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The merger of two carbon-oxygen white dwarfs (CO WDs) can either create a more massive WD,

lead to collapse into a neutron star, or explode spectacularly as a thermonuclear, or Type Ia, supernova

(SN Ia). It has traditionally been believed that SNe Ia result only from mergers at or above the

Chandrasekhar mass (MCh), as these can subsequently become dense enough to trigger runaway

fusion. Recently, however, it has been proposed that the merged product, or “remnant”, might instead

subsequently ignite fusion from high temperatures. This opens the possibility of SNe Ia arising even

from sub-MCh mergers.

To investigate this, I conducted a series of hydrodynamic simulations of the merging process.

I first performed simulations spanning the range of possible mergers using the smoothed-particle

hydrodynamics code Gasoline, finding that remnant configurations are roughly homologous for

mergers of WDs with the same difference in mass ∆M. In particular, “similar-mass” mergers with

∆M . 0.1 M� generate remnants that are heated throughout their dense cores, making them candidates

for subsequent explosion.

These results are challenged by my simulations of a 0.625− 0.65 M� merger using the moving-mesh

code Arepo. Unlike in Gasoline, the merger remnant in Arepo not only has a relatively cold core, but

one that is crescent-shaped and launches a one-armed spiral wave into its surroundings. I also insert

weak magnetic fields into the WDs in Arepo, and find exponential field growth during their merger,

leading to a > 1010 G field within the remnant. Further study is required to understand how these

novel features alter post-merger evolution.

Lastly, I calculate the evolution of idealized CO WDs experiencing runaway nuclear burning in

their centers, which ends either with an explosion or expansion into a carbon-burning star. I determine

the minimum mass for an explosion to be Mcrit ≈ 1.15 M�, which can be reached by the dense cores

of some sub-MCh merger remnants. These remnants, however, are likely too underdense to explode,

leaving only mergers with masses & MCh that can.
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“Models of supernovae have often been more noted for the imagination dis-
played in their creation than for their intrinsic plausibility – like dragons.”

–David Arnett, Supernovae and Nucleosynthesis

“But nature is always more subtle, more intricate, more elegant than what we
are able to imagine. Given our manifest human limitations, what is surprising
is that we have been able to penetrate so far into the secrets of Nature.”

–Carl Sagan, The Demon-Haunted World: Science as a Candle in the Dark
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variables” Wi = (ρi, ui, Pi, Bi), i.e. the values of density, velocity, pressure and magnetic
field amplitude at the cell’s center of mass si. Note that ri 6= si, but their separation
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between two cells L and R are calculated by propagating their primitive variables WL,R

to the centroid of their interface f to obtain Winterface
L,R (Eqn. 3.19, or Eqn. 3.23 following

Pakmor et al. 2016), and then solving the Riemann problem (in the frame of the interface).
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Chapter 1

Introduction

Approximately two out of every three stars are born into a binary system. A substantial fraction of these
binaries – from ∼ 10% of those where the more massive star is a solar-like G star to nearly all of those
where it is a massive O-type star (Moe & Di Stefano 2016) – will interact, some following the expansion
of one or both constituent stars as they evolve off of the main sequence, and others after gravitational
radiation, magnetic braking or three-body dynamics drastically shrink their orbital separation. These
interactions primarily take the form of mass transfer between the stars, and if mass transfer becomes
unstable, it ends with the violent coalescence of the two stars into one. These stellar mergers, like
other forms of binary interaction, disrupt single star evolution and create merged products, or “merger
remnants”, with unusual properties.

Mergers also liberate energy on the order of the gravitational binding energy of the binary and can
eject copious amounts of mass, giving rise to a cornucopia of electromagnetic (and gravitational-wave)
transients ranging from luminous red novae (from the merger of two (post-) main-sequence stars;
eg. Tylenda et al. 2011; Nandez et al. 2014) to short gamma-ray bursts (from two neutron stars or a
neutron star and a black hole; eg. Rosswog 2015) and the gravitational wave outburst from coalescing
stellar-mass black holes (as recently found by the Advanced Laser Interferometer Gravitational-Wave
Observatory (Advanced LIGO); Abbott et al. 2016). Indeed, with current deep and short-cadence
optical/near-infrared survey projects such as the Palomar Transient Factory (Rau et al. 2009) and
Pan-STARRS (Kaiser et al. 2010) continuing to uncover more uncommon and even hitherto-unknown
transients, and the ambitious Large Synoptic Survey Telescope (LSST Science Collaboration et al. 2009)
under construction, a much more complete picture of merger-generated transients will form over the
next decade.

In this thesis, I will be examining the merger and post-merger evolution of two carbon-oxygen
white dwarfs to determine the sorts of merged products and transients they create. In particular, I
investigate if they can produce thermonuclear, or Type Ia, supernovae, even if their total mass is below
the Chandrasekhar mass. I will first discuss the mergers of white dwarfs in general, and the diverse
array of unusual stars and explosions they could potentially generate. I will then focus on the possible
outcomes for mergers of sub-Chandrasekhar carbon-oxygen white dwarf binaries, and elaborate on
why novel mechanisms for making Type Ia supernovae are needed.

1
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Figure 1.1: The expected compositions for white dwarfs undergoing a merger as a function of their
masses, from Dan et al. (2012, their Fig. 1). M1 is the mass of the accretor, or primary, WD (Ma in the
text), and M2 is the mass of the donor, or secondary (Md). WDs with masses M < 0.45 M� are assumed
to be He WDs, those with 0.45 < M < 0.6 M� CO WDs with thick He envelopes, 0.6 < M < 1.05 M�
CO WDs, and M > 1.05 M� ONe WDs. See text, as well as Dan et al. (2012) Sec. 2, for discussion on
these choices.

1.1 Mergers of Two White Dwarfs

Stars with masses . 8 M� generally end their lives as white dwarfs (WDs). On their own, WDs are
inert: held up against gravity by electron degeneracy pressure and having ceased nuclear fusion, they
will slowly radiate away their remaining thermal energy over billions of years. WDs in interacting
binaries, on the other hand, can receive mass and energy from their stellar companion, leading to a
whole host of energetic and potentially explosive phenomena.

Among double WD binaries, a fair number are in extremely close orbits, with periods ranging from
hours to minutes. As these periods correspond to orbital separations well within the radii of red and
asymptotic giant branch (RGB and AGB, respectively) stars, the WD pairs are formed from systems
that have experienced at least two episodes of mass transfer (eg. Nelemans et al. 2001c; Toonen et al.
2012; 2014). These can sap the orbital angular momentum of the binary through mass loss, and so close
double WDs tend to come from systems where (at least) the final mass transfer phase is a “common
envelope event” where one star enters the envelope of the other and much of this envelope is ejected.1

The mass and composition of each WD within the binary is dependent on the binary’s prior
evolution. Broadly speaking, WDs with masses M . 0.45 M� are composed of helium (He); these come
from stars that had their evolution interrupted by binary interaction while on the red giant branch
(eg. Marsh et al. 1995; Nelemans et al. 2001c; Podsiadlowski et al. 2002; Nelson et al. 2004), before

1Binaries may also experience a “double common envelope event” – where both stars simultaneously envelop one another
– and other unusual interactions. See eg. Toonen et al. (2012) and the Appendix of Toonen et al. (2014) for overviews of the
formation channels of close double WD binaries.
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their degenerate He core became massive enough to trigger a helium flash.2 WDs with slightly higher
masses have cores composed of carbon and oxygen (CO) surrounded by extensive He envelopes of
∼ 0.1 M� (eg. Iben & Tutukov 1985; Nelemans et al. 2001c; Podsiadlowski et al. 2002). Dan et al. (2012),
who simulate mergers of WDs with masses from 0.2− 1.2 M�, approximate the mass range of these
“hybrid WDs” to be 0.45 . M . 0.6 M�, and set the composition of the upper 0.1 M� of their WDs
that are within this range to He. From 0.6 . M . 1.1 M� WDs are almost entirely composed of CO,
with He atmospheres of ∼ 10−2 M� (Iben & Tutukov 1985). WDs with masses & 1.1 M� come from
super-AGB stars (eg. Herwig 2005; García-Berro 2013) that ignite carbon during their evolution, and
thus are composed at least partly of oxygen and neon (ONe).

Fig. 1.1, from Dan et al. (2012), summarizes these relationships – in it, M1 is the mass of the more
massive primary WD, which accretes mass during the merger, and M2 is the mass of the secondary,
which donates mass (see Sec. 1.7.2 for why this is always the case). In this thesis, we refer to these as
Ma and Md, respectively. While sophisticated stellar evolution calculations are not at all as clear-cut
(eg. Iben & Tutukov 1985; Prada Moroni & Straniero 2009 for CO WDs with M . 0.45 M� and Hurley
et al. 2000 for CO WDs with M & 1.2 M�), these relationships are used as rules of thumb for setting
WD composition for a wide range of works (Lorén-Aguilar et al. 2009, henceforth LIG09; Raskin et al.
2012; Dan et al. 2012; 2014), with slight variations between them. In this thesis, we look at binaries of
pure CO WDs (without He atmospheres) with masses ranging from 0.4− 1.0 M�.

Following their formation, WD binaries lose orbital angular momentum by emitting gravitational
radiation (eg. Peters & Mathews 1963).3 This loss has a characteristic inspiral timescale of (Segretain
et al. 1997)

τgrav =
Lorb

|L̇orb|
=

5c5

32G3
a4

MaMdMtot

= 5× 105
( a

105km

)4
(

M�
Ma

)(
M�
Md

)(
M�
Mtot

)
yr. (1.1)

where Lorb is the orbital angular momentum and a is the orbital separation. From this, we see that WD
binaries with orbital periods on the order of hours or less (a . 106 km ∼ 0.01 AU) will merge within a
Hubble time.

As an aside, the gravitational waves emitted by inspiralling WD binaries are detectable from Earth.
With periods on the order of minutes, they are too low-frequency to be detected by Advanced LIGO
(LIGO Scientific Collaboration et al. 2015), but are expected to be the most numerous and dominant
source of gravitational waves (Marsh 2011) detected by the proposed spaceborne detector eLISA
(evolved Laser Interferometer Space Antenna; Amaro-Seoane et al. 2013), which probes the mHz - Hz
frequency range. The instrument will likely resolve individual signals from thousands of binaries
with orbital periods on the order ∼ 10 minutes (and are thus close to merging; Amaro-Seoane et al.
2013; Marsh 2011; Dan et al. 2011), while numerous sources that are too far away or at longer orbital
periods will comprised an unresolved background (Nelemans et al. 2001b; Amaro-Seoane et al. 2013).
Measurement of either of these will probe the WD binary population of the Milky Way without the
selection biases that often trouble electromagnetic binary searches (Marsh 2011). Note that gravitational

2WDs with M . 0.5 M� could also come from single stellar evolution, but, except in cases of extreme mass loss on the red
giant branch (eg. Kalirai et al. 2007), this would take longer than a Hubble time.

3They may also lose angular momentum through the influence of a third body (eg. Katz & Dong 2012); see Sec. 1.3.2.
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radiation plays a negligible role in the actual merger, as the waves released during the merger have a
total energy . 10−9 of the binary’s binding energy (eg. LIG09).

1.2 Merger Outcomes

Like any merger, those between WDs liberate of order their gravitational binding energy. This can lead
to enough heating and/or compression to reignite the nuclear furnaces of normally inert WDs. As
this may happen under either non-degenerate or degenerate circumstances, the end product of such
mergers are diverse, ranging from stars with unusual properties undergoing stable nuclear burning to
explosions. Additionally, hydrostatic WDs have a maximum mass beyond which they are unstable to
collapse – the Chandrasekhar (1931) mass, or MCh, at ∼ 1.4 M�. This has long led to the notion that
sufficiently massive WD mergers can result in the complete destruction of the merger product in a
thermonuclear explosion that would resemble a Type Ia supernova (SN Ia; Webbink 1984), or in its
transformation into a neutron star (NS; Nomoto & Iben 1985; Saio & Nomoto 1985). We now know of a
much greater range of possible merger outcomes for both systems with masses above and below MCh.
Which outcome occurs depends on the compositions of the WDs involved, and are briefly summarized
below (see also Dan et al. 2014, who produce a similar list):

• The merger of two He WDs is unlikely to lead to violent nuclear burning and an explosion (Dan
et al. 2012; 2014). Instead, merger remnants with total masses 0.4 . Mtot . 0.8 (Han et al. 2002;
Iben & Tutukov 1985)4, which are the vast majority of double He WD remnants (Nelemans 2010),
are expected to ignite He burning in a shell. Saio & Jeffery (2000) and Zhang & Jeffery (2012b)
calculate that He shell burning increases the radius and luminosity of the remnant, turning it over
∼ 103 − 104 yr into a yellow giant. Over the next 105 − 106yr, the burning shell migrates inward
with a series of weakening shell flashes, while the radius slowly shrinks to ∼ 10−1 R�. Once the
shell reaches the center of the remnant, the remnant settles onto the helium main sequence, and
resembles a He-rich subdwarf B (sdB) or O (sdO) star (Saio & Jeffery 2000; Justham et al. 2011;
Zhang & Jeffery 2012b; Heber 2016). Most subdwarf stars are in binaries – and likely arise from
other formation channels – and there are multiple mechanisms theorized to produce single sdB
stars (such as a merger between a low-mass star or brown dwarf and a red giant; Soker 1998),
and so the contribution of mergers to the sdB population remains unclear (Nelemans 2010; Heber
2016).

• The outcome of a merger between an He and a CO WD – or any other He-rich merger, such
as that between an He and hybrid He-CO WD, or two hybrid WDs – will involve He burning,
since the peak temperatures within their remnants easily exceed the He ignition temperature of
∼ 108 K (Ch. 2; Dan et al. 2014). Roughly speaking, mergers with Mtot . 0.8 M� will lead to
steady He burning in a shell, and are thought to be the progenitors to He-rich sdO stars (Justham
et al. 2011). Mergers with Mtot & 0.8 M� that do not experience an explosion will also ignite shell
burning, but unlike their less massive counterparts they will retain their extended envelope over
the ∼ 105 yr lifetime of the He-burning shell (Iben & Tutukov 1985; Zhang & Jeffery 2012a). These
mergers are believed to be the primary formation channel for Hydrogen-deficient Carbon (HdC)

4This is lower than the He flash mass of ∼ 0.45 M� because the merger remnant is partly non-degenerate (Iben & Tutukov
1985; Han et al. 2002).
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and R Coronae Borealis (R CrB) stars (eg. Webbink 1984; Iben & Tutukov 1984; Saio & Jeffery
2002; Clayton 2012; Zhang et al. 2014), which are H-deficient, He- and C-rich supergiants that, in
the case of R CrB stars, feature abrupt variability by up to a factor of ∼ 103 due to the formation
of carbon dust above their photospheres.5 Following He shell exhaustion, they will contract in
radius and heat their envelopes, resembling EHe stars (Saio & Jeffery 2002; Jeffery 2014) before
eventually becoming CO WDs.

Explosive He-burning becomes more likely for binaries with Mtot & MCh (Dan et al. 2012; 2014).
In cases where an accreted He shell explodes, but the underlying CO WD remains, the result
depends on a number of factors including the mass of the CO WD and amount of He it accretes,
and spans a wide range of possible peak luminosities (Shen et al. 2010a; Waldman et al. 2011;
Woosley & Kasen 2011). Detonations (or deflagrations; Woosley & Kasen 2011) of . 0.1 M� He
shells lead to explosions that reach peak brightnesses ∼ 10− 100 fainter than SNe Ia over ∼ 2− 10
days (typical SNe Ia values are in Sec. 1.3), making them similar to the “.Ia SNe” theorized
to occur in AM Canum Venaticorum binaries (Bildsten et al. 2007; Shen et al. 2010a; Woosley
& Kasen 2011; Waldman et al. 2011). Detonations of ∼ 0.1 M� He shells on ∼ 0.6 M� WDs
synthesize Ca, Cr and Ti, but relatively little of the radioactive 56Ni typically seen in SNe Ia,
while envelopes that are either themselves more massive or lie over more massive WDs tend to
synthesize more 56Ni due to their increased density (Shen et al. 2010a; Waldman et al. 2011).

In the case where the He shell detonates, and triggers the CO WD to do the same, a “double-
detonation” SN Ia may be produced (Sec. 1.3.2).

• The merger of two CO WDs has long been suspected of producing an SN Ia under the right
conditions (Sec. 1.3 and 1.4). If these conditions are not met, they will instead create a lone,
massive, rotating and highly magnetized CO WD or, if steady carbon fusion is ignited, a carbon-
burning star that eventually turns into an ONe WD (Sec. 1.5). If the ONe WD is above MCh, it
may collapse into a neutron star (see below).

As previously noted, CO WDs retain thin, ∼ 10−2 M� He envelopes. Raskin et al. (2012) include
these envelopes in their CO WD merger simulations, and find that a 0.64− 0.64 M� merger
burns only ∼ 2% of its He, but those with & 1 M� accretors trigger He detonations just prior
to coalescence. Pakmor et al. (2013) also find a He detonation in their 0.9− 1.1 M� merger.
Mergers between CO and hybrid WDs are He-rich, and (as discussed above and in Dan et al.
(2014)) may produce R CrB and EHe stars, but can also experience a detonation if their total
mass is sufficiently high. He envelopes are not considered in this thesis, but their potential for
detonating during the merger implies that massive CO WD mergers could be progenitors for
double-detonation SNe Ia (Sec. 1.3.2).

• Due to their mass, it is likely that the merger of an ONe WD with any companion will create
a super-MCh remnant. Unlike their CO counterparts, an ONe WD that is compressed through
accretion to & 3× 109 g cm−3 initiates electron-capture reactions onto 24Mg and 20Ne, losing
degeneracy support in the process (eg. Miyaji et al. 1980; Saio & Nomoto 1985; Schwab et al. 2015).
This leads to further contraction, which likely ends6 in an accretion-induced collapse (AIC) into a

5Subdwarf stars formed from double He WD mergers with Mtot & 0.8 M� will also expand to become R CrB stars following
core He exhaustion, but this formation channel accounts for only a few percent of all R CrBs (Zhang & Jeffery 2012a).

6Since the electron capture reactions are exothermic, they trigger a thermal runaway that eventually starts an O-deflagration at
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neutron star soon after its central density reaches ∼ 1010 g cm−3 (Schwab et al. 2015). Simulations
(Dessart et al. 2006; 2007; Fryer et al. 2009) of the AIC find it expels only ∼ 10−2 M� of ejecta and
produces similar amounts of radioactive 56Ni, suggesting a very faint transient.

Dan et al. (2014) discusses the possibility that He - ONe and CO - ONe WD mergers will lead
to enshrouded AIC that produce “hybrid supernovae”, where much of the outer envelope (of a
different composition) explodes rather than collapsing. In particular, they suggest (based on the
Shen et al. (2010a) and Waldman et al. (2011) simulations above) that the detonation of the thick
He envelope of a significantly super-MCh He - ONe WD merger remnant could explain the SN
2005E-like class of low-luminosity SNe Ib that produce very little 56Ni, have low ejecta masses
and spectroscopically show strong lines of He and Ca (Perets et al. 2010).

Marquardt et al. (2015) suggest that an ONe WD could be detonated through binary interactions
in the same manner as CO WDs (Sec. 1.3.2). Due to their high densities, these would produce
& 1 M� of 56Ni, but, because fusing to 56Ni from O and Ne generates ∼ 30% less energy than
from C (Marquardt et al. 2015), they would also be weaker than comparable CO WD detonations.
Detonations during ONe mergers may explain supernovae such as SN 2009dc (Taubenberger et al.
2011) that have a peak brightness ∼ 3 times higher, and decay from peak brightness ∼ 1.5 times
more slowly, than SNe Ia, and also have low expansion velocities.

Of these possibilities, ones that create SNe Ia are particularly intriguing, as they may hold the key
to solving the long-standing problem of how these explosions arise.

1.3 The Mystery of Type Ia Supernovae

SNe Ia have been observed by astronomers for centuries. SN 1572, for example, was observed by
Danish astronomer Tycho Brahe to be “far beyond the Moon”, and helped lead to the abandonment of
the Aristotelian concept that the heavens were immutable (eg. Clark & Stephenson 1977).

Today, SNe Ia are classified (eg. Filippenko 1997; Li et al. 2011b) by the lack of H and He, as well as
the strong presence of Si II, in their spectra. They comprise 24% of all supernovae in the local universe
(Li et al. 2011b), but are spotted disproportionately often by surveys because they are among those
that are the most optically luminous (Howell 2011). “Normal” SNe Ia (Branch 1998; Branch et al. 2006)
typically reach a maximum bolometric luminosity of ∼ 1043 erg s−1 after 18 - 20 days, followed by an
order-of-magnitude decline in brightness over a month, and finally a slower, exponential decline of a
factor of ∼ 2.5 every month due to the decreasing rate of heating by radioactive decay within the ejecta
(eg. Filippenko 1997; Hillebrandt et al. 2013). Their spectroscopic features show they are composed of
a combination of intermediate-mass elements such as Si and Ca, and peak-iron elements such as Fe
and Ni (Arnett 1996; Filippenko 1997). They seed both these elements and their kinetic energy into the
interstellar medium, and so play an important role in star formation and galactic chemical evolution
(Maoz et al. 2014).

Normal SNe Ia are remarkably homogeneous, and exhibit variations that can – to first order – be
parameterized by a single variable (Hillebrandt & Niemeyer 2000; Howell 2011). This is reflected most
famously in the Phillips (1993) relation, where SNe Ia with greater peak brightnesses tend to evolve

∼ 1010 g cm−3. Whether or not collapse or explosion occurs depends on exactly when the deflagration ignites; see eg. discussion
in Schwab et al. (2015).
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more slowly in time. Secondary correlations also exist, including the “color-luminosity” relation where
SNe Ia that reach lower peak brightnesses have redder colors around then (Riess et al. 1996). Their
parameterizability, as well as their intrinsic brightness, make SNe Ia outstanding cosmological distance
indicators. They were most famously used in this context in the much-celebrated discovery of Riess
et al. (1998) and Perlmutter et al. (1999) that the expansion of the universe is accelerating under the
influence of a “dark energy”, the exact nature of which remains mysterious.

Up to 30% (Li et al. 2011b) of explosions classified as SNe Ia are “peculiar” SNe Ia that are an order
of magnitude fainter (eg. SN 2002cx (Li et al. 2003; Foley et al. 2013) and SN 1991bg (Mazzali et al. 1997))
or substantially brighter (eg. SN 2009dc; Yamanaka et al. 2009; Taubenberger et al. 2011) than normal
ones. These do not adhere to normal SNe Ia correlations above, and are generally believed to have
different progenitors or explosion mechanisms from normal SNe Ia. A number of these progenitors
have already been discussed in Sec. 1.2, and several more are mentioned in Sec. 1.3.2.

Despite their ubiquity and utility, however, the exact nature (or natures) of the progenitors to normal
SNe Ia remains mysterious. They were first proposed to be explosions of CO WDs by Hoyle & Fowler
(1960) based on the composition of SNe Ia ejecta. This is now well-established by the similarity of the
light curve, energetics and spectral evolution of a typical SN Ia to those calculated for an exploding CO
WD. Also, early-time observations of the recent SN 2011fe have constrained the radius of the exploding
object to be . 0.1 R� (Nugent et al. 2011; Bloom et al. 2012; Maoz et al. 2014), consistent with a CO WD,
while late-time observations of SN 2014J have detected gamma-ray emission from the decay of 56Ni
(Churazov et al. 2014), produced by the burning of carbon and oxygen to nuclear statistical equilibrium.
What is much less well-understood is how the CO WD is made to explode, leading to a vast body of
literature exploring the various theoretical and observational lines of evidence. The references below
are necessarily only a subsample of this literature; see Howell (2011), Hillebrandt et al. (2013), Maoz
et al. (2014), and Tsebrenko & Soker (2015) for excellent reviews and further references.

1.3.1 Traditional Formation Scenarios and Their Pitfalls

Until recently, the most widely accepted progenitor scenarios have involved pushing a CO WD to carbon
ignition by slowly adding mass to it (Hillebrandt & Niemeyer 2000). The added mass compresses and
heats the WD’s interior, but the latter is at least partially balanced by cooling from neutrino emissions,
which prevents carbon ignition due to high temperatures. As the CO WD approaches MCh and its
central density approaches ∼ 2× 109 g cm−3, the rate of heating from pycnonuclear carbon fusion – i.e.
carbon fusion due to extreme density – starts to exceed that for neutrino cooling. Because ignition
occurs under highly degenerate conditions, the WD does not respond to this heating by expanding, and
so, unlike a non-degenerate star, experiences a nuclear runaway. This lasts ∼ 1000 yr, until the timescale
for nuclear heating at the WD’s center becomes shorter than the star’s dynamical time. Dynamical
burning then begins, and some kind of explosion is inevitable.

The various scenarios to get a CO WD to accrete slowly can be subdivided into two classes, or
“channels”: the single-degenerate (SD) channel (Whelan & Iben 1973), where the WD steadily accretes
from a non-degenerate companion (a main sequence star, a giant, or an sdOB star), and the double-
degenerate (DD) channel (Iben & Tutukov 1984; Webbink 1984), where two CO WDs with a total mass
& MCh merge, producing a merger remnant composed of a dense, degenerate “core” surrounded
by a thick accretion disk. Both scenarios are beset by two issues, which we summarize below using
arguments from van Kerkwijk et al. (2010, henceforth vK10; see also van Kerkwijk 2013).
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The first issue is that in order to match the observed SN Ia rate of ∼ 0.0023± 0.0006 for every solar
mass of stars formed (Maoz et al. 2011), ∼ 1% of all WDs formed (of any composition and regardless of
binarity) must produce SNe Ia. Compared to this relatively large number, there is an apparent paucity
of CO WDs that can reach MCh from either channel. In hydrogen-accreting SD systems, efficient
growth of the WD appears only achievable if the accretion rate is between 10−8− 10−7 M� yr−1. Slower
accretion results in nova outbursts that eject the accreted mass (Townsley & Bildsten 2004; though see
Zorotovic et al. 2011), while faster accretion builds up an extended envelope that eventually engulfs the
donor (Iben & Tutukov 1984). Systems that do accrete at the correct rate – and steadily burn hydrogen
to helium – should radiate supersoft x-rays, but observations of galactic x-ray flux suggest a factor of
10− 100 too few of these systems exist to explain the SNe Ia rate (Di Stefano 2010; Gilfanov & Bogdán
2010), and whether or not these systems can be “hidden” from view as rapidly-accreting enshrouded
WDs is debatable (eg. Hachisu et al. 2010; Lepo & van Kerkwijk 2013; Johansson et al. 2014). Even if
the accreted matter has been burned to helium, or the donor is He-rich, matter may still be ejected by
subsequent helium flashes (Idan et al. 2013; Piersanti et al. 2014; though see Hillman et al. 2016).

Meanwhile, analytical estimates (vK10), binary population syntheses (which simulate the evolution
of a population of binaries from the zero-age main sequence onward; Mennekens et al. 2010; Ruiter
et al. 2009; Toonen et al. 2012; Claeys et al. 2014) and empirical counting of candidate systems (Badenes
& Maoz 2012) all estimate that the merger rate of CO - CO WD binaries with total mass greater than
∼ MCh falls short of the SN Ia rate by a factor of at least a few. Not all of these mergers will necessarily
end as SNe Ia, either: if post-merger evolution leads to off-center carbon ignition in the merger remnant,
carbon burning will transform the remnant into an ONe WD, and an & MCh ONe WD likely ends its
life in an AIC, rather than exploding as an SN Ia (Nomoto & Iben 1985; Saio & Nomoto 1985; Yoon
et al. 2007; Schwab et al. 2016).

The second issue is the difficulty for the thermonuclear explosion of an MCh mass CO WD to
replicate the properties of normal SNe Ia. Normal SNe Ia synthesize ∼ 0.3− 0.9 M� of radioactive
56Ni, peaking at ∼ 0.6 M� (eg. Stritzinger et al. 2006; Piro et al. 2014), and feature ejecta that are
compositionally stratified, with intermediate-mass elements sitting above the peak-iron ones (Howell
2011; Hillebrandt et al. 2013). If dynamical burning leads to an extended region of high overpressure,
a detonation occurs: a supersonic shockwave drives through the WD and triggers nuclear fusion in
its wake (eg. Seitenzahl et al. 2009). As most of the mass in an MCh WD is & 109 g cm−3, nuclear
burning would convert almost all of the WD to 56Ni (Howell 2011; Hillebrandt et al. 2013). On the
other hand, if the explosion propagates as a subsonic deflagration, where a steep temperature gradient
– a flame front – moves outward via conduction, the WD is able to expand during the explosion. At
lower densities, intermediate-mass elements are produced. The explosion, however, produces slower
velocity ejecta than seen in SNe Ia, and mixes burned and unburned material such that the ejecta would
not appear stratified. To resolve this, an ad-hoc deflagration-to-detonation transition (DDT) is often
invoked (Khokhlov 1991), the timing of which can be tuned to vary the amount of 56Ni generated (eg.
Hillebrandt et al. 2013), though it remains unclear if this is a robust mechanism that produces realistic
WD explosions (eg. Fisher & Jumper 2015). It is also not obvious how invoking the DDT can explain
the dependence of observed SNe Ia on the properties of their host galaxies, for example why more
luminous SNe Ia tend to be in star-forming galaxies (eg. Hamuy et al. 2000; Sullivan et al. 2010).

The SD channel has a number of additional complications (Maoz et al. 2014; Tsebrenko & Soker
2015) that have led it to decline in popularity compared to the DD one. For example, it requires a
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non-degenerate companion, which, under certain conditions, might be detectable, but attempts to spot
the companion in pre-explosion archival data (Li et al. 2011a; Nielsen et al. 2013; 2014), during the
supernova (as it responds to being hit by SN ejecta; Bloom et al. 2012; Olling et al. 2015), or after the
explosion (eg. Kerzendorf et al. 2014a) have come up short. For SD scenarios involving hydrogen-rich
donors, the explosion is also expected to strip and entrain donor material, but attempts to find such
material either do not detect hydrogen, or, in one recent case, apparently too little hydrogen to be
consistent with SD donor stars (Maguire et al. 2016).

1.3.2 Brave New Channels

The challenges posed by the evidence above have spurred research into alternative scenarios that lead
to exploding CO WDs that are more physically viable and better fit observations. Notably, several of
these channels relax the condition that the exploding WD must be at or above MCh, allowing for a
wider range of exploding masses. The alternate scenarios include:

• The double-detonation channel (Livne 1990; Woosley & Weaver 1994), which involves a CO WD
accreting a thin envelope from an He-rich source – a He star, merger with an He/hybrid WD, or
even the thin He envelope of a CO WD. At some point – for slow accretion, when the base of
the envelope becomes hot enough to ignite dynamical He burning (Woosley & Kasen 2011); for
mergers, when a hotspot in the accretion stream or envelope reaches conditions for detonation
(Guillochon et al. 2010; Raskin et al. 2012; Pakmor et al. 2013) – the He shell detonates. This then
either drives compressional waves that converge at the core of the CO WD, or directly launches a
detonation shock into the CO WD, both of which trigger the secondary detonation of the CO WD
(though the former is more plausible; Moll & Woosley 2013).

Initially, double-detonations were believed to need massive He shells of & 0.1 M�, but these
produce significant amounts of 56Ni in the explosion, inconsistent with the stratified nature
of SNe Ia ejecta (eg. Kromer et al. 2010; Woosley & Kasen 2011). While the robustness of the
double-detonation remains a field of active research (eg. Woosley & Kasen 2011; Holcomb et al.
2013; Shen & Moore 2014; Shen & Bildsten 2014; Dan et al. 2015), more recent work suggests
thin, . 0.03 M� He shells may detonate for both slow accretion and mergers onto & 0.8 M� CO
WDs (Woosley & Kasen 2011; Pakmor et al. 2013; Shen & Moore 2014), and that a CO detonation
via converging shockwaves is likely as a result (Fink et al. 2010; Moll & Woosley 2013; Shen &
Bildsten 2014). Pure detonations of bare sub-MCh CO WDs with masses between ∼ 1− 1.15 M�
show light curves and spectra in good agreement with normal SNe Ia (Shigeyama et al. 1992; Sim
et al. 2010), while the detonation of the much less massive He shell greatly reduces (but does not
entirely eliminate) contamination from He shell nuclear ashes (Kromer et al. 2010; Hillebrandt
et al. 2013).

If the double-detonation channel is indeed physically plausible, it opens up a range of WD masses
beyond MCh that can explode, and more naturally explains the explosion. In particular, since
peak luminosity of the explosion is dependent on the mass of the CO WD (since more 56Ni is
generated in the detonation of massive WDs), this could explain both the Phillips (1993) relation
and the relationship between SN Ia luminosity and the age of its host stellar population (since
lower-mass WDs take longer to form). The problem remains that to generate typical SN Ia 56Ni
yields of ∼ 0.6 M�, the CO WD needs to be ∼ 1.1 M�, far above the mass of typical field WDs
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(Piro et al. 2014). For both slowly accreting and merging systems, it might be possible to grow
CO WDs by several 0.1 M� through He accretion in a past phase of binary evolution (Ruiter et al.
2011; 2013; 2014), but the viability of these scenarios are sensitive to how mass transfer is treated
(eg. the He retention efficiency). For slow accretion, current calculations also favor detonating
CO WD masses closer to ∼ 0.8 M� than 1.1 M� (Ruiter et al. 2011; 2014), which would produce
highly underluminous supernovae.

• The violent merger channel (Pakmor et al. 2010), a variant of the double-degenerate channel
where, during the merging process, material being accreted from one WD to another is sufficiently
superheated and compressed to trigger a detonation, sidestepping the need for accretion following
the merger. Only those binaries where the primary WD is & 0.9 M� and the WD mass ratio is
& 0.8− 0.9 (Pakmor et al. 2010; 2011b; Sato et al. 2016; Dan et al. 2012 suggests a higher minimum
primary WD of & 1.0 M�) are violent enough to trigger a detonation. Mergers with primaries
of & 1.0 M� produce explosions consistent with normal or overluminous SNe Ia (Pakmor et al.
2012b; Moll et al. 2014). Lower-mass systems produce ones that only synthesize ∼ 0.1 M� of 56Ni,
are much redder and have much slower velocities than typical SNe Ia, but could resemble the
subluminous SN 1991bg-like subclass (Leibundgut et al. 1993; Pakmor et al. 2010). Whether a CO
detonation can robustly be triggered during a merger requires further study, but regardless, the
CO WD binaries needed are highly super-MCh, and may be too rare to explain the majority of
SNe Ia (Badenes & Maoz 2012).

• The direct collision channel, in which two potentially sub-MCh CO WDs collide, rather than
merge, either because they are in a dense stellar environment (such as a globular cluster; Benz
et al. 1989; Lorén-Aguilar et al. 2010) or a hierarchical triple system (Katz & Dong 2012) under the
influence of the Kozai-Lidov mechanism (Kozai 1962; Lidov 1962). Hydrodynamic simulations
(Raskin et al. 2010; Kushnir et al. 2013; García-Senz et al. 2013) show that the impact of the WDs
leads to strong shocks that plow into both WDs and produce detonations. Explosion properties
can be varied by changing the impact parameter or the masses of the stars, with the collision of
two ∼ 0.65 M� CO WDs able to produce ∼ 0.4 M� of 56Ni (García-Senz et al. 2013; Kushnir et al.
2013), consistent with normal SNe Ia. A minority of WDs reside in dense stellar environments,
however, and only ∼ 10− 20% of stars are in triples, making it unlikely that this channel alone
can reproduce a substantial fraction of SNe Ia (Maoz et al. 2014; see their Sec. 2.3 for details).

• The core-degenerate channel (Livio & Riess 2003; Kashi & Soker 2011; Tsebrenko & Soker 2015),
which occurs when a progenitor system that would otherwise have produced a > MCh close
double WD binary does not survive its (second) common envelope phase (or survives in such a
tight orbit that it merges within 105 years afterward). To account for most SNe Ia, the super-MCh

remnant would have to live on for 108 − 1010 yr before exploding (since SNe Ia can occur in
stellar environments that have long ceased star formation; eg. Pritchet et al. 2008; Maoz et al.
2010). Ilkov & Soker (2012) propose this extended lifespan is achievable by a gradual loss of
solid-body rotational support through magnetic dipole radiation, but post-merger evolution
likely occurs over much smaller timescales (Sec. 1.4). Nonetheless, mergers during or just after
common-envelope events naturally explain peculiar SNe Ia that show interaction with substantial
amounts of circumstellar material (eg. PTF 11kx; Dilday et al. 2012; Soker et al. 2013).
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More unconventional channels have also been proposed where a CO WD detonates due to collisions
with planets and planetoids (Di Stefano et al. 2015) or due to compositional impurities near their core
that help facilitate pycnonuclear fusion (without the need of a binary companion at all; Chiosi et al.
2015). Further work is required to show the physical viability of these channels, and whether they
reproduce normal SNe Ia.

Regardless of whether or not any of these produce normal SNe Ia, studying them may be useful for
explaining the diverse subclasses of SNe Ia. For instance, synthetic light curves and spectra of pure
deflagrations of MCh CO WDs (Phillips et al. 2007; Kromer et al. 2013; Fink et al. 2014) reproduce the
low peak brightness, slow ejecta velocity and hot photospheric emission of the SN IaX subclass (or
SN 2002cx-like subclass; Li et al. 2003; Foley et al. 2013). Meanwhile, successful detonations of MCh

CO WDs have been linked to the overluminous SN 1991T-like SNe Ia (Fisher & Jumper 2015, but see
Seitenzahl et al. 2016).

1.4 The Sub-Chandrasekhar CO WD Merger Channel

Another channel was recently proposed by vK10, who hypothesize that the remnant from a double
CO WD merger could subsequently become hot enough to ignite thermonuclear fusion (rather than
dense enough to ignite pycnonuclear fusion). This opens the possibility for mergers with a total mass
significantly below MCh to also explode.

vK10 consider a fiducial merger of a 0.6− 0.6 M� CO WD binary, whose masses are chosen to be
near the empirical peak of the WD mass distribution (Sec. 1.7.1). Hydrodynamic simulations (LIG09)
find that the two WDs tidally destroy one another and coalesce into a remnant that is significantly
heated throughout, but does not achieve temperatures sufficient to ignite fusion (as it is much less
massive than the violent mergers considered in Sec. 1.3.2); moreover, the remnant central density,
∼ 2.5× 106 g cm−3, is too low to produce 56Ni in an explosion.

Following coalescence, however, the remnant, which is differentially rotating, enters a period of
rapid angular momentum redistribution due to hydrodynamically or magnetically-mediated viscosity.
Using the standard α-viscosity prescription (Shakura & Sunyaev 1973) – i.e. the kinematic viscosity
ν = αcs HP, where cs is the sound speed, HP the pressure scale height and α a tunable parameter – the
timescale for viscous evolution can be estimated as (Shen et al. 2012)
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where Menc is the mass enclosed within the inner boundary of the disk, and we have used τdyn ≈ HP/cs

and inserted a fiducial viscosity and typical numbers for remnants. Thus the vast majority of the
remnant’s angular momentum is transported away, and the remnant (including its disk) loses its
rotational support against gravity over a period ∼ 104 s.7 This loss of rotational support combined

7This is in contrast to earlier work (eg. Nomoto & Iben 1985; Yoon et al. 2007) that assume any rotationally-supported material
will slowly accrete onto the dense core of the remnant at a near-Eddington rate of Ṁ ∼ 10−5 M� yr−1. Remnants are prone to
magnetic instability (Shen et al. 2012; Ji et al. 2013), and will almost certainly evolve over the much shorter timescale given by the
α-viscosity estimate.
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with increasing weight from newly accreted disk material leads to compression and heating of the
remnant core. Since ∼ 104 s is far shorter than the thermal adjustment timescale of ∼ 104 yr (Shen
et al. 2012), compressional heating is adiabatic, and vK10 estimates that for the 0.6− 0.6 M� remnant it
leads the central density and temperature to increase to & 1.5× 107 g cm−3 and & 109 K, respectively,
at which point the nuclear fusion timescale is smaller than even the compressional heating timescale,
and a carbon nuclear runaway becomes inevitable. If the runaway leads to dynamical burning and
an explosion occurs, the generally lower densities of merger remnants compared to MCh WDs means
that burning leads to a larger pressure differential between the ashes and their surroundings, perhaps
making a detonation favorable over a deflagration (e.g. Mazurek et al. 1977; Seitenzahl et al. 2009).

The sub-MCh merger scenario features a number of advantages over the traditional MCh double-
degenerate channel. Like the double-detonation channel, this one substantially increases the number
of binary systems that could potentially explode – perhaps by a factor of ∼ 3, which would be more
consistent with the SN Ia rate (vK10, Badenes & Maoz 2012) – and naturally explains both the explosion
mechanism and some of the trends seen in the observed SN Ia population, thus alleviating the issues
discussed in Sec. 1.3.1. Unlike the double-detonation channel, however, a He detonation is not invoked
to trigger the CO WD to explode, negating the complications of the He detonation ashes on the SN
light curve, and the merger process provides a more natural means of obtaining the & 1 M� of CO
needed to synthesize the 56Ni found in a typical SN Ia.

This scenario requires that carbon ignition occur under highly degenerate conditions close to the
center of the merger remnant, which, in turn, requires the merger remnant be heated throughout its
interior, which is the case for mergers of nearly equal-mass binaries. When very unequal masses merge,
however, simulations show the less massive secondary WD is completely disrupted and forms a disk
and envelope around the largely undisturbed primary (LIG09). Compression of this remnant will likely
trigger off-center rather than central ignition, and could lead to stable carbon burning rather than an
explosion (eg. Yoon et al. 2007; Shen et al. 2012).

1.5 Massive Merger Remnants

Below some mass, the remnant of a double CO WD merger will almost certainly not be destroyed
in an explosion, and will live on as a single, massive, rapidly rotating and likely magnetized object.
If off-center carbon burning is ignited, the WD will be transmuted into an ONe WD over ∼ 104 yr
(Nomoto & Iben 1985; Shen et al. 2012; Schwab et al. 2016) but will not collapse into a neutron star,
since its mass is below MCh.8 Discovering the products of these mergers, therefore, is an indirect means
of investigating SN Ia progenitors (Dunlap & Clemens 2015).

A number of studies of the observed mass distribution of field WDs from sky surveys (eg. Liebert
et al. 2005; Giammichele et al. 2012; Kleinman et al. 2013; Rebassa-Mansergas et al. 2015b;a) note a high-
mass peak near 1 M� that is substantially offset from the global peak of the distribution at ∼ 0.65 M�
(Sec. 1.7.1), which could be evidence for a population of merger remnants. This interpretation is
controversial, as population synthesis studies (Rebassa-Mansergas et al. 2015b; Tremblay et al. 2016)
give conflicting results for whether the peak can be explained by single star evolution. However, they
are unlikely to specifically be double WD merger remnants: theoretical and observational estimates of
the double WD merger rate (eg. Badenes & Maoz 2012; Toonen et al. 2012) indicate it is an order of

8Schwab et al. (2015) find the critical mass needed to trigger an ONe WD to collapse is 1.38 M�, nearly at MCh.
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magnitude too low (Tremblay et al. 2016) to contribute the majority of systems in the high-mass peak,
and a kinematic study of objects in the peak conclude they are kinematically young (Wegg & Phinney
2012). The excess of massive WDs may alternatively be formed in common-envelope mergers akin to
the core-degenerate scenario, which better fits the evidence above (Rebassa-Mansergas et al. 2015a;
Briggs et al. 2015).

Studies targeting isolated “high-field magnetic WDs” (HFMWDs; Kepler et al. 2013; García-Berro
et al. 2016), which possess fields of B & 106 G, suggest that population’s mass distribution has a
mean of ∼ 0.8 M�, and overall does not resemble the non-magnetic WD one. While this may suggest
a double WD merger origin for these WDs, it is also possible the fields are a vestige of single-star
evolution (eg. Wickramasinghe & Ferrario 2005; Kissin & Thompson 2015) or mergers within common
envelopes (García-Berro et al. 2012; Wickramasinghe et al. 2014; Briggs et al. 2015). HFMWDs have
not been found in detached binaries with M and K dwarfs, despite such binarity being ubiquitous
for non-magnetic WDs, which is strong evidence that HFMWDs are products of some kind of merger
(Liebert et al. 2015; Ferrario et al. 2015). Population synthesis calculations (García-Berro et al. 2012;
Briggs et al. 2015), however, find that common envelope mergers produce the overwhelming majority
of HFMWDs, especially ones closer to ∼ 0.8 M�, with double CO WD mergers contributing only a
minority of objects in the high-mass (& 1.1 M�) tail of the distribution.

Among the most massive HFMWDs is RE J 0317-853 (Barstow et al. 1995; Külebi et al. 2010), a
& 1.3 M� CO or ONe WD with a high effective temperature of & 3× 104 K, a spin period of ∼ 700 s
and a magnetic field strength of B ∼ 108 G that is often cited as a double WD merger remnant. Another
such object is PG 1658+441, with a mass of ∼ 1.3 M�, spin period of ∼ 6 hr and field of ∼ 106 G
(Ferrario et al. 2015, and references therein). There are observational issues with attributing these
objects to WD mergers. RE J 0317 is in a wide (non-interacting) binary with a ∼ 0.8 M� companion,
and Külebi et al. (2010) showed that the cooling age of both WDs is approximately the same. This,
they claim, makes it unlikely for RE J 0317 to have formed either from single star evolution (since it
should have become a WD before its companion) or a merger (since one of its two merger constituents
must be . 0.7 M� and should have become a WD after the companion). It is also curious that RE J
0317, PG 1658 and most other > 1 M� HFMWDs (see the list in Ferrario et al. 2015) are DA WDs and
have spectra with absorption lines of hydrogen, which is unlikely to survive mergers due to the high
temperatures achieved in them. Indeed, these issues might indicate a common envelope merger origin
for the WDs (which would naturally leave residual hydrogen and potentially yield an older cooling age
than a double WD merger) consistent with the HFMWD population synthesis above.

Possibly better candidates for merger remnants are the hot DQs, a recently-discovered class of
WDs that features effective temperatures of & 2× 104 K and spectra with C and O absorption lines,
suggesting that hot DQ atmospheres are dominated by CO (Dufour et al. 2007; 2008). The CO-rich
atmospheres make mass-determination difficult, but preliminary estimates on a few hot DQs using
either more advanced WD atmosphere models (Dufour et al. 2011) or combining radius (from parallax)
with the WD mass-radius relation (Dunlap 2015) suggest they have masses around 1 M�. They also
generally appear to have monoperiodic photometric variability, possibly due to rapid rotation on the
order of minutes (Lawrie et al. 2013; Williams et al. 2016), and magnetic fields & 106 G (Dufour et al.
2013). Dunlap & Clemens (2015) found that, if most known hot DQs are assumed be near ∼ 1 M�,
their population’s kinematic age is much older than what would be inferred from their temperatures,
suggesting they have been reheated since their birth. Dunlap (2015) uses a rough estimate of the hot DQ
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space density, along with their lifetime (given by the difference in cooling age between the hottest and
coldest hot DQ), to determine that their formation rate is of order the observed (total) WD merger rate
from Badenes & Maoz (2012). These class properties strongly suggest that hot DQs are a population of
CO WD merger remnants, but an alternate hypothesis (Dufour et al. 2007; Althaus et al. 2009) claims
they are the progeny of stars that experience a powerful late thermal pulse during their AGB phase. As
many of their properties are still being fleshed out, their origins remain unclear for now.

1.6 Thesis Overview

If sub-MCh double CO WD mergers could either explode or leave behind isolated massive CO/ONe
WDs, which fate might be preferred, and how does it depend on the masses of the two WDs? Can these
mergers, as vK10 claims, serve as a novel SNe Ia progenitor channel that naturally coincides with SNe
Ia rates and explosion properties? To answer these questions, we must scrutinize the vK10 sub-MCh

merger scenario, and understand what is the range of properties of double CO WD merger remnants,
how the subsequent viscous phase proceeds, and whether carbon ignition in a remnant can lead to an
explosion. In this thesis, I shed light on some of these issues through semi-analytical calculations and
hydrodynamic and magnetohydrodynamic simulations.

In Chapter 2, I perform simulations of merging CO WD binaries with the smoothed-particle hydro-
dynamics code Gasoline in order to characterize the range of possible merger remnant configurations.
In particular, I discern which mergers are “similar in mass”, and produce remnants that are substantially
heated and rotationally supported throughout. As discussed in Sec. 1.4, these are potentially SN Ia
progenitor candidates via the vK10 channel. I also make simple estimates of the compressional heating
the remnants will experience during post-merger evolution to find which of them could eventually
ignite carbon fusion.

The smoothed-particle hydrodynamics method is used by almost all simulations of WD mergers. In
Chapter 3, I investigate whether the outcome of a merger simulation depends on the hydrodynamic
scheme used by performing a merger of a 0.625− 0.65 M� CO WD binary using either Gasoline

or the moving-mesh magnetohydrodynamics (MHD) code Arepo, and discover phenomena during
the earliest phase of post-merger evolution that are unique to Arepo. I also detail work that led to
a number of improvements in Arepo to prevent spurious loss of global angular momentum when
simulating differentially rotating systems.

In Chapter 4, I use Arepo to simulate the evolution of initially weak magnetic fields within the
0.625− 0.65 M� merger. I find exponential field growth during the coalescence of the WDs that leads to
a powerful, > 1010 G magnetic field in the merger remnant that could affect its subsequent evolution.

Lastly, in Chapter 5, I consider the evolution of idealized and quasi-hydrostatic sub-MCh CO WDs
experiencing a nuclear runaway in their centers. While, as stated in Sec. 1.3.1, such a runaway inevitably
leads to some form of explosion for MCh WDs, in sub-MCh ones it may instead lead to the lifting of
degeneracy and expansion into a carbon-burning star. I use analytical arguments and simple models
to determine the minimum mass required for the runaway to produce an explosion, and discuss the
consequences this has on merger remnants after their viscous evolution.

Chapters 2 and 4 have been published as Zhu et al. (2013) and Zhu et al. (2015), respectively, and
Chapter 5 is being submitted for publication simultaneous to the submission of this thesis. For the most
part, I have reproduced exactly the texts from each paper, only modifying the chapter introductions
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to minimize repetitious discussion of WD mergers and the vK10 channel. I have added postscripts
to Chapters 2 and 4 that discuss their results in light of developments after their publication, and
included an extensive appendix to Chapter 5 that details our calculation of convective suppression in
magnetized or rotating WDs. Any additional changes are noted at the start of each chapter.

1.7 Pre-Merger Evolution

To preface the rest of the thesis, we briefly cover a few topics that are only mentioned in passing in
subsequent chapters: what WD masses are typically involved in a CO WD binary merger, and the
stability of mass transfer between WDs.

1.7.1 Typical CO WD Masses

While we can roughly estimate that CO WDs masses have a range from ∼ 0.4− 1.0 M� (Sec. 1.1),
mergers between CO WDs of certain masses may statistically be more common. Here we discuss the
difficulties in determining these typical masses.

Tremblay et al. (2016) find that the field distribution of single CO WDs is sharply peaked, with
a mean mass of 〈Mfld〉 ≈ 0.62 M� and a dispersion of ∼ 0.1 M�; other studies report similar 〈Mfld〉
values ranging from ∼ 0.6− 0.65 M� (Kleinman et al. 2013, and references therein). vK10 argue
that since mass transfer tends to shrink binary orbits, the progenitor systems of double WD binaries
will tend to have constituents with similar masses, which minimizes the first phase of mass transfer.
Consequently, the two WDs will also have similar masses, which, naïvely, suggests a typical merging
binary system would consist of two 〈Mfld〉 WDs.

Detailed theoretical calculations using population synthesis do find close WD binaries with ∼
0.65 M� constituents, but generally predict a population that has a wider range of masses and mass
ratios (eg. Toonen et al. 2014 Fig. 8, 10). In Toonen et al. (2012), for example, the population is bimodal,
with the peaks centered roughly around 0.5− 0.6 M� and 0.4− 0.7 M�. The predicted populations,
however, differ between population synthesis codes, and depend on how mass loss and WD formation
for single stars, the initial mass distribution of binaries on the main sequence, mass transfer and transfer
stability criteria, and common envelope evolution are implemented (Toonen et al. 2014; Claeys et al.
2014). It is therefore unclear how robust they are.

Meanwhile, spectroscopic surveys for short-period WD binaries have yielded a few dozen that
will merge within a Hubble time (eg. Marsh 2011; Gianninas et al. 2015). Most of these have been
discovered by the Extremely Low-Mass (ELM) WD survey (eg. Brown et al. 2010; Gianninas et al. 2015);
its systems show a wide range of mass ratios, but since the survey targets binaries where one WD
has M . 0.3 M�, it likely does not represent the overall distribution of binaries. Outside of ELM, few
WD binaries of total mass & 1.0 M� are known (Napiwotzki et al. 2007; Marsh 2011), at least partly
because WD surface area, and therefore luminosity, decreases with mass, making massive ones more
difficult to find. Badenes & Maoz (2012) deduce WD merger rates through statistical analysis of the
binary WD population from the Sloan Digital Sky Survey (York et al. 2000), but their analysis is not
sensitive to mass ratio (Maoz et al. 2012). We note that the recently launched Gaia space mission
(Carrasco et al. 2014) is expected to increase the number of known WDs by a factor of 10, discovering
perhaps thousands of close WD binaries in the process, and – in concert with ground-based follow-up
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spectroscopy to determine masses and radial velocities – will bring better statistics for the merging WD
binary mass distribution (Gaensicke et al. 2015).

In lieu of definitive answers above, we perform in Ch. 2 merger simulations for systems that span
the range of possible CO WD masses and mass ratios, with additional mass resolution near 0.65 M�
(the 〈Mfld〉 reported by Tremblay & Bergeron 2009). Thereafter, we focus on a 0.625− 0.65 M� merger.
This system is of interest not only because its constituents are near 〈Mfld〉 while its total mass is
substantially below MCh, but, from Sec. 1.4 (and Ch. 2), mergers of WDs with similar masses appear
more likely to ignite fusion at their centers.9

1.7.2 Merger Initial Conditions and Unstable Mass Transfer

For all of the merger simulations we conduct in this thesis, we generate initial conditions by placing
two unperturbed spherical WDs, whose rotation are unsynchronized with their orbital period, at an
initial separation where the radius of the less massive WD is equal to its Roche lobe (the radius around
a star within which any material is gravitational bound to the star). Note that the less massive WD is
always the first to initiate mass transfer, since by the WD mass-radius relation (eg. Kippenhahn et al.
2012 Sec. 19.6),

R ∝ M
1−n
3−n ≈ M−1/3 (1.3)

(approximating the low-mass cold WD equation of state with an n = 3/2 polytrope), it is larger and
overflows its Roche lobe first. We therefore call the less massive WD the “donor” and the more massive
the “accretor” throughout the thesis. The use of unsynchronized WDs is discussed in Sec. 2.2.2 and
2.4.3.

The use of spherical WDs, however, neglects the tidal bulges they develop close to the start of
mass transfer. Hence, in our simulations, the WDs deform and radially pulsate in response to the
new potential. The less massive WD overshoots the Roche lobe during each pulsation, resulting in
an overestimate of the rate of early mass transfer. Dan et al. (2011) show that, for systems where the
WD spin and orbital period are synchronized, “accurate initial conditions” that include tidal bulges
extend the phase of mass transfer prior to the full tidal disruption of the donor by several tens of orbital
periods. It is much more difficult to accurately create tidal bulges in unsynchronized systems, and we
discuss the effects of our “approximate” initial conditions in Sec. 2.5.3.10

Because mass transfer rates are overestimated, however, our simulations cannot predict which
binaries will experience runaway mass transfer and merge – indeed, every one of our simulations in Ch.
2 does so. Whether or not mass transfer between two stars is stable has long been studied analytically
and semi-analytically, and it is known that it depends critically on the mass ratio qm = Md/Ma between
the donor star (Md) and the accretor star (Ma; from above, Ma ≥ Md and qm ≤ 1), and whether or
not spin and orbital angular momentum can be efficiently coupled to each other. We sketch a simple
argument for stability below, based on derivations in Marsh et al. (2004) and Dan et al. (2011).

Let us first consider the case in which some dissipative process, such as tidal torquing between

9The masses are not made exactly equal, since this is improbable in nature.
10The effect of using accurate versus approximate initial conditions on the final inspiral phase and structure of the remnant will

vary between mergers. For example, Dan et al. (2011, their Fig. 9) find the maximum density and temperature of a 0.6− 0.9 M�
merger remnant changes by ∼ 5 and ∼ 50%, respectively, but Pakmor et al. (2012a, their Figs. 5 and 6) show few changes to the
density and temperature profiles during the coalescence of a 1.0− 1.1 M� binary.
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the donor and accretor or an accretion disk, is able to instantly return any angular momentum from
the WD spin back to the orbit, thus helping to stabilize mass transfer. The orbital angular momentum
Lorb = (MaMd/Mtot)

√
GMtota, where Mtot = Md + Ma and a is the orbital separation, can be used

to derive L̇orb/Lorb = Ṁd/Md + Ṁa/Ma − Ṁtot/2Mtot + ȧ/2a. We shall assume conservative mass
transfer (this is backed by the simulations in Ch. 2 and 3, which show less than 1% of stellar material
becomes unbound), meaning Ṁa = −Ṁd and Ṁtot = 0. Since the system is closed, L̇orb = 0. Putting
these together gives us

L̇orb
Lorb

= (1− qm)
Ṁd
Md

+
ȧ

2a
= 0. (1.4)

We use Paczyński (1971)’s estimate for the Roche lobe of Md, RL ≈ 0.46a(Md/Mtot)1/3, valid for qm . 1
(Eggleton 1983). Differentiating and using Eqn. 1.4, we obtain

ṘL

RL
= 2(qm −

5
6
)

Ṁd
Md

. (1.5)

For mass transfer to be stable, Rd must contract more quickly (or expand more slowly) than RL, i.e.
Ṙd/Rd < ṘL/RL. From Eqn. 1.3, Ṙd/Rd = −Ṁd/3Md; combining this with Eqn. 1.5, we obtain the
stability criterion 2(qm − 5/6) < −1/3, or:

qm <
2
3

. (1.6)

Most of the systems we simulate fall well outside of the stable regime, but a number (such as the
0.4− 1.0 M� merger in Ch. 2) do satisfy this, and naïvely should not merge.

In the case where spin and orbital angular momentum coupling is instead negligible – which is the
case if the accretion stream does not form a disk but rather directly impacts the accretor (Nelemans
et al. 2001a) – a similar analysis can be performed, using total angular momentum L = Lorb +

Lspin = (MaMd/Mtot)
√

GMtota + Lspin, from which we may derive L̇/Lorb = Ṁa/Ma + Ṁd/Md −
Ṁtot/2Mtot + ȧ/2a + L̇spin/Lorb. Following Marsh et al. (2004), we assume only the spin of the accretor
is relevant, and use Verbunt & Rappaport (1988)’s representation of the accretor spin-up from direct
impact accretion, L̇spin = −Ṁd

√
GMaRh (Ṁd is negative). Rh is the effective radius of the matter

transferred onto the accretor, and the ratio rh = Rh/a is given by a fitting formula: rh ≈ 0.0883−
0.04858 log(qm) + 0.11489log2(qm) + 0.020475log3(qm), valid for all plausible WD binary mass ratios
(Verbunt & Rappaport 1988). Dividing L̇spin by Lorb to obtain L̇spin/Lorb = −

√
(1 + qm)rh(Ṁd/Md),

and assuming conservative mass transfer as before (Ṁa = −Ṁd, Ṁtot = 0, and L̇ = 0), we obtain

ȧ
a
= 2

(
qm − 1 +

√
(1 + qm)rh

)
Ṁd
Md

. (1.7)

Using the same argument that gave us Eqn. 1.6, this reduces to

qm −
2
3
+
√
(1 + qm)rh < 0, (1.8)

which, solved numerically, is

qm . 0.2, (1.9)
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Figure 1.2: Regions of stable and unstable mass transfer for the WD merger parameter space from
Marsh et al. (2004; their Fig. 1). M1 is Ma and M2 is Md. The upper dashed line is a more accurate
estimate for Eqn. 1.6 (that accounts for the accretor’s moment of inertia), and the lower dashed one
that for Eqn. 1.8. The solid “Direct/Disc” line represents the transition between direct impact and disk
accretion. Dotted lines represent the boundary between stable and unstable mass transfer when the
tidal synchronization timescale τs is 1000, 10 and 0.1 yr.

well below any mass ratio for a CO WD binary (Sec. 1.7.1). Eqns. 1.6 or 1.9 represent the upper and
lower-bounds of mass transfer stability, as seen in Fig. 1.2 (from Marsh et al. 2004): a binary with
qm > 2/3 will experience unstable mass transfer even with perfect angular momentum coupling, while
a binary with qm . 0.2 will always be stable, even with no coupling. The critical qm for an imperfect
coupling will fall somewhere between these two.

The question then becomes which stability criterion better represents mass transfer in WD binaries.
In the absence of other sources of spin-orbit coupling, this is determined solely by whether disk or
direct impact accretion occurs. Following Lubow & Shu (1975), Nelemans et al. (2001a) determines
when one transitions into the other by calculating the point where the minimum radius reached by
the accretion stream becomes larger than the accretor; the corresponding critical surface in the merger
mass parameter space is plotted in Fig. 1.2. For 0.4 ≤ Ma ≤ 1.0, the line falls around qm = 0.15, below
even Eqn. 1.9.

Tides within the WDs can substitute for disks for spin-orbit coupling. While traditional estimates
of the spin-orbit synchronization timescale in WD binaries ranges from τS ∼ 1012 yr for radiative
damping to τS ∼ 1015 yr for molecular viscosity (Marsh et al. 2004), other sources of dissipation,
such as turbulent viscosity (Mochkovitch & Livio 1989), may lead to much shorter τS. Recent work
(Fuller & Lai 2012; Burkart et al. 2013; Fuller & Lai 2014) show resonant coupling between tidal forces
and stellar pulsations favor a much shorter τs (though exactly how short remains unclear; Fuller &
Lai 2014). Semi-analytical calculations (Marsh et al. 2004; Gokhale et al. 2007; Kremer et al. 2015),
however, suggest that even for τs as small as 10 yr, all the systems we consider in this thesis should still
experience unstable mass transfer and merge. All these systems also merge in simulations that more
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accurately model the binary at the onset of mass transfer (Dan et al. 2011; 2012), and so we proceed
under the notion that all our binaries should merge. We note that there is evidence (Shen 2015; Brown
et al. 2016) that even He - CO WD binaries with extremely low qm do so as well.
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A Parameter-Space Study of
Carbon-Oxygen White Dwarf Mergers

Chenchong Zhu, Philip Chang, Marten H. van Kerkwijk and James Wadsley
The Astrophysical Journal, Volume 767, Issue 2 - article id. 164, 32 pp., 2013
(Zhu et al. 2013)

As we discussed in Sec. 1.4 and 1.5, the merger of two carbon-oxygen white dwarfs can lead either
to a spectacular transient, stable nuclear burning or a massive, rapidly rotating white dwarf. Previous
simulations of mergers have shown that the outcome strongly depends on whether the white dwarfs
are similar or dissimilar in mass (LIG09). In the similar-mass case, both white dwarfs merge fully and
the remnant is hot throughout, while in the dissimilar case, the more massive, denser white dwarf
remains cold and essentially intact, with the disrupted lower mass one wrapped around it in a hot
envelope and disk.

In order to determine what constitutes “similar in mass” and more generally how the properties
of the merger remnant depend on the input masses, we simulated unsynchronized carbon-oxygen
white dwarf mergers for a large range of masses using smoothed-particle hydrodynamics. We find that
the structure of the merger remnant varies smoothly as a function of the ratio of the central densities
of the two white dwarfs. A density ratio of 0.6 approximately separates similar and dissimilar mass
mergers. Confirming previous work, we find that the temperatures of most merger remnants are not
high enough to immediately ignite carbon fusion. During subsequent viscous evolution, however, the
interior will likely be compressed and heated as the disk accretes and the remnant spins down. We
find from simple estimates that this evolution can lead to ignition for many remnants. For similar-mass
mergers, this would likely occur under sufficiently degenerate conditions that a thermonuclear runaway
would ensue.

Aside from redundant parts of the introduction, we also do not reproduce here the extensive
Appendix to Zhu et al. (2013), which contains tables of binary input parameters and remnant properties
for the simulations, and its online figure set, depicting merger remnant properties for all of our
simulations.

20
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2.1 Introduction

Until recent years, efforts to find SN Ia progenitors among merging CO WD binaries have focused
on those with total mass M > MCh. The end result of such mergers is believed to be either stable
off-center carbon ignition, which would turn the merger remnant into an oxygen-neon WD and possibly
eventually result in accretion-induced collapse (Saio & Nomoto 1998), or slow accretion, which allows
the remnant to stay cool and eventually ignite at high central density (Yoon et al. 2007). Less massive
mergers were usually thought to result in more massive, rapidly rotating CO WDs (Segretain et al.
1997; Külebi et al. 2010), but more recently it has been realized these might eventually become hot
enough to ignite (vK10; Shen et al. 2012; Schwab et al. 2012). Indeed, vK10 argue that SNe Ia result
generally from mergers of CO WDs with similar masses, independent of whether or not their total
mass exceeds MCh. For all these studies, the conclusions on whether and where ignition takes place
depend critically on the structure of the merger remnant.

The merging process, and the merger remnant, have been studied quite extensively, mostly using
smoothed-particle hydrodynamics (SPH; e.g. Monaghan 2005). These simulations have shown that the
outcome strongly depends on whether the WDs are similar or dissimilar in mass. In the similar-mass
case, both WDs disrupt fully and the remnant is hot throughout, while in the dissimilar case, the more
massive, denser WD remains essentially intact and relatively cold, with the disrupted lower mass one
wrapped around it in a hot envelope and disk. Less clear, however, is what constitutes “similar-mass,”
and, more generally, how the merger remnant properties depend on the initial conditions.

In principle, for cold WDs of given composition, the remnant properties should depend mostly on
the two WD masses, with a second-order effect due to rotation. In this paper, we try to determine
these dependencies using simulations of WD mergers with the Gasoline SPH code, covering the entire
range of possible donor and accretor masses, but limiting ourselves to non-rotating WDs. Our primary
aim is to identify trends between mergers of different masses, both to guide analytical understanding
and to help scale other, perhaps more precise simulations. Here, our hope is that while the results of
individual simulations may suffer from uncertainties related to the precise techniques and assumptions
used, the trends should be more robust. We also try to provide sufficient quantitative detail on the
properties of merger remnants that it becomes possible to make analytical estimates or construct
reasonable numerical approximations without having to run new simulations.

Our work is complementary to the recent surveys of remnant properties by Raskin et al. (2012)
and Dan et al. (2012), in that they focus on different scientific questions (e.g., orbital stability; possible
detonation). In contrast to our work, they assume that the WDs are co-rotating with the orbit. Whether
this is a better assumption than no rotation depends on the strength of tidal dissipation, which
unfortunately is not yet known (see Marsh et al. 2004; Fuller & Lai 2012).

This chapter is organized as follows. In Section 2.2, we describe the SPH code we used, as well as
our initial conditions. In Section 2.3, we present our results and give trends for a number of pertinent
remnant properties. In Section 2.4, we test the robustness of our results, and in Section 2.5 compare our
results with those of LIG09 and others. Lastly, in Section 2.6, we speculate on the further evolution of
our remnants, considering in particular whether, as suggested by vK10, some might lead to SNe Ia.
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2.2 Code and Input Physics

We simulate the mergers by placing non-rotating white dwarfs in a circular orbit with an initial
separation a0 chosen such that rapid mass transfer begins immediately. We then follow the merger for
six orbits, at which time the remnant has become approximately axisymmetric. As in prior work, the
morphology of all merger remnants is similar, consisting of a dense, primarily degeneracy-supported
center surrounded by a partly thermally-supported hot envelope (called a “corona” by LIG09) and a
thick, sub-Keplerian disk. We will use the terms “core”, “envelope” and “disk” throughout this work.
We also quite often refer to both the core and envelope simultaneously as the “core-envelope”.

We use simulation techniques and initial conditions that are standard in the field of WD merger
simulations, both in order to compare with previous work, as well as to not introduce novel numerical
effects into our simulations. We detail our code and initial conditions below so that they can easily be
reproduced.

2.2.1 The SPH Code

With smoothed-particle hydrodynamics, one uses particles as a set of interpolation points to determine
continuum values of the fluid and model its dynamics. SPH is a Lagrangian method, meaning
movement is automatically tracked, and regions of high density contain more particles and therefore
are automatically more resolved. Moreover, SPH inherently conserves angular momentum in three
dimensions, which is difficult to reproduce in grid codes except under specific coordinate systems and
symmetries. SPH therefore allows one to efficiently simulate complex phenomena with a large range of
lengthscales. It has become the method of choice for merger simulations, and so we chose it as well.

For our simulations, we use Gasoline (Wadsley et al. 2004), a modular tree-based SPH code that
was designed and has been used for a wide range of astrophysical scenarios, from galaxy interactions
to planet formation. It aims for tight controls on force accuracy and integration errors. Gasoline
implements the Hernquist & Katz (1989) kernel – we use 100 neighbors – and uses the asymmetric
energy formulation (Wadsley et al. 2004, Eqn. 8) to evolve particle internal energy. In our simulations,
total energy is on average conserved to 0.3%, and angular momentum to 0.006%.

By default, Gasoline uses the usual Monaghan and Gingold formulation for artificial viscosity (see
Monaghan 2005), together with a Balsara switch (a standard feature of WD merger SPH simulations) to
reduce viscosity in non-shocking, shearing flows. Guerrero et al. (2004) found that such a prescription
did not reduce viscosity sufficiently, resulting in excess spin-up of the remnant core and associated
shear heating. Yoon et al. (2007), in addition to a Balsara switch, used variable coefficients for the
linear and quadratic viscosity terms in the SPH equations of motion and energy, setting these values to
α = 0.05 and β = 0.1, respectively, where shocks are absent, and around unity where they are present.
A similar formulation was used in Dan et al. (2011; 2012). Since Gasoline includes it as well, we have
used it for our study. Excess viscosity nevertheless remains a potential problem; we investigate its
effects further in Sec. 2.4.5.

We modified Gasoline to include support for degenerate gas through the Helmholtz equation of
state (EOS)1 (Timmes & Swesty 2000). This code, also used in Raskin et al. (2012) and Dan et al.
(2012)’s simulations, interpolates the Helmholtz free energy of the electron-positron plasma, along
with analytical expressions for ions and photons, to determine pressure, energy and other properties

1Available at http://cococubed.asu.edu/ .

http://cococubed.asu.edu/
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from density and temperature. It is fast, spans a large range of density and temperature, and has, by
construction, perfect thermodynamic consistency. To obtain quantities as a function of density and
internal energy, we utilized a Newton-Raphson inverter. To keep the energy-temperature relation
monotonic, we did not disable Coulomb corrections in cases where total entropy became negative.

Gasoline keeps track of the specific internal energy of particles, using it to determine other thermo-
dynamic properties for fluid evolution. A particle’s energy will naturally fluctuate due to noise, but for
nearly zero-temperature particles this could result in their energy dipping below the Fermi energy. In
such situations we keep the pressure at the Fermi pressure, while letting the energy freely evolve. A
consequence of the floor is that a small amount of excess energy is injected into the system through
mechanical work, which eventually manifests as additional thermal energy. The accumulated energy
over a simulation is typically a small fraction of the internal energy, and therefore does not significantly
affect the dynamics of the merger or most properties of the remnant. In cold, degeneracy-dominated
material, however, a small change in internal energy corresponds to a large temperature change, at
times comparable to the physically expected values, and thus the temperatures near the centers of
some of our simulations have been affected. We characterize this spurious heating in Sec. 2.4.6 and
show that it does not unduly affect our work’s conclusions. However, it makes it difficult to run much
longer simulations.

We also place an energy floor at half the Fermi energy. This is to prevent particle energies from
approaching zero (and consequently calling for tiny timesteps), which under rare circumstances occurs
when particles perform a great deal of mechanical work. We find this happens primarily for particles
that are flung out of the system by the merger and are cooling rapidly, and therefore are confident it
has only a very minor effect on our simulations.

In our work, we ignore outer hydrogen and helium layers, composition gradients, and any nuclear
reactions. This is mainly because previous work has found that nuclear processing was unimportant
during the merger. For instance, LIG09 found fusion released ∼1041 erg for their 0.6 - 0.8 M� merger,
orders of magnitude smaller than the ∼ 1050 erg binding energy of the remnant. Only for mergers
involving very massive, & 0.9 M� WDs might this assumption break down, with the possibility of
carbon detonations arising (Pakmor et al. 2010; 2011b; 2012b; but see Raskin et al. 2012; Dan et al. 2012).
Similarly, Raskin et al. (2012), who included standard helium envelopes of ∼1− 2% of the WD mass in
their simulations, found that only for accretors with masses above ∼1 M� did it make a substantial
difference: a helium detonation would inject ∼ 1049 erg into the merger remnant. While this led to
additional heating, it was insufficient to trigger much carbon burning or unbind any portion of the
remnant (helium detonations have also been found for lower-mass accretors with CO-He hybrid donors;
Dan et al. 2012).

2.2.2 Initial Conditions

We created spherical white dwarfs using pre-relaxed cells of particles rescaled to follow the appropriate
enclosed mass-radius relation determined using the Helmholtz equation of state. We assumed a
composition of 50% carbon and 50% oxygen by mass, and a uniform temperature of 5× 106 K. The stars
were then relaxed in Gasoline for 81 s (∼10 - 40 dynamical times, depending on the white dwarf mass)
with thermal energy and motion damped (to 5× 106 K and 0 cm s−1, respectively) during the first 41 s,
and left free during the remaining 40 s. Particle energy noise prevented cooling of & 5× 106 g cm−3

material to below 107 K. We checked that the density profile of each star after relaxation was consistent
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with the solution from hydrostatic equilibrium, and found this was the case – central densities, for
example, agreed to within 2%. The radii of the relaxed stars, as defined by the outermost particle of a
relaxed WD, on the other hand were on average about 7% too small, reflecting our inability to model
the tenuous WD outer layers2.

We used a constant particle mass of 1028 g, so that a 0.4 M� WD has 8× 104 particles, and a 1.0 M�
WD has 2× 105. These numbers are similar to those used by LIG09 and Yoon et al. (2007), and exceed
the ∼ 2× 104 particles per star used by Dan et al. (2012). Raskin et al. (2012) performed a resolution
test for a merger of two 0.81 M� WDs, varying the number of particles per star from 105 to 2× 106.
They found differences of ∼2% in the mass of the core plus envelope, disk half-mass radius, and inner
disk rotation frequency. The one qualitative difference they found was that at their highest particle
resolution, the WDs failed to break symmetry and disrupt (note that they assumed co-rotating WDs,
making such a stable contact configuration possible). We perform our own test in Sec. 2.4.7 and find
similar results.

We relaxed 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9 and 1.0 M� white dwarfs, and combined them
in all possible permutations to form our parameter space of binaries. These values were chosen to
represent the range of possible CO WD masses, with greater resolution near the empirical peak at
∼0.65 M� of the mass distribution of (single) CO WDs (Tremblay & Bergeron 2009). We also performed
additional simulations with 0.575 - 0.65, 0.625 - 0.65 and 0.64 - 0.65 M� binaries to explore the outcomes
of similar-mass mergers. We thus simulated 48 mergers in total.

We placed two relaxed, irrotational WDs in a circular orbit. We chose the initial separation a0 such
that the donor WD just fills its Roche lobe, taking the location of the donor’s outermost particle as its
radius and using the Roche lobe approximation (for a synchronized binary) from Eggleton (1983).

This simple initial condition is similar to that of Pakmor et al. (2010), and implies that the binary
system as a whole is not equilibrated. Therefore, as the simulation begins, the two WDs react to the
tides, become stretched, and strong Roche lobe overflow ensues because the donor overshoots its Roche
radius (in a widely separated binary, the donor would start to pulsate). As a result, the donor disrupts
after just one to two orbits. For synchronized binaries, Dan et al. (2011) showed that the onset of mass
transfer is much more gentle if the WDs are relaxed in the binary potential, disruption occurring only
after several dozen orbital periods. They also showed that this results in systematic changes in the
merger remnants. It is not clear whether the same will hold for unsynchronized binaries, since the
accretion stream hits a surface that, in its frame, counterrotates, and therefore accretion is always much
less gentle than for synchronized WDs. The difference is particularly dramatic for similar-mass binaries,
where, in the synchronized case, the WDs can come into gentle contact, while in the unsynchronized
case, any contact is violent. Unfortunately, it is difficult to test the effect of proper equilibration for
unsynchronized binaries, since one has to relax to non-trivial initial conditions. A better approximation
was attempted by LIG09 and Guerrero et al. (2004), who started their WDs farther out and reduced
the separation artificially until mass transfer began. In their simulations, disruption still followed very
quickly. Given that, and wanting to avoid any partial synchronization, we kept our simpler setup, and
tested it by running simulations with varying a0. We will discuss these tests in Sec. 2.4.2 and compare
our results with those of others in Sec. 2.5.

2Our relaxed WDs also show evidence of sub-kernel radial banding of particles, which does not appear in any interpolated
quantities. We do not believe this banding has an effect on our simulations except for a possible reduction in effective resolution,
but will investigate remedies in future work.
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2.2.3 Merger Completion Time

It is difficult to decide when a merger is “complete”, since for some cases remnant properties continue
to evolve long after the two WDs coalesce, with (artificial) viscosity redistributing angular momentum
and heating the remnant. As a visually inspired criterion, we decided initially to use the degree
of non-axisymmetry, continuing simulations until they were less than 2.5% non-axisymmetric, as
measured from the ratio of zeroth to largest non-zero Fourier coefficient of particles binned in azimuth.
However, this had its own issues: in dissimilar-mass mergers – where most of the particles are in the
accretor, already roughly axisymmetric following the merger – our convergence criterion was achieved
while the outer disk was still obviously non-axisymmetric. In equal-mass mergers, which are inherently
more axisymmetric, completion also was too soon, before the densest material had reached the center
of the remnant.

For the majority of our systems, however, the time required to reach 2.5% non-axisymmetry was
roughly constant in units of the initial orbital period, at 6.1± 1.2. For about the same time, axisymmetry
was also achieved (by subjective visual inspection) for both dissimilar-mass mergers (except, in extreme
dissimilar-mass cases, the outermost regions of their disks) and for equal-mass mergers (where the
densest material had reached the center). We therefore use 6 orbital periods of the initial binary as the
completion time of our simulations. In Sec. 2.4.4, we discuss the effect of continuing our simulations
for 2 further orbital periods.

2.3 Results

With our 48 simulated mergers in hand, we try to determine scaling relations of global quantities such
as the remnant and disk mass, highest temperature, etc., and look for homologies in the remnant
profiles. For our analysis, we use a cylindrical (v, φ, z) coordinate system centered on the remnant core.
Properties on the equatorial (v, φ) plane – defined as the original orbital plane – are averaged over φ

using particles within 1
2 hz of the equatorial plane, where hz is the remnant’s rotational axis (v = 0)

central scaleheight (see Sec. 2.3.2.2). Properties along the rotational (z) axis are averaged within a
cylinder v < 1

2 hz. We use 1
10 hz as the bin size along both the equatorial plane and rotational axis. We

determine properties mostly as a function of enclosed mass M(r), which we define spherically3. Thus,
we show, e.g., equatorial plane temperature T(v) as a function of M(r = v), the mass enclosed within
a sphere with radius r = v.

2.3.1 Representative Mergers

As found for previous simulations, qualitatively the most important factor controlling the merger
outcome is whether the WD masses are “dissimilar” or “ similar”. In the former case, where the donor
is significantly less massive than the accretor, only the donor overflows its Roche lobe,4 is disrupted,
and accretes onto the accretor. The accreted material is heated on impact, lifting degeneracy. Hence,
the merger remnant consists of a partly non-degenerate hot envelope and small, thick sub-Keplerian
disk, both surrounding a cold core containing the largely unaffected accretor.

3Arguably, enclosed mass is more properly defined within equipotential surfaces, but this makes comparison with other
simulations harder. For dissimilar-mass mergers, the difference is slight.

4The lower mass WD is larger and thus always fills its (smaller) Roche lobe first.
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Figure 2.1: Structure of a 0.4 - 0.8 M� merger remnant, representing the general outcome of a merger of
white dwarfs with dissimilar mass. Upper left and middle – binned maps of density ρ and temperature
T along slices in the xy and xz-planes. Lower left – binned maps and contours of density, temperature,
and angular frequency Ω in the (v, z) plane, averaged over cylindrical coordinate φ and over ±z (with
1 added to Ω to avoid problems with the logarithmic intensity scale). Middle – enclosed masses of
donor and accretor material Md and Ma (solid red and blue, resp.), and fraction of donor material fd
at a particular mass shell (dashed magenta). Middle, one but lowest – temperature-density profile with
enclosed masses in 0.2 M� increments indicated, both along the equatorial plane (solid curve, squares)
and along the rotational axis (dot-dashed curve, circles). Middle, bottom – enclosed mass as a function
of r, with the total mass indicated by the horizontal dashed red line. Right-hand column, top to bottom
- density, temperature, specific entropy, angular (cyan) and Keplerian (blue) frequency, and degeneracy
(blue), thermal (red) and rotational (cyan) specific energies as a function of enclosed mass M, both
along the equatorial plane and along the rotational axis (solid and dot-dashed curves, respectively). In
all graphs, the start of the disk (where the centrifugal acceleration equals half the gravitational one) and
the equatorial radius (or mass enclosed within) of maximum temperature are marked by vertical green
and blue dashed lines, respectively. [See the electronic edition of Zhu et al. (2013) for the other remnants.]
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Figure 2.2: As Fig. Set 2.1, but for a 0.6 - 0.6 M� merger remnant, representing the general outcome of
a similar-mass merger.
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In the latter case of a similar-mass merger, there is a large degree of mixing between the two stars.
For exactly equal masses, both stars are disrupted simultaneously, and their accretion streams impact
each other near the system’s barycenter. Material from the centers of both stars initially forms a thick,
cold, dense torus orbiting the barycenter; this torus slowly shrinks due to viscous drag, pushing the
accretion stream material above and below the equatorial plane. When the stars have slightly different
mass, the lower-mass one disrupts first, forming an accretion stream (or series of streams) that mixes
with accretor material down to the center of the accretor (regardless of whether or not the other also
disrupts).

We show the differences between similar and dissimilar-mass merger remnants using two represen-
tative examples in Figs. 2.1 and 2.2: a 0.4 - 0.8 M� highly dissimilar and a 0.6 - 0.6 M� equal-mass
merger, respectively. One sees that the remnant morphologies are very different, consistent with
previous work. The 0.4 - 0.8 M� merger features a cold, nearly non-rotating and thus spherically
symmetric remnant core, surrounded by a hot envelope with roughly equal degeneracy and thermal
support, which itself is surrounded on the equatorial plane by a rotationally supported non-degenerate
thick disk that holds most of the angular momentum. The accretor forms the core, largely undisturbed
by the merger, while the envelope and disk are composed almost entirely out of donor material. The
hottest points are on the interface between the core and the envelope.5 The 0.6 - 0.6 M� remnant, on
the other hand, has a massive, hot, partly rotationally supported and thus ellipsoidal core, and a very
small but thick disk, both of which consist of material from both stars. No distinct envelope is formed.
The hottest points are within the remnant core, just above and below the equatorial plane, arising from
accretion stream material pushed out by the shrinking dense torus.

A good way to visualize how mergers transition between dissimilar and similar-mass is to look at
changes in the remnant properties with varying donor mass. In Fig. 2.3, we show curves for accretors
of 0.65 (left) and 1.0 M�(right). One sees that remnants of highly dissimilar-mass mergers, with mass
ratio qm ≡ Md/Ma . 0.5, have properties resembling the 0.4 - 0.8 M� merger: their donor and accretor
barely mixed, their temperature curves have off-center hot plateaus, and their angular velocity profiles
feature an off-center bump. The equal-mass, qm = 1 cases resemble the 0.6 - 0.6 M� remnant: they
have flat temperature profiles and centrally peaked angular velocity profiles. Intermediate cases have
intermediate profiles, with the bumps in the temperature and angular velocity profiles widening with
increasing qm. The 0.4 - 0.8 M� and 0.6 - 0.6 M� remnants therefore lie at the extremes of what merger
remnants look like.

The similarity between some of the curves for the 0.65 and 1.0 M� accretors in Fig. 2.3 suggests a
homology. The similarity is closest for mergers with the same mass difference ∆M, as can be seen in
Fig. 2.4. For equal-mass mergers, all profiles are similar, simply scaled by a factor that depends on the
total mass (except the 1.0 - 1.0 M� merger; see below). As ∆M increases, the profiles are slightly less
similar: with increasing total binary mass, the degree of mixing decreases, and the temperature and
angular velocity maxima drift to slightly lower fractional enclosed mass. Nevertheless, the profiles still
resemble one another far more closely than they resemble curves with other ∆M. The same holds for
profiles along the rotational axis.

It may seem surprising that the controlling parameter between these approximate homologies is
the mass difference ∆M rather than the mass ratio qm. Empirically, however, the case is clear: e.g.,
the 0.4 - 0.5 (second column, yellow) and 0.8 - 1.0 M� (third column, black) mergers have the same

5The higher temperatures near the core are spurious; see Sec. 2.4.6
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qm, but different ∆M, and their structures clearly differ from one another. The same is true for the
0.4 - 0.6 (third column, cyan) and 0.6 - 0.9 (fourth column, brown) M� mergers. As we discuss below,
the similarity of mergers of similar ∆M likely reflects the close relation between the ratio of central
densities and mass difference.

Before discussing the homologies and trends further, we should note the one dramatic exception.
The 1.0 - 1.0 M� simulation differs fundamentally from its fellow ∆M = 0 mergers. During the
evolution of this system, unlike for all other equal-mass mergers, one WD was fully disrupted before
the other, and as a result material from one star (arbitrarily designated the “donor” before the start
of simulation, hence the “inverted” mixing profile in Figs. 2.3 and 2.4) preferentially resides near the
center of the remnant. This system also often appears as an outlier in Sec. 2.3.2 below. The 0.9 - 0.9 M�
merger also did not have equal mixing between the two stars, though the difference is much smaller.
Raskin et al. (2012) noticed the same effect in their simulations, and concluded it reflected the fact that
more massive WDs are much more concentrated and therefore harder to disrupt. This seems a likely
explanation.

2.3.2 Merger Trends

A major goal of our work is to establish how various global properties of the merger remnant, such as
remnant core and disk mass, maximum temperature, and maximum angular velocity, vary as a function
of accretor and donor mass. By quantifying these trends, we hope to help develop a parametrized model
of merger remnants. Before discussing trends, however, we stress that they are necessarily approximate -
second order effects, numerical noise and our choice of stopping time all affect the remnant properties.
Moreover, while integrated values like total thermal energy do not fluctuate from timestep to timestep,
values at specific points in the remnant do (as noted the following sections). For instance, the mass
enclosed within the radius of peak equatorial temperature becomes ill-defined for similar-mass mergers
because these have rather flat temperature profiles (Fig. 2.3). To partly mitigate these fluctuations, the
values presented below were determined by averaging frames from the simulation over an eight second
span, centered on the time corresponding to six orbits of the initial binary.

As might be expected from the approximate homologies described above, we found that many
properties scaled well with ∆M. Of course, a scaling with a dimensional mass difference makes little
sense; we believe its success reflects the fact that over the range of 0.4 – 1.0 M�, the central density ρc

depends approximately exponentially on mass, with ρc ' 3.3× 107 g cm−3 exp[5.64(M/M� − 1)] (see
Fig. 2.5). Hence, a given mass difference ∆M corresponds to a given ratio of central densities, ρc,d/ρc,a.
As argued in Sec. 2.3.2.3, ρc,d/ρc,a has a straightforward interpretation: it characterizes the degree of
mixing between the donor and accretor. We therefore discuss trends as a function of qρ ≡ ρc,d/ρc,a

from hereon. Where necessary, we refer to the mass ratio as qm.

2.3.2.1 What Constitutes Similar-Mass?

As qρ increases from a small value toward unity, the merger remnant’s morphology shifts from
resembling Fig. 2.1 (dissimilar-mass) to resembling Fig. 2.2 (equal-mass). From Fig. 2.3, ones sees
that there is no particular qρ at which one transitions from “dissimilar” to “similar.” Nevertheless,
we can determine a rough critical value of qρ that separates mergers in which the core is largely
unaffected from those in which it is changed significantly, a separation that likely affects the outcome
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Figure 2.3: Properties of mergers with 0.65 M� (left) and 1.0 M� (right) accretors, for donor masses of
0.4 (red), 0.5 (orange), 0.55 (lime), 0.575 (green), 0.6 (cyan), 0.625 (light blue), 0.64 (blue), 0.65 (dark blue),
0.7 (magenta), 0.8 (purple), 0.9 (brown), and 1.0 M� (black). Shown are, from top to bottom, density ρ,
fraction of donor material fd, angular frequency Ω, temperature T, specific thermal energy eth, and
specific rotational energy erot, all as a function of fractional enclosed mass M/Mtot. All properties are
determined along the equatorial plane, except for fd which is defined spherically. The 1.0 - 1.0 M�
merger (dashed black line) is an outlier; see text.



Chapter 2. A Parameter-Space Study of Carbon-Oxygen White Dwarf Mergers 31

103

104

105

106

107

ρ
 (g

 c
m
−

3
)

∆M = 0.0 M¯
ρc,d/ρc,a = 1

0.0

0.2

0.4

0.6

0.8

f d

0.0

0.3

0.6

0.9

1.2

Ω
 (s

−
1
)

107

108

T
 (K

)

1015

1016

e t
h
 (e

rg
 g
−

1
)

0.0 0.2 0.4 0.6 0.8
M/Mtot

1015

1016

1017

e r
ot
 (e

rg
 g
−

1
)

∆M = 0.1 M¯
ρc,d/ρc,a = 0.57

0.0 0.2 0.4 0.6 0.8
M/Mtot

∆M = 0.2 M¯
ρc,d/ρc,a = 0.32

0.0 0.2 0.4 0.6 0.8
M/Mtot

∆M = 0.3 M¯
ρc,d/ρc,a = 0.19

0.0 0.2 0.4 0.6 0.8 1.0
M/Mtot
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Ma - Md = 0.0, 0.1, 0.2, and 0.3 M� mergers. Properties shown, coloring, and line styles are as in
Fig. 2.3, except color represents accretor mass.
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Figure 2.5: Relation between central density ρc and mass M for carbon-oxygen white dwarfs, showing
both the results of relaxing white dwarf models in Gasoline (red points), and integrating hydrostatic
equilibrium directly for spherically symmetric, non-rotating CO WDs with T = 5× 106 K (blue line).
For the mass range considered, the central density depends roughly exponentially on mass.

of post-merger evolution.

To determine the critical value, we show in Fig. 2.6 the ratio of central to maximum temperature,
Tc/Tmax, central to maximum angular velocity, Ωc/Ωmax, and the fraction of donor to accretor material
within the central core, ( fd/ fa)cc, where we define the central core as a sphere with radius hz. All three
properties are measures of the extent to which the core has been affected: mixed regions tend to be
hotter and more spun up, and contain material from both stars.

From Fig. 2.6, one sees that Ωc/Ωmax approaches unity at qρ ' 0.6; at higher values, the angular
velocity profile has a plateau or central peak rather than an off-center bump. Also at qρ ' 0.6, ( fd/ fa)cc

starts to deviate from zero, i.e., donor material begins to penetrate the central core. The temperature
points show the transition is not abrupt: Tc/Tmax starts to deviate from its downward trend (which
reflects spurious heating in the most dissimilar-mass mergers; Sec. 2.4.6) around qρ ' 0.3 and continues
to increase until qρ = 1.0; at qρ ' 0.6, Tc/Tmax ' 0.5. Overall, this suggests that while the dependence
is gradual, the morphology changes most around qρ ' 0.6. This conclusion is confirmed by looking
at the two-dimensional remnant temperature structures (Figs. 2.1 and 2.2). At qρ � 0.6, the remnant
core has a large, spherically symmetric cold region, the nearly unperturbed accretor. This cold region
shrinks with increasing qρ, and at qρ ' 0.6, spherical symmetry is broken. For still larger qρ, the cold
region becomes a flat slice sandwiched between hotspots off the equatorial plane.

Given the above, we define “similar-mass” mergers as those with donor to accretor central density
ratio qρ > 0.6, and “dissimilar-mass” mergers as those with qρ < 0.6. This critical density ratio
corresponds to a mass difference ∆M ' 0.1 M�.
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Figure 2.6: Dependence of merger core properties on the ratio of the donor and accretor central
densities, ρc,d/ρc,a. Shown are the ratio of central to maximum temperature Tc/Tmax (squares), central
to maximum angular velocity Ωc/Ωmax (triangles), and central core donor to accretor mass fraction
( fd/ fa)cc (circles), with colors representing different accretor masses, encoded as in Fig. 2.3. The
vertical line marks qρ ≡ ρc,d/ρc,a = 0.6, where Ωc/Ωmax reaches unity, ( fd/ fa)cc becomes non-zero,
and Tc/Tmax ' 0.5. We suggest it separates “dissimilar” from ”similar” mass mergers.

2.3.2.2 Structural Trends

Here and in the following subsections of 2.3.2, we describe various trends of remnant properties in
detail, hoping to help attempts to interpolate between different simulations and motivate analytical
and semi-analytical depictions of the merger. Readers not requiring this level of detail may wish to
skip to Sec. 2.3.3. We begin our discussion of trends with size and density parameters.

The rotational axis central scaleheight. We define the rotational axis central scaleheight hz as the
characteristic width σ of a Gaussian fit to the density distribution along the z axis at v = 0. hz is a
measure of the vertical extent of the remnant. We find that the ratio hz/ha, where ha is the central
scaleheight of the accretor, is reasonably well-approximated by,

hz

ha
= 1.03− 0.17q1/2

ρ (±0.02), (2.1)

where the uncertainty listed in parentheses represents the root-mean-square (RMS) of the residuals
around the approximation (see Fig. 2.7a). For highly dissimilar-mass mergers, hz approximately equals
the scaleheight of the accretor, while for similar-mass mergers, hz is lower due to rotational support.

The vertical scaleheight increases with increasing v: the scaleheight at the location of maximum
temperature, h(Tmax), ranges from hz to 1.21hz, and the scaleheight at maximum angular velocity
h(Ωmax) ranges from hz to 1.88hz. The prefactor for both heights increases with increasing accretor
mass Ma and decreasing qρ.
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The equatorial plane central scaleheight. Similar to hz we define hv – the characteristic width of
a Gaussian fit to the density distribution along the equatorial plane – as a measure of the equatorial
extent of the remnant. The ratio hv/ha can be parametrized by

hv

ha
= 0.96 + 0.89q2

ρ (±0.08), (2.2)

where we excluded the 1.0 - 1.0 M� merger remnant for our fit (see Fig. 2.7a). The dependence on
increasing qρ reflects the increased rotational support of the remnant core.

The central density of the remnant. The central density, ρc, is always within a factor two of the
central density of the accretor, ρc,a. In Fig. 2.7b, one sees that for given accretor mass, ρc/ρc,a increases
with increasing qρ for highly dissimilar-mass mergers due to increasing compression of the remnant
core, but begins to decrease because of increasing rotational support around qρ ' 0.3. We could not
find a simple parametrization for these curves. Note that for some systems, as we continue running our
simulations ρc/ρc,a continues to increase. As discussed in Sec. 2.2.3, this is probably because artificial
viscosity forces the merger remnant to undergo accelerated viscous evolution.

2.3.2.3 Mass Distributions

The merger mixes material between the donor and accretor. Here, we describe how this changes as
a function of qρ, as well as how the material is distributed between the pressure-supported core and
envelope and the rotationally supported disk.

The masses of the core-envelope and disk. We formally define the core-envelope as the part of the
remnant inside the inner disk radius vdisk, i.e., that is supported primarily by pressure (degeneracy for
the core, thermal for the envelope) and not rotation. Since in every merger very little mass is ejected, a
trend for either the core-envelope or the disk mass (Mce and Mdisk, resp.) suffices to determine both.
The ratio of Mce to the accretor mass Ma is well described by,

Mce

Ma
= 1 + 0.81qρ (±0.03), (2.3)

if the 1.0 - 1.0 M� merger is neglected, and the fit’s y-intercept is forced to unity. See Fig. 2.8a.

The mass enclosing 50% of the donor material. The further the donor penetrates, the smaller
will be the mass enclosing half the donor’s material, Menc(

1
2 Md). For mergers with qρ . 0.8,

Menc(
1
2 Md)/Ma ' 1.30, with an RMS residual of 0.03 (Fig. 2.8c). We present this trend mostly

because we discuss similar thermodynamic and rotational enclosed masses, but it is somewhat difficult
to interpret physically, since Menc(

1
2 Md) increases with donor mass but decreases with mixing, which

also depends on donor mass. The trend is easier to interpret using enclosed accretor mass rather
enclosed total mass, as done below.

The accretor mass enclosing 50% of the donor material. As a different measure of the depth to
which the donor penetrates, we consider just the accretor material within the mass enclosing half the
donor, Menc(

1
2 Md)− 1

2 Md. This should equal the accretor mass if the donor is deposited above the
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accretor, and half the accretor mass if the two stars are completely mixed. For qρ . 0.8, it can be
approximated by (Fig. 2.8b),

Menc(
1
2 Md)− 1

2 Md

Ma
= 1− 0.190qρ (±0.009), (2.4)

where we forced the intercept to be unity. In this regime, roughly half of the donor remains outside of
the accretor, though the trend discussed next indicates that the other half which does penetrate the
accretor is spread across a much larger region at higher qρ. When qρ & 0.8, the ratio drops sharply
downward, indicative of the more thorough mixing expected for the similar-mass case. However, the
existence and exact location of this drop may be a function of initial conditions (see Sect. 2.4.2).

The region over which the donor is spread. As a measure of the thickness of the region affected by
the merger, we use the difference of the mass enclosing 75% of the donor material with that enclosing
25% of the donor material, i.e., ∆Menc(Md) = Menc(

3
4 Md)−Menc(

1
4 Md). Since 50% of the donor is

within this range, ∆Menc(Md)− 1
2 Md is a measure of the amount of accretor mixed with the donor.

For qρ . 0.8, the ratio of the latter to the total accretor mass follows,

∆Menc(Md)− 1
2 Md

Ma
= 0.30qρ (±0.02), (2.5)

while for qρ & 0.8 the trend curls upward until it reaches 0.5, the value expected for completely mixed
remnants. See Fig. 2.8d.

Combining the two above trends, we can formulate a qualitative picture of mixing. For qρ . 0.8,
the donor can be thought of as being deposited onto the accretor and mixing with the accretor’s outer
layers, while for qρ & 0.8, the accretor also disrupts substantially, leading to a regime where both stars
mix more uniformly. The region over which the donor is spread, or thickness of the mixed layer, in
both cases depends on qρ, which suggests that the relative densities of the donor and accretor govern
mixing, i.e., the donor mixes significantly with all accretor material up to some fraction of the central
density of the donor. Additional evidence of this will be seen in the thermodynamic trends below.

One might consider an alternate picture in which the donor dredges up a constant fraction of its
own mass in accretor material. If this were the case, we would expect (∆Menc(Md)− 1

2 Md)/Md to
roughly be constant. Our results, however, show that for qρ . 0.8 this quantity is nearly a straight
line that is close to zero for small qρ ((∆Menc(Md)− 1

2 Md)/Md = 0.35qρ ± 0.02). This seems more
consistent with mixing being determined by density.

2.3.2.4 Energy Balance

The energy balance of the remnants indicate their primary means of support. Since the remnants are
virialized, we consider how the ratio of degeneracy, thermal, and rotational energy to the total internal
energy of the remnants varies with qρ.

Energy balance of the entire remnant. The support against gravity changes from being due mostly
to degeneracy pressure at low qρ to having a substantial rotational contribution at qρ ' 1. This is
because for highly dissimilar-mass mergers most of the internal energy is locked up within the accretor,
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Figure 2.8: Mixing, heating, and spin-up (left to right) for mergers. (a) Scaled mass of the remnant
core-envelope (where scaling here and below is to the accretor mass). (b) Fraction of the accretor within
the mass enclosing half the donor mass. (c) Scaled remnant mass enclosing half the donor mass. (d)
Fraction of the accretor mass within the region enclosing 25–75% of the donor mass. (e) Maximum
equatorial temperature Tmax (circles), with the approximation Tmax = 0.20GMamp/kBRa overdrawn.
Maximum temperatures along the rotational axis are shown with crosses. (f) Scaled density at the
location of Tmax (symbols as above). (g) Scaled mass enclosed within the radius of Tmax (symbols as
above). (h) Scaled mass enclosing half of the remnant thermal energy. (i) Scaled mass of the region
enclosing 25 – 75% of the remnant thermal energy. (j) Maximum angular velocity Ωmax (circles) with
best fit Ωmax = 3.8Ωorb overdrawn. (k) Fraction of the angular momentum in the core-envelope. (l)
Scaled mass enclosed within the radius of maximum angular velocity. (m) Scaled mass enclosing half
of the total remnant rotational energy. (n) Scaled mass of the region enclosing 25 – 75% of the remnant
rotational energy. Colors represent different accretor masses, encoded as in Fig. 2.3. Triangles represent
equatorial plane values, and x-marks rotational axis values, of the 1.0 - 1.0 M� merger.
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which is hardly heated or spun up. For similar-mass mergers, however, donor material mixes, to some
degree, with the entire accretor, causing heating and spin-up throughout the entire remnant.

The total gravitational potential energy of the merger remnant can be described adequately by a
constant fraction of GM2

tot/Ra,
−Epot

GM2
tot/Ra

= 0.49 (±0.01). (2.6)

From the virial theorem, the internal energy should be related to the potential energy by 3(〈γ〉 −
1)EI = −Epot, where 〈γ〉 is an appropriately averaged equivalent to the adiabatic index. Since our
remnants have cores where the electrons are becoming relativistic, one has 〈γ〉 somewhat smaller than
5/3, especially for the more massive remnants. We find that the ratio EI/|Epot| can be described by,

EI

|Epot|
= 0.18

Ma

M�
+ 0.42 (±0.01), (2.7)

which is ∼0.5 and ∼0.6 for low and high Ma, respectively.

The fraction of the internal energy carried by degeneracy and rotation is fairly well described by,

Erot

EI
= 0.31q1/2

ρ (±0.01), (2.8)

Edeg

EI
= 0.92− 0.34q1/2

ρ (±0.02). (2.9)

With these, the fraction carried by thermal energy can also be calculated; as shown in Fig. 2.9a, the
fraction in thermal energy first increases with increasing qρ, but turns over at qρ ' 0.7, decreasing
afterwards. This reflects the competition between increased thermal energy from the two stars mixing,
and increased rotational support from the spin-up of the core.

Overall, for highly dissimilar-mass mergers, the internal energy is partitioned into degeneracy,
rotational and thermal energy with a ratio of approximately 8:1:1, reflecting that, as stated above, such
mergers are almost entirely supported by degeneracy pressure. Similar-mass mergers, on the other
hand, partition their internal energies with the ratio 6:3:1, i.e., rotational support is significant.

Energy balance of the core-envelope. Since the variations with qρ seen for the remnant as a whole
are almost entirely due to variations in the core and envelope rather than in the disk, the trends we
find for the core-envelope are very similar to those we found above for the entire remnant,

Ece
rot

Ece
I

= 0.28qρ (±0.02), (2.10)

Ece
deg

Ece
I

= 0.94− 0.32qρ (±0.02). (2.11)

Note the dependency on qρ, rather than on q1/2
ρ as was found for the entire remnant. See Fig. 2.9b.

Energy balance of the disk. For the disk, we find very little dependence on qρ, consistent with the
idea that most of the changes in the partitioning of energy have to do with increased mixing between
the donor and accretor, which affects the core and envelope much more than the disk. Averaged over
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all mergers, we find

Edisk
rot

Edisk
I

= 0.74 (±0.03), (2.12)

Edisk
th

Edisk
I

= 0.19 (±0.02), (2.13)

Edisk
deg

Edisk
I

= 0.07 (±0.02). (2.14)

Hence, the disk is composed of non-degenerate, primarily rotationally-supported material. See Fig. 2.9c.
(Note that we do not try to define a ratio of internal to potential energy of the disk or core-envelope,
since the potential energy of either is not straightforward to determine.)

2.3.2.5 Temperature and Thermal Energy

Since heating of the remnant is achieved through shocks and viscous dissipation, the most heavily
mixed regions should also be the hottest. We focus on equatorial thermodynamic values, but consider
the rotational axis as well for similar-mass mergers.

The maximum temperature. We find that the maximum temperature on the equatorial plane, Tmax,
scales with the potential of the accretor (Fig. 2.8e),

kTmax

GMamp/Ra
= 0.20 (±0.03). (2.15)

This scaling is natural in the limit of highly dissimilar-mass merger – for each nucleon, of order
GMamp/Ra is liberated and converted into thermal energy. The temperature and thermal energy
profiles in Fig. 2.3 show that with increasing qρ, additional thermal energy is deposited into the
remnant, but this energy is spread over a larger region, such that the maximum temperature remains
roughly the same even as qρ approaches unity.

For a dissimilar-mass merger, the highest temperature along the rotational axis, Tz
max, is found at

the tenuous outer edge of the hot envelope. It is slightly higher than the maximum temperature found
in the equatorial plane. With increasing qρ, however, the difference increases noticeably due to the
two off-center hot spots found along the rotational axis in similar-mass mergers. Fitting Tz

max, we find
kTz

max/(GMamp/Ra) = 0.24± 0.03, though this does not capture the upturn for similar masses well.

All remnants with qρ & 0.8 have convectively unstable cores along the equatorial plane. Artificially
mixing these cores to make them isentropic decreases their maximum temperatures by 10 – 50% (not
shown in Fig. 2.8, but see the left panel of Fig. 2.17). All remnants are stable against convection along
the rotational axis.

The density at the point of maximum temperature. For dissimilar-mass mergers, the density at the
hottest equatorial point, ρ(Tmax), depends mostly on the donor (see Fig. 2.8f). For qρ . 0.5, we find

ρ(Tmax)

ρc,d
= 0.34 (±0.02). (2.16)
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Figure 2.9: Partition of energies in (a) the overall merger remnant, (b) the remnant core plus envelope,
and (c) the remnant disk. In each panel, the fraction of total energy carried in degeneracy (triangles),
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encoded as in Fig. 2.3. Triangles represent the 1.0 - 1.0 M� merger.
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This proportionality again suggests that, at least for dissimilar-mass mergers, the donor mixes with the
accretor up to a fraction of the central density of the donor, as alluded to earlier.

At qρ & 0.6, the dependence becomes less obvious, with ρ(Tmax) varying from ∼25 – 90% of ρc,d.
Since for these density ratios, the donor material starts to penetrate the central core of the accretor
– and the accretor starts to disrupt as well – the simple picture of the donor mixing up to a fraction
of its own central density may be breaking down. Furthermore, part of the spread in density reflects
that for high qρ the equatorial temperature profiles become nearly flat (see Fig. 2.3, left column), thus
increasing the sensitivity to noise in the determination of the location (but not the value) of maximum
temperature. This also affects our results for the enclosed mass, Menc(Tmax), below.

Since for dissimilar-mass mergers, Tz
max is located near the tenuous outermost regions of the hot

envelope, where particle noise is high, the density at the point of maximum rotational axis temperature,
ρ(Tz

max) (plus symbols in Fig. 2.8f), varies wildly between about ρ(Tmax) and one order of magnitude
below ρ(Tmax). For similar-mass mergers, ρ(Tz

max) appears to be ∼20 – 50% of ρ(Tmax).

The mass enclosed within the radius of maximum temperature. For dissimilar-mass mergers, the
radius of maximum temperature occurs at an enclosed mass of Menc(Tmax) ' Ma, while for mergers
with qρ & 0.8, maximum temperature occurs at the center and Menc(Tmax) ' 0 (see Fig. 2.8g). For
qρ . 0.5, we find

Menc(Tmax)

Ma
= 1− 0.28qρ (±0.01), (2.17)

where the fit’s y-intercept is forced to unity. Note that maximum temperature occurs near the bottom
of the mixed zone, which is why Menc(Tmax) is substantially smaller than Menc(

1
2 Md). The reasons it

starts to deviate from a tight trend at qρ ' 0.6 are the same as those for ρ(Tmax): the break-down of the
simple mixing picture and the difficulty in determining the location of peak temperature for a broader
plateau.

Since Menc(Tmax) < Ma, it may be surprising that ρ(Tmax) is not higher than ρc,d. This is because
the additional thermal and rotational support against gravity reduces the density gradient that would
be required if degeneracy pressure were the only source of support.

For dissimilar-mass mergers, Menc(Tz
max) is only slightly higher than Menc(Tmax), since the remnant

core is nearly spherically symmetric, apart from the fact that the hot envelope is slightly more extended
in the vertical direction. For similar-mass mergers, the difference increases, reflecting the development
of the off-center hot spots, until Menc(Tz

max)/Ma ' 0.25 for equal-mass mergers.

The mass enclosing half the remnant thermal energy. As a more robust measure of where thermal
energy is deposited during the merger, we consider the mass enclosing half the remnant thermal energy,
Menc(

1
2 Eth) (see Fig. 2.8h). We find this is very close to the mass of the accretor,

Menc(
1
2 Eth)

Ma
= 1.06 (±0.04), (2.18)

if the 1.0 - 1.0 M� merger is neglected. One sees turnovers at the extremes, for qρ . 0.2 and qρ & 0.8.
The former likely is because thermal energy is deposited into a narrow strip right on the surface of the
accretor, while the latter is probably due to the disruption of the accretor.

While smaller than Menc(
1
2 Md), Menc(

1
2 Eth) is always larger than Menc(Tmax). This reflects that



Chapter 2. A Parameter-Space Study of Carbon-Oxygen White Dwarf Mergers 42

high density degenerate material has lower specific heat, so that for the same energy per unit mass the
temperature is higher (see Fig. 2.3).

The width of the remnant thermal energy. The mass enclosed between the 25th and 75th percentiles
of thermal energy, ∆Menc(Eth) = Menc(

3
4 Eth)−Menc(

1
4 Eth), is a measure of the extent of the remnant

that has been heated (see Fig. 2.8i). Ignoring the 1.0 - 1.0 M� merger, it can be fit by,

∆Menc(Eth)

Ma
= 0.11 + 0.94qρ (±0.03). (2.19)

Here, we did not force the y-intercept to go to zero, which is expected physically but gives a substantially
poorer trend.

2.3.2.6 Angular Velocity and Rotational Energy

For a dissimilar-mass merger, the donor carries most of the angular momentum. As a result, the
hot envelope contains more angular momentum and features higher angular velocities than the core,
since the envelope is where most of the accreted donor material resides. Spin-up of the accretor is
accomplished through shocks, PdV work and shearing forces. For a similar-mass merger, the two stars
carry similar amounts of angular momentum and thoroughly mix. Conservation of angular momentum
then implies that the entire remnant rotates rapidly.

The maximum angular velocity. On the equatorial plane, the highest angular velocity, Ωmax, scales
linearly with the orbital angular velocity of the pre-merger binary, Ωorb = 2π/Porb (see Fig. 2.8j),

Ωmax

Ωorb
= 3.8 (±0.6). (2.20)

The ratio of core-envelope to total angular momentum. For more similar-mass mergers, more
angular momentum is deposited in the accretor and ends up in the core and envelope (see Fig. 2.8k).
The ratio of core-envelope to total angular momentum, Lce/Ltot, is approximately,

Lce

Ltot
= 0.70qρ (±0.03), (2.21)

where we fit only for qρ > 0.25 and ignore the 1.0 - 1.0 M� merger. For qρ . 0.25, the trend becomes
shallower, resulting in a non-zero intercept. This suggests that even in cases where the donor has
negligible mass some angular momentum is transferred to the accretor.

The mass enclosed inside the radius of maximum angular velocity. For dissimilar-mass merg-
ers, both Menc(Ωmax) and Menc(Tmax) are about equal to Ma, with Menc(Ωmax) slightly larger than
Menc(Tmax): for qρ . 0.55, Menc(Ωmax)/Ma = 1.05± 0.06. This is consistent with the idea that the
hottest and most spun-up regions are those where the donor mixed most strongly with the accretor.
For qρ ' 0.6, the off-center angular velocity peak is replaced by a plateau, and Menc(Ωmax) becomes
ill-defined; for even larger qρ, the highest velocities occur in the center, and Menc(Ωmax) ' 0. See
Fig. 2.8l.
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The mass enclosing half the remnant rotational energy. Like for the thermal energy, for very dis-
similar masses, the mass enclosing half the rotational energy, Menc(

1
2 Erot), is similar to the accretor

mass (see Fig. 2.8m). For qρ . 0.8, we find

Menc(
1
2 Erot)

Ma
= 1.12 + 0.27q1/2

ρ (±0.01) (2.22)

Note that unlike Menc(Ωmax), Menc(
1
2 Erot) continues to increase with qρ (except for exactly equal-

mass mergers), a consequence of particles with lower angular velocity but large lever arm that carry
substantial rotational energy (see Fig. 2.3). Near qρ ' 0.8, the trend breaks as both stars are significantly
disrupted. However, even exactly equal-mass mergers have more of their rotational energy stored in
the outskirts (otherwise one would have Menc(

1
2 Erot)/Ma ' 1).

The width of the remnant rotational energy. We measure the extent to which the remnant is affected
by spin-up through the difference between the masses enclosing 25 and 75% of the rotational energy,
∆Menc(Erot) = Menc(

3
4 Erot) − Menc(

1
4 Erot) (see Fig. 2.8n). Ignoring the 1.0 - 1.0 M� merger, it is

well-described by,
∆Menc(Erot)

Ma
= 0.12 + 0.77qρ (±0.03). (2.23)

Like for the thermal energy, one sees that for more similar-mass mergers, rotational energy is spread
more widely throughout the remnant.

2.3.3 A Qualitative Picture of the Merger

From our empirical results above, a qualitative picture of a merger emerges. A dissimilar-mass merger
has the donor overflowing its Roche lobe and forming an accretion stream. This stream mixes with
the accretor up to approximately the central density of the donor pre-merger, ρc,d. Those layers of the
accretor that are denser than ρc,d are hardly affected, and form the cold core of the merger remnant,
while the mixed material will form a partly-thermally supported outer envelope, which somewhat
compresses the core, as well as a rotationally supported disk.

At qρ & 0.6, the above picture begins to break down, as portions of the donor start to penetrate to
the center of the accretor. This results in substantial heating and spin-up of the central core: the merger
becomes a similar-mass merger. As the masses become more similar, the distinction between donor
and accretor is lost and both stars disrupt and form accretion streams. For all qρ & 0.6, the remnants
are similar: a large, ellipsoidal and partly rotationally supported hot core with two hotspots off the
equatorial plane, surrounded by a small, hot disk.

For all mergers, the maximum temperature reached by dissipation of orbital energy is proportional
to the accretor’s gravitational potential energy. For increasing qρ, the maximum temperature remains
similar, but the region over which the thermal energy is deposited widens. The density at maximum
temperature is of the same order of magnitude as the central density of the donor, consistent with the
mixing picture discussed above. The latter no longer holds for qρ & 0.6, when the entire remnant is
mixed and heated.

For a dissimilar-mass merger, the angular momentum remains in the outer regions, since most
of it was originally carried by the donor. Angular momentum can be transferred between regions
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through shocks, PdV work or shearing forces, all of which becomes increasingly important as the donor
penetrates deeper. As a result, with increasing qρ, the remnant core is spun up further. Where both
WDs disrupt, leading to colliding accretion streams, even the densest regions of the remnant have high
rotational velocities.

2.4 Variation of Merger Parameters and Robustness of Results

In our parameter space study, we focused on the effects of varying the masses of the two WDs, fixing
the initial separation a0, merger completion time criterion, and WD composition. To determine how
robust our results are, we ran simulations varying these assumptions.

2.4.1 Changing the Composition

Ignoring fusion, WD mergers should be insensitive to changes in composition, since the dominant
electron degeneracy pressure only depends on the mean molecular weight per electron, which is close
to µe ' 2 for all likely compositions. To confirm this, we ran simulations assuming pure helium and
pure magnesium for an equal-mass case (0.4 - 0.4 M�) and an dissimilar one (0.4 - 0.8 M�). The results
are shown in Figure 2.10. One sees that most quantities indeed have very similar profiles.

The set of profiles showing most variation are those of the temperature. These have similar shape,
but different normalization. Since the thermal energy curves are very similar, it is clear that this reflects
differences in heat capacity, which does depend on composition: for He composition, there are more
(non-degenerate) ions than for our standard CO mixture, boosting the heat capacity (and thus lowering
the temperature for given thermal energy), while for Mg composition, there are fewer, lowering the heat
capacity (and increasing the temperature). As a result, the maximum equatorial plane temperatures for
the 0.4 - 0.4 M� simulations are 0.95, 1.48 and 1.68× 108 K for He, CO, and Mg, respectively, while for
the 0.4 - 0.8 M� simulations, they are 2.92, 4.05, and 4.47× 108 K.

The smaller differences seen for the other profiles reflect small differences in initial conditions.
All WDs are constructed assuming T = 5× 106 K throughout, which implies more thermal energy
for higher heat capacity. As a result, the relaxed He and Mg WDs are slightly larger and smaller,
respectively, than the CO WD. These slight differences in radius translate into differences in initial
separation, which in turn cause small differences in the angular velocity and rotational energy curves.

2.4.2 Varying the Initial Binary Separation

For our simulations, we chose an initial orbital separation a0 for which a co-rotating donor would fill its
Roche lobe. Since our (non-rotating) WDs are equilibrated in isolation, once the simulation starts they
immediately begin to adjust to the tides and hence disrupt quickly. Ideally, one would allow them to
adjust to the binary potential and start mass transfer properly. For non-synchronous rotation, however,
this is not straightforward (see Sec. 2.5.2). Nevertheless, we try to get a sense of the influence of this by
running simulations for two cases – 0.6 - 0.6 M� and 0.6 - 0.8 M� – with a0 increased and decreased by
10% (see Fig. 2.11).

Our default simulations were considered complete at 6 orbits of the initial binary. For runs where
a0 was changed, we used 2.5% non-axisymmetry, and a requirement for the density to be highest at the
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Figure 2.10: As Fig. 2.3, but for 0.4 - 0.4 M� (left) and 0.4 - 0.8 M� (right) mergers with different
compositions: pure 4He (red), CO (orange), and pure 24Mg (lime). Dash-dotted lines represent profiles
along the rotational axis rather than the equatorial plane.
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Figure 2.11: As Fig. 2.10, but for 0.6 - 0.6 M� (left) and 0.6 - 0.8 M� (right) mergers with varying initial
orbital separation: 0.9 (red), 1.0 (green), and 1.1 (blue) times the value used for the parameter space
study.
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remnant’s center, as the completion criteria6. Not surprisingly, runs with larger a0 needed longer to
achieve these criteria: with a 10% increase, the 0.6 - 0.8 M� merger required 861 seconds, or ∼15 orbits,
to complete, while the one with a 10% decrease required 230 s, or ∼5.5 orbits. Similarly, the 0.6 - 0.6 M�
merger with a 10% increase in a0 required ∼13 orbits (725 s) to complete, compared to the 7 orbits of a
10% decrease (283 s). In both cases, the increase simply reflects that it takes longer for the donor to be
disrupted fully if a0 is increased7. For instance, for the 0.6 - 0.8 M� binary with increased separation, it
took almost a dozen orbits before full disruption, while at the standard separation disruption occurred
after just 1.5 orbits. This feature is of particular interest because for mergers of synchronously rotating
WDs Dan et al. (2011; 2012) and Raskin et al. (2012) all note almost immediate disruption of the donor
when approximate initial conditions are used, and much delayed disruption for more accurate initial
conditions (up to ∼30 orbits; see Sec. 2.5.2).

We find that the density profiles of the merger remnants are remarkably insensitive to varying a0

(ρc changing by . 2% for the 0.6 - 0.8 M� merger, and ∼ 20% for the 0.6 - 0.6 M� merger), and show
substantial systematic changes only in the outer regions. The latter can be understood from the mixing
and rotational profiles, where one sees that with increasing a0, donor material is mixed less deeply into
the accretor, and rotational energy is shifted outward, causing the rotational frequency to peak at lower
values and larger radii. This reflects the increase in angular momentum with increasing a0, which
creates a more rotationally supported remnant (for both our systems, a 10% increase (decrease) in a0

results in a 5% increase (decrease) in angular momentum). In the 0.6 - 0.8 M� merger, the decreased
mixing causes the accretor to be spun up less, thus lowering the rotational energy of the core, and
narrowing the thermal energy plateau. These effects are also seen in the similar-mass case, where the
center of the remnant receives less rotational support and becomes denser with increasing separation,
and the mixing becomes less uniform.

Qualitatively, with increasing a0, the properties change in a way that is similar to the changes seen
with decreasing qρ, i.e., similar to mergers with more dissimilar mass: reduced mixing, larger disks
and less core rotational support, and shifts in the thermal and rotational energies toward larger radii.
The converse is also true, decreasing a0 has similar effects as increasing qρ, i.e., the mergers become
similar to those with more equal masses. The changes are substantial at times: e.g. with a 10% increase
in a0 for the 0.6 - 0.6 M� remnant, the maximum equatorial temperature is reduced by 40%, while the
corresponding density increases by 25% (for the rotational axis hotspots, the values are a 13% and 30%
reduction, respectively), and the mass of the disk increases by 65%. Similar, though far less extreme,
changes are seen for the properties of the 0.6 - 0.8 M� remnant. All this makes a0 one of the parameters
our mergers are most sensitive to.

2.4.3 Synchronization

In our simulations, the WDs have zero spin, i.e., we assume that tidal dissipation is too weak to
synchronize their rotation. Whether or not this is correct is currently unknown, but to see what the
effect could be, we ran simulations assuming synchronized rotation for 0.6 - 0.6 M� and 0.6 - 0.8 M�
binaries (see Fig. 2.12). We used approximate initial conditions for these systems, identical to those of
Sec. 2.2.2 except that the stars rotate at the orbital angular frequency.

6The 2.5% non-axisymmetry convergence time is 312 s (6.6 orbits) for our default 0.6 - 0.6 M� run, and 250 s (5.2 orbits) for
our default 0.6 - 0.8 M� run.

7Of course, if placed far enough, the binary does not merge. For a 0.6 - 0.8 M� binary, no mass transfer occurred within 500 s
if a0 was increased by 20%.
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Figure 2.12: As Fig. 2.10, but for 0.6 - 0.6 M� (left) and 0.6 - 0.8 M� (right) mergers, comparing our
default, irrotational case (blue) with that assuming synchronous rotation (red).
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As in Sec. 2.4.2, our unsynchronized runs are from our parameter space study, and use 6 orbits as
their completion criterion, while our synchronized runs use 2.5% non-axisymmetry, and a requirement
for the density to be highest at the remnant’s center. Completion occurred at 407 s (∼8.5 orbits) for the
synchronized 0.6 - 0.6 M� simulation, and 314 s (∼6.5) orbits for the synchronized 0.6 - 0.8 M�.

The asynchronous and synchronous mergers differ mostly in the amount of heating and spin-up.
This has two causes. First, for the synchronized binary, the total amount of angular momentum is
about 10% larger, and high angular momentum material has more difficulty penetrating the accretor, as
is evident in the 0.6 - 0.8 M� mixing profile (because of the larger amount of angular momentum, the
mergers also take about 1.5 orbits longer to achieve 2.5% non-axisymmetry). Second, in a synchronized
binary, the donor and accretor have much less differential rotation with respect to each other, leading
to much less spin-up and heating.

Both effects are largest for the equal-mass case. In particular, in a synchronized, equal-mass binary
contact can occur without any friction, while in an unsynchronized one it involves shocks at the full
orbital velocity. In consequence, for the synchronized case, rotational support is weaker in the center
and stronger in the outskirts, causing the central density of our 0.6 - 0.6 M� remnant to increase by
∼ 70% and the disk mass to increase by a factor of 2. Furthermore, while for the non-synchronized case,
the maximum temperature along the equatorial plane was found in the center, for the synchronized case
it is found in the outskirts, and is more than a factor two lower (1.3× 108 K instead of 2.9× 108 K). The
hotspots on the rotational axis also have much reduced temperature, 2.3× 108 K instead of 3.6× 108 K.

For the dissimilar-mass merger, the effects of synchronization are less dramatic: the accretor still
spins up substantially, and rotational and thermal energy are deposited in roughly the same way. The
main difference is that the synchronized case has slightly less mixing, causing a drop in total thermal
energy and maximum temperature (from 4.1× 108 K to 3.5× 108 K on the equatorial plane, and from
4.6× 108 K to 4.3× 108 K on the rotational axis).

2.4.4 Running the Simulation Longer

We considered our mergers completed after 6 orbits, since in that time they on average had reached our
convergence criterion of 2.5% non-axisymmetry (see Sec. 2.2.3). To test the robustness of our results,
we also determined properties attained after 8 orbits. In Fig. 2.13, we compare the 6 and 8 orbit results
for 0.6 - 0.6 M� and 0.6 - 0.8 M� binaries.

We find our mergers show little evolution between 6 and 8 orbits, with the largest changes seen
for the angular velocity profiles. For the 0.6 - 0.8 M� merger, the rigidly rotating core sped up and
the off-center peak decreased in height and moved out, while for the 0.6 - 0.6 M� merger, the center
spun down and the rotational profile became flatter. In the dissimilar-mass merger, Tmax and ρ(Tmax)

changed by .5% and the density and temperature structures nearly overlap, while in the equal-mass
merger Tmax and ρ(Tmax) changed by ∼20% (2.9 to 2.3× 108 K and 1.7 to 2.0× 106 g cm−3), reflecting
an increase in central density and a shifting of the temperature profile, with temperature decreasing in
the center but increasing elsewhere. The evolution of all properties is consistent with viscous evolution –
expected to follow the merger proper – with the core driven into rigid rotation, and angular momentum
transferred outward to the disk. In the dissimilar-mass merger, the net effect is spin-up of the core and
spin-down of the envelope, while in the equal-mass case it is the reverse. Of course, in the process,
rotational energy is turned into thermal energy, heating the remnants.

One curious aspect for equal-mass mergers is the evolution of the off-center hot spots (Fig. 2.2).
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Figure 2.13: As Fig. 2.10, but for 0.6 - 0.6 M� (left) and 0.6 - 0.8 M� (right) mergers, comparing
properties for our default simulation time of 6 initial orbital periods (blue) with those obtained after 8
orbital periods (red).
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Over time, these broaden parallel to the equatorial plane, yet become narrower along the rotational
axis. As a result, the hourglass shape is lost, and the center of the remnant stops being one of the
hottest points in the system. After 8 orbits, the system resembles more closely what we find for typical
similar-mass mergers, which have more pancake-shaped hot spots flanking a colder, denser region on
the equatorial plane.

Comparing more broadly the 6 and 8-orbit results, we find changes at the ∼ 5% level. The
trends presented in Sec. 2.3.2 continue to hold to within ∼ 10% except for hv (which becomes
hv/ha = 0.98 + 0.74q2

ρ (±0.07)), the fraction of disk energy in degeneracy energy (Edeg,disk/EI,disk =

0.07 (±0.02)), mass enclosed within the radius of maximum temperature (Menc(Tmax)/Ma = 1−
0.21qρ (±0.01)), maximum rotational frequency (Ωmax/Ωorb = 3.4 (±0.5)) and the widths of the
regions in which thermal and rotational energy are deposited (∆Menc(Eth)/Ma = 0.13+ 0.87qρ (±0.03);
∆Menc(Erot)/Ma = 0.15 + 0.70qρ (±0.02)). Changes to these trends are consistent with the viscous
evolution described above: the remnant is beginning to spin down, lose its rotational support, and
energy is being redistributed.

2.4.5 Viscosity Prescription

The addition of artificial viscosity is required in SPH to accurately capture shocks, but no consensus
exists on how best to implement it. We ran two additional simulations of a 0.6 - 0.8 M� merger to check
the robustness of our results with respect to changes in the viscosity, one with small and one with large
artificial viscosity (fixed (α, β) = (0.05, 0.1) and (1, 2), respectively). As before, these additional runs
use 2.5% non-axisymmetry and a requirement for the density to be highest at the remnant’s center as
their completion criteria, and the low viscosity run completed at 198 s while the high completed at 242
s. Here, we expect that low values of α will lead to large particle noise and inaccurate shock capturing,
while high values result in large viscous heating and rapid loss of differential rotation. Our results
confirm this (Fig. 2.14): the simulation with low artificial viscosity leads to a remnant with stronger
differential rotation, with the disk carrying 34% more rotational energy (and the remnant 33% less)
than in the standard variable α simulation. Lower viscosity also leads to greater mixing of donor and
accretor material, reflecting the stronger diffusion associated with the larger particle noise inherent to
low viscosity.

Aside from the mixing and spin-up, the results for the three different viscosity prescriptions do not
differ greatly. While one might have expected greater dissipation of rotational into thermal energy for
higher viscosity, the maximum temperatures and rotation rates vary by .10%, and the thermal and
rotational profiles are quite similar. The density profiles are virtually identical except near the outer
parts, where the low viscosity simulation leaves matter with greater rotational support.

2.4.6 Spurious Heating

As discussed in Sec. 2.2.1 and throughout Sec. 2.3, noise combined with a pressure floor in the equation
of state lead to small increases in internal energy. While this energy has a negligible effect on most
remnant properties, in the most degenerate regions of the remnant it can cause significant temperature
increases. Here, we discuss the extent to which spurious heating affects our results.

As a comparison for the spurious heating seen in some of the simulations, we relaxed a 0.8 M�
isolated white dwarf for 489 s longer than the standard 81 s we used for relaxing single stars. While the
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Figure 2.14: As Fig. 2.10, but comparing simulations of a 0.6 - 0.8 M� merger with different viscosity
prescriptions (left) and simulations of a 0.625 - 0.65 M� merger with different numbers of particles
(right). For the viscosity, we compare fixed low viscosity (α = 0.05, β = 0.1; blue), standard variable
viscosity (green), and fixed high viscosity (α = 1.0, β = 2.0; red). For particle numbers, we show
simulations at one quarter (red), half (orange), and double (blue) the default number of particles, as
well as the default simulation (lime) and a rerun of the default simulation (green) to determine the
effect of order-of-execution differences, round-off errors and other such numerical effects.
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total energy of the WD (potential, degeneracy and thermal energy combined) increased by ∼1% of
the original total energy over the additional period of time, the change in thermal energy was enough
to raise the central WD temperature from 1.2× 107 K (increased from 5× 106 K due to particle noise)
to 1.2× 108 K. In Fig. 2.15, we compare the thermal energy profile of this isolated 0.8 M� WD with
those of a 0.4 - 0.8 M� and a 0.7 - 0.8 M� merger, with the times for the isolated WD taken at 489 and
224 s (the mergers’ respective completion times) longer than the standard 81 s. The total thermal energy
generated in the WD at an additional 489 s is ∼10% of the thermal energy generated in a 0.4 - 0.8 M�
merger.8 Indeed, given how well the specific thermal energy profiles match in the interior, it is clear
that spurious heating dominates there.

Spurious heating is much less important for the 0.7 - 0.8 M� merger, since its core has mixed to
much greater extent and less time was needed for the merger to complete. The total thermal energy
generated in the isolated WD at 224 s is only ∼ 3% of the thermal energy generated during merger,
and even at the very center spurious heating contributes ∼35% (rather than nearly all) of the thermal
energy. As a result, the central temperature of the merger, 1.4× 108 K, is substantially higher than that
of the isolated WD, 7.8× 107 K. It is important to note this comparison overestimates spurious heating,
since the isolated WD will have had many more particles that dip below the Fermi energy than the
much hotter merger remnant core.

Overall, we conclude that spurious heating is present, but is recognized fairly easily and does not
influence our conclusions. In particular, its effects on remnants should be small in both high-density
regions with T & 3× 108 K and in lower-density .106 g cm−3 regions. Other simulations may suffer
from spurious heating as well. In this respect, it is intriguing that our equatorial temperature curves
for a 0.6 - 0.8 M� merger are a good match those of LIG09, even in the center (Fig. 2.16; Sec. 2.5.1).

2.4.7 Resolution

To determine whether or not the numerical resolution matters for our results, we ran three additional
simulations of a 0.625 - 0.65 M� merger, with roughly a quarter, half, and double the number of
particles (63,736, 127,525 and 510,047, respectively), corresponding to 0.63, 0.79 and 1.26 times the SPH
smoothing length (resolution) we normally use. We also ran a second simulation with the same number
of particles (255,035 particles). Here, we chose 0.625 - 0.65 M� to see if numerical resolution has any
effect on whether a merger is “similar-mass”. All simulations were considered complete at 6 orbits of
the initial binary, though we also checked the 2.5% non-axisymmetry convergence times.

From Fig. 2.14, one sees that the two runs using the same number of particles – and identical
initial conditions and the same version of Gasoline – still give slightly different results. This is due
to the inherent non-linear nature of fluid dynamics, coupled with small, random perturbations, e.g.,
from differences in the order of force addition in parallel processing, round-off errors and slight
inconsistencies in converting thermal energy to temperature. Overall, merger remnant properties
change by ∼ 3.5% between the two runs. The most prominent differences are seen in properties
determined from low numbers of particles, such as Tc (varies by ∼ 10%), and those involving finding
maxima of temperature plateaus, such as ρ(Tz

max) (40%) and ρ(Tcv
max) (a factor of 3 – in one case

convection shifts the temperature maximum off-center).
8A ∼10% increase in thermal energy corresponds to ∼1% increase in the overall energy of the 0.4 - 0.8 M� remnant, somewhat

larger than the typical ∼ 0.3% level at which Gasoline conserves total energy in our simulations. We find that similar-mass
simulations tend to lose total energy at the 0.05% level, while some of the low qρ mergers gain more than 1% in total energy due
to spurious heating.
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Figure 2.15: Specific thermal energy as a function of enclosed mass for a 0.4 - 0.8 M� (blue) and a 0.7 -
0.8 M� merger (red), shown both along the equatorial plane (solid curves) and along the rotational
axis (dot-dashed). Also shown are the (spherical) profiles found for an isolated 0.8 M� white dwarf
(dashed) simulated using the same parameters, and for the same completion times (six initial orbital
periods, equivalent to 489 s and 224 s). Spurious heating is estimated to be responsible for nearly all
the thermal energy in the core of the 0.4 - 0.8 M� remnant, and for about one third in the core of the
0.7 - 0.8 M� remnant. It is not important in regions heated by interaction. (The “hook” in the outer
layers of the white dwarf profile reflects the high initial temperature chosen; in a merger, this is erased
by the interaction.)

The differences for different resolutions are larger. While to first order, the equatorial density and
mixing profiles are very similar, there is a systematic ∼ 20% drop in the equatorial density – ∼ 25%
in the rotational axis density – near the center of the remnant with increasing numerical resolution
(top right panel of Fig. 2.14). The angular velocity and rotational energy profiles are again very similar,
except in the central regions, where there is a ∼20% increase in Ωmax. For the temperature the effects
are larger: with higher resolutions, most of the equatorial plane is colder, with a ∼ 20% drop in the
value of the temperature plateau near M/Mtot = 0.5. The temperatures along the rotational axis,
however, increase with increasing resolution, by ∼ 10% across the range of resolutions, as does the
upturn in equatorial temperature near the center of the remnant, by ∼50% (∼30% if we do not include
the lowest resolution run). The latter effects are due to increasing prominence of the off-center hotspots
at higher resolutions, which also tend to look more hourglass-shaped. Indeed, for our lowest resolution,
the densest material in the two stars remains relatively cold throughout the entire merger, resembling
the synchronized systems described in Sec. 2.4.3. Finally, we find that if we do not consider the lowest
resolution run, the disk half-mass radius varies by 4%, angular velocity at the half-mass radius varies
by 4%, and the core-envelope mass changes by 3%. This is similar to the results of the resolution tests
of Raskin et al. (2012).

The 2.5% non-axisymmetry convergence times for the half and double-particle number runs are
within 14 s of the 275 s non-axisymmetry convergence time of the default run, a small difference that
implies a negligible amount of post-merger evolution. Only the quarter-particle number run deviated
substantially, converging 57 s earlier. This may simply reflect the smaller number of particles in the
disk, where the system is most asymmetric.
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We stress that even though the order-of-magnitude change in particle number (factor of two change
in resolution) generates 10 – 30% variations in some remnant properties, the overall shapes of the
profiles in Fig. 2.14 are very similar. In particular, the merger remnant does not look more or less
“similar-mass” (except, arguably, the temperature curve at the lowest resolution). Exact values of
properties, therefore, will vary depending on resolution (and will vary on similar or larger levels if
initial conditions like a0 are changed), but the overall picture of the merger and trends should be more
robust.

2.5 Comparison With Others

2.5.1 Comparison With Lorén-Aguilar et al. (2009)

LIG09 simulated a number of WD mergers, and gave detailed temperature, surface density, and
rotational frequency curves for three. In Fig. 2.16, we compare their results (from their Figs. 3 and 4)
with ours for two of these, 0.6 - 0.6 M� and 0.6 - 0.8 M� (the third was a 0.4 - 0.8 M� He - CO WD
merger, whose temperature profile cannot be compared directly). We note that they used different
initial conditions, starting their systems with an orbital separation too large for mass transfer to begin,
and then slowly reducing the separation until it does. This point defines their t = 0 and the start of
the merger simulation proper. Given this different setup, their merger completion times cannot be
compared directly to ours. In their simulations, however, coalescence (the final consolidation of the two
WDs into one) also occurs after just about one orbit, so the differences should not be too large. To give
a sense of the effect of different completion criteria, we compare their results both with our standard
results, taken after 6 orbits, and our results taken at their merger completion times.

For both mergers, the surface density curves are similar, although in their 0.6 - 0.6 M� merger, the
central peak is ∼ 30% higher (∼ 10% if we use their completion time of 514 s). For the 0.6 - 0.8 M�
merger, the temperature profiles are also very similar, with maxima9 differing by only ∼10 - 15%, and
having nearly identical shapes. Larger differences are seen for the 0.6 - 0.8 M� rotational frequency
profile, where the angular velocity peaks further out and at lower value (∼0.3 s−1 compared to our
0.45s−1 – or 0.50 s−1 using their completion time of 164 s). Indeed, our entire remnant is more spun-up
than theirs.

For the 0.6 - 0.6 M� merger, LIG09 have a plateau in their angular frequency profile, with Ωmax '
0.25 s−1, while our profile is much more peaked and reaches a much higher frequency, of 0.60 s−1.
By their completion time, our rotation curve is not as sharply peaked, but still reaches 0.44 s−1. The
temperature profiles are also much less similar: our maximum temperature in the equatorial plane is a
factor of 2 lower than theirs (factor of 3.3 at their completion time), and even our maximum temperature
along the rotational axis is a factor 1.6 lower (factor 1.9 at their completion time).

Finally, we can compare how mass is distributed. In both our simulations and those of LIG09,
negligible mass is lost, so only the distribution between disk and core-envelope matters. For our 0.4
- 0.8 M�, 0.6 - 0.6 M�, and 0.6 - 0.8 M� simulations, we infer disk masses of 0.31, 0.10, and 0.40 M�,
respectively, which are reasonably close to the 0.28, 0.10, and 0.30 M�, respectively, listed by LIG09
(their Table 1), especially considering that we likely use a different definition of what is “disk”.

9Maximum temperatures given in Table 1 of LIG09 refer to hot spots in their simulations, and are about a factor of 2 higher
than the hottest points on their temperature curves. As we have not done hot-spot finding, we cannot compare with those values.
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Figure 2.16: Comparison of our results with those of LIG09, for a 0.6 - 0.6 M� (left) and a 0.6 - 0.8 M�
(right) merger. Shown are surface density, remnant (solid) and Keplerian (dashed) angular frequency,
and temperature, with profiles from LIG09 in blue, and our equivalent ones in red and orange. Here,
the former are for our default completion time of 6 initial orbital periods and the latter for their
completion times (514 s or 10.9 orbital periods for the 0.6 - 0.6 M� merger, and 164 s or 3.4 orbits for
the 0.6 - 0.8 M� merger).

Overall, the primary differences between our simulations appear to be the amount of spin-up
and heating of the equal-mass merger. We believe it is unlikely that this reflects differences in initial
conditions: we found much smaller changes in the angular velocity profile with increasing a0 (see
Fig. 2.11), and in the simulation of LIG09 the stars still seem to be quite close to spherically symmetric
at the start and disrupt quickly (their Fig. 1), even though they were more properly relaxed. Instead,
we believe the more likely explanation is that the viscosity prescription of LIG09, based on Riemann
solvers, yields larger effective viscosity. This would explain both the reduction in angular velocity and
increase in temperature (since viscous evolution converts rotational into thermal energy), as well as
the fact that similar-mass mergers are affected more (they mix more, and LIG09 ran their equal-mass
merger for a very long time). If we ran our simulations longer and thus included further viscous
evolution, the similarity with their simulations would likely be closer.
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2.5.2 Comparison with Others

Simulations of WD mergers have also been presented by Yoon et al. (2007), Pakmor et al. (2010; 2011b;
2012b), Dan et al. (2011; 2012), and Raskin et al. (2012). Unfortunately, comparison with those results is
difficult, since, unlike LIG09, all these authors are sparse with quantitative details about their results.

An exception is the 0.81 - 0.9 M� merger simulated by Dan et al. (2012), shown in their Fig. 1.
While that simulation is for synchronized WDs, it is still particularly useful to compare with, since Dan
et al. show results for both approximate and accurate initial conditions. We find that their spherically
enclosed mass profile is very similar to ours, with, e.g., M = 0.9 M� at 4.5× 108 cm in both (though
since spherically enclosed mass is a cumulative quantity, significant structural differences can remain
hidden). Our spherically averaged density profile looks most similar to the profile they found using
approximate initial conditions. Our central density, 1.9× 107 g cm−3, is within ∼10% of theirs, and the
density profile remains similar up to r ' 5× 108 cm (ρ ' 106 g cm−3). Beyond, their profile becomes
shallower while ours continues to decline; at r = 109 cm, they find ρ ' 3× 105 g cm−3, while we find
ρ ' 105 g cm−3. This may be a consequence of the additional angular momentum associated with
synchronized rotation. With accurate initial conditions, a difference with our results is that the density
profile becomes flat beyond 109 cm.

Comparing temperature profiles, we roughly reproduce their spherically averaged one for approx-
imate initial conditions, including the off-center peak – their Tmax is ∼ 20% lower (to be expected
since their binary is synchronized; see Sec. 2.4.3), but is also located at 4× 108 cm (or Mr ' 0.9 M�).
However, our central temperature (2.2× 108 K) is an order of magnitude higher than theirs (2× 107 K)
and at r & 109 cm our temperatures are systematically hotter, perhaps a result of the much larger dissi-
pation expected for non-rotating WDs. With accurate initial conditions they found an even narrower
temperature peak than the one with approximate conditions, which thus deviates even more from our
curve. This trend is similar to what we see when increasing a0 (Sec. 2.4.2), so it seems likely we would
reproduce their simulations more closely if we used the same initial conditions.

2.5.3 The Importance of Accurate Initial Conditions

Many of the recent simulations (Dan et al. 2011; 2012; Raskin et al. 2012) assume co-rotating WDs. This
assumption is numerically convenient, in that it is relatively straightforward to start the simulation in
the physically correct state: since in the co-rotating frame there are no flow velocities, one can easily
relax a simulated binary within an appropriate potential in the co-rotating frame, damping out any
velocities resulting from an initial mismatch.

As a result, it has been possible to study the onset of mass transfer in detail. As first pointed out by
D’Souza et al. (2006) from simulations using a grid code, the disruption of the donor is preceded by a
rather long – dozens of orbits – phase of mass transfer. Further simulations by Dan et al. (2011; 2012)
showed that in this initial phase a significant fraction, ∼ 10% of the donor mass, is transferred. As a
result, e.g., the disk is substantially colder and more extended. The remnant core seems more subtly
affected, in that its appearance becomes “more dissimilar”, reflecting that coalescence is between two
WDs whose masses have become more disparate than they were initially. As a consequence, e.g., even
for similar-mass binaries, the hottest point of the merger is found to be well outside the center. Indeed,
Raskin et al. (2012) find that even for equal-mass binaries, the final outcome for more massive mergers
is one where the core of one of the WDs is virtually undisturbed.
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At present, it is not clear how important accurate initial conditions would be for asynchronous
mergers. Qualitatively, we expect the effects to be smaller than for synchronous mergers, for three
reasons. First, from the analytic study of Lai et al. (1994), in which tidal and rotational distortion are
approximated by ellipsoids, co-rotating binaries always reach contact or Roche lobe overflow before
becoming dynamically unstable, while irrotational binaries become dynamically unstable first. While an
exact treatment of the irrotational case found that, in fact, Roche contact preceded dynamical instability
(Uryū & Eriguchi 1998), it suggests that WDs in irrotational binaries will disrupt much sooner. Second,
the simulations of LIG09 use initial conditions that should be quite close to correct, yet their WDs
disrupt quickly (see Sec. 2.5.1). Third, the two components are counterrotating in the rotating frame.
Hence, any mass transferred will hit the accretor with a larger relative velocity than would be the case
for co-rotating WDs. Indeed, in the limit of equal-mass WDs, very little would happen for co-rotating
WDs when one reaches contact, while a strong shock would be expected for the irrotational case. In
general, one expects part of the shocked material to enter a high-entropy halo around the accretor.
For co-rotating WDs, Dan et al. (2011) found that this halo helps remove angular momentum from
the orbit, leading to a shorter start-up phase. For the irrotational case, given the stronger expected
shocks, the start-up phase would likely be reduced even further. On the other hand, we saw in Sec.
2.4.2 that remnant properties are sensitive to changes in angular momentum content through changes
in a0. Simulating more realistically the onset of mass transfer through accurate initial conditions will
likely change a0.

Ideally, one would still simulate the initial mass transfer phase accurately. Unfortunately, even
though the equilibrium solution is known (Uryū & Eriguchi 1998), it is not straightforward to set up
the initial binary properly, since it is difficult to relax to a state that includes substantial fluid motion,
and to slowly evolve such a state to contact, while ensuring viscosity remains low enough that there is
no artificial tidal dissipation. Such dissipation is seen in our tests with varying initial distance a0 in
Sec. 2.4.2 (and may affect the simulations of LIG09 as well). Prior to coalescence, strong dissipation of
tidal bulges heats the outer envelope of the donor (both stars for similar-mass mergers), and spin-orbit
coupling due to both tides and the direct-impact accretion stream result in both donor and accretor
becoming 25 - 50% synchronized by coalescence.

Since it significantly affects the merger and merger outcome, whether or not tidal dissipation causes
real CO WD binaries to synchronize before the merger remains a major source of uncertainty. For the
radiative stellar envelopes appropriate for WDs, tidal dissipation is expected to be inefficient, with a
timescale 1012 to 1015 yrs, suggesting that WDs do not synchronize (Marsh et al. 2004, and references
therein). However, coupling of the tides to pulsations may dramatically increase dissipation (Fuller &
Lai 2012). Fortunately, it may be possible to determine the rate of synchronization observationally. For
instance, Piro (2011) suggested that tidal dissipation is responsible for the relatively high temperature
of the primary WD in the 13-minute eclipsing binary SDSS J065133.33+284423.3, predicting that it
would be about halfway to being synchronized. This could be tested by either measuring the rotational
broadening of the narrow cores of the hydrogen lines, or looking for velocity deviations through the
transit of the more massive secondary.
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Figure 2.17: Top: merger remnant maximum temperature Tmax and corresponding density ρ(Tmax) for
all merger remnants. Values along the equatorial plane are marked with circles, with lines connecting
points with the same accretor mass, while values along the rotational axis (only plotted for similar-mass
mergers) are marked with triangles (for all, colors indicate accretor mass, encoded as in Fig. 2.3). For
similar-mass mergers, equatorial temperatures have been adjusted to account for mixing in convectively
unstable cores. Bottom: maximum temperatures and corresponding densities following estimated post-
merger evolution. The estimate assumes that the remnant spins down completely, that all rotational
energy is used to drive matter to large distances, and that the remainder adjusts adiabatically (see text).
Also shown are contours of constant neutrino cooling timescale τν ≡ cPT/εν and carbon fusion heating
timescale τcc ≡ cPT/εCC, both in years, as well as specific entropy s in erg g−1 K−1. (Here, cP is the
heat capacity at constant pressure and ε the specific energy loss/gain rate.) The lines labeled τcc = τν

and τcc = τdyn denote where the carbon fusion heating timescale balances the neutrino cooling and
dynamical timescales, respectively. Finally, the P = 2P(T=0) line is shown as an approximate upper
bound of the region where degeneracy pressure dominates. All quantities were calculated using MESA
(Paxton et al. 2011).
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Figure 2.18: Estimate of post-merger viscous evolution for 0.4 - 0.8 M� (top) and 0.6 - 0.6 M� (bottom)
mergers. In blue are shown the temperature-density structure of the merger remnant, on the equatorial
plane before (dotted) and after (solid) correction for convection, as well as along the rotational axis
(dot-dashed), with points marking the hottest locations (circles and squares) and steps of 0.2 M� in
spherical enclosed mass (triangles pointing up and down). In red, estimates of the structure following
viscous evolution are shown, where it is assumed that the remnant spins down completely, that all
rotational energy is used to drive matter to large distances, and that the remainder adjusts adiabatically
(see text). For reference, also shown as dotted curves are the contours of constant specific entropy
from Fig. 2.17 (green), as well as the dotted lines where τcc = τν (magenta), τcc = τdyn (red), and
P = 2P(T=0) (black).
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2.6 Post-Merger Evolution

We now turn to the question of how our merger remnants will evolve. To set the stage, we show in
the left panel of Fig. 2.17 for all remnants the maximum temperature Tmax found along the equatorial
plane10 as a function of the corresponding density ρ(Tmax). Here, for the similar-mass mergers for
which we found convectively unstable cores (Sec. 2.3.2.5), we show the (lower) temperatures reached
after artificially mixing them. For those mergers, the much higher temperatures reached along the
rotational axis are shown as well (triangles). One sees the trends identified earlier: Tmax is mostly set
by the accretor, while ρ(Tmax) depends more strongly on the donor. As a result, maximum temperature
occurs in less degenerate conditions for dissimilar-mass mergers, crossing the degeneracy line for our
most disparate cases. One also sees that for all but the most massive accretors, carbon fusion will not
start: the neutrino cooling time is shorter than the fusion heating time. This is consistent with what
was found in previous work (see Sec. 2.1).

2.6.1 Viscous Evolution and Possible Spin Down

Following the merger, processes that happen on timescales slower than the dynamical time can
become important. These include viscous evolution, neutrino emission, radiative or convective thermal
adjustment, and magnetic dipole radiation spin-down. Out of these, convection acts on the fastest
timescale, and we already included its effect on the core in Fig. 2.17 left. Next fastest would almost
certainly be viscous evolution. The merger remnant is unstable to both the magneto-rotational instability
(Balbus & Hawley 1991) and Tayler-Spruit dynamo (Spruit 2002). Radiative adjustment is expected
to be much slower, except at the surface, where radiative losses may also lead to convection in some
systems (Shen et al. 2012; Schwab et al. 2012; Raskin et al. 2012). Using the standard Shakura & Sunyaev
(1973) α-prescription for the viscosity ν = αcsH, where cs is the local sound speed and H is the scale
height of the system, the viscous evolution timescale for the remnant disk is

tvisc =
R2

disk
ν

=
1
α

(
Rdisk

H

)2
tdyn ∼

10
α

tdyn, (2.24)

implying a timescale tvisc ∼ 103− 105 s for α ∼ 10−3− 10−1 and tdyn ∼ 10 s. This is orders of magnitude
smaller than both the neutrino loss timescale (& 103 yrs; see Fig. 2.17 left) and thermal adjustment
timescale (&104 yrs; Shen et al. 2012).

It is possible that the strong differential rotation during a merger results in substantial amplification
of magnetic fields. The one known probable WD merger remnant, RE J0317−853, has a surface magnetic
field of 3.4× 108 G (Barstow et al. 1995; Külebi et al. 2010). If mergers lead to strongly magnetized
WDs, and these WDs additionally drive an ionized outflow, the magnetic coupling between the outflow
and the WD could serve to transport angular momentum out of the system, spinning down the WD.
The timescale for such a spin-down is roughly given by,

tmsd ∼
L

ṀR2
AΩ
∼ L

(ṀΩ)3/5(B2R6)2/5 , (2.25)

10The central temperatures for the 0.625 - 0.65 M� and 1.0 - 1.0 M� mergers are ∼4% and 10% lower than their respective
maximum temperatures. In both cases, however, the center is much denser than the off-center hotspot, and since our estimated
post-merger evolution more greatly affects central material, we show the central equatorial density and temperature for these
two systems in Fig. 2.17 left, rather than the maximum.
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where L is the angular momentum of the remnant, Ṁ the mass loss rate, RA the Alfvén radius, and
Ω the angular spin frequency. For the second approximation, we used that RA ∼ (B2R6/ṀΩ)1/5,
with B the surface magnetic field and R the remnant radius. Scaling to B = B8108 G and Ṁ =

Ṁ−710−7 M� yr−1 (similar to what is observed for RE J0317−853 – see above – and [WR] cores of
planetary nebulae [Hamann 1997]), and using the properties inferred for a 0.6 - 0.6 M� remnant
(L ' Ltot ' 1050.5 g cm2 s−1, R ' Rdisk ' 109 cm, Ω ' Ωmax ' 10−0.3 s−1, we find tmsd ' 8 ×
103 B−4/5

8 Ṁ−3/5
−7 yr, which is of the same order as the neutrino cooling timescale of ∼ 104 yr at the

ignition line (for the whole range of remnants, 2× 103 . tmsd . 5× 104 yr).

Accretion from the disk, loss of rotational support, and possible cooling of the hot envelope could
all compress and heat the remnant core. A detailed study of this is beyond the scope of this paper, but
we can make first-order estimates of the effects on our merger remnants, and compare these with the
more detailed analysis of Schwab et al. (2012) in one specific case.

For our estimates, we make four assumptions: (i) spin-down and accretion are much faster than
thermal processes, and do not lead to local dissipation (i.e., particles entropies are constant in time); (ii)
all angular momentum is carried away to large distances; and (iii) corresponding matter ends up with
zero total energy (i.e., is at large distances and has negligible kinetic and internal energy). From energy
conservation, the last assumption implies that the remaining object will have the same total energy as
our merger remnant (but a lower mass), the first that it will have the same entropy structure, and the
second that it has no rotational support. To determine the properties, we first determine the entropy
profile of the merger remnant, by averaging entropy over isopotential surfaces. We then use this entropy
profile and an estimated central density to construct a spherically symmetric (non-spinning) hydrostatic
model, iterating on the central density until it has the correct total energy (inside of the zero-pressure
surface). This automatically gives the mass contained in this object, which will be lower than our
remnant mass, the remainder representing material that, due to dissipation of rotational energy, has
expanded out to large distances and therefore provides negligible weight. To determine the evolution
of hot spots, we order remnant particles by potential, and map them to their new positions in the
final object, calculating new temperatures from the new densities, again assuming their entropy did
not change (entropy is not constant over isopotential surfaces, so these temperatures are not strictly
consistent with the hydrostatic model).

In Fig. 2.18, we show the results of our evolutionary estimate for our fiducial 0.4 - 0.8 and 0.6 - 0.6
M� systems. For the former case, the core-envelope, originally 0.90 M�, accretes 0.06 M� from the
disk, the remaining 0.25 M� going to large distances. The central core is not significantly heated, while
the lower-density hot envelope is, with the outer hot envelope along the rotational axis passing the
ignition line. Since this material is almost non-degenerate, the resulting nuclear burning will likely be
stable, or be extinguished by expansion. Thus, not unexpectedly, the hot envelopes of dissimilar-mass
mergers are not good candidates for a nuclear runaway.

For the 0.6 - 0.6 M� system, the center of the final, spun-down object is at much higher density and
temperature than the remnant, while much of the outer regions have become less dense and cool. The
latter happens because similar-mass mergers have strong rotational support, and if this is removed their
binding energy increases significantly. To compensate for this, a large amount of mass has to expand
to large distances, causing the core-envelope mass to decrease from 1.11 M� to 0.91 M�. In the final
object, the hottest point on the equatorial plane does not reach the ignition line, but the significantly
hotter points above and below the equatorial plane do, at densities under which degeneracy pressure



Chapter 2. A Parameter-Space Study of Carbon-Oxygen White Dwarf Mergers 63

still dominates. Hence, if the hot spots indeed compress with the rest of the remnant, a nuclear runaway
could be triggered. (Of course, a nuclear runaway would start as soon as the heating timescale becomes
shorter than the compression timescale, which may happen closer to the ignition line.)

In the right panel of Fig. 2.17, we show the results of applying our estimates to all our merger
remnants. One sees that all compress and heat, and almost every remnant whose accretor mass is
above 0.8 M� will reach ignition somewhere on the equatorial plane, in many cases under degenerate
conditions. We also chart the evolution of the off-center hot spots in similar-mass mergers (square
points), and while they are at lower density, they remain degenerate and are all pushed substantially
further above the ignition line than their counterparts on the equatorial plane. Almost all similar-mass
mergers with an accretor mass above 0.5 M� could therefore experience nuclear runaways due to their
hot spots, though at least some of them will become non-degenerate before an explosion can occur.

The above suggests it is at least plausible that many of our mergers would eventually ignite in
degenerate conditions, and that it thus is worthwhile to simulate their evolution in detail. Suitable
simulations have recently been pioneered by Shen et al. (2012) and Schwab et al. (2012). Shen et al.
started with a one-dimensional simulation, where they ported the remnant of a 0.6 - 0.9 M� merger
(from Dan et al. 2011), and evolved it assuming a γ = 5/3 polytropic equation of state and an α = 10−2

viscosity. They find the system spins down completely due to outward angular momentum transport,
and the rotationally-supported thick disk is transformed into a tenuous, thermally-supported envelope
that hardly affects the core. Over longer, thermal evolution timescales (simulated using MESA, Paxton
et al. 2011), this tenuous hot envelope cools, compresses the core, and lights off-center convective
carbon burning, eventually turning the remnant into an ONe WD (that may end its life in an accretion
induced collapse).

Schwab et al. (2012) went a step further, porting the same 0.6 - 0.9 M� simulation, as well as seven
other systems, into two-dimensional ZEUS-MP2 simulations (Hayes et al. 2006), using the Helmholtz
equation of state and an α = 3× 10−2 viscosity. They confirm the one-dimensional results, finding
complete spin-down and transformation of the rotationally supported disk into a tenuous, spherically
symmetric, hot envelope. They find a 50% increase in the temperature of the hottest point, and a
factor of 3 increase in the corresponding density. They also find entropy to roughly be constant in the
remnant, except in the outer regions and at the very center, where dissipation of rotational energy leads
to heating.

It is encouraging that the results of the above detailed simulations are similar to what we find using
our first-order estimates. For our 0.6 - 0.9 M� remnant, our estimate give increases for the hottest
equatorial point of a factor of 2.5 in density and 1.6 in temperature, reasonably close to what is found by
Schwab et al.11. Thus, our simplifying assumptions appear to be appropriate at least for dissimilar-mass
mergers, where most of the rotational dissipation will be in the disk and envelope, and the structure
of the remainder is roughly spherically symmetric (both in density and temperature). It is not clear
our estimates would be equally good for similar-mass mergers, where rotational dissipation should
occur throughout the star, heating the entire remnant, and where there are substantial differences
between the remnant’s density and temperature structures. In particular, the rotational axis hotspots
may dissipate, which would potentially make it more difficult for a similar-mass system to achieve a
runaway. It will thus be particularly interesting to simulate the further evolution of those remnants in

11For the hottest point along the rotational axis, we find a factor of 4.8 increase in density and 2.1 increase in temperature,
suggesting our model does not depict as well the evolution of the outer hot envelope along the rotational axis.
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more detail. Unfortunately, no such remnants were included by Shen et al. and Schwab et al..

2.6.2 Possible Explosions?

From our estimates, it seems that, as suggested by vK10, many merger remnants will ignite carbon
fusion. If a detonation is triggered, the resulting explosion may well resemble an SN Ia. Indeed, if the
remnants spun down before ignition, their structures are sufficiently close to that of a cold WD that
the calculations of Sim et al. (2010) should apply. From our estimates, for mergers that have a total
mass between 1.2 and 1.4 M� (which should be the most common ones), the final objects have masses
between ∼ 0.9 and ∼ 1.1 M� which matches fairly nicely the range of ∼ 1 to ∼ 1.2 M� required to
reproduce the observed range of SN Ia luminosities (Sim et al. 2010).

Of course, it is far from clear whether ignition leads to a detonation, since we do not currently
understand how detonations are triggered (Seitenzahl et al. 2009; Woosley et al. 2011, and references
therein). Generally, it should help that ignition in our remnants is at much lower density (a few
107 g cm−3) than is the case for near-Chandrasekhar models (∼109 g cm−3), because complete burning
leads to much larger relative overpressures (e.g. Mazurek et al. 1977; Seitenzahl et al. 2009). Also, if a
deflagration is started, plausible mechanisms to transition to a detonation all seem to require densities
around 107 g cm−3, where the conductive flame speeds are slower and the separation between the
various burning fronts increases (e.g., Woosley et al. 2009; 2011).

An interesting aspect of our results is that for all cases ignition likely happens off-center: in shells
for dissimilar-mass mergers and in hot spots along the rotational axis for similar-mass ones. Previous
one-dimensional simulations suggested off-center ignition would lead to a slow deflagration flame that
turns the CO WD into a ONe WD (e.g., Saio & Nomoto 1985). However, these calculations assumed a
hot spot many pressure scale heights above the center. For ignition closer to the center, a deflagration
plume is produced (e.g., Aspden et al. 2011), which may transition to a detonation (Seitenzahl et al.
2011) and unbind the star.

Given our findings, it seems likely that, if a detonation occurs, it will be triggered off-center. It
would be interesting to simulate the resulting explosion, and see whether one could reproduce the
observational evidence for asymmetries, which have been interpreted in terms of off-center ignition
(though so far only in the context of near-Chandrasekhar models; Maeda et al. 2010a;b).

Finally, while we simulated only mergers of CO WDs, we can extrapolate our results to more
massive ONe WDs. For these, the temperatures would be at least as high as for our 1 M� accretors,
and, after further viscous evolution, the mergers should become hot enough to ignite Ne burning. If
this also leads to a detonation, the lower fusion energy released would likely lead to a less energetic
explosion than expected for a CO WD merger, but it would produce far more 56Ni and have a very
large mass. Plausibly, it would resemble an SN Ia like SN 2009dc, which had unusually low ejecta
velocities, produced ∼ 1.8 M� of 56Ni and had a total ejecta mass of ∼ 2.8 M� (Taubenberger et al.
2011).

2.7 Conclusion

We have performed a large, detailed parameter-space study of CO WD mergers, extracting pertinent
properties and profiles for each remnant, and studying how these vary across parameter space. For a
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merger involving dissimilar-mass WDs, with low qρ = ρc,d/ρc,a, the outcome is a cold, slowly rotating,
degeneracy-supported remnant core, which is essentially unaffected by the merger, surrounded by a
hot, roughly spherical envelope and, further out, by a sub-Keplerian disk. For a similar-mass merger,
with high qρ, an ellipsoidal core is produced along with a small disk, and the entire remnant is hot and
partly supported by rotation. The transition between these two regimes is smooth, but occurs roughly
at qρ ' 0.6, or equivalently a mass difference ∆M = Ma −Md ' 0.1. We found that for a fixed qρ,
merger remnant curves are roughly homologous. We also presented trends for a number of merger
remnant properties, providing linear scaling relations and best fits for most of them, hoping these can
guide theoretical understanding and help analytical estimates.

We made first-order estimates of the post-merger viscous evolution and spindown, and found that it
is plausible that a large fraction of the mergers simulated will eventually experience a nuclear runaway,
as was suggested by vK10, and thus possibly end as thermonuclear supernovae. Further, detailed,
simulations of this evolution across the whole parameter space, using techniques similar to those of
Shen et al. (2012) and Schwab et al. (2012), would be required to confirm this. If the evolution of these
remnants results in a detonation, a detailed comparison of the resulting light curve with observations
must be carried out.

Our work represents one of the most detailed parameter studies of WD mergers to date. It would
benefit, however, from resolution of a number of topics. First, for greater precision, it will be necessary
to use better initial conditions. For synchronized systems, it is already known this has nontrivial
effect on the outcome (Dan et al. 2011; 2012), and our results suggest it is important also for non-
synchronized systems. Unfortunately, for the non-synchronized case, it is not trivial to implement the
initial conditions, but better approximations are possible. Second, it would be useful to try to compare
with merger simulations done with a grid code, which should have become more straightforward now
that good moving mesh codes have become available (Springel 2010a; Duffell & MacFadyen 2011). More
generally, whether or not WDs are synchronized before the merger remains unknown, yet clearly affects
the resulting merger. Hopefully, this can be resolved empirically, by measuring the spin frequency for
WDs in the very short-period binaries that have recently been discovered (e.g., Brown et al. 2011).

We thank Pablo Lorén-Aguilar, Enrique García-Berro, Stuart Sim, Enrico Ramirez-Ruiz, Marius Dan,
James Guillochon, Evan Scannapieco, Cody Raskin and Ken Shen for insight into their simulations
and useful discussion on the physics of mergers and post-merger evolution. We are grateful to Frank
Timmes for creating the Helmholtz equation of state, and assisting us with its implementation in
Gasoline, as well as to Bill Paxton and the MESA team for creating MESA and making it modular. This
work made extensive use of NASA’s ADS and was supported by the Vanier and Discovery grants of
Canada’s Natural Sciences and Engineering Research Council (NSERC).

2.8 Postscript: Post-Merger Evolution Revisited

Since the publication of Ch. 2 as Zhu et al. (2013), others have done work on the viscous evolution
of merger remnants. Raskin et al. (2014) uses the machinery of Schwab et al. (2012) to generate
post-viscous remnant profiles for massive (mostly dissimilar-mass) mergers with & 1 M� accretors, to
determine their nucleosynthetic output if they then experienced a pure detonation. They do not discuss
their viscous simulations in detail. Also published was Ji et al. (2013), a work of particular relevance
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to our investigations not only because they simulate the post-merger evolution of an equal-mass
0.6− 0.6 M� remnant, but also because they eschew the use of an α-viscosity and instead directly
evolve the magnetic field of the merger remnant. We have not performed our own post-merger
evolution simulations12, and use Schwab et al. (2012) and Ji et al. (2013)’s results extensively throughout
this thesis. Since this thesis has no dedicated chapter on post-merger evolution, we expand and update
the discussion in Sec. 2.6.1 below with Ji et al. (2013)’s results.

Ji et al. (2013) run 2.5D MHD simulations with the Eulerian grid code FLASH (Fryxell et al. 2000),
using the 0.6− 0.6 M� remnant of LIG09 as initial conditions. They utilize a axisymmetric cylindrical
grid and the Helmholtz EOS. Since LIG09’s remnants are unmagnetized, they artificially insert a purely
poloidal magnetic field whose strength is ∼ 108 G in the remnant disk, and . 105 G in the core (they
determine their results are robust to changing initial field strength and spatial resolution by factors of 2).
They advance their simulation to 2× 104 s, comparable to the completion times in Schwab et al. (2012).
They find that the magnetorotational instability (MRI) acts on the differentially rotating portions of the
remnant to greatly amplify the field over several hundred seconds, until it reaches equilibrium with a
peak field strength of ∼ 109 G in the disk and & 1010 G in the core, as well as a total magnetic energy of
∼ 1048 erg, on par with the differential rotation energy of the system (see Ch. 4). This field produces
Maxwell stresses that are roughly equivalent to an α ∼ 10−2 viscosity, facilitating global outward
angular momentum transport like in Schwab et al. (2012). It also generates a hot, magnetized corona
by displacing disk material through magnetic buoyancy, and a biconal outflow along the remnant’s
rotational axis. These outflows eject 10−3 M� of material at roughly twice the local escape speed (of
∼ 1600 km s−1).

Much like Schwab et al. (2012), Ji et al. (2013) find that the remnant loses most of its rotational
support and evolves toward a spherically symmetric state with a dense, degeneracy-supported core
and a more tenuous thermally-supported envelope. By the end of the simulation ∼ 0.08 M� of material
either resides in the magnetically dominated corona or has left the simulation domain, leaving 1.12 M�
remaining in the remnant, with 1.07 M� of this residing within r = 1.5× 109 cm in the dense core
(Suoqing Ji and Robert Fisher private communication, 2016). Accretion onto and loss of rotational
support within the core leads to its center being compressionally heated by a factor of ∼ 2 in density
and temperature. As their initial conditions are a factor of ∼ 2 hotter than our 0.6− 0.6 M� remnant
(Sec. 2.5.1), this additional compression ignites central nuclear fusion.

We can compare the results of Ji et al. (2013), along with Schwab et al. (2012), to our simple estimates
of viscous evolution in Sec. 2.6.1. The most relevant quantities are the density and temperature at
the center and at the hottest point of the post-viscous remnant, to determine whether carbon fusion
ignites under highly degenerate conditions and the amount of material that remains a part of the dense,
degeneracy-dominated remnant core. The latter is important for comparing against simmering WDs
in Chapter 5. As stated in Sec. 2.6.1, we estimate the hottest point within our 0.6− 0.9 M� remnant
increases by a factor of 2.5 in density and 1.6 in temperature, very similar to Schwab et al. (2012)’s
results. The central density of their remnant is 1.75× 107 g cm−3 at the start of viscous evolution (Dan
et al. 2011) and 2.8× 107 g cm−3 at the end – an factor of 1.6 increase, while we find a factor of 2.0. We
tend to estimate much larger amounts of compressional heating for similar-mass systems, however,
finding that the 0.6− 0.6 M� one increases its central density and temperature by a factor of 6.6 and 2.7,

12We experimented with FLASH-based 2.5D simulations that included an α-viscosity, but did not follow up with a detailed
investigation.
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Figure 2.19: Ratio of post-viscous degenerate core mass Mc,pv – estimated using the simple viscous
evolution prescription in Sec. 2.6.1 – to the remnant total mass Mtot as a function of Mtot for the
systems simulated in this chapter (“Estimate” points; colors have the same meaning as in Fig. 2.17) and
the 0.625− 0.65 M� remnant from the Arepo MHD simulation (Ch. 4; red-blue star). Also plotted are
estimates of Mc,pv/Mtot from Schwab et al. (2012; using Mc + Mtp in their Table 3) with magenta Xs
and Ji et al. (2013) with a cyan X. The dotted line is a best fit to the Estimate points given by Eqn. 2.26.

respectively, substantially larger than those found by Ji et al. (2013). Similarly, Raskin et al. (2014) find
the central density of their 1.0− 1.0 M� remnant increases from 7.1× 107 g cm−3 to 2.4× 108 g cm−3, a
much smaller compression than the factor of ∼ 13 we find. This is likely because our simple estimates
assume all rotational energy is deposited as heat solely in the outermost regions of the remnant, while
in reality remnants, particularly those of similar mass, are rotationally supported throughout and
thus will likely also be heated throughout during viscous evolution, reducing the amount of core
compression and associated compressional heating. We also note Ji et al. (2013)’s remnant has not fully
lost core rotational support at the end of their simulation13, still having Ωc ≈ 0.18 s−1, but since the
remnant has already lost two-thirds of its initial angular momentum, removing this support is unlikely
to compress it much further. We conclude our estimates are reasonable for dissimilar-mass systems,
but overestimate by a factor of a few the degree of compression and heating in similar-mass ones.

In our simple estimate, the mass of the post-viscous core, Mc,pv, is given by the mass of the
spherically symmetric hydrostatic model representing the spun-down remnant (Sec. 2.6.1). In Fig. 2.19,
we plot the ratio of Mc,pv to the total mass Mtot of the merging binary, as well as a linear fit to the
Mc,pv vs. Mtot relationship,

Mc,pv = 0.70Mtot + 0.08 M�. (2.26)

We also perform our estimate on the 0.625− 0.65 M� remnant from our Arepo (Springel 2010a) MHD
simulation in Ch. 4, and find little difference from its Gasoline counterpart. For Schwab et al. (2012),

13We do not know if the same is true for Raskin et al. (2014)’s simulations. Ji et al. (2013) additionally note the central
temperature at the end of evolution has not converged, increasing by ∼ 20% with spatial resolution.
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Figure 2.20: Ratio of post-viscous degenerate core mass Mc,pv to remnant core-envelope mass Mce
(Sec. 2.3.2.3) as a function of qρ for the systems simulated in this chapter (“Estimate” points), the
0.625− 0.65 M� remnant from the Arepo MHD simulation (red-blue star), the 0.6− 0.6 M� remnant of
Ji et al. (2013; cyan X) and the 0.6− 0.9 M� remnant of Schwab et al. (2012; magenta X). The dotted
line is a best fit to the Estimate points given by Eqn. 2.27.

we estimate Mc,pv as the combined mass of the core and isothermal region (Mc + Mtp) in their Table 3.
We find these follow the overall pattern of our estimates, but tend to be ∼ 0.08 M� below it. For Ji et al.
(2013), Mc,pv ≈ 1.07 M� (see above), which is ∼ 0.15 M� above our estimate. Our estimate therefore
only roughly reproduces (with errors of ∼ 0.1 M�) the amount of mass remaining in the post-viscous
core, partly because the assumption that material not in the core is marginally bound with E = 0 is
overly simplistic, and partly because Mc,pv is somewhat difficult to define in a system that may be
supported by both degeneracy and thermal pressure.

In Fig. 2.20, we plot the ratio of Mc,pv to the core-envelope mass Mce of the merger remnant (Sec.
2.3.2.3) as a function of qρ, as well as a linear fit to the Mc,pv/Mce vs. qρ relationship,

Mc,pv

Mce
= −0.28qρ + 1.12 (2.27)

We use the 0.6− 0.6 M� remnant core mass (1.1 M�) from LIG09 for the Mce of the Ji et al. (2013). The
core masses of the remnants used in Schwab et al. (2012) are not reported, so for their 0.6− 0.9 M�
remnant (the sole system which overlaps with our parameter space) we substitute with our own Mce.

Figs. 2.19 and 2.20 show that, in all estimates of the viscous spin-down phase, a significant fraction
of the total remnant mass is not accreted onto the core during viscous evolution. For similar-mass
mergers our estimate suggests that the entire disk and a small amount of the core and envelope end up
as a part of the hot envelope, leaving the core with slightly less mass than it had just after coalescence.
This runs counter to vK10’s assumption that the most of the disk will rapidly accrete onto the remnant,
and explains why the increases in density and temperature during viscous evolution reported in this
section are all a factor of a few smaller than that given in vK10.
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For those systems that do not ignite nuclear fusion during the viscous phase, their next stage of
evolution involves entropy being transported via neutrino cooling and radiative diffusion throughout
and away from the remnant. Since the remnant hot envelope (ρ . 104 g cm−3, T ∼ 109 K) is radiation-
dominated, it has a near-Eddington luminosity, and thermal evolution will occur over a timescale (Shen
et al. 2012)

ttherm ∼ Eth,envelope/Ledd ∼ 104 yr. (2.28)

(For those systems that do ignite fusion, the nuclear runaway time is . 102 yr, so this evolution will
only occur to a very limited extent.) Shen et al. (2012) simulates this phase of thermal evolution using
the MESA (Paxton et al. 2011; 2013; 2015) stellar evolution code, starting with an artificial radial profile
that approximates their 0.6− 0.9 M� post-viscous remnant. Notably, they set the peak temperature at
the base of the hot envelope (at m ∼ 0.8 M�) below the carbon ignition line. They find the entropy from
the remnant interior diffuses outward over ∼ 104 yr, leading to the further compression and heating
of the interior until carbon fusion ignites at the (non-degenerate) base of the envelope. Meanwhile,
convection rapidly redistributes entropy to much of the envelope, expanding it until its photosphere
reaches 1012 − 1013 cm, comparable to giant stars. They predict that their remnant will be converted
into an ONe WD, much like in earlier calculations of near-Eddington accretion onto massive WDs (eg.
Saio & Nomoto 1985).

More recently, Schwab et al. (2016) have used MESA to simulate the thermal evolution of their
post-viscous 0.6− 0.9 M� remnant from Schwab et al. (2012), and a more massive 0.64− 0.96 M�
one from Raskin et al. (2014). The peak temperatures of both remnants are already high enough to
ignite carbon at the start; this generates a carbon-burning shell that propagates inward via conduction,
reaching the center of the WD in ∼ 2× 104 yr. The result is a partly non-degenerate ONe proto-WD,
which subsequently cools through neutrino losses and contracts. For remnants with masses & 1.35 M�,
this leads to off-center oxygen-neon burning to silicon-group elements, and for super-MCh remnants,
may even lead to fusion to iron followed by core-collapse into a neutron star. For substantially sub-MCh

remnants that ignite non-explosive carbon burning, though, the likely end-result is a massive ONe
WD. The radiation-dominated envelope along with the remnant’s carbon-oxygen composition suggest
that the remnant drives strong winds, complicating the thermal evolution and potentially leading to
considerable mass loss (Shen et al. 2012; Schwab et al. 2016).

Thermal evolution of post-viscous remnants that are hottest at their center have, to our knowledge,
not yet been calculated. We expect it would be qualitatively similar to what Shen et al. (2012) and
Schwab et al. (2016) found for their dissimilar-mass remnants: a further compression of the interior
over ∼ 104 yr, with compressional heating partially offset by radiative and neutrino cooling. We thus
expect that systems brought to the brink of ignition by viscous spin-down may subsequently ignite
due to thermal contraction, though the number of such systems is likely small. Those whose central
temperatures are significantly below 6× 108 K will cool too much during their compression to ignite;
since neutrino cooling is density-dependent, they may experience off-center ignition instead.



Chapter 3

Mergers in Smoothed-Particle and
Moving Mesh Hydrodynamics

Chenchong Zhu, Rüdiger Pakmor, Marten H. van Kerkwijk and Philip Chang

The physics and final outcomes of the merger of two white dwarfs can currently only be directly
studied through 3D hydrodynamic simulations, and to date merger simulations have largely relied
on smoothed-particle hydrodynamics, a method known to produce numerical artifacts under certain
conditions. In order to determine if the outcome of these simulations depends on the code being used,
we followed the merger of a 0.625− 0.65 M� carbon-oxygen white dwarf binary in both the SPH code
Gasoline and the moving mesh code Arepo. We find that the two agree well with one another until
the merger is complete. Afterward, the merger remnant becomes axisymmetric over the course of a
few hundred seconds in Gasoline, with most of its mass comprising a dense, oblate-spheroidal core.
The remnant in Arepo, on the other hand, remains non-axisymmetric and features a crescent-shaped
core flanked on one side by a hot, underdense “void”. This configuration has an offset gravitational
potential, which launches an m = 1 spiral mode within the surrounding disk that transports disk
angular momentum over a timescale of ∼ 103 s, substantially faster than suggested by other post-merger
evolution studies. These code-dependent differences could affect the early phase of post-merger viscous
evolution. The final product of the merging process, however, likely remains a spherically symmetric
dense core surrounded by a hot, non-degenerate envelope, regardless of which code is used.

70
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3.1 Introduction

Simulations of white dwarf (WD) mergers are a window into the detailed dynamics of the merging
process and – since mergers cannot directly be seen using current observational capabilities – a link
between observations of strange stars and explosive transients and theories about their formation.
Since the pioneering work of Benz et al. (1990), these simulations have overwhelmingly used a single
numerical hydrodynamics method, smoothed-particle hydrodynamics (SPH). Within SPH, regions of
high density are automatically more resolved and advection is simulated without errors; its equations
of motion also inherently conserve energy, linear and angular momentum. These features make it
attractive for modeling the complex fluid flows present in mergers. Building on Benz et al. and other
early works such as Segretain et al. (1997) and Guerrero et al. (2004), more recent efforts have focused
on more precise binary initial conditions (Dan et al. 2011), exploration of remnant properties across
parameter space (Ch. 2; LIG09; Raskin et al. 2012; Dan et al. 2014) and exploring the possible instigation
and consequences of a nuclear explosion caused by the merger (eg. Pakmor et al. 2010; Dan et al. 2012;
Pakmor et al. 2013; Moll et al. 2014; Raskin et al. 2014).

The traditional SPH formulation, however, is not without its problems (eg. Springel 2010a; Hopkins
2015): to be able to capture shocks, it uses an artificial viscosity, which can produce spurious heating
and angular momentum transport in shear flows; it is known to suppress hydrodynamic instabilities;
and it captures shocks and steep gradients relatively poorly compared to other schemes at the same
resolution. Shocks, large-scale shear flows and the formation of instabilities are all expected for WD
mergers, and comparisons between SPH and Eulerian grid codes for other astrophysical phenomena
(eg. de Val-Borro et al. 2006; Trac et al. 2007; Mitchell et al. 2009) have often shown qualitative and
resolution-independent differences. Reproducing simulations across different types of codes is essential
both for the development of numerical hydrodynamic schemes and for ensuring the physical validity
of their results, and so we are motivated to simulate mergers with other hydrodynamic schemes.

A recent alternative to SPH, as well as Eulerian grid codes, is Arepo (Springel 2010a), one of a
growing class of codes (eg. Duffell & MacFadyen 2011; Gaburov et al. 2012; Vandenbroucke & De
Rijcke 2016) that render fluid evolution on a dynamically moving, unstructured mesh. Arepo retains
the accurate treatment of shocks and instabilities as well as low velocity noise and negligible artificial
viscosity in smooth flows that Eulerian grid codes feature, while gaining the automatic refinement and
Galilean invariance inherent to SPH. These features, coupled with a tree-based self-gravity solver, make
it particularly attractive for astrophysical simulations (eg. Vogelsberger et al. 2012; Pakmor & Springel
2013; Hayward et al. 2014; Marinacci et al. 2014; Ohlmann et al. 2016), and, with the notable exception
of formal angular momentum conservation, ideal for simulating WD mergers. Pakmor et al. (2013)
has already used Arepo to investigate initial mass transfer, and the possibility that transfer sets off a
helium detonation, in a 0.9 - 1.1 M� CO WD merger.

In this work, we compare the merger of a 0.625− 0.65 M� carbon-oxygen (CO) WD binary simulated
in Arepo with one simulated in the SPH code Gasoline (Wadsley et al. 2004). We generate identical
initial conditions for both simulations, and disable chemical and nuclear evolution to focus solely on
the hydrodynamic differences, aiming to learn whether critical hydrodynamic phenomena might have
been missing or misrepresented in past SPH-based merger simulations. Our results show that the
two simulations closely resemble one another until the two WDs coalesce, after which the Gasoline

merger remnant becomes axisymmetric over several hundred seconds, while the Arepo one remains
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asymmetric for much longer, potentially altering post-merger evolution.

In Section 3.2, we review the hydrodynamic schemes of SPH and Arepo, and discuss the parameters
and initial conditions used in each simulation. In Section 3.3, we summarize efforts to improve angular
momentum conservation within Arepo. In Section 3.4, we present results for each code and compare
their outcomes. Lastly, in Sections 3.5 and 3.6, we discuss which code represents the more physical
result, and implications for mergers.

3.2 Codes and Initial Conditions

All hydrodynamic and magnetohydrodynamic codes seek to properly evolve the continuum dynamics of
a fluid on a discrete set of points in space and time. Most astrophysical fluid codes (including the two we
use) explore the simpler regimes of ideal hydro- or magnetohydrodynamics, where molecular viscosity
and electrical resistance are negligible, as such is generally the case in astrophysical settings outside
of planetary interiors. The coupled partial differential equations of ideal magnetohydrodynamics, in
their conservative form and with Gaussian units (eg. Goedbloed & Poedts 2004; Pakmor et al. 2011a;
Pakmor & Springel 2013; Spruit 2013), is

∂tρ + ∂j(ρuj) = 0

∂t(ρui) + ∂j(ρuiuj + δijPtot −
1

4π
BiBj) = −ρ∂iΦ

∂t(ρe) + ∂j

(
uj(ρe + Ptot)−

Bj

4π
(ul Bl)

)
= −ρuj∂jΦ

∂tBi + ∂j(ujBi − uiBj) = 0, (3.1)

where ρ, ui, Bi, and Φ are the density, velocity, magnetic field and gravitational potential, respectively,
Ptot = P + 1

8π BjBj is the total pressure, e = 1
2 uiui + eint +

1
8πρ BjBj is the specific total energy, and the

usual Einstein summation convention holds. This can be written in compact form:

∂U
∂t

+∇ · F(U) = G (3.2)
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ρ
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ρe
B
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ρu

ρuuT + Ptot − 1
4π BBT

u(ρe + Ptot)− B
4π (u · B)

BuT − uBT

 , (3.4)
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G =


0

ρg
ρu · g

0

 , (3.5)

and g = −∇Φ is the gravitational acceleration. Eqn. 3.2 shows that the time-derivative of the fluid’s
values is given by the sum of a flux term (since, by the Green-Gauss theorem, the integral of ∇ · F(U)

within a volume is equivalent to a flux across its boundary) and a (self-)gravitational source term G.
These are generally calculated separately, and then combined.

To better understand the code comparison in this chapter, and to preface the discussion of improving
Arepo’s angular momentum conservation in Sec. 3.3, we present an extremely short and semi-
qualitative discussion of how these equations are implemented within SPH and Arepo. The historical
development of both methods is long and involved, and, as improving hydrodynamic schemes is not
the focus of this thesis, we will refer the reader to the review articles referenced throughout this section
for further details.

3.2.1 Traditional Smoothed-Particle Hydrodynamics

SPH, first introduced in Lucy (1977) and Gingold & Monaghan (1977), is a mature simulation method
used in a host of astrophysical contexts ranging from star formation to cosmology. Our overview
summarizes the first few sections of (Springel 2010b); we also refer readers to Monaghan (2005),
Rosswog (2009) and Price (2012) for further details.

SPH represents a fluid with a set of particles. The fluid’s continuum properties at some point r in
the simulation are sampled by using these particles as interpolation points. Representing any given
continuum property (the most important of which is density, since it factors into the equations of
motion) as F(r), we can use a “kernel” W(r, h) to generate its approximate, locally-averaged value

Fs(r) =
∫

F(r′)W(r− r′, h)dr′. (3.6)

In the (computationally impossible) case of infinite resolution, we can choose W(r, h) to be a Dirac delta,
and Fs(r) = F(r), but in practice we choose W(r, h) to extend over some characteristic “smoothing
length” h. If W(r, h) were a Gaussian, h = σ, the standard deviation. The most popular form of W(r, h)
is a cubic spline that goes to zero when r > 2h, and h is generally set to ensure a user-defined number
of neighboring particles N fall within the kernel. For a set of particles with associated mass mi and
known values of Fi = F(ri), we can discretize the integral as

Fs(r) '∑
j

mj

ρj
FjW(r− rj, h). (3.7)

where ρi can be estimated using

ρi '∑
j

mjW(ri − rj, h) (3.8)

Derivatives of the field can also be determined using the gradient of the kernel ∇iWij.
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Meanwhile, the Euler equations (Eqn. 3.2 without the gravitational and magnetic terms) can be
shown to follow the Lagrangian:

L =
∫

ρ

(
u2

2
− e
)

dV (3.9)

which can be discretized for a set of particles as

LSPH = ∑
i

1
2

miui
2 −miei. (3.10)

This suggests a time-evolution scheme for the fluid. Each particle representing the fluid is given a
(time-independent) mass mi, position ri, velocity ui and specific internal energy ei; the fluid can then
be simulated by time-evolving the latter three terms for all particles. The equations governing ui and ei

are derived by applying the Euler-Lagrange equation ( d
dt

∂L
∂ṙi
− ∂L

∂ri
= 0) to LSPH. They traditionally take

the form:1

dui
dt

= −∑
j

mj

(
Pi

ρ2
i
+

Pj

ρ2
j

)
∇iWij (3.11)

dei
dt

=
Pi

ρ2
i

∑
j

mj
(
ui − uj

)
· ∇iWij (3.12)

where pressure Pi is determined from ρi and ei using a user-prescribed equation of state. The left
panel of Fig. 3.1 summarizes this scheme. Note that since Eqn. 3.9 has no time-dependence and
is translationally and rotationally invariant, SPH naturally conserves total energy, momentum and
angular momentum. Self-gravity can be added as an additional force to Eqn. 3.11 (see Springel 2010b,
Sec. 2.4, and Wadsley et al. 2004, Sec. 2.1) using methods originally developed for N-body simulations.
Magnetic fields can also be included (eg. Price 2012; Lewis et al. 2016), but the resulting “SPMHD”
formulation is not used in this thesis.

As given, the SPH equations of motion conserve entropy, but entropy must increase in the presence
of shocks. The most popular solution is to add an artificial viscosity term

−∑
j

mjΠij∇iWij (3.13)

to Eqn. 3.11, where, defining rij = ri − rj and uij = ui − uj,

Πij =


−α 1

2 (ci+cj)µij+βµ2
ij

1
2 (ρi+ρj)

for uij · rij < 0

0 otherwise,
(3.14)

where µij = h̄uij · rij/(|rij|2 + 0.04h̄2), h̄ = 1
2 (hi + hj), ci is the sound speed and α and β are tunable

parameters (β = 2α is used in Gasoline). In addition to facilitating shock capture, Πij also prevents
spurious particle interpenetration between interacting flows (Hernquist & Katz 1989). It, however, can
also introduce spurious viscous forces, and so must be damped in the absence of shocks. In shear
flows, this can be done with a “Balsara switch”, which multiplies Πij with a prefactor, proportional to

1We state Wadsley et al. (2004)’s formulation of Eqns. 3.11 and 3.12, as Springel (2010b) assumes a different method of
controlling the smoothing length hi .
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the ratio between the divergence and curl of velocity, that goes to zero in the presence of a pure shear
flow. It is also possible to make the α and β coefficients in Πij time-variable (eg. Morris & Monaghan
1997; Dolag et al. 2005) with

dαi
dt

= −αi − αmin

τi
+ Si (3.15)

where τi = hi/(cil), l is a tunable parameter of order unity, Si is a source term that becomes large
in the presence of shocks, and αmin > 0 is a minimum α value to negate noise and spurious particle
interpenetration in smooth flows. Eqn. 3.15 exponentially damps αi to its minimum value over timescale
τi in the absence of shocks, and increases it via the source term when shocks are present. Both these
methods are used in Gasoline.

As explained in the introduction, SPH’s Lagrangian nature allows it to automatically resolve regions
of high density, simulate advection without errors, and conserve energy, linear and angular momentum
to high accuracy. These features make it much easier to model mergers in SPH than in Eulerian
grid schemes, which discretize the simulation volume on a static grid, and time-evolve the system
by tracking fluid fluxes between grid cells. These traditionally have issues with simulating advection
and adaptively increasing the spatial resolution ahead of moving fluids, such as orbiting binary stars,
except under specific coordinate systems and symmetries. Thus, they have rarely been used to simulate
WD mergers (see Katz et al. (2016) for recent developments).

The limitations of SPH (and Eulerian codes) have also been well-covered in literature (see, eg., the
introductions to Springel 2010a; Hopkins 2015; Katz et al. 2016). Chief among them is the artificial
viscosity discussed above, which can produce spurious heating and angular momentum transport in
shear flows even in codes that utilize the Balsara switch and time-variable viscosity (Cullen & Dehnen
2010). Classical formulations of SPH have also been known to suppress hydrodynamic instabilities
(eg. Agertz et al. 2007) due to poor treatment of contact discontinuities manifesting as a “surface
tension” (eg. Read et al. 2010; Heß & Springel 2010). While this has subsequently been resolved (eg.
Hopkins 2013; Hu et al. 2014; Keller et al. 2014) by introducing artificial mixing terms (Price 2008) and
smoothing the pressure as well as the density across discontinuities (eg. by replacing the Pi/ρ2

i + Pj/ρ2
j

term in Eqn. 3.11 with (Pi + Pj)/(ρiρj); Keller et al. 2014) the vast majority of merger simulations in
the literature come from before these alterations became widely used. SPH resolves shocks and steep
gradients relatively poorly compared to Eulerian schemes due to kernel smoothing of the density, and
can corrupt smooth flows with particle velocity noise (Springel 2010b). Lastly, SPH particles naturally
tend toward a locally isotropic and regular configuration (Price 2012), and in physical systems where
they are irregularly distributed, such as in shear flows and in shocked material, Eqn. 3.11 produces
spurious forces to restore regularity (eg. Read et al. 2010; Dehnen & Aly 2012). In some situations, this
resolution-independent “E0 error” produces enough noise to drown out large-scale structures (Hopkins
2015). All of these issues motivate both the further development of SPH and competing hydrodynamic
schemes, and simulating mergers in a diversity of codes.

3.2.2 GASOLINE SPH Code

Gasoline is a modular, tree-based SPH code that we previously used to explore the parameter space of
CO WD mergers in Ch. 2. Code settings and initial conditions used in this work are nearly identical to
those used in Ch. 2. We utilize Gasoline’s default Hernquist & Katz (1989) kernel with 100 neighbors,
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and use the asymmetric energy formulation (Wadsley et al. Eqn. 8) to evolve particle internal energy.
Artificial viscosity is dynamically controlled using a combination of the Balsara switch and time-
variable coefficients for the α and β viscosity terms (α = 0.05, β = 0.1 when shocks are not present,
and approximately unity when they are). We utilize the Helmholtz equation of state (EOS; Timmes
& Swesty 2000) to properly represent arbitrarily degenerate and relativistic gases. Since Gasoline

tracks the particle internal energy, while Helmholtz uses temperature as an input, a Newton-Raphson
inverter is included in the EOS to determine the latter from the former. Helmholtz includes analytic
expressions for Coulomb corrections that lead to negative entropy values for cold and dense material
(eg. T . 106 K when ρ ∼ 107 g cm−3). When this occurs, the EOS sets all Coulomb contributions to
zero, but this produces a jump in the pressure and internal energy of order 1%, which can cause the
Newton-Raphson inverter to fail. To keep the energy-temperature relation monotonic for the inverter,
we enable Coulomb corrections even when the total entropy becomes negative. SPH noise occasionally
brings highly degenerate particles to below the Fermi energy. Under these conditions we set the
pressure to the Fermi pressure, but let the energy freely evolve (see Sec. 2.2.1).

Like in our previous work, we ignore outer hydrogen and helium layers, composition gradients, and
any nuclear reactions, in order to focus on the merger hydrodynamics. Previous work that did include
nuclear reactions (LIG09; Dan et al. 2012), and in one case an outer helium layer (Raskin et al. 2012),
have shown that they play a negligible role in the hydrodynamics of a 0.625− 0.65 M� CO WD merger.
More massive binaries, as well as less massive ones involving a CO-He hybrid WD, may experience He
or CO detonations during the merger (Pakmor et al. 2010; Raskin et al. 2012; Dan et al. 2012; Pakmor
et al. 2013).

We use the same version of Gasoline as in Ch. 2, which does not include the improvements
recently introduced in Gasoline2 (Keller et al. 2015; Tamburello et al. 2015) and ChaNGa/Gasoline

(Governato et al. 2015). These include a turbulent diffusion scheme to facilitate fluid mixing (Shen et al.
2010b) and the use of the (Pi + Pj)/(ρiρj) density-averaged pressure term in the SPH force expression
(Keller et al. 2014) to properly treat contact discontinuities. We also do not consider more advanced
prescriptions for viscosity, such as Godunov-SPH (eg. Cha & Wood 2016), as these are generally not
implemented in SPH codes. We again stress that the purpose of this work is to compare the traditional
SPH formulation, used in almost all merger simulations to date, to Arepo, and we leave comparisons
with improved and modified SPH schemes to future work.

3.2.3 AREPO Moving Mesh Code

We now introduce Arepo’s moving-mesh magnetohydrodynamics scheme, summarizing Springel
(2010a), Pakmor et al. (2011a) and Pakmor & Springel (2013). Arepo discretizes a fluid using a mesh
(i.e. a grid), much like static Eulerian codes. To overcome the traditional Eulerian code shortcomings
of not being Galilean invariant, having large advection errors and having difficulty adjusting spatial
resolution for complex flows, Arepo moves the mesh to follow local fluid motion. Fluxes between
mesh cells are calculated in the frame of the (moving) cell walls that divide them – this preferred frame
choice, in addition to the moving mesh, give the scheme a Lagrangian nature and automatic spatial
refinement similar to SPH. Allowing a structured grid to move with the fluid can lead to severe mesh
deformation that prevent its further evolution. Arepo circumvents this by utilizing an unstructured
mesh defined by Voronoi tessellation of a set of “mesh-generating points”, each of which corresponds
to a single mesh cell (see Springel 2010a, Sec. 2). The mesh-generating points are given the velocities of
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Figure 3.1: Schematics for the SPH and Arepo hydrodynamic schemes. In SPH (left), the fluid is
discretized into particles, each of which possesses a position ri, mass mi, velocity ui and specific internal
energy ei. The density ρi of a given particle (red point) is determined by kernel sampling its neighbors
(blue) within a smoothing length hi (Eqn. 3.8); pressure Pi is then obtained using the density and
internal energy. The particle is evolved by kernel sampling nearby pressures and densities, and applying
the SPH equations of motion (Eqns. 3.11 and 3.12). In Arepo (right), the fluid is discretized using an
unstructured mesh defined by Voronoi tessellation. Each Voronoi cell possesses a mesh-generating
point ri and a set of conserved quantities equivalent to “primitive variables” Wi = (ρi, ui, Pi, Bi), i.e.
the values of density, velocity, pressure and magnetic field amplitude at the cell’s center of mass si.
Note that ri 6= si, but their separation is typically a few percent of the cell’s radius, and has been
exaggerated above. Fluxes between two cells L and R are calculated by propagating their primitive
variables WL,R to the centroid of their interface f to obtain Winterface

L,R (Eqn. 3.19, or Eqn. 3.23 following
Pakmor et al. 2016), and then solving the Riemann problem (in the frame of the interface). The mesh is
evolved by moving the mesh generating points ri at roughly the fluid velocity ui, calculating fluxes
between all cells, and then updating each cell’s conserved quantities. While evolving an SPH particle
requires the use of dozens of its neighbors for kernel averaging, evolving an Arepo cell only requires
those neighbors directly adjacent to it.



Chapter 3. Mergers in Smoothed-Particle and Moving Mesh Hydrodynamics 78

the fluid they represent, and the tessellation is redone at each timestep. The result is a moving mesh
that, due to the mathematical properties of Voronoi tessellation, does not suffer from mesh-tangling
effects. To keep the Voronoi mesh regular (improving computational efficiency), mesh-generating point
velocities are slightly altered from their pure Lagrangian values, and additional velocity adjustments
can be made to keep cells near a constant mass or volume. This representation of the fluid also couples
more naturally to N-body based gravity solvers (see Springel 2010a, Sec. 3), with Arepo using a nearly
identical TreePM solver as the SPH code gadget2 (Springel 2005).

On the Voronoi mesh, Arepo tracks the finite volume integral of U (Eqn. 3.3) for each cell, i.e.

Qi =
∫

Vi

UdV =


mi

pi

Ei

BiVi

 , (3.16)

where mi is the cell mass, pi its momentum, Ei its total energy and BiVi the magnetic field multiplied
by the cell volume. The time-evolution for cell i from timestep n to n + 1 is then given by

Qn+1
i = Qn

i − ∆t ∑
j

AijF̂
n+1/2
ij (3.17)

where ∆t is the timestep, j stands for all cells that border cell i, Aij is the oriented area of the face
dividing cells i and j and F̂ij is the estimated flux between them (positive flux means escaping from i).
In practice fluxes are more easily calculated using primitive variables

Wi =


ρi

ui

Pi

Bi

 (3.18)

and then converted back to Q. As noted earlier, fluxes are calculated in the frame of face Aij to maintain
Galilean invariance, so W on either side of the face – which we term the “left” and “right” cells – are
boosted by Aij’s velocity before being used. The geometry of this setup can be seen in the right panel of
Fig. 3.1. In Arepo’s original formulation (Springel 2010a), the values of Winterface on the left and right
sides of Aij’s centroid are determined from their respective cell’s W using the MUSCL-Hancock (eg.
Van Leer 2006; MUSCL stands for “Monotonic Upstream-Centered Scheme for Conservation Laws”)
approach of a piecewise linear spatial reconstruction and a first-order time-extrapolation by half a
timestep:

Winterface
L,R = WL,R +

∂W
∂r

∣∣∣
L,R

(f− sL,R) +
∂W
∂t

∣∣∣
L,R

∆t
2

, (3.19)

where f is the position of Aij’s centroid, and s each cell’s center of mass. We note that the cell center
of mass is not identical to the cell’s mesh generating point position r (Fig. 3.1), but is generally a few
percent the radius of the cell. The spatial gradient is estimated by taking advantage of the Green-Gauss
theorem. Given some scalar field φ, its gradient is given by

〈∇φ〉i ' −
1
Vi

∑
j

φ(fij)Aij. (3.20)
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φ(fij) is φ at Aij’s centroid, and can be estimated by appealing to the geometric properties of Voronoi
cells (see Springel (2010a), Sec 3.1). The temporal gradient is determined by relating it to the spatial
gradient using the Euler equations. Finally, the flux is resolved from Winterface

L,R with a Riemann solver
(in all our simulations, the Harten-Lax-van Leer – Discontinuities, or HLLD, solver; Miyoshi & Kusano
2005). Eqns. 3.19 and 3.20 were replaced in Pakmor et al. (2016) order to resolve Arepo’s angular
momentum conservation issue (Sec. 3.3), but the overall flux calculation procedure remains the same
as above.

The self-gravity term G from Eqn. 3.2 can easily be added to the flux calculation, since, when using
W, gravity only changes the momentum. This change, and the corresponding one for kinetic energy,
can then be appended to Q (Springel 2010a, Sec. 5.2).

For the simulations in this chapter, we set B = 0, reducing Arepo to a purely hydrodynamic
simulation (Ch. 4 considers the MHD case). We use the same Helmholtz EOS in Arepo that we
installed into Gasoline and also ignore composition gradients and any nuclear reactions. To assure
reasonably constant mass and volume resolutions, we use an explicit refinement scheme (Vogelsberger
et al. 2012) that adds or subtracts mesh-generating points to the grid.

3.2.4 Initial Conditions and Completion Time

Our chosen WD masses are typical of the narrowly peaked empirical mass distribution of field CO WDs
(Tremblay & Bergeron 2009; Kleinman et al. 2013). As in Ch. 2, we generated WDs by rescaling a sphere
of particles to the proper enclosed mass-radius relation determined from 1D hydrostatic integration.
We used a 50% C, 50% O composition by mass uniform throughout the star, and assumed a uniform
temperature of 5× 106 K. The stars were placed into Gasoline for approximately 11 dynamical times
(33.3 s for the 0.625 M� WD and 31.3 s for the 0.65 M� WD). Thermal energy and particle velocity were
damped to ∼ 5× 106 K and 0 cm s−1 during the first dynamical time, and left free during the remaining
10. 64 neighbors, rather than 100, were used during relaxation to minimize the number of particle
pairs generated. These pairs (ex. Dehnen & Aly 2012, Springel 2010b) do not change global properties
of the relaxed WDs, but do effectively reduce spatial resolution and having too many of them make
transferring SPH initial conditions into Arepo problematic. Following relaxation, the density profile
of both stars were consistent with the hydrostatic equilibrium solution, with the numerical central
densities deviating from the 1D integrated ones by less than 1%. Since all particles have identical mass,
the tenuous outer layers of the WDs are difficult to capture in Gasoline; consequently the radii of
the relaxed stars, as defined by the outermost particle, were ∼ 5% smaller than the integrated ones.
Even after energy damping, particle noise prevents the central temperature of the relaxed stars from
reaching below ∼ 1× 107 K, so all particle temperatures were artificially reset to ∼ 5× 106 K.

We then placed the relaxed stars in a circular, unsynchronized binary, with initial separation
a0 = 2.2× 109 cm chosen (using the approximation of Eggleton 1983) so that the 0.625 M� donor just
overflows its Roche lobe.2 The corresponding orbital period is 49.5 s. These initial conditions do not
account for the tidal bulges of the stars, and so are not fully equilibrated (eg. Dan et al. 2011). While
this makes our initial conditions less realistic, it should suffice for our purpose of discovering any code
dependence on merger evolution.

We generate initial conditions in Arepo by converting the SPH particles of the Gasoline initial

2The 1D integrated radius was used to calculate a0, rather than the smaller relaxed SPH radius. This accounts for the small
differences in initial conditions between this work and the equivalent simulation in Ch. 2.
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conditions into mesh-generating points, while retaining their conserved quantities (mass, momentum
and energy). These initial conditions are not guaranteed to be regular, but Arepo regularizes the mesh
over just a few timesteps by nudging each cell’s mesh-generating points to their cell’s center of mass.

Our SPH particles all have the same mass of 2× 1027 g (1.3× 106 particles represent the system),
comparable to the highest resolutions used in other recent work (Pakmor et al. 2012b; Raskin et al.
2014). We likewise use Arepo’s refinement scheme to keep cell masses within a factor of 2 of this
value, and to keep adjacent cell volumes to within a relative factor of 10. Arepo’s grid refinement
scheme naturally increases the resolution of our simulations over time, though, and so all resolutions
stated in this work are for the start of the simulation. We additionally initialize a background grid of
10−5 g cm−3 cells in Arepo to fill the vacuum surrounding the WDs – this adds only ∼ 0.005 M� of
material to the simulation. At identical mass resolution, the spatial resolution in Gasoline is about a
factor of 2− 3 lower than that in Arepo due to Gasoline’s use of more neighboring particles to obtain
smoothed quantities. The two codes differ greatly regardless of resolution, however, and we believe
equivalent mass resolution to be the most appropriate comparison (see Vogelsberger et al. Sec. 2.3 for
complications in achieving equivalent accuracy in SPH and grid codes). In Sec. 3.5.1 we check if our
results are resolution-dependent.

We run both simulations to 1000 s, substantially beyond the time when the WDs merge (at ∼ 200 s).
At this point, the Gasoline simulation has reached a quasi-hydrostatic equilibrium. As we shall see in
Sec. 3.4, the Arepo simulation continues its hydrodynamic evolution long after this time.

3.3 Improving Angular Momentum Conservation in Arepo

Before we describe our results, we summarize the discovery and resolution of a critical angular
momentum conservation issue in Arepo.

The first simulation we performed in Arepo showed dramatic differences from our Gasoline ones.
Following the final phase of the merger, when the two WDs coalesce into one, the Arepo merger
remnant featured a dense, crescent-shaped region formed from accretor material that retained its
pre-merger temperature of . 107 K, while the Gasoline remnant was relatively hot throughout its
interior, with an average temperature of ∼ 2× 108 K. Most prominently, the Gasoline one became
axisymmetric within several hundred seconds after the merger, while the Arepo remnant maintained
the integrity of its non-axisymmetric crescent while launching one, and then multiple trailing spiral
waves into the surrounding medium.

In the top panel of Fig. 3.2, we show the evolution of the total z-axis angular momentum Lz,tot (top
cluster of lines) for low-resolution (1× 1028 g particles or cells) and standard-resolution (2× 1027 g)
Gasoline and Arepo simulations. We also show the angular momentum within a cylinder oriented
along the rotational axis with radius v = 109 cm, Lz, v<9, which represents the angular momentum
within the dense core of the merger remnant. Coalescence occurs at somewhat different times in
the two codes (partly due to slight inconsistencies in their initial conditions that have subsequently
been eliminated), so each simulation’s curve is shifted by tmax(Lz), the time at which Lz, v<9 achieves
its maximum value (a rough proxy for the end of coalescence). We see that, over ∼ 1000 s, the
Arepo remnant’s angular momentum drops by a factor of ∼ 20 at both resolutions, behavior that
is not reproduced by either Gasoline run. The spiral waves generated in Arepo are a mechanism
for transporting angular momentum (eg. Balbus 2003) and were initially presumed to be the cause
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Figure 3.2: Evolution of total z-axis angular momentum Lz,tot (top cluster of lines in each panel) and that
within a cylinder of radius v = 109 cm, Lz, v<9 (bottom cluster), for various simulations in 2013-2014,
before Arepo was updated to better conserve angular momentum. All curves are shifted in time by
tmax(Lz), the time in each simulation at which Lz, v<9 achieved its maximum value, to synchronize
the start of post-merger evolution. In the top panel, red and magenta lines represent the low and
standard-resolution Arepo simulations, respectively, while the cyan and blue ones represents low and
standard-resolution Gasoline ones, respectively. Dotted lines represent angular momentum balance
Lbal(v < 109 cm), which should be flat in the absence of spurious angular momentum losses. (Slightly
different initial amounts of total angular momentum between Arepo and Gasoline runs are due
to inconsistencies in their initial conditions that have subsequently been eliminated.) In the bottom
panel, the red line is again the low-resolution Arepo simulation, while the green line is an Arepo

low-resolution run where the mesh is held static after t = 200 s. The dashed black line is a FLASH
simulation that uses the Arepo low-resolution run at t = 200 s for initial conditions; its loss of total
angular momentum is due to having outflow boundaries.
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of this remnant spin-down. Global angular momentum in Arepo, however, is not conserved: the
low-resolution run loses a third of its angular momentum over ∼ 1000 s, and the standard-resolution
one about a fifth. SPH formally conserves angular momentum, and we find the Lz,tot for Gasoline

varies in time by . 5× 10−5 from its mean values at either resolution.

A moving mesh that refines in regions of high density may not properly resolve the disk of the
merger remnant (which is at low-density but carries much of the remnant’s angular momentum). To
better pinpoint where the angular momentum was being spuriously lost, we computed (similar to Ji
et al. 2013, their Sec. 2.2.4) the theoretically expected change in Lz. For a cylinder V oriented along the
rotational axis, this is given (via the Euler equations) by

∂Lz

∂t
= −

∮
V

ρvvφvvdS−
∫

V
ρv×∇ΦdV (3.21)

where the first term encapsulates advection out of the volume (including the Reynolds stress associated
with wave motion; Balbus 2003; Kratter & Lodato 2016) and the second term external torque – in our
case gravitational.3 Subtracting the time-integral of Eqn. 3.21 (i.e. the cumulative angular momentum
change ∆Lz) from the volume’s angular momentum gives us the “balance”

Lbal(t) = Lz(t)− ∆Lz = Lz(t)−
∫ t

t0

∂Lz

∂t′
dt′. (3.22)

In a system with perfect angular momentum conservation, ∆Lz would account for all changes in Lz(t)
and Lbal(t) = Lbal(t0) would be a constant.

In Fig. 3.2, we show using dashed lines the balance for the cylinder of v = 109 cm, Lbal(v < 109 cm)

(t0 = tmax(Lz)), for each of the four simulations, to check for spurious changes to the angular momenta
of the merger remnant cores. While Lbal(v < 109 cm) decreases by ∼ 5% in the Gasoline simulations
(likely due to artificial viscosity, not included in Eqn. 3.21), the change in Lbal accounts for approximately
all of the total spurious losses in Arepo at high resolution (compare the Lz,tot and Lbal lines), invalidating
the hypothesis that it is the outer regions of the simulation spuriously losing angular momentum.

We then hypothesized that low-density regions near v = 109 cm that interact with the remnant core
were under-resolved. To rectify this, we performed a run which, after coalescence, included a volume
refinement scheme for cells within v = 109 cm. This led to a dramatic increase in resolution over time,
with the simulation eventually exceeding 2× 107 cells. This run loses ∼ 5% of Lz,tot in ∼ 500 s, but
∼ 30% of the change in Lz, v<9 over the same timespan is still spurious, meaning losses would only be
rendered negligible at impractically high resolutions.

We finally turned to simulating post-merger evolution in other codes. In the bottom panel of Fig.
3.2, we show our simulation in the Eulerian code FLASH (Fryxell et al. 2000; Dubey et al. 2009) that
uses the low-resolution Arepo run at t = 200 s for initial conditions. In FLASH, we used a 3D Cartesian
grid 1.6× 1010 cm to a side, with multiple levels of fixed-mesh refinement centered on the merger
remnant so that its core is resolved with cells 7.8× 106 cm to a side (comparable to the low-resolution
Arepo run). Gravity was solved using a multipole solver with lmax = 50, and fluxes propagated with
the HLLC (Harten-Lax-van Leer – Contact) Riemann solver. We also show a low-resolution Arepo run
where, at t = 200 s, the mesh’s velocities were forced to zero, transforming Arepo into a static grid
code operating on an unstructured mesh. Considering the sheer number of differences between the

3A third, pressure torque term also arises in general, but for a cylinder oriented along the axis of rotation it is analytically
zero (and numerically negligible as well).
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two simulations, they agree remarkably on the rate of change of Lz, v<9 until very late times (when
mesh drift issues corrupt the Arepo simulation). Lz,tot for the Arepo-static run also changes by only
∼ 1% over ∼ 500 s. These simulations suggested Arepo’s moving mesh scheme was the cause of the
spurious angular momentum loss.

Eventually, Pakmor et al. (2016) found two aspects of Arepo’s original hydrodynamic scheme (Sec.
3.2.3) were responsible for making the code only first-order convergent for non-trivial moving meshes.
First, while Eqn. 3.19 provides second-order convergence on static meshes of arbitrary geometry, it
only uses the initial state of the mesh itself, and so reduces to first-order on moving meshes. Second,
Arepo’s estimate for φ(fij) in Eqn. 3.20 assumes that the cell centers of mass si – where the value of Wi

is defined – and mesh-generating points ri align, which is not true for elongated cells. This first-order
convergence does not inevitably cause major errors – the galaxy formation study of Marinacci et al.
(2014) is not affected, for example – but for a differential rotation-dominated system being simulated
over many tens of dynamical times, such as the accretion disk in Pakmor et al. (2016), systematic
deviations in angular momentum conservation become large.

The solution is correspondingly two-fold: first, replace Eqns. 3.17 and 3.19 by a hybrid of the
MUSCL and 2nd order Runge-Kutta methods:

W′i = Wn
i + ∆t

∂W
∂t

r′i = rn
i + ∆t wn

i

Qn+1
i = Qn

i −
∆t
2

(
∑

j
An

ijF̂
n
ij (W

n) + ∑
j

A′ijF̂
′
ij
(
W′
))

rn+1
i = r′i, (3.23)

where wi is the velocity of the mesh-generating point (and is, as discussed above, roughly the speed of
the fluid within the cell). With this method, we first make a prediction of the cell’s future primitive
variables W′i, as well as the future Voronoi mesh. We then use both the current and predicted values to
calculate an average flux (spatial extrapolation to the cell interface is implicit when calculating F̂ij) and
evolve the cell. The mesh velocities are assumed to be constant over ∆t, so the predicted and true future
mesh are identical. Second, the Green-Gauss gradient estimate is replaced with a linear least-squares
one, which determines slope 〈∇φ〉i by minimizing

∑
j

gj
(
φj − φi − 〈∇φ〉i (sj − si)

)2 , (3.24)

where gj ≡ Aij/|sj − si|2 is a weighting function. This estimate gives the value that best reproduces
the change in φ when traveling from cell i to any of its neighbors, and relies on cell centers of mass
rather than mesh generating points. Working in concert, these Runge-Kutta and Least-Squares Fitting
(RKLSF) methods make Arepo second-order convergent.

In Fig. 3.3, we show the evolution of angular momentum for Arepo-RKLSF runs (from Sec. 3.5.1)
at resolutions ranging from 5× 1028 g to 1× 1027 g. We immediately notice that Lz, v<9 no longer
decreases with time, cementing the fact that the rapid spin-down seen in Fig. 3.2 was an artifact of
spurious angular momentum loss. Indeed, this makes it impossible to calculate tmax(Lz) – we instead
use “tc” (discussed further in Sec. 3.4), the time when the average separation between donor and
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Figure 3.3: Evolution of total z-axis angular momentum Lz,tot (top cluster of lines) and that within a
cylinder of radius v = 109 cm, Lz, v<9 (bottom cluster) for the Arepo-RKLSF simulations. All curves
are shifted in time by tc (rather than tmax(Lz) like in Fig. 3.2), the time when average separation between
donor and accretor material reaches a tenth of its initial value. Colors indicate initial mass resolutions
of 5× 1028 g (red lines), 1× 1028 g (green) 2× 1027 g (cyan) and 1× 1027 g (blue).

accretor material reaches a tenth of its value at the beginning of the simulation, to synchronize the start
of post-merger evolution. In all but the lowest-resolution run, Lz,tot deviates by less than ∼ 4% from its
initial value, and at the highest resolution run of 1× 1027 g, or 2.6× 106 cells, it deviates by ∼ 1.5%
over ∼ 840 s, an order of magnitude better than the 2× 107 cell simulation without RKLSF.

The density and temperature profiles of the merger in the Arepo-RKLSF simulations also generally
agree better with their Gasoline counterparts up until the end of coalescence, but the dense crescent
and spiral wave that distinguish the Arepo merger remnant remain.

3.4 Results

We now compare in detail our new Arepo simulation with a Gasoline one. Fig. 3.4 compares
snapshots of the two at various times.

The initial evolution of the two systems, shown in rows 1− 3 of Fig. 3.4, is qualitatively similar.
Our initial conditions are approximate, so both stars immediately are tidally stretched by the binary
potential, overshooting their Roche lobes in the process and transferring mass to each other in spurts.
This eventually dies down for the 0.65 M� accretor, and becomes steady mass transfer for the 0.625 M�
donor, just prior to it becoming fully disrupted. In reality, the donor WD should overflow first and
begin a period of quasi-stable mass transfer over potentially dozens of orbits, and so our simulations,
both of which experience full donor disruption in just a few orbits, overestimate the rate of early mass
transfer (Dan et al. 2011).

The accretion streams in both codes are traveling at supersonic speeds (M ≈ 2) relative to the
accretor when they impact, and the resulting shocks cause rapid thermalization. By the time the
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Figure 3.4: Series of equatorial (xy) plane density (left two columns) and temperature (right two
columns) intensity plots for 11 snapshots in time (rows; the time for each snapshot is indicated at the
top left of the density plots) during the Gasoline and Arepo simulations. The pattern of radial “spikes”
in the Arepo initial conditions density plot is an artifact of visualizing its irregular mesh (which was
converted directly from Gasoline’s initial conditions). Following coalescence of the WDs, linear inserts
in the density plots depict the shape of the remnant core using the same spatial scale, but a linear color
scale from 0 to 3.2× 106 g cm−3. xz-plane plots are also included for the final snapshot.
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donor is fully disrupted a hot atmosphere has formed around the accretor, with temperatures of
1.6 × 108 K in Arepo and 1.9 × 108 K in Gasoline – both about a fifth of the virial temperature,
GMamPµ/3RakB ≈ 8× 108 K – and densities of 1.8× 105 g cm−3 and 2.3× 105 g cm−3, respectively.
As can be seen in Fig. 3.4 row 2, Arepo’s hot atmosphere is somewhat less extended and has more
localized hotspots in temperature compared to the extended and uniform one in Gasoline. This may
be due to a combination of Arepo not oversmoothing the gradients within the atmosphere, and having
superior spatial resolution for the same mass resolution.

As mass transfer continues to expand the donor and draw it closer to the accretor, eventually tidal
forces between the two are strong enough to fully disrupt the donor, stretching it out into a thick stream
of material that wraps around the accretor (see Fig. 3.4, rows 4− 6). In both simulations, this occurs
after ∼ 3.6 orbital periods of the initial binary, or ∼ 180 s, by which time the donor has transferred
∼ 0.05 M� to the accretor. During coalescence, both the density and temperature profiles appear very
similar between the codes, and the destruction of the donor takes place over the same amount of time –
about one orbital period (49.5 s).

Once the donor is fully disrupted, and coalescence begins, a portion of it forms an accretion stream
that slides across the accretor at supersonic speeds, creating a string of Kelvin-Helmholtz vortices.
In Arepo these vortices are markedly more pronounced, being both larger by ∼ 30% in radius, and
having a slightly higher temperature of ∼ 5× 108 K compared to Gasoline’s ∼ 4× 108 K. The stream
continues to inspiral toward the center of the accretor, severely deforming the accretor while carrying
the string of Kelvin-Helmholtz vortices toward the center of the system. The two WDs have nearly
equal masses, so material near the surface of the accretor is dredged up and mixes with the stream,
and the shape of the accretor changes from a sphere into a crescent. Meanwhile, the remainder of the
donor material forms a thick sub-Keplerian disk around the accretor. Coalescence is approximately
complete when the average separation between material from the donor and accretor changes from its
initial value of 2.2× 109 cm to its equilibrium value of . 1× 108 cm. We thus estimate the time when
coalescence is complete, tc, by determining the time when average donor-accretor separation reaches a
tenth of its initial value. We find tc = 228 s for Gasoline, and 220 s for Arepo (roughly Fig. 3.4, row 7).

In Fig. 3.5, we show profiles of density, temperature and energy for the merger remnants at 99 s
(2 orbital periods) after coalescence, roughly equivalent to row 9 of Fig. 3.4. Profiles both along the
orbital plane of the original binary, or “equatorial plane” (solid lines) and rotational axis (dotted) are
considered, and like in Ch. 2 we map (equatorial) v and (rotational) z positions to the corresponding
ratio of spherical enclosed mass to total mass M/Mtot. The equatorial profiles are axisymmetrically
averaged, while the rotational axis ones are averaged from the profiles above and below the equatorial
plane. Overall, the two remnants have very similar structures: both feature a degeneracy-supported
core surrounded by a rotationally supported thick disk along the equatorial plane and by a hot,
thermally supported atmosphere along the axis of rotation. Following Sec. 2.3.2.3, we find the disk
mass Mdisk = 0.24 M� and the core-envelope mass Mce = 1.05 M� in both simulations, though we
note that the core-envelope also has substantial rotational support throughout.4 Both remnants’ total
internal energies (1.5× 1050 erg) are also identically divided into ∼ 30% rotational, ∼ 10% thermal and
∼ 60% degeneracy energy. One minor difference between the two codes is the total amount of material
unbound by the merger – 1.4× 10−3 M� in Gasoline, and 5.0× 10−4 M� in Arepo – though this

4The mass of material whose specific degeneracy energy is > 50% of their total specific energy is ∼ 0.8 M� in both simulations,
as it is in Ch. 4.
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Figure 3.5: Merger remnant profiles from the Gasoline (red), Arepo (blue) and Arepo MHD (gray; Ch.
4) simulations 99 s after coalescence (around row 9 of Fig. 3.4). The profiles are, from top to bottom,
density ρ, angular rotation speed Ω, temperature T, specific degeneracy energy edeg, specific thermal
energy eth, and specific rotational energy erot, all as a function of the ratio of spherical enclosed to total
mass M/Mtot. Solid lines represent profiles on the original binary’s orbital plane, while dash-dotted
lines represent profiles along the rotational axis.
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value is much smaller and harder to constrain than the bulk values above (this is particularly true of the
Arepo simulation, whose initial background grid has roughly the same mass as the unbound material).

The simulations’ profiles in Fig. 3.5 are likewise very similar in shape to one another: both, for
example, have a peak density of ∼ 3× 106 g cm−3 and a large fraction of their mass rotating nearly
rigidly at ∼ 0.3 s−1. We also show the Arepo MHD simulation from Ch. 4 in grey, and find it is similar
as well, indicating that the dramatic field amplification seen in that chapter leads only to minor changes
in the hydrodynamics of the merger. The greatest discrepancy is in the temperature at small M/Mtot: it
is a factor of ∼ 2 smaller in the Arepo simulation than in the Gasoline one.

That discrepancy, however, reflects a growing difference visible in rows 9− 11 of Fig. 3.4. Just
after coalescence, the center of the merger remnant in both simulations is clearly divided between a
dense and cold crescent-shaped region, formed from the perturbed accretor WD, and a low-density
void that is an order of magnitude hotter, formed by material roughly evenly mixed between donor
and accretor (this void appears as a column in the xz-plane plots of Fig. 3.4). 99 s after coalescence,
the hot void has a temperature of ∼ 6× 108 K in both codes, but the Arepo void is ∼ 80% larger in
radius and slightly less dense at 1.4× 106 g cm−3 versus Gasoline’s 1.8× 106 g cm−3. The cold crescent,
meanwhile, has a density of ∼ 4× 106 g cm−3 in both codes, but has a temperature of ∼ 2× 108 K
in Gasoline versus ∼ 5× 107 K in Arepo. Over the next several hundred seconds, the Gasoline

remnant’s crescent becomes axisymmetric (see the linear inserts in Fig. 3.4), eliminating the hot void in
the process; material from the void moves off of the equatorial plane to form two ∼ 3.5× 108 K hotspots
along the rotational axis (visible in the xz plots of Fig. 3.4). By t ≈ 500 s, the Gasoline remnant
structure – an oblate spheroidal core with a roughly uniform temperature of ∼ 2× 108 K (outside of the
hotspots) surrounded by a stubby disk – has stopped changing on a hydrodynamic timescale (roughly
equal to one binary orbital period). Arepo, on the other hand, maintains the distinction between the
crescent and void, and consequently remains non-axisymmetric until the end of the simulation at 1000 s.
The system’s center of rotation and mass are at the midpoint along the boundary between the crescent
and void, and the dense crescent revolves around this point (rather than spinning about its own center).
This generates a lopsided gravitational potential that perturbs the surrounding disk, launching an
m = 1 one-armed spiral wave into the surrounding medium. The pattern speed is Ωp ≈ 0.4 s−1 (as
is the angular speed of the crescent), and the base of the spiral wave is at v ≈ 1.5× 109 cm, where
Ω ≈ 0.2 s−1 – in 2:1 resonance with the crescent.

Since spiral waves can transport angular momentum, we show in Fig. 3.6 the evolution of z-
axis angular momentum Lz within concentric cylinders centered on the rotational axis for the two
simulations. We see that all cylinders slowly lose angular momentum after coalescence in the Gasoline

simulation, consistent with the effect of artificial viscosity. In Arepo, Lz(v < 3× 109 cm) decreases at
a rate of dLz/dt = −1.2× 1047 g cm2 s−2 (compared to −3.3× 1046 g cm2 s−2 in Gasoline), reflecting
the wave’s angular momentum transport. Applying Eqn. 3.21 to the cylinder, we estimate around
∼ 85% of this decrease can be accounted for by advection, suggesting the spiral wave transports
angular momentum through Reynolds stresses (rather than gravitational torque; Kratter & Lodato
2016). The angular momentum within v = 109 cm decreases by ∼ 5% by the end of the simulation
at t = 1000 s, but the loss of angular momentum in the disk also results in the enclosed mass within
v = 109 cm increasing by 0.02 M� over the same timeframe. In fact, the remnant disk has transported
about half of its angular momentum to much larger distances by this time; the corresponding timescale
is roughly equal to that for an α-viscosity disk with α ∼ 10−1. For comparison, Ji et al. (2013) simulate
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Figure 3.6: Time evolution of z-axis angular momentum Lz for Arepo (solid lines) and Gasoline

(dashed) simulations. The purple line represents total Lz, while the others represent angular momentum
within concentric cylinders aligned along the rotation axis and with radii v = 5× 108 (red), 7.5× 108

(yellow), 1× 109 (green), 1.5× 109 (cyan), 3× 109 (blue) and 6× 109 cm (magenta).

the magnetically-mediated viscous evolution of a 0.6− 0.6 M� merger remnant, and find angular
momentum transport at a rate equivalent to an α = 10−2 disk, an order of magnitude smaller. At
t = 1000 s, Arepo’s void has shrunk by about a quarter of its initial radius, but the remnant core
remains non-axisymmetric and the spiral wave persists, and so angular momentum transport should
continue on a hydrodynamic timescale beyond the end of the simulation.

Preliminary attempts to carry the simulation even further in time in Arepo, however, have been
stymied by the formation of a cold layer along the poles of the remnant – which can be seen in the
Arepo xz temperature plot in Fig. 3.4 – approximately 100 s after coalescence. While the temperature
of this layer is ∼ 6× 107 K for most of the simulation, portions of it spuriously drop below 107 K after
∼ 1000 s. When we attempted to run our simulation beyond 1000 s, we found that this layer eventually
expands into a spuriously cold ring at the interface between the remnant core and disk after t = 2000 s.
Meanwhile, the remnant’s total energy, which is conserved to within 3.6% for t ≤ 1000 s, systematically
decreases by 11% by t = 2000 s. The cold layer forms within ∼ 100 s after coalescence at all resolutions
tested in Sec. 3.5.1, but spurious < 107 K temperatures appear at t . 500 s at the lower-resolution
simulations, while they do not appear by the end of the simulation at the highest resolution. The
appearance of this layer, and the associated non-conservation of energy, indicates that Arepo must be
further refined before the full hydrodynamic spin-down of the remnant can be simulated. We therefore
caution that the quantitative details of post-coalescence evolution discussed above may not be accurate,
particularly close to the end of the simulation.
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3.5 Discussion

To determine the robustness of our results, and provide clues to the sources of the differences between
Arepo and Gasoline simulations, we ran a number of tests varying code parameters.

3.5.1 Resolution Test

As noted in Sec. 3.2.4, an Arepo simulation with identical mass resolution to a Gasoline one will
have a factor of 2− 3 higher spatial resolution. It is possible that the differences we observe between
our simulations are not due to fundamental differences between the codes, but because our Gasoline

simulation insufficiently resolves the merger. To address this, we perform a series of Gasoline and
Arepo simulations with a mass resolutions of 5× 1028 g (equivalent to 5.1× 104 particles or cells
and comparable to resolutions used in parameter-space sweeps by Dan et al. 2012; 2014), 1× 1028 g
(2.6× 105) and 1× 1027 g (2.6× 106). This factor of 50 range in mass resolution (∼ 4 in spatial resolution)
allows us to both determine the degree to which mergers in each code change with resolution, and to
compare Arepo runs to Gasoline ones at finer mass resolution.

At all four resolutions, the Gasoline simulations exhibit very similar behavior prior to coalescence.
The donor fully disrupts at ∼ 3.5− 3.6 orbits of the initial binary for the three higher resolution runs,
while the lowest-resolution one disrupts slightly earlier at ∼ 3 orbits (∼ 150 s). Coalescence for the
highest resolution run occurs at tc = 230 s, within 2 seconds of the standard resolution one, while it
occurs ∼ 20− 35 seconds earlier for the two lower resolution runs (we note the way we determine
coalescence is somewhat sensitive to changes in the detailed configuration of the remnant). Just after
coalescence, all reproduce the crescent-and-void configuration, with the void being least prominent in
the lowest-resolution run.

Arepo also reproduces the same qualitative evolution up to coalescence at all resolutions, but
donor disruption occurs within only ∼ 1.9 orbits at its lowest resolution, and in ∼ 2.8 at its second
lowest. The time of coalescence is likewise much sooner in the lowest resolution simulation, with
tc = 150 s. The highest resolution run, however, is very similar to the standard resolution one, with
donor disruption occurring at ∼ 3.7 orbits (∼ 185 s) and tc occurring at 234 s, close to the standard
run’s values. These differences are in part due to our initial conditions setup, where Gasoline SPH
particles are directly mapped to Arepo cells. WDs that are hydrostatic in Gasoline are not precisely so
in Arepo, particularly in the poorly resolved atmosphere, and we see the WDs spuriously expanding in
the first few seconds. This effect leads to larger mass-transfer rates early in the merger, and is magnified
with decreasing resolution. Just after coalescence, all Arepo runs reproduce the crescent-and-void
configuration except in the lowest-resolution one.

In Fig. 3.7, we show the equatorial and rotational axis profiles of all simulations 99 s after tc. The
Gasoline remnants (left column) are all remarkably similar to one another, with the sole exception of
the temperature structure at the lowest resolution. The disk and core-envelope masses as well as the
partitioning of internal energy are all within ∼ 3% of their values at the standard resolution reported
in Sec. 3.4. The central densities of the remnants also deviate by . 5% from their mean value of
3.6× 106 g cm−3. The Arepo remnants (right column) are less uniform: masses and energies vary by
∼ 5− 10% from those in Sec. 3.4 for all except the lowest resolution run, which has ∼ 50% more total
thermal energy and a ∼ 25% less massive disk. The maximum density ranges from 3− 4× 106 g cm−3

for all resolutions except the lowest one, where it is ∼ 2× 106 g cm−3. The variations between Arepo
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Figure 3.7: Merger remnant profiles, as in Fig. 3.5, for Gasoline (left column) and Arepo (right)
simulations of various (initial, for Arepo) mass resolutions. The resolutions are 5× 1028 g (equivalent
to 5.1× 104 particles or cells; red lines), 1× 1028 g (2.6× 105; green), 2× 1027 g (1.3× 106; cyan), and
1× 1027 g (2.6× 106; blue).
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curves in Fig. 3.7 reflect variations in their crescent and void. While at the highest two resolutions the
crescent is clearly colder, with a temperature of ∼ 5× 107 K, in the second lowest resolution run its
temperature is ∼ 1× 108 K, and in the lowest resolution one the remnant core never forms a crescent at
all, instead appearing as a dumbbell-shaped object that transforms into a spherically symmetric one
within ∼ 500 s of coalescence. During this time, global angular momentum decreases by ∼ 12% (Fig.
3.3), total energy increases by ∼ 5%, and the < 107 K spurious cold layer forms at the interface between
donor and accretor, all indicating that this run is too poorly resolved to simulate the merger. At all
other resolutions, however, the crescent and void survive until the end of the simulation at 1000 s.

The crescent-void configuration also appears, but then fades away over several hundred seconds,
in all Gasoline simulations. To check if the longevity of the configuration is resolution-dependent,
we turn to a measurement of non-axisymmetry – introduced in Sec. 2.2.3 – using | fi|/| f0|, the ratio of
largest non-zero to zeroth Fourier coefficient of particles or cells binned in azimuth. For all simulations,
the largest non-zero Fourier coefficient is the first, and the time when the hot void disappears roughly
matches the time when | f1|/| f0| = 0.01, which we call t f . We find, from lowest to highest resolution,
t f = 426 s, 483 s, 515 s and 513 s, which suggests t f is resolution dependent, but converges at t f ≈ 500 s.
All Arepo simulations maintain | f1|/| f0| & 0.1 for & 1000 s, except for the lowest-resolution run, which
drops to | f1|/| f0| ≈ 0.02 by the end of the simulation.

We thus conclude that the largest difference between the Gasoline and Arepo simulations – the
survival of the crescent-void configuration long after the merger – is the case for all resolutions. The
void persists for hundreds of seconds in all but the lowest-resolution Arepo simulation, while even in
the highest-resolution Gasoline one it smears away, disappearing within ∼ 250 s after coalescence.
This is evidence that spatial resolution alone is insufficient to explain the diverging behavior of the
codes. We also find that Gasoline’s results change little between all resolutions, while Arepo’s
results only appear to agree at higher ones. This bodes well for merger parameter-space studies using
low-resolution SPH simulations (eg. Ch. 2, Dan et al. 2014; the latter finds similar results in their
resolution study unless nuclear burning becomes important during the merger), but an equivalent
study in Arepo would require a mass resolution finer than ∼ 1× 1028 g (and ideally closer to our
standard resolution of 2× 1027 g) to guarantee qualitative accuracy with higher-resolution runs.

3.5.2 Varying Viscosity in Gasoline

Artificial viscosity, which is essential in SPH for proper shock capture, has been a major issue for
white dwarf merger simulations for decades (eg. Guerrero et al. 2004; LIG09) because it spuriously
shears differential rotation into rigid rotation, dumping excess energy into heat. This viscosity cannot
simply be mitigated by resolution, and we cannot run our mergers with zero artificial viscosity without
neglecting shock heating and introducing unphysical particle behavior (Sec. 3.2.1). We can, however,
increase and reduce its strength to see what effect it has on our simulation results, as in Sec. 2.4.5.

We ran Gasoline simulations of our merger with a mass resolution of 1× 1028 g and artificial
viscosity with fixed coefficients of either α = 0.05, β = 0.1, or α = 1, β = 2 (the Balsara switch is still
active), comparing them to the variable-viscosity run at the same resolution in Sec. 3.5.1. The low-
viscosity simulation experiences donor disruption at ∼ 3.2 binary orbits, and coalescence at tc = 206 s,
while the high-viscosity one experiences disruption at ∼ 3.5 orbits and coalescence at 220 s, values
similar to those of the variable-viscosity run. This similarity is to be expected, since mass transfer and
donor disruption are largely governed by tidal forces, which are unchanged between the simulations.
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During coalescence, the evolution of the variable and high-viscosity runs is similar. In the low-viscosity
run, however, the donor’s accretion stream produces a contiguous hot ring around the accretor during
coalescence, rather than the string of vortices seen in row 4 of Fig. 3.4, and perturbs the accretor far
less. As a result, no distinct void ever forms, though the remnant core is distorted into an ellipsoid.
Within ∼ 25 s of coalescence, the void in the high-viscosity simulation is already fast-disappearing.
t f = 358 s and 487 s for the high and low-viscosity runs, respectively, compared to 483 s for the variable
one. The similarity of the latter two values is likely because the variable-viscosity run tends toward
the same α and β values as the low-viscosity one in the absence of shocks (though it may also partly
be coincidence, since the low-viscosity remnant does not have a hot void to begin with). At ∼ 500 s,
the remnant has become axisymmetric in all three codes, but in the high-viscosity run the interior
∼ 0.8 M� of the remnant is also rigidly rotating with Ω = 0.34 s−1.

As expected, then, the high-viscosity simulation rapidly spins down to axisymmetry while elimi-
nating differential rotation, showing that excess artificial viscosity contributes to the disappearance of
the crescent-void configuration. The low-viscosity simulation, on the other hand, primarily shows the
importance of increasing α and β during coalescence in order to properly capture shocks and shearing
interactions between donor and accretor.

3.5.3 Sources of Differences Between Simulations

What explains the differences between simulations in Gasoline and Arepo, and, critically, which
is more physically accurate? This question boils down to whether or not the crescent-and-void
configuration should be long-lived, as seen in Arepo, or should disappear over several hundred
seconds as the remnant becomes axisymmetric, as seen in Gasoline.

Instabilities generating persistent m = 1 spiral waves that carry away angular momentum are
common features of astrophysical disks, and have been studied, for example, in the contexts of star
formation (Adams et al. 1989; Shu et al. 1990; Lin 2015; Kratter & Lodato 2016) and supermassive black
hole accretion (Hopkins & Quataert 2010). They have also been seen in WD merger remnants: Kashyap
et al. (2015) map the remnant immediately after coalescence from an SPH-based (highly super-MCh)
1.0− 1.1 M� CO WD merger simulation into FLASH. They find that the merger remnant core, though
not crescent-shaped, drifts off of the center of rotation and drives an m = 1 spiral perturbation in the
disk around it for ∼ 100 s. They argue this is a variant of the “ARS instability” (Adams et al. 1989;
Shu et al. 1990), where non-axisymmetric perturbations acting on a star surrounded by a marginally
Toomre-stable (Q . 3 at corotation) Keplerian disk move the star off the system’s center of mass while
generating a spiral wave in the disk.

Meanwhile, recent Eulerian simulations of binary neutron star mergers (Paschalidis et al. 2015;
Radice et al. 2016) see the formation of a crescent-and-void configuration with corresponding m = 1
spiral instabilities. Paschalidis et al. (2015) attribute the formation of their spiral wave to a dynamic
instability found by Centrella et al. (2001) and Saijo et al. (2003) to occur in axisymmetric equilibrium
polytropes with toroidal density structures, a ratio of kinetic to potential energy T/|W| & 0.14, a
relatively soft n & 2.5 polytropic EOS, and high differential rotation (Saijo et al. 2003). A similar
phenomenon was observed by Ott et al. (2005) in their post-bounce core-collapse supernova core of
T/|W| ≈ 0.08. Watts et al. (2005) and Muhlberger et al. (2014) suggest this “low T/|W| instability”
may be a corotational shear instability, related to the Papaloizou & Pringle (1984) instability for thick
accretion torii.
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The conditions within our remnant are somewhat different those above. Unlike the ARS setup,
our inner disk is thick (scale height and disk radius are within an order of magnitude of each other)
and has a Toomre parameter of Q ≈ csΩ/πGΣ & 8 for v ≥ 1× 109 cm (Σ is the disk surface density),
somewhat too high for the ARS instability to act. While the remnant core has a T/|W| ≈ 0.11 following
coalescence and is roughly toroidal in shape, it is already heavily perturbed and the spiral mode
already visible once the transient features from the merger itself dissipate, making it difficult to identify
a period of growth for the instability. The behavior of our Arepo merger remnant may represent some
combination of these instabilities, or possibly a novel, but related, phenomenon. Further analysis is
needed, but for now the existence of other m = 1 instabilities that drive angular momentum transport
lends support to the physical validity of our results.

Note that in Kashyap et al. (2015), the spiral wave drives an inflow of material into the dense
remnant core, heating a region of the core at ∼ 7× 106 g cm−3 to & 3× 109 K; this region detonates
109 s into the simulation, destroying the remnant. We also observe heating at the base of the spiral
wave in our sub-MCh remnant, but this region (ρ ≈ 8× 105 g cm−3) only reaches ∼ 3× 108 K, well
below the ∼ 6× 108 K needed for carbon ignition.

At the time of this writing, we have not yet been able to conclusively pinpoint the features in
Gasoline that cause its simulations to differ from Arepo’s. Nevertheless, we discuss below a few hints
that may point the way forward. It should first be said that gravitational instability in protoplanetary
disks have long been successfully simulated in SPH (Rice et al. 2005; Meru & Bate 2010; Rogers &
Wadsley 2012), and for the ∼ 200 s that the remnant core is visibly non-axisymmetric, an m = 1 spiral
mode is also visible. This leads us to suspect that the difference resides in how the crescent is evolved
in SPH (though we leave open the possibility that the smearing out of the wavefront due to poor
resolution in the disk is also a contributing factor).

The high-viscosity run in Sec. 3.5.2 suggests artificial viscosity may play a role in prematurely
smearing out the crescent even when α and β are being dynamically controlled. Our MHD merger
performed in Arepo (Ch. 4) is influenced by magnetic viscosity following coalescence, and also shows
the crescent becoming axisymmetric within several hundred seconds. Another possible culprit is the
surface tension that results from poor discontinuity treatment in traditional SPH, which Heß & Springel
(2010) show can lead to an overdense ellipse at pressure equilibrium with its underdense surroundings
spuriously deforming into a sphere (see also the “square test” in Hopkins (2015)). While the boundary
between the crescent and void is not as sharp a discontinuity, the temperature and density do change
by a factor of & 3 over a single smoothing length, and so may be influenced by this effect. We can test
if this is the case by performing the same SPH merger using Gasoline2, which has improved entropy
mixing and pressure-averaging across discontinuities.

3.6 Conclusions and Ramifications for Mergers

We simulated the merger of a 0.625− 0.65 M� CO WD merger in the SPH code Gasoline and moving
mesh code Arepo, to determine if the outcome of these simulations depend on the code being used.
We find differences between the simulations to be small for all phases of the merger up to coalescence.
Immediately following coalescence, there is a greater temperature contrast between the void and dense
remnant core material in Arepo than in Gasoline, but otherwise the remnants look remarkably similar
to one another. Over the next several hundred seconds, however, the Gasoline remnant spins down to
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axisymmetry, and the remnant’s temperature becomes roughly uniform. The Arepo remnant, on the
other hand, maintains the integrity of a dense, crescent-shaped cold core surrounded by a hot, tenuous
void for at least ∼ 1000 s. The core generates a lopsided gravitational potential, which launches an
m = 1 spiral mode into the disk. This mode rapidly transports disk angular momentum at a rate
equivalent to an α-viscosity disk with α = 10−1. We suggest that this non-axisymmetric perturbation
may be related to the low T/|W| instability seen in neutron star mergers and core-collapse supernova
remnants, and possibly the ARS instability found in protoplanetary disks, and that the perturbation
may not be captured as well in Gasoline because of SPH surface tension and artificial viscosity. If so,
we expect a longer-lived crescent in simulations using SPH codes updated for improved handling of
mixing and contact discontinuities, including Gasoline2.

Our results are of greatest consequence for post-merger evolution, which until now has been
believed to occur on a viscous timescale (vK10, Shen et al. 2012), and has been simulated using Eulerian
codes on axisymmetric cylindrical grids (Schwab et al. 2012; Ji et al. 2013). These are, of course, unable
to directly capture non-axisymmetric features of the remnant, and we therefore stress the need to extend
post-merger evolution simulations to three dimensions. These simulations likely do not qualitatively
change previous conclusions about the outcome of post-merger evolution from Schwab et al. (2012)
and Ji et al. (2013), as hydrodynamic waves will simply hasten the general loss of remnant angular
momentum and the transformation of the disk into a hot envelope. The details of evolution may differ,
though, since wave transport appears most relevant for regions of the disk beyond v ≈ 1.5× 109 cm,
while viscosity will also affect the remnant core. Also, traveling waves do not necessarily dissipate their
energy while passing through a medium, whereas viscosity locally dissipates differential rotational
energy, and so the heating of the remnant during viscous evolution may also change. Lastly, since the
dense crescent remains relatively cold and maintains its integrity long after coalescence, the merger
remnant may not be hottest near its center once it becomes axisymmetric, despite being considered
“similar-mass” from the results of Ch. 2. This has consequences for the viability of the sub-MCh merger
channel, and is discussed further in Ch. 6.1.

A simulation that extends to 104 s could realistically be performed on Arepo. Approximately 250 hrs
of computational time on 192 cores of the HITS-Magny computing cluster (2.4 GHz per core) were used
to produce the standard resolution Arepo simulation. Scaling this by a factor of 10 suggests simulating
104 s with the same setup would take ∼ 100 days, an expensive, but not infeasable, amount of time.
The source of the spurious cold layer discussed at the end of Sec. 3.4 must be pinpointed, however, to
ensure Arepo does not generate systematic errors over this timespan. One possible source currently
being investigated is that work due to gravitational forces is spuriously being lost when mass is fluxed
between cells at the interface between the remnant disk and core, which is consistent with the spurious
loss of thermal energy associated with the cold layer.

Meanwhile, we find that bulk properties of the merger remnant immediately following coalescence
do not substantially differ between our Gasoline and Arepo simulations. Many of the conclusions
reached by prior SPH merger studies (eg. LIG09, Ch. 2) might therefore be robust. Definitive evidence,
however, will only come by extending our work with Arepo to mergers of CO WDs with other masses.
It also remains to be seen if non-axisymmetric perturbations during post-merger evolution depend on
the total mass or mass ratio of the merging binary. A parameter-space study could also pinpoint the
range of remnants that experience a detonation due to rapid accretion via spiral modes, as seen in
Kashyap et al. (2015).
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Finally, our simulation does not contain magnetic fields, which, as will be discussed in Ch. 4,
are likely to be significantly amplified during the merger and early phases of post-merger evolution.
This could substantially affect the remnant’s non-axisymmetric features: for differentially-rotating
magnetized neutron stars that feature the low T/|W| instability, Muhlberger et al. (2014) find fields had
either a suppressive or an amplifying effect on the instability, depending on their strength. In our own
magnetized merger simulations, the remnant becomes axisymmetric within ∼ 500 s after coalescence,
but we use the Powell scheme for divergence cleaning (Sec. 4.6) and likely resolve the remnant disk
too poorly to capture the fastest growing magnetorotational instability mode. Future investigation of
post-merger MHD evolution is, therefore, also warranted.
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Stephen Ro for their insight into hydrodynamics and simulations. This work was supported by the
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at the SciNet HPC Consortium. SciNet (Loken et al. 2010) is funded by the Canada Foundation for
Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research
Fund - Research Excellence and the University of Toronto.
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Magnetized Moving Mesh Merger of a
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While simulations of white dwarf mergers are numerous, to date they have not included magnetic
fields, even though they are believed to play a significant role in the evolution of the merger remnant.
We simulated a 0.625 - 0.65 M� carbon-oxygen WD binary merger in the magnetohydrodynamic
moving mesh code Arepo. Each WD was given an initial dipole field with a surface value of ∼ 103 G.
As in simulations of merging double neutron star binaries, we find exponential field growth within
Kelvin-Helmholtz instability-generated vortices during the coalescence of the two stars. The final
field has complex geometry, and a strength > 1010 G at the center of the merger remnant. Its energy
is ∼ 2× 1047 ergs, ∼ 0.2% of the remnant’s total energy. The strong field likely influences further
evolution of the merger remnant by providing a mechanism for angular momentum transfer and
additional heating, potentially helping to ignite carbon fusion.

98
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4.1 Introduction

The merging process has, in the last decade, been investigated with increasingly sophisticated 3D
hydrodynamic simulations (Ch. 2, LIG09; Pakmor et al. 2010; Dan et al. 2012; 2014; Raskin et al. 2012;
Moll et al. 2014). However, one fundamental piece missing in WD merger studies so far is magnetic
fields.

Mergers (that do not immediately explode) are expected to produce remnants that are susceptible
to magnetic dynamo processes such as the magnetorotational instability (MRI; Balbus & Hawley 1991),
Tayler-Spruit dynamo (e.g. Spruit 2002), and the αω dynamo (if convection occurs in the inner disk;
García-Berro et al. 2012). It has therefore long been suspected that they can generate strong fields, and
recent 2D simulations of MRI in the remnant (Ji et al. 2013) have indeed shown amplification of a weak
seed field to > 1010 G. Magnetic shear from these fields transports angular momentum over a timescale
of ∼ 104 − 108 s (vK10; Shen et al. 2012) – far shorter than the thermal timescale of the remnant –
and also (non-locally) heats the remnant. The latter, combined with loss of rotational support from
angular momentum transport, could push remnant temperatures past the point of carbon ignition
(∼ 6× 108 K for densities between 105 − 107 g cm−3), leading to either stable nuclear burning or a
runaway. This mechanism could potentially drive nuclear runaways even in remnants with masses
below the Chandrasekhar Mass MCh that have traditionally been considered stable (vK10).

While field growth after the merger has been explored, field growth during the merger is also
expected, and can have a profound impact on the post-merger magnetic evolution. Magnetohydro-
dynamic (MHD) double neutron star (NS) binary merger simulations (eg. Price & Rosswog 2006;
Kiuchi et al. 2014; Giacomazzo et al. 2015) have found that Kelvin-Helmholtz vortices produced along
the shear interface between the coalescing stars can amplify field strengths by orders of magnitude
(Obergaulinger et al. 2010; Zrake & MacFadyen 2013). The same should hold true for WD mergers.
Motivated by this, we present the first MHD simulation of a CO WD binary merger.

This chapter is organized as follows: in Section 4.2, we describe Arepo and our initial conditions.
The results of our simulation are in Section 4.3. In Section 4.4, we test our simulation’s robustness, and
finally in Section 4.5 we discuss implications for merger outcomes and possible avenues for future
research.

4.2 Methods

We employ the moving-mesh code Arepo (Springel 2010a), which solves the equations of ideal MHD
on a Voronoi mesh coupled with self-gravity. We operate the code in its pseudo-Lagrangian mode, so
that the mesh-generating points that define the Voronoi grid move with the local velocity of the fluid.
To conserve angular momentum to within ∼ 2% of its initial value, we use the latest improvements to
time integration and gradient estimate (Pakmor et al. 2016). Arepo’s MHD implementation is described
in Pakmor et al. (2011a) and Pakmor & Springel (2013); we use the Powell et al. (1999) eight-wave
scheme for divergence control. Our simulation ignores outer hydrogen and helium layers, composition
gradients, and nuclear reactions (negligible for sub-MCh CO WD mergers; LIG09; Raskin et al. 2012).

We model the merger of two CO WDs with masses of 0.625 and 0.65 M�, respectively, in a circular,
unsynchronized binary with initial separation a0 = 2.20× 109 cm (corresponding period P0 = 49.5
s), chosen (using the estimate of Eggleton 1983) such that the lower-mass WD just fills its Roche
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lobe. We chose masses typical of the narrowly peaked empirical mass distribution of field CO WDs
(Kleinman et al. 2013). Our initial conditions are very similar to those of the 0.625 - 0.65 M� binary
simulated with smoothed particle hydrodynamics (SPH) in Ch. 2. As in Ch. 2, both WDs are generated
with a uniform initial temperature of 5× 106 K (the corresponding thermal pressure is dynamically
irrelevant) and a uniform composition of equal parts carbon and oxygen by mass. They are separately
relaxed to hydrostatic equilibrium using the SPH code Gasoline (Wadsley et al. 2004) and added to
Arepo by converting the SPH particles to mesh-generating points while retaining their conservative
quantities (mass, momentum and energy). A uniform 10−5 g cm−3 background grid fills up a 1012 cm
box centered on the binary. Each WD is given a (dynamically irrelevant) dipole seed magnetic field
with an equatorial surface value of 103 G (and corresponding central field of ∼ 2× 107 G). The fields
are overlapped when the two stars are placed into a binary.

The mass resolution of our simulation is mcell ≈ 1× 10−6 M�. We utilize explicit refinement and
derefinement (Vogelsberger et al. 2012) to keep cell masses within a factor of two of 10−6 M� and to
ensure adjacent cells differ by less than a factor of 10 in volume.

4.3 Results

We depict the evolution of the binary in Fig. 4.1, highlighting temperature T and magnetic field strength
|B|. Fig. 4.2 shows the growth of total magnetic energy EB over time.

In the first stage of the merger, up to ∼ 180 s, the 0.625 M� donor WD transfers mass to the 0.65
M� accretor for about 3.5 orbits before fully disrupting. Because our initial conditions are approximate
– the WDs are not initially tidally deformed – mass transfer begins in spurts as the WDs stretch in
response to the binary potential, and occurs at a rate that is artificially high (Dan et al. 2011). The early
mass transfer shears the atmospheres of both WDs. As a result, EB grows roughly linearly in the first
∼ 100 s, reaching about quadruple its initial value. Since the initial mass transfer rate is artificially
high, this growth is likely an overestimate, but remains negligible compared to what follows.

By ∼ 120 s, mass transfer becomes steady, and a stream of material from the donor wraps around
the accretor, forming a shear layer. Along it, the Kelvin-Helmholtz instability generates a string of hot
vortices that exponentially amplify their entrained magnetic fields. This is illustrated in Fig. 4.1 (row 2),
where the hot vortices along the donor-accretor interface correspond to regions of high field strength.
At ∼ 180 s, tidal forces between the two WDs become strong enough to fully disrupt the donor, which
then coalesces with the accretor over ∼ 50 s. During this time, infalling donor material spirals into the
accretor, severely deforming the accretor while carrying the string of magnetized vortices toward the
system’s center of mass (CM). Fig. 4.2 shows EB growing exponentially by a factor of ∼ 107 over ∼ 100
s, with an e-folding time τ = 6.4 s, comparable to the typical turnover timescale of the largest eddies
2πReddy/∆vshear ∼ 3 s, where ∆vshear is the velocity difference across the shear layer.

By ∼ 250 s many of the vortices have merged together into a hot, rapidly rotating underdense void
at the CM (Fig. 4.1, row 4). Magnetic growth within the void begins to saturate as its magnetic and
kinetic energy approach equipartition. The rate of field growth slows as well, with EB growing another
two orders of magnitude over ∼ 150 s before plateauing at ∼ 2× 1047 ergs at ∼ 400 s.

In Fig. 4.3 we show the density ρ, T, |B| and ratio of magnetic to rotational energy density eB/erot

of the merger remnant at 400 s. The remnant consists of a dense, degeneracy-supported core containing
∼ 60% of the remnant’s mass, a partly thermally supported hot envelope that surrounds the core, and
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Figure 4.1: Series of temperature T (left column) and magnetic field strength |B| (right) logarithmic
intensity profiles in the equatorial plane of the merger for four snapshots in time (rows; time indicated
at the top left of each row).
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Figure 4.2: Total magnetic energy EB over time, with a best fit to the rapid exponential growth (dashed
EB ∝ et/6.4 s line).

a rotationally supported disk, a configuration similar to the SPH 0.625-0.65 M� remnant from Ch. 2.
The Arepo remnant core, however, has distinctly non-axisymmetric density and temperature structures,
unlike the SPH simulation which achieves axisymmetry ∼ 170 s after coalescence (Zhu et al. 2013,
online figure set Fig. 1.16). The magnetic fields are too weak during the merger to have an effect on
merger dynamics, so these contrasts are due to differences in the hydrodynamic schemes between Arepo

and SPH (Ch. 3).

The remnant magnetic field configuration is complex: while field lines are coherent along “strands”
of high field strength, neighboring strands often point in opposite directions (see Fig. 4.3). In the
core, the volume-averaged field strength is 4× 1010 G, but strands of > 1011 G field perforate the
core. The field remains > 109 G near the core-disk interface at ∼ 109 cm, before dropping below 107

G at & 3× 109 cm. The total magnetic field energy is ∼ 0.2% the total, ∼ 0.6% the total rotational,
and ∼ 6% the total differential rotation energy of the remnant.1 This energy is roughly equally
partitioned into toroidal and poloidal field components, with the ratio of poloidal to total magnetic
energy EBφ/EB = 0.62. Studies of local field amplification within Kelvin-Helmholtz vortices predict
magnetic growth saturates when the magnetic and kinetic energy densities are close to equipartition
(Obergaulinger et al. 2010; Zrake & MacFadyen 2013). In our simulation, this is only the case for the
strands of > 1011 G field, where magnetic energy density is ∼ 7% (∼ 47%) the rotational (differential
rotation) energy density (see Fig. 4.3, column 4). It is possible that because the strands are distributed
throughout the core, they drive the core’s overall evolution and inhibit further magnetic amplification
in their surroundings.

Some of the magnetized accretion stream is ejected during coalescence and integrates into the

1Differential rotation energy of a cell is estimated with Edrot = mcell|v||∇ × v|V1/3
cell .
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Figure 4.3: From leftmost to rightmost column, equatorial plane (top row) and polar (bottom) logarith-
mic intensity profiles of density ρ, temperature T, magnetic field strength |B| and ratio of magnetic to
rotational energy density eB/erot for the simulation at 400 s (∼ 170 s after coalescence). The equatorial
plane density plot includes a linear profile of the remnant core (with the same x and y scale as the
logarithmic profile) to show its shape. Arrows in the magnetic field strength plots indicate field
directions, with their lengths equal to the fraction of the field that lies along the xy plane (top frame)
and xz plane (bottom).
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Figure 4.4: Total magnetic energy EB over time for the fiducial (solid blue; mcell ≈ 1× 10−6 M�,
equatorial surface field strength 103 G) simulation and the robustness tests. Dashed lines represent low
(green; mcell ≈ 5× 10−6 M�) and high resolution (red; mcell ≈ 2× 10−7 M�) simulations. Dotted lines
represent 1 G (magenta) and 10−3 G (cyan) low initial field simulations.

inner disk (∼ 1− 3× 109 cm), producing a 107 − 108 G field by 400 s. This field has a negligible
hydrodynamic effect on the disk (magnetic energy density to pressure ratio eB/P ≈ 3× 10−5 at 2× 109

cm), and, unlike the field in the core, has not saturated: |B| continues to grow exponentially with
τ ∼ 200 s.2

4.4 Robustness Tests

4.4.1 Resolution Test

To check that our results are not resolution-limited, we performed simulations, otherwise identical
to the fiducial one in Sec. 4.3, with lower and higher mass resolutions of mcell ≈ 5× 10−6 M� and
mcell ≈ 2× 10−7 M�, respectively. Fig. 4.4 compares the EB evolution between these simulations
(dashed lines) and the fiducial one (solid).

The three runs are qualitatively identical. Donor disruption and the start of exponential field growth
occurs ∼ 0.75 orbital periods earlier at low resolution, and ∼ 0.5 periods later at high, because the outer
layers of the WDs are better captured and the differences in hydrostatic equilibrium between Arepo

and Gasoline are less pronounced at higher resolution. Exponential growth rates are similar between
the runs - the EB e-folding time is τ = 4.9 s for the low resolution run, faster than τ = 6.4 s for the
fiducial. At high resolution, the growth curve appears to be separated into two phases, with τ = 7.8 s

2The remnant disk is generally poorly resolved, even at the highest resolution used in Sec. 4.4.1; this may artificially slow the
disk field growth rate.
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before coalescence, and τ = 3.9 s during it. The total magnetic energy at the end of exponential growth
is also similar - at 400 s, EB is ∼ 4× 1047 ergs in the low resolution run and ∼ 1.5× 1047 ergs in the
high, compared to ∼ 2× 1047 ergs at the fiducial resolution. The fiducial and high resolution runs also
qualitatively have very similar magnetic field structures by 400 s. Our fiducial resolution of 1× 10−6

M� therefore appears sufficient for qualitatively capturing the growth and final field configuration of
the merger.

In their MHD disk galaxy simulations, Pakmor & Springel (2013) find faster field growth and higher
field strength at saturation in their lowest resolution run, which they attribute to larger divergence
errors at lower resolution. We perform a similar test, and also see a trend of decreasing divergence error
(and more accurate magnetic evolution) at higher resolution, though the errors of all our simulations
are at least a factor of two smaller than any reported in Pakmor & Springel (2013). The errors are highly
localized in space and trace steep magnetic gradients, suggesting they contribute only to small-scale
variations in the magnetic field.

4.4.2 Changing the Seed Field Strength

To understand the dependence of our results on the initial seed field, we ran two additional simulations
in which we decreased the strength of the seed field by 3 and 6 orders of magnitude leading to an
initial equatorial surface field of 1 G (central field ∼ 2× 104 G), and 10−3 G (∼ 20 G), respectively. Fig.
4.4 shows their EB evolution (dotted lines). We find the growth curves to be homologous between both
low initial field runs and the fiducial one – differing only by the ratios of seed EB – up to ∼ 200 s,
with the e-folding time for exponential amplification approximately 6.5 s for all three runs. By ∼ 250
s, the field in the fiducial simulation begins to plateau, while amplification (of initially weaker fields)
continues for several hundred more seconds in the low initial field runs. For both runs, EB plateaus
at ∼ 3× 1047 ergs, comparable to the fiducial ∼ 2× 1047 ergs. Because the fields in the low initial
field runs remain dynamically irrelevant for longer, however, their structures differ from that of the
fiducial run and resemble more the crescent in Fig. 4.1, row 4. The disk field does not saturate in any
simulation – its strength is proportional to the strength of the seed field, and is thus much weaker in
the low initial field runs. Our tests thus suggest that the exponential growth, growth timescale and
plateau EB are robust to changes in initial field strength, while the remnant field configuration is more
sensitive to the choice of seed field.

4.5 Discussion

We have shown that the merger of a 0.625 - 0.65 M� CO WD binary produces a strong, > 1010 G
magnetic field with a complex structure that winds through the remnant core and into the inner disk.
Similar to previous simulations of binary NS mergers, the strong field is generated by dynamo action
within Kelvin-Helmholtz vortices formed during the coalescence of the two WDs. Since these vortices
are ubiquitous in WD mergers, strong magnetic fields are a likely feature of all merger remnants.
The degree to which a field permeates the remnant core depends on how thoroughly the donor
and accretor mix during coalescence, which itself is sensitive to initial conditions such as the degree
of synchronization between the WDs, or how accurately their tidal bulges and early mass transfer
are captured (Dan et al. 2011; 2014). A parameter space study of magnetized mergers is needed to
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investigate the range of possible remnant field configurations.
We note that NS mergers simulated in Eulerian grid codes generally show EB growing by only a

factor of ∼ 102 − 103 during coalescence, compared to the ∼ 109 we see, despite these simulations
having resolutions comparable or superior to our low resolution Arepo run. This weaker growth is
also inconsistent with the amplification to local kinetic equipartition seen in small-scale simulations
(Obergaulinger et al. 2010; Zrake & MacFadyen 2013), and is attributed to insufficient resolution in
the NS merger simulations (Kiuchi et al. 2014; Giacomazzo et al. 2015, though see Dionysopoulou
et al. 2015). Giacomazzo et al. (2015) incorporated a subgrid magnetic amplification model, calibrated
using Zrake & MacFadyen (2013)’s results, into their Eulerian NS merger simulation, and found EB

amplification by a factor of ∼ 1010 over a single dynamical time.3 This suggests Arepo may be better
able to resolve small-scale velocity structures than an Eulerian code at comparable resolution, or better
able to couple these structures to magnetic growth. Further work is needed to understand the magnetic
field growth in detail.

The density profile of the remnant remains non-axisymmetric for hundreds of seconds after
coalescence. As a result, the core continues to evolve dynamically, and by 400 s has begun to launch a
pair of spiral waves into the surrounding medium (see the density panel of Fig. 4.3), which transport
angular momentum on a timescale rivalling that for magnetic shear. While Kashyap et al. (2015)
report a similar spiral instability in their Eulerian remnant evolution simulation, SPH simulations
like those of Ch. 2 rapidly achieve axisymmetry after coalescence and do not form spiral waves. As
noted earlier, this difference between Arepo and SPH simulations is a product of the differences
between their hydrodynamic schemes. Further study is needed to understand these differences and
their consequences for remnant evolution (Ch. 3).

The post-merger evolution of the remnant has been followed to ∼ 3× 104 s with axisymmetric
cylindrical (two-dimensional) Eulerian grid simulations (Schwab et al. 2012; Ji et al. 2013). As described
earlier, Ji et al. (2013)’s MHD simulation of a 0.6 - 0.6 M� remnant shows the development of a strong
magnetic field due to MRI. The subsequent heating and angular momentum transport due to the fields
pushes core temperatures to ignition, supporting the possibility of a nuclear runaway within sub-MCh

remnants. Their results are, however, likely sensitive both to their initial hydrodynamic conditions
– which may have artificially high core temperatures – and their chosen seed magnetic field, a pure
poloidal one to optimize the onset of MRI. Our much stronger poloidal-toroidal field could substantially
change post-merger evolution. Moreover, the persistence of a non-axisymmetric remnant core will lead
to evolution that clearly cannot be captured in a axisymmetric cylindrical grid. We therefore stress the
need to perform high-resolution three-dimensional simulations of post-merger evolution to determine
the final fate of the remnant.

There are a number of potentially observable consequences of the magnetic fields produced by the
merger. Ji et al. (2013) note the creation of a magnetized corona and biconal jet in their simulations,
which act in concert to cause an outflow of material near the remnant’s poles. This outflow eventually
unbinds ∼ 10−3 M� of material, and Beloborodov (2014) estimates it should lead to an optical transient
with a duration of ∼ 1 day and peak L ∼ 108 L�, which should be detectable by optical surveys.

If a remnant later experiences a nuclear runaway and explodes as an SN Ia, its magnetic field
will increase the late-time emission by trapping positrons (produced by 56Co β+ decay) that would

3Price & Rosswog (2006)’s SPH simulations also show strong amplification; while runs using their Euler potential MHD
method suffer exaggerated field growth from improper boundary conditions, their B-based runs show similar results (Price
2012).
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otherwise escape the ejecta. The trapping efficiency depends on the strength and configuration of the
remnant magnetic field, with a locally entangled ∼ 1011 G field – similar to our findings – well able to
trap positrons past 1000 days (Ruiz-Lapuente & Spruit 1998). This is in line with observed late-time SN
Ia light curves (most recently Kerzendorf et al. 2014b).

Those remnants that do not explode will retain strong fields when they reach quiescence, and
populate the high-mass tail of the distribution of isolated high-field magnetic WDs (García-Berro et al.
2012; Külebi et al. 2013; Wickramasinghe et al. 2014; Briggs et al. 2015). Since these remnants will have
temperatures high enough to fuse any remaining hydrogen and helium they possess, their properties
might eventually be akin to the recently discovered hot DQ WDs (e.g. Dufour et al. 2013). These
WDs have carbon-dominated atmospheres and Teff ≈ 2× 104 K, are often strongly magnetized (∼ 1
MG) and sometimes have monoperiodic photometric variability (possibly due to rapid rotation). Their
origins remain unclear (Althaus et al. 2009; Lawrie et al. 2013; Williams et al. 2013). Dunlap & Clemens
(2015) recently found that, if most known hot DQs are massive (M & 0.95M�), their population’s
velocity dispersion corresponds to a kinematic age much older than what would be inferred from
their temperatures, suggesting that at least some hot DQs are WD-WD merger remnants. If so, their
observed properties would constrain merger and remnant evolutionary models, and double-degenerate
channels for SNe Ia.

We thank Christopher Thompson, Christopher Matzner, Volker Springel, Bart Dunlap, Yuri Levin,
Henk Spruit, Ue-Li Pen and Stephen Ro for their insights into magnetohydrodynamics and simulations.
This work utilized the SciNet HPC Consortium’s GPC supercomputer (Loken et al. 2010). C.Z.
acknowledges support from the Natural Sciences and Engineering Research Council (NSERC) Vanier
Canada Graduate Scholarship. R.P. acknowledges support by the European Research Council under
ERC-StG grant EXAGAL-308037 and by the Klaus Tschira Foundation. P.C. is supported by the NASA
ATP program through NASA grant NNX13AH43G, and NSF grant AST-1255469.

4.6 Postscript: Reconsidering Divergence Cleaning in Arepo

In Sec. 4.5 we discussed why Arepo might be capturing (at least some proxy of) rapid magnetic
amplification during the merger when Eulerian simulations of NS mergers at similar resolutions do
not. Since the publication of Ch. 4 as Zhu et al. (2015), it has been pointed out that the amplification
could be the spurious result of Arepo’s divergence cleaning mechanism.

In most multidimensional numerical MHD schemes, the “divergence constraint” of ∇ · B = 0 is
not guaranteed, and if the implicit divergence terms in Eqn. 3.1 are not considered, these schemes
can in practice lead to spurious forces and magnetic instabilities (Tóth 2000; Hopkins & Raives 2016).
A number of solutions exist (eg. Tóth 2000), and the most widely-used is Evans & Hawley (1988)’s
constrained transport method, which staggers the different components of the magnetic field within the
discretization to maintain the divergence constraint to round-off errors. This reliance on grid geometry,
however, has made it challenging to implement in a moving mesh code (Mocz et al. 2014). Until the
recent adoption of constrained transport in Arepo in Mocz et al. (2016), the code instead used either
the Dedner et al. (2002) or Powell et al. (1999) divergence control schemes. The former introduces an
additional conserved scalar term ψ to U in Eqn. 3.2 which is coupled to ∇ · B while simultaneously
being advected and forced to exponentially decay. The latter adds a source term to the righthand side
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of Eqn. 3.2 that is proportional to ∇ · B, which passively advects divergence errors but does not damp
them. The Dedner method is superior because it actively minimizes divergence errors rather than
simply preventing their local accumulation, but its implementation in Arepo required prohibitively
small timesteps and tended to become unstable in highly dynamic environments (Pakmor & Springel
2013), hence our use of the Powell scheme.

In Fig. 4.5, we show the magnetic field strength, relative divergence error and absolute relative
divergence error of our fiducial merger simulation at t = 200 s, when the donor has just been disrupted.
The (mass-weighted) average relative divergence error

〈
|∇ · B|(Vcell)

1/3/B
〉
= 0.18 (where Vcell is the

Voronoi cell volume), which is typical of both this simulation and Pakmor & Springel (2013)’s galaxy
disk evolution one, but much larger than typical results from Dedner cleaning-based codes (Tricco
2015; Hopkins & Raives 2016). As in Pakmor & Springel (2013), the divergence error alternates on
very small scales (Fig. 4.5 middle panel), and peaks near large magnetic gradients (comparing top and
bottom panels). While errors cancel over large scales (the average relative error with the sign of the
divergence included is

〈
∇ · B(Vcell)

1/3/B
〉
= −1.4× 10−3), the regions of highest magnetic gradient

correspond to the shear interface between donor and accretor, where we believe the field is amplified.
It is therefore plausible that errors at small scales spuriously magnify the magnetic dynamo associated
with the shear layer and Kelvin-Helmholtz vortices.

This hypothesis is supported by Hopkins & Raives (2016), who perform a battery of tests comparing
the Dedner and Powell mechanisms for their mesh-free finite-volume code GIZMO, and show diver-
gence errors in Powell-based simulations of advection and hydromagnetic instability lead to spurious
and unstable field growth. Moreover, comparisons between Powell and constrained transport-based
Arepo using simulations of MHD turbulence and disk galaxy evolution show that the Powell scheme
leads to greater magnetic field amplification by up to an order of magnitude, as well as a qualitatively
different field topology (Mocz et al. 2016).

Caution is therefore in order when using this chapter’s results, at least until they have been compared
with simulations using Arepo’s new constrained transport scheme. Given that the results will likely
be different, it may also be useful to conduct a simpler test case of field evolution within a single
Kelvin-Helmholtz vortex at various resolutions and compare the results with those of Obergaulinger
et al. (2010) and Zrake & MacFadyen (2013). Nevertheless, as discussed in Sec. 4.3, the remnant
magnetic field’s bulk properties following coalescence are physically plausible, and are likely to be
more robust than the detailed field configuration. We use these bulk properties (alongside Ji et al.
(2013)’s work) when considering magnetic simmering WDs the next chapter.
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Figure 4.5: From top to bottom, equatorial plane intensity profiles for the magnetic field strength,
relative divergence error (linear scale) and absolute relative divergence error (logarithmic) for the
simulation at 200 s.



Chapter 5

The Evolution of Simmering
Sub-Chandrasekhar Mass WDs

Chenchong Zhu, Philip Chang, Marten H. van Kerkwijk and Ken J. Shen
(Zhu et al. in preparation)

When fusion is lit in the degenerate interior of a carbon-oxygen white dwarf, the resulting nuclear
runaway starts with a “simmering phase”, in which convection transports energy out of the burning
region. While simmering inevitably leads to some form of explosion for white dwarfs near the
Chandrasekhar mass, in ones with lower mass it may instead lead to the lifting of degeneracy and
expansion into a carbon-burning star. Using analytical arguments and simple models, we determine
that the critical mass for explosions to be possible is Mcrit ≈ 1.15 M�. In principle, effects from rotation
and magnetic fields might lead to a change in the critical mass. For the rotation rates found in merger
remnant simulations, the effect is likely minimal, ∼ 0.01 M�. For magnetic fields the case is less clear,
since interaction with convection is poorly understood, but simple order-of-magnitude arguments
again suggest only a small effect.

110
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5.1 Introduction

Type Ia supernovae (SNe Ia) are generally thought to be the thermonuclear explosions of carbon-oxygen
white dwarfs (CO WDs). While the current body of observational evidence has greatly strengthened
this hypothesis, the mechanism(s) by which a WD is agitated into exploding remains mysterious (see
Howell 2011; Hillebrandt et al. 2013; Maoz et al. 2014 for recent reviews).

The traditional scenario involves slow accretion of material onto the CO WD from either a non-
degenerate companion or another WD. As the CO WD approaches the Chandrasekhar mass MCh, its
central density becomes sufficiently high that the rate of heating from pycnonuclear carbon fusion
exceeds that of neutrino cooling. The resulting increase in central entropy establishes a convection zone
that transports the heat of the nuclear burning region to the rest of the WD interior. The WD is highly
degenerate, however, and does not expand in response to the heating. Instead, a “simmering phase” of
increasingly rapid nuclear burning within an increasingly hot WD ensues over the next thousand years.
Near-MCh WDs eventually become hot enough that the timescale for nuclear burning becomes shorter
than the dynamical time – we call this “dynamical burning” – at which point a deflagration, detonation
or some other explosive event becomes inevitable.

This scenario is beset by two major issues: an apparent paucity of accreting or merging CO WDs
that can achieve MCh, and the difficulty for the thermonuclear explosion of a MCh WD to reproduce the
properties and population-level trends of observed SNe Ia (vK10, and references therein). These, in turn,
have spurred research into alternative formation channels where CO WDs with masses significantly
below MCh also explode. Including them would bolster substantially the number of progenitors (eg.
Badenes & Maoz 2012), and their explosions could closely resemble ordinary SNe Ia (Shigeyama et al.
1992; Sim et al. 2010).

Since hydrostatic sub-MCh WDs do not possess central densities high enough for pycnonuclear
fusion, burning must be prompted either by a shockwave (that immediately triggers dynamical burning),
or by heating material to T ≈ 6× 108 K to induce fusion through high temperatures, rather than high
densities. The former is presumed in the double-detonation (eg. Fink et al. 2007; Woosley & Kasen
2011; Pakmor et al. 2013; Shen & Moore 2014), violent merger (eg. Pakmor et al. 2010) and collision (eg.
Lorén-Aguilar et al. 2010) scenarios. The latter is presumed in the sub-MCh CO WD merger scenario of
vK10, in which two CO WDs with similar masses of around 0.65 M� merge, forming a merger remnant
that is differentially rotating throughout its structure, and so is susceptible to magnetohydrodynamic
instabilities (Shen et al. 2012; Ji et al. 2013). It subsequently becomes strongly magnetized, leading
to outward transport of angular momentum over a viscous timescale of ∼ 104 − 108 s that robs the
remnant of its rotational support (vK10, Shen et al. 2012; though see Ch. 3, Kashyap et al. 2015 for
evidence of transport through spiral hydrodynamic waves). This viscous evolution compresses and
adiabatically heats the remnant’s interior, which the simulation of Ji et al. (2013) suggests leads to
central carbon ignition.

In the vK10 scenario, and, indeed, any situation where non-dynamical nuclear burning ignites
under degenerate conditions in a sub-MCh WD, a simmering phase ensues just like in the near-MCh

case. Sub-MChWDs, however, are less dense, and their degeneracy is at least partially lifted before
they reach temperatures where burning becomes dynamical. There is, in fact, a critical mass Mcrit

below which the simmering WD never reaches dynamical burning before becoming non-degenerate
enough to expand and cool off. Even those WDs that do achieve dynamical burning may substantially
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expand beforehand. Since the fraction of material fused to peak-iron products in an SN Ia depends on
its progenitor’s density profile, a pre-expanded WD will produce reduced, or even negligible, amounts
of 56Ni. Thus runaway nuclear burning at the center of a sub-MCh remnant neither inevitably leads to
an explosion, nor is any explosion guaranteed to resemble an SN Ia.

In this chapter, we investigate the simmering phase of sub-MCh WDs undergoing center-lit carbon
burning. In Section 5.2 we detail our semi-analytical model and its assumptions. While our motivation
is to better understand the evolution of merger remnants, we keep these assumptions simple, and
we stress that our models do not necessarily account for any specific prior evolution. We present our
results in Section 5.3, determining both the value of Mcrit and estimating the mass of radioactive 56Ni
produced if a detonation were to follow immediately. Simmering WDs that formed in mergers are
expected to be rotating and magnetized (eg. Ch. 4; Ji et al. 2013; Wickramasinghe et al. 2014), and
we also try to ascertain how Mcrit and MNi change in their presence using simple prescriptions for
rotational and magnetic convective suppression. Lastly, in Section 5.4, we discuss how our results apply
to the vK10 scenario as well as implications for SN Ia progenitor studies in general.

5.2 Modeling Sub-MChWD Simmering

Simmering in near-MCh WDs has been extensively studied with 1D semi-analytical calculations by eg.
Woosley et al. (2004; hereafter WWK04), Lesaffre et al. (2006); Piro (2008), and Piro & Chang; (2008;
hereafter PC08). We adapt the analytical machinery of WWK04 Sec. 2 and PC08 to sub-MCh WDs. In
Sec. 5.2.1 we show that the simmering phase can be approximated well by a sequence of hydrostatic
WD models, and in Sec. 5.2.2 we detail our model implementation.

5.2.1 Analytical Description

For a center-lit nuclear runaway, carbon ignition is achieved when material near the center of the WD
is heated past ∼ 6× 108 K and the heating timescale due to carbon fusion (at ρ ∼ 108 g cm−3),

τCC ≡
cPT
εCC

∼ 102 yr, (5.1)

becomes smaller than the cooling timescale from neutrino losses τν ≡ cPT/εν.1 εCC is the specific
energy generation rate for carbon burning, εν the specific energy loss rate due to neutrino creation,
and cP the specific heat at constant pressure. The energy deposited from nuclear burning steepens the
temperature gradient until convection is triggered.

We now estimate the timescale for convective energy transport, τconv, which requires the convective
luminosity Lconv. In steady state convection, this is equal to the nuclear luminosity, i.e.

Lconv(r) = LCC(r) =
∫ r

0
4πr′2ρεCC(ρ, T)dr′. (5.2)

In a simmering WD part of LCC is diverted into heating the WD, and to perform work expanding it
once degeneracy begins to be lifted, reducing the convective luminosity in the upper convection zone
(PC08). For simplicity, and because we mainly consider convective velocities near the center of the WD,
we do not consider this effect in our models.

1The conduction timescale, τcond ∼ 106 yr, is far longer than either.



Chapter 5. The Evolution of Simmering Sub-Chandrasekhar Mass WDs 113

Near the center, and closer to the end of simmering, ρ7 = (ρ/107 g cm−3) = 3 and T9 = (T/109 K) =

1.2, and the specific energy generation rate for material composed of 50% C and 50% O by mass,

εCC ≈ 1.3× 1015 (ρ7/3)1.3 (T9/1.2)23.6 erg g−1 s−1 (5.3)

is a steep function of temperature (Eqn. 5.3 was numerically derived using the rates module from the
stellar evolution code MESA (Paxton et al. 2011)). Thus, the vast majority of the nuclear luminosity is
generated within a “nuclear burning region” deep within the star. Following WWK04, we estimate
the burning region’s luminosity through the use of a polytropic equation of state and an adiabatic
temperature profile – i.e. P/Pc = (ρ/ρc)γ1 , T/Tc = (ρ/ρc)γ3−1. At ρ7 = 3 and T9 = 1.2, the Helmholtz
equation of state (EOS; Timmes & Swesty 2000) gives γ1 = 1.41, and γ3 = 1.43. We use the standard
polytropic rescaling of density and radius (eg. Kippenhahn et al. 2012):

θ ≡ (ρ/ρc)
γ1−1,

ξ ≡ αr, (5.4)

where

α ≡

√
γ1 − 1

γ1

4πGρ2
c

Pc
, (5.5)

along with Eqn. 5.3 to obtain ρεCC(ρ, T) = ρcεCC,cθb−1, where b = (γ1 − 1)−1(23.6γ3 − 21.3) + 1 and
εCC,c = εCC(ρc, Tc). When calculating the total luminosity, Eqn. 5.2 then reduces to

Lconv ≈ 4πρcεCC,c
1
α3

∫ ξ1

0
ξ2θb−1dξ. (5.6)

Close to the WD’s center,

θ ≈ 1− 1
6

ξ2 (5.7)

to third order, which implies the integrand of Eqn. 5.6 has a maximum at ξ1 =
√

6/b. Integrating up to
this point numerically,

Lconv ≈ 0.20
ρcεCC,c

α3

= 2.2× 1046 (ρ7/3)1.3 (T9/1.2)23.8 erg s−1 (5.8)

For the scaling relation above, and for Eqn. 5.14 below, we use the Helmholtz EOS to numerically
expand α ≈ 7.0× 10−9(ρ7/3)0.33(T9/1.2)−0.08 cm−1.

The convective velocity vconv transporting luminosity Lconv can be calculated with standard mixing
length theory (MLT; eg. Kippenhahn et al. 2012 Ch. 7):
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Fconv =
Lconv

4πr2 =
ρcPT
gδlm

v3
conv

vconv =

(
δglm
cPT

Lconv

4πr2ρ

)1/3
. (5.9)

where g is the magnitude of the gravitational acceleration, δ = −d ln ρ/d ln T the logarithmic coefficient
of thermal expansion and lm the mixing length, which in this work we shall take to be the pressure
scale height

HP ≡ −
P

dP/dr
. (5.10)

A coefficient of order a few often included in Eqn. 5.9 has been set to unity to be consistent with PC08.
Combining Eqns. 5.8 and 5.9, we estimate the convective velocity at r = HP/2:

vconv ≈
(

eγ3/2γ1

π

δg
cPTc

Lconv

HPρc

)1/3

≈ 0.47
(

δg
α3HP

εCC,c

cPTc

)1/3
. (5.11)

Here, we used the fact that HP/2 is the approximate length over which pressure decreases by a
factor of e1/2; correspondingly (from the adiabatic temperature gradient), ρ ≈ ρc exp(−1/2γ1) and
T ≈ Tc exp(−(γ3 − 1)/2γ1). In the same vein, we relate α to HP using Eqns. 5.4 and 5.7:2

P
Pc

= e−1 = θγ1/(γ1−1) ≈
(

1− 1
6

ξ2
HP

)γ1/(γ1−1)

ξHP = αHP ≈
(

6− 6e−(γ1−1)/γ1
)1/2

= 1.2 (5.12)

We also approximate gravitational acceleration g = Gm/r2 (m is the enclosed mass) at r = HP/2 by
noting that

m (HP/2) =
∫ HP/2

0
4πr2ρdr ≈ 4π

ρc

α3

∫ 0.6

0
ξ2θ1/(γ1−1)dξ

= 0.20
4πρc

3α3 (5.13)

calculated using the same procedure to estimate Lconv. Combining Eqns. 5.11, 5.12 and 5.13,

vconv ≈ 0.57
α

(
δGρc

εCC,c

cPTc

)1/3

≈ 1.4× 107 (ρ7/3)0.34 (T9/1.2)7.86 cm s−1, (5.14)
2The next higher term in the expansion for θ is (n/120)ξ4, where n is the polytropic index. Hence, for n ≈ 3 and ξHP ≈ 1.2,

the approximation for θ is good to ∼ 20%.
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where we use the Helmholtz EOS again to expand cP ≈ 4.9× 107(ρ7/3)−0.32(T9/1.2)0.84 erg g−1 K−1

and δ = 1.2× 10−1(ρ7/3)−0.64(T9/1.2)1.58.
Finally, we use Eqn. 5.14 to estimate the convective timescale

τconv ∼
HP

vconv
≈ 2.1

δ1/3

(
1

Gρc

)1/3 ( cPTc

εCC,c

)1/3
(5.15)

We use Eqn. 5.1 to rewrite cPTc/εCC,c as the (central) nuclear heating timescale, and we define the
dynamical time as

τdyn ≡
1

(Gρc)−1/2 . (5.16)

Taking δ1/3 ≈ 0.49, Eqn. 5.15 then becomes3

τconv ≈ 4.3τ2/3
dynτ1/3

CC . (5.17)

Therefore, during the simmering phase, convection transports energy away on a timescale much
smaller than the fusion heating timescale. τCC only reaches parity with τconv when they become
approximately equal to the WD’s dynamical adjustment time τdyn, after which nuclear burning deposits
energy faster than the WD can dynamically respond, and an explosive event becomes inevitable. Since
during the simmering phase τdyn � τconv � τCC, it can be traced using a sequence of hydrostatic
models where convection is able to redistribute energy over a negligible timescale.

In reality, the end of simmering and birth of a thermonuclear burning wave occurs earlier than
when τCC = τdyn. WWK04 argue it happens when an individual convective blob in the nuclear burning
region heats faster from burning than it cools through adiabatic expansion, i.e. when the integral

∫ (dT
dr

+
εCC

cPvconv

)
dr (5.18)

diverges along a convective path.

5.2.2 Semi-Analytical Model

We generate 1D hydrostatic models by solving the stellar structure differential equations

dP
dm

= − Gm
4πr4

(
+

1
6π

Ω2

r

)
(5.19)

dr
dm

=
1

4πr2ρ
(5.20)

dT
dm

=

 T
P∇

dP
dm , inside the convection zone

0, otherwise
(5.21)

where ∇ ≡ d ln T/d ln P. The Helmholtz equation of state closes the system of equations. The
luminosity is calculated using

3Retaining the density and temperature scaling of δ−1/3 ∝ (ρ7/3)0.21(T9/1.2)−0.53 in Eqn. 5.15 does not substantially alter our
result, since τconv ∝ δ−1/3(ρ7/3)−0.67(T9/1.2)−7.78 and density changes only by a factor of a few during the runaway.
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dL
dm

= εCC (5.22)

with εCC values provided by MESA’s rates module. To obtain a model WD, we employ a shooting
method that calculates a stellar profile given ρc and central specific entropy sc, and vary ρc until a
profile is obtained where mass has a relative deviation of . 10−6 from its desired value. For the
solid-body rotating WDs considered in Sec. 5.3.3, the bracketed term in Eqn. 5.19 – a 1D approximation
to rotational support valid when deviations from spherical symmetry are small – becomes non-zero,
and Ω is also altered during shooting until the angular momentum relative deviation is . 10−6 from
its desired value.

Within the convection zone, the temperature profile is given by

∇ ≡ d ln T
d ln P

= ∇ad + ∆. (5.23)

∇ad is the adiabatic (isentropic) temperature gradient and is ≈ 0.3− 0.4 for WDs. ∆ is a deviation term
(always positive in our models) that can affect the runaway: an adiabatic temperature profile leads the
entire WD to heat up along with the nuclear burning region, expanding as it becomes less degenerate,
while an extremely steep profile will effectively decouple the burning region from rest of the WD until
an explosion occurs. In the absence of rotation and magnetic fields, ∆ = ∆conv, the superadiabatic
gradient deviation needed to transport the convective luminosity. MLT gives ∆conv as

∆conv =
v2

conv
gδ

HP

l2
m

=
v2

conv
gδHP

(5.24)

where convecting elements themselves are assumed to be adiabatic, and a coefficient has again been set
to unity for consistency with PC08. We shall see in Sec. 5.3.2 that ∆conv/∇ad � 1 – as usual in stellar
interiors – except near the very end of simmering.

The scale height, as defined by Eqn. 5.10, diverges as r → 0. To alleviate issues with expressions
that have it in the denominator, we follow Paxton et al. (2011) in using an alternate scale height,

HP =

√
P

Gρ2 , (5.25)

when it is smaller than HP from Eqn. 5.10.

We assume a uniform composition of 50% carbon, 50% oxygen by mass. For simplicity, we do not
consider compositional gradients, which PC08 show generate a temperature break at the boundary
of the convection zone. (For merger remnants, these have likely been erased by the merging process
long before the simmering phase.) We also neglect electron capture reactions such as those of the
convective Urca process (eg. Stein & Wheeler 2006) and neutronization (Piro & Bildsten 2008), as they
are negligible for all but the most massive of our stars.

Like in PC08, we assume an isothermal zone of temperature Tiso above the convection zone;
given our assumption of uniform composition, the convection boundary location is set by where the
temperature of the convection zone reaches Tiso. By default, we set Tiso = 1× 105 K; we discuss the
effects of increasing it in Sec. 5.3.1.3.

As we showed, the evolution of a simmering WD can be represented by a sequence of hydrostatic
models. The sequence can be parameterized by the WD’s central specific entropy sc, which increases as
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the nuclear runaway unfolds.4 We vary sc between models in discrete logarithmic steps of d log10(sc) =

5× 10−3. If ∇ = ∇ad is assumed, each model along the sequence can be calculated independently of
others, but when using Eqns. 5.23 and 5.24, the strong dependence of vconv on the convective luminosity
can lead to ∆ ∼ ∇ad when Tc & 1.2× 109 K. In extreme cases, the temperature gradient – equivalently
the entropy gradient – steepens to the point where the specific entropy s(m) for a mass shell m is
actually lower than sold(m) from the previous model in the sequence. This physically corresponds
to the shell cooling off, which is impossible over convective timescales. Instead, convection is simply
unable to transport the convective luminosity through m, and ∆ is no longer valid.

To account for this effect, we add another condition that s(m) must always be larger than or equal
to sold(m), which modifies Eqn. 5.23 to

∇ =

∇ad + ∆, s(m) > sold(m)

∇ad − 4πr2ρ HP
cP

dsold
dm , otherwise,

(5.26)

setting an explicit temporal order to the sequence of models. In practice, sold(m) is obtained by fitting
a spline to the previous model’s entropy profile, meaning it is possible our chosen discretization of
d log10(sc) = 5× 10−3 affects model sequences that use Eqn. 5.26. We tested if this was the case by
generating sequences for a 1.2 M� WD that halved or doubled the discretization step, and found
changes in ρc and Tc of . 0.3%, orders of magnitude smaller than the changes presented in subsequent
sections.

To estimate when simmering ends, we loosely follow Eqn. 5.18 by using the condition

∫ RCC

0

(
dT
dr

+
εCC

cPvconv

)
dr = 0, (5.27)

where values in the integrand are taken from the WD’s stellar profile, rather than for a single convective
element.5 RCC, the outer boundary of the nuclear burning region, is estimated with the implicit
equation

LCC(RCC)

LCC
=

∫ RCC
0 4πr2ρεCCdr∫ RWD
0 4πr2ρεCCdr

= 0.95. (5.28)

Eqn. 5.27 can be rewritten as
∫ RCC

0
εCC
cP

(
cP

εCC
dT
dr + 1

vconv

)
dr = 0, showing that it estimates when the

heating timescale within the nuclear burning region is equal to the convective transport time across it,
or equivalently when the average convective element is heated as much as it cools across the region.

5.3 Results

We now consider the simmering of sub-MCh WDs represented by models with increasing complexity
and features. We first consider in Sec. 5.3.1 models where the superadiabatic deviation ∆conv is
neglected, and the temperature gradient is approximated with ∇ = ∇ad. These reproduce all the
qualitative features of the runaway, and are good approximations of more complex models. We then

4Central temperature Tc cannot be used this way, as it is not monotonic for WDs that expand and cool rather than explode.
5Eqn. 5.9 gives vconv(r = 0) = 0, leading to a singularity in Eqn. 5.27. To avoid this, we set vconv(r = 0) to its value at the

next step in the integration, where r ∼ 105 − 106 cm.
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move on to ones that include the superadiabatic temperature deviation ∆conv in Sec. 5.3.2, and ones
featuring a rough estimate for including rotation or magnetic fields in Sec. 5.3.3.

5.3.1 Adiabatic Approximation

5.3.1.1 Analysis of Adiabatic Simmering Tracks

Fig. 5.1 depicts evolutionary tracks of the central density and temperature of simmering WDs with
∇ = ∇ad and masses from 1.0 to 1.35 M�. We refer to these as “simmering tracks”. Black circles along
the tracks show when Eqn. 5.27 is first satisfied, which we refer to as the “end of simmering point”,
and the black dotted “end of simmering line” is a power-law fit to them. Also shown are contours
of neutrino cooling and carbon fusion heating timescale (dotted blue and red lines, respectively) and
contours of constant entropy (dotted green). The τCC = τν ignition line denotes where the fusion
heating timescale becomes equal to the neutrino cooling one, above which runaway nuclear burning
occurs, while the τCC = τdyn explosion line denotes when the fusion and dynamical (Eqn. 5.16)
timescales are equal, above which an explosive event occurs. The P = 2P(T=0) line approximates the
upper bound of the region where degeneracy pressure dominates over thermal pressure.

A WD starts simmering at the intersection of its simmering track with the τCC = τν line. As
nuclear burning increases the WD’s entropy, it rises up and leftward along its track, the slope of which
represents the partitioning of energy from nuclear burning into either raising the WD’s internal energy
or expanding the WD (the balance of which is determined by the virial theorem and equation of state).
Expansion becomes more prominent as degeneracy is lifted, and eventually the WD reaches a point
of maximum temperature, and then starts to cool as the simmering track turns over. The cooling and
expansion will eventually lead the WD back to near the τCC = τν line (though at much lower density
than at the start of simmering), and a stable carbon-burning star is born. Some WDs, however, reach
high enough temperatures that the end of simmering point is reached before maximum temperature
is; this signals the decoupling of convective energy transport and nuclear burning, and an explosive
event follows. For a 1.15 M� WD, simmering lasts just ∼ 10 yr from ignition to reaching the end of
simmering point, compared to the ∼ 1000 yr needed for a MCh WD; this is because pycnonuclear fusion
begins when τCC ∼ 106 yr, rather than ∼ 102 yr for thermonuclear fusion.

Due to our choice of sc range, we produce models that populate the region in Fig. 5.1 beyond the
end of simmering line, where our models’ assumption of instantaneous convective energy transport
breaks down. While these sections of the tracks cannot be reached during simmering, we still show
them in Fig. 5.1 as dot-dashed lines to indicate the tracks’ overall shape.

The simmering tracks roughly form a homology parameterized by a track’s highest temperature
and a density-axis stretch factor. Tracks for more massive stars reach higher temperatures and are more
horizontally stretched – the latter is due to entropy being a steeper function of density than degeneracy
is when ρ & 108 g cm−3 and T . 108 K. The τCC = τν and end of simmering lines, though, reach lower
temperatures at higher densities. As a result, a 1.0 M� WD is already significantly less degenerate than
a 1.35 M� one at the start of simmering. At the point where the 1.0 M� WD reaches its maximum
temperature of 9.5× 108 K (well short of the end of simmering line), it has expanded considerably,
its central density dropping to ρc = 5.6× 106 g cm−3, a quarter of its value at the onset of simmering.
It subsequently continues to expand while cooling. A 1.35 M� WD, on the other hand, expands
much less drastically – its central density has decreased by 35% by its end of simmering point at
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Figure 5.1: Evolution of the central temperature and density – “simmering tracks” – of simmering
CO WDs with masses from 1.0− 1.35 M� (labeled in-line). Solid lines represent tracks of WDs with
adiabatic temperature gradients, with dash-dotted track segments indicating regions that cannot be
reached during simmering. Dotted lines represent tracks that include the superadiabatic deviation ∆conv
(Eqn. 5.24) required to transport the convective luminosity. Black circles along adiabatic simmering
tracks indicate “end of simmering points” where Eqn. 5.27 is first satisfied, and the black dotted
end of simmering line represents a power-law fit to them. Red Xs are end of simmering points for
∆conv-inclusive tracks. Also plotted are contours of constant neutrino cooling timescale τν and carbon
fusion heating timescale τCC, both in years, as well as specific entropy s in erg g−1 K−1. The τCC = τν

and τCC = τdyn lines denote where the fusion heating timescale becomes equal to the neutrino cooling
timescale and dynamical timescale (Eqn. 5.16), respectively. Finally, the P = 2P(T=0) approximates the
upper bound of the region where degeneracy pressure dominates. Timescale contours were calculated
using MESA (Paxton et al. 2011).
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ρc = 7.6× 108 g cm−3, Tc = 9.2× 108 K. This central temperature is comparable to the Tc = 7− 8× 108 K
commonly reported for the end of simmering for MCh WDs (WWK04; PC08). The convective velocity
at the top of the nuclear burning region, vconv(RCC), is a few percent of the sound speed cs at RCC for
all WDs that reach their end of simmering points; for a 1.15 M� WD, vconv(RCC) = 1.4× 107 cm s−1

(∼ 3% of cs), in agreement with our estimate of Eqn. 5.14.

The well-ordered nature of the simmering tracks extends to the end of simmering points, which is
why they are well-represented by the end of simmering line. The line falls just short of the τCC = τdyn

one, lying just underneath the τCC = 10−6 yr contour. Unlike the other contours in Fig. 5.1, this line
cannot be calculated independently of the assumptions of the runaway, though we find it is a good
approximation for all of our models except for some in Sec. 5.3.3.

5.3.1.2 Estimate of Mcrit and Minimum MNi

We turn to the central task of this paper: estimating the minimum mass Mcrit required to reach the end
of simmering point, and the corresponding mass of radioactive nickel MNi produced if an explosion
occurs shortly thereafter. To find Mcrit, we generated models spaced apart by 0.005 M�, and find
Mcrit = 1.145 M�, which ends its simmering with ρc = 2.0× 107 g cm−3, Tc = 1.2× 109 K.

While an explosive event becomes inevitable once the simmering phase ends, its nature – be it a
deflagration, detonation, or some other phenomenon – has yet to be constrained and is beyond the
scope of this work. We are, however, motivated by the resemblance of pure detonations of sub-MCh

WDs to SNe Ia to make a rough estimate of the mass of 56Ni, MNi, produced if the Mcrit WD detonated
immediately after simmering ends (i.e. without any further changes to its density structure). Since
a detonation is supersonic, and the input energy for nuclear burning is provided by the shock itself
(eg. Seitenzahl et al. 2009), nucleosynthesis in a pure detonation is, to first order, determined by the
density profile of the progenitor before the explosion. Indeed, from the results of Sim et al. (2010),
we find that MNi can be estimated to within a few percent by the mass of progenitor material with
density ρ > 107 g cm−3, M(ρ > 107) (see Fig. 5.2). We can use this simple relationship to estimate that
for Mcrit = 1.145 M�, MNi = 0.30 M�.

Since Mcrit is the minimum mass that can reach the end of simmering point, 0.30 M� is the
minimum amount of 56Ni produced by any adiabatically simmering WDs (in the absence of either
post-simmering expansion or the triggering of a deflagration rather than a detonation). MNi, however,
rises quite steeply for WDs with M > Mcrit: M(ρ > 107) = 0.39 M� for a 1.15 M� WD, and 0.78 M�
for a 1.2 M� one. This is because the density of most material in a WD is within an order of magnitude
of ρc, and ρc at the end of simmering is a steep function of mass for tracks of M ≈ Mcrit, since at that
point they run nearly parallel to the end of simmering line. Therefore, changing Mcrit by a small value,
or altering the end of simmering criterion, can substantially change the minimum MNi.

5.3.1.3 Hot Envelopes

Fig. 2.4 suggests sub-MCh mergers of WDs with similar mass lead to remnants that are heated
throughout, with temperatures between ∼ 1 − 3 × 108 K. To roughly gauge what effect this pre-
runaway heating might have, we generate models identical to the ones above, but set Tiso = 2× 108 K.
We find the simmering tracks of these “hot-envelope” WDs deviate most widely from their cold
counterparts at the start of simmering, where their central densities are lower by ∼ 3− 7%; these
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differences reduce to ∼ 1− 6% at the end of simmering. By then, almost the entire interior structure
of an adiabatic WD, with Tc & 109 K, has T > 2× 108 K, making its central properties insensitive to
an increase in Tiso. Raising Tiso even further may affect simmering track values more substantially,
but hydrostatic solutions of WDs with Tiso & 5× 108 K tend to have low-density atmospheres that
extend to arbitrary radii, producing objects of infinite mass. Any WDs that were heated to such high
temperatures by prior evolution, such as the remnant of Ji et al. (2013) after its viscous evolution, have
more complicated temperature structures that, for simplicity, are not directly considered in this work
(see Sec. 5.4.2 for further discussion).

5.3.2 Superadiabatic Deviation ∆conv

To more accurately calculate simmering tracks, we must include the superadiabatic temperature
deviation ∆conv (Eqn. 5.24) needed to carry the convective luminosity. These ∆conv-inclusive tracks are
plotted in Fig. 5.1 as dotted lines (without indicating track segments unreachable during simmering).
They are, regardless of mass, nearly identical to their adiabatic counterparts during simmering: their ρc

and Tc at the start of simmering match to within floating point precision, and, for WDs of M > 1.2M�,
they also differ by less than 2% at the end. While the ∆conv tracks do steepen and arc away from their
adiabatic counterparts, this occurs only above their end of simmering points, which are represented
by red Xs in Fig. 5.1 and are well-approximated by the adiabatic end of simmering line. Close to Mcrit,
where the simmering tracks run nearly parallel to the end of simmering line, ∆conv is more influential:
the density of the ∆conv-inclusive 1.15 M� track at its end of simmering point is ∼ 15% higher than the
adiabatic one. A mass parameter space search finds Mcrit = 1.135 M�, which ends its simmering phase
with ρc = 1.7× 107 g cm−3, Tc = 1.2× 109 K. While these values are very close to the ones obtained in
Sec. 5.3.1.2, MNi = M(ρ > 107) = 0.20 M�, which is substantially lower, reflecting its sensitivity to the
end of simmering criterion.

The overall tiny effect of ∆conv is due to Eqn. 5.24’s dependence on the square of the ratio of
convective velocity to sound speed, v2

conv/(gHP) ≈ v2
conv/c2

s . Like in the adiabatic case, near the end
of simmering (vconv(RCC)/cs(RCC))

2 ∼ 10−3 (and vconv(RCC) = 1.3× 107 cm s−1) for a 1.15 M� WD,
and 10−4 for a 1.35 M� one. This small number is partly offset by the 1/δ = −d ln T/d ln ρ term, which
approaches infinity for zero-temperature degenerate material. Near the τCC = τν line, however, the
entropy is already sufficiently high that 1/δ ∼ 101.5 for a 1.15 M� WD, and ∼ 102.5 for a 1.35 M�
one; these values fall to ∼ 10 and ∼ 102, respectively, near the end of simmering. Consequently,
∆conv ∼ 10−2, an order of magnitude smaller than ∇ad ≈ 0.3− 0.4. Once the end of simmering point
is reached, the influence of ∆conv grows to beyond unity at only slightly higher sc due to the steep
dependence of v2

conv on temperature, resulting in the sharp upward turn in all ∆conv-inclusive tracks
for WDs more massive than 1.2 M� in Fig. 5.1.

5.3.3 Rotation and Magnetic Fields

We now turn to the inclusion of rotation and magnetic fields, which are expected features of merger
remnants. These, in general, introduce complex multi-dimensional and non-local effects that are
challenging to model. To obtain rough estimates, we consider only uniform rotation or magnetic fields
that vary slowly over a convective scale height, ignoring their coupling with each other and with
convection, and focus on how either affect Mcrit. We first obtain a sense of this effect by estimating the
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superadiabatic temperature deviation ∆ through energy balance arguments.

In the rotating case, the superadiabatic deviation ∆rot can be estimated by equating the buoyancy
and Coriolis forces:

2ρΩvconv = −g
(

d(∆ρ)

dr

)
∆r = gHPρ

(
δ

HP
∆rot

)
(5.29)

where ∆ρ is the density difference between a convective blob and its surroundings and we set the
characteristic length of convection ∆r to HP. This gives

∆rot =
1
δ

2ΩHP
cs

vconv

cs
, (5.30)

where we again use gHP ≈ c2
s . Eqn. 5.30 resembles Eqn. 5.24, with one power of vconv/cs swapped for

2ΩHP/cs ∼ (Ω2HP/g)1/2, which is at most ∼ 1 for rotation at break-up. For our models, HP ∼ 108 cm
(as HP ∼ 1/α; Sec. 5.2.1) and g ∼ GMWD/R2

WD ∼ 109 cm s−2, so HP/g ∼ 10−1 s2. Also, calculations
of remnant viscous evolution (Shen et al. 2012; Schwab et al. 2012; Ji et al. 2013) suggest the remnant
spins down to well below critical rotation. (Ω2HP/g)1/2 is therefore more realistically . 10−1, and for
a 1.15 M� WD near the end of simmering, ∆rot . (10−1/δ)(vconv/cs) ∼ 10−1.5, an order of magnitude
smaller than ∇ad. Rotational convective suppression is thus a minor effect.

In the (non-rotating) magnetized case, we can make a similar estimate by equating the buoyancy
and Lorentz forces:

B2

4πHP
= −g

(
d(∆ρ)

dr

)
∆r = ρgδ∆mag, (5.31)

where we use the assumption that the magnetic field varies slowly over HP. This gives

∆mag =
1
δ

B2

4πP
, (5.32)

where ρg = P/HP. Calculations of magnetic field amplification in mergers (Ch. 4) or during viscous
evolution (Ji et al. 2013) suggest a saturation field strength of ∼ 1011 G at the center of the remnant.
Given that P & 1025 dyn cm−2 at the centers of & 1.15 M� WDs, this gives B2/4πP . 10−4, and
∆mag . 10−4/δ. Near the end of simmering, this value is minor (eg. ∼ 10−3 for a 1.15 M� WD).

The above suggest that for reasonable rotation rates and magnetic field strengths, their effects on the
simmering phase should be small. To confirm this, we implemented the formulation of Stevenson (1979;
hereafter S79), which incorporates rotation and externally imposed magnetic fields (both assumed,
as above, to be slowly varying over HP) into Rayleigh-Bénard convection. It predicts the convective
steady state – in particular both ∆ and the modified convective velocity – by finding the growth rates of
convective modes using linear stability analysis (S79, Sec. 2), and then equating them to their non-linear
cascade rates, picking the mode with the greatest heat flux to represent the motion as a whole. While
this is ad hoc, in the rotation-dominated and unmagnetized limit S79’s theory reproduces well the
convection simulations of Barker et al. (2014) over a wide range of rotation rates. We summarize our
results below; further detail can be found in Sec. 5.6.

For WDs with sub-critical uniform rotation, we confirm that its effect on simmering is small. During
simmering, vconv increases by orders of magnitude, while Ω decreases by half an order of magnitude as
the WD expands (to conserve angular momentum). This leads ΩHP/vconv to approach unity, and ∆rot
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to approach ∆conv, near the end of simmering for WDs with initial angular speed Ωi at about a quarter
of break up speed Ωcrit. We also find that vconv ∝ (∆rot/∆conv)−1/4 changes very little, justifying our
use of its non-rotating value in the approximation above. For moderate values of Ω, then, simmering
tracks shift by only a few percent in density and temperature from their non-rotating versions in Sec.
5.3.2. When Ωi → Ωcrit, Eqn. 5.30 suggests ∆rot becomes more comparable to ∇ad, but our models
show that this is overshadowed by the centrifugal pressure support term in Eqn. 5.19, and the net effect
is a reduction of ρc and Tc for a model with a given sc. This effect increases Mcrit to 1.14 M� for WDs
with Ω/Ωcrit = 0.5, though we caution that deviations from spherical symmetry not included in our
model become significant near critical rotation.

Likewise, we find that simmering tracks for non-rotating WDs with M ≈ Mcrit shift by only a few
percent when including magnetic fields. We choose a field profile that keeps B2/P constant throughout
the WD, and thus can specify a field by its central strength B(r = 0). When performing a parameter-
space search for Mcrit, we alter field strength with mass by keeping the magnetic to total energy ratio of
the WD, EB/|Etot|, fixed. For EB/|Etot| = 2.9× 10−5, which corresponds to B(r = 0) = 1× 1011 G in a
1.15 M� WD at the start of simmering, Mcrit = 1.13 M�. If we consider field strengths much larger than
what is expected for merger remnants, however, we find that, while the simmering track still changes
negligibly, the convective velocity vconv becomes proportional to 1/B and is dramatically reduced,
affecting when Eqn. 5.27 is first satisfied. A 1.15 M� WD threaded by a B(r = 0) = 1012 G field sees
its convective velocity reduced by a factor ∼ 10− 100, and reaches the end of simmering point at
T = 8× 108 K, far lower than the (adiabatic) end of simmering line in Fig. 5.1. We determine Mcrit for
WDs with EB/|Etot| = 2.8× 10−3, which corresponds to B(r = 0) = 1× 1012 G in a 1.15 M� WD at the
start of simmering, to be 1.02 M�, a reduction of more than 0.1 M� from the non-magnetized value.

At this strong-field limit, however, the end of simmering point is also well-short of the τCC = τdyn

line, meaning that a WD that reaches the point must continue to heat up before it can explode. This
heating may eventually lead to an extremely steep temperature gradient that allows for rapid convective
energy transport before dynamical burning is reached, but this is beyond the ability for our model
to follow. Moreover, we strongly caution that S79’s magnetic formulation may not accurately reflect
non-linear magnetoconvection, except perhaps in the case of weak fields, and does not include magnetic
dynamo processes, which are likely to be efficient in simmering WDs. We discuss these further in Sec.
5.4.3.

5.4 Discussion

5.4.1 Comparison to Observed Mtot-MNi Relations

We have estimated the range of masses of centrally simmering sub-MCh WDs that explode, as well as
their corresponding MNi yields assuming a pure detonation immediately after simmering. Putting
aside the possibility that extremely strong magnetic fields could affect vconv, we have also determined
that this range does not significantly change when including rotation or magnetic fields. It is then
interesting to consider in the abstract whether these could reproduce a substantial portion of the SN
Ia parameter space. To that end, we compare our results to estimates of ejected mass and 56Ni yields
for observed SNe Ia. In Fig. 5.2, we plot the MNi −Mtot relationship for adiabatic and ∆conv-inclusive
WDs, as well as the relationship (also derived using M(ρ > 107)) for the pure detonation of uniform
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Figure 5.2: Relationships between total ejected mass Mtot and synthesized 56Ni mass MNi for adiabatic
and ∆conv-inclusive WDs that experience a pure detonation immediately after the end of simmering,
estimated using the procedure in Sec. 5.3.1.2. Also plotted are the Mtot and MNi yields of 31 observed
SNe Ia from Childress et al. (2015), and the relationship derived by Scalzo et al. (2014b) from 337
observed SNe Ia. Childress et al. (2015)’s systematic error bars, indicating how much their values
can be shifted in unison, are also included. The dashed magenta line is the relationship for the pure
detonation of cold (uniform 105 K) WDs, with the simulation results of Sim et al. (2010) overdrawn.
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105 K cold WDs for comparison. Additionally, results from the pure detonation simulations of Sim
et al. (2010) are plotted to show the accuracy of the M(ρ > 107) estimate. Alongside these, we plot
the best-fit relationship to the ejected and synthesized 56Ni masses of 337 observed “normal” (Branch
et al. 2006) SNe Ia from Scalzo et al. (2014b), and the estimated Mtot and MNi of 31 normal SNe Ia from
Childress et al. (2015). Scalzo et al. (2014b) derive their MNi −Mtot relationship by fitting observed
bolometric light curves (using a range of simulated explosion models as priors; Scalzo et al. 2014a),
and Childress et al. (2015) use Scalzo et al. (2014b)’s method of estimating Mtot while obtaining MNi

from the evolution of the [Co III] λ5893 emission complex during the SN Ia nebular phase.
As expected from previous analysis, the MNi−Mtot relationship changes little between the adiabatic

and ∆conv-inclusive WDs, being separated by a Mtot . 0.01 M� for any given MNi. While not plotted, we
also found that this is true for WDs rotating at 50% of critical, and those with ∼ 1011 G magnetic fields.
The previously-noted steep dependence of MNi on Mtot near Mcrit is clear as well: a linear fit around
Mtot = 1.15 M� gives dMNi/dMtot ≈ 10 (for both curves), making it difficult to accurately estimate a
minimum MNi. This also leads to a fine-tuning problem: to produce MNi between ∼ 0.3− 0.6 M� –
typical MNi yields in Scalzo et al. (2014b) and Childress et al. (2015) – requires Mtot to lie in a narrow
range between ∼ 1.14− 1.17 M�. It is not obvious why a progenitor channel would favor this mass
range, though we note the distribution of field CO WD masses is very narrowly peaked (at ∼ 0.65 M�;
Sec. 1.7.1), possibly indicating that merging CO WD binary masses also fall within a narrow range.

Nevertheless, the MNi −Mtot relationship from pure detonations of end-of-simmering CO WDs
does not resemble the observed ones. Childress et al. (2015)’s values could be systematically offset
by ∼ 0.1 M� in Mtot and ∼ 0.2 M� in MNi, but these apply to the points as a whole, and we also do
not reproduce the shape of Childress et al. (2015)’s distribution. This issue is not unique to our work
- Scalzo et al. (2014b) and Childress et al. (2015) plot theoretical MNi −Mtot curves for a wide range
of proposed SN Ia progenitor classes, ranging from sub-MCh WDs undergoing a double-detonation
(equivalent to the Cold WD line in Fig. 5.2) to MCh pure deflagrations, and find no individual class
able to reproduce the entire observed MNi −Mtot parameter space. If their results indeed reflect the
true MNi −Mtot relationship of SNe Ia, either multiple progenitor channels are necessary, or a novel
understanding of progenitors must arise.

5.4.2 Implications for Mergers as SN Ia Progenitors

Regardless of whether simmering sub-MCh WDs can reproduce observations, what implications do
our results have on double-degenerate CO WD mergers as SN Ia progenitors, in particular on the
channel of vK10 involving sub-MCh merger remnants that ignite central nuclear fusion following
their viscous evolution? A direct mapping of post-viscous remnants onto our hydrostatic simmering
WDs is not possible since their structures are quite complex, and in general their temperature profiles
are substantially shallower than the convective ones used in our models. Moreover, much of their
mass resides in hot, tenuous envelopes that surround and exert little pressure support on their dense,
degeneracy-supported “cores”. As a rough estimate, we can consider the evolution of these cores as
separate from their envelopes (the transition region between envelope and core might resemble the hot
atmospheres in Sec. 5.3.1.3, and thus not affect the core’s evolution).

Regardless of a remnant’s structure, the simmering track of its core cannot simultaneously increase
in temperature and density, since this would require part of the core to cool (Sec. 5.2.2). The track
also cannot exist, for longer than a few convective timescales, to the right of the rising portion of
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the simmering track with the same mass in Fig. 5.1, i.e. the portion of the track between the start
of simmering and either the end of simmering point or the point of maximum temperature. Doing
so would mean the core’s temperature gradient has become steeper than the convective one, and
convective energy transport will rapidly lower the gradient back to the convective one (like for stars to
the right of the Hayashi track). As a consequence of these two restrictions, Mcrit will increase for those
WDs with shallow temperature profiles. With this in mind, meaningful conclusions can be made by
examining the central densities and core masses Mcore of post-viscous remnants.

To our knowledge, the sole published viscous evolution simulation of a sub-MCh double CO WD
merger remnant is that of Ji et al. (2013). They find, by the end of their simulation, the central density
and temperature of their 0.6− 0.6 M� remnant are ∼ 5× 106 g cm−3 and ∼ 8× 108 K, respectively, well
above the τCC = τν line. Indeed, τCC ∼ 10−1 yr, much smaller than the & 104 yr thermal contraction
timescale (Shen et al. 2012), so the remnant will begin to simmer. The mass of the remnant that is
within r = 1.5× 109 cm (the approximate outer boundary of the dense core in Ji et al. 2013, Fig. 1) is
∼ 1.07 M� (Suoqing Ji and Robert Fisher private communication, 2016), ∼ 0.07 M� lower than Mcrit

(from Sec. 5.3.2). The remnant’s central density is a factor of ∼ 5 lower than that for the 1.05 M�
simmering track at the same temperature and a factor of ∼ 10 lower than that for the Mcrit simmering
track.6 The most likely fate of this system is therefore expansion and possibly stable nuclear burning.
The relatively small difference between Mcore and Mcrit suggests a merger remnant ∼ 0.1 M� more
massive might possess a core mass in excess of Mcrit. That core’s central density, though, may still be
too low for simmering to end in an explosion.

For a broader parameter space of post-viscous remnants, we turn to the simple estimate of viscous
evolution outcomes made in Sec. 2.6. While it tends to overestimate compression, particularly for
remnants from similar-mass mergers, when compared to Schwab et al. (and follow-up work in Raskin
et al. 2014) and Ji et al. (2013), it nevertheless gives a rough estimate of the post-viscous remnant
parameter space. Taking our estimate at face value, we find that only those remnants originally from
mergers with primary WD masses above ∼ 0.8 M� have ρc & 3× 107 g cm−3, which also suggests that
only remnants with total masses above MCh are likely to achieve dynamical burning following viscous
spin-down. Note that the most massive of these may have instead already exploded from extreme
temperatures during their mergers (for primary WD masses & 0.9 M�; Pakmor et al. 2010; 2011b), or
due to hydrodynamic instabilities immediately afterward (for primaries & 1.1 M�; Kashyap et al. 2015).

If explosion is in fact not possible following viscous evolution, then sub-MCh remnants that ignite
carbon fusion will experience expansion instead, and eventually possible stable nuclear burning as
a carbon star. Given their properties, they are candidate progenitors for isolated high-field magnetic
WDs (eg. García-Berro et al. 2012), in particular hot DQ WDs (Dunlap & Clemens 2015; Dunlap 2015
and references therein), which have hot, carbon-dominated atmospheres and appear to be massive,
rapidly rotating and strongly magnetized.

5.4.3 Accuracy of Magnetized Simmering Models

We found in Sec. 5.3.3 that . 1011 G magnetic fields negligibly affect simmering, while & 1012 G ones
could dramatically affect vconv, but there are reasons to be cautious about these results, particularly in

6The remnant in Ji et al. (2013) has not lost all of its rotational support by the end of their simulation, so its central density
will continue to increase early in its simmering phase. As less than a third of its initial angular momentum remains, however, it
is unlikely to increase by a factor of & 5.
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the strong field limit.

First, S79 does not include convective dynamo processes that amplify the magnetic field. The
vigorous convection zone found toward the end of simmering is an ideal environment for such
processes – analogous to the highly magnetized central convection zones of A and B main sequence
stars (eg. Brun et al. 2005; Featherstone et al. 2009; Augustson et al. 2016). Amplification saturates
when eB/econv ∼ 1, i.e. when,

Beq ∼ vconv
√

8πρ. (5.33)

For WDs at the end of simmering, Beq ∼ 1011 − 1012 G. These values match or exceed any magnetic
fields generated by the merger or viscous evolution (though having fields in place at the start of
simmering may increase the saturation field strength by up to another order of magnitude; Featherstone
et al. 2009), rendering even the low-field calculations uncertain. Additionally, the turbulent nature of
the dynamo will generate a highly tangled magnetic field that varies significantly over short length
scales, unlike the large-scale fields assumed in this work; Eqn. 5.31 would then suggest a much larger
∆mag (Chabrier et al. 2007).

Second, studies of non-linear magnetoconvection (eg. Proctor & Weiss 1982) indicate that in steady
state, magnetic fields are concentrated into high-flux bundles where the convective flow is truncated,
surrounded by regions where convection continues uninhibited. The amount of convective suppression
depends on the volume fraction the bundles occupy. When the ratio eB/econv between magnetic and
convective kinetic energy densities becomes higher than unity, the bundles merge and convection
is effectively suppressed. This physical picture (which is fundamentally multi-dimensional) shares
little resemblance with S79 (Henk Spruit private communication, 2016), and no magnetic equivalent
of Barker et al. (2014)’s examination of rotating convection has been conducted to see if S79 at least
phenomenologically captures it.

Our model’s inability to accurately follow magnetoconvection and include dynamo processes
therefore constitutes the greatest uncertainty of this work. While we have estimated that including
rotation without magnetic fields is important only because it modifies the hydrostatic balance of the
WD, rotation coupled with both convection and magnetic fields may additionally lead to unexpected
emergent behavior. The multidimensional nature of magnetoconvection may also alter the end of
simmering criterion – for example, if burning material is trapped within a flux bundle, it may locally
run away and lead to dynamical burning even if convection is unhindered elsewhere in the WD. We
thus stress the need for more detailed investigation into WD magnetoconvection, potentially utilizing
MHD convective simulations, in the future.

5.5 Conclusions

We investigated using simple estimates the outcome of simmering for sub-MCh WDs, and find that
the minimum mass Mcrit that achieves dynamical burning and explodes, rather than expanding and
cooling, is ∼ 1.15 M�. We also estimate that including rotation or . 1011 G magnetic fields alters this
value by ∼ 0.01 M�. Stronger, ∼ 1012 G fields, which may be generated through convective dynamo
processes, could affect simmering much more substantially, but are beyond the scope of our models.
Examining merger remnants in Ch. 2, and the simulation of Ji et al. (2013), we estimate that the majority
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of sub-MCh post-viscous remnants are too underdense to remain degenerate until dynamical burning
if simmering were to set in. Even if they could explode, they would still produce very little 56Ni. This
presents an issue for the viability of the vK10 channel, as it suggests most sub-MCh remnants do not
explode as SNe Ia.

Ours is a first-order estimate of the simmering process. Aside from the clear need for more advanced
prescriptions of magnetoconvection, future models would also benefit from including eg. modifications
to the convective velocity structure resulting from heating or work to expand the WD as it becomes
non-degenerate (PC08, though their effects will primarily be felt far from center of the WD). A more
accurate analysis of the simmering of post-viscous merger remnants could be made by directly using
their simulated density, temperature and rotation profiles as initial conditions. We also use a simple
timescale criterion to determine the end of simmering, and better estimates can be made by taking into
account the range of temperatures and velocities of individual convective flows. This has been done for
MCh WDs with analytical estimates in WWK04 as well as with 3D hydrodynamic simulations (Kuhlen
et al. 2006; Zingale et al. 2009; 2011; Nonaka et al. 2012); both could be extended to lower-mass WDs.

We have also estimated the Mtot-MNi relationship of simmering sub-MCh WDs that reach explosion
and find that they, like many other models, do not correspond to the observed SN Ia Mtot-MNi

relationships of Scalzo et al. (2014b) and Childress et al. (2015). In particular, our most massive WDs
produce too much 56Ni to reproduce the bottom right of Fig. 5.2, which would not be the case if the
temperature structure at the end of simmering were substantially shallower than in our models. Such a
structure could potentially be produced if the burning were not center-lit, but ignited in an off-center
shell. Indeed, the most likely region for ignition in remnants of dissimilar-mass mergers (Ch. 2) or
ones where the WD spins are synchronized (Raskin et al. 2012; Dan et al. 2014), is at the boundary
between the hot envelope and dense core (see Sec. 6.1 for further discussion). Nuclear burning in this
partly non-degenerate region, however, is likely to be stable (Shen et al. 2012; Schwab et al. 2012; 2016)
and never lead to dynamical burning. We will explore how close shell ignition must be to the WD’s
center for burning to remain degenerate throughout the runaway in future work. In the meantime, we
estimate the Mtot-MNi relationship of remnants with off-center temperature peaks in the companion
paper to this work (Heringer et al. in preparation).

We are very grateful to Henk Spruit for his insights into magnetoconvection and its implementation
in our models. We also thank Chris Matzner, Yuri Levin and Chris Thompson for helpful comments,
and Suoqing Ji and Robert Fisher for both valuable feedback and for sharing the end-state of their
viscous evolution simulation. Our calculations made extensive use of Frank Timmes’ Helmholtz EOS
and sections of MESA by Bill Paxton and the MESA consortium, and we them for making these codes
publicly available.

5.6 Appendix: Convective Suppression due to Rotation and Mag-

netic Fields

In this appendix, we detail our calculations of rotating and magnetized simmering WDs. In general,
their inclusion greatly complicates the treatment of convection inside a star by introducing non-
spherically symmetric alterations to the convective structure, non-ideal MHD effects, and coupling,
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generally non-local, between the magnetic field, rotation profile and convective structure. Because the
purpose of this work is to provide only rough estimates for the effects of rotation and magnetic fields,
a full treatment of these is well beyond its scope. We instead implement the simple modifications to ∆
and vconv derived by S79.

S79 linearizes the Boussinesq MHD equations. By assuming the convection is Rayleigh-Bénard
(planar geometry, with uniform vertical gravitational field and background temperature gradient) and
that all perturbations to fluid variables can be written as sums of modes ∝ exp(ik · x + σt), he obtains
the dispersion relation

σ4 + σ2

(
2
(k · B)2

4πρ
+

(2Ω · k)2

k2 + N2
∗

k2
⊥

k2

)
+

(
(k · B)2

4πρ

)2

+

(
(k · B)2

4πρ

)
N2
∗

k2
⊥

k2 = 0 (5.34)

in the limit of zero magnetic dissipation; σ is the temporal growth rate of a given mode and N2
∗ =

−gδ(∇−∇ad)/HP = −gδ∆/HP is the Brunt-Väisälä (buoyancy) frequency. S79 then assumes that,
for modes with σ > 0, the non-linear terms in the Boussinesq equations eventually limit their growth,
leading to σ equaling the non-linear cascade rate ∼ kv at the convective steady state (Barker et al. 2014).
He also assumes convection at steady state is dominated by the mode that transports the greatest heat
flux. Thus,

σ = vk, (5.35)

and Eqns. 5.34 and 5.35 can then be combined with the mode heat flux

F =
ρcPT

gδ

σ2

k2

(
σ +

1
σ

(k · B)2

4πρ

)
(5.36)

to determine the one that dominates thermal transport.

For non-rotating, unmagnetized WDs, this formulation reproduces Eqns. 5.9 and 5.24 from MLT,
except with prefactor coefficients:

Fconv =
4π

25

(
5
2

)5/2 ρcPT
gδlm

v3
conv, (5.37)

∆conv =
25π2

6
v2

conv
gδ

HP

l2
m

. (5.38)

S79 point out that, for his formulation to reproduce the current age, luminosity and effective temperature
of the Sun within a 1D stellar evolution model, it must be calibrated by using lm ≈ 3HP. In order to
be consistent with our non-rotating and unmagnetized results from before, we shall continue to use
Eqns. 5.9 and 5.24 rather than Eqns. 5.37 and 5.38 when considering rotation and magnetic fields. We
consider the result of using these modified coefficients in Sec. 5.6.3.

For WDs that are rotating or magnetized, S79 finds that his ∆ and vconv can be written as multi-
plicative factors of the ∆conv and vconv of Eqns. 5.37 and 5.38 (using the same Fconv). As such, we define
vconv,0 and ∆0 as the convective velocity and temperature gradient calculated assuming no rotation or
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magnetic field.

To further simplify our estimates, we shall assume that the rotation is solid-body and magnetic
fields vary slowly over a scale height, and we will consider rotation separately from magnetic fields.
The former is enforced by our use of S79’s model, since its Rayleigh-Bénard setup assumes Ω and B
are constant over its vertical lengthscale (HP). At least for rotation, it is also a plausible representation
of merger remnant cores, which tend to eliminates differential rotation during post-merger viscous
evolution. Considering rotation and magnetic fields separately allows us to independently gauge
the relative importance of each to the runaway. S79’s theory also does not include coupling between
rotation, convection and magnetic fields. This neglects, in particular, magnetic field amplification by
convective dynamos, which is discussed further in Sec. 5.4.3.

5.6.1 Simmering of Rotating White Dwarfs

The exact solution in the rotating case is given by S79:

∆rot

∆0
+

6
25π2

1
R2

o
=

(
∆rot

∆0

)5/2

vconv

vconv,0
=

(
∆rot

∆0

)−1/4
(5.39)

where Rossby number

Ro =
vconv,0

2Ωlm
=

vconv,0

2ΩHP
(5.40)

is a proxy for the ratio between convective and rotational velocities in the convection zone.7 S79 (their
Eqn. 43) provide approximations to Eqn. 5.39 in the limits of very large and very small Ro (their Eqns.
42 - 43), and in lieu of solving for ∆rot/∆0 during integration, we use the approximation

∆rot

∆0
≈
(

1 +
(

0.23R−4/5
o

)2
)1/2

, (5.41)

where the squared term is the S79 approximation for ∆rot/∆0 when Ro � 1:8

∆rot

∆0
≈ 0.23R−4/5

o . (5.42)

Eqn. 5.41 is accurate to within 3% of the exact ∆rot/∆0 for all Ro, and vconv/vconv,0 = (∆rot/∆0)
−1/4 to

within 1%. Eqn. 5.42 can be approximated by ∆rot ∼ δ−1(HPΩ/cs)(vconv/cs), which can be compared
to a naïve implementation of the (1D analog of the) Solberg-Høiland stability criterion when Ω is
constant, ∆Solberg ∼ δ−1(HPΩ/cs)2 (eg. Maeder 2009 Sec. 6.4). The replacement of one HPΩ/cs term
with vconv/cs accounts for the lack of suppression along the axis of rotation, and the turbulent cascade
of polar convection into modes orthogonal to the rotation axis in the non-linear regime (Barker et al.
2014).

7Like Barker et al. (2014), we assume g||Ω for our calculations; in the case where the two are misaligned, the convective
suppression is reduced by a factor g ·Ω/gΩ.

8Using a quadrature averaging of the S79 Ro � 1 and Ro � 1 expressions is impossible because they do not cross each other.
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Notably, this formulation has been tested in the Ro � 1 limit by Barker et al. (2014), who show
through simulations of rotating Rayleigh-Bénard convection that ∆rot ∝ Ω4/5 and vconv ∝ Ω−1/5 over
10−4 . Ro . 10−1, consistent with S79. While not a simulation of a convecting star, this lends credence
to S79’s assumptions for convective transport and non-linear mode saturation.

Conservation of angular momentum and solid-body rotation are both assumed for the entirety of
the runaway, constraining Ω such that it only needs to be specified for one model along the simmering
track; naturally, we choose the one at the start of simmering. This is done by setting the model’s sc to
that at the ignition line for the adiabatic simmering track of the same mass from Sec. 5.3.1. Since we
show below that rotation does not substantially affect the runaway, this is a reasonable approximation
for the start of simmering sc in the rotating case. We then set the WD angular speed at this point, Ωi,
to some fraction of its critical value Ωcrit. To determine Ωcrit, profiles are generated with increasing
angular speed until a pressure inversion (dP/dm > 0) is detected during integration. By Eqn. 5.19, this
means that the layer dm is spinning at near-Keplerian speeds; the corresponding angular speed Ωcrit

is then analogous to the solid-body break-up angular speed (though not equal to it, since Eqn. 5.19
assumes spherical symmetry). Note that this procedure is only done to set Ω to a reasonable fraction
of the break-up angular speed near the start of simmering, and does not otherwise affect our runaway
calculations.

In Fig. 5.3, we plot the simmering tracks of 1.15 M� WDs with Ωi/Ωcrit varying from 25% - 85%
of Ωcrit = 0.61 s−1 (1.15 M� is chosen for its proximity to the adiabatic Mcrit value). Below 108 K, the
rotating WD tracks shift leftward (in density) from the non-rotating one (thick black line) – a decrease
of ∼ 3% for Ωi/Ωcrit = 0.25 to ∼ 50% for Ωi/Ωcrit = 0.85 – due to centrifugal support supplementing
degeneracy pressure. This partial lifting of degeneracy competes with the convective suppression
effects of rotation. S79 notes the suppressive effect can be estimated by combining Eqns. 5.24 and 5.42:

∆rot ∼ R−4/5
o ∆0 ∼

(
ΩHP
vconv,0

)4/5 v2
conv,0

gδHP
=

∆3/5
0

δ2/5

(
Ω2HP

g

)2/5

. (5.43)

All stars have Ω2HP/g . 1, and so at best ∆rot ∼ ∆3/5
0 /δ2/5; our models have HP ∼ 108 cm (Eqn. 5.12

and discussion underneath Eqn. 5.8) and g ∼ GMWD/R2
WD ∼ 109 cm s−2, so HP/g ∼ 10−1 s2. For

a 1.15 M� WD that starts simmering when rotating at a quarter of the critical rate, ∆0 ∼ 10−2 and
δ ∼ 10−1 near the end of simmering (Sec. 5.3.2), while Ω2HP/g ∼ 10−2, and so ∆rot ∼ 10−1.5, a ∼ 10%
deviation to ∇ad. Our calculations give even more modest values: ∆rot/∇ad ∼ 0.03 (∆rot/∆0 ∼ 1) near
the end of simmering points of both the Ωi/Ωcrit = 0.25 and Ωi/Ωcrit = 0.50 tracks. For these, Ro ∼ 1
near the end of simmering and Eqn. 5.41 approaches its non-rotating counterpart. At the start of
simmering, Ro � 1 and ∆rot/∆0 ∼ 102 for the Ωi/Ωcrit = 0.50 track, but ∆0 ∼ 10−7 at this point, and
so it makes little difference to the overall runaway. Near critical rotation, Eqn. 5.43 predicts ∆rot values
more comparable to ∇ad, but our calculations show centrifugal support has a much larger effect on the
runaway by lowering both ρc and Tc of a model with a given sc. This reduces the effect of convective
suppression by lowering vconv. Thus, rotation primarily serves to lift degeneracy and prevent a WD
from reaching its end of simmering point. At Ωi/Ωcrit = 0.25, the WD reaches its end of simmering
point with ρc = 2.8× 107 g cm−3, only ∼ 3% higher than its non-rotating counterpart. As rotation
increases, ρc at the end of simmering point decreases: it is 15% lower for the Ωi/Ωcrit = 0.50 track, and
tracks with higher rotation rates fail to reach the end of simmering point entirely.

The convective velocity, meanwhile, has a very shallow dependency on ∆rot/∆0. At the end of
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Figure 5.3: Simmering tracks for (unmagnetized) solid-body rotating 1.15 M� WDs. Track color
represents Ωi/Ωcrit, the ratio of the WD’s angular speed at the start of simmering to its numerically
determined break-up value, and the thicker black track is the non-rotating ∆conv-inclusive one from
Fig. 5.1. End of simmering points are a black circle for the non-rotating track and orange squares for
the rotating ones; the curves with Ωi/Ωcrit > 0.75 never satisfy Eqn. 5.27. Dash-dotted track segments
indicate solutions that cannot be reached during simmering. All other lines and symbols are as in Fig.
5.1.
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simmering, vconv(RCC) = 1.1× 107 cm s−1 for both the Ωi/Ωcrit = 0.25 and Ωi/Ωcrit = 0.50 tracks,
comparable to the non-rotating value of vconv(RCC) = 1.3 × 107 cm s−1 (Sec. 5.3.2). The ∼ 20%
difference in vconv(RCC) is due to the sensitivity of εCC and the end of simmering criterion (Eqn. 5.27)
to changes in temperature.

From the above analysis, it is unsurprising that a mass parameter space sweep for simmering WDs
with Ωi/Ωcrit = 0.50 yields Mcrit = 1.14 M�.

Our results near critical rotation should be taken with a grain of salt, since deviations from spherical
symmetry not reproducible by our model become significant. However, a merger remnant is unlikely
to be critically rotating at the start of simmering. As mentioned previously, studies of post-merger
viscous evolution all find the remnant core spins down to well below critical rotation (Shen et al. 2012;
Schwab et al. 2012; Ji et al. 2013). While these works do not constrain the amount of vestigial rotation,
we have shown above that modest rotation rates do little to influence the runaway.

5.6.2 Simmering of Magnetized White Dwarfs

Like in the rotating case, the exact solution for the (dissipationless) magnetic case has no simple
analytical form. S79 finds in the limit of large Alfvén ratio

A =
v2

A
v2

conv,0
=

B2

4πρv2
conv,0

(5.44)

that ∆mag and vconv can be approximated as9

∆mag

∆0
= 0.24A

vconv

vconv,0
= 1.21A−1/2 (5.45)

Again, in lieu of solving for ∆mag/∆0 exactly during integration, we use the approximations

∆mag
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vconv,0
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(
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(
1.21A−1/2

)−13/4
)−4/13

. (5.46)

Exponents 6/5 and −13/4 were obtained by empirically minimizing these functional forms to the
numerically calculated exact solutions over a range 10−4 < A < 104. ∆mag/∆0 in Eqn. 5.46 is accurate
to within 2% of its exact solution, and vconv/vconv,0 to within 3%. We assume the magnetic field is
frozen to its corresponding mass shell m throughout the runaway, changing in strength to satisfy
conservation of flux dΦ ∝ Br2 (i.e. B(m) ∝ 1/r(m)2), meaning that, analogous to the rotating case
above, the magnetic field only needs to be specified for one model in the runaway. We again take the sc

of this model to be that at the ignition line for the equivalent adiabatic simmering track. We set the
initial field profile B0(m) to be one where

9We assume the magnetic field is aligned with the gravitational vector, and hence the cos2 φ term from Sec. 4 of S79 is equal
to 1. We have also corrected a coefficient error in S79’s vconv/vconv,0 expression.
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Figure 5.4: Simmering tracks for (non-rotating) magnetized 1.15 M� WDs. Track color represents
the central magnetic field strength at the start of simmering, Bc,i, and the thicker black track is the
non-magnetized ∆conv-inclusive one from Fig. 5.1. All other lines and symbols are as in Fig. 5.3, except
that the orange circles represent end of simmering points for the magnetized (rather than rotating)
tracks.

dmag =
B2

0
8πP

(5.47)

is held constant, suggested by MacDonald & Mullan (2009), who use it to study magnetic convective
suppression in brown dwarfs, as a reasonable profile for a star whose density does not vary wildly
over most of its interior. The spherically averaged magnetic field profile of the merger remnant in Ch. 4
also resembles Eqn. 5.47 near the center of its core, though caution must be used comparing a recently
formed merger remnant with a hydrostatic simmering WD. The central initial field strength Bc,i is
restricted to below 1012 G to keep dmag � 1 (dmag = 0.01 when Bc,i = 2.0× 1012 G for a 1.15 M� WD at
the ignition line). This allows us to leave out magnetic terms in Eqn. 5.19.

Fig. 5.4 depicts simmering tracks for 1.15 M� WDs with Bc,i = 1× 1010 − 1× 1012 G. Across the
entire range of field strengths, the shift in the simmering track shape due to ∆mag is small. The ρc

values of the magnetized tracks deviate by . 5% from the non-magnetized one, even for the strongest
field strengths being considered. This is because, for A� 1, Eqn. 5.45 can be rewritten as

∆mag ≈
1
δ

B2

16πρgHP
=

1
δ

B2

16πP
, (5.48)

or dmag/2δ. Note that Eqn. 5.48 is nearly identical to Eqn. 5.32, obtained by balancing the buoyancy
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and Lorentz forces, and a similar expression is derived in MacDonald & Mullan (2009) based on one
from Gough & Tayler (1966). Since we consider fields with dmag < 10−2, ∆mag is large only when 1/δ

is. This is the case close to the τCC = τν line, leading to ∆mag/∇ad ∼ 0.2 for the Bc,i = 1012 G track, but
for colder and highly degenerate WDs their temperature profile has little influence on their density
profile. When T & 109 K, 1/δ is much smaller and ∆mag approaches ∆conv in value.

vconv, however, is proportional to A−1/2 when A� 1, and can be many orders of magnitude smaller
than vconv,0 during the earlier phases of simmering. For the Bc,i = 1× 1012 G track, vconv is reduced
so much that Eqn. 5.27 is satisfied at ρc = 5.9× 107 g cm−3, Tc = 8.0× 108 K, well below the adiabatic
end of simmering line. At this point, A ∼ 3× 103, and vconv(RCC) = 1.3× 104 cm s−1, a factor of ∼ 40
smaller than vconv,0 and ∼ 103 smaller than vconv(RCC) at the end of simmering for the unmagnetized
track. This reduction becomes significant only for Bc,i & 3× 1011 G; for the Bc,i = 1× 1011 G track,
simmering ends when A ∼ 10−1, and ρc and Tc deviate from their non-rotating values by 14% and 4%,
respectively.

We perform a parameter space search of WDs with either low or high-strength magnetic fields.
Strength is defined as the magnetic to total energy ratio EB/|Etot|; “low” means EB/|Etot| = 2.9× 10−5

and “high” means EB/|Etot| = 2.8 × 10−3, equivalent to Bc,i = 1 × 1011 G and Bc,i = 1 × 1012 G,
respectively, for a 1.15 M� WD at the start of simmering. The low field search yields Mcrit = 1.13 M�,
similar to the non-magnetized case. The high field search yields Mcrit = 1.02 M�, a reduction of more
than 0.1 M� from the non-magnetized case.

However, we have already mentioned in Sec. 5.4.3 that these results, particularly those at the
high-field limit, must be treated with caution. S79’s magnetic formulation has not yet been numerically
tested and may not accurately reflect non-linear magnetoconvection, except perhaps in the case of weak
fields. Moreover, dynamo processes are likely to be efficient in simmering WDs and will likely lead to
∼ 1012 G fields near the end of simmering, dominating over any fossil fields from prior evolution. The
Mcrit estimates above are thus are the most uncertain out of all those in this work.

5.6.3 Sensitivity to Mixing Length Theory Coefficients

We noted above that S79’s formulation reproduced the equations of MLT in the non-rotating, unmagne-
tized limit, except for differing prefactor coefficients, and that to reproduce the properties of the Sun it
had to further be calibrated by setting lm ∼ 3HP. Both lm and the coefficients vary among different
formulations of convection. To get a sense of the robustness of our estimate for Mcrit and MNi to these
variations, we generate a simmering track for a 1.15 M� WD where we replace the “default” Eqns. 5.9
and 5.24 with Eqns. 5.37 and 5.38, respectively, and set lm = 3HP. This is practically equivalent to
rescaling vconv by a factor of 0.85, and ∆conv by a factor of 3.26.

In Fig. 5.5, we compare the S79 coefficient (SC; solid red line) track with the one using default
coefficients (solid black). There is little difference between the two lines until close to the end of
simmering, where increased superadiabaticity leads to a steepening of the SC track; it ends simmering
with 20% higher ρc. Adding 50% critical rotation or a 1011 G magnetic field yields additional deviations
of ∼ 10% in ρc near the end of simmering. A mass parameter-space search of Mcrit for the SC tracks
yields Mcrit = 1.12 M�, a deviation on par with those seen in previous sections.

The S79 coefficients only modify vconv by 15%, so the deviations above are due to the change in
∆. Since Eqn. 5.24 also depends on vconv, modifying it can result in comparable changes. In Fig. 5.5
we show tracks calculated using Eqn. 5.24 as is, but multiplying a factor of 2 (“2v”; blue dashed) or
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Figure 5.5: Comparison of a simmering track for a non-rotating, unmagnetized 1.15 M� WD calculated
using Eqns. 5.37 and 5.38 (red line) with the “default” 1.15 M� one that uses Eqns. 5.9 and 5.24 from
Fig. 5.1 (black). Also plotted are tracks which use Eqn. 5.24 but multiply a prefactor of 2 (blue) or 1/2
(cyan) to Eqn. 5.9. Circles along each track indicate their respective end of simmering points. All other
lines and symbols are as in Fig. 5.3.
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1/2 (“v/2”; cyan dashed) to Eqn. 5.9. The larger ∆ in the 2v track leads it to steepen near the end of
simmering like the SC one, while the v/2 track more resembles the adiabatic one in Fig. 5.1. Altering
vconv also changes where Eqn. 5.27 is satisfied. The v/2 track reaches its end of simmering point when
vconv(RCC) = 4.4× 106 cm s−1 and with 18% higher ρc (6% lower Tc), than the default track; the 2v
track ends simmering when vconv(RCC) = 4.3× 107 cm s−1, but also with 16% higher ρc (7% higher Tc)
due to it being steeper. A search of Mcrit for v/2 and 2v tracks both give Mcrit = 1.12 M�.

We thus find that changing MLT coefficients leads to changes in the simmering tracks and to Mcrit

on par with including the convective superadiabaticity ∆conv in Sec. 5.3.2. Likewise, these deviations
are also ultimately too small to significantly change our results.



Chapter 6

Conclusion

What, then, has our body of work, as well as the numerous other recent investigations into mergers
and post-merger evolution, taught us about the fate of sub-MCh CO WD mergers? Are there systems
that compress and heat enough during post-merger evolution to ignite degenerate carbon burning near
their centers, which then leads to an explosion? Below, I summarize our current understanding of these
systems and the sub-MCh merger channel scenario proposed by vK10, and suggest avenues for future
exploration.

6.1 Mergers and Early Post-Merger Evolution

In Ch. 2, we used SPH simulations of double CO WD mergers to explore the range of possible merger
remnants and determine which among them are candidates for ignition under highly degenerate
conditions during post-merger evolution. The properties most important for this are the temperature
and degree of rotational support of the dense remnant core, as both determine the temperature and
density the center of the core will reach during post-merger evolution. We find that dissimilar-mass
mergers result in cold and slowly-rotating cores that are unlikely to subsequently ignite, while similar-
mass ones have cores that are heated and partly rotationally supported throughout. The (rough)
dividing line between the two classes is a density ratio between donor and accretor WD of qρ ' 0.6,
equivalently a difference between their masses of ∆M ' 0.1 M�.

Since the publication of Ch. 2, Dan et al. (2014) published their study of remnants from synchronized
WD mergers with exact initial conditions. They find that for all of their merger remnants – even ones
we deem similar-mass – the mass enclosed within the radius of maximum temperature Menc(Tmax) is
approximately the mass of the accreting WD, and the temperature at the remnant’s center is a factor of
at least a few lower. Their similar-mass mergers also do not substantially mix, as ours do. Dan et al.
(2014) link these differences to their use of synchronized and exact initial conditions, consistent with
our findings in Sec. 2.4 that synchronization and longer periods of mass-transfer prior to coalescence
make merger remnants resemble dissimilar-mass ones.

In Ch. 3 we compared a similar-mass 0.625− 0.65 M� merger simulated using SPH with one using
the moving mesh code Arepo. The two simulations produce very similar results, including for the
degree of mixing between the two WDs, up to coalescence. Following coalescence, however, the Arepo

remnant retains a dense core that is a factor of & 2 colder than its surroundings until the end of the
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simulation.

Taken together, these results raise the question of whether any merger remnants can have substan-
tially heated cores, or if our results from Ch. 2 are contingent upon on the hydrodynamic scheme
being used, the accuracy of the simulation’s initial conditions and the synchronization of the WDs.
Resolving this issue will require further simulations. The influence of the hydrodynamic scheme will
be more definitively understood once we determine if spurious SPH surface tension and artificial
viscosity are the root causes of the differences between Gasoline and Arepo simulations. The influence
of accurate initial conditions can best be determined by implementing the non-rotating close binary
equilibrium solution (Uryū & Eriguchi 1998) into a merger simulation. We have made preliminary
attempts to implement such a solution into Gasoline, with promising results. Note that using accurate
initial conditions will also allow us to determine if extremely massive equal-mass WDs actually mix
unevenly during their merger, or if the differences between our 1.0− 1.0 M� and our other equal-mass
merger remnants in Sec. 2.3.1 are due to approximate initial conditions. Resolution of the synchro-
nization debate will come with a better understanding of the influence of tides in close WD binaries,
perhaps through observational determination if they are synchronized (eg. through measuring the
rotational velocities of eclipsing binary WDs using rotational broadening of hydrogen lines or the
Rossiter-McLaughlin effect; Piro 2011).

Further complicating matters is the dramatic amplification of an initially insignificant magnetic
field during the merger, as presented in Ch. 4. The powerful, > 1010 G equilibrium field could serve
as an alternate source of heat for the remnant core by dissipating (potentially non-local) differential
rotation. We observe some of this core heating in our simulation following coalescence. We have already
noted, however, that the configuration of our equilibrium field is suspect due to our use of the Powell
divergence-cleaning scheme (Sec. 4.6). Following coalescence, we also notice that our equilibrium field
diffuses into adjacent regions of low field. Hopkins & Raives (2016) show that the Powell scheme does
not properly advect an equilibrated magnetic field loop, instead generating spurious field growth and
diffusion at the interface between the loop and its surroundings. This suggests the diffusion we see is
also spurious, and it prevents us from accurately capturing magnetically mediated viscous evolution
and heating.

Uncertainty regarding the hydrodynamics of the merger, discussed above, may also affect the
magnetic field evolution. The remnant field configuration will depend on the properties of the shear
layer that develops between the two WDs just prior to their coalescence. Ch. 2 and Dan et al. (2014)
show that in synchronized mergers contact between the WDs is less violent and leads to a less severe
shear layer. Moreover, during the merger the field is advected into the system’s center of mass,
which causes the remnant core to be highly magnetized. This might not happen in the merger of a
synchronized system, where the accretor is not disrupted as severely.

Ch. 3 also showed the appearance of an m = 1 spiral mode in the remnant disk due to its
gravitational perturbation by the non-axisymmetric remnant core. This spiral mode hydrodynamically
transports the angular momentum on a timescale an order of magnitude faster than estimates of the
magnetically-mediated viscous evolution. Unlike viscosity, traveling waves do not necessarily dissipate
differential rotation energy locally, and so the heating of the remnant disk due to wave transport may
look quite different from that due to viscosity. The MHD simulation of Ch. 4, however, shows the
remnant core becoming axisymmetric ∼ 500 s after coalescence, likely as a result of magnetic stresses
acting on its differential rotation. Therefore, the lifetime of this wave transport will also depend on
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magnetic field growth during the merger, and possibly the magnetorotational instability (likely not
properly captured in our Arepo simulation) acting on remnant disk.

These questions regarding magnetic field growth, the field configuration of the remnant, and its
effect on the m = 1 spiral mode could be resolved with future merger simulations in Arepo using its
new constrained transport scheme for both synchronized and non-synchronized WD binaries. It will
also be interesting to see if accurate initial conditions in either case lead to the formation of a less severe
non-axisymmetry during coalescence, which would weaken the remnant’s spiral mode and reduce the
rate at which it transports angular momentum.

The uncertainties discussed above all make it less likely for the remnant core to be heated, spun-up
or highly magnetized. Thus, the temperature and angular velocity within the cores of similar-mass
remnants in Ch. 2 are likely to be upper limits.

6.2 Viscous Evolution and Ignition

Once the merger remnant becomes axisymmetric, it will continue to transport angular momentum
on a viscous timescale. This leads to compressional heating of the remnant core, which simulations
(Schwab et al. 2012; Ji et al. 2013; Raskin et al. 2014) have shown generally lead to a factor of ∼ 2
increase in density and temperature (rather than the order of magnitude increase estimated by vK10).
In their simulation of the viscous evolution of a 0.6− 0.6 M� merger remnant, Ji et al. (2013) find this
increase leads to carbon ignition at the center of the remnant, but the remnant they use for initial
conditions is at a higher density, and substantially higher temperature, than the corresponding remnant
in our parameter space (Fig. 2.16). In Sec. 2.6.1, we used a simplified prescription of post-merger
compressional heating to predict central ignition for remnants whose accretor mass is & 0.8 M�, and
ignition in off-center hourglass-shaped hotspots for similar-mass remnants whose accretor mass is
& 0.5 M�, but this simple prescription tends to overestimate the amount of compression similar-mass
merger remnants experience, and cannot properly evolve off-center hotspots.

Other than Ji et al. (2013), there is a lack of sub-MCh viscous evolution simulations available in the
literature. A parameter space study of post-merger evolution using the techniques of Schwab et al.
(2012) or Ji et al. (2013) is needed to determine which systems in the sub-MCh merger parameter space
evolve to either central or off-center ignition. These will, of course, be most useful if performed after
the uncertainties in Sec. 6.1 are better understood, and revised merger simulations – that follow the
evolution of the remnant until it becomes axisymmetric and any spiral modes have dissipated – are
available for use as initial conditions.

The evolution of the off-center hotspots in similar-mass remnants is particularly intriguing, since
these hotspots extend into highly degenerate material. The hot void in the 0.625− 0.65 M� Arepo

merger remnant is a factor of ∼ 3 lower than the peak density within the dense crescent, but remains
partly degenerate as well, and may deform into a hot ring once the Arepo remnant becomes axisym-
metric. Simulations of these remnants will be able to determine if the ignition of these hotspots can be
done under degenerate conditions, as well as, in general, how off-center ignition must be in order to
initialize stable shell burning rather than a nuclear runaway.
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6.3 Ignition, Simmering and Explosions

In Ch. 5 we investigated the simmering phase of idealized sub-MCh WDs with central nuclear fusion
to determine which among them achieve dynamical burning and some form of explosion, rather
than lift their degeneracy, expand and cool. We find the minimum mass Mcrit of a CO WD that
achieves dynamical burning to be ∼ 1.15 M�, and that Mcrit changes by . 0.01 M� if the WD possesses
sub-critical solid-body rotation or . 1011 G magnetic fields. The idealized WDs we use do not represent
realistic merger remnants following their viscous evolution, which may ignite simmering off-center, and
generally have more complex density and temperature profiles. We argue in Sec. 5.4.2 that conclusions
can nevertheless be drawn by comparing Mcrit and the typical densities of simmering WDs that reach
dynamical burning to the masses and central densities of the cores of post-viscous merger remnants.
The results of Ji et al. (2013) suggest that similar-mass merger remnants with Mtot & 1.3 M� might have
cores with masses & Mcrit, but all sub-MCh remnants from both simulations and our simple estimates
from Sec. 2.6.1 appear to be too underdense to achieve dynamical burning.

While these results are suggestive, they are not definitive. If a merger remnant ignites fusion off-
center, the simmering phase will occur in a shell, which may be geometrically different than simmering
due to center-lit fusion (in the same way that shell burning differs from core burning in post-main
sequence stars). It would therefore be useful to characterize how Mcrit shifts with the location of nuclear
fusion with the same methods we used in Ch. 5 for center-lit simmering.

We have also estimated the Mtot-MNi relationship for those WDs that reach dynamical burning if
they were to experience a detonation at the end of their simmering phase, and find that only a narrow
range of Mtot is able to produce MNi yields typical of SNe Ia, which is in contrast to the observed
Mtot-MNi relationship (Scalzo et al. 2014b; Childress et al. 2015). This range could be widened if
burning were moved to a shell, as an overall shallower temperature profile can allow for an object of a
given mass to have a lower central density, reducing its 56Ni yield in a detonation. In a companion
work to Ch. 5 (Heringer et al. in preparation), we find that this is indeed the case, and that a range of
shell-burning systems can better reproduce the spread of observed points from Childress et al. (2015).
The off-center hotspots in merger remnants, mentioned above, could eventually lead to shell burning
in some remnants, but this must be confirmed through viscous evolution simulations.

Lastly, our models’ implementation of magnetic fields is rudimentary (Sec. 5.4.3), and may not
reflect more detailed and multidimensional studies of magnetoconvection. This might not matter for
WDs with . 1011 G fields, since by the end of simmering the kinetic energy density dominates over the
magnetic one within their convection zones and magnetic effects will be negligible. However, stronger,
∼ 1012 G fields could be generated during simmering through convective dynamo processes, which
our implementation also does not include. These fields might lead to a substantial reduction in the
convective velocity, or trap burning material within non-convecting flux bundles. Further studies,
ideally guided by simulations of magnetoconvection inside highly degenerate material, are needed.

If powerful magnetic fields can indeed completely suppress convection, this will, at best, prevent
any changes in the temperature and density structure of the remnant once nuclear burning is lit. If we
assume this is the case, we can estimate the nucleosynthetic yields of our sub-MCh merger remnants.
In Fig. 6.1, we show the total ejected mass Mtot and synthesized 56Ni mass MNi of all the post-viscous
remnants generated by the simple post-merger viscous evolution estimate in Sec. 2.6.1 – regardless of
whether or not they are predicted to ignite nuclear burning – if they were to detonate with no change
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Figure 6.1: Relationships between total ejected mass Mtot and synthesized 56Ni mass MNi for the
merger remnants of Sec. 2.6.1 if they were to (artificially) experience a pure detonation immediately
after their estimated viscous spin-down. MNi is estimated by the mass of all remnant material with
density ρ > 107 g cm−3, M(ρ > 107). For the points, Mtot is estimated as the total mass of the remnant,
but we also extend lines leftward from each point to indicate how much of Mtot is in the tenuous
envelope. Colors indicate accretor mass, as in Fig. 2.3. Also plotted is the estimate for the Arepo MHD
0.625− 0.65 M� remnant (Ch. 4; red-blue star). All other features are as in Fig. 5.2.
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to their structure. MNi is estimated by the mass of remnant material with density ρ > 107 g cm−3. It is
not obvious how much of the tenuous post-viscous envelope should be included when estimating Mtot,
since some of it might have been ejected out to large distances. We assume Mtot is the total mass of the
merger remnant for the points in Fig. 6.1, but extend lines leftward from the points by the masses of
the envelopes to bracket their inclusion.

Keeping in mind that our simple estimate tends to overestimate the amount of compression during
viscous evolution, particularly for similar-mass mergers (Sec. 2.8), we see that only mergers with
Mtot & MCh produce more than ∼ 0.2 M� of 56Ni. Since more realistic simulations of viscous evolution
predict less core compression, and not all remnants will ignite fusion, Fig. 6.1 estimates the upper limit
of 56Ni produced by the sub-MCh merger channel, and poses a challenge to its viability for producing
normal SNe Ia.

6.4 What are the Outcomes of CO WD Mergers?

Considering the number of hurdles above, it appears that mergers of two CO WDs whose total mass is
substantially below MCh, including our fiducial 0.625− 0.65 M� merger, are unlikely to produce normal
SNe Ia. The more massive among them may ignite carbon burning, but these will probably become
partly non-degenerate and expand before they achieve dynamical burning, eventually transforming
their composition to O and Ne before cooling to become massive, highly-magnetized WDs. Similar-mass
super-MCh WDs, on the other hand, may follow vK10’s evolutionary channel to ignite highly degenerate
nuclear burning and eventually explode: mergers with accretors of & 0.8 M� create remnants that
easily ignite nuclear burning during post-merger evolution and satisfy both the mass and central
density constraints suggested by our simmering study. Moreover, our rough estimate in Fig. 6.1 shows
they would produce 56Ni masses consistent with normal SNe Ia. This scenario for producing SNe Ia
from super-MCh mergers is qualitatively different from the traditional one of slow accretion in eg. Yoon
et al. (2007), though limiting explosion candidates to super-MCh systems still leads to the same issue of
rates affecting all other scenarios that require extremely massive WDs (Sec. 1.3.1).

These super-MCh binary systems, however, may have already exploded in a violent merger (Sec.
1.3.2), or shortly after coalescence due to accretion heating from an m = 1 spiral mode (Kashyap et al.
2015). If either merging WD hosts a He atmosphere, a He detonation prior to coalescence (Guillochon
et al. 2010; Raskin et al. 2012; Pakmor et al. 2013) that leads to the double-detonation of the accretor
could also occur. The ranges of donor and accretor WD masses over which these scenarios are possible
are not well-known (see eg. Dan et al. 2012; Sato et al. 2016 for recent estimates for violent mergers),
so it remains up to future merger parameter-space studies to better constrain them. We note that
Arepo is particularly well-suited for including He envelopes in merger simulations because it can
adaptively refine on regions of high He abundance and capture the pre-coalescence accretion in much
higher detail than in SPH (at the same global resolution). This was used to show the detonation of a
thin He envelope in a 0.9− 1.1 M� merger (Pakmor et al. 2013), and could be implemented in future
parameter-space studies.
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6.5 Observational Avenues of Exploration

Finally, we stress the potential of observational work in shedding light on this subject. Recently
revealed properties of the hot DQ WD population tantalizingly suggest they represent double CO WD
merger remnants that did not explode (Sec. 1.5). Many of their fundamental properties, such as their
masses and space density, remain poorly understood, but the Gaia mission will provide a much more
complete sample of WDs and their parallaxes to help constrain these values (Dunlap 2015). Future
observations will allow us to judge more confidently whether hot DQs are merger remnants. If they
are, the population’s properties will serve as an observational check for the theoretical evolutionary
scenarios in this work.

It may also be possible to spot merger remnants during their thermal evolution phase described
in Sec. 2.8. Schwab et al. (2016) consider the observable properties of their 1.5 M� merger remnant,
and calculate that it radiates on the order the Eddington luminosity for a 1.5 M� star (∼ 104.5 L�), and
may also generate clouds of dust in its outermost layers, which will be launched as an optically thick
wind. This drives the remnant’s photosphere out to ∼ 1015 cm, with a corresponding photospheric
temperature of ∼ 500 K, and may also lead to R CrB-like variability of the remnant’s luminosity. Schwab
et al. (2016) note these features are similar to those of extreme AGB stars (eg. Blum et al. 2006), and
perhaps can be discovered using the same observational techniques. Since sub-MCh remnants have the
same order of magnitude total energy as MCh ones, their observed properties will be similar.

We have not yet modeled any explosions that might arise from our merger remnants, or their
photometric and spectroscopic appearance, but other groups have done so for systems at various stages
of the merger and post-merger evolution. For example, Raskin et al. (2014) and van Rossum et al.
(2015) simulate the pure detonation of super-MCh merger remnants just after coalescence, and show
that the resulting light curves and spectra are strongly dependent on viewing angle due to interactions
between the ejecta and remnant disk producing an hourglass-shaped explosion. The light curves of
these “tamped explosions” also tend to evolve more slowly (their decline from peak light takes a factor
of ∼ 1.5 times longer) than typical SNe Ia, due to their lower 56Ni production compared to hydrostatic
WDs of the same mass. For remnants that have undergone viscous evolution before exploding, Raskin
et al. (2014) find up to a ∼ 30% increase in 56Ni production compared to the tamped explosions due
to the compression of the remnant core. Post-viscous remnants will also have a tenuous envelope
of several 0.1 M�, and Piro & Morozova (2015)’s simulations of explosions within such envelopes
find an early peak at ∼ 1 day in their light curves, from the shock-cooling of the envelope, that is a
up to a few percent the peak brightness of the explosion. Examining the existence and frequency of
such features in observed SNe Ia – for example, by using spectropolarimetry (eg. Bulla et al. 2015) to
quantify asymmetry in explosions or by searching for excess early-time light (eg. Marion et al. 2016) to
detect explosion-envelope interaction – is another means of observationally assessing our theoretical
scenarios.

These new observational studies, alongside the theoretical and numerical ones discussed earlier,
may clarify many of the outstanding questions posed throughout this thesis. With luck, they will also
lead to a clearer understanding of the fates of CO WD merger products and the origins of SNe Ia.
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