
Statistics and Inference
in Astrophysics

Zhu & Menard (2013)

Today: methods for assessing
uncertainty in model fits

• Bayesian: sampling the posterior probability
distribution, in particular, Markov Chain Monte
Carlo methods

• Frequentist: non-parametric methods: bootstrap,
jackknife

Hogg, Bovy, & Lang (2010)

Fitting a line
• Straight line model has two parameters: slope m and

intercept b

• Likelihood, single point: p(yi|m,b,xi,σy,i) = N(yi|mxi+b,σ2
y,i)

• Independent data points:  
p({y}|m,b,{x},{σy}) =  
p(y0|m,b,x0,σy,0) x p(y1|m,b,x1,σy,1)x… x p(yN-1|m,b,xN-1,σy,N-1)

• Posterior:  
p(m,b|{y},m,b,{x},{σy} ~ p({y}|m,b,{x},{σy}) x p(m,b)

• Two parameters, so easy to optimize, grid-evaluate,…

Mixture model for outliers

• Model outliers using a mixture model: each data
point has some probability qi to be actually drawn
from the line, and probability (1-qi) to be drawn
from a background model pbg(yi|xi,σy,i,…)

• Simple background model:  
pbg(yi|xi,σy,i,…) = N(y|Yb,Vb+σ2y,i)

Mixture model for outliers

Mixture model for outliers

Hogg, Bovy, & Lang (2010)

Posterior requires prior on qi, introduces new parameter Pb

Mixture model for outliers
• Parameters of the model are now: m, b, Yb, Vb, Pb, q0, q1,

…, qN-1 —> N+5 parameters!

• Efficiently exploring the posterior PDF becomes much
harder; grid-evaluation impossible!

• Note: we can analytically marginalize over qi

Sampling methods for the
posterior PDF

• Most things that want to do with the PDF p(θ) involve integrals over the
PDF:

• Mean = ∫dθ p(θ) θ

• Median: ∫median dθ p(θ) = ∫median
 dθ p(θ)

• Variance = ∫dθ p(θ) θ2 - [∫dθ p(θ) θ]2

• Quantiles: ∫quantile θ dθ p(θ) = quantile x ∫dθ p(θ) = quantile

• Marginalization: p(θ) = ∫dη p(θ,η)

• None of these care about the overall normalization of p(θ) [set ∫dθ p(θ) = 1]

• Therefore, can use Monte Carlo integration techniques

Monte Carlo Integration
• Multi-dimensional integral  
 
 
 
where  
 
 
 
θi are uniformly sampled points within the domain
of θ

Z
d✓ f(✓) = V ⇥ 1

N

X

i

f(✓i)

V =

Z
d✓

• No need to use uniform sampling, can just as easily
do 
 
 
 
where  
 
 
 
θi are points sampled from q(θ)

• If you choose q(θ) that closely follows f(θ), f(θi)/
q(θi)~1 and integral will quickly converge

Monte Carlo Integration
Z

d✓ f(✓) =

Z
d✓ q(✓)

f(✓)

q(✓)

= Vq ⇥
1

N

X

i

f(✓i)

q(✓i)

Vq =

Z
d✓ q(✓)

• Back to our integrals of the form ∫dθ p(θ) f(θ)

• Using Monte-Carlo integration  
 
 
 
if θi sampled from p(θ), because Vp = ∫dθ p(θ) = 1

• So all integrals of the posterior PDF can be
performed using Monte Carlo integration, if we can
efficiently sample p(θ)!

Monte Carlo Integration
for probability distributions

Z
d✓ p(✓) f(✓) =

1

N

X

i

f(✓i)

Importance sampling
• Sampling p(θ) is hard! So let’s sample a different distribution that is

easy to sample q(θ) and use 
 

• The p(θi)/q(θi) are known as the importance weights

• They re-weight the importance of each sample

• Works well if q(θ) is close to p(θ), otherwise introduces large variance:
think about what happens when q(θ) is small when p(θ) is large!

Z
d✓ p(✓) f(✓) =

Z
d✓ q(✓)

p(✓)

q(✓)
f(✓)

=
1

N

X

i

p(✓i)

q(✓i)
f(✓i)

Importance sampling

Mackay (2003)

Importance sampling
• Useful in some contexts:  
 
For example, somebody gave you samples from a posterior PDF
with a prior that you don’t like —>  
 
You want  

• But you have samples θi from  

• Can do  
 
 
 
which should be fine as long as the prior doesn’t change too much

Z
d✓ p

you

(✓|data) f(✓) /
Z

d✓ p(data|✓) p
you

(✓) f(✓)

Z
d✓ p

you

(✓|data) f(✓) = 1

N

X

i

p
you

(✓)

p
not you

(✓)
f(✓)

p
not you

(✓|data) / p(data|✓) p
not you

(✓) f(✓)

Rejection sampling
• Sampling from p(b) == uniformly sampling area under

p(b)

Numerical recipes (2007)

• Have q(x) such that c x q(x) always > p(x)

• q(x) easy to sample (e.g., uniform or Gaussian)

• Sample v from q(x) and u from Uniform(0,1)  
if u < p(v)/q(v)/c: return v 
else: try again

Rejection sampling

Mackay (2003)

• Works well in 1D, but difficult for multi-dimensional
distributions, because volume under q(x) and that
under p(x) quickly becomes very different

• Even in 1D it can be difficult to find a q(x)

• Importance sampling and rejection sampling useful
because each sample is independent

Rejection sampling

Markov chains
• A Markov chain is a chain of randomly produced

samples (states) for which the transition probability
to the next state only depends on the current state,
not the previous history —> memoryless

• Markov chain defined by transition probability
T(x’;x) which gives the probability of going to x’
when you’re currently at x

• Markov Chain Monte Carlo methods construct
T(x’;x) such that the chain samples a given p(x)

Metropolis-Hastings
• Want to sample p(x)

• Proposal distribution q(x’;x) [this is not the T(x’;x) from
previous slide!]; For example, Gaussian centered on x
with some width

• Algorithm: you’re at xi 
 1. Draw from xt from q(xt;xi) 
 2. Compute a = [p(xt) q(xi;xt)] / [p(xi) q(xt;xi)] 
 3. If a > 1: accept xt; else: accept xt with  
 probability a  
 4. If accepted: xi+1 = xt; else: xi+1 = xi —> always add!

Metropolis-Hastings

Mackay (2003)

• Algorithm: you’re at xi 
 1. Draw from xt from q(xt;xi) 
 2. Compute a = [p(xt) q(xi;xt)] / [p(xi) q(xt;xi)] 
 = p(xt) / p(xi)  
 3. If a > 1: accept xt; else: accept xt with  
 probability a 
 4. If accepted: xi+1 = xt; else: xi+1 = xi

• So, if proposed state has higher probability, always accept

• But can go to lower probability region with some
probability —> not an optimizer!

Metropolis-Hastings: special case
of a symmetric proposal distribution

Metropolis-Hastings in
practice

• Need to choose q(x’;x) —> often a Gaussian centered on x, with
some width, in higher dimensions typically spherical Gaussian

• Width is adjustable parameter: should be O(width of p[x]) 
 
Set it too large: jump to regions with low p(x) —> reject  
 
Set it too small: jump to regions with very similar p(x) —> Transition
probability ~1 —> accept most, but don’t explore

• Typically needs a lot of adjusting; acceptance fraction = (# of times
xt =/= xi) / (total # of steps)

• Theoretical work has shown that optimal acceptance fraction in 1D
= 50%, in higher-D 23% (Roberts & Gelman 1997)

Metropolis-Hastings

Mackay (2003)

Need on order of 
  
>(L/width)2 steps  
 
to explore the PDF
(random walk)

Markov Chain Monte Carlo
generalities

• When and why do MCMC algorithms work? Important to
understand to not get tripped up in practice!

• Markov Chain characterized by transition probability T(x’;x)
[for MH, this is the algorithm given]

• Probability distribution qi+1(x’) of value x’ starting from
probability distribution for qi(x): 
 
qi+1(x’) = ∫ dx T(x’;x) qi(x)

• So T(x’;x) transforms one probability distribution into
another

MCMC generalities
• For a Markov Chain algorithm to explore the

desired distribution p(x) two requirements:

• p(x) should be an invariant distribution of the
Markov Chain:  
 
p(x’) = ∫ dx T(x’;x) p(x)

• Chain must be ergodic: qi+1(x) —> p(x) for i —> ∞
(chain shouldn’t be periodic, …)

Example: sampling a
uniform distribution

Mackay (2003)

Example: sampling a
uniform distribution

Mackay (2003)

Detailed balance
• Invariance of distribution can be ensured by detailed balance:

• T(x’;x)p(x) = T(x;x’)p(x’) for all x, x’

• Means that chain is reversible: just as likely to go from x—>x’ as to
go from x’—>x

• Invariance then satisfied because: 
 
p(x’) = ∫ dx T(x’;x) p(x)  
 = ∫ dx T(x;x’) p(x’) [detailed balance] 
 = p(x’) ∫ dx T(x;x’) 
 = p(x’)

• Sufficient, but not necessary

Metropolis-Hastings

• Pretty easy to show that MH satisfies detailed
balance, but left as exercise

• How to ensure that the chain is ergodic? One
simple way is to make sure that T(x’;x) > 0 for all x’
with non-zero p(x’) [non-zero prior]

Gibbs sampling
• In multiple dimensions, say p(x,y)

• Sample: Starting at (xi,yi)  
 1. xi+1 from p(x|yi)  
 2. yi+1 from p(y|xi+1)  
 3. New (xi+1,yi+1)

• Useful when:

• Each conditional distribution is simple (or some of them)

• Want to sample different dimensions in different ways (MH
with different step sizes, more advanced sampling for some
parameters)

Gibbs sampling

Mackay (2003)

Metropolis-Hastings and Gibbs sampling are
nice, but typically require some adjustable
step size that can lead to an unacceptable

acceptance fraction

Ensemble samplers
• So far have considered single sample xi that gets

updated

• Ensemble sampler have a state consisting of many
samples {x}i that get updated by Markovian transitions

• Will focus on most popular one: affine-invariant
ensemble sampler of Goodman & Weare (2009; aka,
emcee)

• Variations have different points in the ensemble at
different temperatures, …

Affine-invariant sampler
(emcee)

Goodman & Weare (2009)

Affine-invariant sampler
(emcee)

Goodman & Weare (2009)

• Each x in {x}i is called a walker

• Detailed algorithm: Starting with ensemble {x}i  
 1. Loop through each walker k: xk 
 2. Draw a walker xl from the set of walkers w/o k 
 3. Draw z from g(z) 
 4. Propose new xk,i+1 = xk + z(xk - xl)  
 5. Compute q = zN-1 x p(xk,i+1)/p(xk) 
 6. Draw uniform u from [0,1]  
 7. If q >= u: accept xk,i+1; else: keep xk,i

• 3. is called the stretch move; need to specify g(z)

• If g(z) satisfies g(1/z) = z g(z), the above algorithm satisfies detailed
balance; g(z) = 1/√z for z in [1/a,a], a free parameter

Affine-invariant sampler
(emcee)

Affine-invariant sampler
(emcee)

Goodman & Weare (2009)

• Each walker needs to be updated in series in the
previous algorithm —> can take a long time

• Naive parallelization (update all simultaneously
using their position in iteration i) fails to satisfy
detailed balance

• Can split walkers into set of two, update all walkers
from one set simultaneously by only allowing
moves wrt walkers in the other set —> satisfies
detailed balance

Affine-invariant sampler
(emcee): parallel version

• Algorithm needs value for a, but just scaling that can be
left the same for all problems (works well)

• Need to watch out for non-ergodic chains!

• If # of walkers < dimension of space, cannot sample
entire space!

• Should use # of walkers >> dimension of space to
avoid getting stuck near subspace

• Like Metropolis-Hastings, possible that acceptance
fraction is very low

Affine-invariant sampler
(emcee)

emcee demo

MCMC overview
• Metropolis-Hastings: simple to implement, need to pick

proposal distribution, need to monitor acceptance fraction

• Gibbs sampling: Great when (some) conditional
probabilities are simple

• emcee: Insensitive to step size, so good go-to methods
that don’t require much supervision; good python
implementation of ensemble sampler emcee (http://
dan.iel.fm/emcee)

• All of these have random walk behavior: takes a long time
to explore the PDF

http://dan.iel.fm/emcee

Hamiltonian Monte Carlo
• Method to avoid random walk behavior by

proposing new samples far from current point

• Does this by pretending that -ln p(xi) is a potential
energy U(xi) and adding N new momentum
variables pi with kinetic energy K(pi) = 𝛴i pi2/[2mi]

• Then

• and

p(~x, ~p) / exp

"
�U(~x)�

X

i

p

2
i

2mi

#

p(~x) =

Z
d~p p(~x, ~p) = exp [�U(~x)]

• Now propose new points in two steps: 
 
Currently at (xi,pi):  
1. Sample pa from exp(-pi2/[2mi]) —> Gaussian = simple 
2. Sample new (xi+1,pi+1) by 
 (a) simulate Hamiltonian dynamics  
 (xi,pa) —> (xp,pp) [leapfrog] 
 (b) MH accept/reject (xp,pp) based on ratio  
 exp[-U(xp)-pp2/{2m}] / exp[-U(xi)-pa2/{2m}]

• If energy conserved, ratio in (b) == 1 —> always accept

• Step 2. is not a random walk and one can move to a very
different point of parameter space

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo in
practice

• To simulate dynamics we need the force: the derivative of
the likelihood —> often difficult to compute by hand and
numerical derivatives are unstable

• Need to set two parameters related to integration:

• Stepsize ε

• Number of steps L

• Want ε to be as large as possible and still conserve
energy; L such that one moves to a very different
part of the PDF but no further

Derivatives for Hamiltonian
Monte Carlo

• Derivatives are in principle easy: can use chain rule: 
 

• All computer functions are in the end combinations of primitives
+,-,x,/ [and at a slightly higher level exp, sin, cos, …]

• Use chain rule to break down derivatives until you hit a primitive
—> backpropagation / automatic differentiation

• 2018: many libraries available that implement this (autograd,
pytorch, theano, tensorflow, …) 
 

df(g(x))

dx
= f

0(g[x]) g0(x)

Autograd demo

Hamiltonian Monte Carlo:
setting the number of steps

• Big issue in HMC that trajectory turns back onto itself

• No U-Turn Sampler (Hoffman & Gelman 2011):
automatic way to detect whether trajectory is bending
back onto itself and stop leapfrog integration

stan
• Modeling framework with NUTS HMC sampler at its core

• Specify model in terms of the modeling language, stan then
takes care of everything else

• Supports a very large range of possible models, all through the
magic of automatic differentiation

• Can significantly speed-up MCMC sampling of many problems,
especially ones with many parameters

• C++ library with wrappers in R, Python, cmdline, …

• Similar more Pythonic package: pymc3

stan demo

MCMC overview
• Metropolis-Hastings: simple to implement, need to pick

proposal distribution, need to monitor acceptance fraction

• Gibbs sampling: Great when (some) conditional probabilities
are simple

• emcee: Insensitive to step size, so good go-to methods that
don’t require much supervision; good python implementation
of ensemble sampler emcee (http://dan.iel.fm/emcee)

• Hamiltonian Monte Carlo: far more efficient exploration of
parameter space, viable through multiple software packages
today

http://dan.iel.fm/emcee

MCMC: burn-in
• All MCMC algorithms need to ‘burn in’: Takes some

number of steps to reach the target distribution p(x)

• Need to monitor convergence to p(x) somehow:

• Can look at ln[p(x)] and how it evolves over time
—> should start randomly oscillating around
typical value

• Can compute desired integrals (e.g., mean) and
see when their value stops changing

• Can run different chains and look at variance
between those chains

• Determine when your chain has burned-in, remove
everything up to that point; samples are what follows

• Samples in Markov Chain are correlated, because each value
depends on the previous value

• This is okay when computing summaries of the PDF [e.g., ∫dθ
p(θ) f(θ)] in that this does not introduce bias, but it does mean
that the uncertainty in the summary does not decrease as 1/√N

• Can compute the autocorrelation function of your samples: A(𝜏)
= <xi xi+𝜏> and determine typical value of 𝜏 for autocorrelation
to become zero —> auto-correlation time 𝜏

• N/𝜏 ~ # of independent samples in your chain

• Can discard non-independent samples; most summaries can
be computed using very few independent samples (~12)

MCMC: auto-correlation time

Non-parametric ways to
estimate uncertainties: 

Bootstrap and Jackknife

Non-parametric methods
• Bayesian inference requires good knowledge of model,

data uncertainties, and everything else involved in going
from the model —> data

• Bootstrap and jackknife attempt to quantify uncertainty
from the distribution of data itself

• Bootstrap (not the web framework…): data {xi} sampled
from some distribution p(x), estimate as  
 
p(x) ~ 1/N x 𝛴iδ(x-xi)

• Sample new data sets from this estimate of p(x)

Bootstrap
• Suppose you want to know the standard deviation of a set

of N data {xi} —> unbiased estimator 
 
σ2 = 1/[N-1]𝛴i [xi-<xi>]2  
 
What is its uncertainty?

• Bootstrap: sample new data points from p(x) ~ 1/N x 𝛴iδ(x-
xi) —> sample N ‘new’ data points from the original set
with replacement (i.e., can sample the same one twice)

• Compute σ2 for each resampling —> distribution of these
σ2 is the uncertainty distribution

Bootstrap

Ivezic et al. (2014)

Jackknife
• Rather than sampling with replacement, make N new data sets

by leaving out 1 data point at a time

• So {x1,x2,x3,…}, {x0,x2,x3,…}, {x0,x1,x3,…}, …

• Compute estimator θ for each subsample, θ-i

• Uncertainty in estimator:  
 
 

 

where 
 

�2 =
N � 1

N

X

i

(✓�i � ✓all)
2

✓all =
1

N

X

i

✓�i

Robust against underestimating
one’s errors and correlated errors
• Suppose you want to know the mean of a set of data that

you think have errors of 2, but really have errors of 10

• 100 data points: Would assign mean error 2/√100 = 0.2;
but real error is 10/√100 = 1

• Bootstrap: error=1

Problem set

