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Bayesian ano
frequentist inference



Propbabillity theory

e \\Ne cannot directly measure/observe what we are

interested In (think Q, or “the formation of the Milky
Way”)

e (Connection between models and data is often
statistical, and data has noise

e Need theory to express uncertain knowledge and to
update it



Two definitions of “probability

e (Great schism between two definitions of probability:

e Frequentist: Long-run relative frequency of
occurrence of an event in repeated experiments.
E.g., P(heads) = 0.5 bc half of coin-tosses of ideal
coin result in heads

e Bayesian: Real-valued measure of the plausibility of
a proposition, closely follows intuitive reasoning.
E.g., P(it will rain in 10 minutes|cloudy) = 0.5.
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The likelihood is a function both used in frequentist
and Bayesian inference

Essentially encodes how the data are produced by
the model (e.qg., straight line, intrinsic flux) and
observing procedure (e.g., noise)

Once model is fixed and observing procedure is
known, no freedom

Many desirable properties
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Abstract:

L = p(data | model,
observing procedure,
other necessary knowledge) 400+

300 A

500

Example: Straight line fit

Given x: model —> Ve = MX + b

0 50 100 150 200 250 300

Vobs = Yirue + Gaussian-noise-with-variance-o? .

L

P(Yobs | Model, X, 0) = p(Yobs | M, b, X, O)
P(Yobs | Yirue = MX + D, O)
N(Yobs | Ytrue = MX + b, 02)

Or -2 In L = (Yops -[MX + b])?/0° = X2
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Abstract:

L = p(data | model, observing procedure, other
necessary knowledge)

Example: data = 11 photons, observed with dark noise
equivalent to 1 photon

(11 photons | model=9 photons, dark=1 photon)
= Poisson(11 | mean = 9+1, variance = 9+1)

= 0.11373639611012128



* p(11 photons | model=x-1 photons, dark=1 photon)
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For multiple data points:

Suppose | observe the source 10 times, get {4, 11, 8, 7,
10, 15, 13, 11, 10, 13}

Assume average model flux = 9 photons

L = Poi(4|10)xPoi(11]|10)xPoi(8|10)xPoi(7|10)xPoi(10|
10)xPoi(15]|10)xPoi(13|10)xPoi(11]|10)xPoi(10[10)xPoi(13|10)

= 7.16954/77633905203e-12

Typically use In L!!



All individual likelihoods Po i(obs|x)
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* Assuming multiple measurements are independent, multiply
together individual likelihoods:

L = p(datas|model) x p(datas|model) x ... x p(datay|model)
e L completely determined by model and observing:

e Photometry: intrinsic flux + dark noise + read noise —> Poisson /
Gaussian for large counts (more than ~100)

e Measurements of constant A with Gaussian noise s —>
Gaussian with mean=A, noise=s

 Model: Velocity distribution with mean A and velocity dispersion
s —> (Gaussian with mean=A, noise=s



Maximum likelihood
Estimator (MLE)

* Fit parameters by finding the maximum of the
likelihood

* Likelihood = probabillity of data given mode|l —>
makes sense to maximize this!



Sum In L
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Sum In L, 100 observations

25



Sum In L, 100 observations

25



Desirable properties of
maximum likelihood

Units: 1/data —> maximum doesn’t change when
changing parametrization of model! (functional
invariance)

Consistent. approaches true value with probability 1
when N goes to infinity (~asymptotically unbiased)

Asymptotically normal: Estimator becomes true value
+/- Gaussian error

Asymptotically efficient: Saturates Cramer-Rao bound
when data goes to infinity (cannot get better estimate)



Example: Gaussian

Have N measurements x; with error o, model =

L = Hip('ri‘ma U) = 11, N(%‘mv 02)

1 - —m)?
In L = ~5 Z (@ m) - constant

o2

d:_nﬁ B Z (x; —m) 0

Unbiased!



1.4

1.2 |-

1.0 |-

0.6 |-

04 -

02 -

0.0
-1.5

f

| | |

-1.0 -0.5 0.0 0.5 1.0

Mean = -0.00379687 73546516459

1.5



Example: (Gaussian variance

« Have N measurements x; with mean m, draw from Gaussian with variance V

e Mean is the same!

L = Hp($i|ma V) = H/\/(az@-\m, V)

1 _(%—m)Q | |
In L = —3 ZL: _ ” | anJrconstant_
dlnl 1 (z; —m)* 1 -
v 24| V2 V]
1

* Biased! (Unbiased has 1/[N-1])
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Bessell correction: only N-1 constraints,
because 1 used for mean
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Confidence intervals

Without Bayes, the likelihood on its own is not a probability
distribution for the estimator

Can derive confidence intervals: 95-percent confidence
interval contains the true value 95% of the time

Typically need to simulate data to figure this out; analytic
results for some distributions

Asymptotic normality: when N becomes large, difference
between estimate and true value is Gaussian with variance

Vi = -1/(d? In L / d modely d model,) evaluated at MLE



Example: Gaussian

e Have N measurements xi with error g, model = m

L = Hp(ati\xi,a) — HN(xi\m,JQ)

1 P — 2
In L = —5 Z (x m) - constant

0-2

dln L T; — M
e~ Gaimm)

dm

d21n£:_z I N

dm?

O

 Uncertainty on m: \/—N



Bayesian probabllity theory

e Bayesian probability theory follows from three axioms:

e Degrees of plausibility are represented by real
numbers

e (Qualitative consistency with common sense (e.g.,
p(A|C) Tthen p(not A|C)!; small increases in
plausibility lead to small increases in the real
number representing it)

e (Consistency (internal, use of all information,
indifference)



Bayesian probabllity theory

e [hree axioms lead to probability calculus similar to
deductive logic (see Chapters 1 & 2 of Jaynes’
Probability Theory: The Logic of Science)

e P(AuB|C) = P(A|C)+P(B|C)-P(AnB|C)
e P(AnBJ|C) = P(A|BnC) x P(B|C)

e P(AIBnC) = P(B|AnC)xP(A|C)/P(B|C)



Inference using Bayes's
theorem

« Bayesian probability theory allows you to compute p(model | data)
e Bayes's theorem:

p(data | model) x p(model)
p(model | data) = -

p(data)
or

Likelihood x Prior
Posterior =

Evidence

o Posterior probabillity distribution can be directly interpreted as
probability of the model (parameters)



Posterior propabillities

* The fact that p(model|data) is a probability distribution has advantages
and disadvantages:

« Bad: p(model|data) is not functionally independent: changing the
parametrization of the model will change p(model|data) —> maximum-
a-posteriori estimate, mean, etc. depend on parametrization

« Good: Can directly derive credibility intervals from p(model|data)

* Good: Can marginalize over nuisance parameters: p(model|data) =
\int d nuisance p(model,nuisance|data)

« Good: Can carry full p(model|data) forward to ‘'new data’
p(model | new data,data) = p(new data | model) p(model|data) / p(new
data)

* All good things come at the cost of introducing the prior p(model), which
many people find hard to stomach...



A word on priors

Any application of Bayes’s theorem requires priors, often considered a
disadvantage

As the name implies, these typically encode one’s prior knowledge of the
model (parameters) under investigation

Long literature on “uninformative priors”: rules of thumb:
e Unitless parameter: flat prior over reasonable range

e Parameter with units: flat prior on In(parameter); puts equal weight on
different orders of magnitude

e However, if you know the order of magnitude, a flat linear prior might be
more appropriate

e |f prior matters much, then your data is not that informative!

Use freedom in specifying the prior to your advantage (hierarchical modeling)



“Uninformative” priors

One is typically expected to use “non-informative priors”:
priors that do not strongly constrain the posterior

Note: choosing the model is often a very strong prior!

For example: unitless parameter A: 1, 1.5, 2.5, 3.3, ... NO
reason to prefer any —> p(A) = constant (improper!)

Scale parameter V (has units): prior shouldn’t depend on
units —> should be invariant under re-scaling

o(V) dV = pw(W=sV) d(sV) = p(W=sV) d(sV) —>
p(V) ~ 1 /V



Example: (Gaussian variance

« Have N measurements x; with mean m, draw from Gaussian with variance V
* Prior on the mean: constant, prior on the variance ~ 1/ variance = 1/V

e Mean is the same as MLE

1
L = H./\/'(:L’Z-\m, V) = p(Vi]z) « L =

1 i—m)> N
Inp(Vl]x;) = —3 Z (@ Vm) 5 InV —InV + constant

)

dinp(V|x;) 1 Z (x; —m)* N +2
dV 2

2 V2 2V

1

1 2
V = N+22($Z—m)

1

* Biased! (Unbiased has 1/[N-1])




So far,
unitform for unitless parameters ,
1/param for unit-full parameters
has served me pretty well. ..




Advanced approaches to
determining priors

* Jeffreys prior:
prior ~ square-root (determinant Fisher Information)

Fisher information = E[-(d2 In L / d model?)]

* Invariant under change of variables (good!)



Advanced approaches to
determining priors

Conjugate priors: For computational ease, useful to get p(model|
data) that has the same form as p(model)

So want
p(model|data) ~ p(datajmodel) p(model)
to have the same form as p(model) —> p(model) set by likelihood

For example, mean of a Gaussian: conjugate prior on mean is
Gaussian

Useful if you want an informative prior, but want to be able to, e.g.,
compute the maximum of the posterior probability analytically



Advanced approaches to
determining priors

 Maximum entropy: If you want as uninformative
orior as possible, but have some constraints
(iInformation)

* Maximize entropy= - Sum; pi In[pi] (or integral
generalization) under certain constraints (Lagrange
multipliers and all that)



Okay, you have a prior and the likelihood, now
what do you do with the posterior probability
distribution?



What to do with PDFs

e Bayes's theorem:

p(data | model) x p(model)

p(model | data) =
p(data)

* Some people would claim that you need to publish p(model | data)
somehow

* Practically, need summaries

e Single-point summaries: MAP (maximum-a-posteriori value), mean,
median, ...

* Width: variance? Some range of quantiles, like 68% around single-point

e [atter: Start at (max,mean,median,...) and integrate outward at constant
0 until you have 68% of the area; works in multi-D

e Multi-modal PDFs: Sorry! Do something sensible.



Bayesian inference recap

» Likelihood: p(datalmodel), comes from underlying
(physical/empirical) model + observing procedure (noise,
PSF, ...)

» Pick reasonable prior: uninformative or based on
previous results

e compute posterior PDF ~ likelihood x prior: Can use grid
for low-dim, sampling methods for higher dim (next week)

o Compute summaries of PDF to list in tables, abstracts,
press releases



Bayesians vs. frequentists

Like most of such battles, there is very little actually at stake; at high
SNR, all good (unbiased, efficient) methods return the same answer

Bayes’s theorem proven to be optimal way to do inference; so will
get best results by using it!

Likelihood-based frequentist methods often very similar to
corresponding Bayesian method

Bayesian inference has more freedom than frequentist inference:
can open up the prior to modeling (empirical Bayes, hierarchical
modeling)

Difficult to do marginalization in frequentist approach —> difficult to
integrate over lack of knowledge



