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Today: methods for assessing
uncertainty in model fits

* Bayesian: sampling the posterior probability
distribution, in particular, Markov Chain Monte
Carlo methods

* Frequentist: non-parametric methods: bootstrap,
jackknife
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Straight line model has two parameters: slope m and
intercept b

Likelihood, single point: p(yilm,b,x;,0y.) = N(yi|mxi+b,0%,)
ndependent data points:

o({y}|m,b,{x},{o)}) =
0(Yo|M,b,X0,0y0) X P(Y1]M,0,X1,0y.1)X... X P(YN-1|M,D,XN-1,0yN-1)

Posterior:
p(m,blly},m,b,{x}.{o,} tyl|m,b,{xt,{oy}) x p(m,b)

Two parameters, so easy to optimize, grid-evaluate, ...
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Mixture model tor outliers
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Mixture model tor outliers

* Model outliers using a mixture model. each data
point has some probabillity g to be actually drawn
from the line, and probability (1-gi) to be drawn
from a background model ppg(yili,0y,...)

e Simple background model:
Pog(Yi[Xi,Oy.i-.) = N(Y[Yb,Vo+02y,)



Mixture model tor outliers

In this case, the likelihood is
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Mixture model tor outliers

e Parameters of the model are now: m, b, Yy, Vp, Pp, Qo, Q1,
..., ONn-1 —> N+5 parameters!

o Efficiently exploring the posterior PDF becomes much
harder; grid-evaluation impossible!

 Note: we can analytically marginalize over q;

N

Z = H [(1 - Pb)pfg({yi}?illrrn’ b, 1)) + Pbpbg({yi}ij\il|yb> Vb, I)]
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Py ( yi — Y3)° )
+ exp | —
\/2 ™ [Vo + 0] 2[Vs + oy




Sampling methods for the
posterior PDF

* Most things that want to do with the PDF p(8) involve integrals over the
PDF:

 Mean = |dB p(B) B

« Median: /™" d6 p(6) = Jmedian A8 P(O)

2

Variance = [dB p(8) 8° - [[d6 p(8) 8]

Quantiles: [**""° 4@ p(B) = quantile x [d8 p(8) = quantile

« Marginalization: p(8) = Jdn p(B,n)
* None of these care about the overall normalization of p(8) [set |dB p(8) = 1]

e Therefore, can use Monte Carlo integration technigues



Monte Carlo Integration

* Multi-dimensional integral

/d@f Vx—Zf

V= [as

B are uniformly sampled points within the domain
of B

where



Monte Carlo Integration

 NO need to use uniform sampling, can just as easily

do
/def(e):/deq(e)%
v L f(0;)
where RCENY ZL: q(0:)
Vi, = /dé’q(@)

B are points sampled from q(B)

 |f you choose g(0) that closely follows f(8), f(6;)/
q(6i)~1 and integral will quickly converge



Monte Carlo Integration
for probabillity distributions

« Back to our integrals of the form [d8 p(B) f(8)

* Using Monte-Carlo integration

[ 050 76) = 1+ 3 00
if ©i sampled from p(0), because V, = [dB p(B) = 1

* S0 all integrals of the posterior PDF can be
performed using Monte Carlo integration, if we can
efficiently sample p(0)!




Importance sampling

Sampling p(B) is hard! So let's sample a different distribution that is
easy to sample q(6) and use
p(0)

/ 46 p(6) £(6) = / a0 q(60) 25 £0)

1 pl0) .,
=~ Z AR

The p(6))/q(6;) are known as the importance weights

They re-weight the importance of each sample

Works well it g(0©) is close to p(B), otherwise introduces large variance:
think about what happens when q(8) is small when p(6) is large!



Importance sampling

Mackay (2003)



Importance sampling

e Useful iIn some contexts:

For example, somebody gave you samples from a posterior PDF
with a prior that you don't like —>

You want /depyou(e\data)f(e) X /dep(datafe)l?you(e)f(e)

e But you have samples 6; from

Pnot you(e‘data’) X p(data|9) Pnot you((g)
e Cando

/ 00 pyon (0]data) f Z Pyoul0) ¢ oy

Pnot you

which should be fine as long as the prlor doesn't change too much



Rejection sampling

o Sampling from p(b) == uniformly sampling area under

p(b)
A
first random
deviatein ———>F--=============== '
f of (x)dx —> Y
' reject
f— R B e,
T ‘ acceptxo > second random
p(x) deviate in
0 / i O

Numerical recipes (2007)



Rejection sampling
 Have g(x) such that ¢ x g(x) always > p(x)
* g(x) easy to sample (e.g., uniform or Gaussian)
e Sample vfrom g(x) and u from Uniform(0,1)

if u< p(v)/g(v)/c: return v
else: try again

Mackay (2003)



Rejection sampling

Works well in 1D, but difficult for multi-dimensional
distributions, because volume under g(x) and that
under p(x) quickly becomes very different

Even in 1D it can be difficult to find a g(x)

Importance sampling and rejection sampling useful
because each sample is independent



Markov chains

A Markov chain is a chain of randomly produced
samples (states) for which the transition probability
to the next state only depends on the current state,
not the previous history —> memoryless

 Markov chain defined by transition probability
T(x";x) which gives the probability of going to X’
when you're currently at x

e Markov Chain Monte Carlo methods construct
T(x";x) such that the chain samples a given p(x)



Metropolis-Hastings

« \Want to sample p(x)

* Proposal distribution g(x’;x) [this is not the T(x’;x) from
previous slide!]; For example, Gaussian centered on x
with some width

e Algorithm: you're at x;
1. Draw from x; from g(X:;X;)
2. Compute a = [p(xt) a(xi;xt)] / [p(xi) q(Xe;xi)]
3. It a > 1: accept xi; else: accept x; with
probabillity a
4. It accepted: xi+1 = Xi; else: xi+1 = X; —> always add!



Metropolis-Hastings

Mackay (2003)



Metropolis-Hastings: special case
of a symmetric proposal distribution

Algorithm: you're at x;
1. Draw from x; from qg(X¢;Xi)
2. Compute a = [p(xq) a(xi;xi)] / [p(xi) a(xexi)]
= p(xt) / p(xi)
3. It a > 1: accept x;; else: accept x;with
probability a
4. It accepted: X1 = Xg; €lse: X1 = X

S0, If proposed state has higher probability, always accept

But can go to lower probability region with some
probability —> not an optimizer!



Metropolis-Hastings In
practice

Need to choose g(x’;x) —> often a Gaussian centered on X, with
some width, in higher dimensions typically spherical Gaussian

Width is adjustable parameter: should be O(width of p[x])
Set it too large: jump to regions with low p(x) —> reject

Set it too small: jJump to regions with very similar p(x) —> Transition
probability ~1 —> accept most, but don't explore

Typically needs a lot of adjusting; acceptance fraction = (# of times
X; =/= X;) / (total # of steps)

Theoretical work has shown that optimal acceptance fraction in 1D
= 50%, in higher-D 23% (Roberts & Gelman 1997)



Metropolis-Hastings

Need on order of
>(L/width)2 steps

to explore the PDF
(random walk)

Mackay (2003)



Markov Chain Monte Carlo
generalities

When and why do MCMC algorithms work? Important to
understand to not get tripped up In practice!

Markov Chain characterized by transition probability T(x’;x)
[for MH, this is the algorithm given]

Probability distribution g'+'(x’) of value x’ starting from
probability distribution for g'(x):

g*(x)) = | dx T(x:x) g'(x)

So T(x';x) transforms one probability distribution into
another



MCMC generalities

* For a Markov Chain algorithm to explore the
desired distribution p(x) two requirements:

* p(Xx) should be an invariant distribution of the
Markov Chain:

p(x’) = | dx T(x;x) p(x)

* Chain must be ergodic: g*+1(x) —> p(Xx) for i —> oo
(chain shouldn't be periodic, ...)



Example: sampling a A
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Example: sampling a

uniform distribution

Mackay (2003)
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Detalled balance

Invariance of distribution can be ensured by detailed balance:
T(x:x)p(x) = T(x;x)p(x’) for all x, X’

Means that chain is reversible: just as likely to go from x—>x" as to
go from x'—>X

Invariance then satisfied because:

2
><u
<X
=
X
N—"

X X

— =

o<

) [detailed balance]

)

- X X
X 90
X X

Sufficient, but not necessary



Metropolis-Hastings

* Pretty easy to show that MH satisfies detailed
balance, but left as exercise

* How to ensure that the chain is ergodic? One
simple way is to make sure that T(x’;x) > O for all X’

with non-zero p(x’) [non-zero prior]



Gibbs sampling

* |[n multiple dimensions, say p(x,y)

e Sample: Starting at (xi,yi)
1. Xi11 from p(x|yi)
2. Yir1 from p(y|Xi+1)
3. New (Xi+1,yi+1)

e Useful when:

e Each conditional distribution is simple (or some of them)

« \Want to sample different dimensions in different ways (MH
with different step sizes, more advanced sampling for some

parameters)



Gibbs sampling

Iro!

P(x)
1171-
1)(21,'2 | :L‘l)
:L'1-

T2
P(z |z)
(t)
X
(b)
9
(t+2)
X
(t+1) ¢
x ~
x(t)
(d)

3

Mackay (2003)



Metropolis-Hastings and Gibbs sampling are
nice, but typically require some adjustable
step size that can lead to an unacceptable

acceptance fraction



ENnsemple samplers

So far have considered single sample x; that gets
updated

Ensemble sampler have a state consisting of many
samples {x}i that get updated by Markovian transitions

Will focus on most popular one: affine-invariant
ensemble sampler of Goodman & Weare (2009; aka,
emcee)

Variations have different points in the ensemble at
different temperatures, ...



Affine-invariant sampler
(emcee)
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Goodman & Weare (2009)



Affine-invariant sampler
(emcee)

Goodman & Weare (2009)



Affine-invariant sampler
(emcee)

Each x in {x}; is called a walker

Detailed algorithm: Starting with ensemble {x};
1. Loop through each walker k: x
2. Draw a walker x, from the set of walkers w/o k
3. Draw z from g(z)
4. Propose new xk 1 = = Xk + Z(Xk - X))
5. Compute g = 2 X p(Xk is1)/P(X)
6. Draw uniform u from [0, 1]
7.1t g >= u: accept X, 1; else: keep Xk

3. Is called the stretch move; need to specity g(z)

It g(z) satisfies g(1/z) = z g(z), the above algorithm satisfies detailed
balance; g(z) = 1/J/z for zin [1/a,a], a free parameter



Affine-invariant sampler
(emcee)
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Goodman & Weare (2009)



Affine-invariant sampler
(emcee): parallel version

 Each walker needs to be updated in series in the
previous algorithm —> can take a long time

* Naive parallelization (update all simultaneously
using their position in iteration i) fails to satisty
detailed balance

* Can split walkers into set of two, update all walkers
from one set simultaneously by only allowing
moves wrt walkers in the other set —> satisfies
detailed balance



Affine-invariant sampler
(emcee)

* Algorithm needs value for a, but just scaling that can be
left the same for all problems (works well)

* Need to watch out for non-ergodic chains!

o |t # of walkers < dimension of space, cannot sample
entire space!

e Should use # of walkers >> dimension of space to
avold getting stuck near subspace

» Like Metropolis-Hastings, possible that acceptance
fraction is very low



emcee demo



MCMC overview

Metropolis-Hastings: simple to implement, need to pick
proposal distribution, need to monitor acceptance fraction

Gibbs sampling: Great when (some) conditional
probabilities are simple

emcee: Insensitive to step size, so good go-to methods
that don't require much supervision; good python
implementation of ensemble sampler emcee (http://
dan.iel.fm/emcee)

All of these have random walk behavior. takes a long time
to explore the PDF


http://dan.iel.fm/emcee

Hamiltonian Monte Carlo

Method to avoid random walk behavior by

proposing new sampl
Does this by pretend,
energy U(x) and add
variables pi with kinet

Then  p(Z,p) x exp

anad

es far from current point

ng that -In p(xi) Is a potential

iINng N new momentum

ic energy K(pi) = Zi pi?/[2m]]
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~ 2m;
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_U(f) _

p(T) = / 47p(Z, ) = exp [~ U ()]



Hamiltonian Monte Carlo

 Now propose new points in two steps:

Currently at (x;,0i):
1. Sample pa from exp(-pi¢/[2mi]) —> Gaussian = simple
2. Sample new (Xi+1,Pi+1) by
(a) simulate Hamiltonian dynamics
(xi,pa) —> (Xp,Pp) [leapfrog]
(b) MH accept/reject (xp,pp) based on ratio
exp[-U(xp)-pp/{2m}] / exp[-U(xi)-pa/{2m}]

e |f energy conserved, ratio in (b) == 1 —> always accept

e Step 2. is not a random walk and one can move to a very
different point of parameter space



Hamiltonian Monte Carlo in
practice

e Jo simulate dynamics we need the force: the derivative of

the likelihood —> often difficult to compute by hand and
numerical derivatives are unstable

 Need to set two parameters related to integration:
o Stepsize €
 Number of steps L

 WWant € to be as large as possible and still conserve

energy; L such that one moves to a very different
part of the PDF but no further



Derivatives for Hamiltonian
Monte Carlo

Derivatives are In principle easy: can use chain rule:

LD pigla) g'(a)

All computer functions are in the end combinations of primitives
+,-,x,/ [and at a slightly higher level exp, sin, cos, ...]

Use chain rule to break down derivatives until you hit a primitive
—> backpropagation / automatic differentiation

2018: many libraries available that implement this (autograd,
pytorch, theano, tensorflow, ...)



Autograd demo



Hamiltonian Monte Carlo:
setting the number of steps

e Bigissue in HMC that trajectory turns back onto itselt

 No U-Turn Sampler (Hoffman & Gelman 2011):
automatic way to detect whether trajectory is bending
back onto itself and stop leapfrog integration

. . o0
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_ f e
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stan

Modeling framework with NUTS HMC sampler at its core

Specifty model in terms of the modeling language, stan then
takes care of everything else

Supports a very large range of possible models, all through the
magic of automatic differentiation

Can significantly speed-up MCMC sampling of many problems,
especially ones with many parameters

C++ library with wrappers in R, Python, cmdline, ...

Similar more Pythonic package: pyme3



stan demo



MCMC overview

Metropolis-Hastings: simple to implement, need to pick
proposal distribution, need to monitor acceptance fraction

Gibbs sampling: Great when (some) conditional probabilities
are simple

emcee: Insensitive to step size, so good go-to methods that
don’t require much supervision; good python implementation
of ensemble sampler emcee (http://dan.iel.fm/emcee)

Hamiltonian Monte Carlo: far more efficient exploration of
pDarameter space, viable through multiple software packages
today



http://dan.iel.fm/emcee

MCMC: burn-in

« All MCMC algorithms need to ‘burn in’: Takes some
number of steps to reach the target distribution p(x)

* Need to monitor convergence to p(x) somehow:

 Can look at In[p(x)] and how it evolves over time
—> should start randomly oscillating around
typical value

« Can compute desired integrals (e.g., mean) and
see when their value stops changing

e Can run different chains and look at variance
between those chains

 Determine when your chain has burned-in, remove
everything up to that point; samples are what follows
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MCMC: auto-correlation time

 Samples in Markov Chain are correlated, because each value
depends on the previous value

 This is okay when computing summaries of the PDF [e.g., |d®
0(8) f(6)] in that this does not introduce bias, but it does mean
that the uncertainty in the summary does not decrease as 1/4/N

* Can compute the autocorrelation function of your samples: A(1)
= <X Xiz> and determine typical value of t for autocorrelation
to become zero —> auto-correlation time t

N/t ~ # of independent samples in your chain

* Can discard non-independent samples; most summaries can
be computed using very few independent samples (~12)



Non-parametric ways to
estimate uncertainties:
Bootstrap and Jackknite



Non-parametric methods

e Bayesian inference requires good knowledge of model,
data uncertainties, and everything else involved in going
from the model —> data

* Bootstrap and jackknife attempt to quantity uncertainty
from the distribution of data itselt

* Bootstrap (not the web framework...): data {x;} sampled
from some distribution p(x), estimate as

O(X) ~ 1/N x Xi6(X-X;)

 Sample new data sets from this estimate of p(x)



Bootstrap

e Suppose you want to know the standard deviation of a set
of N data {x;} —> unbiased estimator

0° = 1/[N-112; [xi-<xi>]?
What is its uncertainty”

 Bootstrap: sample new data points from p(x) ~ 1/N x Xio(x-
Xj) —> sample N ‘new’ data points from the original set

with replacement (i.e., can sample the same one twice)

« Compute o® for each resampling —> distribution of these
o¢ is the uncertainty distribution



Bootstrap
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lvezic et al. (2014)



Jackknife

Rather than sampling with replacement, make N new data sets
by leaving out 1 data point at a time

SO {X1,X2,X3,...}, {Xo,Xg,X3,...}, {Xo,X1,X3,...},
Compute estimator 6 for each subsample, 6

Uncertainty in estimator:

N —1
0 = 2(9—7; — On)?

where



Robust against underestimating
one’s errors and correlated errors

Suppose you want to know the mean of a set of data that
you think have errors of 2, but really have errors of 10

100 data points: Would assign mean error 2/4/100 = 0.2;
but real error is 10/+/100 = 1

000

* Bootstrap: error=1 ol




Type la Supernovae — redshift(z)
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