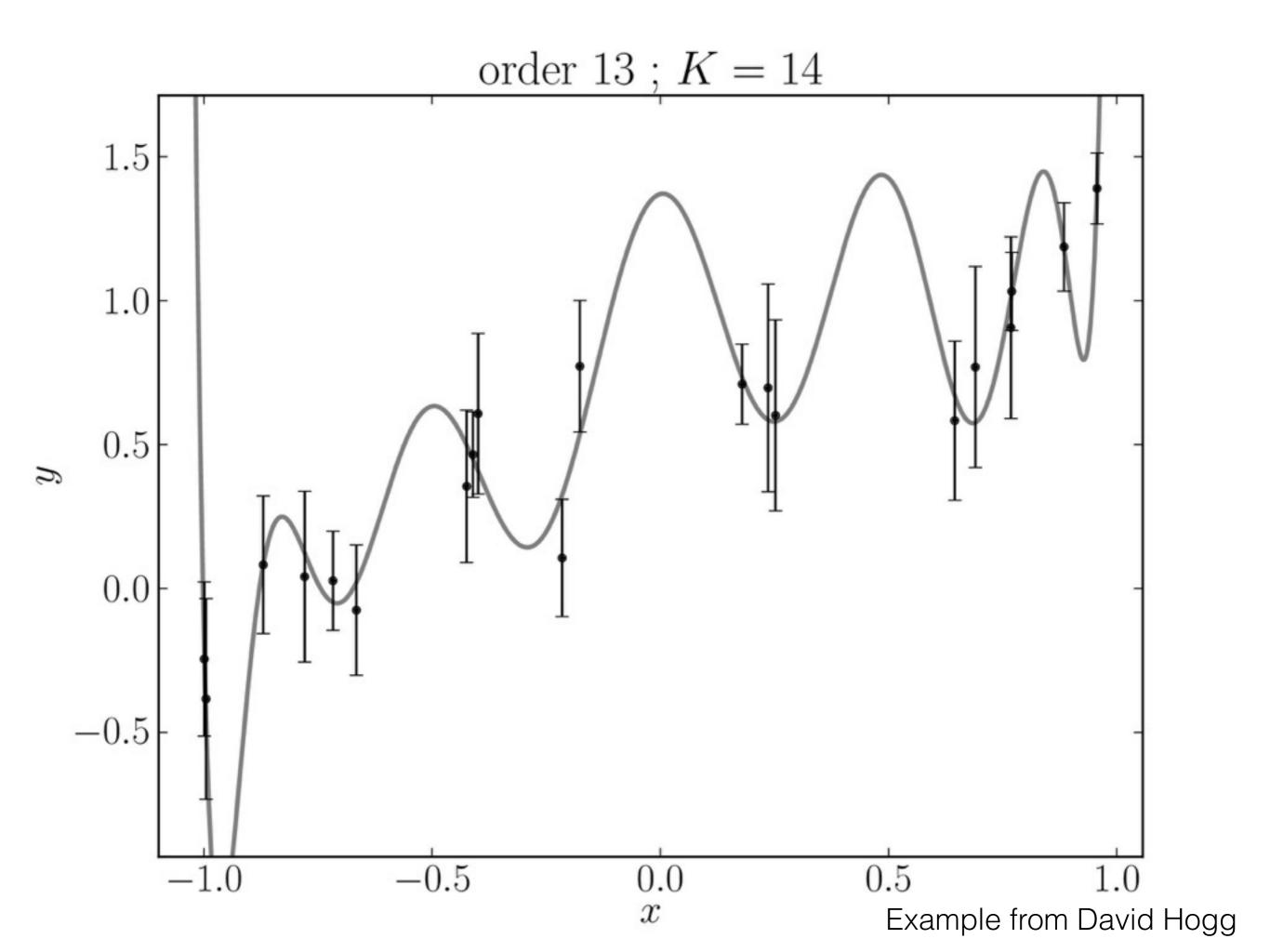


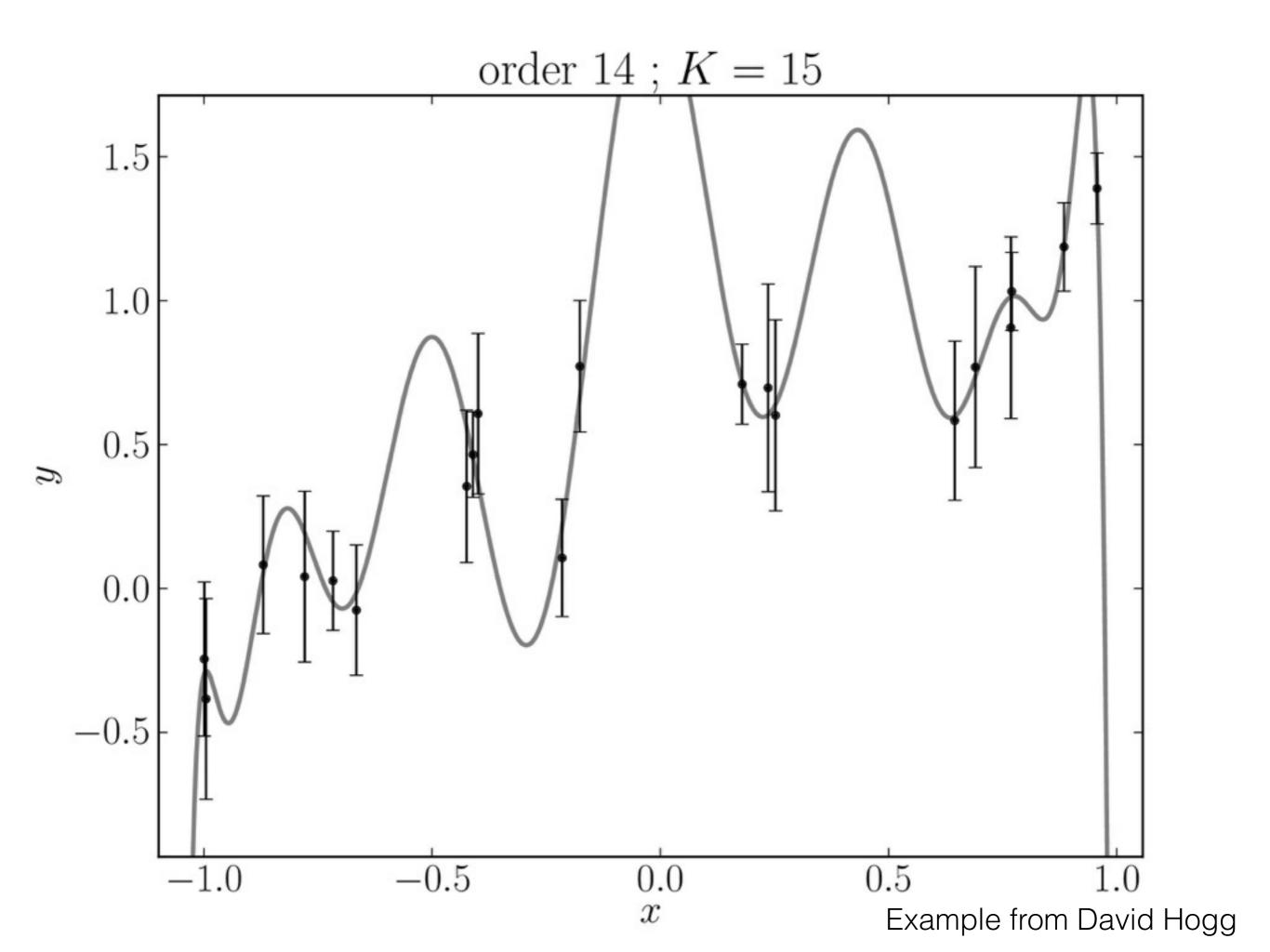


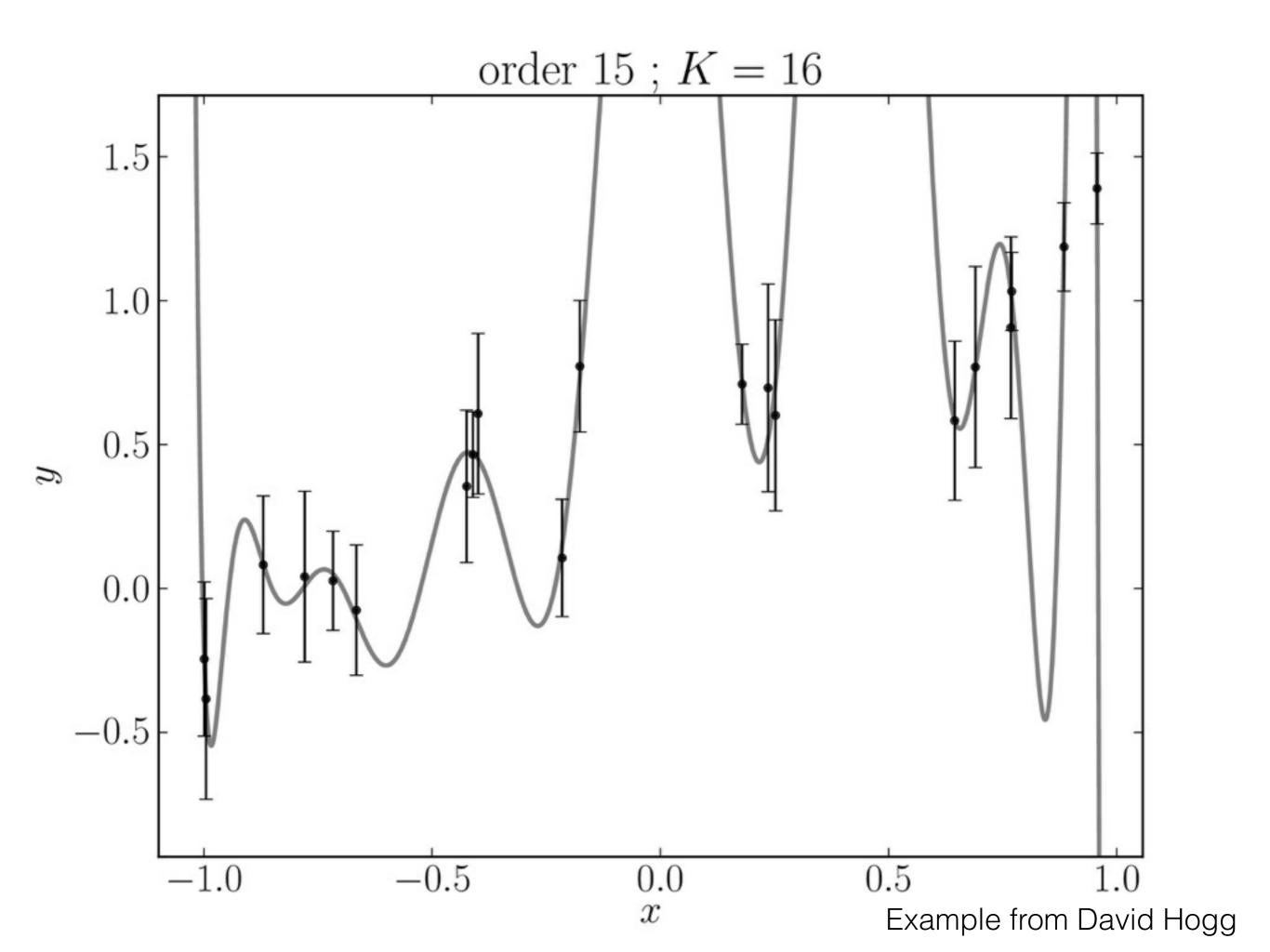


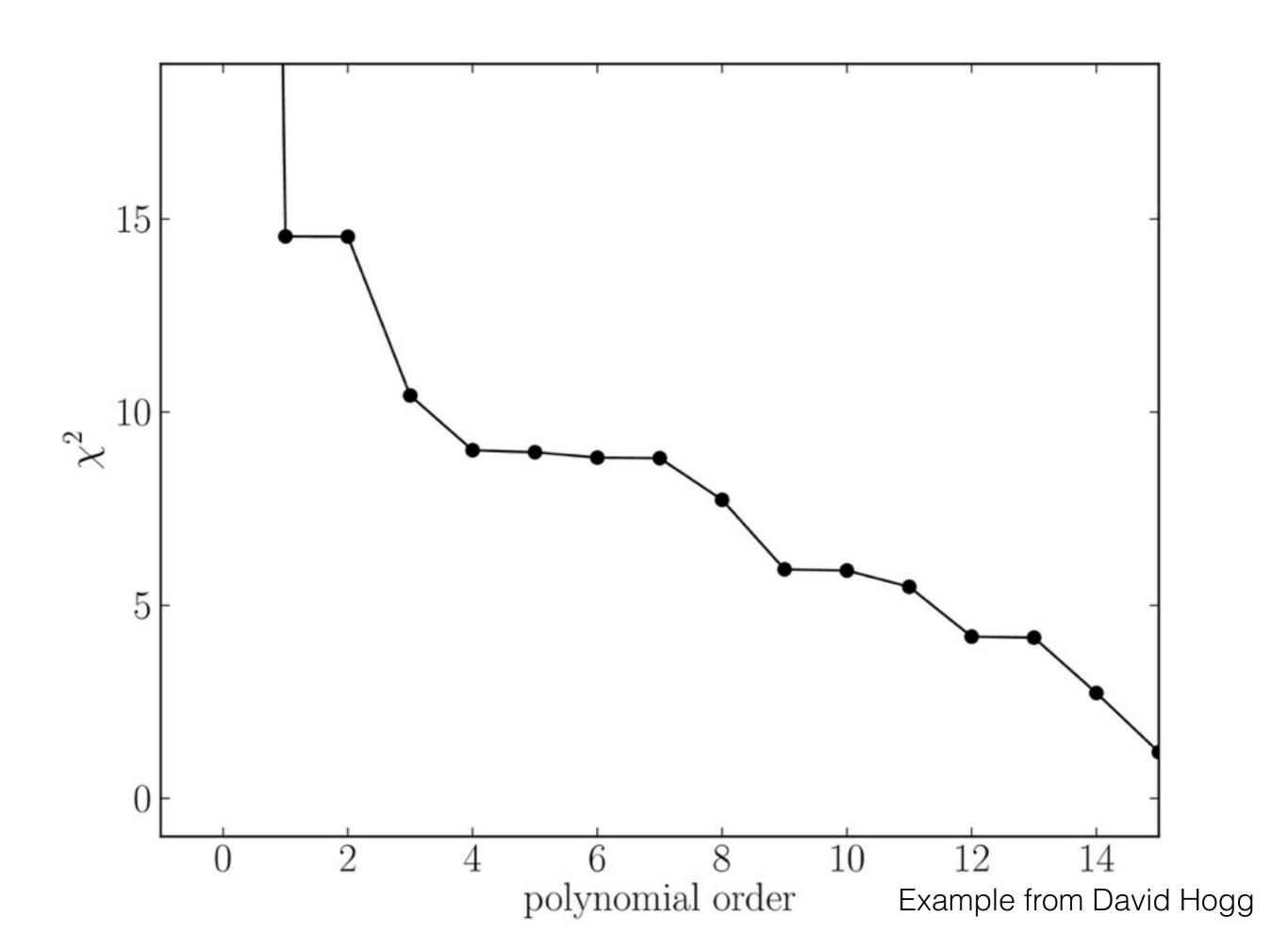












How do we decide which model is the best model?

- Chi-squared keeps improving as we increase the model's complexity
- But clear that we are overfitting!
- To determine the best model, need to figure out which model makes the *data the most probably* —> model selection
- Goodness-of-fit: is the data likely given the model?

Goodness-of-fit: General approach

- Given the model, simulate what the data would be like —> simulated data
- Compare this to the actual data that you have
- If the simulated data is very different from the actual data —> not a good fit!
- From simulated data, can reject that the data was generated by the model at X% confidence —> frequentist method at heart

Comparing simulated and actual data

- Large number of data summaries to chose from!
- Can look at plots, but for automated analysis require some low-dimensional summary
- Most popular: $\sum_i \chi_i^2$, $\sum_i |\chi_i|$, or look at distribution of χ_i

Chi-squared/degree-offreedom

- Most popular approach to goodness-of-fit uses chisquared divided by the number of degrees of freedom
- Chi-squared here = $\sum_{i} \chi_{i}^{2}$
- Number of degrees of freedom = # data points # of fit parameters
- Where does this come from? When does it apply?

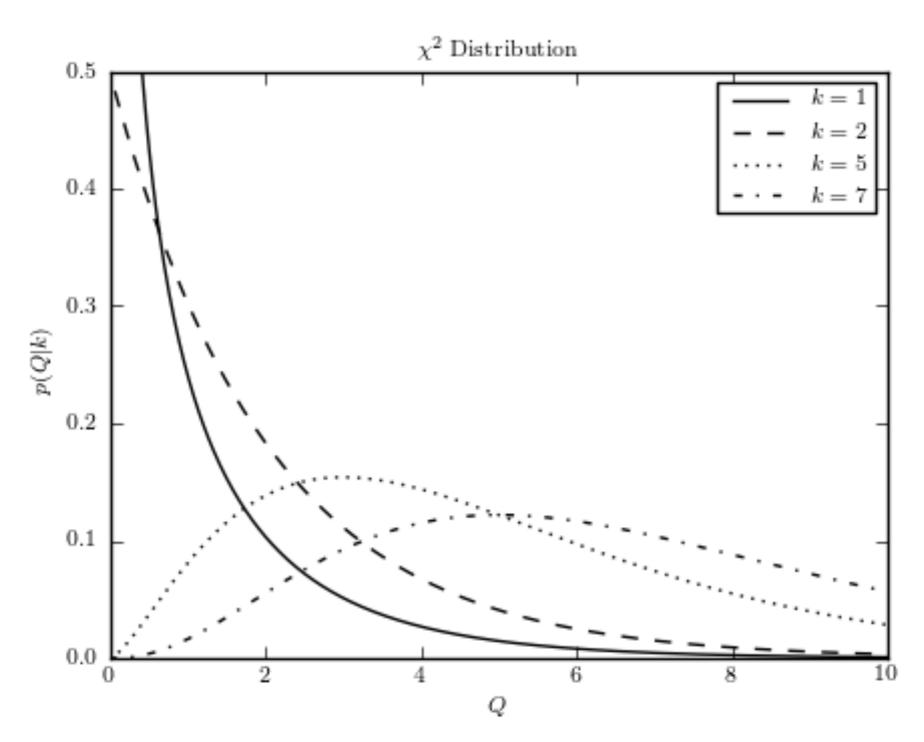
Chi-squared distribution

• Distribution of sum of squares of k independent standard normal variables (those from N(x|0,1))

• Form:
$$p(x|k) = \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} x^{k/2-1} e^{-x/2}$$

- Mean: k
- Variance: 2k
- Central limit theorem: for $k \to \infty$, $p(x|k) \to N(x|k,2k)$

Chi-squared distribution



Chi-squared/degree-offreedom

If the likelihood is Gaussian: e.g.,

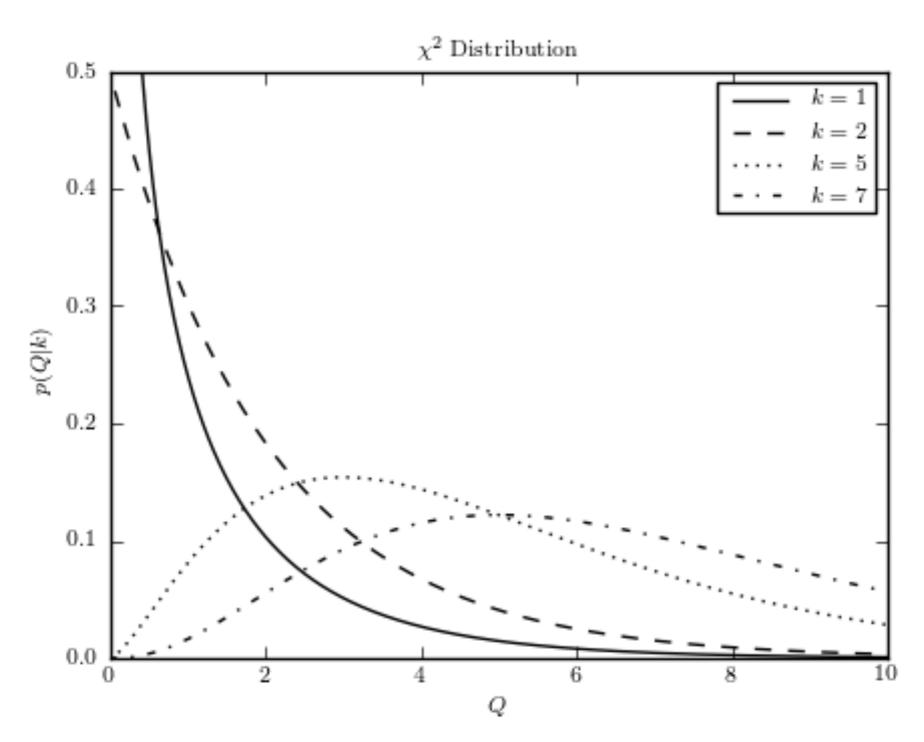
```
L = p(y_{obs} | model, x, \sigma) = p(y_{obs} | m, b, x, \sigma)
= p(y_{obs} | y_{true} = mx + b, \sigma)
= N(y_{obs} | y_{true} = mx + b, \sigma^2)
```

- Then we have: -2 In L = $\Sigma_i \chi_i^2$, e.g., = $\Sigma_i [(y_i m x_i b)/\sigma_{y,i}]^2$
- and $\chi_i \sim N(0,1)$
- Therefore, $\Sigma_i \chi_i^2$ is distributed as a chi-squared distribution
- If we have fit K parameters to N data, only N-K of these χ_i^2 are independent —> $\Sigma_i \chi_i^2$ is chi-squared distributed with N-K degrees of freedom

Chi-squared distribution with *N-K* degrees of freedom

- Mean = N-K = dof
- Variance = 2(N-K) = 2 dof
- Central limit theorem: for $N-K \to \infty$, $p(x|N-K) \to N(x|N-K,2[N-K])$
- Therefore, expected value of $\chi^2/\text{dof} \sim 1$
- But really should be comparing χ^2 to dof with typical scatter $\sqrt{[2dof]}$

Chi-squared distribution



Chi-squared/ degree-offreedom

- Assumptions one more time!
- Likelihood is Gaussian —> for Gaussian uncertainties means that the model must be *linear in the parameters* (e.g., polynomial)
- Must believe the uncertainties
- #dof must be large —> large data limit
- Almost never directly applies in practice! But for well-constrained parameters, any model space approx. linear near the best-fit —> widespread use of χ^2 /dof
- Never just report $\chi^2/\text{dof}!$ Also report dof so variance can be determined!

Chi-squared/ degree-of-freedom for non-linear / non-Gaussian models

- If the likelihood (data uncertainty) is not Gaussian or the model is not linear, χ^2 /dof does not technically apply (except in the limit discussed on the previous slide)
- So could just directly simulate the data (e.g., linear-fit):
 - 1. For best fit model parameters (m,b)
 - 2. Simulate data: y = mx + b
 - 3. Draw random uncertainties and add them to y
 - 4. Compute χ^2
 - 5. Repeat to form $p(\chi^2)$
 - 6. Where does χ^2 for the actual data lie in this distribution?
- Similar with other summaries (don't need to use χ^2)

Model selection using chisquared/ degree-of-freedom

- χ^2 /dof can be used to select the best model among *linear* models
- Idea is that when overfitting, χ^2 will be suspiciously close to zero
- When underfitting, χ^2 will be large
- Best model makes the data most likely —> peak of χ^2 distribution —> χ^2 /dof ~ 1

• χ^2 comes up in model fitting and goodness-of-fit

• -2 In L =
$$\chi^2 = \sum_{i} \chi_i^2$$

- Find best fit, can compute $\Delta\chi^2=\chi^2-\chi^2_{\rm min}$
- With uniform prior: In p(m,b|data) = $-\Delta \chi^2/2$
- Again, chi-squared distribution, but now with K degrees of freedom

- Suppose you have 1 parameter (e.g., fit constant y = b rather than y = m x + b)
- $p(b|data) = Chi^2(\Delta chi^2, 1 dof)$
- 68% confidence limit on b: that value for which

```
\Delta \chi^2 = 1
In [7]: from scipy import stats
In [8]: stats.chi2.ppf(0.68,1)
Out [8]: 0.98894648147802289
```

- Suppose you have 2 parameters (e.g., linear fit y = m x + b)
- $p(m,b|data) = Chi^2(\Delta chi^2, 2 dof)$
- 68% confidence limit on (m,b): that ellipse for which $\Delta chi^2 = 2.3$

```
In [11]: from scipy import stats
In [12]: stats.chi2.ppf(0.68,2)
Out[12]: 2.2788685663767296
```

$\Delta \chi^2$ as a Function of Confidence Level p and Number of Parameters of Interest v						
	ν					
p	1	2	3	4	5	6
68.27%	1.00	2.30	3.53	4.72	5.89	7.04
90%	2.71	4.61	6.25	7.78	9.24	10.6
95.45%	4.00	6.18	8.02	9.72	11.3	12.8
99%	6.63	9.21	11.3	13.3	15.1	16.8
99.73%	9.00	11.8	14.2	16.3	18.2	20.1
99.99%	15.1	18.4	21.1	23.5	25.7	27.9

Numerical recipes 3rd edition

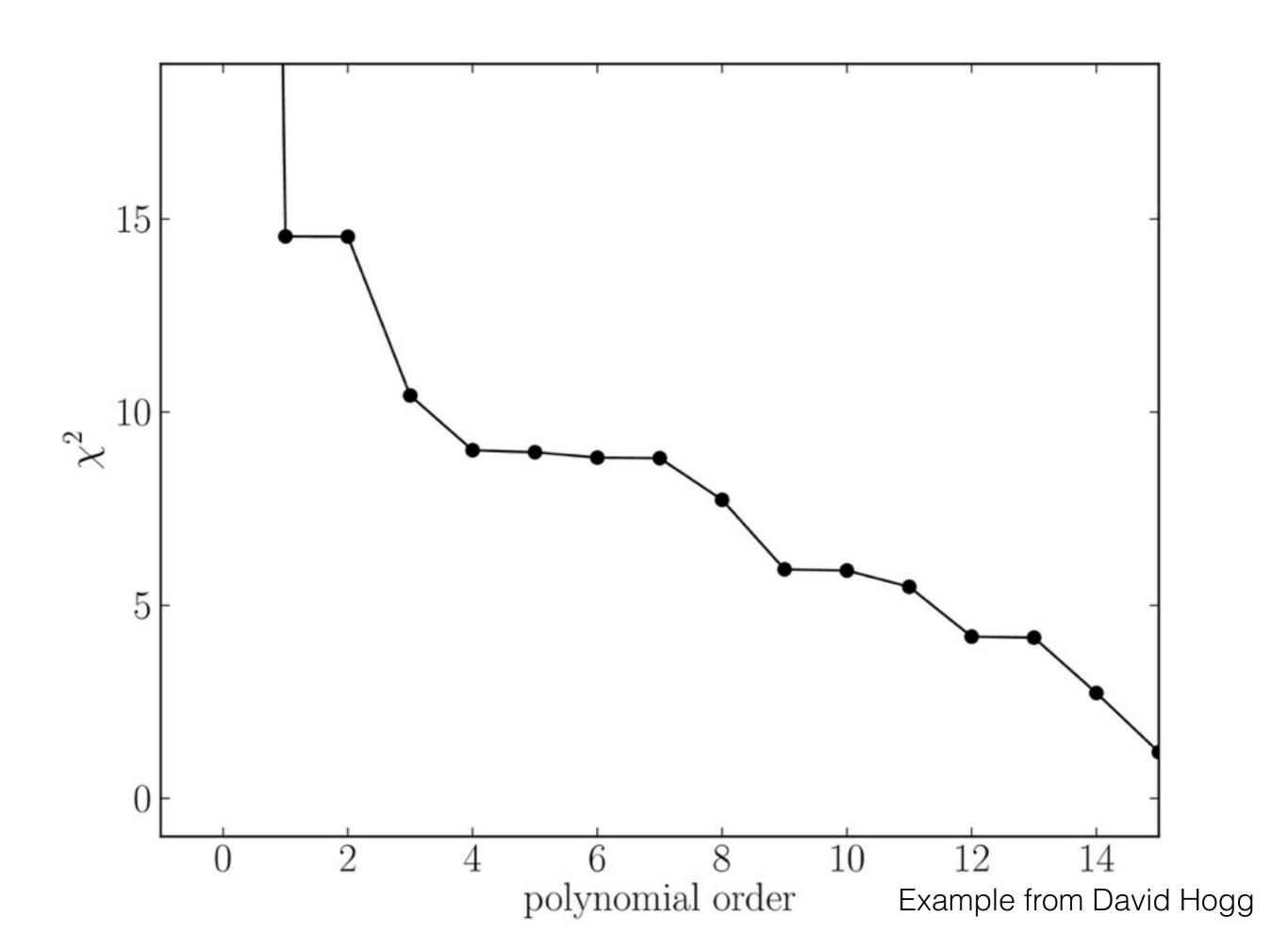
Detour: difference between Delta χ^2 and χ^2 /dof

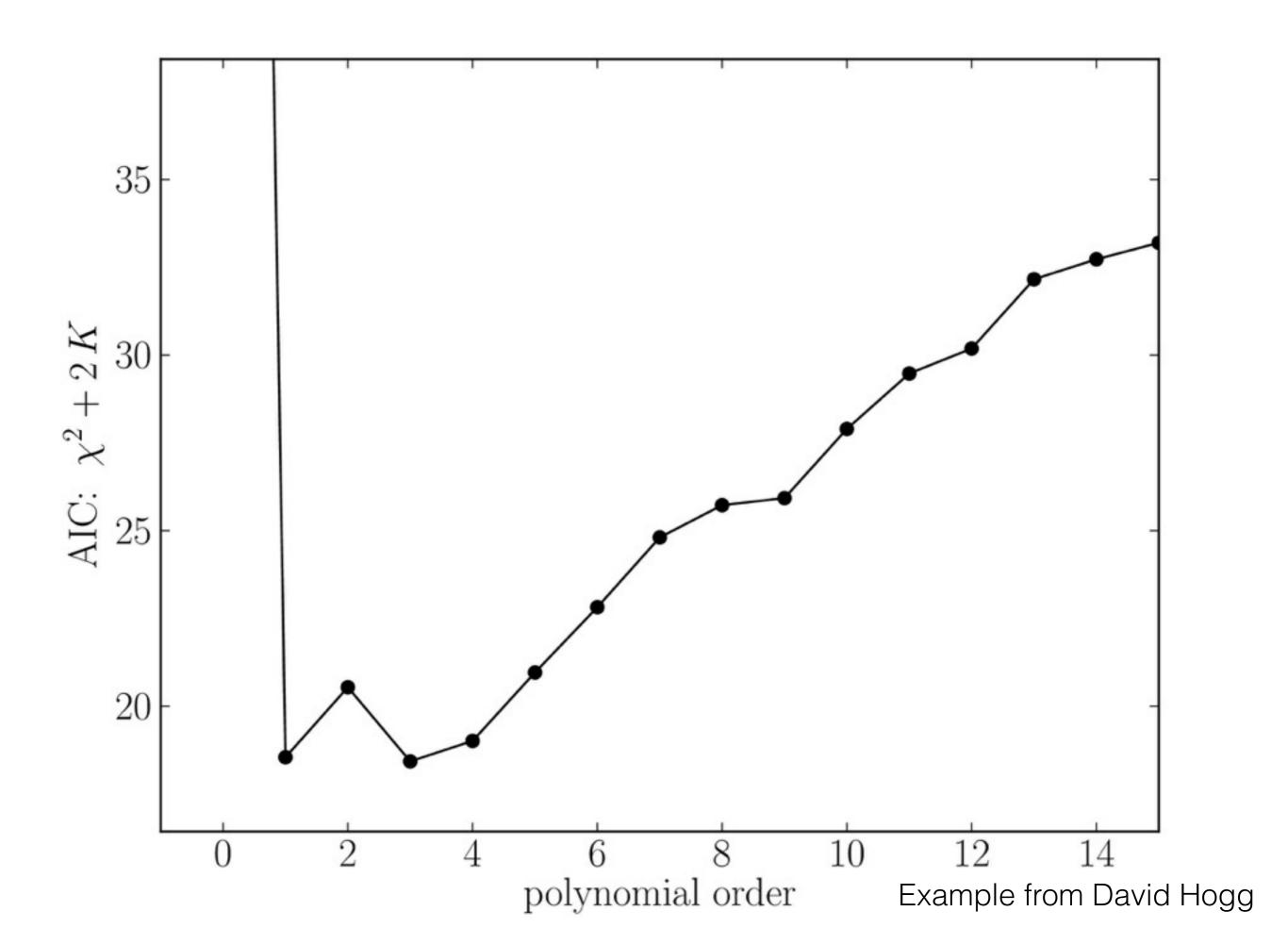
- Delta chi² used for finding uncertainty limits
- **Don't** use Delta χ^2 / dof for this! limits will always be much wider
- χ^2 / dof for model selection and goodness-of-fit

Model selection with AIC

- AIC = Akaike Information Criterion
- AIC = -2 In L + 2 K = χ^2 + 2 K
- Delta AIC = Asymptotically the amount of information lost when using worse model G1 than better model G2
- Corrections for finite sample sizes depend on model; for 1D, linear, Gaussian model

$$2K(K+1)/(N-K-1)$$





Bayesian model selection

- Bayesian methods are very bad at goodness-of-fit
- Application of Bayes's theorem only allows to distinguish between 2 different models, no real concept of 'good model'
- Bayes's theorem for models: model1= linear, 2=quadratic

```
p(linear|data) ~ p(data|linear) p(linear)
p(quadratic|data) ~ p(data|quadratic) p(quadratic)
```

 Likelihoods in these equations are marginalized over parameters of each model (c = quadratic coeff.) —> marginalized likelihood

```
p(data|linear) = \int dm d b p(data|m,b) p(m,b|linear)

p(data|quadratic) = \int dc dm d b p(data|m,b,c) p(m,b,c|quadratic)
```

These were in the denominator of Bayes's theorem for p(m,b|linear) before!

Bayesian model selection

and select the model with the highest odds

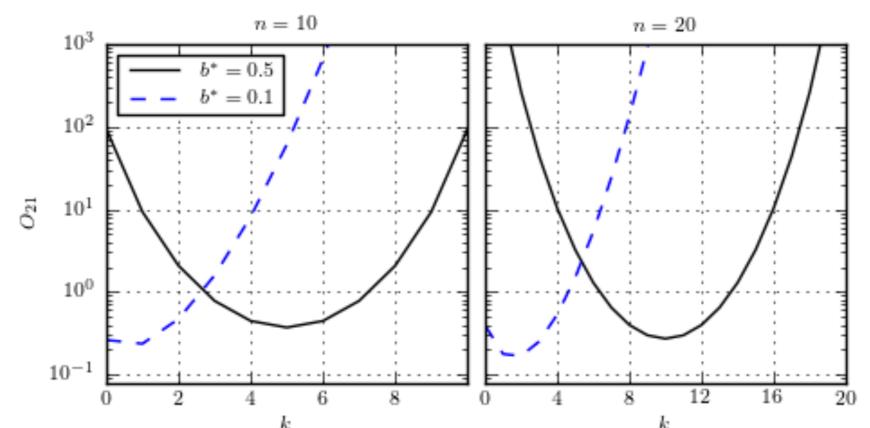
- Requires prior over models [p(linear) and p(quadratic)]
 p(data|linear) p(linear)
 odds ratio = x
 p(data|quadratic) p(quadratic)
 - = Bayes-factor x prior-ratio
- If not strong preference, select based on Bayes-factor

Jeffreys' scale

- What odds ratio constitutes strong evidence?
 - > 3 "substantial"
 - > 10 "strong evidence"
 - > 30 "very strong"
 - > 100 "decisive evidence"
 - < 3 "barely worth a mention"</p>

Bayesian model selection: Example: is a coin fair?

- Flip coin n times, get k heads —> is it fair?
- Bayesian needs alternative model! Make that model: constant probability for heads that is unknown
- So two models: p=0.5 and p=unknown



Ivezic et al. (2014)

Bayesian model selection: How to compute the evidence

- Evidence = p(data|model1) =
 ∫dparams p(data|params) p(params|model1)
- Nested sampling: MCMC technique that returns the evidence
- If the posterior is close to Gaussian: Laplace approximation around max $P^*(x)$ with covariance matrix **A**: $P^*(\mathbf{x}_0)\sqrt{\frac{(2\pi)^K}{\det \mathbf{A}}}.$

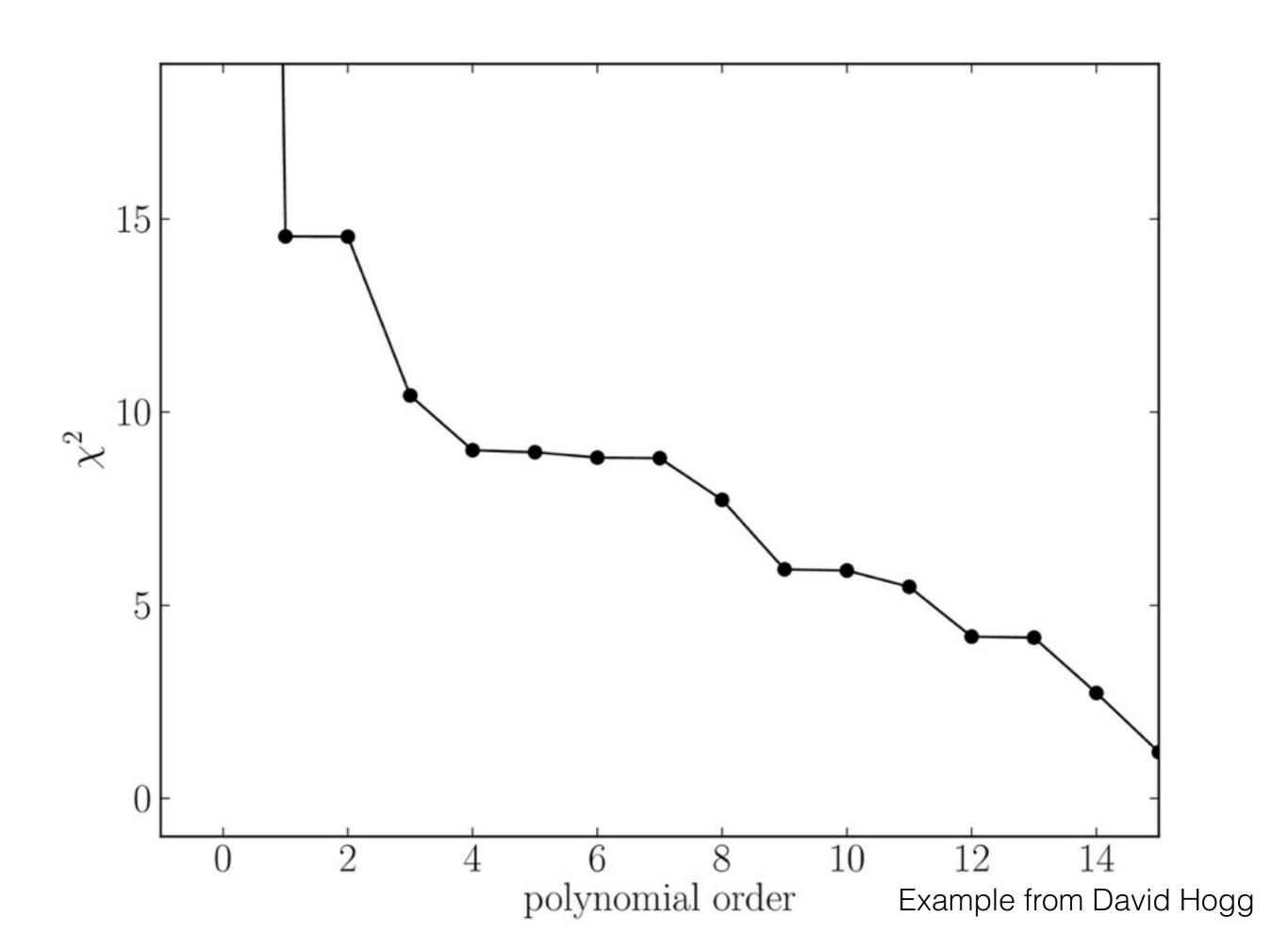
Bayesian Information Criterion (BIC)

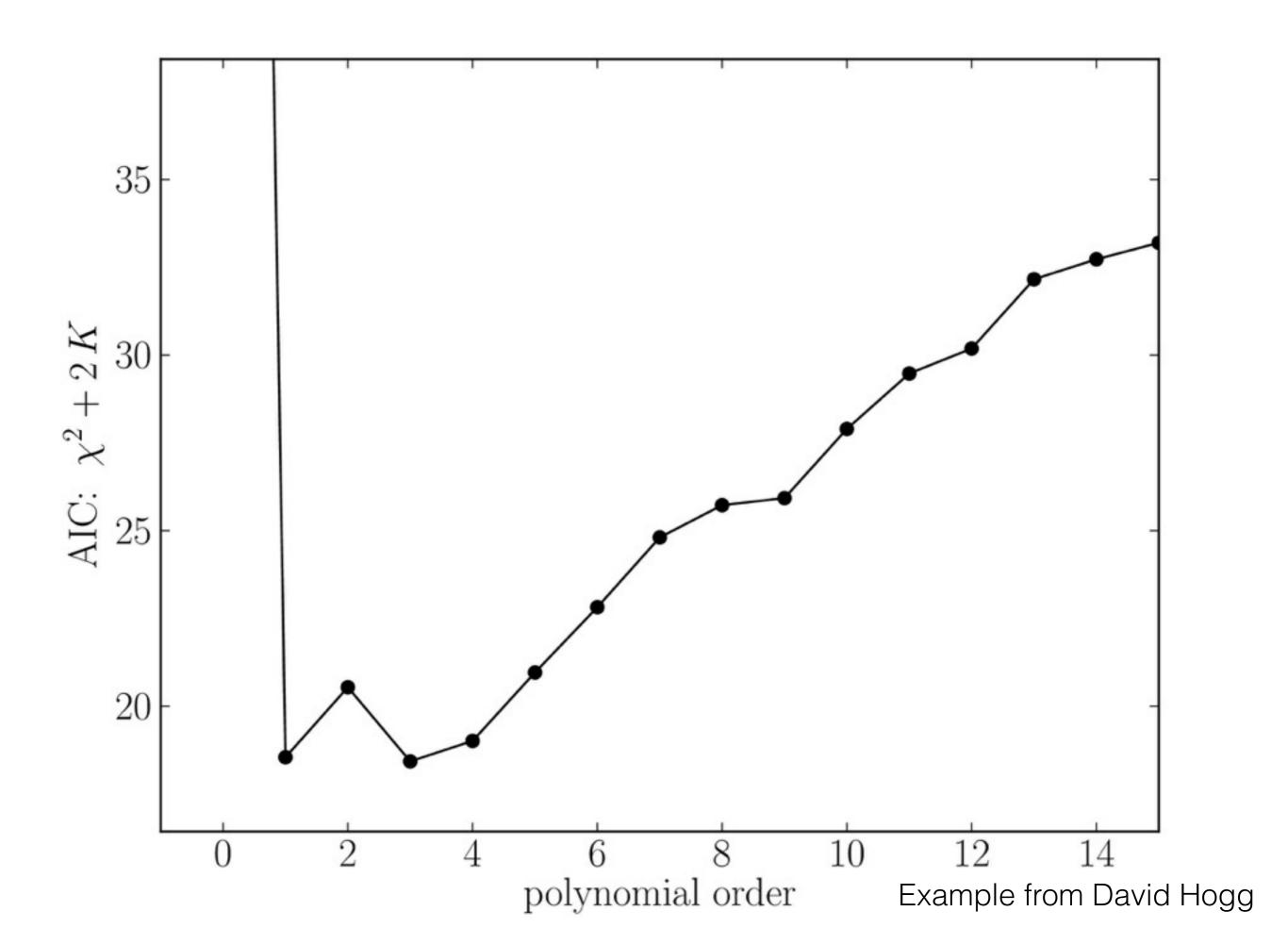
 If the posterior is part of the exponential family of PDFs (Gaussian, chi-squared, beta, Bernoulli, ...) can approximate

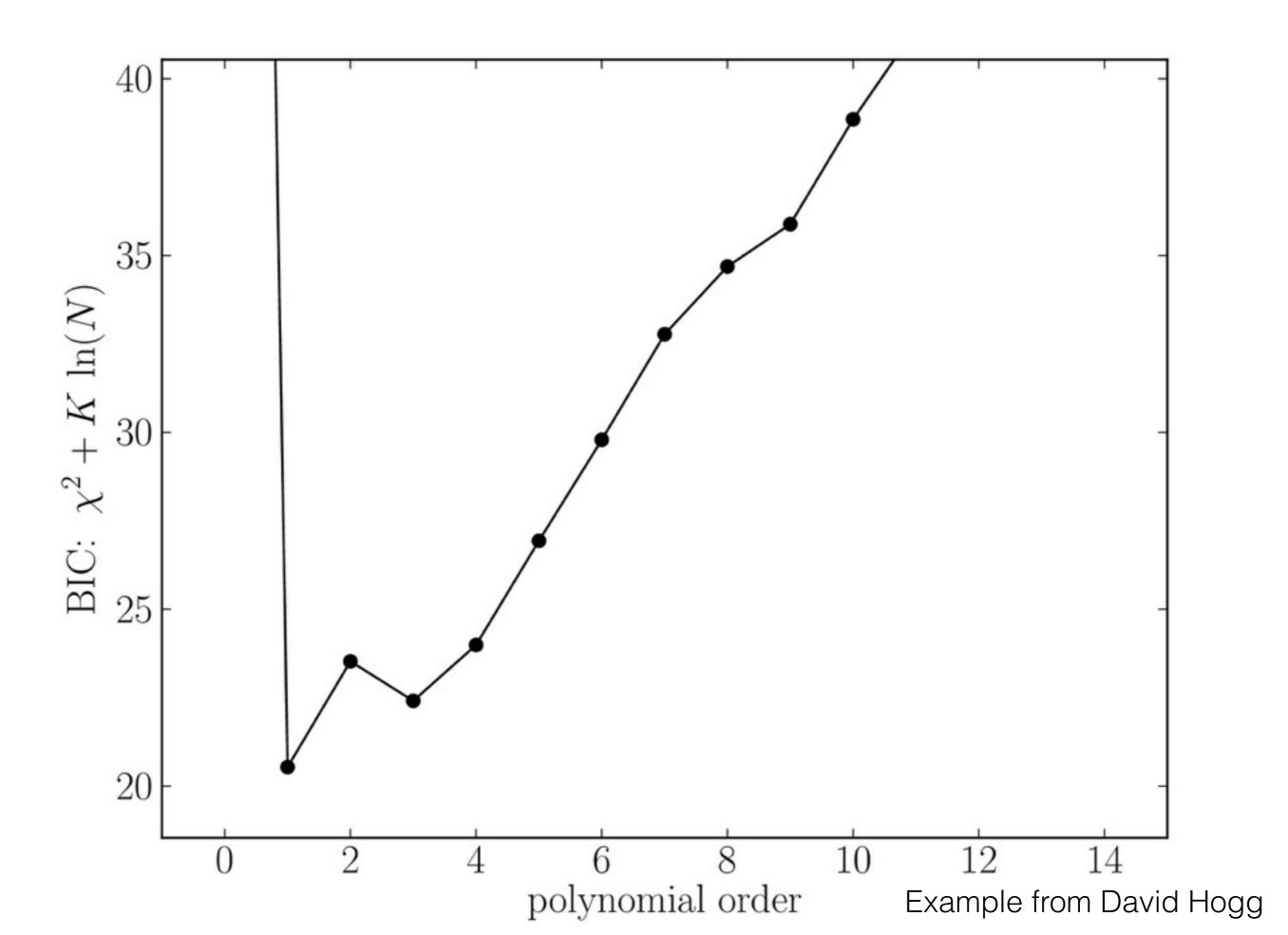
Evidence \sim BIC = -2 ln L + K ln[N]

for K parameters and N data points

Similar to AIC, but Bayesian :-)

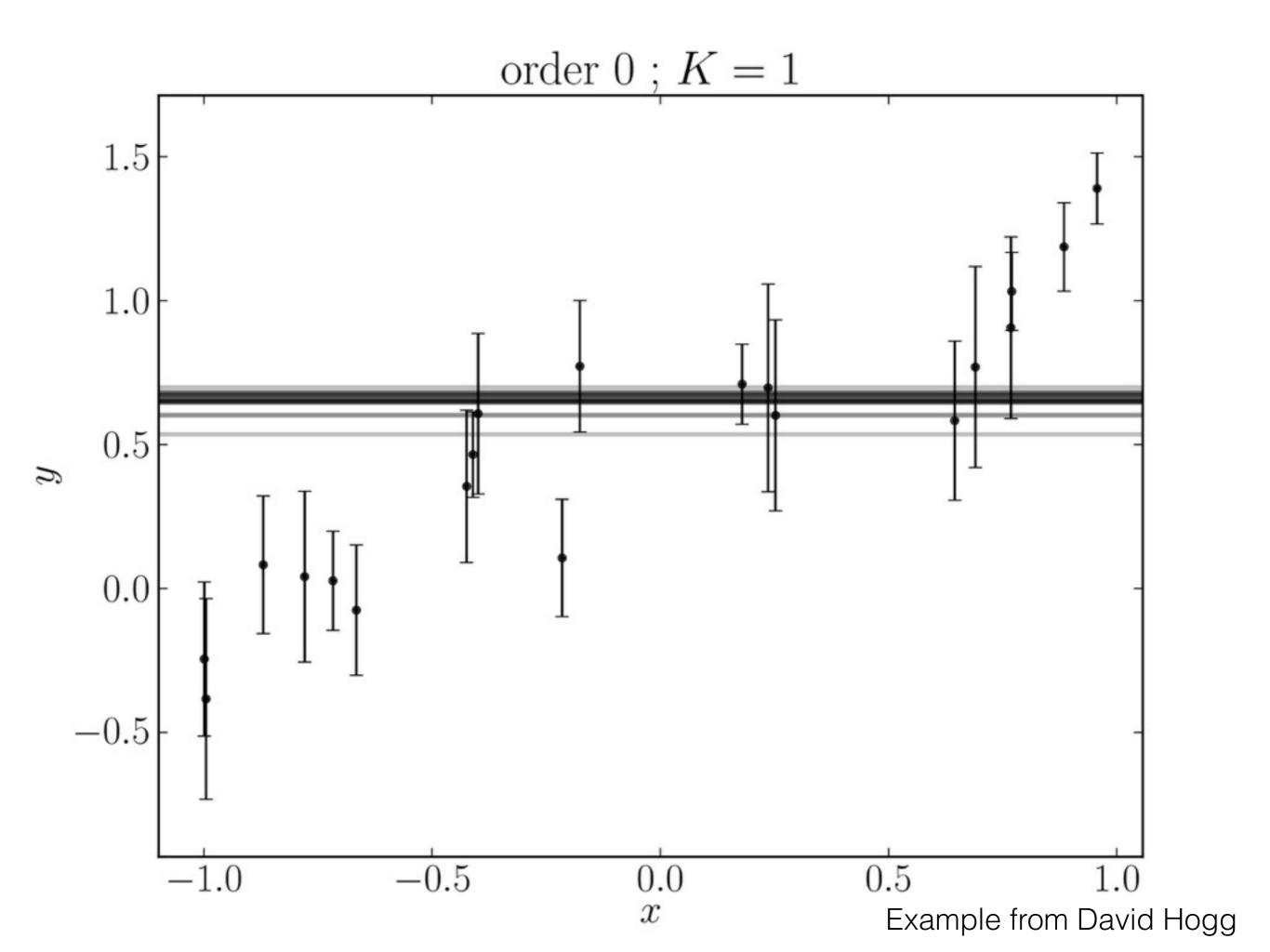


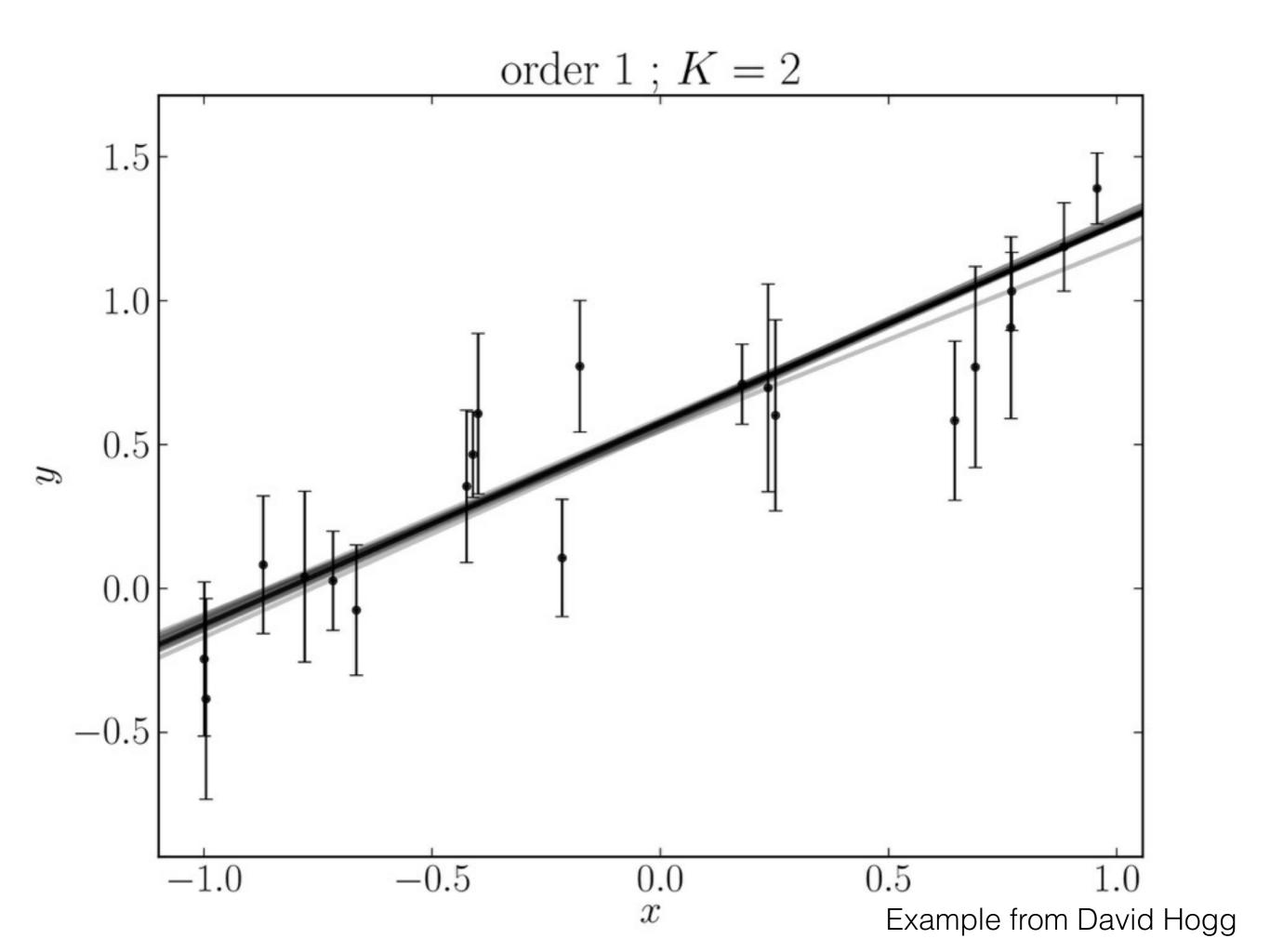


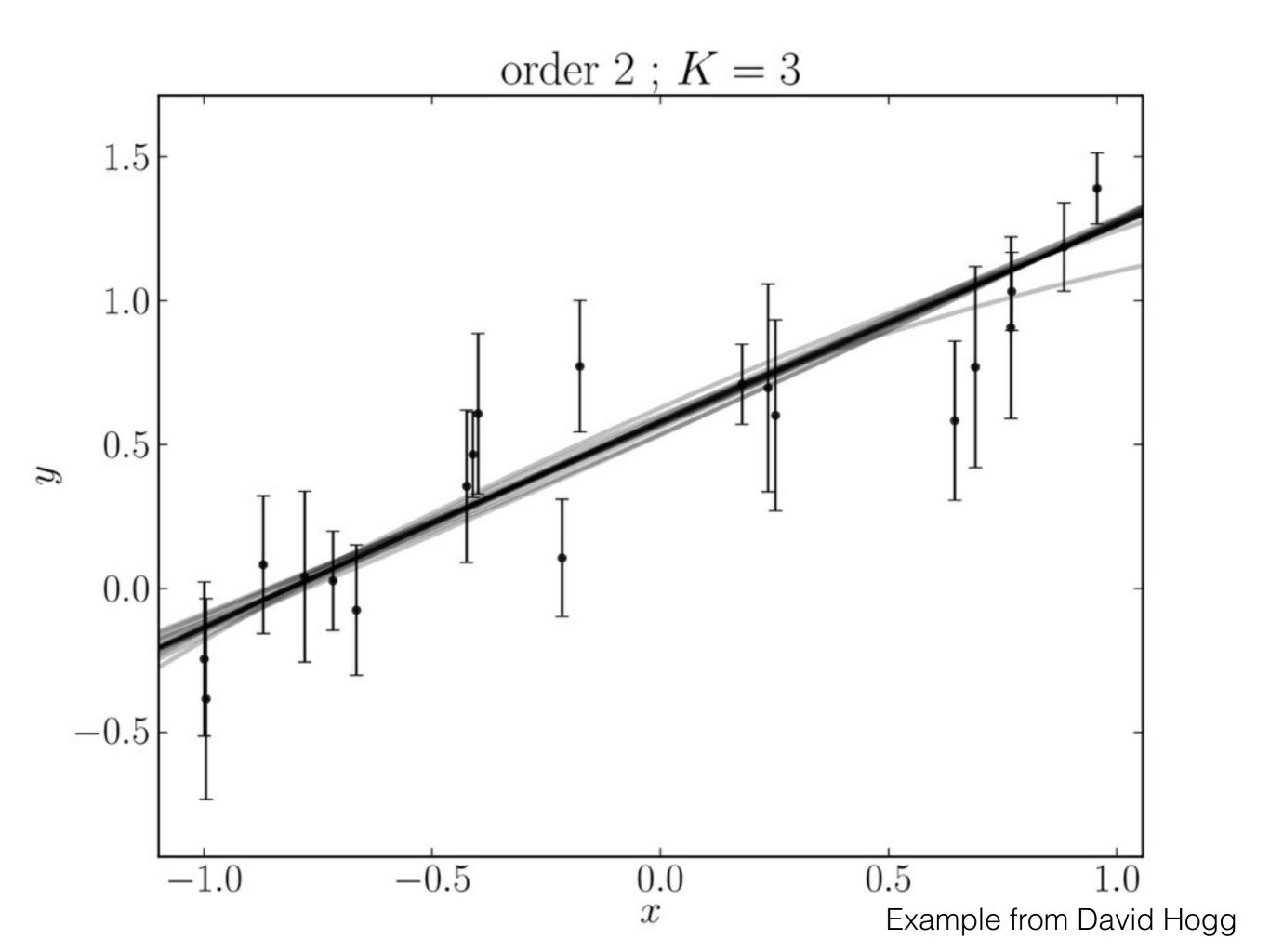


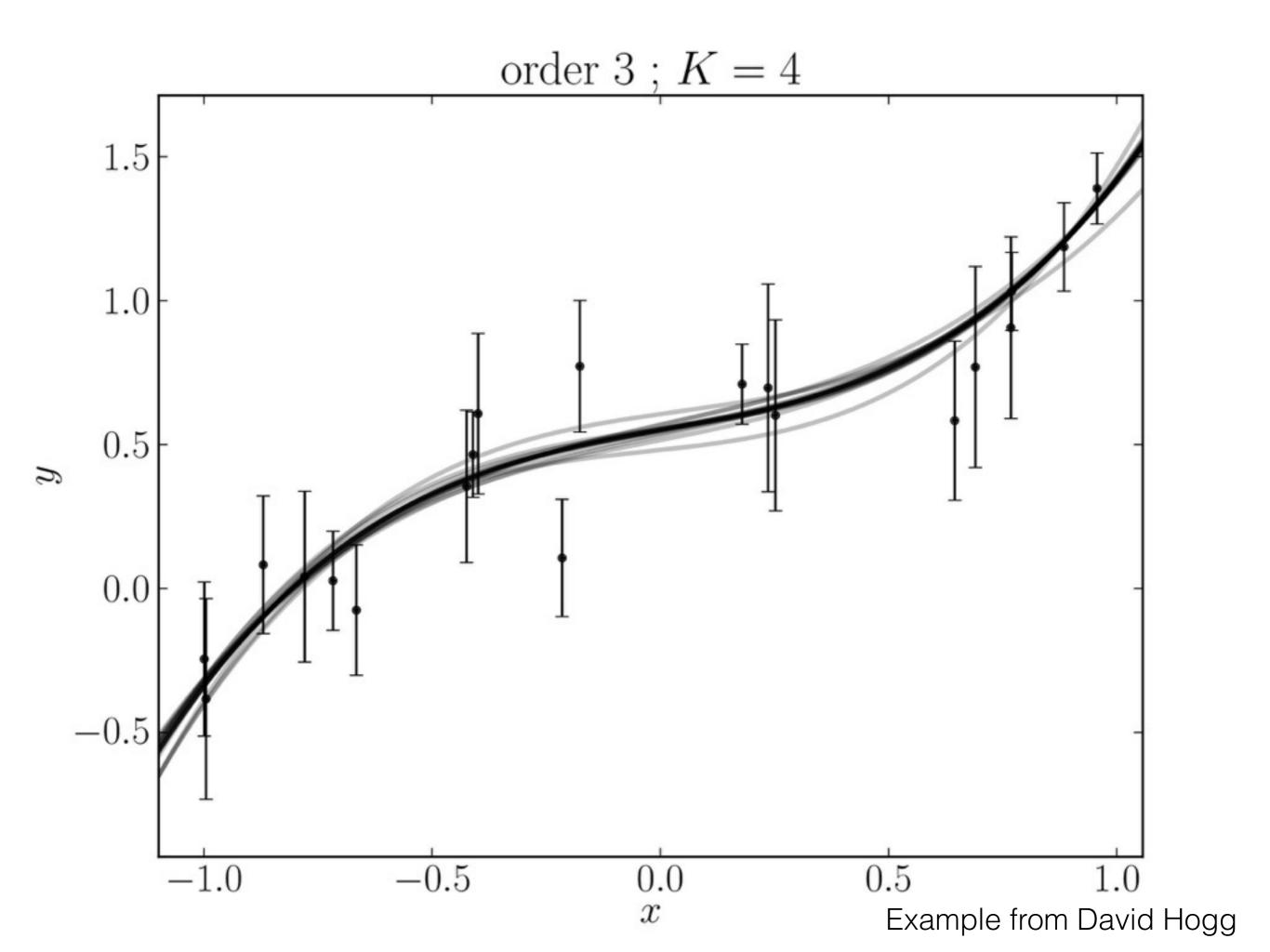
Cross-validation

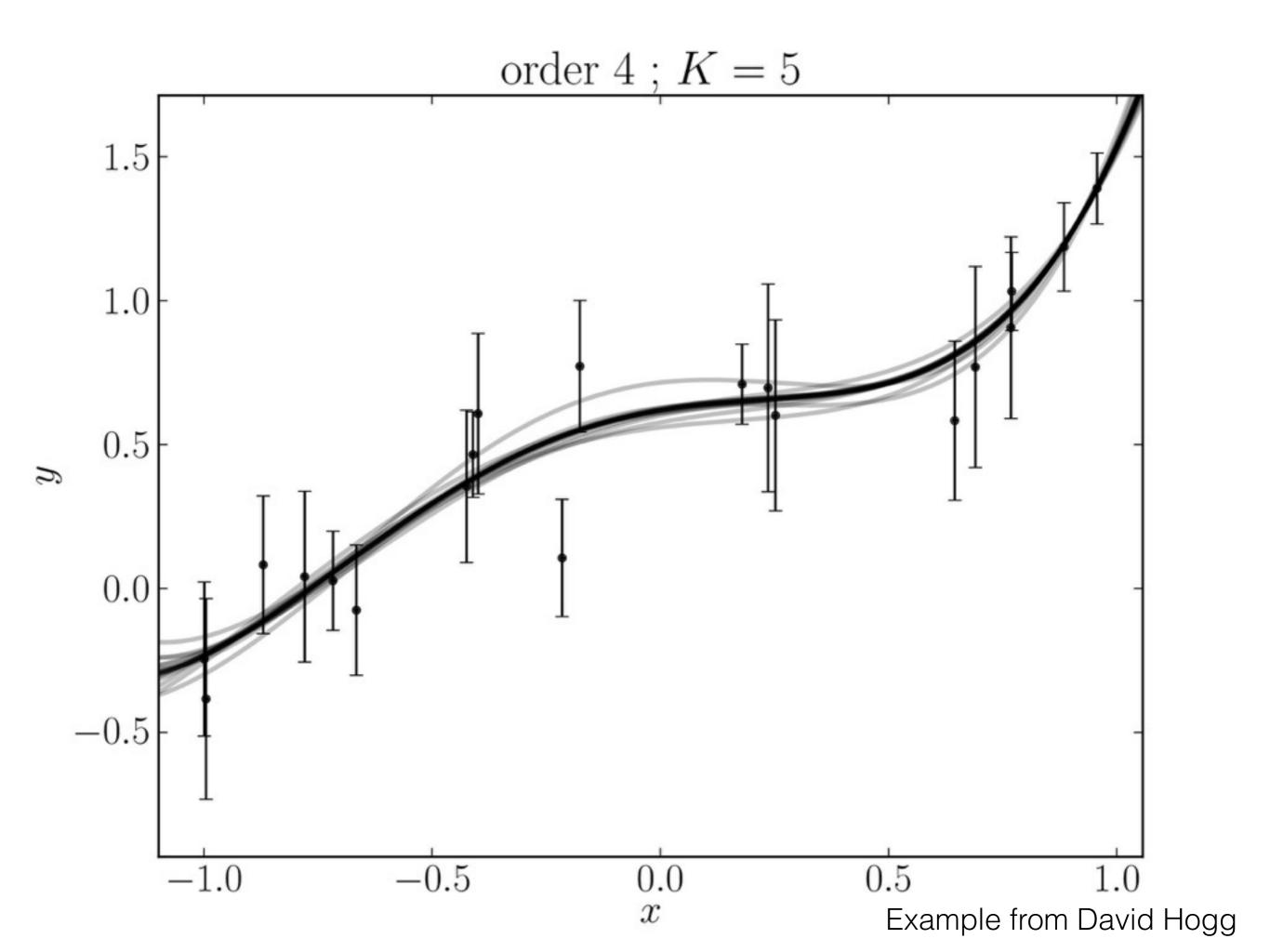
- All previous methods require many assumptions
- Take approach similar to bootstrap and jackknife before, using the data themselves to generate 'new' data
- Cross-validation is very similar to jackknife:
 - 1. Generate N data sets that leave out 1 data point at a time $\{x_1,x_2,x_3,...\}, \{x_0,x_2,x_3,...\}, \{x_0,x_1,x_3,...\}, ...\}$
 - 2. Fit the model to each data set
 - 3. Compute the likelihood of the data point that was left out: Li
 - 4. Cross validation likelihood L_{cval} = Prod_i L_i

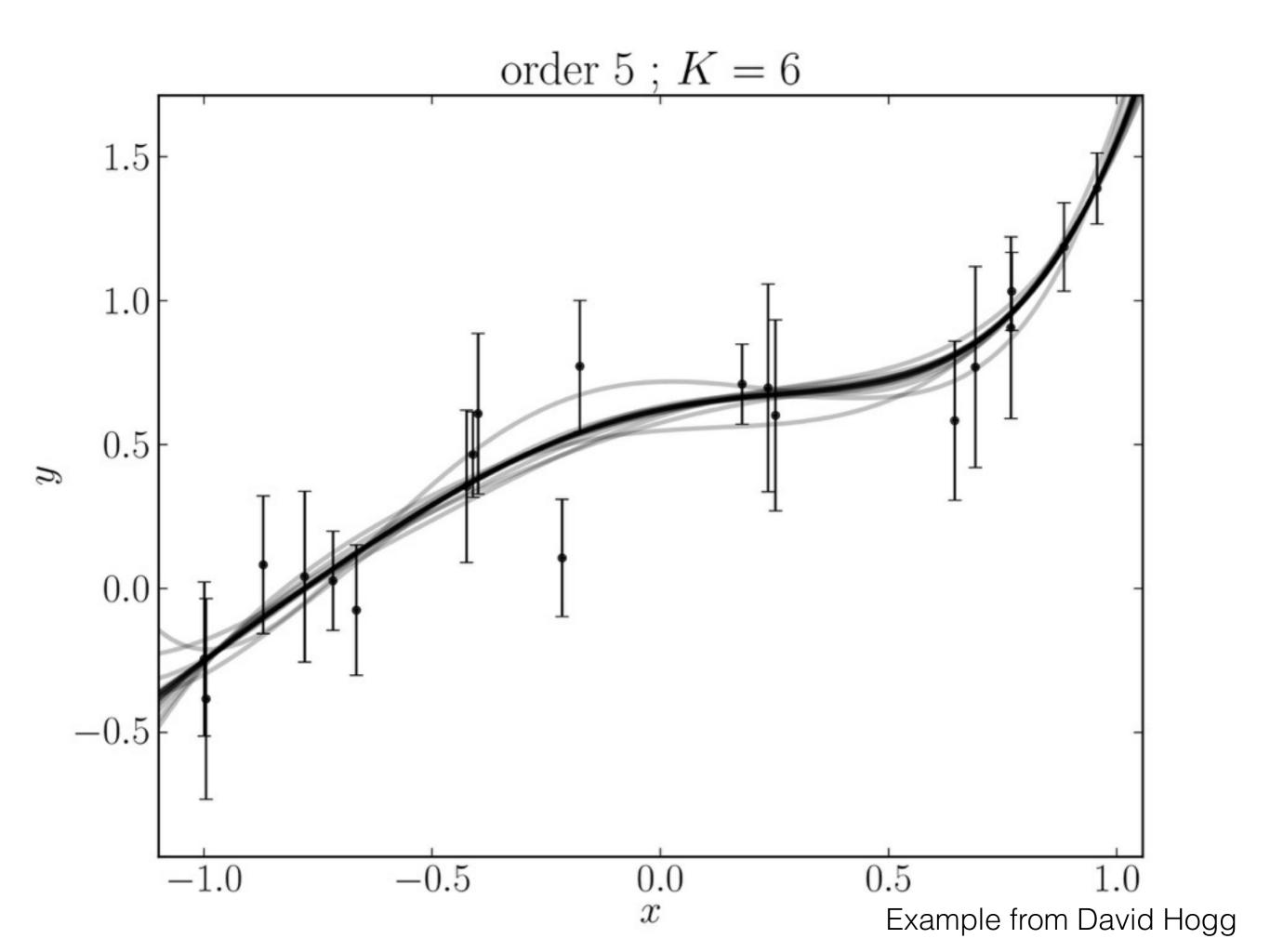


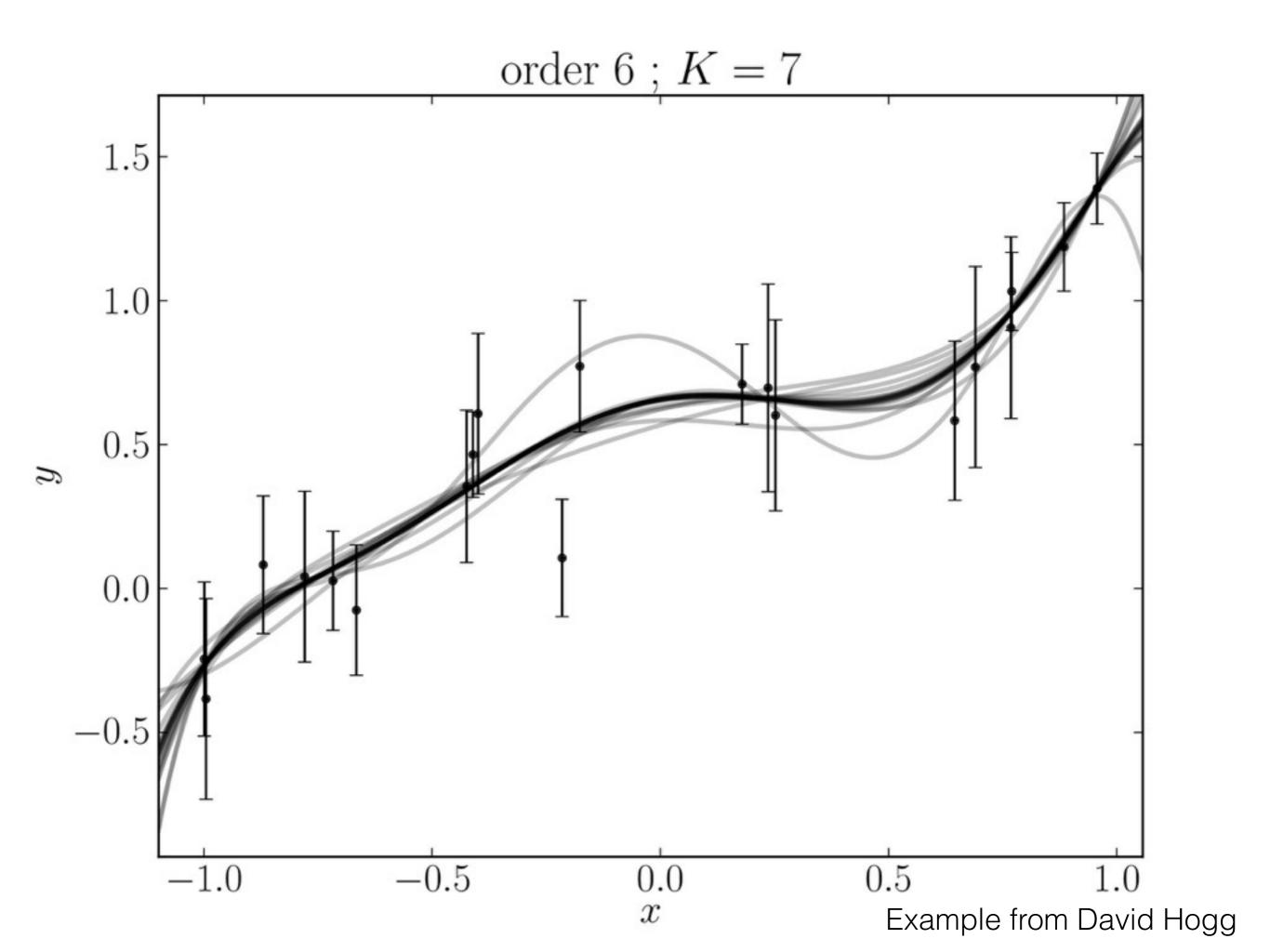


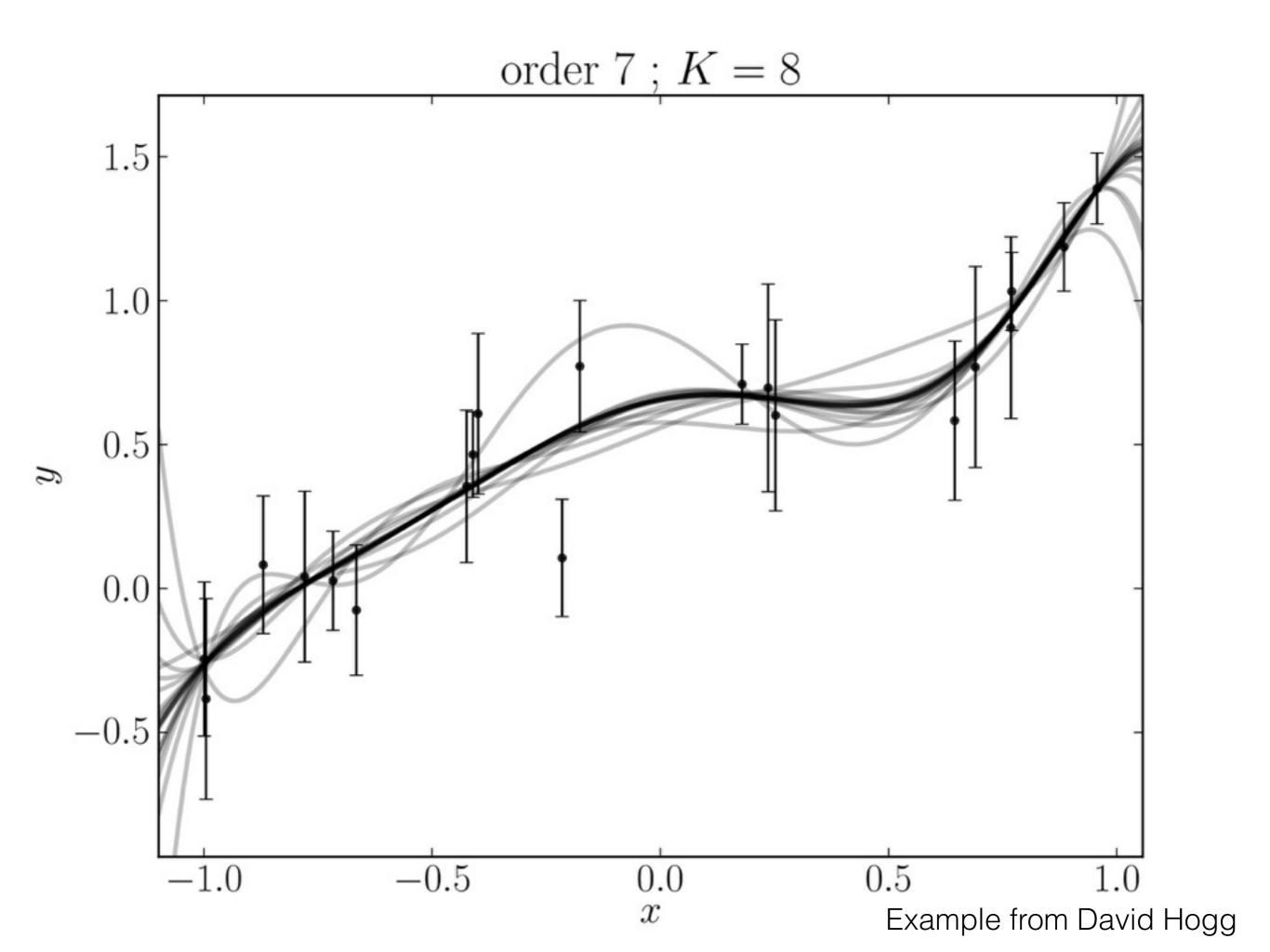


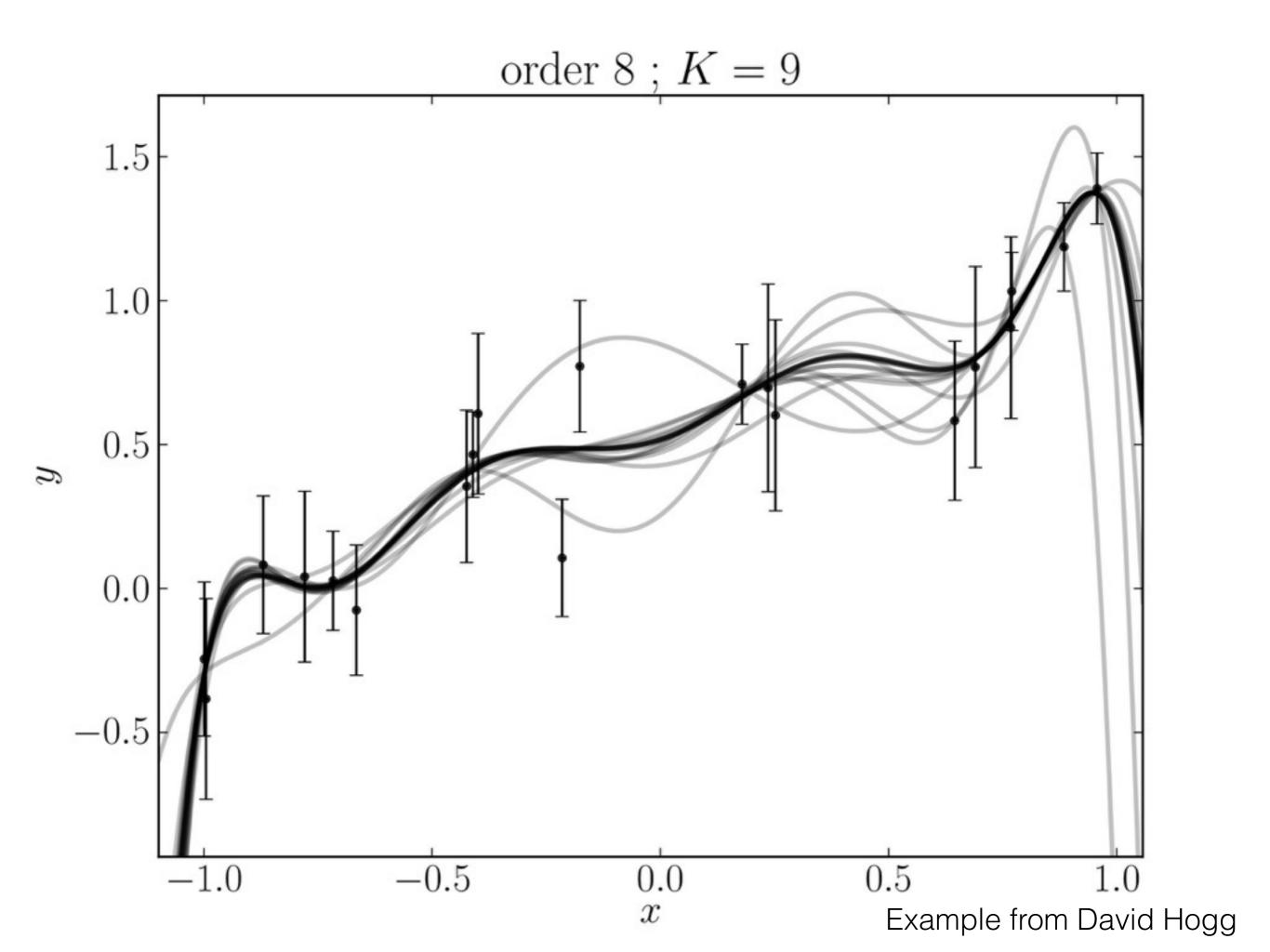


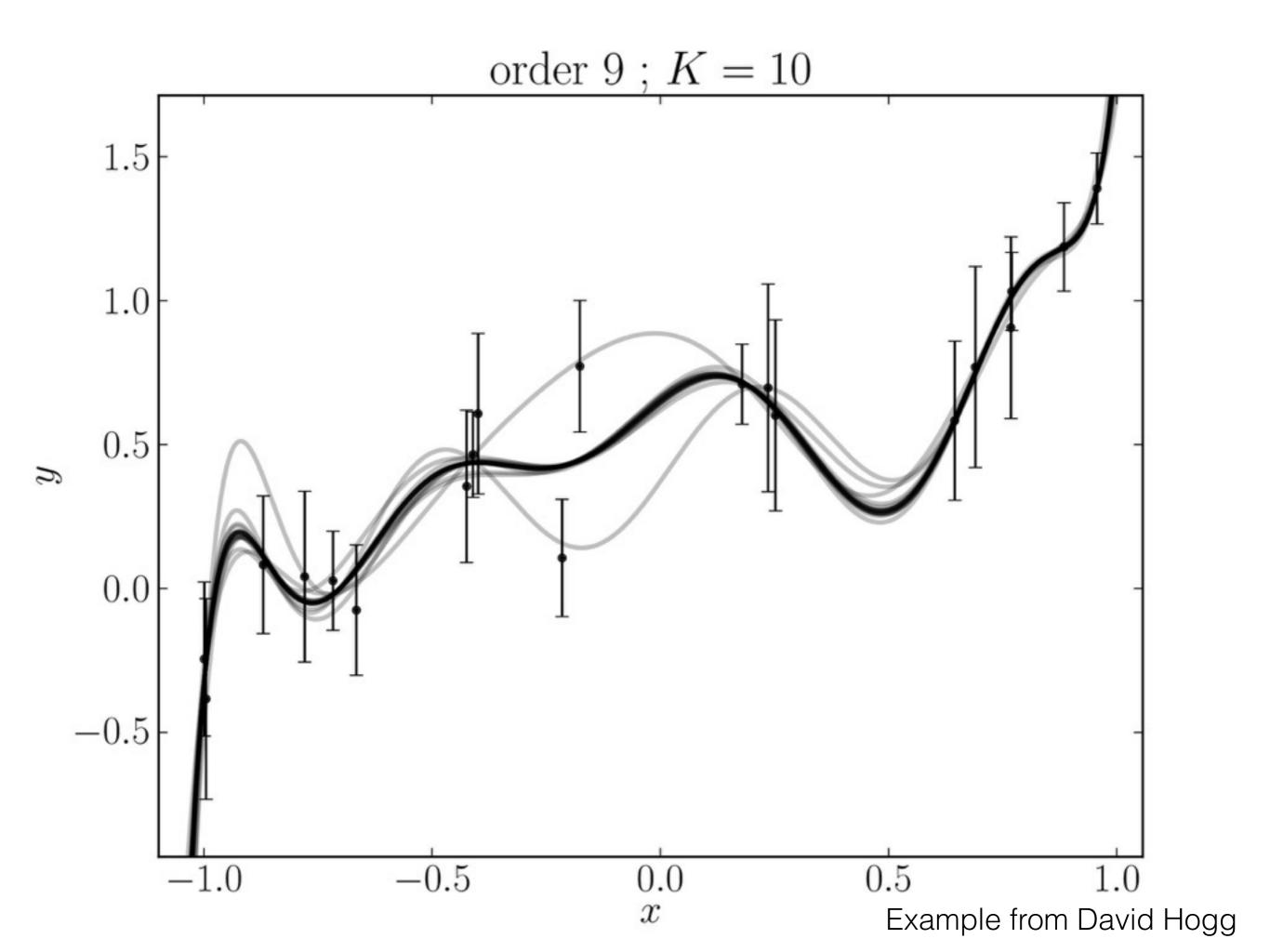


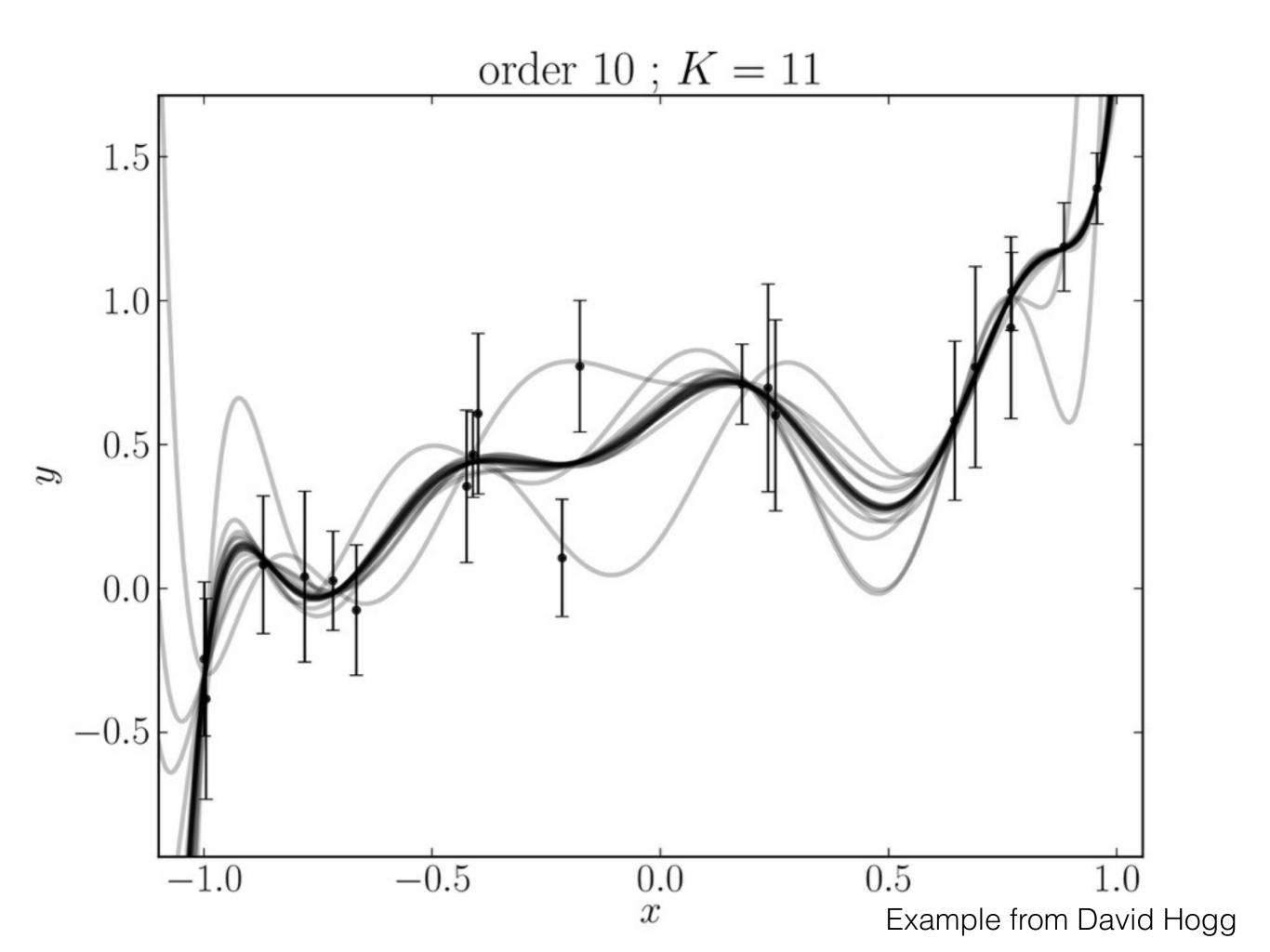


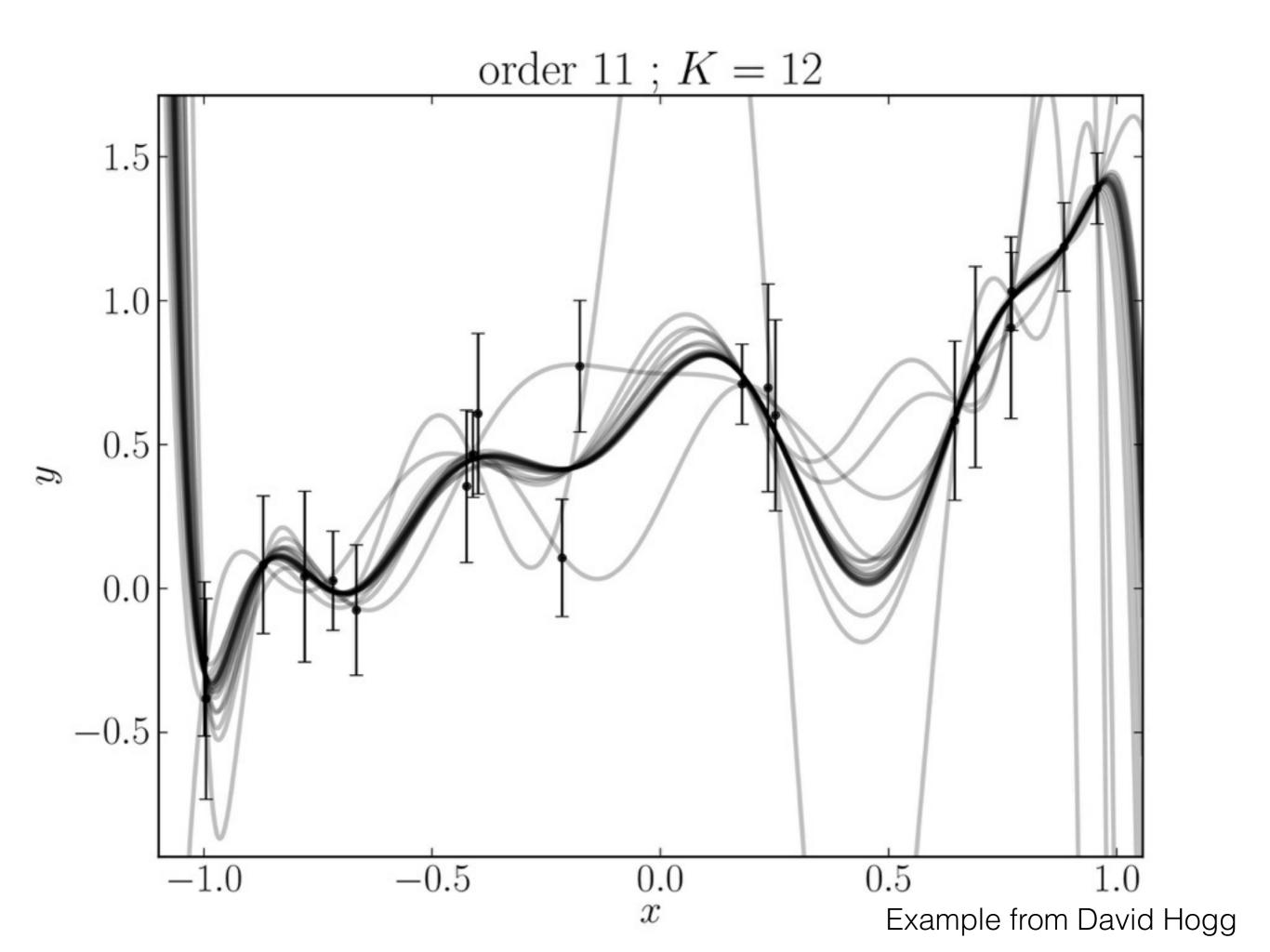


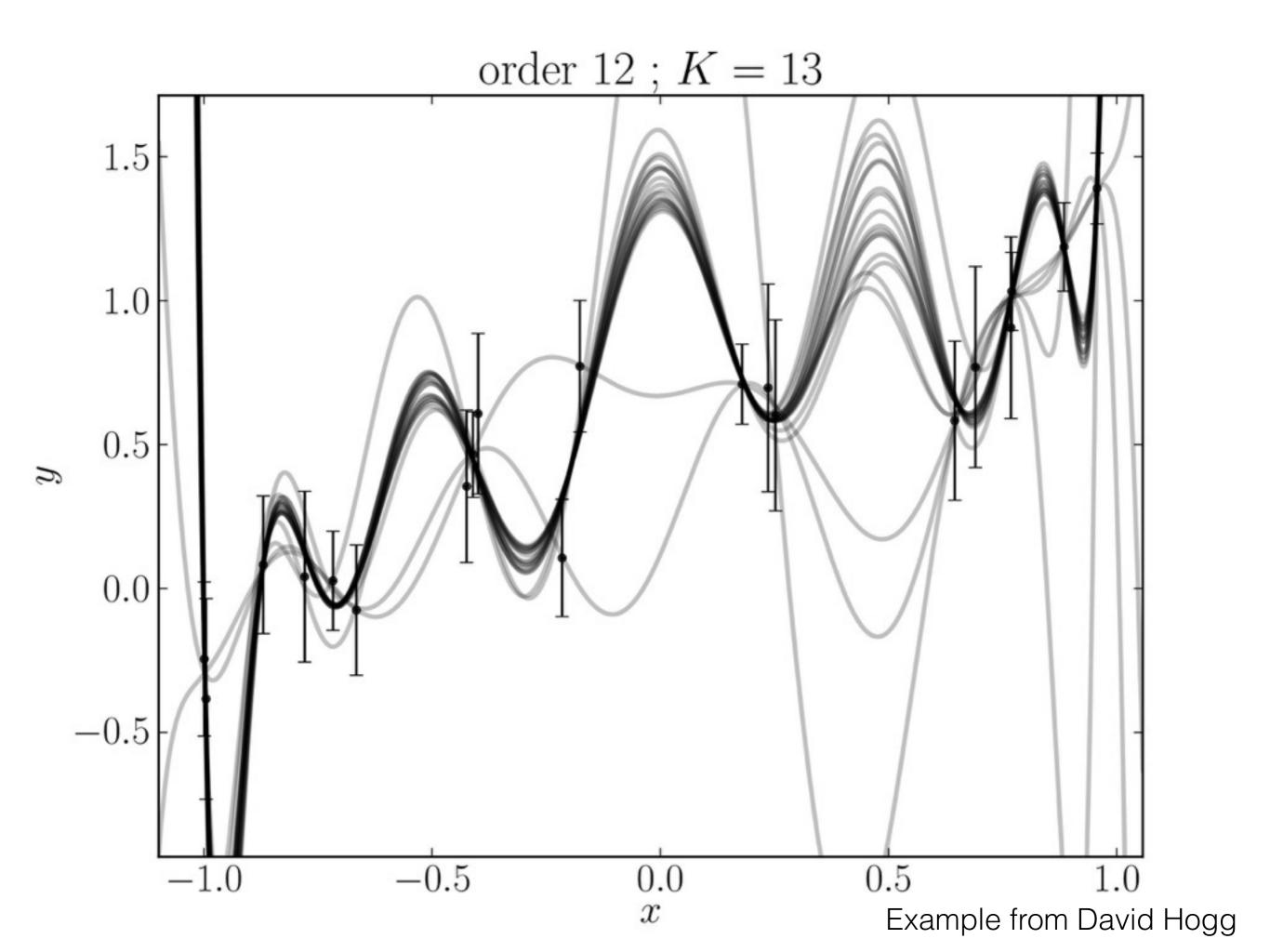


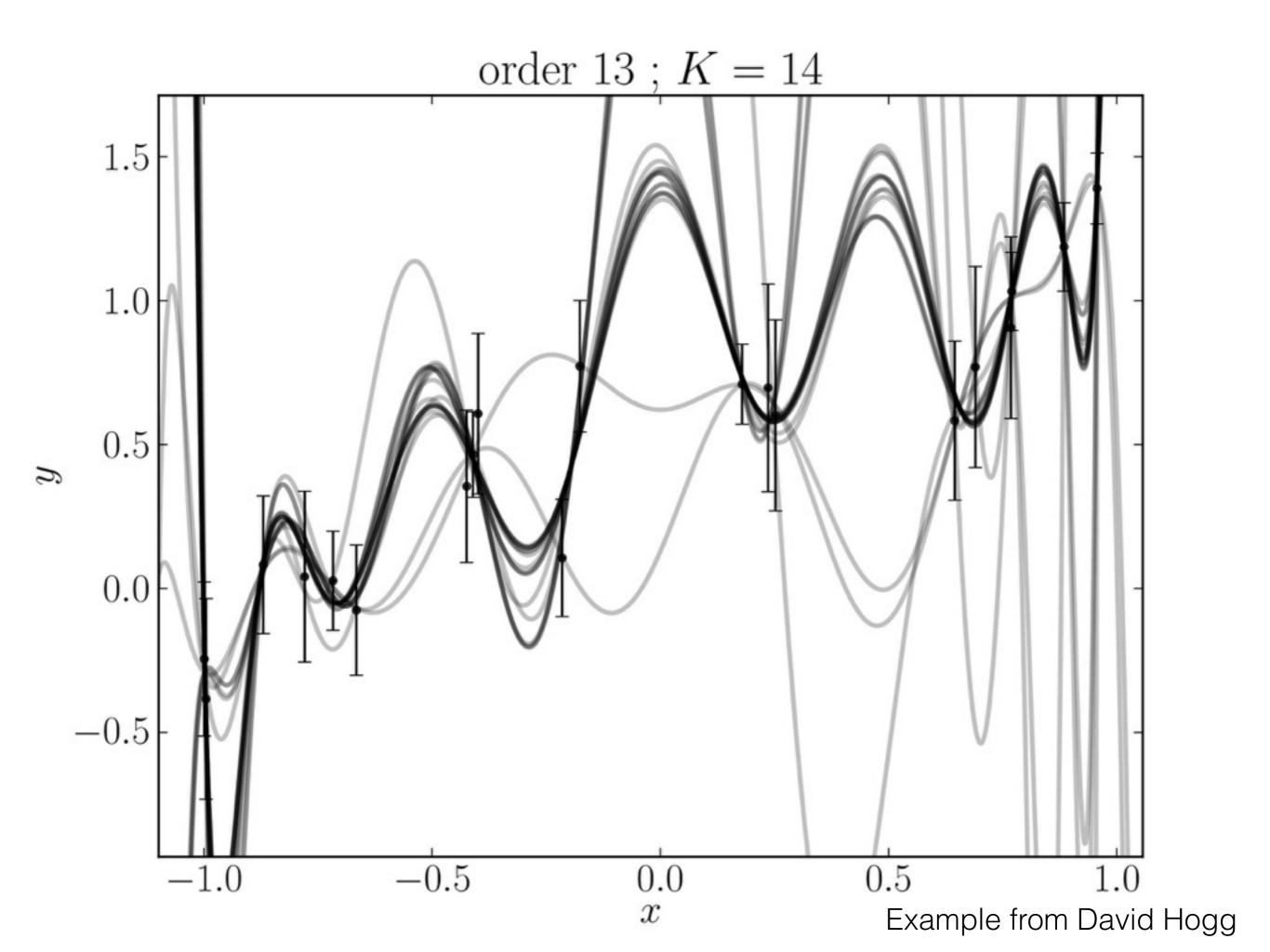


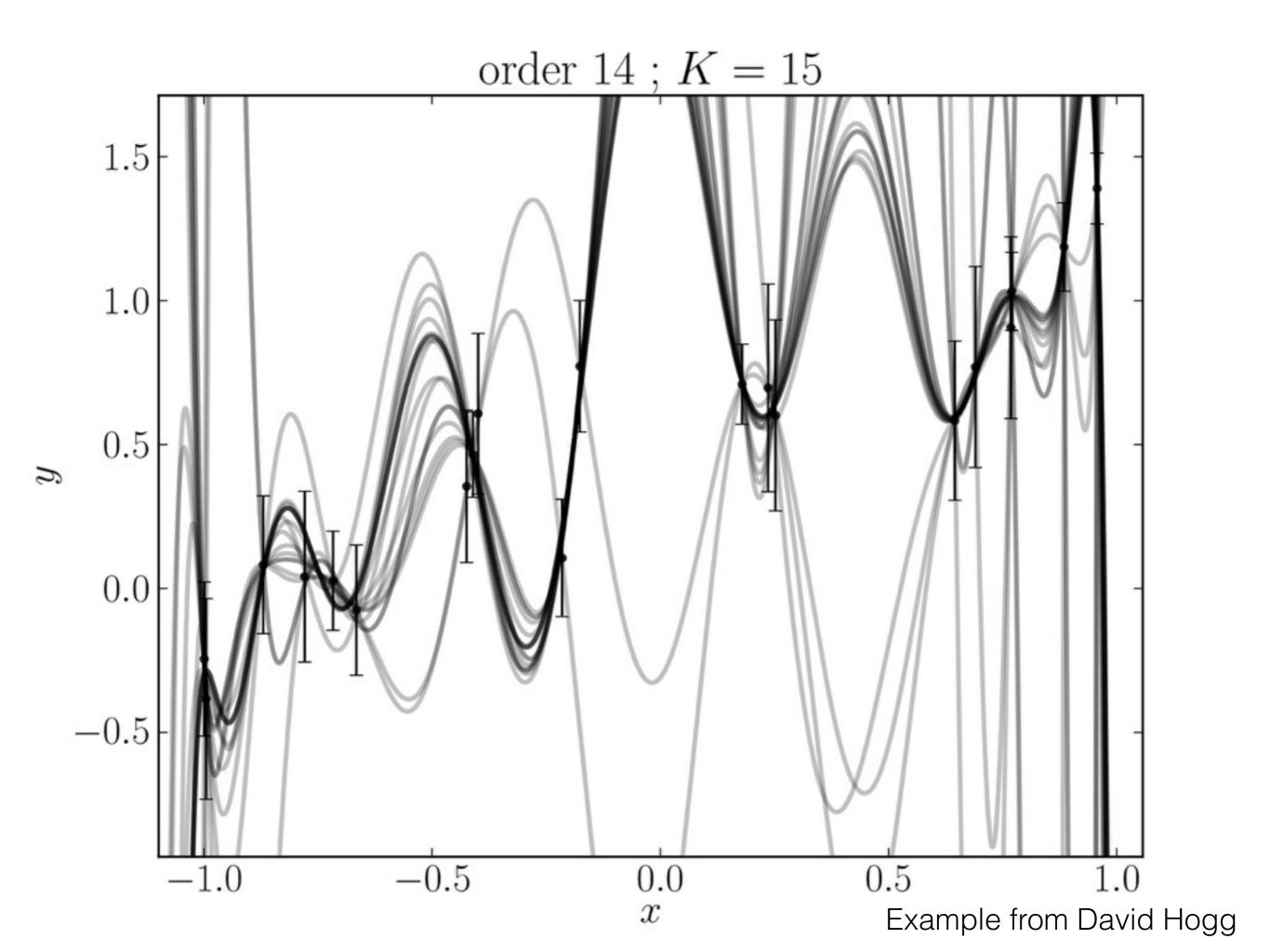


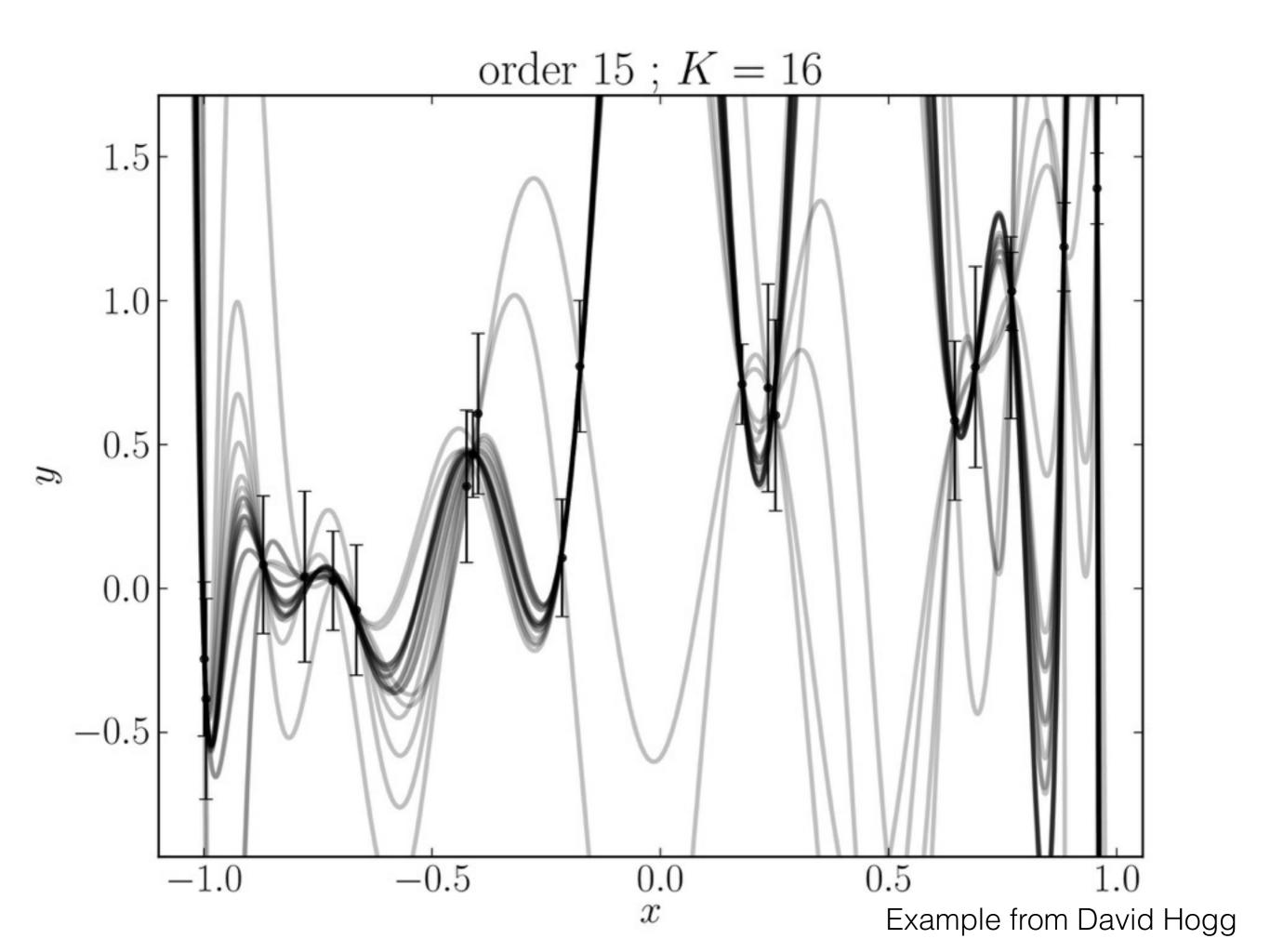


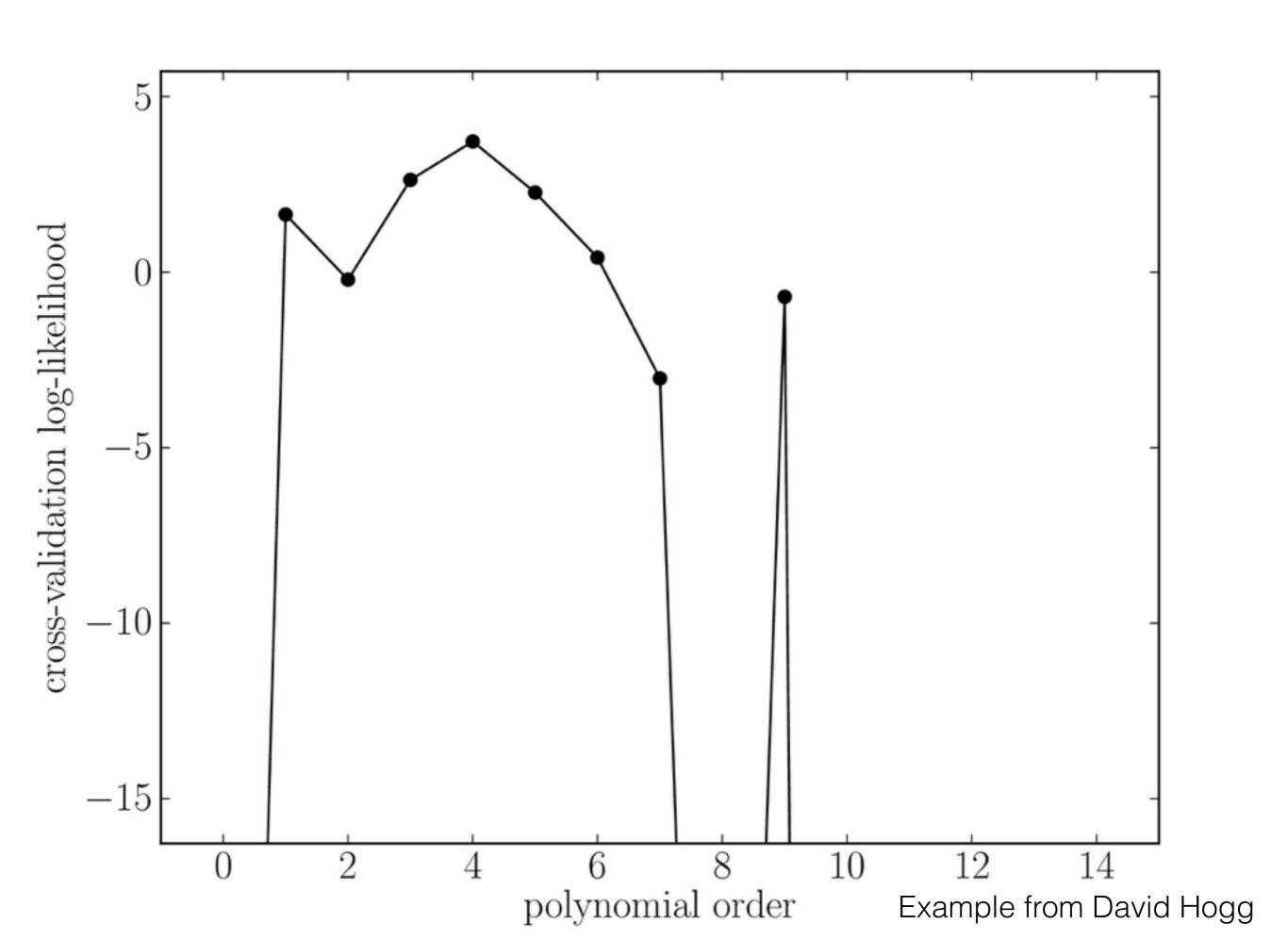


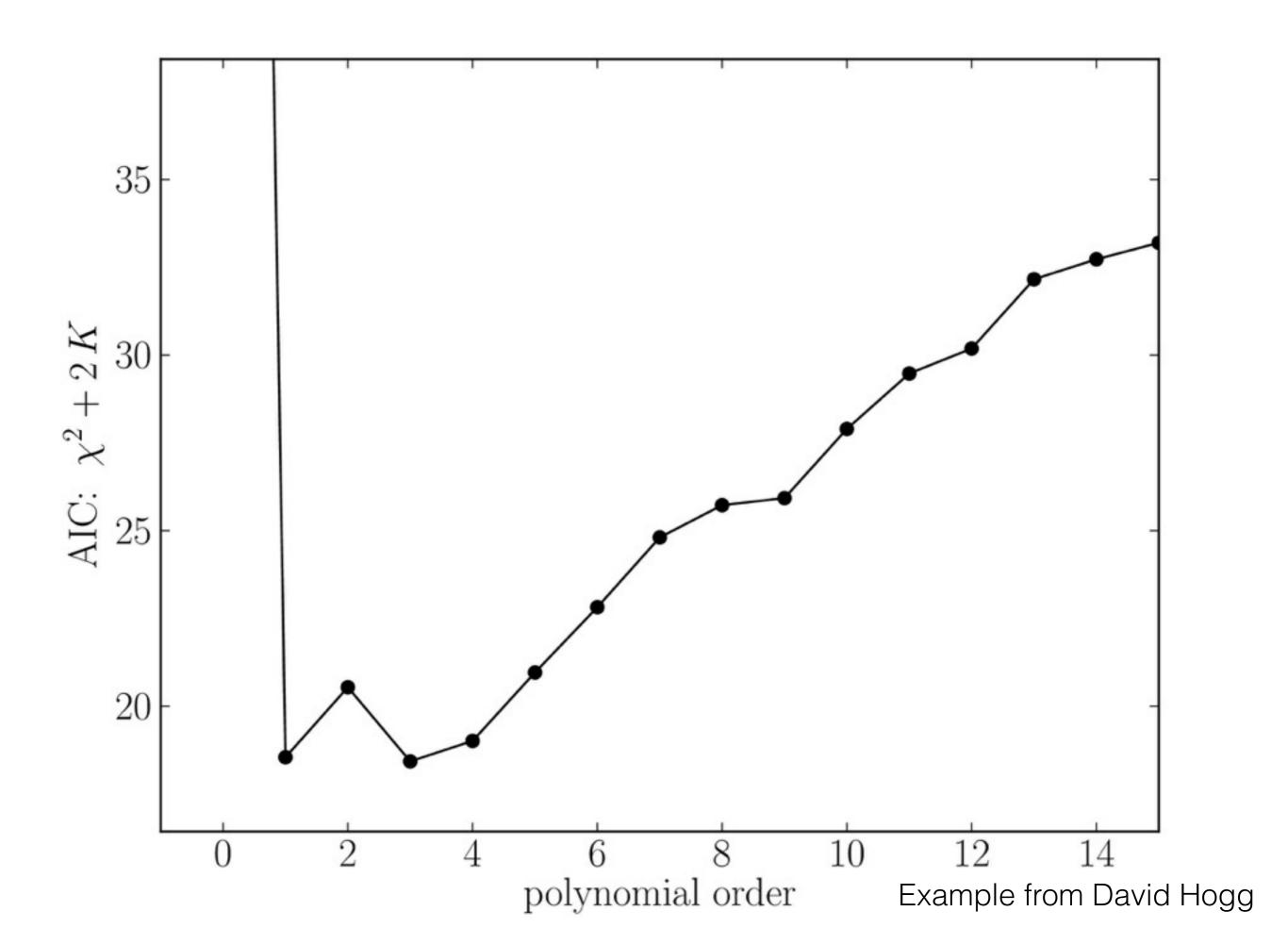


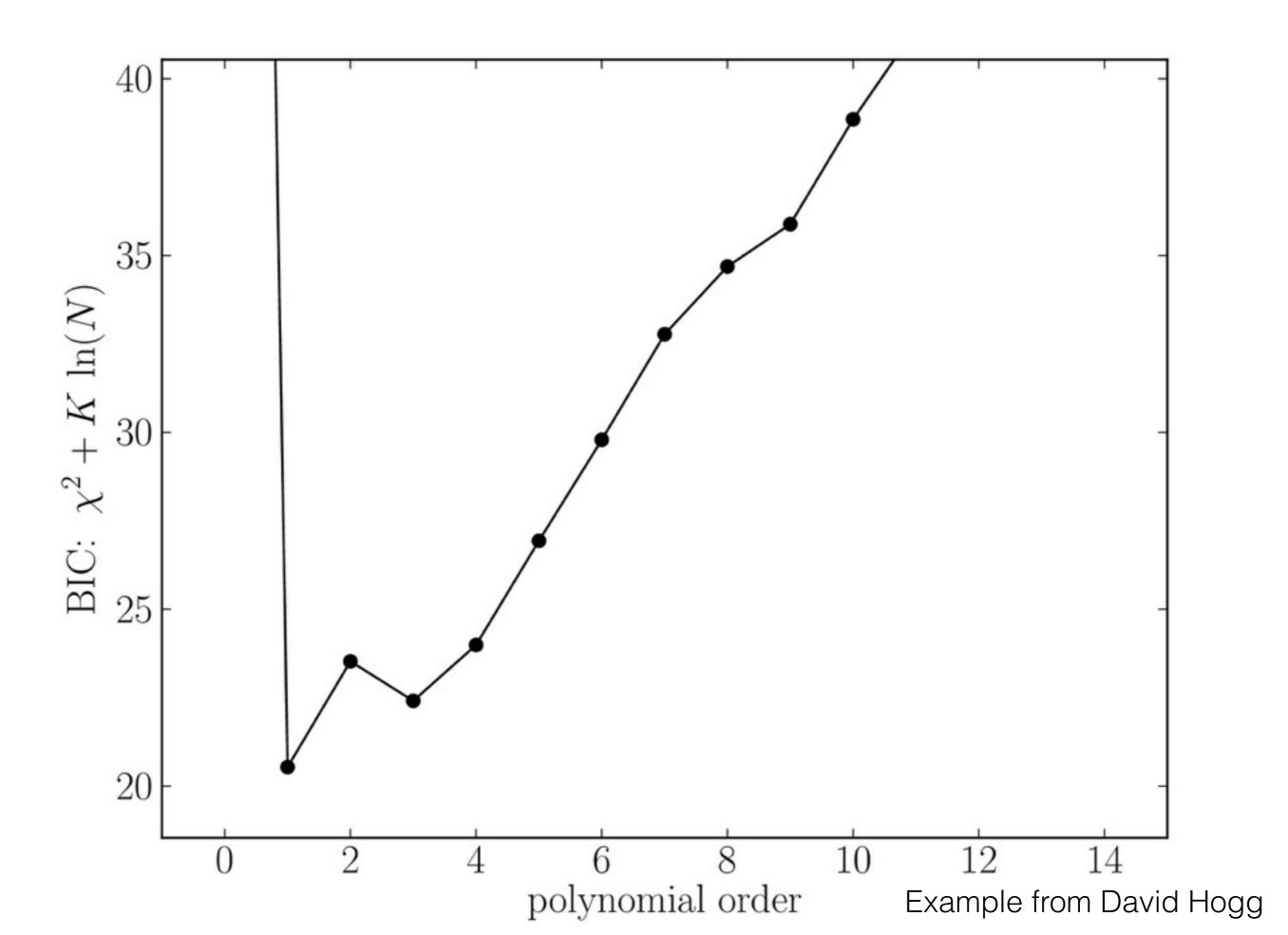


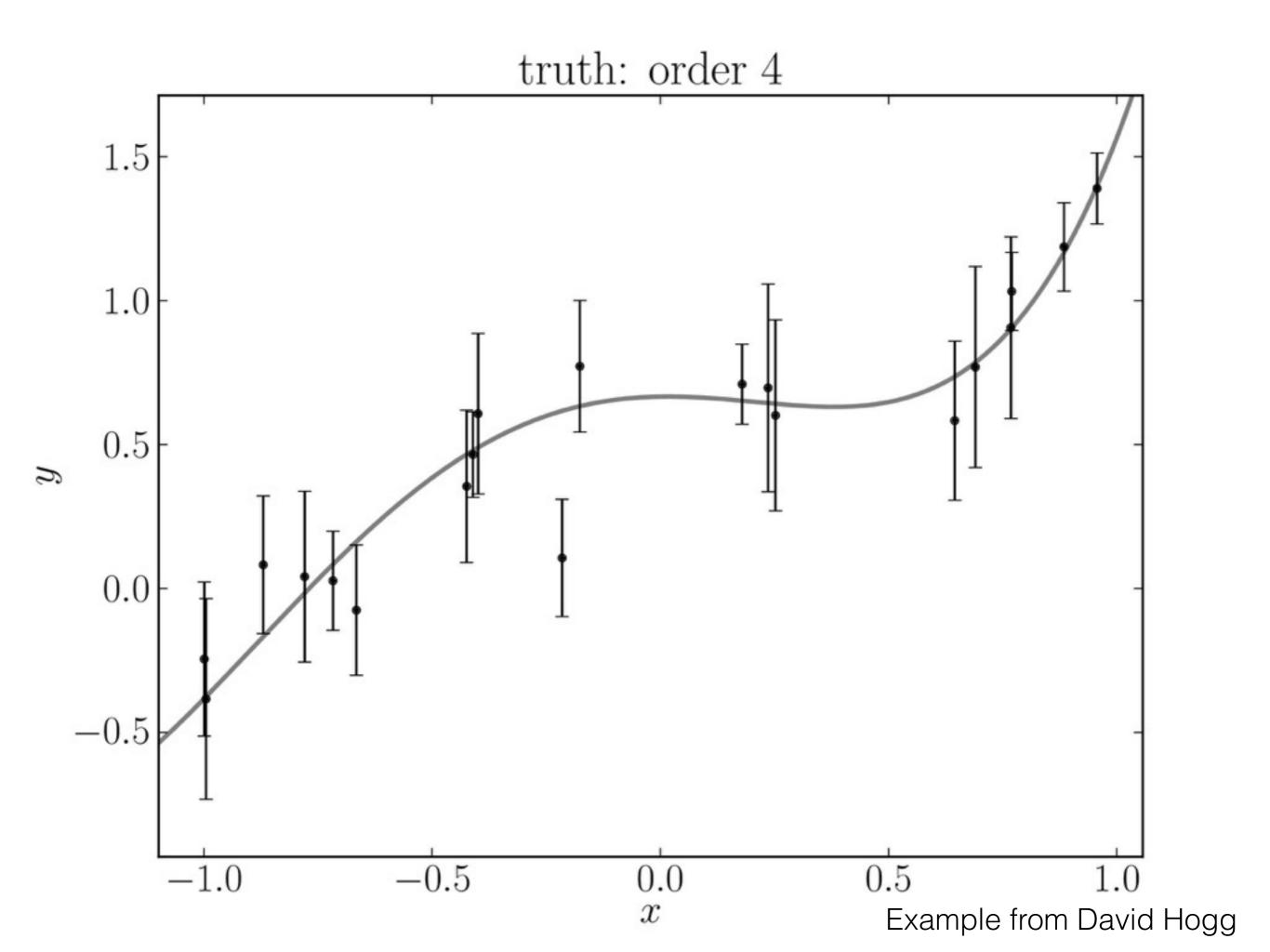












Cross-validation: advantages

- Makes sense and does not make strong assumptions (just that all data points are typical)
- Easy to implement, but can be expensive if each fit is expensive (can use leave-N-out instead)
- Robust against certain types of under/ overestimates of the uncertainties (similar to bootstrap)

