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The inspiral and merger of binary neutron stars (BNS) is one of the most promising

potential sources of gravitational waves for ground-based detectors like Advanced LIGO.

BNS mergers are also likely a source of counterpart electromagnetic radiation. It is

important to perform simulations of BNS to better understand and model their gravi-

tational wave emission as well as their electromagnetic emission. The parameter space

of BNS binaries is quite large, and one aspect that has not been well studied in neutron

star spin.

In this thesis, we focus on investigating spinning neutron stars in compact object bi-

naries. Using the SpEC code, developed by the SXS collaboration, we begin by presenting

a new code to create initial data for binary neutron stars with arbitrary spins. We intro-

duce a novel method of measuring neutron star spin, and show that it is accurate and

robust. We evolve several spinning binary configurations and show that their properties

agree remarkably well with Post-Newtonian predictions. We also show that we are able

to control the eccentricity of the binaries to ∼ 0.1%.

Thereafter, we proceed to extend our code to black hole–neutron star (BHNS) bi-

naries. We create many data sets across the BHNS parameter space, varying neutron

star spin magnitude, spin direction, compactness, and black hole mass, spin and spin

direction. We are able to create initial data sets with neutron star spins near the mass-

shedding limit, and nearly extremal black hole spins.
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Finally, we investigate spurious gravitational radiation in binary black hole systems.

We study its parameter space dependence, by introducing three diagnostics, investigating

them as a function of black hole spin and black hole separation, and comparing two

different methods of constructing initial data.
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“Until now, we have only seen warped space-time when it is very

calm - as though we had only seen the surface of the ocean on a

very clam day, when it’s quite glassy. We had never seen the ocean

roiled in a storm, with crashing waves. All that changed on Sept. 14.

The colliding black holes that produced these gravitational waves

created a violent storm in the fabric of space and time.”

Kip Thorne
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Chapter 1

Introduction

1.1 Introduction

September 14th, 2015 marked the dawning of a new age in astronomy – the age of

gravitational wave astronomy. The extraordinary detection of merging black holes by

the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) (Abbott

et al. 2016b) left no doubt of this. After a second detection of merging black holes on

December 26th, 2015, Abbott et al. (2016a), we are left anxiously waiting what will

be in store for us next. The first detection was made just before Einstein’s theory of

general relativity (GR) (Einstein 1915) turned one hundred years old. Indeed, one of

its most striking predictions is the existence of gravitational waves (GWs) - ripples in

space-time that propagate at the speed of light. One of the ways these gravitational

waves are generated is through the inspiral of compact object binaries. In these binaries,

a neutron star (NS) or a black hole (BH), orbits with a NS/BH companion about their

common centre of mass. Over time, through the emission of GW, the orbit shrinks and

eventually the objects merge. Previously, these GW have never been directly detected,

although their existence had been indirectly confirmed. Hulse and Taylor won the 1993

Nobel Prize for their observations of the Hulse-Taylor pulsar (Hulse & Taylor 1975a) -

a binary pulsar system whose orbital decay was carefully measured and found to match

1



Chapter 1. Introduction 2

perfectly with the predictions of general relativity (Taylor & Weisberg 1982). Further

observations have since strengthened these findings; see Berti et al. (2015) for a detailed

review of current and future tests of GR.

Ground-based interferometric gravitational wave detectors are poised to make many

more direct detections of GWs. With Advanced LIGO (Harry 2010; Aasi et al. 2015)

already doing so, and Advanced Virgo (The Virgo Collaboration 2010; Acernese et al.

2015) and KAGRA (Somiya & the KAGRA Collaboration 2012) coming on soon, a wealth

of results awaits. Advanced LIGO expects a realistic event rate ∼ 20 binary black hole

mergers per year at design sensitivity. Similarly, an event rate of ∼ 10 mergers pear year

is expected for BH-NS binaries and ∼ 40 per year for binary neutron star mergers (Abadie

et al. 2010). These detectors are sensitive to frequencies of ∼ 10Hz − 1kHz, which we

refer to as the LIGO band. Other detection methods, like pulsar timing arrays (Joshi

2013), are sensitive to very different frequency bands (300pHz− 100nHz).

These ground-based detectors use the technique of matched filtering (Owen & Sathyaprakash

1999) to make detections, in which the observed signal is matched against template wave-

forms to search for the astrophysical signal. The templates are generated either analyt-

ically, using, for example, Post-Newtonian (PN) theory (Blanchet 2006), a perturbative

expansion of GR, or by using numerical relativity (NR)(see, e.g., Baumgarte & Shapiro

(2010) for an overview), in which the Einstein Field Equations are solved numerically on

supercomputers. PN waveforms are computationally inexpensive to produce but become

increasingly inaccurate near merger, while NR waveforms are more accurate, but are

costly to produce. Hybridization techniques (e.g., MacDonald et al. (2013)) “stitch” PN

waveforms together with NR waveforms to get the best of both worlds.

The parameter space of numerical relativity simulations of non-eccentric black hole

binaries is seven dimensional. Each black hole has a dimensionless spin vector ~χ = ~S/m2

with three components, where ~S is the angular momentum of the black hole and m is

its mass, and their mass ratio q ≡ m1/m2, where m1 is the mass of the larger hole, is
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the 7th dimension. The total mass of the binary is scaled out of the numerical problem.

Most compact object systems are expected to circularize (Peters & Mathews 1963; Peters

1964) before they enter LIGO’s sensitivity band, so we do not regard orbital eccentricity

as part of the parameter space. Spanning this parameter space is a difficult endeavor

for numerical relativity collaborations and much of it remains uncovered (Mroue et al.

2013; Chu et al. 2015). Various dimensional reduction technqiues (Canizares et al. 2015)

are used for Advanced LIGO template banks. Once matter is added to simulations,

through neutron stars, the parameter space increases significantly. In addition to the

seven parameters already present in the black hole binaries, the total mass of the system

is now a parameter, as the maximum NS provides a natural mass scale. This can affect,

for example, whether or not a hyper-massive neutron star is present after the merger

of binary neutron stars or if direct collapse to a black hole occurs. In addition, the

NS equation of state (EOS) becomes important to the system. Since the equation of

state of dense nuclear matter is not currently known, constraining the NS EOS from

gravitational wave observations is an important goal of advanced ground-based detectors.

Additionally, once a neutron star is present, simulations can study additional physics such

as neutrino transport, nuclear reactions, and magnetic fields (Baiotti & Rezzolla 2016).

Such ingredients are crucial for understanding the electromagnetic emission likely to come

from a binary neutron star (BNS) or black hole-neutron star (BHNS) merger.

NSNS binaries, unlike BHBH and BHNS binaries, have been observed and stud-

ied within our galaxy. The known binary neutron star population is summarized in

table 1.1 (Postnov & Yungelson 2014). We report the spin periods, orbital periods, ec-

centricities, characteristic ages (τ = Ṗ /2P ), time until merger, and the final spin periods

of systems that will merge in a Hubble time. The system J0737-3039 is particluarly

interesting, as one of its NSs will merge with a spin period of 22.4ms. This is compara-

ble enough to the orbital timescale near merger, P ∼ 2ms, to be relevant to GW data

analysis. NSs in binaries are spinning, and thus it is important to do NR simulations
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Table 1.1: The properties of known double neutron star systems. In particular we show the spin

period of the neutron star, P , the orbital period of the binary, Porb, the eccentricity of the binary,

e, the characteristic age of the neutron star, τ = Ṗ /2P , the time until binary coalescence, τc,

and the expected final spin period of stars that will merge within a Hubble time, assuming a

dipole spin-down model, Pf .

System P (ms) Porb(d) e log10 τ(yr) log10 τc(yr) Pf (ms)

J0737-3039 22.7 0.102 0.088 8.3 7.9 26.8

J0737-3039 2770 0.102 0.088 7.7 7.9 4453

J1518+4904 40.9 8.6 0.25 10.3 12.4 —

B1534+12 37.9 0.32 0.27 8.4 9.4 126

J1756-2251 28.5 0.32 0.18 8.6 10.2 —

J1811-1736 104.2 18.8 0.83 9.0 13.0 —

B1820-11 279.8 357.8 0.79 6.5 15.8 —

J1829+2456 41.0 1.18 0.14 10.1 10.8 —

J1906+0746 144.1 0.17 0.085 5.1 8.5 7224

B1913+16 59.0 0.3 0.62 8.0 8.5 120

B2127+11C 30.5 0.3 0.67 8.0 8.3 52.6

of spinning BNS binaries. For many years, spin was a largely unexamined dimension

of the BNS parameter space, although there has been a significant interest lately. Note,

however, that the spins would have to be innate, since neutron star viscosity is not nearly

large enough for tidal torques to be effective in spinning the stars up (Bildsten & Cutler

1992).

This thesis is largely interested in spinning neutron stars in numerical relativity. The

structure is as follows: In chapter 2, we discuss our work on initial data and evolutions of

spinning BNS binaries using the SpEC code. In chapter 3, we discuss the extension of this

initial data formalism to BHNS binaries with a spinning NS. In chapter 4, we shift focus



Chapter 1. Introduction 5

and discuss work we have done on understanding the nature of spurious gravitational

radiation, commonly known as “junk radiation”, in Binary Black Hole (BBH) systems.

Finally, in chapter 5 we conclude and summarize the thesis and discuss future possibilities.

The remainder of this introduction is structured as follows: In Section 1.2 we review

the 2-body problem in GR and discuss some basic Post-Newtonian theory. In section 1.3,

we review the initial value problem in NR. Finally, in section 1.4 we discuss some ba-

sic astrophysical properties of binary neutron star systems and black hole–neutron star

systems.

1.2 The two-body problem in General Relativity

In this section, we will review the basic scales and ideas that govern the two-body problem

in general relativity. Specifically, when the bodies are of comparable mass, i.e., the mass

ratio is not a perturbative parameter. Since the inspiral of two compact objects is driven

by the emission of gravitational radiation, we being by reviewing gravitational waves

(see, e.g., Carroll (2003) or Misner et al. (1973) for an introduction).

We consider a perturbation to a Minkowski background, so we write the full metric

as

gµν = ηµν + hµν |h| � 1. (1.1)

It is easily verified that the inverse metric is

gµν = ηµν − hµν , (1.2)

where

hµν = ηµρησνhρσ, (1.3)

as the assumption that |h| is small allows us to neglect terms that are higher than first

order in hµν . It is now helpful to consider the “trace-reversed” perturbation defined as,

h̄µν = hµν −
1

2
hηµν . (1.4)
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It is easily verified that h̄ = −h, hence the name “trace-reversed”. Next, we exploit our

coordinate freedom and work in the Lorentz gauge, defined by

∇µh̄
µν = 0. (1.5)

In this gauge, the Einstein tensor is simply

Gµν = −1

2
∇ρ∇ρh̄µν , (1.6)

and so in vacuum, the Einstein field equations are a wave equation

2h̄µν = 0. (1.7)

Thus we see that gravitational waves propagate at the speed of light. Using further

coordinate freedom, it is convenient to work in the transverse-traceless (TT) gauge,

defined by

h̄TT
µ0 = 0, h̄TT = 0. (1.8)

The first condition guarantees that the non-zero components of h̄TT
µν are purely spatial,

while the traceless condition guarantees that h̄TT
µν = hTT

µν . For the rest of this section, we

will work only in the TT gauge.

The Lorentz gauge condition, transverse condition, and traceless condition account for

8 of the 10 degrees of freedom in the gravitational field hµν . The remaining two degrees

of freedom correspond go the two polarization states of gravitational waves. These are

known as the “+” and “×” polarizations, due to their particular distorting effects acting

upon a ring of particles, as shown in Fig. 1.1. We can thus decompose a gravitational

wave as

hTT
ij = h+e

+
ij + h×e

×
ij. (1.9)

When a matter source is present, the wave equation becomes

∇ρ∇ρhµν = −16πTµν . (1.10)
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λ
GW

λ
GW

Figure 1.1: From Buonanno (2007). The top panel shows the effect of a + polarized gravitational

wave passing through a ring of particles, in the direction perpendicular to the plane of the ring.

The bottom panel shows the effect of a × polarized gravitational wave.

The solution to this equation can be written with the help of a Green’s function,

hµν(t, x
i) = 4

∫
d3y

1

|x− y|
Tµν(tr, y

i), (1.11)

where tr is the “retarded” time, tr = t− |x− y|. This integral can be evaluated in terms

of the quadrupole tensor I ij defined by

I ij(t) =

∫
d3xxixjT 00(t, xi), (1.12)

and the reduced quadrupole moment

Jij = Iij −
1

3
ηijI, (1.13)

where I = Iµµ . To bring Jij into the transverse-traceless gauge, we apply

JTT
ij =

(
P k
i P

l
j −

1

2
PijP

kl

)
Jkl, (1.14)
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where

P j
i = nin

j − ninj (1.15)

is a projection operator and ni is a unit vector pointing in the wave’s local direction of

propagation.

The result is

hij(t, x
i) =

2

r
J̈TT
ij (tr) (1.16)

In other words, linear gravitational waves are sourced by an oscillating quadrupole. To

study the energy content of these gravitational waves, note that the effective stress-energy

tensor of this spacetime is

Tµν =
1

32π

〈
∂µhij∂νh

ij
〉
. (1.17)

This can be integrated over a large sphere surrounding the source to find the energy

output per unit time in gravitational waves,

LGW =
r2

16π

∮ 〈
ḣ2
× + ḣ2

+

〉
dΩ (1.18)

=
1

5

〈...
J

TT
ij

...
J

TTij
〉
. (1.19)

Let us now consider a circular binary with total mass M = M1 + M2, reduced mass

µ = M1M2

M1+M2
, separation R and orbital frequency ω. Direct computation of the quadrupole

tensor gives the simple result

LGW =
32

5
µ2M3R−5. (1.20)

Using this, along with the Newtonian estimates ω = M1/2R−3/2, E = −µM
2R

, dE/dt =

−LGW, allows us the compute the characteristic inspiral scales. The binary shrinks at a

rate
dR

dt
=
dE/dt

dE/dr
=
−64

5
M2µR−3. (1.21)

Integrating this expression gives the time to coalescence where R = 0 as

τc =
5

256
M−2µ−1R4. (1.22)
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As the binary separation decreases, the orbital frequency increases. By integrating

dfGW

dt
=

1

π

dω

dt
=
−3M1/2

2
R−5/2dR

dt
, (1.23)

the frequency evolution is given by

fGW(t) =
ω

π
=

1

8π

(
5

µM2/3(τc − t)

)3/8

. (1.24)

The number of gravitational waves cycles, N =
∫
fGWdt, in a given frequency band dfGW

is given by
dN

d log fGW

=
5

96π

1

(πMfGW)5/3
, (1.25)

where the quantity M = µ3/5M2/5 is called the “chirp mass”. The explicit radiation

pattern is given by

h+ =
4

r
M5/3(2ω)2/3 cos(2ωt+ φ)

(
1 + cos2 θ

2

)
, (1.26)

h× =
4

r
M5/3(2ω)2/3 sin(2ωt+ φ) cos θ, (1.27)

where r is the distance to the source, θ is the angle between the observer and the axis

normal to the orbital plane of the binary, and φ is the arbitrary phase of the binary.

Detectors are sensitive to the strain h, rather than the energy flux, and therefore a factor

of ξ improvement in sensitivity results in a factor of ξ3 higher event rate (assuming a

spatially uniformly distribution of sources).

These estimates were all made for a circular binary. If the binary has some eccentricity,

e, then equation 1.18 is modified to (Peters & Mathews 1963)

LGW =
32

5
µ2M3R−5

(
1 +

73

24
e2 +

37

96
e4

)(
1− e2

)−7/2 (1.28)

However, eccentricity is radiated away as the inspiral proceeds. The classic reference Pe-

ters (1964) found that at leading Newtonian order〈
de

dt

〉
= −304

15
e

µM2

R4 (1− e2)5/2

(
1 +

121

304
e2

)
. (1.29)
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Thus even a highly eccentric binary will radiate away its eccentricity and circularize before

merger, provided the compact objects started far enough away from each other. Most

numerical relativity simulations consider only circularized binaries and use techniques

to minimize any residual eccentricity (see, e.g., Pfeiffer et al. (2007); Buonanno et al.

(2011a)).

The equations above in this section are valid only for a slowly-moving, weak-field

system. As the system gets closer and closer to merger, these equations become increas-

ingly inaccurate. Post-Newtonian theory (Blanchet 2006), by expanding to higher order,

allows us to consider binaries with higher orbital frequencies. It is typically written as

an expansion in the dimensionless parameter

x =

(
GMω

c3

)(2/3)

. (1.30)

The evolution of the orbital phase, for example, can be written as

φ =
−x−5/2

32ν

(
1 + a1x+ a2x

3/2 + a3x
2 + a4x

5/2 + a5x
3 + a6x

7/2 +O(1/c8)
)

(1.31)

where ν is the symmetric mass ratio, ν = m1m2

(m1+m2)2 , and each of the ai are functions

only of ν and log x. This expression is said to be known to 3.5 Post-Newtonian order.

Additional contributions come in at other PN orders, such as spin-orbit coupling at 1.5

PN order, spin-spin coupling at 2 PN order and tidal effects at 5 PN order. See Blanchet

(2006) and references therein for an overview of PN results and methodology.

1.3 The initial value problem in Numerical Relativity

From the point of view of numerical relativity, it is natural to use a 3+1 decomposition

of space-time. In this section, we will review this process (see, e.g., Baumgarte & Shapiro

(2010) for a detailed overview). Note that we will use Greek letters to denote space-time

indices (0,1,2,3), while Latin letters will represent spatial indices (1,2,3). The four-

dimensional metric is denoted gµν and ∇ is the compatible connection. γij and Di are

used for the metric and its compatible connection in a hypersurface Σ.
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Given a globally hyperbolic spacetime (M, gµν), we foliate M by a family of non-

intersecting spacelike hypersurfaces Σt, which are level sets of a scalar function t that

can be understood as a global time function. This is illustrated in Fig. 1.2.

Figure 1.2: From Cardoso et al. (2014). An illustration of the foliation of spacetime by space-like

hypersurfaces Σt, as well as illustrating the lapse, α, the shift, βi, and the normal nµ.

Each surface has a forward pointing unit normal

nµ = −gµν∇νt (gµν∇µt∇νt)
−1/2 , (1.32)

induced metric

γµν = gµν + nµnν , (1.33)

and compatible derivative operator D. The induced metric measures curvature inside

each hypersurface, while the extrinsic curvature Kµν measures how the hypersurface is
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curved inside the space-time manifoldM. It is defined by

Kµν = −1

2
Lngµν , (1.34)

where Ln is the Lie derivative along the direction of the vector field nµ. The space-time

metric is written as

ds2 = −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
. (1.35)

Here α is known as the lapse function - it measures the proper time between neighbouring

hypersurfaces. βi is known as the shift - it measures the proper distance within a spatial

hypersurface. The lapse and shift are both arbitrary - their choice amounts to a choice

of coordinates.

Similar to how Maxwell’s equations can be written as a set of constraint equations

that do not contain any time derivatives,

DiE
i − 4πρ = 0, (1.36)

DiB
i = 0, (1.37)

and evolution equations,

∂tEi = εijkD
jBk − 4πji (1.38)

∂tBi = −εijkDjEk, (1.39)

(where Ei is the electric field, Bi is the magnetic field, ρ is the charge density, ji is the

current density, and εijk is the Levi-Civitia symbol, and the equations are written in

Gaussian units), the same is true of Einstein’s equations, Rµν − 1
2
Rgµν = 8πTµν . The

famous Hamiltonian and momentum constraints, obtained by projections of the Einstein

equations, are

R +K2 −KijK
ij = 16πρ (1.40)

and,

DjK
j
i −DiK = 8πSi, (1.41)
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where ρ is the energy density measured by a normal observer, ρ = ninjT
ij, and Si is the

momentum density measured by a normal observer Si = −γji nkTjk. The general task

of constructing initial data is to find (Σ, gµν , Kµν) that satisfy the constraint equations

and represent well the physical situation at hand (e.g., the inspiral of a compact object

binary). The evolution equations are

∂tγij = −2αKij +Diβj +Djβi (1.42)

and

∂tKij =−DiDjα + α
(
Rij − 2KikK

k
j +KKij

)
(1.43)

− 8πα

(
Sij −

1

2
γij (S − ρ)

)
+ βkDkKij +KikDjβ

k +KkjDiβ
k.

where Sab is the spatial stress, Sab = γcaγ
d
bTcd, and S is its trace. Once constraint-satisfying

initial data has been constructed, the evolution equations determine the geometric quan-

tities at all future times. Analytically, the evolution equations preserve the constraints,

although numerically this may not always be the case (Kidder et al. 2001; Scheel et al.

2002).

There are many sets of data (gµν , Kµν) that will satisfy the constraint equations. The

task remains, then, to choose this free data appropriately. To do so, one typically begins

with a conformal decomposition of the metric,

γij = Ψ4γ̃ij. (1.44)

Here, Ψ is called the conformal factor, and γ̃ij is called the conformal metric. Objects

associated with the γ̃ij will be denoted with a tilde as well. Next we break up the extrinsic

curvature into its trace and trace-free parts,

Kij = Aij +
1

3
γijK. (1.45)

The Hamiltonian and Momentum constraints become

D̃2Ψ− 1

8
ΨR̃− 1

12
Ψ5K2 +

1

8
Ψ5AijA

ij = −2πΨ5ρ (1.46)
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and

DjA
ij − 2

3
DiK = 8πji, (1.47)

respectively. We now proceed according to the extended conformal thin sandwich

formalism. We define

ũij = ∂tγ̃ij, (1.48)

and we introduce the scalings

j̃i = Ψ10ji, (1.49)

ρ̃ = Ψ8ρ (1.50)

Ãij = Ψ10Aij. (1.51)

The Hamiltonian and Momentum constraints constraints can now be viewed as equations

for the shift and conformal factor

D̃2Ψ− 1

8
ΨR̃− 1

12
Ψ5K2 +

1

8
Ψ−7ÃijÃ

ij = −2πΨ−3ρ̃, (1.52)

D̃j

(
1

2α̃
(Lβ)ij

)
− D̃j

(
1

2α̃
ũij
)
− 2

3
Ψ6D̃iK = 8πj̃i, (1.53)

where

α̃ = Ψ6α (1.54)

is the conformal lapse and

(
L̃β
)ij

= Ψ4

(
Diβj +Djβi − 2

3
γijDkβ

k

)
(1.55)

is the conformal longitudinal operator. The lapse is given by the evolution equation of

K,

D̃2
(
α̃Ψ7

)
−
(
α̃Ψ7

) [1

8
R̃ +

5

12
Ψ4K2 +

7

8
Ψ−8ÃijÃ

ij + 2πΨ−2
(
Ẽ + 2S̃

)]
= −Ψ5

(
∂tK − βkDkK

)
. (1.56)
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The free data are γ̃ij, ũij, K, ∂tK. In a coordinate system corotating with the binary, it is

natural to choose ũij = 0, ∂tK = 0. Common choices are conformal flatness, γ̃ij = δij and

maximal slicing K = 0. With appropriate boundary conditions, the system of equations

can now be solved.

1.4 Binary Neutron Star Systems

To begin our discussion of the properties of binary neutron stars, we should first briefly

review how these systems form. We follow the discussion outlined in Postnov & Yungelson

(2014). The standard formation scenario is illustrated in figure 1.3, and goes as follows:

• We begin with two high mass OB main-sequence stars undergoing standard bi-

nary evolution. Eventually the more massive (primary) star exhausts its central

hydrogen, and a helium core is left over.

• The primary star then rapidly expands, overflows its Roche lobe, and begins a

period of mass transfer onto the secondary star. This period lasts until most of the

primary’s Hydrogen envelope has been transferred, leaving behind a naked helium

core.

• The primary star eventually collapses as a core-collapse supernova, leaving behind

a neutron star. It is likely that the explosion disrupts the binary, but let us assume

that it survives. We then have a massive main sequence star in orbit with a neutron

star.

• Eventually the secondary star evolves off the main sequence, expands, and overflows

its Roche lobe. It will then begin accreting mass onto the primary. This accretion

spins up the neutron star, thus “recycling" it. It also leads to strong x-ray emission.

• The secondary further expands and a common envelope stage ensues. Eventually

the secondary explodes as a supernova, and becomes a neutron star.
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• If the binary system is not disrupted, it can then become a binary that will even-

tually merge due to the continuous emission of gravitational waves.

mildly recycled pulsar

X-rays

runaway star

young pulsar

primary

millisecond pulsar - white dwarf binary

binary disrupts

double neutron star binary

binary disrupts

young pulsar

secondary

binary survives

secondary evolves
(Roche Lobe overflow)

binary surviveslow-mass system

Woomph!

Woomph!high-mass system

Figure 1.3: From Lorimer (2008). The possible evolutionary scenarios of a typical high mass

binary are shown.

As discussed earlier, such systems are expected to be quasi-circular once they enter

the LIGO band. There are, however, other ways of forming systems that are highly

eccentric while in the LIGO band. For example, the dynamical capture in a close two-

body encounter in a dense cluster environment, or a binary in a hierarchichal triple

system whose eccentricity is enhanced by the Kozai mechanism (Kozai 1962; Thompson
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2011; Seto 2013). Nonetheless, quasi-circular binaries are expected to constitute the large

majority of gravitational wave sources.

The end state of a binary neutron star merger depends strongly on the properties of

the two neutron stars. For systems with a combined mass less than the maximum mass

allowed by the EOS, the final result would be a more massive neutron star. Otherwise,

the final result will be a single Kerr black hole. Simulations have shown that these

black holes will have a spin on the order of χ ' 0.7 − 0.8 (Baiotti & Rezzolla 2016).

The intermediate state is known as a hypermassive neutron star (HMNS). This is a NS

whose mass is above the maximum mass allowed by the EOS, temporarily supported by

differential rotation and thermal pressure. Over time, angular momentum is efficiently

transported out of the system, and it collapses into a black hole. We can further subdivide

these systems based on the timescale for callapse - prompt collapse or delayed collapse. In

the prompt case, the pressure support is too low, and the system collapses on a ∼ freefall

timescale. This is expected in systems with a large total mass (& 2.8M�), although the

details depend, of course, on the EOS (Hotokezaka et al. 2011). In the delayed collapse

case, the collapse timescale depends on many factors. Angular momentum distribution

by magnetic winding is an important factor - it operates on the Alfven timescale τ ∼

R
√
ρ/B ' 10− 100ms, where ρ is the typical density of the hypermassive neutron star,

R the radius, and B is the typical magnitude of the radial components of the magnetic

field (Baumgarte et al. 2000). Transport driven by magneto-rotational instability is

also important. It is of the order τ ∼ 100ms for B ' 1015G. Cooling by neutrino or

electromagnetic emission is also important, as it decreases thermal pressure, although

it operates on a longer timescale, ∼ seconds. An accretion disk around the eventual

BH, lying beyond the innermost stable circular orbit (ISCO), will form, with a mass

of ' 0.01 − 0.3M�. The amount of material in the disk depends on the time to BH

formation, as there is more time to distribute angular momentum ot the disk. HMNS

systems emit gravitational waves at peak frequencies of approximately 2 − 4kHz (see,
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e.g., Hotokezaka et al. (2011)), unfortunately outside of the optimal frequency range of

ground-based detectors.

The mass ratio of the system is another important factor. Figure 1.4 shows the

post-merger remnant of an equal-mass system, and of a system with mass ratio q ∼

1.38 (Rezzolla et al. 2010). The equal mass system shows a “dumbell”-like structure,

composed of two cores which, over time, turn into an ellipsoidal HMNS. The non-equal-

mass case shows two asymmetric cores, which act like the smaller one orbiting the larger

one. The stronger tidal forces in this case cause the outer layers of the smaller star to be

stripped off and form an envelope around the HMNS. Higher disk mass correlates with

higher deviations from q = 1, as well as with higher NS compactness.

The merger of two neutron stars is the site of the emission of a tremendous amount

of electromagnetic energy (Eichler et al. 1989; Narayan et al. 1992; Nakar 2007; Patricelli

et al. 2016). Their mergers are thought to be one of the most promising candidates to be

the progenitors of short gamma ray bursts (SGRBs), although there is not yet definitive

evidence for it (Nakar 2007). The engine of a rotating black hole, surrounded by a hot ac-

cretion torus and a collimiated magnetic field contains the necessary ingredients thought

to be needed for a SGRB. Apart from this, another promising candidate for electromag-

netic signature is the “kilonova” - emission powered by the radioactive decay of r-process

elements formed in the merger, lasting on the time-scale of ∼ weeks. Multi-messenger

astronomy (see Fan & Hendry (2015) for a review) seeks to combine information from

gravitational waves, these electromagnetic events, and possible neutrino observations, to

further elucidate the astrophysics of these mergers.

One of the most exciting prospects of the Advanced LIGO era is using gravitational

wave observations to constrain the NS EOS. The EOS of dense nuclear matter is an open

question of tremendous interest to nuclear physicists and astrophysicists alike. Tidal

effects are parameterized by the tidal deformability paramter λ, which relates the induced
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quadrupole field of one star, Qij, to the tidal field in which it is immersed, Eij:

Qij = −λ(m; EOS)Eij. (1.57)

Or, likewise, by the second tidal Love number,

k2 =
3

2

λ

R5
. (1.58)

These enter the PN equations for binary phase at the very high 5PN order (i.e. pro-

portional to (v/c)10), but because of the large pre-factors, they are still very important

in the late-stage inspiral dynamics. Much work has been done to estimate how well

Advanced LIGO can measure these paramters (see Read et al. (2009); Hinderer et al.

(2010); Damour et al. (2012); Lackey et al. (2012)). Del Pozzo et al. (2013) (further

extended in Agathos et al. (2015)) used a Bayesian framework to show that λ could be

constrained at the 10% level after a few tens of detections. There is also the question

of more exotic NS matter. Chatziioannou et al. (2015) studied various possibilities and

found, for example, that a detection with an SNR of ∼ 20 could provide good evidence

of the existence or non-existence of strange quark stars.

Numerical simulations of the mergers of binary neutron stars have been possible

for at least fifteen years (Shibata & Uryū 2000). Since then, simulations have rapidly

progressed, by adding more resolution (Hotokezaka et al. 2013), more orbits (Haas et al.

2016), radiative losses (Kiuchi et al. 2012; Neilsen et al. 2014; Palenzuela et al. 2015;

Sekiguchi et al. 2015), studying different equations of state (Hotokezaka et al. 2011;

Kiuchi et al. 2012; Neilsen et al. 2014), magnetic fields (Liu et al. 2008; Giacomazzo

et al. 2011; Rezzolla et al. 2011; Anderson et al. 2008; Neilsen et al. 2014; Kiuchi et al.

2015a; Palenzuela et al. 2013; Palenzuela et al. 2013; Dionysopoulou et al. 2015), unequal

mass ratios (Rezzolla et al. 2010; Kiuchi et al. 2010; Shibata et al. 2003; Dietrich et al.

2015a), ejecta (Wanajo et al. 2014; Sekiguchi et al. 2015; Radice et al. 2016) eccentric

binaries (Gold et al. 2012), and spinning binaries Bernuzzi et al. (2014); Kastaun et al.

(2013); Dietrich et al. (2015b); Tacik et al. (2015). Note that this is by no means an
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exhaustive list of ongoing research – see Baiotti & Rezzolla (2016) for an up-to-date

review. With the great increase in simulation technology, and the coincident start of the

Advanced LIGO era, it is truly an exciting time for this field.
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Figure 1.4: From Rezzolla et al. (2010). The top panel shows the iso-density contours of the

HMNS from an equal mass system with baryon massesM1 = M2 = 1.643M�. The bottom panel

shows the iso-density contours of the HMNS from a system with baryon masses M1 = 1.304M�

and M2 = 1.805M�.



Chapter 2

Binary Neutron Stars with Arbitrary

Spins in Numerical Relativity

The material in this chapter is based on ”Binary neutron stars with arbitrary spins in

numerical relativity" by Nick Tacik, Francois Foucart, Harald P. Pfeiffer, Roland Haas,

Serguei Ossokine, Jeff Kaplan, Curran Muhlberger, Matt D. Duez, Lawrence E. Kidder,

Mark A. Scheel, Béla Szilágyi. Phys. Rev. D 92, 124012, December 2015. The material

in the appendix of this chapter is based on an erratum to that article, submitted to Phys.

Rev. D.

2.1 Chapter Summary

We present a code to construct initial data for binary neutron star systems in which

the stars are rotating. Our code, based on a formalism developed by Tichy, allows

for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near

rotational breakup. We compute the neutron star angular momentum through quasilocal

angular momentum integrals. When constructing irrotational binary neutron stars, we

find a very small residual dimensionless spin of ∼ 2×10−4. Evolutions of rotating neutron

star binaries show that the magnitude of the stars’ angular momentum is conserved, and

22
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that the spin and orbit precession of the stars are well described by post-Newtonian

approximation. We demonstrate that orbital eccentricity of the binary neutron stars can

be controlled to ∼ 0.1%. The neutron stars show quasinormal mode oscillations at an

amplitude which increases with the rotation rate of the stars.

2.2 Introduction

Several known binary neutron star (BNS) systems will merge within a Hubble time due

to inspiral driven by gravitational radiation (Lorimer 2008), most notably the Hulse-

Taylor pulsar (Hulse & Taylor 1975b). Therefore, binary neutron stars constitute one of

the prime targets for upcoming gravitational wave detectors like Advanced LIGO (Harry

2010; Aasi et al. 2015) and Advanced Virgo (The Virgo Collaboration 2010; Acernese

et al. 2015). The neutron stars in known binary pulsars have fairly long rotation pe-

riods (Lorimer 2008). The system J0737-3039 (Lyne et al. 2004) contains the fastest

known spinning neutron star in a binary with a rotation period of 22.7ms. This system

will merge within ∼ 108 years through gravitational wave driven inspiral. Globular clus-

ters contain a significant fraction of all known milli-second pulsars (Lorimer 2008), which

through dynamic interactions, may form binaries (Lee et al. 2010; Benacquista & Down-

ing 2013). Gravitational wave driven inspiral reduces (Peters & Mathews 1963; Peters

1964) the initially high eccentricity of dynamical capture binaries. Given the presence

of milli-second pulsars in globular clusters, dynamically formed BNS may contain very

rapidly spinning neutron stars with essentially arbitrary spin orientations. Presence of

spin in BNS systems does influence the evolution of the binary. For instance, in order to

avoid a loss in sensitivity in gravitational wave (GW) searches, one needs to account for

the NS spin (Brown et al. 2012). Furthermore, early BNS simulations (Shibata & Uryū

2000) of irrotational and corotational BNS systems found that the spin of corotating BNS

noticeably increased the size of accretion discs occurring during the merger of the two NS.

The properties of accretion discs and unbound ejecta are intimately linked to electromag-



Chapter 2. BNS with Arbitrary Spins in Numerical Relativity 24

netic and neutrino emission from merging compact object binaries (Metzger & Berger

2012). Understanding the behavior of rotating BNS systems is therefore important to

quantify the expected observational signatures from such systems. These considerations

motivated a recent interest in the numerical modeling of rotating binary neutron star

systems during their last orbits and coalescence. Baumgarte & Shapiro (2009), Tichy

(2011), and East et al. (2012c) presented formalisms for constructing BNS initial data

for spinning neutron stars. Tichy proceeded to construct rotating BNS initial data (Tichy

2012); and Bernuzzi et al. (2014) studies short inspirals and mergers of BNS with ro-

tation rates consistent with known binary neutron stars (i.e. a dimensionless angular

momentum of each star χ = S/M2 . 0.05), and rotation axes aligned with the orbital

angular momentum. Very recently, Dietrich et al. (2015b) presented a comprehensive

study of BNS, including a simulation of a precessing, merging BNS. East et al. (2015) in-

vestigate interactions of rotating neutron stars on highly eccentric orbit. Kastaun et al.

(2013) determine the maximum spin of the black hole remnant formed by the merger

of two aligned spin rotating neutron stars. Tsatsin & Marronetti (2013) present initial

data and evolutions for non-spinning, spin-aligned and anti-aligned data sets. Tsokaros

et al. (2015) presented initial data and quasi-equilibrium sequences of spin-aligned and

anti-aligned binaries with a nuclear equation of state.

Previous studies differ in the type of initial data used: (Baumgarte & Shapiro 2009;

Tichy 2011; 2012; Bernuzzi et al. 2014) construct and utilize constraint-satisfying initial

data, which also incorporates quasi-equilibrium of the binary system. East et al. (2012c;

2015) construct constraint-satisfying data based on individual Tolman-Oppenheimer-

Volkof (TOV) stars, without regard of preserving quasi-equilibrium in the resulting bi-

nary, but providing greatly enhanced flexibility in the type of configurations that can

be studied, e.g. hyperbolic encounters. Kastaun et al. (2013); Tsatsin & Marronetti

(2013), finally, only approximately satisfy the constraint equations. Previous studies also

differ in the rigor with which the neutron star angular momentum is measured. Tichy
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(2012) merely discusses the neutron stars based on a rotational velocity ωi entering the

initial data formalism (cf. our Eq. (2.49) below), whereas (Bernuzzi et al. 2014; Kastaun

et al. 2013; East et al. 2015) estimate the initial neutron star spin either based on single

star models or based on the differences in binary neutron star initial data sets with and

without rotation, and thus neglecting the impact of interactions in the binary. All these

studies measure the neutron star angular momentum in the initial data. Changes in the

neutron star angular momentum that could happen during initial relaxation of the binary

or during the subsequent evolution of the binary are not monitored.

In this chapter we study the construction of rotating binary neutron star initial data

and the evolution through the inspiral phase. We implement the constant rotational

velocity (CRV) formalism developed in Tichy (2012), and construct constraint satisfying

BNS initial data sets with a wide variety of spin rates, as well as different spin direc-

tions. We apply quasilocal angular momentum techniques developed for black holes to

our BNS initial data sets; the quasilocal spin indicates that we are able to construct BNS

with dimensionless angular momentum exceeding 0.4. Evolving some of the constructed

initial data sets through the inspiral phase, we demonstrate that we can control and re-

duce orbital eccentricity by an iterative adjustment of initial data parameters controlling

orbital frequency and radial velocity of the stars, both for non-precessing (i.e. aligned-

spin binaries) and precessing binaries. When monitoring the quasi-angular momentum

of the neutron stars during the inspiral, we find that its magnitude is conserved, and the

spin-direction precesses in a manner consistent with post-Newtonian predictions.

This chapter is organized as follows. Section 4.4 describes the initial data formalism

and our numerical code to solve for rotating BNS initial data. In Sec. 2.4 we use this code

to study a range of initial configurations, with a special emphasis on the behavior of the

quasilocal spin diagnostic. We evolve rotating BNS in Sec. 2.5, including a discussion of

eccentricity removal, the behavior of the quasilocal spin diagnostics, and a comparison of

the precession dynamics to post-Newtonian theory. A discussion concludes the chapter
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in Sec. 2.6. In this chapter, we work in units where G = c = M� = 1.

2.3 Methodology

2.3.1 Formalism for Irrotational Binaries

To start, we will review a formalism commonly used for the construction of initial data

for system of irrotational binary neutron stars. We will then discuss how to build upon

this formalism to construct initial data for neutron stars with arbitrary spins.

We begin with the 3+1 decomposition of the space-time metric (see Gourgoulhon

(2007) for a review),

ds2 = −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
. (2.1)

Here, α is the lapse function, βi is the shift vector and γij is the 3-metric induced on a

hypersurface Σ(t) of constant coordinate time t. In this decomposition, the unit normal

vector nµ to Σ(t) and the tangent vector tµ to the coordinate line t are related by

tµ = αnµ + βµ, (2.2)

with nµ = (−α, 0, 0, 0) and βµ = (0, βi). The extrinsic curvature of Σ(t) is the symmetric

tensor defined as

Kµν = −∇νnµ − nνγλµ∇λ(lnα) = −1

2
Lnγµν , (2.3)

where γµν = gµν+nµnν is the extension of the 3-metric γij to the 4-dimensional spacetime,

and gµν is the 4-metric of that spacetime. By construction, Kµνnµ = 0 and we can restrict

Kµν to the 3-dimensional tensor Kij defined on Σ × Σ. The extrinsic curvature Kij is

then divided into its trace K and trace-free part Aij:

Kij = Aij +
1

3
γijK. (2.4)
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We treat the matter as a perfect fluid with stress-energy tensor

Tµν = (ρ+ P )uµuν + Pgµν , (2.5)

where ρ = ρ0(1 + ε) is the energy density, ρ0 the baryon density, ε the specific internal

energy, P the pressure, and uµ the fluid’s 4-velocity. For the initial value problem, it is

often convenient to consider the following projections of the stress tensor:

E = T µνnµnν , (2.6)

S = γijγiµγjνT
µν , (2.7)

J i = −γiµT µνnν . (2.8)

We then further decompose the metric according to the conformal transformation

γij = Ψ4γ̃ij. (2.9)

Other quantities have the following conformal transformations:

E = Ψ−6Ẽ, (2.10)

S = Ψ−6S̃, (2.11)

J i = Ψ−6J̃ i, (2.12)

Aij = Ψ−10Ãij, (2.13)

α = Ψ6α̃. (2.14)

Ãij is related to the shift and the time derivative of the conformal metric, ũij = ∂tγ̃ij

by

Ãij =
1

2α̃

[(
L̃β
)ij
− ũij

]
, (2.15)

where L̃ is the conformal longitudinal operator whose action on a vector V i is(
L̃V
)ij

= ∇̃iV j + ∇̃jV i − 2

3
γ̃ij∇̃kV

k, (2.16)

and ∇̃ is the covariant derivative defined with respect to the conformal 3-metric γ̃ij.
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In the 3+1 formalism, the Einstein equations are decomposed into a set of evolution

equations for the metric variables as a function of t, and a set of constraint equations

on each hypersurface Σ(t). The initial data problem consists in providing quantities

gµν(t0) and Kµν(t0) which satisfy the constraints on Σ(t0) and represent initial condi-

tions with the desired physical properties (e.g. masses and spins of the objects, initial

orbital frequency, eccentricity, etc.).We solve the constraint equations using the Extended

Conformal Thin Sandwich (XCTS) formalism (York 1999), in which the constraints take

the form of five nonlinear coupled elliptic equations. The XCTS equations can be written

as

2α̃

[
∇̃j

(
1

2α̃

(
L̃β
)ij)− ∇̃j

(
1

2α̃
ũij
)
− 2

3
Ψ6∇̃iK − 8πΨ4J̃ i

]
= 0, (2.17)

∇̃2Ψ− 1

8
ΨR̃− 1

12
Ψ5K2 +

1

8
Ψ−7ÃijÃ

ij + 2πΨ−1Ẽ = 0, (2.18)

∇̃2
(
α̃Ψ7

)
−
(
α̃Ψ7

) [1

8
R̃ +

5

12
Ψ4K2 +

7

8
Ψ−8ÃijÃ

ij + 2πΨ−2
(
Ẽ + 2S̃

)]
= −Ψ5

(
∂tK − βk∂kK

)
. (2.19)

We solve these equations for the conformal factor Ψ, the densitized lapse α̃Ψ7 and

the shift βi. Ẽ, S̃ and J̃ i determine the matter content of the slice. The variables γ̃ij,

ũij = ∂tγ̃ij, K and ∂tK are freely chosen.

If we work in a coordinate system corotating with the binary, ũij = 0 and ∂tK = 0 are

natural choices for a quasi-equilibrium configuration. Following earlier work (Taniguchi

et al. 2007; 2006; Foucart et al. 2008), we also choose to use maximal slicing, K = 0, and

a conformally flat metric, γ̃ij = δij. Maximal slicing is a gauge choice that determines

the location of the initial data hypersurface in the embedding space time. Conformal

flatness is used for computational convenience; rotating black holes are known to be not
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conformally flat (Garat & Price 2000), and so this simplifying assumption should be

revisited in the future.

In addition to solving these equations for the metric variables, we must impose some

restrictions on the matter. In particular, the stars should be in a state of approximate

hydrostatic equilibrium in the comoving frame. This involves solving the Euler equation

and the continuity equation. For an irrotational binary, the first integral of the Euler

equation leads to the condition

hα
γ

γ0

= C, (2.20)

where C is a constant, hereafter referred to as the Euler constant, the specific enthalpy

h is defined as

h = 1 + ε+
P

ρ0

, (2.21)

and we have introduced

γ = γnγ0

(
1− γijU iU j

0

)
, (2.22)

γ0 =
(
1− γijU i

0U
j
0

)−1/2
, (2.23)

γn =
(
1− γijU iU j

)−1/2
, (2.24)

U i
0 =

βi

α
. (2.25)

The 3-velocity U i is defined by

uµ = γn(nµ + Uµ), (2.26)

Uµnµ = 0. (2.27)

The choice of U i, which is unconstrained in this formalism, is an important component

is determining the initial conditions in the neutron star. For irrotational binaries (non-

spinning neutron stars), there exists a potential φ such that

U i =
Ψ−4γ̃ij

hγn
∂jφ. (2.28)
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The continuity equation can then be written as a second-order elliptic equation for φ:

ρ0

h
∇µ∇µφ+ (∇µφ)∇µ

ρ0

h
= 0. (2.29)

Under the assumption of the existence of an approximate helicoidal Killing vector

ξ (Teukolsky 1998; Shibata 1998), this equation becomes

ρ0

{
− γ̃ij∂i∂jφ+

hβiΨ4

α
∂iγn + hKγnΨ4 +

[
γ̃ijΓ̃kij + γik∂i

(
ln

h

αΨ2

)]
∂kφ

}
= γ̃ij∂iφ∂jρ0 −

hγnβ
iΨ4

α
∂iρ0. (2.30)

Another simple choice for U i is to enforce corotation of the star, i.e. U i = U i
0. This

would be the case if neutron star binaries were tidally locked. However, viscous forces in

neutron stars are expected to be insufficient to impose tidal locking (Bildsten & Cutler

1992), and the neutron star spins probably remain close to their value at large orbital

separations.

Once we have obtained h from the metric and U i, the other hydrodynamical variables

can be recovered if we close the system by the choice of an equation of state for cold

neutron star matter in β-equilibrium, P = P (ρ0) and ε = ε(ρ0). Throughout this work,

we use a polytropic equation of state, P = κρΓ
0 , with Γ = 2. The internal energy, ερ0,

satisfies

ερ0 =
P

Γ− 1
. (2.31)

The boundary conditions of our system of equations are quite simple. At the outer

boundary of the computational domain (which we approximate as “infinity” and is in

practice 1010M�), we require the metric to be Minkowski in the inertial frame, and so in

the corotating frame we have

β = Ω0 × r + ȧ0r, (2.32)

α = 1, (2.33)

Ψ = 1, (2.34)
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with Ω0 the initial orbital frequency of the binary and ȧ0r = ṙ is the initial infall velocity

of the binary (this quantity is negative for an inspiral). We choose Ω0 = (0, 0,Ω0), with

Ω0 and ȧ0 as freely specifiable variables that determine the initial eccentricity of the

binary.

At the surface of each star, the boundary condition can be easily inferred from the

ρ0 = 0 limit of equation (2.30):

γ̃ij∂iφ∂jρ0 =
hγnβ

iΨ4

α
∂iρ0. (2.35)

Finally, we discuss how a first guess for the orbital angular velocity Ω0 can be obtained

for a non-spinning system. The force balance equation at the centre of the NS is

∇ ln

(
hγ0

αγ

)
= 0. (2.36)

Neglecting any infall velocity, this condition guarantees that the binary is in a circular

orbit. This is only an approximation as there is really some infall velocity, but this still

leads to low eccentricity binaries with e ∼ 0.01. Along with the assumption that the

enthalpy is maximal at the centre of the NS,

∇ lnh = 0, (2.37)

we can write this condition as

∇
(

ln
γ0

αγ

)
= 0, (2.38)

or, by using the definitions of γ0, and γ,

∇ ln
(
α2 − γijβiβj

)
= −2∇ ln γ. (2.39)

If we decompose βi in its inertial component βi0 and its comoving component according

to

β = β0 + Ω0 × r + ȧ0r, (2.40)
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this can be written as a quadratic equation for the orbital angular velocity Ω0 (neglecting

the dependence of γ on the orbital angular velocity Ω0). In practice, we solve for Ω0 by

projecting Eq. (2.39) along the line connecting the center of the two stars.1

The exact iterative procedure followed to solve in a consistent manner the constraint

equations, the elliptic equations for φ, and the algebraic equations for h (including on-

the-fly computation of Ω0 and of the constant in the first integral of Euler equation) is

detailed in Section 2.3.4.

Once a quasi-equilibrium solution has been obtained by this method, lower eccentric-

ity systems can be generated by modifying Ω0 and ȧ0, following the methods developed

by Pfeiffer et al. (2007).

2.3.2 Formalism for Spinning Binaries

We will now discuss how to alter the formalism discussed above to incorporate spin-

ning BNS. Although several formalisms have been introduced in the past (Marronetti &

Shapiro 2003; Baumgarte & Shapiro 2009), we will follow the work of Tichy (2011). A

first obvious difference is that we can no longer write the velocity solely in terms of the

gradient of a potential. Following Tichy, we break the velocity up into an irrotational

part, and a new rotational part W :

U i =
Ψ−4γ̃ij

hγn
(∂jφ+Wj) , (2.41)

where it is natural, although not required, for W to be divergenceless.

Following the assumptions stated in Tichy (2011), the continuity equation becomes

ρ0

{
− γ̃ij∂i

(
∂jφ+Wj

)
+
hβiΨ4

α
∂iγn + hKγnΨ4 +

[
γ̃ijΓ̃kij + γik∂i

(
ln

h

αΨ2

)](
∂kφ+Wk

)}
= γ̃ij

(
∂iφ+Wi

)
∂jρ0 −

hγnβ
iΨ4

α
∂iρ0.

(2.42)

1Along the other directions, the specific enthalpy h is corrected so that force balance is enforced at
the center of the star, according to the method described in Foucart et al. (2011)
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Eq. 2.42 then is the same as in the irrotational case, cf. Eq. 2.30, under the replacement

∂iφ→ ∂iφ+Wi.

Taking the limit ρ0 → 0 in Eq. (2.42) yields the boundary condition at the surface of

each star:

γ̃ij (∂iφ+Wi) ∂jρ0 =
hγnβ

iΨ4

α
∂iρ0. (2.43)

The solution of the Euler equation is no longer as simple as it was previously, in

Eq. 2.20. As shown in Tichy (2011), the solution is now

h =
√
L2 − (∇iφ+Wi) (∇iφ+W i), (2.44)

where

L2 =
b+

√
b2 − 4α4 ((∇iφ+Wi)W i)2

2α2
, (2.45)

and

b =
(
βi∇iφ+ C

)2
+ 2α2 (∇iφ+ wi)w

i. (2.46)

Finally, the method discussed previously of modifying the star’s angular velocity is

now no longer as simple. The equation is modified to

∇ ln
(
α2 − γijβiβj

)
= −2∇ ln Γ, (2.47)

where

Γ =
γn

(
1−

(
βi + W iα

hγn

)
∇iφ
αhγn
− WiW

i

α2γ2
n

)
√

1−
(
βi

α
+ W i

hγn

)(
βi
α

+ Wi

hγn

) . (2.48)

Let us now discuss the choice of the spin term, W . This term is, in principle, freely

chosen, and so we must choose it so as to best represent the physical situation at hand -

namely a uniform rotation with constant angular velocity. As suggested by Tichy (2011)

and Tichy (2012), a reasonable choice for W is

W i = εijkωjrk, (2.49)
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Figure 2.1: Visualization in the x-y plane of the domain decomposition used in our initial data

solve. The colour map represents the density of the stars.

where rk is the position vector centered at the star’s centre, ωj represents an angular

velocity vector and εijk = {±1, 0}. This leads to a vector field W i with vanishing diver-

gence in the conformal metric g̃ij = δij. Alternatively, one might prefer a vector field V i

with vanishing divergence with respect to the physical metric gij = Ψ4δij. Owing to the

conformal transformation properties of the divergence operator, V i is given by

V i = Ψ−6W i. (2.50)

Here, we generally use W i as we have found that it leads to initial data which is closer

to being in equilibrium, as we will further discuss in section 2.5.5.

2.3.3 Solving the Elliptic Equations

In the previous sections, we have reduced the Einstein constraints, Eqs. (2.17)–(3.17),

as well as the continuity equation (2.42) to elliptic equations. We solve these equations

with the multi-domain pseudo-spectral elliptic solver developed in Pfeiffer et al. (2003),

as modified in Foucart et al. (2008) for matter. The computational domain is subdivided
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into individual subdomains as indicated in Fig. 2.1: The region near the center of each

star is covered by a cube, overlapping the cube is a spherical shell which covers the outer

layers of the star. The outer boundary of this shell is deformed to conform to the surface

of the star. This places all surfaces at which the solution is not smooth at a subdomain-

boundary, which preserves the exponential convergence of spectral methods. Another

spherical shell surrounds each star. The inner shells representing the stars and their

vicinity are embedded into a structure of five concentric cylinders with three rectangular

blocks along the axis connecting the centers of the neutron stars, which overlap the

inner spherical shells. The cylinders/blocks in turn are overlapped at large radius by one

further spherical shell centered half-way between the two neutron stars. Using an inverse

radial mapping, the outer radius of the outer sphere is placed at 1010.

All variables are decomposed on sets of basis functions depending on the subdomain.

The resolution of each domain (i.e., the number of collocation points used) is chosen at

the start of the initial data solve, and then subsequently modified several times using an

adaptive procedure described below. In this chapter, when discussing the total resolution

of the domain, we use the notation

N1/3 =
(∑

Ni

)1/3

, (2.51)

with Ni the number of collocation points in the ith subdomain. N1/3 is thus the cube

root of the total number of collocation points in all subdomains.

2.3.4 Construction of Quasi-Equilibrium Initial Data

Construction of initial data for rotating binary neutron stars begins with selecting the

physical properties of the system: the equation of state of nuclear matter, the coordinate

separation d between the neutron stars, the baryon masses M b
1 and M b

2 of the two stars,

and their spin vectors ωrot,1 and ωrot,2. We also choose the orbital angular frequency Ω0

and the initial inspiral rate ȧ0.
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We generally begin by setting Ω0 to the value for the orbital frequency of a similar ir-

rotational BNS (where Ω0 is determined by the condition of quasi-circularity, Eq. (2.36)),

and ȧ0 = 0. These values are then adjusted following the eccentricity reduction method

developed by Pfeiffer et al. (2007). Finally, we use a flat conformal metric, γ̃ij = δij, and

maximal slicing, K = 0.

Once all these quantities are fixed, we need to solve self-consistently Eqs. (2.17)–(3.17)

for the Einstein-constraints, the continuity equation Eq. (2.42), while simultaneously

satisfying conditions to enforce the desired masses of the stars. To do so, we follow

an iterative procedure developed originally for black hole-neutron star binaries (Foucart

et al. 2012).

First, we choose initial guesses for the conformal metric and hydrodynamical variables,

using an analytical superposition of two isolated boosted neutron stars.

We then obtain constraint-satisfying initial conditions by applying the following iter-

ative procedure, where n represents the iteration number:

1. Solve the nonlinear XCTS system for the set of metric variables X = (βi,Ψ, αΨ),

assuming fixed values of the conformal source terms (Ẽ, S̃, J̃ i). The new value

Xn+1 of the metric variables is obtained from their old value Xn and, following the

relaxation scheme used in Foucart et al. (2008), the solution of the XCTS equations

X∗, using

Xn+1 = 0.3X∗ + 0.7Xn. (2.52)

2. Locate the surface of each star. Representing the surface in polar coordinates

centered on each star as Rn
s (θ, φ), we determine Rn

s to satisfy (Foucart et al.

2008) h(Rn
s (θ, φ), θ, φ) = 1. To ensures that the grid-boundary Rb converges

to the surface of the star, we occassionally modify the numerical grid such that

Rb(θ, φ) = Rn
s (θ, φ). Because this requires a re-initialization of the elliptic solver,

the grid is only modified if the stellar surface has settled down, specifically, if

||Rn
s −Rn−1

s || < 0.1||Rn
s −Rb||. (2.53)
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Here || . ||2 denotes the L2-norm over the surface.

3. For each neutron star, fix the constant in Euler’s first integral so that the baryon

mass of the neutron star matches the desired value. We compute the baryon mass

as a function of the Euler constant C through

M b
NS =

∫
NS

ρ0Ψ6

√
1

1− γijU iU j
dV, (2.54)

and utilize the secant method to drive the mass to the desired value.

4. If desired, adjust the orbital frequency to ensure force-balance at the center of each

star by solving Eq. (2.39). This step is skipped if the orbital frequency is fixed

through iterative eccentricity removal, cf. Sec. 2.5.2.

5. Solve the elliptic equation for the velocity potential φ, and obtain the next guess

for φ using the same relaxation method shown in Eq. 3.54.

6. Check whether all equations are satisfied to the desired accuracy. If yes, proceed.

If no, return to Step 1.

7. Compute the truncation error of the current solution by examining the spectral

expansion of the XCTS variables. If this truncation error is undesirably large

(typically, if it is > 10−9), then adjust the number of grid-points in the domain-

decomposition and return to Step 1. The adjustment is based on the desired target

truncation eror and the measured convergence rate of the solution, cf. Szilágyi

(2014).

2.3.5 Quasilocal Angular Momentum

The goal of the present chapter is to construct spinning BNS initial data and to evolve

it. Therefore, we need diagnostics to measure the NS spin, for which we use techniques
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originally developed for black holes. It is common to discuss the spins of black holes in

terms of their dimensionless spin χ,

χ =
S

M2
. (2.55)

Here, S is the angular momentum of the black hole, and M is its Christodoulou mass

(Christodoulou 1970),

M2 = M2
irr +

S2

4M2
irr

. (2.56)

The irreducible mass Mirr is defined based on the area of the hole’s apparent horizon,

Mirr =
√
A/16π. The angular momentum is computed with a surface integral over the

apparent horizon (Brown & York 1993; Ashtekar et al. 2001; Ashtekar & Krishnan 2003),

S =
1

8π

∮
H
φisjKijdA (2.57)

where H is the black hole’s apparent horizon, sj is the outward-pointing unit-normal to

H within the t = const hypersurface, and φi is an azimuthal vector field tangent to H.

For spacetimes with axisymmetry, φi should be chosen as the rotational Killing vector. In

spacetimes without an exact rotational symmetry (e.g. the spacetime of a binary black

hole system), one substitutes an approximate Killing vector(AKV) (Cook & Whiting

2007; Lovelace et al. 2008). Lovelace et al. (2008) introduces a minimization principle

to define φi, resulting in an Eigenvalue problem. The three eigenvectors with the lowest

eigenvalues (i.e. smallest shear) are taken and used to compute the three components of

the spin.

In this chapter, we explore the application of quasilocal spin measures to neutron

stars. In the absence of apparent horizons H, we need to choose different surface(s) to

evaluate Eq. (2.57).

When constructing initial data, the stellar surface S is already determined, so one

obvious choice is to integrate over the stellar surface S. To estimate the ambiguity in

quasilocal spin, we furthermore compute S by integrating over coordinate spheres with
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radii ranging from just outside S to larger by about 70%. During the evolution, the stars

change shape and may even loose mass in tidal tails. Because of these complications,

the SpEC evolution code does not track the location of the stellar surface during the

evolution, and we shall only monitor S on coordinate spheres.

It is useful to compute a dimensionless spin χ, for instance, for post-Newtonian com-

parisons. In the absence of a horizon, Eq. (2.56) is meaningless and we need a different

choice for the mass-normalization. Instead, we normalize by each star’s Arnowitt-Deser-

Misner (ADM) mass, MADM, i.e.

χ ≡ S

M2
ADM

. (2.58)

The ADM mass is determined by computing the ADM mass of an equilibrium configu-

ration of a single uniformly rotating polytrope in isolation with the same baryon mass

and angular momentum as those measured in our binary systems.

The results of the quasilocal spin measures are described in section 2.4.4, which shows

that this procedure is numerically robust.

Finally, let us discuss, from an order of magnitude perspective, how the star’s dimen-

sionless spin is related to its more commonly used physical properties. We start with

the Newtonian relation S = 2πI/P between angular momentum S, moment of inertia I,

and rotational period P . Writing further I = f R2M , with the dimensionless constant

f depending on the stellar density profile, we have

χ ∼ 2πc

G

fR2

PM

= 0.48
( f

0.33

)( R

12km

)2( M

1.4M�

)−1( P

1ms

)−1

. (2.59)

The factor c/G arises from the transition to geometric units.

This –quite simplistic– estimate shows that millisecond pulsars will have appreciable

dimensionless spin χ. Centrifugal breakup of rapidly rotating neutron stars happens at a

dimensionless spin in the range 0.65− 0.70 (Lo & Lin 2011), with only small dependence
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Name M b
NS ω D0 Ω0 × 103 ȧ0 × 105 MADM ~χ

S.4z 1.7745 0.01525ẑ 47.2 5.09594 -1.75 1.648 0.3765ẑ

S-.05z 1.7745 −0.00273ẑ 47.2 5.11769 -1.71 1.640 −0.05018ẑ

S.4x 1.7745 0.01525x̂ 47.2 5.10064 -2.36 1.648 0.3714x̂

Table 2.1: Parameters for the initial data sets used in testing the initial data solver: M b
NS

and ωi are baryon mass and rotational parameter for either neutron star (the same values are

used); D0, Ω0 and ȧ0 represent coordinate separation between the centers of the stars, the

orbital frequency, and the radial expansion; ~χ is the dimensionless spin vector computed from

the initial data set. In each case we use a polytropic equation of state, P = κρΓ
0 , with Γ = 2

and κ = 123.6.

on the equation of state and neutron star mass. Ansorg et al. (2003) studied in detail

Γ = 2 polytropes, the equation of state we use here. They find a dimensionless spin at

mass-shedding of χ = 0.57.

2.4 Initial Data Results

In this section, we will demonstrate that our code can robustly construct contraint-

satisfying initial data for BNS systems with arbitrary spins. As discussed in section 2.3.4,

our code consists of a solver that runs for a number of iterations at constant resolution,

and then the resolution is increased and this process restarts. We will therefore demon-

strate that appropriate quantities converge with both the iterations of iterative scheme

described above in Section 2.3.4 and with increasing resolution.

2.4.1 Convergence of the Iterative Procedure

At each step of the iterative procedure, the Euler constant of each star is modified to

achieve a desired stellar baryon mass, based on the current matter distribution inside
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Figure 2.2: Convergence of the Euler constant during iteration at the lowest resolution R0.

The inset shows the difference between values at subsequent iterations.

the star. We expect that the Euler constant converges during the iterations at a fixed

resolution. Figure 2.2 shows the behavior of the Euler Constant during iterations at the

lowest initial data resolution, R0. We show three runs of interest, one with large aligned

spins (S.4z), one with large precessing spin (S.4x), and one with small anti-aligned spins

(S-.05z). The properties of these configurations are shown in table 2.1. In all three cases

we see agreement between neighboring iterations at the 10−5 − 10−6 level by the end of

iterating at this resolution. At the highest resolutions, these differences are down to,

typically, the 10−9 − 10−10 level. This can be compared to Fig. 3 of Gourgoulhon et al.

(2001). Although not shown here, other free quantities converge similarly to the Euler

constant.
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2.4.2 Convergence of the Solution

Having established that our iterative procedure converges as intended, we now turn our

attention to the convergence of the solution with resolution. To demonstrate it, we

will look at the Hamiltonian and momentum constraints, and the differences between

measured physical quantities - the ADM energy and ADM angular momentum, and the

surface fitting coefficients of the stars. As our initial data representation is fully spectral,

we expect that these quantities should converge exponentially with resolution. Note that

when we discuss the value of a quantity at a certain resolution, we are referring to the

value of that quantity after the final iterative step at that resolution.

Figure 2.3 shows the convergence of the Hamiltonian constraint and the Momentum

constraint for our three runs of interest. These are computed during the last iterative

solve at each resolution. The data plotted are computed as

H = || RΨ

8Ψ5
||, (2.60)

M = || Rβ

2αΨ4
||. (2.61)

Here RΨ and Rβ denote the residuals of Eqs. (2.18) and (2.17), respectively, and || . ||

represents the root-mean-square value over grid-points of the entire computational grid.

This plot demonstrates that our initial data solver converges exponentially with resolu-

tion, even for very high spins, which gives confidence that we are indeed correctly solving

the Einstein Field Equations.

The surface of the star is represented by a spherical harmonic expansion:

Rs(θ, φ) =

lmax,mmax∑
l,m

clmYlm(θ, φ), (2.62)

where lmax = mmax = 11, unless stated otherwise. The stellar surface is located by

finding a constant specific enthalpy surface, cf. Sec. 2.3.4, and the spherical subdomains
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Figure 2.3: Hamiltonian and Momentum constraints as a function of resolution N . We see

exponential convergence in all cases.
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Figure 2.4: Convergence of the location of the stellar surface. Plotted is ∆c as defined in

Eq.( 2.63), for three representative configurations.

that cover the star are deformed to conform to Rs(θ, φ). To establish convergence of the

position of the stellar surface we introduce the quantity

∆c(i) =
1

l(l + 1)

√√√√lmax,mmax∑
l,m

(clm(i)− clm(N))2. (2.63)

Here i refers to the ith resolution in the initial data, and N refers to the final resolution.

Figure 2.4 plots ∆c(i) vs. resolution. The surface location converges exponentially to

better than 10−8.

Finally, we assess the overall convergence of the solution through the global quantities

EADM and |J iADM|. The surface integrals at infinity in these two quantities are recast using
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Gauss’ law (cf. (Foucart et al. 2008)):

EADM = − 1

2π

∮
S∞

δij∂iΨ dSj

= − 1

2π

∮
S

δij∂iΨ dSj +
1

2π

∫
V
δij∂i∂jΨ dV, (2.64)

and

JzADM =
1

8π

∮
S∞

(
xKyj − yKxj

)
dSj

=
1

8π

∮
S

(xKyi − yKxi) δ
ijΨ2 dSj. (2.65)

Here V is the volume outside S, and the integrals are evaluated in the flat conformal

space. To obtain the other components of J iADM, cyclically permute the indices x,y,z. We

define the quantities ∆E and ∆J as the absolute fractional difference in these quantities

between the current resolution and the next highest resolution. These are plotted in

figure 2.5. In general, we find agreement at the 10−7 − 10−8 level by the final resolution.

2.4.3 Convergence of the Quasilocal Spin

We now turn to the angular momentum of the neutron stars, as measured with quasilocal

angular momentum integrals on the stellar surface. We will discuss dimensionless spins

χ, which depend on two distinct numerical resolutions: First, the resolution of the 3-

dimensional grid used for solving the initial value equations. This resolution is specified

in terms of N , the total number of grid-points. Second, the resolution used when solving

the eigenvalue problem for approximate Killing vectors on the 2-dimensional surface, as

given by L, the expansion order in spherical harmonics of the surface-parameterization

rS(θ, φ) =
∑L

l=0

∑
m rlmY

lm(θ, φ).

Throughout this chapter, we use L = 11. The top panel of Fig. 2.6 shows convergence

of χ with grid-resolution N , at fixed L = 11. We find near exponential convergence.

The influence of our choice L = 11 is examined in the lower panel by computing the

quasilocal spin at lower resolution L = 8 and at higher resolution L = 14. Changing
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Figure 2.5: Convergence of ADM-energy and the magnitude of the ADM-angular momentum.

Shown are the fractional differences between neighboring resolutions, as a function of the lower

resolution.
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Figure 2.6: Convergence of the quasilocal spin computation. Top panel: difference of spin

computed at resolution N with the spin computed at the highest resolution. Bottom panel:

Difference between spins computed at different resolution L of the spin-computation. For S-.5z,

we achieve an accuracy of ∼ 10−7, whereas for S.4z and S.4x, the accuracy is ∼ 10−4 due to

finite L.
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Figure 2.7: Stellar cross-sections in the X-Z plane for a series of different spins, aligned with the

ẑ axis, demonstrating that they bulge at the equator in the expected way with increasing spin.

L impacts χ by ∼ 10−8 for the low-spin case S-.05z, and by ∼ 10−4 for the high-spin

cases S.4z and S.4x. For the high-spin cases, the spin measurement is convergent with

increasing L, and the finite value of L dominates the error budget. For the low-spin case,

numerical truncation error dominates the error budget and convergence with L is not

visible. High NS spin leads to a more distorted stellar surface, and so a fixed L = 11

yields a spin result of lower accuracy. However, in all cases the the numerical errors of

our spin measurements are still negligible for our purposes.
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2.4.4 Quasilocal Spin

As discussed in section 2.3.5, we use a quasilocal spin to define the angular momentum

carried by each neutron star. To our knowledge, this is the first application of this method

to neutron stars in binaries.

In this section, we explore properties of the rotating BNS initial datasets and the

employed quasilocal spin diagnostic.

To explore the spin-dependence of BNS initial data sets, we construct a sequence

of equal-mass, equal-spin BNS binaries, with spins parallel to the orbital angular mo-

mentum. We fix the initial data parameters M b
NS, D0, Ω0 and ȧ0 to their values for a

configuration that we will also evolve below (specifically, S.4z - Ecc1)

Figure 2.7 shows cross-sections through one of the neutron stars in the xz-plane, i.e. a

plane orthogonal to the orbital plane which is intersecting the centers of both stars. With

increasing spin, the stars develop an increasing equatorial bulge, an expected consequence

of centrifugal forces.

Figure 2.8 presents the dimensionless spin of either neutron star as a function of ωM�.

χ increases monotonically with the rotation parameter ω. The spin χ increases linearly

with ω for small ω. For larger ω, the dependence steepens, as the increasing equatorial

radius of the stars increase the moment of inertia (Worley et al. 2008).

For ω = 0.01625M−1
� we achieve χ = 0.432, the largest spin we are able to construct.

This is reasonably close to the theoretical maximum value for Γ = 2 polytropes, χ ∼

0.57 (Ansorg et al. 2003). Above ω = 0.01625M−1
� , the initial data code fails to converge.

The steepening of the χ vs. ω curve is reminiscent of features related to non-uniqueness

of solutions of the extended conformal thin sandwich equations (Lovelace et al. 2008;

Pfeiffer & York Jr. 2005; Baumgarte et al. 2007; Walsh 2007), and it is possible that

our failure to find solutions originates in an analogous break-down of the uniqueness of

solutions of the constraint equations.

While the focus of our investigation lies on rotating NS, we note that for ω = 0

our data-sets reduce to the standard formalism for irrotational NS. For ω = 0, we find a
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Figure 2.8: Dimensionless angular momentum χ as a function of ωM� for a series of spin-aligned

initial data sets with the same physical parameters as our runs of interest. We see, as expected,

a linear relation between χ and ω at low-spins, which eventually becomes non-linear at higher

spins.
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quasilocal spin of the neutron stars is χ = 2×10−4. This is the first rigorous measurement

of the residual spin of irrotational BNS. Residual spin is, for instance, important for the

construction and validation of waveform models for compact object binaries. The analysis

in Boyle et al. (2007) indicates that spins of order 10−4 lead to a dephasing of about

0.01radians during the last dozen of inspiral orbits. This value is significantly smaller

than the phase accuracy obtained by current BNS simulations, and so the residual spin is

presently not a limiting factor for studies like Bernuzzi et al. (2015); Baiotti et al. (2011);

Baiotti et al. (2010).

Finally, we demonstrate that the surface on which we compute the quasilocal spin,

does not significantly impact the spin we measure: We choose coordinate spheres centered

on the neutron star with radius R, and compute the quasilocal spin using these surfaces,

rather than the stellar surface.

In Fig. 2.9, we plot the spin measured on various R = const surfaces, for three different

values of ω, from the same sequences shown in Fig. 2.8.

The circles denote spins extracted on coordinate spheres. The asterisks indicate the

spins computed on the stellar surface. The asterisk is plotted at R = Req, the equatorial

radius of the neutron star under consideration. We find good agreement between spins

extracted on coordinate spheres and the spin extracted on the stellar surface, as long as

R ≥ Req. The maximum disagreement is seen in the high spin curve, where the two spins

differ by ∼ 10−2.

For R < Req, the coordinate extraction sphere intersects the outer layers of the

neutron star and no longer encompasses the entire matter and angular momentum of

the star. Therefore, χ(R) shows a pronounced decline for R < Req for each of the three

initial-data sets considered in Fig. 2.9. For R > Req, χ(R) continues to increase slightly,

for instance, for the middle curve, χ(R = 9) = 0.202 whereas χ(R = 11) = 0.204.

In summary, Fig. 2.9 shows that the quasilocal spin extracted on coordinate spheres

can serve as a good approximation of the quasilocal spin extracted on the stellar surface

(as long as the coordiate sphere is outside the star, of course).
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Figure 2.9: Dimensionless spin χ measured on coordinate spheres with radius R for three dif-

ferent aligned spin BNS systems. The asterik denotes the spin measured on the (non-spherical)

stellar surface. Circles to the right of the asterik represent coordinate spheres entirely outside

the neutron star, and circles on the left of the asterik indicate spin measurement surfaces that

intersect the star or are entirely located inside the star.

This is important because during evolutions of the binary, we do not track the surface

of the star. Instead, we will compute the spin on coordinate spheres, similarly to Fig. 2.9.

2.5 Evolution Results

We now evolve the three configurations discussed in Sec. 2.4. As indicated in Table 2.1,

all three configurations are equal-mass binaries, with individual ADM masses M? (in

isolation) of 1.64M� or 1.648M� at initial separation of D = 47.2M�, and using a
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Name k e ~χ f0(Hz) Norb tf (ms)

S.4z 0,1,2 . 0.001 0.381ẑ 167.7 11.8 56.0

S-.05z 0,1,2 0.0006 −0.050ẑ 165.4 12.5 56.3

S.4x 0,1 . 0.002 0.375x̂ 164.8 9.1 45.7

Table 2.2: Information about our three evolutions. k indicates the numerical resolutions on

which a simulation is performed, e indicates the smallest achieved orbital eccentricity. ~χ and

f0 are the dimensionless spins at t = 0 and the initial orbital frequency. Finally, Norb and tf

represent the number of orbits the configuration was evolved for, and the evolution time.

polytropic equation of state with Γ = 2.0 and κ = 123.6. Both stars have equal spins,

and the three configurations differ in spin magnitude and spin direction. Configuration

S-0.05z has spin-magnitudes ∼ 0.05 anti-aligned with the orbital angular momentum,

and the configurations S.4z and S.4x have spin magnitudes near 0.4, along the z-axis

and x-axis, respectively.

Each configuration is evolved through & 10 orbits, into the late-inspiral. In this

chapter we focus on the inspiral of the neutron stars. Table 2.2 summarizes parameters

for these runs.

2.5.1 Evolution Code

In our evolution code, SpEC (Buchman et al. 2012; Lovelace et al. 2012; M. A. Scheel,

M. Boyle, T. Chu, L. E. Kidder, K. D. Matthews and H. P. Pfeiffer 2009; Kidder et al.

2000; Lindblom et al. 2006; Scheel et al. 2006; Szilágyi et al. 2009; Lovelace et al. 2011;

Hemberger et al. 2013; Ossokine et al. 2013), we use a mixed spectral – finite-difference

approach to solving the Einstein Field Equations coupled to general relativistic hydrody-

namics equations. The equations for the space-time metric, gµν are solved on a spectral

grid, while the fluid equations are solved on a finite difference grid, using a high-resolution

shock-capturing scheme. We use a WENO (Jiang & Shu 1996; Liu et al. 1994) recon-
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struction method to reconstruct primitive variables, and a Harten-Lax-van Leer (HLL)

Riemann solver A. Harten (1983) to compute numerical fluxes at interfaces. Integration

is done using a 3rd order Runge-Kutta method with an adaptive stepsize. We interpo-

late between the hydro and spectral grids at the end of each full time step, interpolating

in time to provide data during the Runge-Kutta substeps (see Duez et al. (2008); Fou-

cart et al. (2012); Foucart et al. (2013a); Muhlberger et al. (2014) for a more detailed

description of the method).

Each star is contained in a separate cubical finite difference grid that does not overlap

with that of the other star. The sides of the grids are initially 1.25 times the stars’

diameters. We use grids that contain 973, 1233 and 1553 points for resolutions k = 0, 1, 2,

respectively2. These resolutions correspond to linear grid-spacing of 340m, 268m and

213m respectively for the S.4z case. The precessing evolution S.4x uses similar grid-

spacing, whereas the anti-aligned run S-.05z has a slightly smaller grid-spacing because

the stars themselves are smaller. The region outside the NS but inside the finite difference

grid is filled with a low density atmosphere with ρ = 10−13M−2
� . The motion of the NSs

is monitored by computing the centroids of the NS mass distributions

X i
CM =

∫
xiu0ρ0

√
−g(4)d3x (2.66)

for each of the grid patches containing a NS.

The grids are rotated and their separation rescaled to keep the centers of the NS at

constant grid-coordinates (Scheel et al. 2006; Hemberger et al. 2013; Scheel et al. 2015).

As the physical separation between the stars decreases, the rescaling of grid-coordinates

therefore causes the size of the stars to increase in grid-coordinates. In order to avoid

the stellar surfaces expanding beyond the geometric size of the finite difference grid, we

monitor the matter flux leaving this grid along the x, y, and z-direction. If the matter

flux is too large along a certain axis, we expand the grid in that direction. This procedure

2For aligned-spin configurations S-.05z and S.4z, we take advantage of, and enforce, z-symmetry,
which halves the number of grid-points along the z-axis.
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allows us to dynamically choose the optimal grid-size that limits matter loss to a small,

user-specified level. When changing the size of the hydro grid, the number of grid-points

is kept constant, so this process changes the effective resolution during the evolution.

The Einstein field equations are solved on a spectral grid using basis-functions appro-

priate for the shape of each subdomain. For rectangular blocks, Cheybyshev polynomials

are used along each axis; for a spherical shell (i.e. where the center is excised), spherical

harmonics in angles, and Chebyshev polynomial in radius are employed; and for an open

cylinder (i.e. with the region near the axis excised), Chebyshev polynomials and a Fourier

series. For full spheres and filled cylinders, multi-dimensional basis-functions respecting

the continuity conditions at the orign/axis are employed (Matsushima & Marcus 1995;

Verkley 1997). For more details see Muhlberger et al. (2014).

More specifically, our spectral grid, the central region of each star is covered by a

filled sphere located at the center of the star. These have spherical harmonic modes up

to L = 12 + 2k. The radial basis-functions are one-sided Jacobi polynomials with 7 + k

collocation points. The filled spheres are surrounded by eight other spherical shells with

the same radial and angular resolutions. At the start of the evolution, the stellar surface

is generally located inside the third shell. The far field region is covered by 20 spherical

shells starting at 1.5 times the inital binary separation and going out to 40 times that

separation. These shells have angular resolution L = 9 + 2k and radial resolution 6 + k.

The region between the innermost shell and the stars is covered by a set of cylindrical

shells and filled cylinders.

We use a generalized harmonic evolution system (Pretorius 2006; 2005; Lindblom

et al. 2006) with coordinates xµ such that they satisfy a wave equation

∇ν∇νx
µ = Hµ, (2.67)

for some freely-specifiable source function Hµ. The initial source function Hµ
initial is

determined by the initial data, assuming that the time derivatives of the lapse and shift

functions initially vanish in the corotating frame. We then transition to a pure harmonic
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gauge, Hµ = 0 by using a transition function, i.e.

Hµ = e−(t/τ)4

Hµ
initial. (2.68)

The timescale τ is determined by τ = 2
√
d3/(2M?). This is slow enough to avoid

numerical gauge artifacts in the simulations.

2.5.2 Eccentricity Removal

Gravitational wave emission reduces orbital eccentricity rapidly during a GW-driven

inspiral (Peters & Mathews 1963; Peters 1964). Therefore inspiraling binary neutron stars

are expected to have essentially vanishing orbital eccentricity in their late inspiral, unless

they recently underwent dynamical interactions. Our goal is to model non-eccentric

inspirals. In this subsection we demonstrate that we can indeed control and reduce orbital

eccentricity, using the techniques developed for black hole - black hole binaries (Pfeiffer

et al. 2007; Boyle et al. 2007; Buonanno et al. 2011a) and also applied to black hole -

neutron star binaries (Foucart et al. 2008).

For fixed binary parameters (masses, spins), and fixed initial separation D0, the ini-

tial orbit of the binary is determined by two remaining parameters: The initial orbital

frequency Ω0, and the initial radial velocity, which we describe through an expansion

parameter ȧ0 = ṙ/r. These two parameters will encode orbital eccentricty and phase

of periastron, and our goal is to determine these parameters to reduce orbital eccentric-

ity. We accomplish this using an iterative procedure first introduced for binary black

holes (Boyle et al. 2007; Buonanno et al. 2011a). An initial data set is evolved for a few

orbits, the resulting orbital dynamics are analyzed, and then the initial data parameters

Ω0 and ȧ0 are adjusted.

For binary neutron stars, we initialize the first iteration of eccentricity removal, with

ȧ0 = 0 and use Ω0 determined from irrotational BNS initial data, based on the equilibrium

condition in Eq. 2.39. Evolutions with these choices are labeled with the suffix “Ecc1”,
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Figure 2.10: The binary separation as a function of time. Shown are three eccentricity removal

iterations (Ecc1,Ecc2,Ecc3) for each of the three configurations studied. The data for S-.05z

and S.4z is offset vertically by 6 and 3, respectively, for clarity of plotting.
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Figure 2.11: The derivative of the binary orbital frequency as a function of time for different

levels of eccentricity reduction for our three runs of interest. Note that dΩ/dt has units of M−2
� .
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Name Ω× 103 ȧ0 × 105 e

S.4z - Ecc1 5.10538 0 0.006

S.4z - Ecc2 5.09591 −1.60 . 0.001

S.4z - Ecc3 5.09594 −1.75 . 0.001

S-.05z - Ecc1 5.10538 0 0.008

S-.05z - Ecc2 5.11561 0 0.004

S-.05z - Ecc3 5.11769 −1.71 0.0006

S.4x - Ecc1 5.10538 0 0.007

S.4x - Ecc2 5.10429 −2.27 0.004

S.4x - Ecc3 5.10064 −2.36 . 0.002

Table 2.3: Eccentricity removal for the three main runs discussed in this chapter. Only initial

orbital frequency Ω0 and initial radial expansion factor ȧ0 are changed between different EccN

iterations. Recall that these quantities have units of M−1
� .

and show noticeable variations in the separation between the two NS, cf. the solid black

lines in Fig. 2.10.

We compute the trajectories of the centers of mass of each star, as determined by

Eq. 2.66, ~c1(t) and ~c2(t), and using the relative separation ~r = ~c2(t)−~c1(t), compute the

orbital frequency

Ω(t) =
|~r(t)× ~̇r(t)|

r(t)2
, (2.69)

where an over-dot indicates a numerical time-derivative. Finally, we compute Ω̇(t) and

fit it to a function of the form

Ω̇(t) =A1(tc − t)−11/8 + A2(tc − t)−13/8

+B0 cos (B1t+B2t
2 +B3). (2.70)

The power law parts of this fit represent the orbital decay due to the emission of gravi-

tational waves, while the oscillatory part represents the eccentric part of the orbit. We
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then update Ω0 and ȧ0 with the formulae (see Buonanno et al. (2011a) for a detailed

overview)

Ω0 ← Ω0 −
B0B1

4Ω2
0

sinB3, (2.71)

ȧ0 ← ȧ0 +
B0

2Ω0

cosB3. (2.72)

We repeat this procedure twice, resulting in simulations with suffix Ecc2 and Ecc3.

Table 2.3 summarizes the orbital parameters for the individual simulations, and Figs. 2.10

and 2.11 illustrate the efficacy of the procedure through plots of separation and time-

derivative of orbital frequency. The eccentricity is successfully reduced from e ∼ 1% to

∼ 0.1%. After two eccentricity reduction iterations, variations in Ω̇(t) are so small that

they are no longer discernible from higher-frequency oscillations in Ω̇(t), cf. Fig. 2.11.

The high frequency oscillations in Ω̇(t) are caused by the quasi-normal ringing of the

neutron stars, as discussed in detail below in Sec. 2.5.5. Here, we only note that these

oscillations are convergently resolved, cf. Fig. 2.12, and are therefore a genuine feature

of our initial data. Figure 2.12 also confirms that the lowest resolution (k = 0) gives

adequate resolution for eccentricity removal. Note that in Fig. 2.12 there are spikes in

Ω̇(t) at early times. Such transients are seen in every SpEC simulation - see, e.g., Fig.

5 of Buonanno et al. (2011b). These arise as the orbital frequency relaxes from that set

in the initial data to that of a quasi-equilibrium inspiral, and as the gauge changes as

described in Sec. 2.5.1.

The eccentricity removal algorithm attempts to isolate variations on the orbital time-

scale as the signature of eccentricity. For S.4z - Ecc2, it reports e = 0.0005 and for

S.4z - Ecc3, e = 0.0002. However, given the large amplitude of the quasi-normal mode

ringing, we consider these estimates unreliable, and therefore quote an upper bound of

0.001 in Table 2.3. Similarly, for S.4x - Ecc3, the fitting reports e = 0.001, and we quote

a conservative upper bound of 0.002.
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Figure 2.12: Convergence of Ω̇(t). Shown are Ω̇(t) at three different numerical resolutions

(k = 0, 1, 2) for the final, lowest-eccentricity initial data. The oscillations in Ω̇(t) are evidently

not caused by numerical truncation error. Note that Ω̇ has units of M−2
� .
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Figure 2.13: The spin measured on multiple coordinate spheres for the S.4z run.

2.5.3 Aligned spin BNS Evolutions: NS Spin

In this section, we will discuss the measurement of spins during our evolutions for the

non-precessing cases, S.4z and S-.05z. Aligned spin binaries do not precess. Combined

with the low viscosity we expect the NS spins to stay approximately constant during the

evolutions. These systems therefore serve as a test on our spin diagnostics during the

evolutions. In this section, and through the rest of this chapter, we always use the final

eccentricity reduction, “Ecc3”. For brevity, we will omit the suffix “-Ecc3”, and refer to

the runs simply as S-.05z, etc.

We do not track the surface of the star during the evolution. Instead we simply

evaluate the quasilocal spin of the stars on coordinate spheres in the frame comoving
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with the binary. We must therefore verify that the spin measured is largely independent

of the radius of the sphere, and that it is maintained during the evolutions at the value

consistent with that in the initial data. Figure 2.9 established that coordinate spheres

can be used to extract the quasilocal spin in the initial data. Figure 2.13 shows the

results for the high-spin simulation S.4x during the inspiral.

For coordinate spheres with radii R = 11.28M� to R = 16.93M� in grid coordinates,

the spins remain roughly constant in time. The different extraction spheres yield spins

that agree to about 1%, with a consistent trend that larger extraction spheres result

in slightly larger spins (as already observed in the initial data). The horizontal dashed

line in Fig. 2.13 indicates the spin measured on the stellar surface (i.e. not on a coor-

dinate sphere) in the initial data. We thus find very good agreement between all spin

measurements, and conclude that the quasilocal spin is reliable to about 1%.

The extraction sphere R = 9.87M� in Fig. 2.13 intersects the outer layers of the

neutron star. Because the quasilocal spin captures only the angular momentum within

the extraction sphere, the value measured on R = 9.87M� falls as our comoving grid-

coordinates cause this coordinate sphere to slowly move deeper into the interior of the

star. This behavior, again, is consistent with Fig. 2.9.

These tests of using multiple coordinate spheres were only run for about half of the

inspiral – enough to establish that the method is robust. Subsequently, we report spins

measured on the largest coordinate sphere, R = 16.93M�.

The full behavior of the spin during the inspiral is shown in figure 2.14 for both

the S.4z and S-.05z runs. Comparing the spin at different resolutions, we note that

the data for k = 1 and k = 2 are much closer to each other than compared to k = 0,

indicating numerical convergence. We note that the impact of numerical resolution (as

shown in Fig. 2.14) is small compared to the uncertainty inherent from the choice of

extraction sphere, cf. Fig. 2.13. We also note that for the first 10000M� of the run, the

measured spin behaves as a constant, as expected, albeit with some small oscillations.
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Figure 2.14: Neutron star spin during the two aligned-spin evolutions. Shown are three different

numerical resolutions, k = 0 (lowest), k = 1, and k = 2 (highest). The asterisk indicates the

spin measured on the stellar surface in the initial data.
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However, afterward, we notice the absolute value of the spin starts to decrease in both

cases. Finally, we note that in both cases, the spin measured in the inital data on the

stellar surface is within ∆χ = 0.008 of the spin measured during the evolution.

Finally, we compute the orbital phase

φ(t) =

∫ t

0

Ω(t′) dt′, (2.73)

where the orbital frequency Ω(t) is given by Eq. (2.69). The result is plotted in

Fig. 2.15, along with the Post-Newtonian prediction for the same binary parameters

(spins, masses and initial orbital frequencies). We use the Taylor T4 model (see e.g., Boyle

et al. (2007)) at 3.5PN order expansion, with no tidal terms added, using the matching

techniques described in Ossokine et al. (2015a). We find excellent qualitative agreement in

both cases, thereby giving additional evidence that our numerical simulations are working

as expected. We do find large late time growth in the phase difference, however this is

expected because we do not model tidal effects, which become increasingly important at

late times, in our Post-Newtonian equations.

Figure 2.16 shows the gravitational waveforms for our two non-precessing simulations.

We extract the waves on a sphere of radius R = 627M�.

2.5.4 Precession

We now turn to the precessing simulation, S.4x. Figure 2.17 shows the components of

the spin-vector ~χ of one of the neutron stars, as a function of time. The quasilocal spin

diagnostic returns a spin with nearly constant magnitude, varying only by ±0.002 around

its average value 0.370. The spin components clearly precess, with the dominant motion

in the xy-plane (the initial orbital plane), with the simulation completing about 2/3 of

a precession cycle. A z-component of the NS spin also appears, indicating precession of

the neutron star spin out of the initial orbital plane.

Fig. 2.17 shows a comparison of spin precession between numerical relativity and Post-

Newtonain theory. We perform this comparison using the matching tecnhique in Ossokine
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Figure 2.15: Accumulated orbital phase as a function of time for our anti-aligned, S-.05z, and

aligned, S.4z, runs. The dashed lines are Taylor T4 Post-Newtonian (PN) simulations simu-

lations. The PN simulations were matched to NR in the intervals [1109,3956] and [2090,4904]

respectively. Qualitatively, there is excellent agreement with the numerical data. The lower

panel shows the difference ∆φ(t) = φNR(t)− φPN(t).
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et al. (2015a). This gives very good agreement between PN (dotted) and NR (solid) as

shown by Fig. 2.17. The NS spins indeed precess as expected, thus confirming both the

quality of quasilocal spin measures, as well as the performance of the PN equations. Note

that z-component of the spin in the NR data undergoes oscillations that are unmodelled

by PN. These occur on a timescale of half the orbital timescale. Similar effects were

found in Ossokine et al. (2015a). The origin of these oscillations remains unclear. The

precession of the orbital angular frequency is shown in Fig. 2.18. We find substantial

precession away from the initial direction of the orbital frequency ~Ω0 ∝ ẑ, with the angle

δ between ~Ω(t) and the z-axis reaching 20◦. Once again, the PN equations reproduce the

precession features successfully.

Finally, Fig. 2.19 shows the (2,2) and the (2,1) spherical harmonic modes of the

gravitational wave-strain extracted at an extraction surface of radius R = 647M�. The

(l,m)=(2,1) mode would be identically zero for an equal-mass aligned spin binary with

orbital frequency parallel to the z-axis, so the emergence of this mode once again indicates

precession in this binary.

2.5.5 Stellar Oscillations

The rotating neutron stars constructed here show oscillations in the central density, as

plotted in Fig. 2.20. In the low spin run, the density oscillations have a peak-to-peak

amplitude of about 0.6%, whereas in the high-spin runs (S.4z and S.4x), the density

oscillations reach a peak-to-peak amplitude of 20%. The two high-spin simulations show

oscillations of nearly the same amplitude and frequency, therefore oscillating nearly in

phase throughout the entire inspiral. The oscillation-period is about 177M� ∼ 0.87ms,

i.e. giving a frequency of 1.15kHz. It remains constant throughout the inspiral. The

low-spin run S-0.5z exhibits a slightly smaller oscillation period of about P ≈ 170M� ≈

0.84ms, i.e. a frequency of ≈ 1.19kHz.

To investigate the spectrum of the density oscillations, we perform a Fourier-transform
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on ρ(t). The result is shown in Fig. 2.21. The Fourier-transform confirms the dominant

frequencies just stated, and reveals several more frequency components ranging up to

4kHz. The high spin evolutions S.4z and S.4x exhibit identical freqencies for all five

discernible peaks. In contrast, the low-spin evolution S-.05z shows different frequencies.

We interpret these features as a collection of excited quasi-normal modes in each neu-

tron star. The modes are excited because the initial data is not precisely in equilibrium.

For the two high-spin cases the neutron stars have similar spin, and therefore the same

quasi-normal modes, whereas in the low-spin model, the quasi-normal mode frequencies

differ due to the different magnitude of the spin.

To strengthen our interpretation, we consider the series of rotating, relativistic, Γ = 2

polytropes computed by Dimmelmeier et al. (2006).

Dimmelmeier et al. (2006)’s model “AU3” has a central density of 1.074× 10−3M−2
�

and its rotation is quantified through the ratio of polar to equatorial radius, rp/re = 0.780.

Meanwhile, our high-spin runs have a central density of 1.02 × 10−3M−2
� (measured as

time-average of the data shown in Fig. 2.20) and from our initial data, we find rp/re ∼

0.8. Given the similarity in these values, we expect Dimmelmeier et al. (2006)’s “AU3”

to approximate our high-spin stars S.4x, S.4z. Dimmelmeier et al. (2006) reports

a frequency of fF = 1.283kHz for the spherically symmetric (` = 0) F-mode, and a

frequency f2f = 1.537kHz for the axisymmetric ` = 2 mode 2f . These frequencies

compare favorably with the two dominant frequencies in Fig. 2.21, 1.14kHz and 1.42kHz.

Presumably, the small differences in these frequencies can be accounted for by the

slight differences in stellar mass, radius, and rotation. Moreover, tidal interactions and

orbital motion could factor in, as well. In our figure 2.21 we also see several other

peaks at higher frequencies, which are reminiscent of the overtones and mode couplings

in figure 10 of Dimmelmeier et al. (2006). If we identify our peak at fH1 = 4.03kHz

with the H1 mode, then (in analogy to Dimmelmeier et al. (2006) Fig. 10), fH1 − fF =

(4.03−1.14)kHz = 2.89kHz, and 2fF = 2.28kHz, two frequencies that are indeed present
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in our simulations. Although we find clear indications of axisymmetric ` = 2-modes, we

note that their power is smaller by two orders of magnitude, compared to the spherically

symmetric, dominant F mode.

Turning to the low-spin run S.05z, we note that if, to first order, these frequencies

scale like f ∼ √ρ (on dimensional grounds), then we expect to see F = 1.22kHz and

2f = 1.49kHz. This is very close to what is seen.

The density oscillations discussed in this section are reflected in analogous oscillations

in various other diagnostic quantities, for instance, the orbital frequency, Fig. 2.12 and the

quasilocal spin as shown in Fig. 2.14. The dominant frequencies 1.14kHz and 1.42kHz

can be robustly identified throughout our data analysis. In figure 2.22 we plot the

Fourier transform of the density, the (2, 0) and (2, 2) gravitational wave strains, the

orbital angular velocity time derivative dΩ/dt and the measured spin χ for the S.4z run.

All show peaks in power at these two frequencies, F ∼ 1.14kHz and 2f ∼ 1.4kHz. In

simulations of eccentric, irrotational BNS systems, Gold et al. (2012) find that the close

encouters of the two stars excite f-modes in each star of frequency 1.586 kHz.

We believe that the stellar modes are excited because the initial data are not in per-

fect equilibrium. We expect the quasi-equilibrium approximations that enter the initial

data formalism to become less valid at higher spins, consistent with our observation that

the high spin models exhibit stronger oscillations. This interpretation is strengthened by

additional simulations of neutron stars at larger separation. Increasing the intial sepa-

ration by a factor 1.5, while keeping the same rotation parameter ω as in the S.4z-case,

we find quasi-normal oscillations of similar amplitude than in S.4z. If the oscillations

were caused by the neglect of tidal deformation, we would expect the amplitude to drop

with the 3rd power of separation, inconsistent with our results.

Finally, we point out that the radial rotation profile, cf. Eq. (2.49) influences the

amplitude of the induced quasi-normal oscillations. If the initial data is constructed with

the rotation profile Eq. (2.50), instead of equation 2.49, then the amplitude of the density
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oscillations for high spin doubles. This further supports our conjecture that the origin of

this mode comes from non-equilibrium initial data.

2.6 Conclusions

In this chapter we implement Tichy’s method (Tichy 2012) to construct binary neutron

star initial data with arbitrary rotation rates. We demonstrate that our implementation

is exponentially convergent, as expected for the employed spectral methods.

We measure the spin of the resulting neutron stars using the quasilocal angular mo-

mentum formalism (Brown & York 1993; Cook & Whiting 2007; Lovelace et al. 2008;

Owen 2007). The resulting angular momentum is found to be nearly independent on the

precise choice of extraction sphere, cf. Fig. 2.9, and provides a means to define the quasilo-

cal angular momentum of each neutron star to about 1%, both in the initial data and

during the evolution, cf. Fig. 2.13. We are able to construct binary neutron star initial

data with dimensionless angular momentum of each star as large as χ = S/M2 ∼ 0.43,

both for the case of aligned spins, and also for a precessing binary where the initial

neutron star spins are tangential to the initial orbital plane.

For irrotational BNS initial data sets, we find a quasilocal angular momentum of

χ ∼ 2 × 10−4, cf. Fig. 2.8. This spin is small enough that present waveform modeling

studies for BNS (e.g. (Bernuzzi et al. 2015; Baiotti et al. 2011; Baiotti et al. 2010)) are

not yet limited by residual spin.

When evolving the initial data sets, the dimensionless spin measured in the initial data

drops by about 0.004, and then remains constant through the 10 inspiral orbits for which

we evolved the neutron star binaries. During these evolutions, we also demonstrated

iterative eccentricity removal: By analyzing the orbital frequency Ω(t) during the first

few orbits, we can correct the initial data parameters Ω0 and ȧ0, and thus decrease the

orbital eccentricity from e ≈ 0.01 to e . 0.001.
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For the precessing simulation S.4x, we find precession of the neutron star spin direc-

tions. The numerically established precession of the spin axes and of the orbital angular

momentum agrees well with post-Newtonian predictions.

The rotating neutron stars constructed here exhibit clear signals of exciting quasi-

normal modes. We are able to identify multiple modes in the Fourier spectrum of the

central density. The amplitude of the excited quasi-normal modes increases steeply with

rotation rate of the neutron stars. For S-.05z (spin magnitude χ = 0.045) the density

oscillations have peak-to-peak amplitude of 0.6%, raising to 20% for the two runs with

high spins (S.4x and S.4z).

As discussed in the appendix below, the results presented in this chapter have since

been updated due to the correction of a code error. Now, the density oscillations, for

χ ∼ 0.4, have been decreased from 20% to 0.5%, and the highest neutron star spin we can

create has increased from χ ∼ 0.43 to χ ∼ 0.65. The full results are summarized below.



Appendix

Chapter 2 presented a computational code for the construction and evolution of binary

neutron stars with arbitrary spin vectors. Following (Tichy 2012), the 3-velocity of the

neutron star fluid in an inspiraling binary is written as the sum of an irrotational part

and a rotational part,

U i =
Ψ−4γ̃ij

hγn
(∇jφ+Wj) . (2.74)

Here Ψ denotes the conformal factor, γ̃ij the conformal spatial metric, h the specific

enthalpy, γn the Lorentz term γn = (1− γijU iU j)
−1/2, and φ the irrotational velocity

potential. The vectorWi represents a rotation term designed to endow a uniform rotation

to the star,

Wi = εijkω
jrk, (2.75)

where ωj is the rotation vector chosen by hand, and rk is the distance to the center of

the star. In this construction, the solution of the Euler equation is

h =
√
L2 − (∇iφ+Wi) (∇iφ+W i), (2.76)

where

L2 =
(x+ y) +

√
x2 + 2xy

2α2
, (2.77)

x =
(
βi∇iφ+ C

)2
, (2.78)

and

y = 2α2 (∇iφ+Wi)W
i. (2.79)

79
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Here C denotes the Euler constant, α the lapse function and βi the shift-vector.

The code reported in Chapter 2 has a mistake in the computation of h. Instead of

Eq. 2.76, we computed the following quantity.

h′ =
√
L2 − (∇iφ) (∇iφ), (2.80)

and instead of Eq. (2.79), we computed

y′ = (∇iφ+Wi)W
i. (2.81)

This error causes h′ to deviate from the correct h by

h′2 − h2 =
(y′ − y)

2α2
+

√
x2 + 2xy′ −

√
x2 + 2xy

2α2

+WiW
i + 2W i∇iφ. (2.82)

For non-rotating stars, W i = 0, the error disappears: h′=h. In the limit of fast rotation,

i.e. large W , we expect this difference to be dominated by the terms quadratic in W ,

h′2 − h2 ≈ W 2

2α2
. (2.83)

This implies the constructed BNS had an enthalpy lower than the correct equilibrium

configurations. This picture is consistent with Fig. 2.20 (and Fig. 2..23 below): for high

NS spin, the central density ρ(t) immediately increases in an evolution, and oscillates

around values larger than the initial density.

We now construct initial data with the same input parameters as for the case S0.4z

- Ecc3 in chap. 2, and evolve it with the same evolution code. For this evolution, we

find:

1. Convergence of the Hamiltonian and Momentum constraints, and of the ADM

energy and ADM angular momentum do not appreciably differ. Convergence of

the neutron star spin is somewhat improved.
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2. As noted in Gourgoulhon & Bonazzola (1994), the absolute difference between

the Komar mass MK and the ADM energy MADM is an indicator of deviations

from equilibrium, as MK = MADM for equilibrium systems in circular orbits. The

difference between the Komar mass MK and ADM energy EADM is reduced by an

order of magnitude, from |M ′
K−M ′

ADM| = 2.6×10−3 to |MK−MADM| = 2.1×10−4.

This supports the idea that the neutron stars themselves are closer to being in

equilibrium.

3. Evolution of the corrected initial data yields substantially smaller density oscil-

lations. Figure 2..23 shows the density oscillations for the evolution reported in

chap. 2 and for the evolution of the corrected initial data. Peak-to-peak density

oscillations are reduced from ∼ 20% to about 0.5%. Density oscillations of ∼ 0.5%

also occur in our simulations of non-spinning binary neutron stars. The frequency

of density-oscillation is unchanged, consistent with our interpretation that it rep-

resents a quasi-normal mode. We note that the phase of oscillation has changed by

approximately half of a period.

4. The orbital frequency Ω(t) has significantly smaller oscillations at periods≈ 200M�.

Figure 2..24 compares Ω̇(t) between evolutions of the old (erroneous) and new (cor-

rected) initial data. High-frequency oscillations are strongly suppressed with the

corrected initial data, allowing a clearer view of the lower-frequency sinusoidal fea-

tures which are due to the overall trajectory of the binary.

5. The corrected code yields higher central density and therefore more compact stars

(at same mass). At the same rotational frequency parameter ω (as defined in

Eq. 2.75) we therefore expect the corrected code to yield stars with smaller angular

momentum. This is indeed the case as is shown in Fig. 2..25. The subsequent

evolution of the spin magnitude is comparable for both incorrect and corrected

initial data (cf. inset of Fig. 2..25) although the oscillations present in the data are
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Figure 2..23: Density oscillations for the S0.4z run from chap. 2 and a new evolution of the

corrected initial data.
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Figure 2..24: Derivative of the orbital angular frequency from the S0.4z run from chap. 2 and

from a new run with the same parameters.
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Figure 2..25: Dimensionless spin, χ = J/M2
ADM, measured during the evolution of the S0.4z-

Ecc3 run, computed from old and corrected initial data. The inset subtracts the value of the

spin at t = 0 from both curves.

reduced. The cause of the early peak in spin in Fig. 2..25 is unclear.

We also find that the corrected code is capable of solving initial data sets for higher

values of the NS rotation parameter ω. Figure 2..25 already showed that at the same

rotation parameter ω, the corrected code yields smaller spin. Computing a sequence of

initial data sets at different ω, we obtain Figure 2..26. For small ω, the χ(ω) relation

is unchanged, indicating that the low-spin evolution reported in Tacik et al. (2015) is

probably only mildly affected. For large ω, the initial data solver can create ID at spins

up to χ ∼ 0.63, a factor ∼ 1.4 larger than the erroneous code. This is, in fact, greater

than the break-up spin of χ = 0.57 found for Γ = 2 polytropes found in Ansorg et al.

(2003).

Being now able to construct ID at larger NS spins, we evolve an equal-mass, equal-
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et al. (2015), while the red curve is generated with the corrected initial data. The astericks

indicates the configuration we evolve in Fig. 2..27.
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Figure 2..27: A snapshot of an evolution with ω = 0.019. The top panel shows the normalized

density oscillations. The bottom-left panel shows the measured spin of a star. The bottom-right

panel shows the orbtis of the stars as they inspiral.

spin ID set with ω = 0.019M−1
� , χ = 0.46. In figure 2..27 we present a snapshot of the

run, plotting the normalized density oscillations, spin, and the trajectories of the stars.

The peak-to-peak density oscillations are now about 2%, higher than in the χ ∼ 0.33

evolution, but still much smaller than for the erroneous initial data despite the larger NS

spin.



Chapter 3

Initial Data for Black Hole–Neutron

Star Binaries, with Rotating Stars

The material in this chapter is based on "Initial data for black hole–neutron star bina-

ries, with rotating stars" by Nick Tacik, Francois Foucart, Harald P. Pfeiffer, Curran

Muhlberger, Lawrence E. Kidder, Mark A. Scheel, Béla Szilágyi. Submitted to Classical

and Quantum Gravity. arXiv:1607.07962

3.1 Chapter Summary

The coalescence of a neutron star with a black hole is a primary science target of ground-

based gravitational wave detectors. Constraining or measuring the neutron star spin

directly from gravitational wave observations requires knowledge of the dependence of

the emission properties of these systems on the neutron star spin. This chapter lays

foundations for this task, by developing a numerical method to construct initial data for

black hole–neutron star binaries with arbitrary spin on the neutron star. We demonstrate

the robustness of the code by constructing initial-data sets in large regions of the param-

eter space. In addition to varying the neutron star spin-magnitude and spin-direction,

we also explore neutron star compactness, mass-ratio, black hole spin, and black hole

87
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spin-direction. Specifically, we are able to construct initial data sets with neutron stars

spinning near centrifugal break-up, and with black hole spins as large as SBH/M
2
BH = 0.99.

3.2 Introduction

The spectacular detection of merging binary black holes by Advanced LIGO (Abbott

et al. 2016a;b) marks the beginning of the era of gravitational wave astronomy. With

binary black holes detected through gravitational waves, and binary neutron stars known

from radio observations (Hulse & Taylor 1975b), mixed black-hole - neutron star (BH-

NS) binaries are now the only compact object binary whose existence has not yet been

directly observed.

BH-NS systems are an important potential source of gravitational waves for ad-

vanced ground-based detectors, with an expected event rate of approximately ten per

year (Abadie et al. 2010), albeit with a large uncertainty. In addition to gravitational

waves, BH-NS mergers can be an important source of electromagnetic radiation (Li &

Paczynski 1998; Roberts et al. 2011; Metzger & Berger 2012; Piran et al. 2013; Rosswog

et al. 2013; Tanaka et al. 2014) and give further clues to the violent processes that occur

during the merger. If a massive disk is left from the merger, for instance, it could lead to

a short-duration gamma ray burst (SGRB) and material ejected during the merger could

radiate a signal such as a "kilonova" (Metzger & Berger 2012).

Direct numerical solutions are one of the primary means to explore coalescing com-

pact object binaries (e.g. Baumgarte & Shapiro (2010); Lehner & Pretorius (2014); Pfeif-

fer (2012)). Such simulations are important to accurately study both the gravitational

waves and electromagnetic emission produced by compact object mergers. Fully gen-

eral relativistic simulations of mixed BH-NS binaries have been performed for about 10

years (Shibata & Uryu 2007; Faber et al. 2006) investigating the importance of mass-

ratio (Foucart et al. 2014; 2013b; Foucart et al. 2012), black hole spin (East et al. 2012a;

Shibata & Uryu 2006; Foucart et al. 2013a; Foucart et al. 2011; Kawaguchi et al. 2015;
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Etienne et al. 2009), eccentricity (East et al. 2015; 2012b; Stephens et al. 2011), equa-

tions of state (Duez et al. 2010; Kyutoku et al. 2010; Kawaguchi et al. 2015; Foucart

et al. 2013a), magnetic fields (Chawla et al. 2010; Paschalidis et al. 2015; Kiuchi et al.

2015b; Etienne et al. 2012; Etienne et al. 2012), neutrino physics (Foucart et al. 2015),

disk formation (Lovelace et al. 2013; Shibata & Taniguchi 2008; Pannarale et al. 2015),

outflows (Deaton et al. 2013; Kyutoku et al. 2013) and electromagnetic emission signa-

tures (Paschalidis et al. 2013; Kawaguchi et al. 2016).

The parameter space for BH-NS binary simulations is relatively large. The mass

ratio, q, NS compactness, C, and black hole spin, ~χ, have been of particular interest

in numerical simulations, because they have the most profound impact of the evolution

of the binary, and are the primary variables to control whether the neutron star tidally

disrupts (Foucart 2012). One aspect that has not been studied, however, is the effect

of neutron star spin. With the exceptions of Shibata & Uryu (2007); East et al. (2015),

all simulations to date use irrotational neutron stars in their BH-NS binaries. For NS-

NS binaries, in contrast, a significant number of studies investigate spinning neutron

stars (Baumgarte & Shapiro 2009; Tichy 2011; East et al. 2012c; Tichy 2012; Bernuzzi

et al. 2014; Kastaun et al. 2013; Tsatsin & Marronetti 2013; Dietrich et al. 2015b; East

et al. 2015; Tsokaros et al. 2015; Tacik et al. 2015). Since no BH-NS binaries have been

directly observed, the NS spins are, at least observationally, unconstrained. A spinning

neutron star will affect the gravitational waveforms and cause the inspiral to proceed

more slowly (for spin-aligned NS). The spin can be important for gravitational wave

detection and can cause appreciable mismatch with non-spinning templates, especially

at lower BH-NS mass ratios (Ajith 2011). We also expect the spin to also affect the time

of NS disruption, as the stellar material will be less tightly bound to the stellar surface.

Any evolution must start with initial data, and so in this chapter, we consider the

construction of fully general-relativistic initial data sets for BH-NS binaries with generic

spin on the neutron star. We combine the techniques of constructing BH-NS initial
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data without NS-spin (Foucart et al. 2008; Henriksson et al. 2016) with the rotating-NS

formalism developed by Tichy (2012) as implemented in Tacik et al. (2015) (cf. chap. 2).

We show that this approach, implemented in the Spectral Einstein Code SpEC1, is robust

and can construct BH-NS binaries with NS spin magnitudes up to nearly rotational

break-up (dimensionless spin χNS ∼ 0.7) and arbitrary rotation axis. The code also

successfully constructs binaries with mass-ratios from 2 to 10, and with black hole spins

0 ≤ χBH ≤ 0.99.

The structure of this article is as follows: In section 3.3, we review the standard

numerical relativity initial data formalism, as well as the formalism developed in Tichy

(2011) to create binaries with spinning NS, and discuss how this is extended to BH-NS

systems. In section 3.4 we discuss the numerical methods used by our initial data solver.

In section 3.5, we create a number of initial data sets to demonstrate the robustness of

our solver by constructing BH-NS initial data sets with various values of neutron star

spin, black hole spin, and mass ratio. We conclude with a discussion in section 3.6.

Throughout this article we use units where G = c = M� = 1.

3.3 Initial Data Formalism

In this section we will discuss the formalism used to solve the Einstein field equations

and create quasi-equilibrium initial data for BH-NS binaries with spinning neutron stars.

We employ the extended-conformal thin-sandwich formalism (Pfeiffer & York 2003; York

1999) to cast the Einstein constraint equations as a set of elliptic equations. Neutron star

spin is incorporated with the approach developed in Tichy (2011), and the equations are

solved by a generalization of the initial data solver developed in Foucart et al. (2008).

We begin with the 3 + 1 decomposition of the space-time metric tensor,

gµνdx
µdxν = −α2dt2 + γij

(
dxi + βidt

) (
dxj + βjdt

)
, (3.1)

1http://www.black-holes.org/SpEC.html
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where α is the lapse function, βi is the shift vector, and γij is the induced metric on a

spatial hypersurface Σ(t). The normal vector nµ to Σ(t) is related to the coordinate time

t by tµ = αnµ + βµ. The extrinsic curvature of Σ(t) is given by Kµν = −1
2
Lnγµν , where

γµν = gµν + nµnν and Ln is the Lie derivative in the direction of nµ. By construction

Kµν is a purely spatial tensor, i.e. Kµνn
µ = 0 = Kνµn

µ, and so we restrict our attention

to the spatial part of the extrinsic curvature, Kij. It is convenient to decompose it into

its trace and trace-free parts,

Kij = Aij +
1

3
Kγij. (3.2)

The matter in the system is modelled with the stress-energy tensor of a perfect fluid

Tµν = (ρ+ P )uµuν + Pgµν , (3.3)

where ρ is the fluid’s energy density, P is its pressure, and uµ is its four-velocity. It is

further useful to define the projections of the matter quantities,

E = T µνnµnν , (3.4)

S = γijγiµγjνT
µν , (3.5)

J i = −γiµT µνnν . (3.6)

The spatial metric is conformally scaled,

γij = Ψ4γ̃ij, (3.7)

where Ψ denotes the conformal factor and γ̃ij the conformal metric. Other quantities are

conformally scaled as follows:

E = Ψ−6Ẽ, (3.8)

S = Ψ−6S̃, (3.9)

J i = Ψ−6J̃ i, (3.10)

Aij = Ψ−10Ãij, (3.11)

α = Ψ6α̃. (3.12)
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Ãij is related to the shift and to the time derivative of the conformal metric, ũij = ∂tγ̃ij,

by

Ãij =
1

2α̃

[(
L̃β
)ij
− ũij

]
, (3.13)

where L̃ is the conformal longitudinal operator,

(
L̃V
)ij

= ∇̃iV j + ∇̃jV i − 2

3
γ̃ij∇̃kV

k. (3.14)

With these definitions and conformal rescalings, the Einstein constraint equations, and

the Einstein evolution equation for the trace of the extrinsic curvature yield a set of

five coupled elliptic equations, called the extended conformal thin sandwich (XCTS)

equations (Pfeiffer & York 2003). They are written in the form

∇̃2Ψ− 1

8
ΨR̃− 1

12
Ψ5K2 +

1

8
Ψ−7ÃijÃ

ij = −2πΨ−1Ẽ, (3.15)

2α̃

[
∇̃j

(
1

2α̃

(
L̃β
)ij)− ∇̃j

(
1

2α̃
ũij
)
− 2

3
Ψ6∇̃iK

]
= 16πα̃Ψ4J̃ i, (3.16)

∇̃2
(
α̃Ψ7

)
−
(
α̃Ψ7

) [1

8
R̃ +

5

12
Ψ4K2 +

7

8
Ψ−8ÃijÃ

ij

]
+Ψ5

(
∂tK − βk∂kK

)
= −2πα̃Ψ5

(
Ẽ + 2S̃

)
. (3.17)

These equations are solved for the conformal factor, Ψ, the shift, βi, and the densitized

lapse, α̃Ψ7. Equations (3.15)–(3.17) constitute the gravitational sector of the initial data

construction. The free data are γ̃ij, ũij, K and ∂tK. Since we will be constructing initial

data in a corotating coordinate system, the free data corresponding to time-derivatives

can be naturally set to zero: ũij = ∂tK = 0. The choice of the conformal metric and K

will be discussed in section 3.4.

Equations (3.15)–(3.17) require boundary conditions at large separation, and at the

excision boundary of the black hole. At infinity2 are the requirement of a Minkowski

2In practice we place the outer boundary of the computational grid at R = 1010.
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metric in the inertial frame (Foucart et al. 2008):

β0 = 0, (3.18)

αΨ = 1, (3.19)

Ψ = 1. (3.20)

Here β0 is the shift in the inertial frame, which is related to the shift vector β by

β = β0 + Ω× r + ȧ0r, (3.21)

where Ω is the orbital angular velocity of the system and ȧ0 is a term used to give the

system an infall velocity v = ȧ0r. The interior of the black hole is excised from the

computation domain. The boundary conditions at excision surface, H, are (Cook &

Pfeiffer 2004):

s̃k∇k log Ψ = −1
4

(
h̃ij∇̃is̃j −Ψ2hijKij

)
on H, (3.22)

β⊥ = α on H, (3.23)

βi‖ = ΩBH
j xkε

ijk on H, . (3.24)

These derive from the assumption the black hole is in equilibrium and that the excision

surface is an apparent horizon. In Eq. (3.22), si = Ψ−2s̃i denotes the outward pointing

unit normal to the apparent horizon surface and hij = γij − sisj is the induced metric

on the surface. In Eq. (3.24), εijk = {±1, 0}, is the totally anti-symmetric symbol, xi

are the Cartesian coordinates relative to the center of the black hole and ΩBH
j is a free

vector that determines the spin of the black hole.

Let us next focus on the matter content of the neutron star, which enters through

Ẽ, S̃, and J̃ i. The energy density of the fluid is ρ = ρ0 (1 + ε), where ρ0 is the baryon

density and ε is the internal energy. The specific enthalpy of the fluid is

h = 1 + ε+
P

ρ0

. (3.25)
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It is convenient to introduce a three-velocity Uµ satisfying

Uµnµ = 0, (3.26)

uµ = γn (nµ + Uµ) . (3.27)

These conditions imply

γn =
(
1− γijU iU j

)−1/2
. (3.28)

Furthermore, we introduce

U i
0 =

βi

α
, (3.29)

γ0 =
(
1− γijU i

0U
j
0

)−1/2
, (3.30)

γ = γnγ0

(
1− γijU iU j

0

)
. (3.31)

Following Tichy (2011), the three-velocity is written as the sum of an irrotational

part (the gradient of a potential φ) and a rotational part W i,

U i =
Ψ−4γ̃ij

hγn
(∂jφ+Wj) . (3.32)

W i is a freely chosen, divergence-free vector field in this formalism; we will discuss the

choice of W i in section 3.4.

The matter fluid must satisfy the continuity equation and the Euler equation. Under

the assumptions made in Tichy (2011), the continuity equation is a second order elliptic

equation for the potential φ:

ρ0

h
∇µ∇µφ+ (∇µφ)∇µ

ρ0

h
= 0. (3.33)

This can be re-written as

ρ0

{
− γ̃ij∂i

(
∂jφ+Wj

)
+

hβiΨ4

α
∂iγn + hKγnΨ4 +

[
γ̃ijΓ̃kij + γik∂i

(
ln

h

αΨ2

)](
∂kφ+Wk

)}
= γ̃ij

(
∂iφ+Wi

)
∂jρ0 −

hγnβ
iΨ4

α
∂iρ0. (3.34)
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Turning to the Euler equation, it can be solved for the specific enthalpy h as shown

in Tichy (2011):

h =
√
L2 − (∇iφ+Wi) (∇iφ+W i), (3.35)

where

L2 =
b+

√
b2 − 4α4 ((∇iφ+Wi)W i)2

2α2
(3.36)

and

b =
(
βi∇iφ+ C

)2
+ 2α2 (∇iφ+Wi)W

i. (3.37)

The boundary condition on φ at the surface of the neutron star are deduced from the

ρ0 → 0 limit of the continuity equation:

γ̃ij (∂iφ+Wi) ∂jρ0 =
hγnβ

iΨ4

α
∂iρ0. (3.38)

Note that φ is only solved for inside the neutron stars, while the metric variables are

solved for everywhere.

The force balance equation at the center of the neutron star, ci is

∇ log h = 0 at xi = ci. (3.39)

We can re-write this equation as Tichy (2011)

∇ ln
(
α2 − γijβiβj

)
= −2∇ ln Γ, (3.40)

where

Γ =
γn

(
1−

(
βi + W iα

hγn

)
∇iφ
αhγn
− WiW

i

α2γ2
n

)
√

1−
(
βi

α
+ W i

hγn

)(
βi
α

+ Wi

hγn

) . (3.41)

Since βi = βi0 +~Ω×~r+ ȧ~r, where βi0 is the shift in the inertial frame, this is a second order

equation for the orbital frequency Ω, when Γ is held constant. If desired, this equation

can be solved to find a best guess for the orbital frequency. Alternatively, eccentricity

removal techniques, such as those used in Buonanno et al. (2011a); Tacik et al. (2015)

can be used to find the best value of the orbital frequency.
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W i is chosen so as to give the NS a uniform rotational profile. Following our work in

Tacik et al. (2015), we use

W i = εijkωjrk, (3.42)

where rk is the position vector relative to the center of the star, and ωj is a freely chosen

constant vector. Outside a radius larger than the neutron star size, W i is set to zero,

to avoid low density material at high radius leading to spurious large velocities. This is

particularly important for large neutron star spins, or when the black hole mass is much

larger than the neutron star mass.

3.4 Numerical Methods

3.4.1 Domain Decomposition

The XCTS equations 3.15, 3.16, and 3.17, combined with the continuity equation 3.34

form a set of six non-linear coupled elliptic equations that must be solved. We use

the pseudo-spectral multi-domain elliptic solver developed in Pfeiffer et al. (2003) and

enhanced to incorporate matter in Foucart et al. (2008); Tacik et al. (2015); Haas et al.

(2016).

The computational domain has the black hole interior excised, and extends to some

large outer boundary (R = 1010 in practice). To cover this computational domain with

spectral expansions, we split the domain into multiple subdomains as indicated in fig-

ure 3.1, each one with its own spectral expansion: The neutron star is covered by a

spherical shell with outer boundary deformed to coincide with the boundary of the neu-

tron star (cf. Eq. (3.55) below). To avoid having to deal with regularity conditions at

the origin, this shell does not cover the origin; rather a small cube is placed there which

overlaps the spherical shell. The neutron star is surrounded by one further spherical

shell. The black hole is surrounded by two concentric spherical shells, where the inner

boundary of the inner shell coincides with the apparent horizon, where the boundary
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Figure 3.1: Visualization of the BH-NS domain decomposition. The object on the left is the

neutron star, with the colours representing its density. The black object on the right represents

the apparent horizon of the black hole. The blue wireframes represent the various spheres,

cylinders and rectangular parallelepipeds in the domain.
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conditions (3.22) – (3.24) are imposed. Three rectangular parallelepipeds surround the

axis passing through the centers of the BH and the NS - one between them and one on

each side of the objects. An additional eight cylindrical shells are placed around the

same axis to cover the intermediate field region. The far-field region is covered by a

large spherical shell whose outer boundary is placed at R = 1010 using an inverse radial

mapping.

All variables (metric and hydrodynamical) are decomposed on sets of basis func-

tions on each subdomain. The type of basis function depends on the topology on the

subdomain. Finite difference schemes are needed for hydrodynamical quantities during

evolutions so as to capture shocks, but for initial data, where shocks are not present,

spectral methods are suitable and exponential convergence can be achieved. The reso-

lution of each domain is synonymous with the number of collocation points used. The

resolution of each subdomain is initialized manually at the start of the initial data solve;

subsequently, the resolution is adjusted several times using an adaptive mesh refinement

(AMR) scheme (see step 13). To discuss the resolution of the computational domain for

the purpose of convergence tests, we denote by N the total number of collocation points

in all subdomains. N1/3 is then a measure of linear resolution. A typical initial data

solve starts with, N1/3 ∼ 33 and ends with N1/3 ∼ 80.

3.4.2 Diagnostics

The angular momentum of the black hole is computed as (Lovelace et al. 2008; Foucart

et al. 2008)

S =
1

8π

∮
H
φisjKijdA. (3.43)

In a space-time with aziumuthal symmetry, φi would represent the exact azimuthal Killing

vector field generated by this symmetry. Since azimuthal symmetry is not present in a

binary system, we instead use an approximate Killing vector. It is computed by solving

a shear minimization eigenvalue problem - see Cook & Whiting (2007); Lovelace et al.
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(2008) for details. The dimensionless spin is defined as

χ =
S

M2
, (3.44)

where M is the Christodoulou mass,

M2 = M2
irr +

S2

4M2
irr

. (3.45)

The irreducible mass is related to the surface area of the apparent horizon, A,

Mirr =
√
A/16π. (3.46)

We employ similar surface integrals to compute the dimensionless spin of the neutron

star. In particular we use Eq. 3.43, with H replaced by the neutron star’s surface, as

defined in Eq. 3.55 to compute the star’s angular momentum SNS.

To define the neutron star’s mass, we use the Arnowitt-Deser-Misner (ADM) mass

MADM,NS of an isolated neutron star with same rotation. In particular, we use the methods

described in Cook et al. (1994) to solve for the equilibrium state of an isolated neutron star

with the same baryon mass, equation of state, and angular momentum, as the neutron

star in our binary, and then compute its ADM mass. The dimensionless neutron star

spin is defined as

χNS =
SNS

M2
ADM,NS

. (3.47)

Tacik et al. (2015) showed that this method of computing neutron star spin was robust

and accurate.

The ADM linear momentum is defined by a surface integral at infinity (Arnowitt

et al. 1962; York 1979),

P i
ADM =

1

8π

∮
S∞

KijdSj. (3.48)

This integral relies on cancellation of leading order terms (Foucart et al. 2008; Ossokine

et al. 2015b), which results in loss of accuracy when evaluated at finite numerical pre-

cision. Therefore, we use Gauss’ law to rewrite (Foucart et al. 2008; Ossokine et al.
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2015b) equation (3.48) as a surface integral over a sphere with smaller radius, S0, and a

volume-integral over the volume V0 outside S0,

P i
ADM =

1

8π

∮
S0

P ijdSj −
1

8π

∫
V0

GidV, (3.49)

where

P ij = Ψ10
(
Kij −Kγij

)
, (3.50)

Gi = Γ̃ijkP
jk + Γ̃jjkP

ik − 2γ̃jkP
jkγ̃il∂l (log Ψ) . (3.51)

3.4.3 Iterative Procedure

Construction of initial data begins by choosing the physical parameters of the BH-NS

binary, which we aim to achieve. For the black hole, we specify:

• The black hole mass, MBH,

• The black hole’s dimensionless spin vector, ~χBH.

For the neutron star we specify:

• The neutron star’s baryon mass, Mb,

• The neutron star’s equation of state,

• The neutron star’s spin vector, ωi.

Finally, characterizing the orbit are:

• The separation between the centers of the BH and NS, D,

• The orbital angular velocity, Ω0,

• The initial infall velocity parameter, ȧ0.
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Additionally, a prescription is required for the free metric variables, γ̃ij and K. Near

the black hole, we would like these variables to approach the spatial metric γKS
ij and mean

curvature KKS of a single rotating black hole in Kerr-Schild coordinates. Away from the

black hole (most notably in the vicinity of the neutron star), we desire conformal flatness

and maximal slicing. Overall, therefore, we set

γ̃ij = δij + e(−r/w)4 (
gKS
ij − δij

)
, (3.52)

K = e(−r/w)4

KKS, (3.53)

where r is the distance to the center of the black hole and w is the roll-off distance.

Once all physical parameters are specified an iterative procedure is used to solve the

various elliptic equations and additional conditions, We proceed as follows:

1. Initialize two counters for nested iterative loops, k = 0 and n = 0. Here, k repre-

sents the AMR resolution iterations, and n represents iterations at constant AMR

resolution.

2. If k = 0, at the first iteration (i.e. step 12 has not been reached yet), set ωi = 0.

Otherwise set ωi to its desired value, cf. above. This has been found to improve

overall convergence, especially for high neutron star spins.

3. Solve the non-linear XCTS equations 3.16–3.17 for the metric variables βi,Ψ, αΨ

assuming the matter source terms are fixed. For n = 0 this defines the metric

variables X(0) at the 0-th iteration, where X indicates each of the metric variables.

If n ≥ 1, update the metric variables using a relaxation scheme

X(n+1) = λX∗ + (1− λ)X(n), (3.54)

where X∗ is the result found by solving the XCTS equations. We use λ = 0.3, as

was previously used in chap. 2 and in Foucart et al. (2008).

4. If both the NS and BH have either aligned spin or zero spin, impose equatorial

symmetry. This speeds up convergence and decreases computational cost.
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5. If k ≥ 4 go directly to step 9. (We generally find that after four resolution-updates,

the stellar and black hole parameters are computed to sufficient accuracy. Skipping

steps 6–8 decreases computational cost.)

6. Locate the surface of the star. The surface of the star is represented in terms of

spherical harmonics

R(θ, φ) =
lmax∑
l=0

∑
|m|≤l

clmY
lm(θ, φ). (3.55)

The coefficients clm are determined by solving the relation h (R (θ, φ)) = 1. We

generally use lmax = 11.

7. Compute the ADM linear momentum PADM by evaluating Eq. 3.48. If its norm has

changed by less than 10% in the last iteration, move the center of the BH by an

amount δ~c, designed to zero the in-plane components of P i
ADM, by finding δ~c such

that δ~c × ~Ω0 = ~PADM. Additionally, increase the radius of the excision surface rex

to drive MBH to the desired value by applying (Buchman et al. 2012)

δrex = −rex
MBH −M∗

BH

MBH

, (3.56)

where MBH is the measured value in the initial data solve and M∗
BH is the desired

value.

8. Compute the spin of the BH by evaluating Eq. 3.43. Then modify the vector Ωi
BH

in Eq. 3.24 to drive the black hole spin to the target value, by applying (Buchman

et al. 2012)

δΩi
BH = −χ

i
BH − χ∗iBH

4M
+
MBH −M∗

BH

4M2
BH

χiBH, (3.57)

where χiBH is the computed black hole spin, and χ∗iBH is the target spin (see also (Os-

sokine et al. 2015b)).

9. If desired, adjust the orbital angular frequency using Eq. 3.40, which, after expand-

ing the shift as βi = βi0 + ~Ω× ~r + ȧ~r, is a second-order equation for Ω.
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10. Fix the Euler constant by evaluating the integral

MB =

∫
ρ0Ψ6γndV (3.58)

as a function of the Euler constant C (recall that C enters into h, cf. Eq. 3.35, and

that ρ0, in turn, depends on h, cf. Eq. 3.25). With the secant method, find the

value of C that yields the desired baryon mass of the neutron star.

11. Solve the elliptic equation (3.34) for the velocity potential φ and update φ using

the relaxation scheme in Eq. 3.54.

12. Check whether the Euler constant, black hole mass, black hole spin, ADM linear

momentum, and the constraints are satisfied to the desired accuracy. If so, proceed

to step 13. Otherwise increment n and return to step 3.

13. Compute the truncation error for the current solution by examining the spectral

coefficients of the metric variables (Szilágyi 2014). If the truncation error is too

large (generally we use 10−9 as the criterion), adjust the number of grid points.

Then increment k, set n = 0, and return to step 2. This adaptive refinement is

based on the target truncation error and the measured convergence rate of the

solution. See Szilágyi (2014) for a complete description of this procedure.

3.5 Results

3.5.1 Initial Data Set Parameters

Our primary goal is to establish the performance of the initial data solver described in

Sec. 3.4. The parameter space of BH-NS binaries is large, encompassing the masses of

black hole and neutron star, their spin magnitudes and their spin directions, as well

as the compactness of the neutron star. As our first stage in exploring this parameter

space, we add neutron star spin to BH-NS initial data sets that already appeared in the
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literature before (namely in Foucart et al. (2013a)). Our basis is six BH-NS configurations

with different compactnesses of the neutron star, and with different orientations of the

black hole spin relative to the orbital angular momentum. All base-configurations have

mass ratio q = 7, black hole spin magnitude of χBH = 0.9 and neutron star mass of

MNS
ADM = 1.4M� (recall that MNS

ADM is the mass of an individual neutron star of the same

properties).

We explore three polytropic equations of state, P = κρΓ, all with Γ = 2. κ is

chosen to achieve neutron star compactnesses C = R/M = 0.170, 0.156, 0.144, and radii

of approximately 12km, 13km, 14km, respectively, for non-spinning neutron stars with

ADM Mass 1.4M�.

For all three equations of state, we consider BH spin-direction parallel to the orbital

angular momentum. For the stiffest equation of state, we also vary the BH-spin direc-

tion and compute initial data sets for misalignment angles ι = 20◦, 40◦, and 60◦. The

base-configurations are named Rxxiyy, where ’xx’ denotes the approximate NS radius in

kilometers and ’yy’ denotes the inclination between BH spin direction and the orbital

angular momentum in degrees (for instance R14i20).
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Name ΘBH MB
NS MΩ0 ~ωNS χNS

R12i0↑ 0◦ 1.5212 0.0413 0.00667ẑ 0.0995

R12i0⇑ 0◦ 1.5212 0.0413 0.0225ẑ 0.4093

R12i0↓ 0◦ 1.5212 0.0413 -0.00667ẑ -0.0895

R12i0⇓ 0◦ 1.5212 0.0413 -0.0225ẑ -0.4030

R12i0→ 0◦ 1.5212 0.0413 0.00667x̂ 0.0936

R12i0⇒ 0◦ 1.5212 0.0413 0.0225x̂ 0.3989

R13i0↑ 0◦ 1.5128 0.0413 0.00555ẑ 0.0997

R13i0⇑ 0◦ 1.5128 0.0413 0.019ẑ 0.3911

R13i0↓ 0◦ 1.5128 0.0413 -0.00555ẑ -0.0845

R13i0⇓ 0◦ 1.5128 0.0413 -0.019ẑ -0.3793

R13i0→ 0◦ 1.5128 0.0413 0.00555x̂ 0.0913

R13i0⇒ 0◦ 1.5128 0.0413 0.019x̂ 0.3771

R14i0↑ 0◦ 1.5049 0.0413 0.005541ẑ 0.1188

R14i0⇑ 0◦ 1.5049 0.0413 0.017ẑ 0.4109

R14i0↓ 0◦ 1.5049 0.0413 -0.005541ẑ -0.0965

R14i0⇓ 0◦ 1.5049 0.0413 -0.017ẑ -0.3915

R14i0→ 0◦ 1.5049 0.0413 0.005541x̂ 0.1066

R14i0⇒ 0◦ 1.5049 0.0413 0.017x̂ 0.3907

R14i20↑ 20◦ 1.5049 0.0412 0.005541ẑ 0.1188

R14i20⇑ 20◦ 1.5049 0.0412 0.017ẑ 0.4110

R14i20↓ 20◦ 1.5049 0.0412 -0.005541ẑ -0.0964

R14i20⇓ 20◦ 1.5049 0.0412 -0.017ẑ -0.3915

R14i20→ 20◦ 1.5049 0.0412 0.005541x̂ 0.1064

R14i20⇒ 20◦ 1.5049 0.0412 0.017x̂ 0.3905

R14i40↑ 40◦ 1.5049 0.0412 0.005541ẑ 0.1193

R14i40⇑ 40◦ 1.5049 0.0412 0.017ẑ 0.4117
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R14i40↓ 40◦ 1.5049 0.0412 -0.005541ẑ -0.0961

R14i40⇓ 40◦ 1.5049 0.0412 -0.017ẑ -0.3908

R14i40→ 40◦ 1.5049 0.0412 0.005541x̂ 0.1064

R14i40⇒ 40◦ 1.5049 0.0412 0.017x̂ 0.3905

R14i60↑ 60◦ 1.5049 0.0415 0.005541ẑ 0.1200

R14i60⇑ 60◦ 1.5049 0.0415 0.017ẑ 0.4132

R14i60↓ 60◦ 1.5049 0.0415 -0.005541ẑ -0.0954

R14i60⇓ 60◦ 1.5049 0.0415 -0.017ẑ -0.3898

R14i60→ 60◦ 1.5049 0.0415 0.005541x̂ 0.1061

R14i60⇒ 60◦ 1.5049 0.0415 0.017x̂ 0.3903

Table 3.1: Full set of parameters of the 36 sets of initial data constructed here. Given are

angle between the black hole spin and the orbital angular momentum θBH, baryon mass of the

neutron star MB
NS, orbital frequency MΩ0, spin vector ~ωNS of the neutron star (cf. Eq. 3.42),

and the dimensionless spin of the neutron star, ~χNS.

For the base-configurations, the following secondary choices are made: The non-

parallel part of the black hole spin is set parallel to the x̂ axis, i.e., the approximate axis

between the BH and the NS. In each case the initial separation between the black hole

and the neutron star is D = 7.44M , where M = MBH + MADM
NS is the total mass of the

binary. The initial infall velocity parameter ȧ0 is set to 0. The orbital angular velocity,

Ω0, is the same as in Foucart et al. (2013a) and is indicated in table 3.1. The above

constitutes 6 different configurations.

We combine each of the six base-configurations with six different configurations of

neutron star spins for a total of 36 total configurations. In particular we choose three

directions - aligned with the orbital angular momentum, anti-aligned with the orbital

angular momentum, and parallel to the orbital plane (along the +x̂ direction). For each

of these three χ̂NS directions, we consider “large” and “small” neutron star spin magnitude,
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χNS ∼ 0.4 and χNS ∼ 0.1. In our naming notation, we use a double arrow (⇑) for the

large χNS configurations and a single arrow (↑) for the small χNS configurations, with

the direction of the arrow indicating the direction of the NS spin vector (e.g. R14i20→).

The full parameters of the initial data sets are summarized in Table 3.1.

In the present chapter, we do not perform evolutions of these initial data sets. Based

on the evolutions in Foucart et al. (2013a) (for non-spinning NS), we expect these initial

data sets to correspond to binaries that will proceed through ∼ 7 to ∼ 10 orbits before

merger.

3.5.2 Convergence of the Initial Data Solver

To assess the convergence of the initial data solver we will begin by looking at the

convergence of the iterative part of the solver. That is, the convergence of steps 1-12 in

the iterative procedure described above. We will first focus on one particular initial data

set of the 36 in Tab 3.1 - namely the R14i60⇑ initial data set. The results we present for

R14i60⇑, however, are representative for all of the 36 sets considered.

First, we examine the convergence of the Euler constant, C. In figure 3.2 we plot the

absolute difference in C between neighbouring iterations for the eight different resolu-

tions used in the initial data solve. In the figure we see that at a given resolution these

differences decrease exponentially with iteration as expected for the relaxation scheme

employed (cf. Eq. 3.54). Meanwhile the differences also decrease with increasing resolu-

tion. We find similar results for all the other initial data sets we consider.

Next, we will look at the properties of the black hole to verify that they converge as

expected in the presence of a spinning neutron star, using again R14i60⇑ as our example.

We focus on the black hole spin ~χBH which is controlled by the parameter ΩBH
j in Eq. 3.24,

and the irreducible black hole mass, Mirr (cf. Eq. 3.46).

Figure 3.3 shows the fractional difference for these quantities to their desired target

value. The difference is plotted as a function of iteration, for four different resolutions.
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Figure 3.2: Absolute difference between neighbouring iterations of the Euler constant for the

R14i60⇑ initial data set. k labels AMR adjustment iterations, and n the inner iterative loop at

fixed grid-resolution.
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Figure 3.3: Fractional difference from desired values of black hole spin and mass. Shown is the

solution of R14i60⇑ initial data set as a function of iteration count. The four colours represent

the four different resolutions k = 0, . . . , 3 at which the black hole spin is measured.
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Recall that the BH spin is only adjusted on iterations k = 0, 1, 2, 3, and not thereafter

(cf. Step 5). In general we see a decrease in this difference with iteration, especially at

the first resolution, therefore showing that the iterative solver is correctly driving the the

black hole properties to the target values. Furthermore, that this difference decreases

with resolution, and we are able to achieve an accuracy of about 10−5 in the BH spin and

mass. Note that the differences shown in Fig. 3.3 continue to remain small for k > 3.

Having established the convergence of the iterative procedure, we turn now to the

global properties of the solution, continuing to focus on the R14i60⇑ ID set. We first

consider the Hamiltonian and momentum constraints, computed as

H = || RΨ

8Ψ5 ||, (3.59)

M = || Rβ
2αΨ4 ||, (3.60)

where RΨ and Rβ are the residuals of Eqs. 3.15 and 3.16, respectively, and ||.|| represents

the L2 norm over all collocation points of the computational domain. The constraints for

this ID set are shown in figure 3.4. We find exponential convergence in the constraints,

as expected for spectral methods. The increase at the second iteration (k = 1) arises

because the neutron star spin is only activated in the second iteration (cf. step 2).

Finally, we look at the properties of the neutron star. As noted in Eq. 3.55, the neutron

star surface is expressed as a sum of spherical harmonics. To evaluate the convergence

of the surface location, we define the quantity

∆c(k) =

√∑
l,m

(
c

(k)
lm − c

(kmax)
lm

)2

, (3.61)

where k represents the current resolution, and kmax represents the highest resolution.

This quantity is plotted in figure 3.5. Similar to the black hole surface, the neutron

star surface is only computed for the first four resolutions, and so we have three data

points shown. We find exponential convergence in this quantity. We also look at the

convergence of the neutron star spin χNS measured at each resolution. In figure 3.5, we
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Figure 3.4: The Hamiltonian and momentum constraints for the R14i60⇑ initial data set as a

function of resolution. We find exponential convergence in both.
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Figure 3.5: Accuracy of neutron star properties for the solution of R14i60⇑. Plotted are the

accuracy of the NS surface, ∆c(k), as defined in Eq. 3.61 and the fractional accuracy of the NS

spin (equation 3.62).

plot the fractional difference in χNS between neighbouring resolutions. That is, we plot

δχ
(k)
NS =

∣∣χ(k+1)
NS − χ(k)

NS

∣∣
χ

(k)
NS

. (3.62)

Figure 3.5 exhibits exponential convergence, although there are two distinctly different

slopes in the data, once we cease to update the NS surface for k ≥ 4. Nevertheless, we

are able to measure the spin to an accuracy of about 10−6. We have omitted the first

data point of δχ(k)
NS, because the NS spin is not activated for k = 0 (cf. Step. 2).

The above data all show that we have established the convergence of our initial

data solver, by showing exponential convergence of the iterative solver, the black hole

properties, neutron star properties, and the constraints.
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Figure 3.6: Parameter space exploration. Starting from R14i0⇑(large red circle) we vary (i)

the BH spin χBH, (ii) the NS spin χNS and (iii) the black hole mass MBH, indicated by the

mass-ratio q.

3.5.3 Broader Exploration of Parameter Space

All initial-data sets constructed so far share the same black hole mass and black hole

spin-magnitude, MBH = 9.8� and χBH = 0.9. In this section, we relax these restrictions,

and also explore the range of possible neutron star spins our code is capable to construct.

In total, we consider three additional sequences of initial-data sets:

First, we consider a sequence that varies the neutron star spin from χNS = 0 to

χNS ∼ 0.7, keeping it aligned with the orbital angular momentum. In these initial data

sets, the other binary parameters are the same as in the R14i0 runs. Namely, the neutron

star mass, equation of state, black hole mass, black hole spin, initial separation and orbital

angular frequency. Second, we consider a sequence of runs where we vary the black hole
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Figure 3.7: Neutron star spin χ as a function of neutron star spin parameter ω for a sequence

of initial data sets. The black hole spin is constant at χ = 0.9 and the mass ratio is q = 7. The

dashed red curve is from NS-NS binaries, with somewhat different neutron star parameters.
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Figure 3.8: Hamiltonian (solid curves) and momentum (dotted curves) constraints for four

different neutron star spins.

spin from χBH = 0 to χBH = 0.99, while keeping the other binary parameters as in the

R14i0⇑ run. Finally, we consider a sequence of runs where we vary the mass ratio from

q = 2 to q = 10. Figure 3.6 summarizes all the initial data sets along the axes of χNS,

χBH and q.

We begin by varying the neutron star rotation parameter ω. The parameters in this

sequence are otherwise the same as in the R14i0 data sets, and the neutron star spin

is kept aligned with the orbital angular momentum. In Fig. 3.7 we plot the measured

neutron star spin χNS as a function of the code parameter ω for the full sequence. As

expected, we find a linear relationship at low ω, but the relationship becomes non-linear at

higher ω, as the neutron star’s size, and thus moment of inertia, becomes an appreciable

function of spin. We find that the solver breaks down around χNS ∼ 0.7, which is the
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maximum spin parameter for neutron stars found in Lo & Lin (2011). Figure 3.7 also

shows the corresponding χNS vs. ω curve for a binary neutron star of mass-ratio q = 1

with both stars carrying the same aligned spin magnitude as presented in Tacik et al.

(2015). The NS-NS data use different NS parameters, with mass MADM = 1.64M� and

equation of state parameter κ = 123.6. Nevertheless, the curves remain very close to each

other in shape, indicating that the method to impart NS rotation (Tichy 2011) performs

similarly for mixed BH-NS binaries and for NS-NS binaries (Tacik et al. 2015).

To investigate numerical convergence of the initial-data sets presented in figure 3.7,

we plot in figure 3.8 the Hamiltonian and momentum constraints for a subset of the

generated initial data sets, with χ ∼ 0.1, 0.3, 0.5, 0.7. In general we find the expected

exponential convergence, but there are a few features worth discussing in the data. The

increase in the constraints between the lowest and second-lowest resolution (k = 0 vs.

k = 1) arises because the spin is only activated at the second-lowest resolution, cf. step 2.

This jump in constraints monotonically increases with the spin-parameter ω, as we might

expect, because the solver has a more difficult task in adjusting to the abrupt activation

of a larger spin. We also note that at high resolution, in the χ ∼ 0.7 curve, we lose

exponential convergence and the curves flatten out around 10−6. This is likely a sign

that the accuracy of the solver is becoming limited, likely by approximations that go

into the solver. χ ∼ 0.7 is around the maximum theoretical neutron star spin, so such

difficulties are expected.

Continuing the exploration of parameter space, we next vary the black hole spin χBH.

In particular, we vary the black hole spin from χBH = 0 to χBH = 0.99, keeping it aligned

with the orbital angular momentum. The other binary parameters are kept the same as

in the R14i0 ⇑ initial data set, specifically ~ωNS = 0.017ẑ and q = 7. In Figs. 3.9 we plot

the Hamiltonian and momentum constraints, respectively, for this sequence. We find

exponential convergence in all cases. It is interesting to note that the constraints seem

to be lowest at the highest black hole spins, χBH = 0.95 and χBH = 0.99, while one might
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Figure 3.9: Hamiltonian constraint (top panel) and momentum constraint (bottom panel) versus

resolution for our sequence of binaries where the black-hole spin is varied from χBH = 0 to

χBH = 0.99. The NS spin parameter is kept constant at ~ωNS = 0.017ẑ and the mass ratio is

q = 7.

expect these to be the most challenging cases. In general we see a qualitative difference

in the constraints that happens above χ = 0.8. This seems to be an artifact of the initial

data solver - for cases above χ = 0.8, the solver takes more iterations to solve, and this

pushes the constraints down.

Since this work focuses on neutron star spin, it is interesting to consider how the

measured neutron star spin, χNS couples to other binary parameters. To lowest order, it

should depend only on ωNS, but in practice it may also depend on the parameters of the

black hole or of the orbit. For the sequence of initial data sets of varying χBH, figure 3.10
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Figure 3.10: Neutron star spin χNS as a function of black hole spin χBH for this sequence. We

notice a small downward linear trend.

presents the neutron star spin χNS as a function of χBH. χNS is nearly constant, dropping

by less than 1% between χBH = 0 and χBH = 0.99, confirming that the spin specification

for the neutron star almost completely decouples from the BH spin.

Finally, we consider a sequence of initial-data sets that varies the mass ratio from

q = 2 to q = 10. In this sequence we keep the other binary parameters the same as in

the R14i0 ⇑ initial data set and we keep the orbital parameters MΩ and D/M constant.

As the mass-ratio changes, we expect that the orbital frequency needed to achieve

low eccentricity will also somewhat change. We do not model this effect, but rather keep

all other binary parameters the same as in the R14i0⇑ run. In particular, the orbital

parameters MΩ and D/M are constant. While not the most accurate way of choosing

these parameters, as it is only correct to Newtonian order, it suffices for the present

purpose of testing robustness of the initial-data solver.

To estimate the impact on the eccentricity of the constructed initial-data sets, we use



Chapter 3. Initial Data for BH-NS Binaries, with Rotating Stars 119

10
-8

10
-7

10
-6

10
-5

10
-4

H
q=2
q=3
q=4
q=5
q=6
q=8
q=9
q=10

30 40 50 60 70 80 90

N
1/3

10
-8

10
-7

10
-6

10
-5

10
-4

M

Figure 3.11: Hamiltonian constraint (top panel) and momentum constraint (bottom panel)

versus resolution for our sequence of binaries where the mass ratio is varied from q = 2 up to

q = 10. The NS spin parameter is kept constant at ~ωNS = 0.017ẑ and the black hole spin is

χBH = 0.9.

the post-Newtonian expansion of the orbital frequency of a BBH in a circular orbit (Eq.

228 of Blanchet (2006)):

Ω2 =
GM

r3

(
1 + (−3 + ν)γ +

(
6 +

41

4
ν + ν2

)
γ2 + ...

)
. (3.63)

Here ν = m1m2/(m1 +m2)2 = q/(1+q)2 is the symmetric mass ratio, and γ = GM/Dc2.

Keeping D and M constant, the quantity MΩ varies by approximately 3% in the mass

ratio range we consider. Therefore, we expect that the eccentricity of our initial-data

sets varies by only a few percent between q = 2 and q = 10.

To assess convergence, we plot the Hamiltonian and momentum constraints for this
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Figure 3.12: Neutron star spin χNS as a function of mass ratio q for this sequence. We notice a

small downward trend for q ≥ 3.

sequence in Fig. 3.11. We find exponential convergence in all cases. Interestingly, no

clear pattern in q-space emerges.

Figure 3.12 plots the neutron star spin as a function of mass-ratio. Having kept ~ωNS

constant across this sequence, we indeed find that the physical NS spin is approximately

constant, too, varying less than 2 percent. Although there is not a great amount of

variation, apart from q = 2, there is a clear trend of χNS decreasing with q. Again,

however, the effect is quite small and we do not seek to explain it.

3.6 Conclusion

In compact object binaries containing neutron stars, the spin of the neutron star(s) forms

part of the parameter space of such binaries. In order to constrain neutron star spin

directly from gravitational wave observations, one must know the impact of the neutron

star spin on the evolution of the compact object binary, i.e. on the emitted waveforms
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and on the electro-magnetic signature.

This chapter lays foundations for such studies by constructing initial-data sets of BH-

NS binaries with arbitrary neutron star spins. To our knowledge, this is the first time

initial data has been created for BH-NS binaries with spinning neutron stars. To impart

spin on the neutron star, we carry over the formalism developed by Tichy (2011) and

used in Bernuzzi et al. (2014); Tacik et al. (2015); Dietrich et al. (2015b) to create initial

data for NS-NS systems with arbitrary spins.

Two new numerical tricks were found to be necessary to get convergent initial data -

setting a maximum radius out to which to apply W i = εijkωjrk, and only activating the

neutron star spin after the first AMR-iteration of the initial data solver has completed.

We create initial data sets across a large portion of the BH-NS binary parameter space.

First, we present a comprehensive study of initial-data sets with various NS spins,

restricting to q = 7 and χBH = 0.9. This first study spans three different equations of

state (all Γ = 2 polytropes), different neutron star spin magnitudes, different neutron

star spin orientations, and four different black hole spin orientations. Subsequently, we

construct initial data with spinning NS for mass-ratios from q = 2 to q = 10, and for

black-hole spins 0 ≤ χBH ≤ 0.99, the latter well exceeding the standard Bowen-York

limit on black hole spin (Lovelace et al. 2008; Dain et al. 2008). Finally, we explore the

range of possible NS spin magnitudes, and find that the presented numerical techniques

can successfully construct initial data with neutron star spins ranging from χNS = 0 to

χNS ∼ 0.7 (near the maximum theoretical spin for neutron stars).

Future research will involve running evolutions of these, or similar, initial data sets.

Some of the 36 initial data sets of our first study (Table 3.1) can be used to investigate

how neutron star spin affects tidal disruption of the star by the black hole, and how

it affects the disk that is formed. The orbital phase evolution can also be examined

and compared to Post-Newtonian (Blanchet 2014) or other analytic predictions such as

Effective-One-Body (EOB) (Buonanno & Damour 1999; Taracchini et al. 2014; Pan et al.
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2013).

One can also explore the maximum mass of accretion disks and ejecta as a function of

NS spin. Lovelace et al. (2013) finds a very large disk with a black hole spin of χ = 0.97

and mass ratio q = 3. Keeping these BH and NS parameters, but adding spin on the

neutron star will cause the NS’ material to be less strongly bound and may increase the

disk mass even further.



Chapter 4

Spurious Radiation in Binary Black

Hole Simulations

4.1 Chapter Summary

In current numerical relativity binary black hole simulations, there is always a burst of

non-astrophysical, spurious gravitational radiation at the start of the simulation, often

called ”junk radiation”. To better understand junk radiation and to give insight on how to

reduce it, we study its parameter space dependence. We use three different diagnostics for

junk radiation - the energy contained in the pulse of radiation, and the transient increase

in black hole mass and decrease in black hole spin due to junk radiation. Comparing

conformally flat initial data and superposed Kerr-Schild initial data, we measure their

dependence on the initial separation of the black holes and on the spins of the black

holes, for equal-mass, equal-spin, spin-aligned systems. We find that the energy in junk

radiation is relatively independent of spin, and is generally a factor of 2 − 3 lower for

SKS initial data. We find it has a power law dependence on initial separation. For SKS

intial data, we are unable to directly quantify the transient quantities because of their

low magnitude and lack of convergence. For CF data, we find the mass increase has a

small dependence on initial separation and a strong power law dependence on spin. We

123
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find similar results for the spin decrease, except with an exponential dependence on black

hole spin.

4.2 Introduction

The detection of the inspiral and merger of binary black holes (BBH) by Advanced

LIGO (Abbott et al. 2016a;b) has dawned the beginning of the era of gravitational

wave astronomy. To make these kind of detections, and to learn about the properties

of the source, gravitational waveform templates must be accurately modeled. Although

analytic prescriptions like Post-Newtonian (PN) (Blanchet 2006)or Effective One-Body

(EOB) (Buonanno & Damour 1999) can reproduce the early inspiral, Numerical Rela-

tivity (NR) simulations are needed to study the late inspiral and merger of the black

holes.

In current NR simulations, there is always a burst of spurious gravitational radiation

at the start of the simulation, often referred to as “junk radiation”. This pulse always

occurs at the start of the simulation, it is of much higher frequency and amplitude

than the astrophysical gravitational radiation, and it has significant contributions from

modes other than the (l,m) = (2,±2) spherical harmonic modes, which are the dominant

contribution for the astrophysical part of the waveform. Therefore, this pulse is not

astrophysical.

We illustrate this effect in Fig. 4.1, showing the gravitational waveform at the start of

a typical simulation - non-spinning, equal-mass binary black holes, separated by 15M1.

The waves are extracted on a coordinate sphere at r = 160M , so the waves start appearing

at t ≈ 160M . We see the burst of junk radiation last about 100M in time, with significant

contributions from both the (2, 2) and (2, 0) modes. The junk radiation then dies out,

and subsequently, the expected sinusoidal (2, 2) mode emerges.

1We use units where G = c = 1. The only natural length and time scale is then the total mass of
both black holes, M .
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Figure 4.1: A typical run illustrating the spurious burst of junk radiation. At the very earliest

times, no outgoing radiation has reached the extraction radius of R = 160M . Then at t ∼ 160M ,

we see a burst of high-frequency, high-amplitude radiation. At later times, the (2, 0) mode dies

out, and the (2, 2) mode settles into the usual inspiral radiation.
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This junk radiation is undesirable in simulations for several reasons. It adds to the

computational cost of the simulation as the junk radiation must leave the computa-

tional grid before any useful physical information can be extracted. It can unrealistically

shorten the time until the black holes merge (Bode et al. 2008). It also must be care-

fully considered when comparing NR simulations with PN or EOB calculations (Damour

et al. 2012), or when creating PN/NR hybrid waveforms (MacDonald et al. 2011). It is

therefore a useful endeavor to better understand the junk radiation, how important it is,

and how to reduce it.

Junk radiation is thought to be caused by assumptions made during the initial data

construction, which are not compatible with binary black holes in perfect equilibrium.

Specifically, black holes are generally treated in the initial data as independent and non-

interacting, while in reality there should be some non-trivial tidal interactions between

them which go unmodeled (see Chu (2014); Johnson-McDaniel et al. (2009) for exam-

ples of including tidal interactions). If we consider a sequence of initial data sets where

the initial separation between the holes is decreasing, we would expect that these tidal

interactions become more important as the initial separation decreases. Similarly, to

fully model binary black holes at a late stage of the inspiral, there should already be

some outgoing gravitational radiation already present in the initial data from its past

history. However, this is generally not explicitly modelled in current initial data codes

(see
[
Johnson-McDaniel et al. (2009); Kelly et al. (2010)

]
for efforts to model it). More-

over, the black holes in the initial data are often constructed with techniques that are

incompatible a single, equilibrium black hole. Specifically, often, conformal flatness is as-

sumed. As detailed in section 4.3.1, the construction of initial data has a free choice for

the conformal metric, g̃ij, on the initial hypersurface. A common choice is conformal flat-

ness, i.e., g̃ij is equal to the flat Euclidean metric, fij. Since every spherically symmetric 3

geometry is conformally flat (Garat & Price 2000), this is fine for one Schwarzchild black

hole. However, a binary system of compact objects is not conformally flat at second PN
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order (Rieth 1997). Moreover, the Kerr space-time does not admit a conformally flat slic-

ing that continuously approach Schwarzschild coordinates as the spin goes to zero (Garat

& Price 2000). The former effect should decrease in importance with increasing separa-

tion of the binary. The latter is caused by a deficiency of conformally flat slicing that

is present even for single spinning black holes, and so we expect its importance to be

approximately independent of binary separation.

Superposed Kerr-Schild (SKS) (Matzner et al. 1998; Marronetti & Matzner 2000;

Pfeiffer et al. 2002; Lovelace et al. 2008) (conformally curved) initial data is now a

common alternative to conformally flat initial data for binary black hole simulations.

The conformal metric is written as

g̃ij = fij + e−(rA/w)2 (
gAij − fij

)
+ e−(rB/w)2 (

gBij − fij
)
, (4.1)

where rA,B are the distances from black holes A and B, and gA,Bij is the Kerr-Schild

metric boosted in the direction of the black hole’s motion. This has the effect that the

metric looks like Kerr-Schild near the black holes, and looks flat far away. The Gaussian

scalings help improve the convergence of the initial data. SKS initial data is now the

standard choice for all BBH simulations with spin done by the SXS collaboration, and

was used in the creation of large waveform catalogs (Mroue et al. 2013; Chu et al. 2015).

It has also been used in simulating black holes with nearly extremal spins (Lovelace et al.

2012; Scheel et al. 2015; Lovelace et al. 2015). A similar approach has also been used for

spinning black holes in BH-NS binaries( Foucart et al. (2008), cf. Chap. 3). In contrast,

CF initial data is used for non-spinning and low-spin (χ < 0.5) BBH simulations (Boyle

et al. 2007; Buchman et al. 2012; Chu et al. 2015).

Lovelace (2009) investigated the effects on junk radiation of using SKS initial data

for equal mass, non-spinning black holes. It was found that in general, the conformally

curved initial data can decrease the amplitude of the junk radiation by a factor of ∼ 2.

Superposed Kerr-Schild initial data is built around the Kerr-Schild metric, which exactly
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represents single spinning black holes. Therefore, one would expect that the advantages

of superposed Kerr-Schild become particularly apparent for spinning black holes.

In this chapter we investigate the parameter space dependence of junk radiation. We

measure its dependence on the spin of the black holes and on their initial separation,

for low eccentricity, equal-mass, spin-aligned binaries. We also perform a comparison

between conformally flat (CF) initial data and superposed Kerr-Schild (SKS) initial data.

To quantify the amount of junk radiation we will use three diagnostics - the amount of

energy present in the junk radiation, and the size of the transient effects of mass increase

and spin decrease due to the junk radiation.

This chapter is organized as follows: section 4.3 presents the numerical methods, and

section 4.4 describes how we quantify junk radiation and other initial transients in the

BBH initial data sets. We present our results in Sec. 4.5 and close with a discussion in

Sec. 4.6.

4.3 Numerical Methods

4.3.1 The Initial Value Problem

Employing the usual 3+1 decomposition (Arnowitt et al. 1962; York, Jr. 1979), space-

time is foliated by a family of spacelike hypersurfaces Σt. Each hypersurface has a future-

pointing unit normal nµ, induced metric gij, and extrinsic curvature Kµν = −1
2
Lngµν .

The metric is written as

gµν = −α2dt2 + gij
(
dxi + βidt

) (
dxj + βjdt

)
, (4.2)

where α and βi are the lapse function and the shift vector respectively. The lapse mea-

sures the proper time between neighbouring hypersurfaces, and the shift vector deter-

mines how coordinate labels move between neighbouring hypersurfaces. On the initial
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hypersurface Σ0, spatial metric and extrinsic curvature must satisfy the vacuum con-

straint equations

R +K2 −KijK
ij = 0, (4.3)

∇j

(
Kij − gijK

)
= 0. (4.4)

To solve the constraint equations one writes (Lichnerowicz 1944) the metric in terms of

a conformal metric g̃ij and a conformal factor Ψ:

gij = Ψ4g̃ij. (4.5)

We also split the extrinsic curvature into trace and trace-free parts

Kij = Aij +
1

3
gijK, (4.6)

and employ the extended conformal thin sandwich formalism (York 1999; Pfeiffer & York

2003) to further decompose Aij. One must then choose (g̃ij, ∂tg̃ij, K, ∂tK) as the free data.

Compared to the extrinsic curvature decomposition (Murchadha & York, Jr. 1974), the

conformal thin sandwich formalism allows for physically motivated choices to a larger

number of the free data. Elliptic equations with appropriate boundary conditions are

then solved for Ψ, αΨ, and βi, and the physical data is re-assembled. ∂tg̃ij = ∂tK = 0

is chosen so that system is initially stationary in the co-rotating frame. This then leaves

g̃ij and K as the free data to choose.

The two types of initial data we compare are described in detail in Lovelace et al.

(2008): conformally flat, quasi-equilibrium initial data employs conformal flatness, g̃ij =

fij, maximal slicing, K = 0, and inner boundary conditions that enforce that the black

holes are instantaneously in equilibrium (Caudill et al. 2006; Cook & Pfeiffer 2004; Cook

2002). Superposed Kerr-Schild initial data, first used in (Marronetti & Matzner 2000;

Matzner et al. 1998)
]
, takes the spatial metric and extrinsic curvature as superposition

of elements of Kerr-Schild metrics (one for each black hole). As explained in Lovelace

et al. (2008), we introduce Gaussian attenuation functions to ensure regularity at spatial
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infinity. The details on the inner boundary conditions used can be found in Lovelace

et al. (2008).

4.3.2 Code

The initial data is solved using the spectral solver Spells (Pfeiffer et al. 2003) of the Spec-

tral Einstein Code SpEC2. This is a multi-domain elliptic PDE solver that uses pseudo-

spectral methods, whereby quantities of interest are expressed as a linear summation of

basis functions. This method gives exponential convergence (with the number of basis

functions) as long as the quantities of interest are smooth. The black hole singularities

are dealt with by excision from the computational grid. We evolve the initial data with

the dual frame method described in Scheel et al. (2006). The domain decomposition and

position of the black holes are fixed in a comoving frame, but the equations of motion

are solved in an inertial frame that is asymptotically Minkowski. The frames are related

by a rotation (due to orbital motion) and a radial rescaling (due to inspiral motion).

Gravitational waves are extracted on outer spheres using the Newman-Penrose scalar

Ψ4. Given a spacelike hypersurface with unit normal nµ and a spatial unit vector in the

direction of wave propagation rµ, Ψ4 is defined as

Ψ4 = −Cαµβνlµlνmαm̄β, (4.7)

where Cαµβν is the Weyl tensor, lµ = (nµ − rµ) /
√

2 and mµ is a complex null vector

satisfying mµm̄µ = 1. We then expand Ψ4 in spin-weighted spherical harmonics

Ψ4(t, r, θ, φ) =
lmax∑
l=2

∑
|m|≤ l

Ψlm
4 (t, r)−2Ylm(θ, φ) (4.8)

The number of terms used in this expansion is generally lmax ≤ 8 in our simulations. At

large r, Ψ4 is related to the gravitational wave amplitude, h, by

Ψ4 =
d2

dt2
h+ − i

d2

dt2
h×. (4.9)

2www.black-holes.org
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4.3.3 Eccentricity Reduction

Gravitational radiation tends to circularize in-spiralling compact binaries (Peters &

Mathews 1963; Peters 1964). We reduce orbital eccentricity with an iterative method

similar to the one described in (Boyle et al. 2007; Chu et al. 2009). One selects the initial

orbital frequency Ω0 from Kepler’s third law or from a Post-Newtonian calculation, while

assuming that the initial radial velocity, vr is zero. After the first simulation has run for

a sufficient length, about two orbits, we fit the time derivative of the orbital frequency,

Ω̇(t) as suggested in Buonanno et al. (2011a), to the function

Ω̇(t) = A0 (τ − t)−11/8 + A1 (τ − t)−13/8 +B cos
(
ϕ+ ωt+ qt2

)
. (4.10)

Here {A0, A1, B, ϕ, ω, q, τ} are the fitted parameters. The first two terms in Eq. 4.10

represent the smooth inspiral motion of the black holes, with functional form motivated by

PN calculations (Blanchet 2011). The oscillatory term captures effects due to eccentricity.

After the trajectories of an evolution have been analyzed via the fit in Eq. 4.10, we update

the parameters with

δΩ0 = −Bω sinϕ

4Ω2
0

, (4.11)

δvr =
Bd0 cosϕ

2Ω0

, (4.12)

where d0 is the binary separation. These updates are designed to circularize low eccen-

tricity Newtonian binaries. The eccentricity of the binary is estimated as (Buonanno

et al. 2011a),

e =
|B|
2Ω2

0

. (4.13)

This process is continued iteratively, typically another one or two times, until the eccen-

tricity is reduced to e . 0.002. The effect of eccentricity on junk radiation is discussed

in section 4.4.2.
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4.3.4 Simulations

We run BBH evolutions using both conformally flat and SKS initial data. We consider

five different initial separations for CF data, D/M = {12, 15, 20, 25, 30}, and D/M =

{12, 15, 20} for SKS data, where M is the total mass of the binary. At each separation

we consider six different spins, χ = {0, 0.1, 0.2, 0.3, 0.4, 0.5}. In each case the black holes

are of equal mass, equal spin, and the spin is aligned with the orbital angular momentum,

i.e., in the the +ẑ direction. To test the convergence of our measurements, each run is

done at four resolutions, which we will refer to as N0 (lowest resolution) to N3 (highest

resolution). Each evolution is run to about t ∼ 1000M , which is long enough to accurately

measure the eccentricity, and make sure that it is sufficiently low for our purposes, i.e.,

e . 0.002.

4.4 Methodology

We employ three diagnostics to measure the initial relaxation of the initial data: the out-

going pulse of radiation (junk radiation), the change in black hole mass during relaxation,

and the change in black hole spin during relaxation.

4.4.1 Pulse in the Gravitational Waveform

In this section we discuss our methods of quantifying the amount of junk radiation

present in a given simulation. It is not immediately obvious what the best way to do this

is. Lovelace (2009) considered the maximum value of the Newman-Penrose waveform,

max{R|Ψlm
4 |}, where R is the extraction radius of the gravitational waves. The (l,m) =

(2, 2) and (2, 0) modes were found to dominate. We find, however, that this method has

some inadequacies. This is illustrated by comparing R|Ψlm
4 |(tR), where tR is the retarded

time, tR = t− R, in two different simulations. These use CF data, with the parameters

{D = 15M , χ = 0.2}; one is at our typical highest resolution N3, and another at an even
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higher resolution, N7. In terms of the total number of basis functions X, X1/3 ∼ 58 for N3

and X1/3 ∼ 78 for N7. The (2, 0) and (2, 2) modes are shown in the top panel of Fig. 4.2.

It is clear that the (2, 0) mode is significantly different between N3 and N7, in both the

largest peak and in the subsequent smaller peaks, and that these differences are not well

captured simply by using max{R|Ψ4|}. In Fig. 4.2 we also show these quantties for an

SKS run with the same parameters. Because the waveform is significantly different from

the CF waveform in both the number of peaks and their relative heights, it is clear that

max{R|Ψlm
4 |} does not encapsulate this waveform very well.

As a more robust quantity that incorporates the whole waveform, and is less resolution

dependent than max{R|Ψlm
4 |}, we consider the total energy carried away from the system

by gravitational waves. The gravitational wave energy flux is (Boyle et al. 2008)

F (t) =
1

16π

∑
l,m

ḣ2
lm(t), (4.14)

where

ḣlm(t) =

∫ t

t0

Ψlm
4 (t′)dt′ +Hlm. (4.15)

The Hlm are integration constants. To measure the initial pulse of radiation, we use

t0 = 0 and Hlm = 0. The energy flux, F (t), is shown in the red curves in Fig. 4.3

for conformally flat initial data (top panel) and SKS initial data (bottom panel). The

initial burst is apparent in these figures; at late times tR & 40M , F (t) approaches the

nearly constant energy flux of the astrophysical inspiral. We are now faced with two

problems: We would like to isolate the energy carried in junk-radiation from the energy-

flux astrophysical inspiral. And, we would like to do so in a robust way, independent of

arbitrary choices. We proceed as follows:

First, we assume that the astrophysical energy flux begins at a time t22, i.e.

F22(t) = F0 θ(t− t22). (4.16)

Here, F0 represents the value of F (t) after the pulse of junk-radiation and θ represents

the step-function. The choice of a constant value F0 is reasonable since the timescale
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Figure 4.2: Top Panel: Comparison of the junk radiation profiles for our usual highest resolution

(N3) and an additional run at a much higher resolution (N7). We see, especially for the (2, 0)

mode, that the maximum peak of the junk radiation is much higher for N7, but additional peaks

are comparable or higher for N3.

Bottom Panel: Junk radiation profile for an SKS run with the same parameters as in the top

panel. The waveform is significantly different in structure from the CF waveform.
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on which F22 changes significantly is much longer than the junk radiation timescale. We

will discuss our choice for t22 shortly. The energy in the junk-radiation is now taken as

EJ =

∫ tC

0

[
(F (t)− F22(t)

]
dt, (4.17)

where the cut-off time tC is chosen after the junk radiation has decayed, i.e. tC − R &

50M . In Fig. 4.3 we plot a representative example of the computation of EJ for CF (top

panel) and SKS (bottom panel) data. The blue dashed curves represent F22(t), while the

shaded area represents EJ . As already apparent from Fig. 4.3, the precise value of tC is

not extremely important, because at late times F (t)− F22(t) ≈ 0.

It remains to chose a prescription for the choice of t22, the time when we deem

the astrophysical waveform to “turn on”. A simple method would be to choose t22 to

correspond to max{F (t)}. This seems reasonable for the conformally flat curve in Fig. 4.3,

but the more wide double-peaked structure of the SKS curve shows that another approach

is needed. Instead we take t22 to correspond to the flux weighted centre of the junk

radiation waveform. The first moment of F (t)− F22(t), in other words. So,

t22 =

∫ tC
0
t (F (t)− F0θ (t− t22)) dt∫ tC

0
(F (t)− F0θ (t− t22)) dt

. (4.18)

This equation is solved iteratively for t22.

4.4.2 Uncertainty in EJ

Several effects may influence the quantity EJ computed by Eqs. (4.17) and (4.18). Nu-

merical truncation error can be estimated by performing the simulations with different

numerical resolution. Our simulations show that in general, EJ increases with resolution.

This is because junk radiation is a short wavelength feature, so greater resolution allows

for more of the features present to be captured. To estimate the uncertainty in EJ , we

compare our {D = 15M , χ = 0.2} runs at N3 and N7, as discussed earlier. We find that

at N7, EJ is about 13% greater than at N3. Since we don’t have such high resolutions
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Figure 4.3: The flux F (t) is plotted for two different runs, both with parameters D = 15M and

χ = 0. Conformally flat initial data is in the top panel and SKS initial data is in the bottom

panel. The solid red curve represents the total flux, F (t). The dashed blue curve represents

F22(t), the astrophysical flux that we subtract from F (t). The shaded area between the two

curves is the energy in junk radiation, EJ .
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runs available for each of our cases, we assume that we can use this same 13% difference

for each of our runs. We are also assuming that at N7 the junk radiation is nearly fully

resolved, so that this difference is a good indication of the true value. Finally, we use this

same uncertainty of 13% for the SKS runs as well - while the technology is different for

the SKS runs, it should still be a reasonably good estimate of the numerical truncation

error in them.

A second uncertainty arises through the choice of tC . This number is chosen manually

for each run, introducing a subjective element into the analysis. Examining the flux

curves in Fig. 4.3, for example, tC could conceivably be chosen differently by ∼ 10M

and still be a reasonable choice. Our definition Eq. (4.17) was meant to be robust to

small changes in tC . For EJ to be a robust measurement, it should therefore not change

significantly in response to changes δtC that are of that order. Indeed, this is enforced by

our definition of EJ , which subtracts out the additional flux in the astrophysical (2, 2)

mode. To verify this assertion, we compute EJ with tC in Eq. (4.17) replaced by tC +δtC .

Figure 4.4 shows that indeed EJ is almost independent of δtC . In Fig. 4.4, EJ is plotted

against tC in the representative {D = 15M,χ = 0} case. For each run we define a

fractional error parameter due to the choice of tC , where we average the differences for

δtC = −10M and δtC = 10M :

∆E

E
=
|EJ(tC + 10M)− EJ(tC)|+ |EJ(tC)− EJ(tC − 10M)|

2EJ(tC)
(4.19)

This uncertainty ranges from ∼ 0.25% to ∼ 3.75% throughout all of our simulations.

A third error in EJ arises through the finite radius of gravitational wave extraction.

In this study, gravitational waves are extracted at radii Rex ∼ 300−400M . Gravitational

waves extracted at finite radii are subject to near-field effects which may cause the ex-

tracted waveforms to differ from the one that would be observed at infinity. To estimate

the error in EJ due to the finite extraction radius, we use the following procedure. For

each of our simulations, we compute EJ at several extraction radii, and examine EJ as a
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Figure 4.4: EJ is plotted against δtC , representing changes to the selected value of tC for runs

where D = 15M , χ = 0. The results for conformally flat initial data are shown in the top panel,

and SKS initial data in the bottom panel. Typical changes in EJ are on the order of a few

percent.
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function of 1/Rex. We then extrapolate

E∞ = lim
1/Rex→0

EJ(1/Rex) (4.20)

using a linear fit in 1/Rex to estimate the behaviour of EJ at infinity. We then take the

fractional difference

∆E

E
=
E∞ − EJ

EJ
(4.21)

as our error estimate. This parameter is on the order of 10% for most of our runs. Note,

however, that we still use EJ and not E∞ as our measure of energy in the pulse. In

Fig. 4.5 we illustrate an example of this procedure, plotting EJ vs. 1/Rex for one case,

{D = 15M,χ = 0}, for both CF and SKS data.

A final factor that could influence the estimated EJ is the eccentricity of the or-

bit of the black holes. Previously we argued that astrophysically realistic binaries have

low eccentricity. Because our NR simulations cannot be run at precisely e = 0, we

now consider how a small residual eccentricity affects the junk radiation, specifically

the computed EJ . We examine the case {D = 25M,χ = 0.1} for CF data, as this

particular case encountered a fairly large range of eccentricities in the eccentricity re-

duction process; e ∼ {0.03, 0.008, 0.0006}. The measured EJ for these three cases is

106EJ = {7.053 ± 0.38%, 7.204 ± 0.53%, 7.174 ± 0.58%}. Here, the quoted uncertainty

is purely due to the choice of tC . The differences between the first two eccentricities is

2.10% and it is 0.42% for the last two. Because the latter difference is less than the

uncertainty due to the choice of tC , the two runs are effectively indistinguishable, and

we conclude that we can safely ignore the effects of residual eccentricity once we have

e . 0.008. However, to be “safe”, we have generally reduced the eccentricity of all of our

runs to e . 0.002.
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Figure 4.5: EJ as a function of 1/Rex, where Rex is the extraction radius. This is for the case

where {D = 15M,χ = 0}, with CF data in black and SKS data in red. The dashed lines

represent the best linear fit. The extrapolation to 1/Rex → 0 allows us to estimate the error on

EJ due to finite extraction radius effects.
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4.4.3 Transient Behaviour in Black Hole Quantities

4.4.3.1 Mass Increase

In addition to the energy carried away in junk radiation, we utilize two further diagnostics

of transients arising from imperfect initial data. The first diagnostic comes from the

irreducible mass of the black hole, Mirr =
√
A/16π, where A is the area of the black

hole’s apparent horizon. In the first few M during the evolution, the apparent horizon

mass Mirr(t) increases by a small amount, before settling down to an approximately

constant value. This effect is visible in Fig. 4.6 for 0 ≤ t/M ≤ 10. We characterize the

increase in mass due to initial transients by

δM(t) =
Mirr(t)

Mirr(0)
− 1 (4.22)

and we define the equilibrium parameter δM = δM(teq). Here teq is a time where the

mass-increase is complete has and levelled off; typically ∼ 20M .

For SKS initial data the behaviour of Mirr(t) is more complex. Within the first few

M , Mirr(t) shows a rapid increase, presumably due to relaxation of the geometry in the

immediate vicinity of the black holes. The trend here is similar to the CF initial data, in

that larger spins result in a larger increase ofMirr(t), albeit the magnitude of the increase

is about a factor of 50 smaller for SKS initial data. Subsequently, starting at t ∼ 40M ,

the SKS simulations show a second set of features, oscillations with amplitude ∼ 2×10−5

lasting about 60M . The features of these oscillations are similar to each other even for

runs with different spin black hole spin χ. Therefore, it is likely that these oscillations

are caused by features in the initial data set away from the black holes.

There is a clear qualitative difference between the CF and SKS curves. The CF data

forms an increasing sequence of δM with χ, and δM is clearly well-defined in each case.

However, the SKS data exhibits oscillatory behavior that is relatively spin-independent,

and there is not a clear way to robustly define δM . To further underscore the difficulties

of the SKS data, figures 4.7 and 4.8 show convergence tests for one of the mass curves
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Figure 4.6: Normalized change in irreducible mass curves for CF data (top panel) and SKS

data (bottom panel) for all of the different spins in the covered parameter space and D = 15M

remaining constant.

shown in fig. 4.6, {D = 15M,χ = 0.3}. The top panels of Figs. 4.7 and 4.8 show Mirr(t)

of one of the black holes computed at different numerical resolutions, and the bottom

panels show differences in Mirr(t) computed at neighboring resolutions. Note that our

parameter space studies presented in Sec. 4.5 were usually performed on resolution N3;

we have run N4-N6 for select cases to test convergence. The CF initial data shows

rapid convergence and the features in the upper panel of Fig. 4.7 are well resolved. For
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Figure 4.7: Convergence test of Mirr(t) for CF initial data in the case {D = 15M,χ = 0.3}.

The top panel shows Mirr(t) at different resolutions, and the bottom panel shows the difference

between consecutive resolutions.

the SKS data shown in Fig. 4.8 we do not find convergence - the differences between

resolutions do not strictly decrease with increasing resolution, and these differences are

of similar order to the features that we are trying to quantify. Our conclusion is therefore

that the magnitude of the change Mirr(t) for SKS initial data approaches our numerical

truncation error, and are furthermore ambiguous due to the extra oscillatory features

present in Fig. 4.6. In the parameter space survey of junk radiation in Sec. 4.5 below,

we will not attempt to quantify them in detail, beyond giving upper bounds on δM for

the SKS data.
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Figure 4.8: Convergence test of Mirr(t) for SKS initial data in the case {D = 15M , χ = 0.3}.

The top panel shows Mirr(t) at different resolutions, and the bottom panel shows the difference

between consecutive resolutions.
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4.4.3.2 Spin Decrease

Our third and final quantification of junk radiation comes from the black hole’s spin S(t).

At early times in each simulation, the spin of each black hole decreases and oscillates

rapidly. Eventually, at some time teq, the spin reaches some approximately constant

value, which is lower than the initial spin, S(0). This effect can be interpreted as angular

momentum being carried away from the system by junk radiation. Note that we use the

dimensionful quasi-local angular momentum, measured with approximate Killing vectors

as described in Lovelace et al. (2008). We use S rather than χ = S/M2 to de-couple the

change in spin from the change in mass. This effect is illustrated in Fig. 4.9, where we

plot δS(t) for all of our simulations done at D = 15M .

Analogous to δM(t), we define δS(t) as the fractional spin decrease of the black hole:

δS(t) =
S(t)

S(0)
− 1, (4.23)

and the equilibrium parameter δS = δS(teq), where teq the time when δS(t) has reached

an approximately constant value.

In Fig 4.9, the SKS data shows oscillatory behavior that makes it difficult to define

δS, similar to the behavior of δM reported in Fig. 4.6. After the oscillations, δS does not

neatly form a monotonic sequence in χ. Analogous to Figs. 4.7 and 4.8, Figs. 4.10 and

4.11 present convergence tests for δS(t), again for the case {D = 15M,χ = 0.3}. Similar

to what was seen in the convergence test forMirr(t), the CF data converges rapidly, while

we see no clear convergence in the SKS data going up to N6, and the differences between

the resolutions are of a similar order to the features we are trying to quantify. Thus we

make a similar conclusion as we did for the mass transients: δ S is small for SKS data

compared to CF data for the spins we consider (δ S ∼ −2× 10−5vs.−5×10−4 at χ = 0.5).

But because of the confounding oscillatory features and the lack of convergence, we do

not seek to further quantify δS for the SKS data.
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Figure 4.10: Convergence test of δS(t) for CF initial data in the case {D = 15M,χ = 0.3}.

The top panel shows δS(t) at different resolutions and the bottom panel shows the differences
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4.5 Results

4.5.1 Energy in Junk Radiation

Figure 4.12 shows the energy in the pulse of junk radiation, for all of our runs, as a

function of spin. As was expected, the energy in junk radiation is a decreasing function

of initial separation. We also see that at a given separation and spin, the EJ is always

smaller for SKS intiail data than for CF intitial data; typically by about a factor of 2.

Within the uncertainty of our simulations, EJ has virtually no dependence on the spins

of the black holes. The only exception may be that for conformally flat data, EJ seems to

increase as χ→ 0.5. This is most visible in the D = 12M case. Perhaps the dependence

of EJ on χ could become important for χ > 0.5 if this trend continues.

Figure 4.13 considers the dependence of EJ on the separation D of the black holes.

Because there is virtually no dependence of EJ on χ (cf. Fig 4.12), we plot only χ = 0

in Fig 4.13. EJ vs. D for both CF and SKS data are well approximated by power laws.

For conformally flat data,

ECF
J ∼ 0.062

(
D

M

)−2.79

, (4.24)

and for SKS data

ESKS
J ∼ 0.020

(
D

M

)−2.55

. (4.25)

Note, however, the latter is a fit to three data points only.

4.5.2 Mass Increase

We now consider the spin and separation dependence of δM . As discussed earlier, we

only consider the transient quantities for CF data, due to the small magnitude of δM

and δS and their non-convergence in SKS data. We begin by looking at the dependence

of δM on separation. In Fig. 4.14, we plot it for curves of constant χ3.

3we omit χ = 0 because the data is too noisy
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Figure 4.12: Energy in junk radiation as a function of χ at various initial separations, for con-

formally flat initial data (left panel) and SKS initial data (right panel). Within the uncertainty

limit, there is virtually no dependence of EJ on χ.
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data, respectively. The dotted lines are power law fits, with indices of ∼ −2.79 and ∼ −2.55

respectively.
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The data are nearly independent of distance at high spin, while there is a clear

dependence at lower spin. In each case, we fit the data to a power law plus a constant

offset. The fits are

δMχ=0.1 = 0.00017 (D/M)−1.76 + 8.19× 10−7,

δMχ=0.2 = 0.00021 (D/M)−1.36 + 1.01× 10−5,

δMχ=0.3 = 0.00015 (D/M)−0.75 + 4.60× 10−5,

δMχ=0.4 = 0.00026 (D/M)−0.87 + 1.83× 10−4,

δMχ=0.5 = 0.00047 (D/M)−0.99 + 5.08× 10−4.

In Fig. 4.15 we show a log-log plot of δM on χ for curves on constant D. In each case

we compute the best fit power law to the data. These fits are

δMD=12M = 0.0042χ3.24,

δMD=15M = 0.0046χ3.39,

δMD=20M = 0.0052χ3.56,

δMD=25M = 0.0056χ3.66,

δMD=30M = 0.0059χ3.74.

We see that the power law exponents are much larger in magnitude than the power

law exponents found in the δM vs. D fits. This shows that the dependence of δM is

much stronger on χ than it is on D. If we extrapolate these fits out to χ = 1, then

δM ∼ 0.004 − 0.006, which would be an appreciable, although not necessarily limiting,

effect.

4.5.3 Spin Decrease

As with the mass increase, we only attempt to calculate δS for CF data, as it was found

to not be convergent for SKS data. In Fig. 4.16 we plot δS vs. D for curves of constant
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Chapter 4. Spurious Radiation in BBH Simulations 155

χ. We omit χ = 0 because δS is not well-defined, and we omit χ = 0.1 because the data

is too noisy. The data are similar to those in Fig. 4.14, although there seems to be a

stronger dependence on initial separation.
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Figure 4.16: δS vs. D for CF initial data. The dotted curves are the best fit power law plus

constant offsets.
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In each case, we fit the data to a power law plus a constant offset. The fits are

δSχ=0.2 = 0.00031 (D/M)−1.28 + 3.70× 10−6,

δSχ=0.3 = 0.00034 (D/M)−0.84 + 6.03× 10−6,

δSχ=0.4 = 0.0014 (D/M)−1.19 + 8.35× 10−5,

δSχ=0.5 = 0.0026 (D/M)−1.13 + 3.45× 10−4.

In figure 4.17, δS is plotted as a function of χ, at different separations. In each case,

the data is a good fit to an exponential; at D = 15M ,

δS ∼ 1.563× 10−6e11.546χ. (4.26)

Fig. 19 of Lovelace et al. (2008) found a similar result, noting an exponential relationship

between ∆χ (defined analogously to δS in this chapter) and χ(trelax) for conformally flat

initial data. Their relationship is shown from χ = 0.5 to χ ∼ 0.93, however their ∆χ

matches the δS of this chapter in magnitude (∼ 5 × 10−4) at χ = 0.5, indicating a

convergent result between the two works. If we extrapolate the fit of Eq. 4.26 outwards,

we find that δS ∼ 1 at χ ∼ 0.84. Because this happens before χ = 1, this would set a

fundamental limit on the highest black hole spins that can be evolved using conformally

flat initial data. Note that because we fit to S and χ, this limit is difficult to directly

compute. We are only using five data points and extrapolating quite far, so this result

must be taken cautiously. However, Lovelace et al. (2008) found a similar maximum spin

limit to our extrapolated limit, as they could only evolve CF data with a maximum spin

of χ ∼ 0.93.

4.6 Conclusion

We have performed a parameter space study of junk radiation in binary black hole sim-

ulations. We studied the effects of initial separation and spin magnitude, for spins up to
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Figure 4.17: Semi-log plot of δS as a function of χ for CF data. The dotted lines are the best

fit exponentials.
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χ = 0.5, for both conformally flat and superposed Kerr-Schild initial data sets. We used

three diagnostics to quantify the amount of junk radiation — the energy carried away by

junk radiation, the transient mass increase due to junk radiation and the transient spin

decrease due to junk radiation.

For the energy present in the junk radiation, EJ , we found very little dependence on

the spin of the black holes, but a power law dependence on the initial separations, with

exponents of ∼ −2.79 for CF initial data and ∼ −2.55 for SKS initial data.

We were unable to directly quantify the mass and spin transients for SKS initial data

because of their small magnitudes and a lack of convergence. However, we are able to

say that they are below ∼ 2× 10−5 and ∼ 4× 10−5 respectively in the parameter space

we study. These are well below the typical values for CF data, by factors of about 50.

For CF data, for both the mass and spin transients, we see very little dependence on

initial separation. Instead however, we see very strong dependences on the spin of the

black holes, finding an exponential dependence for δS and a steep power law dependence

δM . Our curves for δS(χ) agree with a previous result found in Lovelace et al. (2008).

The exponential dependence of δS on χ sets a fundamental limit on the maximum spin

of black holes that can be evolved with conformally flat initial data.



Chapter 5

Conclusions & Future Work

5.1 Conclusions

With the recent direct detection of gravitational waves, it has never been more exciting

to be in the numerical relativity community. Based on the preliminary event rate predic-

tions, the first detection of gravitational waves from a neutron star cannot be far away -

if no detections are made in the Advanced LIGO’s next two observing runs, significant

constraints will be placed on the BNS merger rate (Abbott et al. 2016c). With that

comes the exciting possibility of the detection of an electromagnetic counterpart.

In this thesis we have largely focused on spinning neutron stars in compact object

binaries. In chapter 2 we introduced our code and methodology for creating initial data

for binary neutron star systems with arbitrary spins, and showed that we are able to

created convergent, constraint-satisfying initial data. We introduced a novel method

to directly measure the spin of the neutron stars using quasilocal approximate Killing

vectors, and we showed that this method is accurate and robust. We also evolved three

binary configurations, including one highly-spinning precessing system. We showed that

the properties of these systems agree remarkably well with Post-Newtonian predictions,

even without account for the neutron star tidal terms. We also showed that we are able

to control the eccentricity of the systems to an accuracy of ∼ 0.1%. Upon evolving
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the systems, we found large density oscillations in the neutron stars. We determined

that these were due to an excited quasi-normal mode, due to imperfect initial data. As

discussed in the appendix of chapter 2, however, we note that these oscillations were

present because of an error that was present in the code. Upon fixing that error, the

density oscillations drop by a factor of ∼ 40, and that we are able to construct initial data

with much higher spins than previously. The work done in chapter 2 leaves open maybe

possible directions for future studies. At the time of writing chapter 2 the SpEC code had

a difficult time merging binary neutron stars, and so we were only able to simulate orbits

of the late inspiral. It remains an open, and interesting, question as to how high NS

spin affects the dynamics of the merger. For example, how neutron star spin affects the

properties of the hypermassive neutron star, how it affects the size of the disk, and how

it affects the electromagnetic emission if magnetic fields are present are all interesting

questions that could be investigated in the future. Given the results of the appendix,

future studies should be able to use even higher spinning stars. One can then investigate

how well Post-Newtonian match with the numerical relativity simulations at even higher

spins. It is also interesting to ask how the spin interacts with neutron star compactness

and binary mass ratio in the dynamics of the inspiral and merger.

In chapter 3 we extended the code of chapter 2 to create initial data for black hole–

neutron star (BHNS) binaries. To show the robustness of the code, we create many

different initial data sets across the BHNS paramter space. We vary the neutron star

spin from χNS = 0 to χNS ∼ 0.7, near the neutron star mass-shedding limit, the black

hole spin from χBH = 0 to χBH = 0.99, and the mass ratio from q = 2 to q = 10. We

also vary the directions of the neutron star spin and black hole spin, and consider three

different compactnesses of the neutron star. An obvious extension of this work would be

to evolve and merge some of these initial data sets. We created 36 initial data sets that

vary from already published data sets (Foucart et al. 2013a), and so this would facilitate

the comparison quite well. One could also use spinning NS in BHNS systems to try to
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explore the maximum mass of accretion disks - adding spin on the neutron star should

make the material less strongly bound and increase the disk mass further.

Finally, in chapter 4 we studied the paramter space dependence of spurious, "junk",

radiation in binary black hole (BBH) simulations. To measure the amount of junk radi-

ation present we introduced three diagnostics - the energy in the pulse of junk radiation,

and the mass increase and spin decrease transient quantities. We considered how these

depend on the spins and initial separations of the black holes, and we compared con-

formally flat (CF) initial data with superposed Kerr-Schild (SKS) initial data. In terms

of the energy present, we found that it does not depend signficantly on spin, but found

power law relations with the initial separations. The energy present in the CF data was

larger by a factor of 2− 3. We were unable to directly quantify the transient quantities

for SKS initial data beacuse of their small magnitude and their lack of convergence. For

the CF data we found weak dependence on initial separation, but a strong power law

dependence on spin for the mass increase, and an exponential dependence on spin for

the spin decrease. There are several directions in which one could extend this research.

The same sort of analysis could be performed using a different type of initial data, such

as those adding tidal effects or outgoing gravitational radiation. One could also extend

these methods further across the BBH paramter space - going to higher black hole spins,

non-equal mass ratios, non-aligned spins, or further/closer separations.
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