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Abstract
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Graduate Department of Astronomy and Astrophysics

University of Toronto

2016

In this thesis, we harness the power of modern scientific computing to explore the formation and

evolution of cosmological structure in a wide variety of astrophysical scenarios. We explore the

nonlinear dynamics associated with the interplay between cold dark matter (CDM), baryons,

ionizing radiation, and cosmic neutrinos, within regimes where analytic calculations necessarily

fail. We begin by providing an overview of structure formation and its connections to the fields

of study considered here: the epoch of reionization, galactic substructure evolution, and cosmic

neutrinos. We then present a rigorous numerical convergence study of cosmological hydrody-

namics simulations post-possessed with radiative transfer to study the impact of small-scale

absorption systems within the intergalactic medium (IGM) during the onset of reionization.

We present converged statistics of the IGM on smaller scales and earlier times than previously

considered. Moreover, we provide strict resolution limits for hydrodynamic simulations to prop-

erly resolve the unheated IGM. Next we study the infall and dynamical evolution of CDM halos

in a galactic host. We find the behaviour of low-mass subhalos is qualitatively different than

previously described for high-mass subhalos. In particular, the evolution of low-mass subhalos,

with masses less than 0.1 per cent that of the host, is mainly driven by their concentration. This

presents an opportunity to use concentration as a predictive indicator of substructure evolu-

tion. We finish this thesis with an investigation of a recently proposed method for constraining

individual neutrino mass from cosmological observations. Such a detection depends on the

ability to reconstruct the CDM-neutrino relative velocity, which we show can be accomplished

using linear transformations of an observed galaxy field. Based on this, we perform the world’s

largest cosmological N -body simulation and present preliminary results for the observational

prospects of cosmic neutrinos.
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Chapter 1

Introduction

Astronomy is considered to be the oldest science known to humankind. Ancient civilizations

across the globe gazed into the night sky with a sense of wonder and curiosity of our place in the

cosmos. Since then we have developed an increasingly sophisticated picture of our surrounding

universe. The modern cosmological picture is that of a universe starting with a big bang some

14 billion years ago. The primordial soup of fundamental particles in the early universe evolved

over time into an intricate network of cosmological structure containing an endless number of

planets, stars, and galaxies. There is even more than meets the eye: beneath the network of

luminous sources hides a dark sector of the universe. We now know of the existence of dark

matter, a mysterious form of matter that dominates the mass of galaxies, and of dark energy,

that drives an accelerated expansion of the cosmos. The modern picture of cosmology seems to

become more intriguing the deeper we probe the universe.

We are now in the era of precision cosmology where technological advances allow us to

understand the nature of the universe at an increasing pace. An assortment of ground- and

space-based telescopes have measured the composition of the current universe in extreme detail.

Dark energy dominates the universal energy budget at a level of 70% with dark matter coming

second at a level of 25%. Regular baryonic matter, making up the familiar elements on the

periodic table, constitutes only 5% of the universe! Upcoming observations that plan to map the

three-dimensional structure around us will further refine our understanding of the universe. On

the theoretical side, much has been learned in recent decades due to advancements in scientific

computing. High performance supercomputers continue to represent an indispensable tool in

scientific discovery, enabling complex computations that would otherwise remain beyond our

reach. Of particular interest here are cosmological simulations that trace the nonlinear dynamics

of structure formation within regimes where analytic calculations fail.

This thesis is broadly concerned with the nonlinear formation and evolution of cosmic struc-

ture. This is studied in the context of various astrophysical scenarios including the epoch of

reionization, galactic substructure evolution, and cosmic neutrinos. The underlying connection

between each of the research projects presented here is the the study of nonlinear structure

formation with the aid of cosmological simulations. In this Chapter, we provide the reader

1



Chapter 1. Introduction 2

with an introduction to the field of cosmological structure formation. Afterward, we provide

an overview of each of the astrophysical scenarios studied in this thesis.

1.1 Cosmological Structure Formation

This section provides an overview of cosmological structure formation. This material provides

an underlying framework of the modern picture of cosmology and is thus well documented in

standard text books (e.g., Peebles, 1980; Dodelson, 2003; Schneider, 2006).

We begin with the cosmological principle, which asserts that the universe is homogeneous

and isotropic on large scales. This assumption is empirically justified by measurements of the

cosmic microwave background (CMB) and large-scale distribution of galaxies. We also know

from redshifted light of nearby galaxies that the universe is expanding. The notion of distance

in such a universe is specified by the Friedmann-Lemı̂atre-Robertson-Walker (FLRW) metric:

ds2 = −dt2 + a(t)2
[
dr2 + Sk(r)

2
(
dθ2 + sin2θdφ2

)]
, (1.1)

where (r, θ, φ) represent a comoving spherical coordinate system and we have chosen units such

that the speed of light c = 1. The function Sk(r) depends on the spatial curvature of the

universe; current evidence suggests a spatially flat universe for which Sk(r) = r. The scale

factor, a(t), describes the compression or expansion of the coordinate system with time and

is normalized such that a(t0) = 1 at the present time. The scale factor is related to the

cosmological redshift, a = (1 + z)−1, with z denoting the relative change in the wavelength of

emitted light observed from a distant object due to cosmic expansion.

The scale factor provides information on the expansion history of the universe. General

relativity can be used to relate a(t) to the energy content of the universe based on the FLRW

metric. For a flat universe, this yields expressions for the first and second derivatives of a,

collectively known as the Friedmann equations:(
ȧ

a

)2

=
8πG

3
ρtot,

ä

a
= −4πG

3
(ρtot + 3ptot) , (1.2)

where ρtot and ptot are the total energy density and pressure summed over all constituents of

the universe. We can further derive an expression for energy conservation by substituting the

derivate of the first Friedmann equation into the second equation:

ρ̇tot = −3
ȧ

a
(ρtot + ptot). (1.3)

We live in a universe containing contributions from radiation (ρr), non-relativistic matter (ρm),

and dark energy (ρΛ). Each of these components has an equation of state, p = wρ, where w
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is 1/3, 0, and -1 for radiation, non-relativistic matter, and dark energy, respectively. Plugging

this form into equation (1.3) shows that ρ ∝ a−α where α = 3(1 + w). Hence, radiation and

non-relativistic matter evolve as ρr ∝ a−4 and ρm ∝ a−3, respectively, while ρΛ is constant in

time. We may rearrange the first Friedmann equation to define a critical density:

ρcrit =
3H2

8πG
(1.4)

In this expression we have defined the Hubble parameter, H ≡ ȧ/a, which we parameterize

with the dimensionless number h such that H0 = H(t0) = 100h km Mpc−1 s−1 at the current

time. It is often convenient to normalize the energy density of each species to the present-day

critical density. In this case, we define the quantity Ωi ≡ ρi/ρcrit,0. The sum over Ωi is unity

for the flat universe assumed here.

With this framework in hand, we may describe the formation of cosmological structure.

Our goal is to model the evolution of density perturbations under the influence of gravity. In

many cases, it is sufficient to assume a universe containing only pressure-less dust representing

the dark matter component of the universe. The standard approach is to model the evolution

in density, ρ, and proper velocity, v = dr/dt, using the fluid approximation for which we have

three coupled differential equations:

∂ρ

∂t
+∇ · (ρv) = 0,

∂v

∂t
+ (v · ∇)v = −∇P

ρ
−∇Φ,

∇2Φ = 4πGρ. (1.5)

These are the continuity, Euler, and Poisson equations, describing mass conservation, momen-

tum conservation, and self-gravity of the fluid, respectively. In the case of pressure-less dust,

we set the ∇P term in the Euler equation to zero.

In general, equations (1.5) cannot be solved analytically. However, under a certain set

of assumptions, we can solve them exactly using linear perturbation theory. We begin by

with a homogeneous universe of background density, ρ̄, and append small perturbations, δ ≡
ρ/ρ̄− 1. Next, we switch to a comoving coordinate system, x = r/a, and transform derivatives

accordingly. We consider evolution in only the small perturbations, δ, and its potential, ∇2Φ̂.

Applying these changes to equations (1.5) and keeping only terms of linear order in δ and ẋ

yields:

∂δ

∂t
+∇ · ẋ = 0,

ẍ + 2
ȧ

a
ẋ =

∇Φ̂

a2
,

∇2Φ̂

a2
= 4πGρ̄δ. (1.6)
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These equations can be solved to a more succinct form:

δ̈ + 2
ȧ

a
δ̇ = 4πGρ̄δ. (1.7)

This expression contains neither partial derivatives with respect to spatial coordinate nor co-

efficients that depend on x. As such, we can factorize the spatial and temporal components so

that we have solutions of the form δ(t) = D(t)δ0. There are two such solutions, one for which

δ grows in time, and one for which it decays. For cosmological purposes, the decaying solution

becomes subdominant at late times and can be ignored. For the growing solution, we call the

function D(t) the linear growth factor.

We can use this result to describe the growth of density perturbations over time. In this

case, it is useful to speak in terms of the power spectrum, P (k), defined in Fourier space as

P (k) = 〈|δ(k)|2〉. (1.8)

The power spectrum provides a complete statistical description of the density field for the

Gaussian random fields predicted from basic inflationary models. In linear theory, Fourier

modes evolve independently and we say that P (k, t) is related to some initial power spectrum,

P0(k) = P (k, t = 0), convolved with the linear growth factor and transfer function:

P (k, t) = D2(t)T 2(k)P0(k). (1.9)

The transfer function, T (k), encodes the transformation of the initial power spectrum based on

scale-dependent growth between horizon crossing and matter-radiation equality. Inflationary

models predict a primordial power spectrum, P0 ∝ kns , with power-law index ns ∼ 1.

We have used linear perturbation theory to derive an analytic solution to the growth of

cosmological structure. However, this solution becomes increasingly inaccurate as δ continues

to grow and completely breaks down when δ � 1. At the present epoch, this condition is

already broken on the scale of galaxy clusters (∼ 5 Mpc) and is even worse on smaller scales.

We must thus rely on methods outside of linear perturbation theory if we hope to provide

an accurate picture of cosmological structure formation on all scales. This is conventionally

achieved using cosmological N -body simulations that solve the fluid equations numerically.

The N -body setup begins with an initial realization of the matter density field. The idea is to

generate initial conditions at sufficiently early time that linear theory is valid and equation (1.9)

can be used to create a realization of the cosmology specified by the functions D(t), T (k), and

P0(k). This is achieved in Fourier space by sampling δ(k) = n(k)
√
P (k) where n(k) is a random

white noise field satisfying 〈|n(k)|2〉 = 1. This result is inverse Fourier transformed to provide

the density field in real space. The standard approach is to then perturb N -body particles

from an uniform lattice based on the gravitational potential generated by the sampled density

field. Particles are subsequently evolved forward in time using a repetitive process of computing
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gravity, moving particles, computing gravity, etc. The gravitational force is computed using

some combination of particle-particle, particle-mesh, and tree algorithms (see, e.g., Hockney &

Eastwood, 1988).

Cosmological N -body simulations provide an invaluable tool for studying the nonlinear

growth of collisionless dark matter. In many cases, however, it is important to include the

physics of collisional baryonic gas. This is accomplished with hydrodynamic simulations that

discretize the baryonic fluid into either volume elements (e.g., Bryan et al., 2014) or smoothed

particles (e.g., Springel, 2005). In this case, the fluid equations are supplemented with the first

law of thermodynamics describing the internal energy, u, of the gas:

∂u

∂t
+ (v · ∇)u = −P

ρ
∇ · v − Λ(u, ρ)

ρ
. (1.10)

Here the function Λ describes external sinks and sources of thermal energy. The gas is modelled

as an ideal gas with equation of state, P = (γ−1)ρu, where γ is the adiabatic exponent. Modern

hydrodynamic simulations often contain prescriptions for various baryonic physics including

radiative cooling and heating, star formation, and feedback from supernovae and/or active

galactic nuclei.

1.2 The Epoch of Reionization

The epoch of cosmic reionization represents a major evolutionary transition in the physical

state of the universe. This period was marked by the formation of the first luminous sources,

putting an end to the cosmological dark ages, and initiating a process whereby ionizing photons

gradually transformed the intergalactic medium (IGM) from being mostly neutral to predom-

inately ionized. This epoch is aptly named as reionization reverts the matter content of the

universe to the ionized form that existed after the big bang and up to the epoch recombination.

The progression of reionization is strongly driven by this history of ionizing sources within the

early universe. Studying the epoch of reionization thus presents the opportunity to learn about

the first cosmic structures and how they eventually relate to the present-day universe.

Observational constraints on the duration of reionization place it within the redshift range

6 . z . 15. The lower bound comes from the absence of the Gunn-Peterson trough (Gunn &

Peterson, 1965) in the absorption spectra of high-redshift quasars (Fan et al., 2006), indicating

that the IGM is highly ionized at lower redshift. The upper bound arises from measurements

of the optical depth to Thomson scattering, with τ ∼ 0.09 from the Wilkinson Microwave

Anisotropy Probe (WMAP) suggesting the IGM had already been significantly ionized by z ∼ 10

(Hinshaw et al., 2013). Note, however, that recent measurements of τ ∼ 0.07 from the Planck

satellite may push this upper bound to lower redshift (Planck Collaboration et al., 2015). In

either case, the Thomson scattering optical depth provides only an integral constraint on the

ionization history, so a wide variety of reionization morphologies are possible within current
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Figure 1.1: Image from So et al. (2014) showing neutral hydrogen density slices at redshifts z =
9.18, 8.00, 7.00, and 6.10 (clockwise from top left) from a hydrodynamic plus radiative transfer
simulation of reionization. This image depicts the evolutionary progression of reionization that
starts with individual H ii regions around luminous sources that grow, overlap, and eventually
percolate all space. The simulation box of width 20 Mpc box was resolved with 8003 mesh cells;
slices are one cell thick.

limits. Upcoming 21 cm observations (e.g., Mesinger et al., 2015) that directly trace the three-

dimensional distribution of neutral hydrogen in the universe offer the most promising prospect

to shed light on the detailed evolution of reionization.

In the meantime, theorists have made progress on understanding the process of reionization

using both semi-analytical (e.g., Miralda-Escudé et al., 2000; Furlanetto et al., 2004; Zahn

et al., 2005; Mesinger & Furlanetto, 2007; Geil & Wyithe, 2008; Alvarez et al., 2009; Santos

et al., 2010; Battaglia et al., 2013) and numerical (e.g., Gnedin, 2000; Ciardi et al., 2003; Iliev

et al., 2006; Trac et al., 2008; Finlator et al., 2009; Aubert & Teyssier, 2010; So et al., 2014)

treatments. The general picture of reionization begins with the first luminous sources forming

in rare overdensity peaks in the matter density field. Ionizing photons propagate outward from

each source, first clearing through the neutral hydrogen associated with their own interstellar

medium (ISM), then escaping into the surrounding IGM. This establishes a patchy network of

cosmological H ii regions surrounding each source. Over time, individual H ii regions grow in

size and eventually overlap to percolate all space so that any point in the IGM is exposed to

multiple sources of ionizing radiation. During this time, the volume fraction of ionized gas in the

IGM approaches unity, marking the completion of reionization. We depict this process visually

in Figure 1.1, showing snapshots of the neutral hydrogen density field from the hydrodynamic
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plus radiative transfer simulation of So et al. (2014).

In a more rigorous yet simple treatment, reionization can be thought of as a balance between

the sources and sinks of ionizing photons (see, e.g., Kaurov & Gnedin, 2014). In particular,

suppose we denote Ni as the number of ionizations per hydrogen atom required to keep some

volume of the universe ionized. The condition for reionization to occur is:

Nγ = Ni, (1.11)

where Nγ is the number of ionizing photons per hydrogen atom present within that volume. In

the naive situation where hydrogen recombinations do not occur, Ni = 1. With recombinations,

Ni(t) = 1 +

∫ t

0
Rdt

= 1 +
1

NH

∫ t

0
α〈nenHII〉dt, (1.12)

where the recombination rate, R = αnenHII, depends on the product of the recombination

coefficient, α, with the number density of electrons, ne, and ionized hydrogen, nHII. In equation

(1.12) angle brackets denote volume averages and NH represents the total number of hydrogen

nuclei in the region. Assuming ne = nHII, the condition for reionization becomes:

Nγ = 1 +
1

NH

∫ t

0
α〈n2

e〉dt. (1.13)

The left-hand side of equation (1.13) represents the source term which can be described by

the spatial clustering and spectral energy distribution of luminous sources. The right-hand

side denotes the sink term which is dominated by dense absorption systems with enhanced

recombination rates in the IGM (Miralda-Escudé et al., 2000). These absorption systems are

able to consume ionizing radiation from nearby sources while remaining neutral. As a result,

they act to impede the growth of cosmological H ii regions, thus acting as important obstacles

to the percolation phase of reionization (Gnedin & Fan, 2006; Choudhury et al., 2009; Alvarez

& Abel, 2012). From this simple description, it is easy to see that any model of reionization

should properly take into account both the sources and sinks of ionizing photons.

The distribution of absorption systems within the IGM is intimately connected to structure

formation. The smallest scale at which gaseous structures form is set by the cosmological

Jeans scale. This is defined as the scale below which pressure gradient forces of the gas resist

gravitational collapse. For an unheated IGM, the Jeans scale occurs at kJ ∼ 1 kpc with a

corresponding Jeans mass of MJ ∼ 104 M� setting the minimum mass threshold for gaseous

structure (see, e.g., Barkana & Loeb, 2001). Low-mass halos forming near the Jeans mass

are often referred to as minihalos (MHs) and are too small to form stars via hydrogen line

cooling. Instead, molecular hydrogen cooling is possible, though this will become suppressed

once the first luminous sources output enough ultraviolet (UV) radiation to dissociate molecular
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hydrogen (Haiman et al., 2000). Hence, we expect a collection of dark, dense MHs within the

IGM that act as important sinks of ionizing photons. However, MHs are not expected to survive

forever due to photoheating from ionizing sources (e.g., Shapiro et al., 2004; Iliev et al., 2005b).

Photoionized electrons inject kinetic energy into the IGM, which raises the gas temperature to

∼ 104 K and increases the Jeans mass to MJ ∼ 108 M�. Once substantial heating occurs, gas

in MHs becomes unbound and eventually disperses into the surrounding IGM.

In principle, the interaction between the sources and sinks of reionization can be modelled

using numerical simulations that capture the relevant scales and physics of interest. Unfortu-

nately, the computational demands of such simulations will remain beyond our technological

capability for the foreseeable future. In order to capture the global landscape of ionizing sources,

box sizes of width & 100 Mpc are required, while spatial resolutions . 1 kpc are needed to

resolve MHs. Hence, on the order of & 1015 volume elements are required! To circumvent these

demands, large-scale simulations of reionization tend to incorporate the effects of absorption

systems using sub-grid models calibrated from smaller, high-resolution simulations.

A popular quantity employed in sub-grid models is the “clumping factor”, defined as

cl = 〈n2
e〉/〈ne〉2. (1.14)

The clumping factor represents the enhancement in the recombination rate due to the presence

of unresolved absorption systems in the IGM. It can be used to rewrite the condition for

reionization as

Nγ = 1 +
1

NH

∫ t

0
αcl〈ne〉2dt. (1.15)

Recent simulations have converged on the value of cl ∼ 3 at z = 6 (Pawlik et al., 2009;

McQuinn et al., 2011; Shull et al., 2012; Finlator et al., 2012; Sobacchi & Mesinger, 2014). At

this redshift, the IGM has been effectively smoothed below the Jeans mass of the heated IGM

making numerical convergence possible due to more lenient resolution requirements. At higher

redshift, pertaining to the onset of reionization when the IGM is still cold, the value of cl is

much less certain. In order to quantitatively assess the importance of MHs as photon sinks

during reionization, numerical simulations must converge on the value of cl during the initial

stages of reionization.

1.3 Galactic Substructure Evolution

The standard cosmological model predicts that small-scale cold dark matter (CDM) perturba-

tions are the first structures to collapse and initiate nonlinear structure formation. Afterward,

a hierarchical assembly of these small building blocks leads to the formation of objects of in-

creasingly larger scale. Galaxies are expected to contain a nested level of substructure leftover

from this assembly process. This prediction is frequently confirmed in cosmological N -body

simulations. For example, Figure 1.2 shows the output of the Via Lactea I simulation (Diemand
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Figure 1.2: Image from Diemand et al. (2007a) showing the projected CDM density squared
for a MW analog host halo at z = 0. The host halo has a mass of 1.8 × 1012 M� and a virial
radius of 390 kpc. The projection covers a region 600 × 800 kpc and has a depth of 600 kpc.
The colour scale is logarithmic in density squared and covers 20 orders of magnitude. A high
level of CDM substructure is evident within the immediate environment of the host.

et al., 2007a), which followed the formation and evolution of an analog Milky Way (MW) halo.

A tremendous level of substructure is clearly visible in this image: roughly 104 subhalos are

identified within the virial radius of the host halo.

The level of substructure seen in Figure 1.2 is in stark contrast to the abundance of lumi-

nous satellites observed around the MW. This is an example of the so-called missing satellites

problem. This refers to the statement that N -body simulations predict roughly an order of

magnitude more dwarf galaxies around the MW than the ∼ 10 actually observed (Klypin et al.,

1999; Moore et al., 1999). One solution to this problem is that abundant substructure does

exist, but the majority of subhalos are not associated with luminous objects, due to inhibited

star formation. Other solutions include modifications to the matter power spectrum that sup-

press structure formation on small scales. This can be accomplished, for instance, in warm dark

matter scenarios (e.g., Lovell et al., 2012) or models of broken scale invariance in the initial

power spectrum (e.g., Kamionkowski & Liddle, 2000). The current consensus in the cosmolog-

ical community favours the first solution. The idea is that star formation is inhibited in small

subhalos due to a combination of photoheating from reionization and energetic feedback from

supernovae and stellar winds (see, e.g., Weinberg et al., 2013).

In any event, galactic substructure contains a wealth of astrophysical information. Due to
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the hierarchical nature of structure formation, subhalos provide important clues for the process

of galaxy formation. Moreover, measuring the abundance of substructure offers a unique probe

into the nature of dark matter on small scales. While luminous subhalos can be monitored

directly, the prospects for detecting dark substructure include gravitational lensing (Keeton &

Moustakas, 2009) and gamma-ray emission from potential dark matter annihilation (Pieri et al.,

2008). As is always the case, gleaning information from such observations will require accurate

predictions from theoretical modelling.

In this vein, it is instructive to consider the main physical processes affecting substructure

evolution. First, is dynamical friction, which describes the gravitational drag exerted on a

massive object passing through a uniform background of small objects. Chandrasekhar (1943)

showed that the magnitude of the dynamical friction force is

ffric = −4πG2lnΛ
m2

subρhost

v2
sub

, (1.16)

where msub is the mass of the subhalo, ρhost is the background density of the host, and vsub is the

orbital speed of the subhalo. The factor lnΛ, known as the Coulomb logarithm, represents the

logarithm of the ratio between the maximum and minimum impact parameters of background

particles contributing to the drag. Dynamical friction acts tangentially to the orbit, in the

direction opposite the subhalo’s motion. The timescale at which the subhalo is dragged to the

centre of the host can be evaluated by equating the torque caused by equation (1.16) to the

loss of orbital angular momentum. The result is (see, e.g., Binney & Tremaine, 1987)

tfric =
1.17

lnΛ

Mhost

msub
tcross, (1.17)

where Mhost is the mass of the host and tcross = Rhost/vsub is the crossing time at the radius

of the host. The dynamical friction merging time-scale is tfric ∝ µ−1 where µ ≡ msub/Mhost

is the mass ratio between the subhalo and host. That is, dynamical friction has decreasing

importance for less massive subhalos. In particular, dynamical friction can be effectively ignored

for µ . 10−3 as tfric becomes much larger than the Hubble time (Boylan-Kolchin et al., 2008).

The next physical processes affecting subhalo evolution are tidal stripping and heating.

These act to remove bound material from a subhalo in response to tidal forces from the host.

Tidal stripping occurs in the limit of slowly-varying tidal forces. In this case, a critical radius,

known as the tidal radius, is established at the boundary where the inward gravitational force

of the subhalo exactly balances the outward tidal force of the host. For spherically symmetric

density profiles, the tidal radius can be easily computed as

rtid =

[
Gmsub(< rtid)

ω2 − d2Φ/dr2

]1/3

, (1.18)

where ω is the angular speed of the subhalo and Φ is the potential of the host. Tidal forces
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from the host act to remove subhalo material outside rtid. If the subhalo orbit is decaying from

dynamical friction, rtid shrinks in time and progressively more mass is lost. Tidal heating is

a related process operating in the limit when a subhalo is exposed to a tidal force that varies

on a time-scale shorter than its crossing time. In this case, gravitational shocks inject kinetic

energy into the subhalo causing it to puff outwards (e.g., Hayashi et al., 2003). The central

density of the subhalo diminishes making it more prone to further mass loss. Tidal heating is

an important consideration, for example, during pericentre passage of highly eccentric obits or

during close encounters with other substructure.

In general, predicting substructure statistics at the present epoch is a nontrivial task due to

the extreme nonlinearity of the physical processes described above. Even when baryonic physics

are ignored, the roles of dynamical friction, tidal stripping, and tidal heating are complicated by

the fact that both the host and its subhalos will in general be inhomogeneous and anisotropic

as a result of hierarchical structure formation. In principle, self-consistent computations can

be achieved using N -body simulations where all physical processes are inherently captured.

However, the computational cost of such simulations makes them limited in number (e.g.,

Diemand et al., 2008; Springel et al., 2008; Garrison-Kimmel et al., 2014) and the range of

model and parameter space they sample. As an alternative, there exist semi-analytic models of

substructure evolution (e.g. Taylor & Babul, 2004; Zentner et al., 2005; Gan et al., 2010; Jiang

& van den Bosch, 2014b; Pullen et al., 2014) that employ various assumptions and simplifying

approximations in order to make fast calculations. For example, it is common practice in semi-

analytic models to treat subhalos as isolated systems (i.e., subhalos do not interact) within a

spherically symmetric and possibly static host potential. Analytic prescriptions for dynamical

friction, tidal stripping, and tidal heating are then used to integrate individual subhalo orbits

forward in time.

Numerical simulations and semi-analytic models have given rise to a number of interesting

features of substructure evolution. For example, we know that a dichotomy exists between the

evolution of low- and high-mass subhalos due to the relative importance of dynamical friction

between the two groups. The general picture of high-mass (µ & 10−3) subhalo evolution, where

dynamical friction is strong, is that of quick descent and disruption within the central depths

of the host. Low-mass subhalos, on the other hand, exhibit more of a slow and steady descent

within the host. Mass is thus the main driver of evolution for high-mass subhalos, but it is

unclear whether the same is true for low-mass subhalos. In Chapter 3 we consider whether any

physical (e.g., mass, concentration) or orbital (e.g., energy, angular momentum) properties may

be used as predictive indicators of low-mass subhalo evolution.

1.4 Cosmic Neutrinos

The standard model of particle physics predicts the existence of three neutrino flavours (electron,

muon, tau) that exist as superpositions of three mass eigenstates (denoted ν1, ν2, ν3). The
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generic prediction of the standard model is that the mass eigenstates have identically zero

mass. However, extended models exist for which the mass eigenstates can be non-zero (see

Lesgourgues & Pastor, 2006, and references therein). In this case, Pontecorvo (1958) showed it is

possible that flavour is not conserved, allowing neutrinos to oscillate between flavour with time.

This phenomena was firmly established by observations of the flux of electron neutrinos from

the Sun that were roughly three times smaller than predicted based on theoretical predictions

(e.g., Cleveland et al., 1998; Ahmad et al., 2002). The resolution is that electron neutrinos,

the only flavour produced in the Sun, oscillate between muon and tau flavours during their

passage through the Sun, leading to a suppressed flux of electron neutrinos when they arrive at

Earth (Wolfenstein, 1978; Mikheyev & Smirnov, 1985). The existence of neutrino oscillations

have also been verified from the flux of electron and muon neutrinos produced from cosmic

ray collisions in the Earth’s atmosphere (e.g., Hirata et al., 1992; Becker-Szendy et al., 1992).

These experiments conclusively confirm the existence of at least two massive neutrinos.

Solar and atmospheric oscillations are able to place constraints on the mass-squared differ-

ences between neutrino eigenstates. The current constraints are (Fogli et al., 2012):

∆m2
21 ≡ m2

2 −m2
1 = 7.5× 10−5 eV2

∆m2
31 ≡ m2

3 − (m2
1 +m2

2)/2 = 2.4× 10−3 eV2. (1.19)

Since these experiments are only sensitive to mass-squared splittings, they are unable to provide

information on the absolute mass scale of neutrinos. In particular, if the mass splittings are

comparable to the individual masses, then it is unknown whether neutrinos exist in the normal

(i.e., two light and one massive neutrino) or inverted (i.e., one light and two massive neutrinos)

hierarchy. Conversely, if the mass splittings are much smaller than individual masses, then

the hierarchy is indistinguishable and neutrinos are said to be quasi-degenerate. The mass

splittings shown above imply lower limits on the sum of neutrino masses as
∑
mi & 0.05 eV

and
∑
mi & 0.1 eV for the normal and inverted hierarchies, respectively. Particle physicists

are working to constrain individual neutrino masses through experiments that measure the

kinematics of electrons emitted during β decay reactions. Current constraints place an upper

limit on the mass of the electron neutrino at mνe ≤ 2.3 eV (Kraus et al., 2005) while the

upcoming KATRIN experiment is expected to reduce this bound to ∼ 0.35 eV (Eitel, 2005).

Below we consider the prospect of measuring neutrino mass from cosmological observations.

Neutrinos are expected to play an important role in cosmology through the existence of the

cosmic neutrino background (CNB) predicted from the standard big bang scenario. The CNB,

in analogy to the CMB, contains relic neutrinos that last interacted with matter when they

decoupled from the early universe plasma. The time of neutrino decoupling occurred when the

weak interaction rate fell below the Hubble expansion rate. This took place when the universe

had a temperature of T ≈ 1 MeV and was t ≈ 1 second old (Lesgourgues & Pastor, 2006).

The mass constraints above place neutrinos on the mν . 1 eV scale meaning they were ultra-
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relativistic at the time of decoupling. Neutrinos therefore contributed to the radiation content of

the universe at this time. After decoupling, the neutrino temperature redshifted adiabatically,

decaying in proportion to the scale factor. Today, the CNB temperature is Tν ≈ 1.9 K. This

is slightly lower than the CMB temperature, Tγ ≈ 2.7 K, since neutrinos decoupled prior to

the electron-positron annihilation, which boosted the photon temperature relative to that of

neutrinos (see, e.g., Dodelson, 2003).

The present CNB temperature implies that at least two neutrinos are non-relativistic today

since both |∆m21| and |∆m31| are larger than Tν ≈ 10−4 eV. The non-relativistic transition

occurs approximately when the momentum, p ∝ a−1, drops below mν . The redshift at which

this occurs thus depends on both the mass eigenstate and distribution in neutrino momenta.

For a Fermi-Dirac momentum distribution, roughly 50% of neutrinos of mass mν become non-

relativistic at the redshift

znr ' 2000
( mν

1 eV

)
. (1.20)

Once neutrinos become non-relativistic, they contribute to the matter content of the universe,

with an energy density at z = 0 proportional to their mass (Mangano et al., 2005):

Ων =
mν

93.14h2 eV
(1.21)

Neutrinos within the present mass bounds constitute a form of hot dark matter (HDM) due to

their larger thermal velocities. The mean velocity of a neutrino of mass mν at redshift z can

be derived from the Fermi-Dirac 2distribution:

〈v〉 ' 160 (1 + z)

(
1 ev

mν

)
km s−1. (1.22)

For comparison, galaxies have velocity dispersion σv ∼ 100 km s−1 while clusters have σv ∼
1000 km s−1. Hence, even at low z, sub-eV neutrinos have sufficient thermal velocity to inhibit

their collapse into small-scale CDM structures.

The combined feebleness of the weak interaction and small limits on neutrino mass will

continue to make direct detection of relic neutrinos difficult for the next few decades (Ringwald

& Wong, 2004). Instead, we are forced to rely on indirect detections of the CNB. During the

early universe, neutrinos contributed to the radiation content of the universe, influencing the

background expansion, and having implications for both big bang nucleosynthesis and CMB

anisotropies. Recent results from the Planck satellite place an upper bound on the sum of

neutrino masses at
∑
mν < 0.194 eV (Planck Collaboration et al., 2015). Other attempts

at indirectly observing the CNB include measuring the small-scale suppression of the matter

power spectrum induced by neutrino free-streaming. Recent constraints obtained from galaxy

surveys place an upper limit of
∑
mν . 0.30 eV (e.g., Xia et al., 2012; de Putter et al., 2012).

While these cosmological observations are making good progress to lower the bound on
∑
mν ,

they are still insensitive to the hierarchy of individual masses.
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Recently, Zhu et al. (2014b) proposed an alternative approach for measuring individual

neutrino mass from cosmological observations. This method exploits the fact that neutrino

free-streaming establishes a relative bulk flow between CDM and neutrinos on small (∼ 10

Mpc) scales. As a result, neutrinos become systematically offset from CDM, giving rise to a

unique dipole distortion in the matter density field. One can visualize this by considering a bulk

flow of neutrinos being gravitational focused into a high density wake downstream of a large

CDM halo. The result is a dipole distortion in the neutrino density field in the direction of the

relative velocity between CDM and neutrinos. The magnitude and direction of this wake depend

sensitively on mν meaning that each mass eigenstate produces its own signal. In principle, the

total signal can be separated into each component to provide individual constraints on mν .

The only required information is knowledge of the direction of the relative velocity vector.

It is possible that this may be obtained by applying linear transformations to the observed

density field. Properly addressing the efficacy of this approach, however, requires the use of

cosmological simulations that trace the nonlinear evolution of both CDM and neutrinos.

1.5 Thesis Outline

In Chapter 2 we employ a numerical convergence study to determine the resolution requirements

of hydrodynamic simulations to properly model the opacity of the unheated IGM during the

onset of reionization. This project was done in collaboration with Rajat Thomas and Marcelo

Alvarez. Our work has been published in the Astrophysical Journal (Emberson et al., 2013).

My contribution to the project included running the hydrodynamic simulation suite, writing

and running the radiative transfer code, and analyzing the results of the convergence study.

Writing of our paper was mainly split amongst Marcelo and I.

In Chapter 3 we study the role played by concentration in the dynamical evolution of low-

mass subhalos within a galactic host. This project was done in collaboration with Takeshi

Kobayashi and Marcelo Alvarez. Our work has been published in the Astrophysical Journal

(Emberson et al., 2015). My contribution to the project included analyzing the public Via

Lactea II (Diemand et al., 2008) halo catalogue and interpreting the results in the context of

subhalo evolution. The majority of the paper was written by myself.

In Chapter 4 we investigate the accuracy of using linear transformations to reconstruct

the CDM-neutrino relative velocity field. This work was done in collaboration with Derek

Inman, Ue-Li Pen, Alban Farchi, Hao-Ran Yu, and Joachim Harnois-Déraps. Our work was

published in Physical Review D (Inman et al., 2015). My contributions included sharing in

the development of the cosmology code CUBEP3M (Harnois-Déraps et al., 2013) to incorporate

N -body neutrino particles as well as the running and analysis of the neutrino simulations. I

played a secondary role in the writing of our paper.

In Chapter 5 we present preliminary results from the analysis of a recent CDM plus neutrino

N -body simulation. This simulation, containing ' 3 × 1012 particles, is presently the world’s
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largest cosmological N -body simulation. This work was done in collaboration with Hao-Ran

Yu, Derek Inman, Tong-Jie Zhang, Ue-Li Pen, Joachim Harnois-Déraps, Shuo Yuan, Hong-

Ming Zhu, Xuelei Chen, Huan-Yu Teng, and Zhi-Zhong Xing. We are currently in the process

of drafting a manuscript to be submitted for publication. My contributions included profiling

and optimizing CUBEP3M to scale to & 300, 000 cores and the analysis of halo catalogues for

the calculation of neutrino bias.



Chapter 2

The opacity of the intergalactic

medium during reionization:

resolving small-scale structure

A version of this chapter has been published in the Astrophysical Journal (ApJ) as “The opacity

of the intergalactic medium during reionization: resolving small-scale structure” Emberson,

J.D., Thomas, R.M., and Alvarez, M.A., Volume 763, Issue 2, 2013. Reproduced here with

permission from ApJ.

2.1 Chapter Overview

Early in the reionization process, the intergalactic medium (IGM) would have been quite inho-

mogeneous on small scales, due to the low Jeans mass in the neutral IGM and the hierarchical

growth of structure in a cold dark matter Universe. This small-scale structure acted as an

important sink during the epoch of reionization, impeding the progress of the ionization fronts

that swept out from the first sources of ionizing radiation. Here we present results of high-

resolution cosmological hydrodynamics simulations that resolve the cosmological Jeans mass of

the neutral IGM in representative volumes several Mpc across. The adiabatic hydrodynamics

we follow are appropriate in an unheated IGM, before the gas has had a chance to respond to

the photoionization heating. Our focus is determination of the resolution required in cosmolog-

ical simulations in order to sufficiently sample and resolve small-scale structure regulating the

opacity of an unheated IGM. We find that a dark matter particle mass of mdm . 50 M� and

box size of L & 1 Mpc are required. With our converged results we show how the mean free

path of ionizing radiation and clumping factor of ionized hydrogen depends upon the ultraviolet

background (UVB) flux and redshift. We find, for example at z = 10, clumping factors typi-

cally of 10 to 20 for an ionization rate of Γ ∼ 0.3− 3× 10−12s−1, with corresponding mean free

paths of ∼ 3−15 Mpc, extending previous work on the evolving mean free path to considerably

16
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smaller scales and earlier times.

2.2 Introduction

The fact that the most abundant sources of radiation during reionization are likely to be cur-

rently undetectable (e.g., Trenti et al., 2010; Oesch et al., 2012; Alvarez et al., 2012) means

that the details of the reionization process are beyond most current observational probes. The

notable exceptions are observations of the polarization of the cosmic microwave background

(CMB), which imply an optical depth to Thomson scattering of τ ∼ 0.09 (Komatsu et al.,

2011), and the appearance of a Gunn-Peterson trough in the spectra of distant quasars (Fan

et al., 2006), indicating that reionization was largely complete by z ∼ 6. Reionization is there-

fore thought to have mainly taken place over the redshift range z ∼ 6− 15. Due to the lack of

more specific constraints, much of our current understanding about the epoch of reionization

comes from theoretical studies in the context of the ΛCDM cosmology.

The picture which always emerges is of small-scale gaseous structures forming at z > 20,

due to the collapse of dark matter halos at the Jeans scale, roughly 104 M� (e.g., Peebles &

Dicke, 1968; Couchman & Rees, 1986; Shapiro et al., 1994; Gnedin & Hui, 1998). The gas was

just cool enough to fall into halos at this mass, leading to strong inhomogenities on a scale of

tens of comoving parsecs. At the same time, slightly more massive halos, with masses on the

order of ∼ 106 M�, formed enough H2 molecules in their cores to cool efficiently, leading to

the formation of the first stars in the Universe (e.g., Tegmark et al., 1997; Abel et al., 2002;

Bromm et al., 2002; Yoshida et al., 2003). The ionizing radiation from these stars is thought

to have created substantial, yet short-lived H ii regions, which were shaped by the surrounding

inhomogeneity of the gas distribution (Alvarez et al., 2006; Abel et al., 2007; Yoshida et al.,

2007).

Eventually, sufficiently large halos formed that triggered the formation of the first galaxies

(Johnson et al., 2007; Wise & Abel, 2008; Greif et al., 2008). These nascent dwarf galaxies would

have created longer-lived and isolated H ii regions (Wise & Cen, 2009; Wise et al., 2012). It is

unclear how these galaxies evolved into the much more luminous ones that have been observed

at redshifts as high as z ∼ 8 (e.g., Bouwens et al., 2010). Nevertheless, it is widely believed

that as the first galaxies grew and merged, their collective radiative output created a large and

complex patchwork of ionized bubbles, with characteristic sizes on the order of tens to hundreds

of comoving Mpc (e.g., Barkana & Loeb, 2004; Furlanetto et al., 2004; Iliev et al., 2006). During

this time, dense systems in the IGM likely impeded the progress of ionization fronts (Barkana &

Loeb, 1999; Haiman et al., 2001; Shapiro et al., 2004; Iliev et al., 2005a; Ciardi et al., 2006). At

the end of reionization the so-called “Lyman-limit” systems, dense clouds of gas optically-thick

to ionizing radiation observed in the spectra of quasars at z < 6 (e.g., Storrie-Lombardi et al.,

1994; Prochaska et al., 2010), dominated the overall opacity of the IGM to ionizing radiation.

These systems crucially influenced the percolation phase of reionization (Gnedin & Fan, 2006;
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Choudhury et al., 2009; Alvarez & Abel, 2012), which in turn determined the evolution and

structure of the ionizing background (e.g., Haardt & Madau, 1996; Bolton & Haehnelt, 2007;

McQuinn et al., 2011).

Thus, the progress of reionization depended not only on the properties of the sources of

ionizing radiation, but also on the sinks. Theoretical models of reionization must describe not

just the spectral energy distribution, abundance, and clustering of early sources of ionizing

radiation, but also the inhomogeneity of the intergalactic medium (IGM) in the space between

the sources. It is this latter description that is the goal of the present work.

Early descriptions of reionization took into account inhomogeneities in the IGM through a

“clumping factor”, cl, by which the recombination rate is boosted relative to the homogeneous

case. This allows one to write a global ionization rate, equal to the ionizing photon emmissivity

minus the recombination rate of a clumpy IGM, and thereby determine the reionization history

for a given ionizing source population. Shapiro & Giroux (1987) used such a model to show

that the observed population of QSOs were insufficient to have reionized the Universe by z ∼ 5.

Their assumption of cl ∼ 1 would have been conservative, in that that additional recombinations

would have made it even more difficult for quasars alone to reionize the Universe.

In addition to being useful in modelling the reionization history, the clumping factor is also

important in estimating the necessary number of ionizing photons per baryon to maintain an

ionized Universe. The necessary and sufficient condition for maintaining an ionized Universe is

that the ionizing photon emissivity should be greater than or equal to the recombination rate

of the IGM. Madau et al. (1999) used this fact to derive a critical star formation rate, above

which the rate of ionizing photons is enough to maintain the Universe in an ionized state.

Gnedin & Ostriker (1997) used hydrodynamic simulations with a treatment of photoioniza-

tion in the “local optical depth” approximation to determine the clumping factor of the ionized

component of the IGM, finding a value of cl ∼ 30 at z = 6. They also pointed out that the ac-

tual clumping factor of the IGM would have been larger due to structure on smaller scales than

they resolved. More recently, Miralda-Escudé et al. (2000) built a semi-analytical model for

the reionization of an inhomogenous IGM, in which the underlying gas density distribution was

determined by numerical simulations. They argued that in addition to specifying the clumping

factor of the ionized medium, it is also necessary to describe the distribution of high-density

gas clouds that are able to self-shield against ionizing radiation.

McQuinn et al. (2011) followed a similar approach to that of Miralda-Escudé et al. (2000)

to explain the evolution of the ionizing background radiation at redshifts less than z ∼ 6, using

more realistic numerical simulations which were post-processed with radiative transfer. These

works were focused on the large scales relevant in the post-reionization IGM, after photoioniza-

tion heating has “ironed out” the clumpiness of the IGM on the smallest scales. The timescale

over which this smoothing occurs is on the order of 10−100 Myr (Iliev et al., 2005b). Although

the recombination rate in the homogenous IGM is on the order of 1 Gyr, small-scale inhomo-

geneities increase recombinations by at least an order of magnitude, making the recombination
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time of the high-redshift IGM comparable to the smoothing time. Our work here is focused

on the higher redshifts and smaller scales that were most relevant early in reionization before

much smoothing has occurred.

We seek to obtain convergence in the quantities that describe the inhomogeneity of the

unheated IGM during the epoch of reionization, such as the mean free path, λ, clumping factor,

cl, and density threshold above which gas is self-shielded, ∆crit, by spanning the parameter

space of redshift and ionizing background intensity, jν . To do this, we post-process cosmo-

logical adiabatic hydrodynamics simulations with radiative transfer calculations along different

lines of sight through the simulated volume. Radiative feedback raises the Jeans mass of the

IGM, thereby increasing the scale of inhomogeneities. Therefore, the resolutions we find in

our adiabatic simulations that are necessary to resolve structure in the unheated IGM are also

sufficient to model radiative feedback at all times.

The outline of the paper is as follows. Details of the simulation setup and radiative transfer

are described in §2.3. In §2.4 we present our numerical results, followed by §2.5, where we

present the results of our convergence tests. §2.6 concludes with a discussion of our main

results.

2.3 Numerical Approach

Here we describe our numerical approach, in which we perform a suite of cosmological adia-

batic1 hydrodynamics simulations using the publicly available SPH code Gadget-2 (Springel,

2005). We then postprocess each simulation with multifrequency radiative transfer of hydrogen

ionizing radiation, assuming photoionization equilibrium, to determine the dependence of basic

quantities, like the ionizing photon mean free path and clumping factor, on redshift and inten-

sity of the background radiation field. The mean free path presented here is used to quantify

the opacity of the IGM to ionizing radiation and should be considered a local quantity that

depends on the spatial variation of the UVB flux during patchy reionization.

2.3.1 Cosmological Hydrodynamic Simulations

The cosmological simulations are parameterized by box size, L, and total number of dark mat-

ter and gas particles, N . Table 2.1 summarizes these parameters for our suite of simulations

and lists their corresponding dark matter particle masses, mdm, along with the comoving grav-

itational softening length, rsoft. The simulations were evolved from redshift z = 200 to z = 6,

except for simulations C1 through C4 which, due to computational limitations, were terminated

early at z = 10. Initial conditions were generated separately for dark matter and baryons us-

ing transfer functions computed by CAMB for each component, with the same random phases.

1In this case the gas cools adiabatically with the expansion of space while radiative heating and cooling pro-
cesses that would otherwise affect its temperature are ignored. The justification and consequences for assuming
this choice are discussed in the text.
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Table 2.1: Simulation Parameters

Simulation N L (Mpc) mdm (M�) rsoft (pc)

A1 2× 2563 0.25 31 30
A3 2× 2563 1 2.0× 103 120
A4 2× 2563 2 1.6× 104 240
A6 2× 2563 8 1.0× 106 960

B1 2× 5123 0.25 3.8 15
B2 2× 5123 0.5 31 30
B3 2× 5123 1 240 60
B4 2× 5123 2 2.0× 103 120
B5 2× 5123 4 1.6× 104 240
B6 2× 5123 8 1.3× 105 480

C1 2× 10243 0.25 0.5 7.5
C2 2× 10243 0.5 3.8 15
C3 2× 10243 1 31 30
C4 2× 10243 2 240 60
C6 2× 10243 8 1.6× 104 240

Throughout our work we assume the set of cosmological parameters (ΩDM, Ωb, ΩΛ, h) = (0.228,

0.042, 0.73, 0.72).

A quantitative test of the simulated structure formation is to identify dark matter halos

to construct mass functions, dn/dM , which can be compared to analytic models. Figure 2.1

shows the mass functions obtained from a friends-of-friends (FOF) halo identification scheme

with linking length of 0.2 mean interparticle spacings, at redshifts z = 10 and 20 for two

groups of simulations sharing common mass resolutions of mdm = 31 M� and 1.6× 104 M�. A

common fitting function to compare to is the Warren et al. (2006) mass function. When doing so,

however, it is important to note that this model assumes a Universe with infinite spatial extent;

something that cannot be achieved using numerical simulations. It is therefore useful to compute

Warren et al. mass functions using a modified variance of the form σ2
eff ≡ σ2−σ2(Mbox), where

Mbox is the total mass contained within the simulated volume. This has the effect of removing

contributions from mass fluctuations on scales larger than that of the simulated volume. With

this correction we find that the Warren et al. mass function is generally well-matched by the

numerical simulations.

There is one important feature worth noting in Figure 2.1: For fixed mass resolution, simula-

tions with larger volumes tend to trace the analytic curves more closely. This is most noticeable

in the top panel for z = 20. We can attribute this to the fact that at fixed resolution, simula-

tions with larger volumes will contain a more statistically representative collection of halos. In

§2.5 we will show how sample variance in small boxes has important consequences for numerical

convergence. Even though a simulation may have a sufficient mass resolution to resolve low-

mass halos within the IGM, its volume may be so small that sample variance causes noticeable

variation in computed quantities between different random realizations. Recall that we used a
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Figure 2.1: Halo mass functions from six simulations are compared to their Warren et al.
counterparts using the variance σ2

eff ≡ σ2 − σ2(Mbox) at redshifts 10 and 20. The top panel
plots simulations A1, B2, and C3 each containing dark matter masses of mdm = 31 M� while
the lower panel plots simulations A4, B5, and C6 with mdm = 1.6×104 M�. In each case, points
denote halo mass functions obtained from the simulations while the lines trace the corresponding
Warren et al. curves.

modified variance σ2
eff when computing the analytic curves of Figure 2.1 in order to compensate

for missing large-scale power in the finite volume boxes. Though not necessary for our purposes

here, we point out to the reader that Reed et al. (2007) present an additional correction that

can be used to adjust simulated mass functions for sample variance from small volumes.

It is well known that the inhomogeneous nature of the IGM plays an important role in the

progression of the reionization epoch. This was emphasized by Miralda-Escudé et al. (2000) who

presented an evolutionary model of reionization based on the gas density distribution observed

in numerical simulations. It is therefore useful to examine the density distribution of baryons

within cosmological simulations, through the use of the probability density function (PDF),

P (∆), defined to be the normalized distribution of gas in terms of overdensity ∆ ≡ ρ/ρ.

In Figure 2.2 we plot volume-weighted gas PDFs from our fiducial simulation B2 which

contains 2 × 5123 dark matter plus gas particles in a box of comoving length 0.5 Mpc. More



Chapter 2. Resolving small-scale structure during reionization 22

precisely, we plot ∆2.5P (∆) which is expected to approach a constant at ∆ > ∆vir = 18π2 if

gas at those densities is collapsed within halos described by a density profile ρ ∝ r−2. As time

evolves, the fraction of gas collapsed within halos increases, though only for z . 10 does the

high-density tail of the PDF appear to approach a constant value.

Recall that the PDFs shown here correspond to adiabatic simulations for which radiative

heating and cooling processes are ignored. We expect that heating would evolve the gas dis-

tribution in such a way as to decrease the amplitude of P (∆) at large values of ∆ as gas boils

out of overdense regions. In this work we are concerned with the initial phase of reionization

before substantial heating occurs, and discuss at length in §2.6 how heating would affect our

results. In contrast, radiative cooling would act to promote P (∆) at large values of ∆ from the

enhanced collapse of gas into overdense halos. However, our work is primarily concerned with

determining the resolution requirements for minihalos with masses on the order of 104 M�. For

these halos, H2 cooling is the dominant mechanism, but this is rapidly suppressed once an UVB

is established within the IGM (Haiman et al., 2000). Radiative cooling is thus most relevant

for the easily resolved large halos, and our choice to omit cooling should not qualitatively affect

our conclusions with respect to convergence of small-scale structure.

2.3.2 Post-processed Ionization Calculation

In order to simulate the effects of self-shielding by absorption systems, we postprocess the

SPH density field with a multifrequency radiative transfer algorithm. This involves tracing the

attenuation of the ionizing radiation along different lines of sight throughout the volume while

assuming photoionization equilibrium.

Ultraviolet Background Spectrum

We consider a background ionizing intensity Iν , so that the flux of photons capable of ionizing

hydrogen is

F =

∫
dΩ

∫ 4νHI

νHI

Iν
hν
dν, (2.1)

where hνHI = 13.6 eV is the photon energy at the Lyman edge. The upper limit in the integral

corresponds to the ionizing threshold for fully ionizing helium – we assume helium is singly

ionized along with hydrogen, and therefore only consider photons below the He ii Lyman edge.

We adopt a power-law UVB spectrum,

Iν = Io

(
ν

νHI

)−α
, (2.2)

where νHI ≤ ν ≤ 4νHI and Io is the intensity at the Lyman edge. In our analysis we have

sampled a region of parameter space for which 1 ≤ α ≤ 3. Our fiducial value of α = 2 is

chosen to be consistent with the spectral index we would expect for an ionizing background

produced from a mixture of galaxies and quasars (e.g., Bolton & Haehnelt, 2007). Our results
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Figure 2.2: Gas PDFs for our fiducial simulation B2 (5123, 0.5 Mpc) at different redshifts, as
labelled beside the curves. The vertical dot-dashed line delineates the overdensity ∆vir = 18π2

of a virialized isothermal sphere. If collapsed structures have a density profile of the form
ρ ∝ r−2, for ∆vir < ρ/ρ̄ < ∆max, then P (∆) ∝ ∆−2.5 for ∆vir < ∆ < ∆max. We plot the PDF
multiplied by ∆2.5 so that the curve should approach a constant for ∆ > ∆vir if gas is collapsed
within these structures.

exhibit only a minor dependence on spectral index in this range, as also found by McQuinn

et al. (2011). For this reason we henceforth refer only to our fiducial case of α = 2.

The intensity is often expressed in terms of the quantity J−21, defined to be the isotropic

equivalent of Io, (
∫
I0dΩ)/(4π), in units of 10−21 erg cm−2s−1Hz−1ster−1. For the form ex-

pressed in equation (2.2), we can integrate equation (2.1) to relate J−21 to the flux of ionizing

photons. For α = 2, we obtain:

J−21 = 0.09

(
F

105 cm−2s−1

)
. (2.3)

Another useful quantity to describe the UVB is Γ−12, defined to be the ionization rate per

atom, in units of 10−12 s−1:

Γ−12 = 0.3

(
F

105 cm−2s−1

)
. (2.4)
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Note that this refers to the ionization rate corresponding to a given background, and not the

mean ionization rate per atom along our rays, which is lower due to attenuation and includes

the neutral component of the IGM.

We calculate the ionization state of the volume for a broad range of background flux with the

fiducial value of F = 105 cm−2s−1 taken to be consistent with the value of Γ−12 ∼ 0.3 inferred

from the optical depth of the Lyα forest seen in quasar spectra (e.g., Bolton & Haehnelt, 2007).

Due to its common usage in the literature, we will report our results in terms of Γ−12, though

it should be remembered that its conversion to flux simply follows equation (2.4).

Ray-tracing

In our ray-based approach, the UVB has a plane-parallel direction dependence, so that Iν =

Fνδ(n̂), where n̂ is the direction of propagation of the radiation and Fν is the spectral flux

density. This is appropriate especially in the beginning stages of reionization, where a given

patch of the IGM is initially exposed to a one-sided flux from the downstream direction of

the ionization front. In addition, we use the “case B” recombination coefficient which assumes

that recombinations to the ground state are quickly cancelled by subsequent photoionizations

and implies that rays can be treated independently. In reality, ionizing radiation produced by

recombinations directly to the ground state becomes part of the UVB, changing the spectral

shape that we adopt in equation (2.2), but not the total ionizing photon flux. Given the relative

insensitivity we find to the spectral shape, using case B recombination rates should be a good

approximation. Finally, because the equilibration time is very short compared to the Hubble

time, we use photoionization equilibrium, which allows us to calculate the ionization state and

attenuation of the background self-consistently by sequentially iterating along the ray in the

direction n̂.

To obtain an unbiased sample of the gas density field and minimize noise, the rays are

assigned starting points uniformly distributed in a plane with orientations perpendicular to the

plane. We use three orthogonal planes in order to sample different directions. Each ray segment

corresponds to a cubic volume element, within which the mean density is obtained from the

SPH particle data by the mass-conserving spline interpolation outlined in Alvarez et al. (2006).

The ray segments have lengths given by L/Nray, where L is the box size, so that the number

of rays is proportional to N2
ray, while the number of segments along a given ray is proportional

to Nray. We check for convergence in our radiative transfer calculations by interpolating to a

variety of values for Nray. From this we find that it is necessary to interpolate to Nray = 1024

for the 2563 and 5123 particle simulations and to Nray = 2048 for the 10243 particle simulations.

Equilibrium Radiative Transfer

The equation of radiative transfer for Iν is

dIν
ds

= −nHIσνIν + εν , (2.5)
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where s is the proper distance and nHI is the proper number density of neutral hydrogen. Here

we are concerned with the transfer of ionizing radiation through a patch of IGM in which there

are no sources, and therefore set εν = 0.

The ionization rate within a given ray segment is related to the background intensity and

neutral hydrogen column density, NHI, integrated along a given ray by using the solution of

equation (2.5):

Γ = 4π

∫ 4νHI

νHI

Iν
hν
σνe
−NHIσνdν, (2.6)

where σν is the absorption cross section, with mean value

σ̄ ≡
∫ 4νHI

νHI
σν

Iν
hν dν∫ 4νHI

νHI

Iν
hν dν

= 2.84× 10−18 cm2. (2.7)

The flux of ionizing photons is diminished along the ray through absorption by intervening

neutral hydrogen, and the spectrum steepens as softer photons are preferentially absorbed.

To determine the opacity along the ray self-consistently, we iterate along the ray, using the

total H I column density from the previous ray segments to calculate the photoionization rate at

the current segment using equation (2.6). This is then used to determine the neutral hydrogen

density in the current segment under the assumption of photoionization equilibrium:

ΓnHI = αBnHIIne, (2.8)

where nHI, nHII and ne are the number densities of neutral hydrogen, ionized hydrogen, and

electrons within that segment. The resulting value of H I density is then used to update the

total column density, and the procedure is repeated until the end of the ray is reached.

Equation (2.8) assumes a uniform radiation field within each ray segment. This assumption

breaks down if the segment becomes sufficiently optically thick that Γ changes significantly

across it. To address this issue, individual ray segments are split into plane-parallel subsegments

in the direction n̂ with widths chosen such that the flux passing through each subsegment is

attenuated by no more than 2% of its initial value. Photoionization equilibrium is applied in

sequence to each subsegment and global quantities pertaining to the segment as a whole are

computed as volume averages over each subsegment.

We assume that all free electrons within the volume come from hydrogen and consider a

uniform gas temperature of Tgas = 104 K so that αB = 2.6 × 10−13 cm3s−1. Including helium

in our calculations would lead to small corrections in the hardening of the radiation at high

optical depths, due to the slightly different frequency dependence of the He I absorption cross-

section relative to that of H I. Given the insensitivity of our results to varying the spectral slope

α, inclusion of helium radiative transfer would not improve the accuracy of our results, while

needlessly complicating their interpretation, so we neglect it.
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Optimal Ray Length and the Mean Free Path

The opacity of the IGM can be written in terms of the mean free path, with the equation of

transfer for the flux of ionizing photons given by

dF

ds
= −F (1 + z)

λ
, (2.9)

where F is the total flux of ionizing photons in units of cm−2s−1, and the factor 1 + z accounts

for the fact that we define the mean free path to be in comoving units, and is the definition we

use throughout this paper. We calculate the mean free path along a given ray as the solution

to equation (2.9):

λ = − s

ln(Fout/F )
, (2.10)

where s is now the comoving length of the ray, F is the incident flux at the start of the ray, and

Fout is the attenuated flux leaving the last ray segment. The total mean free path is determined

by first averaging Fout over all rays, then applying equation (2.10).

Naively, we may choose to set s = L so that each ray samples the entire length of the

box. However, we must be careful since the use of equation (2.10) is not physically meaningful

in the optically thick limit where Fout can tend to 0. In other words, we want to determine

the opacity of the IGM due to small-scale structure at a fixed background flux, but including

the cumulative effect of this shielding over distances approaching the mean free path would

correspond to a lower flux than what we assume.

An easy way to avoid this problem is to send photons along shorter rays. Of course, this

has the disadvantage of sampling smaller portions of the IGM, possibly missing individual self-

shielded structures. It is thus optimal to choose a ray length such that the rays on average

remain optically thin, while still sampling a sufficiently long distance to take into account the

self-shielding of individual dense structures. We achieve this by first calculating λ as a function

of s, and then choose the optimal ray length to be the largest value of s for which s ≤ λ(s)/5.

A lower cutoff of s ≥ L/32 is also applied. If this condition cannot be satisfied we flag the given

region of parameter space and omit its inclusion in our analysis. For ray lengths s < L, the

usage of the box is maximized by resetting the intensity along each ray after a distance of s,

until the ray has traversed a distance L.

Figure 2.3 demonstrates our procedure of selecting ray lengths at different fluxes for sim-

ulation B6 at z = 10. The mean free path converges in the optically thin limit where λ & s

but begins to deviate strongly during the transition to the optically thick transition when λ

approaches s. It is clear from the plot that an erroneous value for λ would be obtained for an

improper choice of s. The convergence of λ in the optically thin limit shows that our choice of

picking s to be bounded by λ/5 is robust in changing this fraction by a factor of a few.
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Figure 2.3: Here we demonstrate our procedure for choosing the optimal ray length that ade-
quately samples the IGM while remaining optically thin. The data pertains to simulation B6
(5123, 8 Mpc) taken at redshift z = 10. The nearly horizontal lines show λ as a function of ray
length s for different photoionization rates where the labels denote Γ−12 in units of 10−12 s−1.
For each of these lines, the optimal ray length is chosen as the largest value of s for which
s ≤ λ(s)/5 and is denoted by a black cross. For comparison, the diagonal line traces out λ = s
so that portions rightward of this curve belong to the optically thick regime where the mean
free path changes significantly.

2.4 Simulation Results

We first describe the dependence of clumping factor, cl, of ionized gas on redshift and photoion-

ization rate. Next, we use the gas PDF matched to the clumping factors we have obtained,

to define a critical overdensity, ∆crit, above which gas remains self-shielded and neutral. The

opacity of the IGM to ionizing radiation, expressed in terms of the mean free path, λ, is de-

scribed next. We first discuss its overall properties and then show how it can be used to relate

the emissivity of ionizing sources to the photoionizing background that they produce. Finally,

we compare the clumping factors and mean free paths obtained here to those which would be

expected for an optically thin model of the IGM.
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The main goal of this work is to assess the small-scale convergence of numerical quantities

during the initial phase of reionization. This is presented in §2.5 where we show simulation

C3 (10243, 1 Mpc) to be our “converged” simulation. However, since C3 was only evolved to

z = 10, we show here results from our fiducial simulation B2 (5123, 0.5 Mpc) in order to present

results down to z = 6. Table 2.2 summarizes the clumping factors, critical overdensities, and

mean free paths at select redshifts and photoionization rates for simulation B2. These values

are within 6% of those from the converged simulation C3 for all z ≥ 10.

2.4.1 Clumping Factor

Studies of reionization typically make use of the clumping factor of ionized gas, defined as

cl ≡ 〈n2
e〉/〈ne〉2, (2.11)

where ne is the number density of free elections and angled brackets denote volume averages

over space. The clumping factor describes the enhancement of the recombination rate relative to

a uniform gas distribution, and is therefore crucial in understanding the role of inhomogeneities

in the ionizing photon budget during and after reionization.

Before proceeding to discuss the clumping factors obtained here, it is first useful to make

some comments regarding the form of equation (2.11). This equation involves a volume average

over the free electron density in each ray segment of the box without applying any density cutoffs

in considering which electrons contribute to recombinations within the IGM. We have made

this choice to facilitate the use of equation (2.12) which allows us to determine the critical

overdensity required for self-shielding within a patch of the IGM that does not contain any

reionizing sources. This can then be applied in studies that simulate self-shielding by turning

off an optically thin flux above a threshold overdensity. Another choice would be to compute

the clumping factor based only on gas with overdensity below some cutoff that is assumed

to represent the maximum density for which recombinations occur within the IGM. This is

ideal for the scenario where one is interested in separating recombinations occurring within the

IGM from those occurring within the interstellar medium (ISM) of ionizing sources. The latter

can be accounted for through the use of an escape fraction describing the fraction of ionizing

photons that escape the ISM of reionizing sources into the surrounding IGM. It is important

to note that the numerical value obtained for the clumping factor depends on the particular

definition that is used. Regardless, the convergence tests described in §2.5, which are based on

the clumping factor described above, remain robust to whatever definition of clumping factor

is assumed. For more detailed discussions of the clumping factor and comparisons between

different definitions we refer the reader to the recent works of Shull et al. (2012) and Finlator

et al. (2012).

We now proceed to discuss the clumping factor obtained from the radiative transfer calcu-

lations performed on our fiducial simulation B2. This is shown in Figure 2.4 where we plot cl



Chapter 2. Resolving small-scale structure during reionization 29

Figure 2.4: (left) Clumping factor versus photoionization rate Γ−12 in units of 10−12 s−1 for
different redshifts, as labelled beside the curves. (right) Clumping factor versus redshift for
different photoionization rates with labels denoting the value of Γ−12. In both cases the data
pertains to our fiducial simulation B2 (5123, 0.5 Mpc) and regions of parameter space (z > 18
and Γ−12 < 0.05) that do not satisfy the ray length criterion described in §2.3.2 are omitted.

for a variety of redshifts and fluxes. Some general trends of the clumping factor are shown by

comparing the two panels of this figure. In the first place, at fixed photoionization rate, cl in-

creases with decreasing redshift which is consistent with ongoing structure formation within the

IGM. Furthermore, at fixed redshift, cl increases with the strength of the ionizing background

as the flux of ionizing photons are able to penetrate further into thick gas clouds, exposing their

dense interiors where the recombination rate is greatest. Eventually, at large enough flux of

Γ−12 & 1000, the clumping factor plateaus as the ionization state of the box saturates and all

the gas has been ionized. At this point cl tends to the total clumping factor of gas in the box

as ne approaches n.

Historically, clumping factors of cl ∼ 30 at z ∼ 6 have been found to be appropriate (e.g.,

Gnedin & Ostriker, 1997), though more recently there has been a growing trend towards values

an order of magnitude smaller. It thus appears contrary to historical development that we

reproduce cl ∼ 30 at z = 6 with our fiducial case of Γ−12 = 0.3, and find even larger values

with increased flux. However, as explained by Pawlik et al. (2009), the passage of an ionization

front through the IGM will photoevaporate the smallest halos in the box and consequently

suppress the evolution of the clumping factor at small scales as the gas is dispersed back

into the diffuse IGM. Since we do not include such hydrodynamic feedback processes in our

analysis, the values reported here cannot be used in reference to an IGM that has been heated

through photoionization. Nevertheless, our values are perfectly applicable to the early stages of

reionization, before the gas has had time to respond to the ionizing radiation field. Moreover, as
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Table 2.2: Opacity of the Unheated IGM at Select Values

z Γ−12 [10−12 s−1] cl ∆crit ncrit [cm−3] λ [Mpc]

18 0.03 1.4 6.1 0.008 0.1
14 0.03 2.0 14 0.009 0.3
10 0.03 4.4 34 0.008 0.7
8 0.03 7.8 55 0.007 1.1
6 0.03 15 100 0.006 2.1

18 0.3 1.7 25 0.031 0.9
14 0.3 3.0 52 0.032 1.6
10 0.3 8.6 120 0.029 3.0
8 0.3 16 200 0.027 4.5
6 0.3 33 390 0.025 8.3

18 3 2.1 110 0.14 7.1
14 3 4.8 210 0.13 10
10 3 16 470 0.11 15
8 3 32 760 0.10 21
6 3 68 1400 0.09 36

discussed in §2.6, previous simulations have underestimated the clumping factor by a factor of

∼ 3 during this period, and may therefore be underestimating its subsequent evolution and the

impact that unresolved small-scale structure had in regulating the early stages of reionization.

2.4.2 Critical Overdensity for Ionization

Since the clumping factor describes the distribution of ionized gas within the volume, it is in

principle derivable from knowledge of the gas PDF and details of the photoionizing radiation

field. In a simplified description, we assume that all gas within the box with overdensity

∆ < ∆crit is ionized, while the rest is neutral. This is obviously an idealized description of

reality where a gradual transition between ionized and neutral regions will necessarily occur.

Any departures from the simplified model reflect variations in the local ionizing background

and degree of self-shielding and shadowing within the inhomogeneous IGM (Miralda-Escudé

et al., 2000).

In the simplified model the clumping factor of ionized gas is related to the total gas PDF

through the following expression:

cl =

∫ ∆crit

0 ∆2P (∆) d∆(∫ ∆crit

0 ∆P (∆) d∆
)2 , (2.12)

where ∆crit is interpreted as the critical overdensity above which self-shielding prevents the gas

from becoming ionized. It is often useful to assume the form of equation (2.12) taken with

some nominal choice for ∆crit in order to compute cl from a given gas PDF. For example, Chiu

et al. (2003) consider a model where all gas within collapsed halos is self-shielded while all
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remaining gas is subject to ionization from an UVB. In this case, ∆crit = 6π2 corresponding

to the overdensity at the virial radius of an isothermal sphere with a mean overdensity of

∆vir = 18π2.

Since we compute the clumping factor directly from our radiative transfer calculations, we

take the opposite approach, inverting equation (2.12) in order to compute ∆crit from knowledge

of P (∆) and cl. In doing so, we observe the expected trend that ∆crit increases when the

photoionization rate is increased, making the medium more susceptible to ionization. In fact,

we find the rough proportionality ∆crit ∝ Γ
2/3
−12 which, from equation (4) of McQuinn et al.

(2011), is expected for a PDF satisfying P (∆) ∝ ∆−2.5. We showed in Figure 2.2 that our

PDFs satisfy this power-law at z . 10 for ∆ > ∆vir. This is consistent with the model

where gas at these densities is collapsed in isothermal spheres. Around our fiducial value of

Γ−12 = 0.3, we further find that ∆crit is roughly proportional to (1 + z)−3, indicating that the

critical proper hydrogen number density, ncrit, is rather insensitive to redshift. A good value to

take is ncrit ∼ 0.1 cm−3 Γ
2/3
−12.

The validity of the idealized model where all gas with overdensity ∆ < ∆crit is ionized

is tested in Figure 2.6. Here we plot the total gas PDF along with the ionized and neutral

PDFs obtained from our radiative transfer calculation using our fiducial parameters Γ−12 = 0.3

and z = 10 for simulation B2. The vertical dot-dashed line shows the corresponding value of

∆crit – its role in delineating the neutral and ionized portions of the gas is clearly visible. As

anticipated, the transition between ionized and neutral regions is not sharp, but rather gradual

as a consequence of the spatially varying ionizing background and self-shielding due to dense

gas pockets. Nevertheless, our findings indicate that the approximation that ∆crit represents

the critical overdensity above which self-shielding maintains the neutral state of the IGM is

generally a good one.

2.4.3 Mean Free Path

We quantify the opacity of the IGM to the exposed UVB through the use of the mean free path

of ionizing radiation. Conceptually, one can consider the mean free path to be affected by two

components: a diffuse gaseous phase that pervades the IGM and thick gas clouds embedded

within collapsed dark matter halos. The latter make up a significant fraction of absorption

systems that have neutral hydrogen column densities NHI & 1/σ̄ ≈ 1017 cm2 allowing them

to self-shield against ionizing radiation. It is within these optically-thick structures where the

global recombination rate of the IGM is dominated and the majority of ionizing photons are

absorbed (Miralda-Escudé et al., 2000). As a result, they can significantly impede the progress

of reionization.

The mean free path obtained from our radiative transfer calculations is computed through

the use of equation (2.10) which naturally encompasses both the clumpy IGM and halo compo-

nents. In Figure 2.5 we plot the mean free path as a function of photoionization rate for fixed

redshift and also as a function of redshift for fixed photoionization rate. Some general trends
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Figure 2.5: (left) The mean fee path versus photoionization rate Γ−12 in units of 10−12 s−1 for
different redshifts, as labelled. (right) Mean free path versus redshift for different photoion-
ization rates with labels indicating the value of Γ−12. In both cases the data pertains to our
fiducial simulation B2 (5123, 0.5 Mpc) and regions of parameter space (z > 18 and Γ−12 < 0.05)
that do not satisfy the ray length criterion described in §2.3.2 are omitted. The dotted black
curves in the right panel show the mean free path expected for an optically thin, completely
ionized, and homogeneous IGM as expressed in equation (2.17). From bottom to top in the
plot, the dotted lines take Γ−12 = 0.03, 0.3, and 3, and are each calculated using x = cl = 1.
We expect the dotted lines to converge with our results at high redshift when the medium
approaches homogeneity. At low redshift we observe a large suppression in the calculated mean
free path that results from increased structure formation within the inhomogeneous IGM.

are immediately clear in this plot. In the first place, at fixed redshift we see that the mean free

path increases with the strength of the ionizing background. A stronger flux of ionizing pho-

tons will naturally penetrate further through a diffuse IGM and overcome thicker self-shielding

structures, consistent with the previous observation that ∆crit ∝ Γ
2/3
−12. In addition, when the

ionizing background is held constant, the mean free path is found to increase with decreasing

redshift.

It is important to note that there are two competing factors affecting the redshift evolution

of λ. On the one hand, the expansion of the Universe continually dilutes the density of hydrogen,

hence favouring a strong increase in λ with decreasing z. On the other hand, increased structure

formation at low redshift enhances the distribution of Lyman-limit systems that strongly inhibit

the distance an ionizing photon can propagate through the IGM before being absorbed. In the

right panel of Figure 2.5 we compare λ obtained here to equation (2.17) for the same set of

photoionization rates. Taking x = cl = 1 in this equation yields the mean free path we would

obtain in an optically thin, homogeneous, and completely ionized medium. In such a model

the mean free path evolves rapidly with redshift as λ ∝ (1 + z)−5. Instead, we observe a strong
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Table 2.3: Power law index of Γ ∝ ṅγion

z
6 8 10 12 14 16 18 20

γ 2.6 2.9 3.1 3.7 4.5 6.7 10 14

suppression in mean free path at low redshift compared to equation (2.17). This highlights the

important contribution from inhomogeneities in the IGM.

2.4.4 Relationship Between Emissivity and Photoionization Rate

In the context of reionization it is desirable to know the ionizing background produced by some

population of sources with known emissivity. This relationship can be found by solving

Γ = ṅion(1 + z)2λ(Γ, z)σ̄, (2.13)

where ṅion is the comoving ionizing emissivity and λ(Γ, z) is the comoving mean free path that

depends on both the ionizing background and redshift. In Figure 2.7 we show the dependence of

Γ on ṅion by solving equation (2.13) with the mean free paths taken from our radiative transfer

calculations. We find that Γ exhibits a rather steep dependence on emissivity and appears to

diverge at large values of ṅion. This behaviour is attributed to the fact that not only are there

more ionizing photons as the emissivity rises, but also their ability to penetrate further through

the IGM increases.

We can relate this behaviour back to the dependency of λ on Γ. For instance, suppose we

have the simple relation λ ∝ Γβ at some redshift. Then from equation (2.13) we will have that

Γ ∝ ṅγion where γ = (1−β)−1. In Table 2.3 we list the values of γ obtained by fitting a power-law

to our fiducial mean free paths within the range 0.1 ≤ Γ−12 ≤ 1 at different redshifts. This flux

range is considered to emphasize the relationship between Γ and ṅion around our fiducial value

of Γ−12 = 0.3. We find that the relationship between Γ and ṅion strengthens as the redshift

increases – γ varies from 2.6 to 14 between redshifts 6 and 20 respectively. This occurs because

the slope β rises as the IGM becomes more uniform, approaching a limiting value of unity for a

completely homogeneous Universe with cl = 1 in equation (2.17) – a manifestation of “Olber’s

Paradox”.

From this trend we can deduce that decreasing the simulation resolution should steepen

the curves in Figure 2.7 as the density distribution becomes more homogenous. Indeed, this

relation is observed between our suite of simulations where we find γ = 3.2 at z = 6 for our

worst-resolved simulation A6 (2563, 8 Mpc), compared to γ = 2.6 for simulation B2. McQuinn

et al. (2011) report the value of γ ∼ 4 at z = 6. The discrepancy with our result likely arises

from a combination of our increased resolution and our omission of photoheating which would

suppress accretion of gas onto low-mass halos and promote homogeneity.

The photoionization rate after reionization can be derived from measurements of the Lyα
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Figure 2.6: The bottom panel compares the total gas PDF of our fiducial simulation B2 (5123,
0.5 Mpc) to the PDFs of neutral and ionized gas within the box after radiative transfer is
applied. Ray segments are labelled as ionized if they have an ionized fraction greater than 0.5
and are labelled neutral otherwise. The data corresponds to a snapshot at z = 10 with an
ionizing background of Γ−12 = 0.3. The vertical dot-dashed line denotes ∆crit determined by
comparing cl obtained from the radiative transfer calculation to the total gas PDF through
equation (2.12). The top panel shows the corresponding volume fraction of neutral and ionized
gas as a function of ∆.

forest. This was done by Kuhlen & Faucher-Giguère (2012) who list the values of Γ and ṅion

for redshifts between 2 and 6. The quoted values at z = 6 are Γ−12 < 0.19 and ṅion <

2.6× 1050 s−1 Mpc−3. Looking at Figure 2.7 we see that our z = 6 curve predicts an emissivity

an order of magnitude too large when Γ−12 = 0.19. As we discuss in §2.6, our results at z . 10

are hindered by the omission of radiative feedback that would otherwise smooth inhomogeneities

on small scales. Photoheating suppresses structure growth within the IGM thereby increasing

the mean free path at fixed conditions as ionizing photons travel further before encountering

an optically thick absorption system. From equation (2.13) a larger mean free path produces

a higher ionization rate at fixed emissivity, implying that the z = 6 curve in Figure 2.7 would

shift upwards in the presence of heating. If this shift were to bring us into agreement with
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Figure 2.7: The photoionization rate, expressed in terms of Γ−12, as a function of the comov-
ing ionizing emissivity at different redshifts. These curves are evaluated by solving equation
(2.13) using λ(Γ, z) obtained from our radiative transfer calculations performed on our fiducial
simulation B2 (5123, 0.5 Mpc). At low flux we truncate the z = 14 curve when it enters the
optically thick domain where it no longer satisfies the ray length criterion described in §2.3.2.

observations we would require that our calculated mean free path at Γ−12 = 0.19 increase by

an order of magnitude to allow for an order of magnitude reduction in the emissivity required

to produce such a background. In Figure 2.5 we find λ ≈ 7 Mpc at z = 6 for Γ−12 = 0.19. This

means that a mean free path of 70 Mpc would be required in a heated IGM to bring us into

agreement with observations of the Lyα forest. This is in reasonable agreement with the value

of λ = 49 ± 14 Mpc reported by Kuhlen & Faucher-Giguère (2012) as the mean free path at

the Lyman edge. Note that at redshifts z & 10, before photoheating is important, the curves in

Figure 2.7 should be correct. Of course, reionization becomes patchy at high redshift, making

a description in terms of an IGM with a single UVB flux and mean free path less accurate.

The strong scaling relations observed here suggest that small changes in ṅion can boost Γ

by substantial amounts. McQuinn et al. (2011) use this to argue that the rapid evolution in Γ

observed by Fan et al. (2006) at z ≈ 6 can be explained by a small change in the emissivity of

the ionizing background rather than attributing this effect to the overlap phase of reionization.
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2.4.5 Relationship Between Mean Free Path and Clumping Factor

Suppose there is an infinitesimally thin slab of width ds whose area element dA is exposed

to some flux F . In ionization equilibrium, the number of ionizations occurring per unit time

balance the number of recombinations:

dFdA = αBnenHIIdAds, (2.14)

where dF is the attenuation of flux passing through the slab. Dividing both sides of this

expression by dAds, substituting equation (2.9), and taking ne = nHII implies

F (1 + z)/λ = αBn
2
e. (2.15)

Finally, taking the clumping factor defined in equation (2.11) and the ionized fraction x ≡
〈ne〉/〈nH〉 we obtain:

F (1 + z)/λ = clαBx
2〈nH〉2. (2.16)

For an ionized gas temperature of Tgas = 104 K,

λ ' 23 Mpc

x2cl

(
Γ−12

0.3 10−12 s−1

)(
1 + z

11

)−5

, (2.17)

where we have made use of equation (2.4) for the conversion from flux to photoionization rate.

In Figure 2.8 we plot cl versus λ and x2cl versus λ from our radiative transfer calculations at

z = 10 with Γ−12 = 0.3 for each of the simulations listed in Table 2.1. In each panel the dotted

line traces equation (2.17) that we would expect for an optically thin IGM exposed to the given

flux. The overall agreement between λ and the simulation points in the bottom panel indicates

consistency in the definition of the mean free path and detailed balance between absorptions

and ionizations. The minor deviations between the data points and the dotted curve arise

because our rays have a finite length, s, so the mean free path evaluated in equation (2.17)

will not correspond exactly to equation (2.10), which is strictly correct only in the limit where

s −→ 0.

The simulations span a large range of values in Figure 2.8 with cl ranging from 2.6 to 8.8

and λ from 2.9 to 9.5 Mpc. This spread arises from the broad variation in spatial and mass

resolution exhibited by the suite of simulations. In spite of this, there is a clear grouping of

points at cl ∼ 8 and λ ∼ 3 Mpc. This reflects the trend towards numerically converging to the

“correct” clumping factor and mean free path and is our next topic of focus.

2.5 Numerical Convergence

In this section, we attempt to answer the following question: What mass resolution and box

sizes are necessary in cosmological hydrodynamics simulations, in order to obtain accurate re-
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Figure 2.8: cl versus λ (top panel) and x2cl versus λ (bottom panel) for all simulations taken
at z = 10 with a photoionization rate Γ−12 = 0.3. In each panel points denote simulation
values according to the legend in the top right corner of the plot. Traced by the dotted line is
equation (2.17) which describes the relationship between mean free path and clumping factor
for an optically thin IGM.

sults for the inhomogeneity of an unheated IGM? Clearly, simulations must have sufficient mass

resolution to resolve the internal structure of the lowest mass halos that can contain gas. In ad-

dition, however, such simulations must cover a large enough volume to contain a representative

sample of the low-mass halos that dominate the opacity of the IGM.

In Figure 2.9 we plot the clumping factors and mean free paths obtained from the radiative

transfer calculations performed on each of the simulations listed in Table 2.1. To obtain a

picture of convergence we display how cl and λ vary as functions of simulation box size, L,

(left panels) and dark matter particle mass, mdm, (right panels) for our fiducial redshift z = 10

and photoionization rate Γ−12 = 0.3. Though the discussion below pertains explicitly to these

fiducial values we have checked that the picture remains consistent for 10 ≤ z ≤ 20 and

0.01 ≤ Γ−12 ≤ 10.

Starting in the top right panel of Figure 2.9 we show how cl changes as the mass resolution of

the simulations is varied. As expected, the clumping factor increases as the resolution is refined
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Figure 2.9: Clumping factor and mean free path versus simulation box size (left panels) and
dark matter particle mass (right panels) for z = 10 and Γ−12 = 0.3. In each panel point types
distinguish between different simulations and follow the legend in Figure 2.8. Lines in the left
panels connect simulations with fixed particle mass, while lines in the right panels connect
simulations with fixed volume. The converged simulation C3 (10243, 1 Mpc) is denoted by a
green cross and is highlighted by a black square for easy identification. In the two left panels,
open cyan circles and closed cyan circles denote the values of cl and λ obtained from different
random realizations of simulations B1 and B2 respectively.

and begins to plateau to a common value of cl ∼ 8.8 at mdm ∼ 30 M�, when a sufficiently low

particle mass required to resolve the smallest gaseous structures in the box is reached. Simula-

tions with larger particle mass are unable to resolve the smallest inhomogeneities contributing

to the clumpiness of the IGM and consequently imply clumping factors up to a few times smaller

than the converged result. In the opposite limit we find that simulations with mdm < 5 M� are
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also yielding smaller clumping factors of cl ∼ 8. This appears counterintuitive at first glance

since these simulations should have no problem resolving the Jeans scale of the IGM. However,

their inability to converge on cl is attributed to their small box size, as explained below. The

three smallest simulations with L = 0.25 Mpc are connected by a dot-dashed line and all display

conspicuously unconverged values.

The dependence of clumping factor on box size is shown in the top left panel of Figure 2.9.

In this case we expect to find a minimum box size above which simulations converge on cl.

Smaller boxes fail to capture power from large-scale modes and should therefore have reduced

clumping factors. Larger boxes that are able to capture a representative collection of absorption

systems within their volume should converge provided that they have sufficient mass resolution.

These general trends can be identified by the behaviour shown in the top left panel of Figure

2.9. There is a clear convergence of points near L ∼ 1 Mpc and cl ∼ 8.8 with cl falling off

on either side. Simulations with L . 1 Mpc have insufficient volumes to converge with this

result, while those with L & 1 Mpc have insufficient mass resolutions. Convergence occurs in

the middle ground where both a sufficient volume and mass resolution are attained.

We find similar behaviour by comparing how λ changes between simulations. From the

bottom panels of Figure 2.9 we see that the resultant behaviour is essentially an inversion of

that described for cl. Firstly, simulations with coarse mass resolutions overestimate λ. These

runs are unable to resolve small-scale inhomogeneities and the degree of self-shielding that

would otherwise inhibit the propagation of ionizing photons through neutral patches of the

IGM. Secondly, the smallest boxes also produce values of λ that are too large. As mentioned

above, these simulations underproduce the collection of halos that shield against the propagation

of an ionization front through the IGM.

The simulations shown here have relatively small volumes in a cosmological context. One

issue that must be considered with these small boxes is that of sample variance. In the left

panels of Figure 2.9, we plot cl and λ obtained from simulations B1 (5123, 0.25 Mpc) and B2

(5123, 0.5 Mpc) that were run using two different random realizations of the same initial density

field. The clumping factors over all three random realizations vary by 9% and 5% for B1 and

B2 respectively, indicating that sample variance is somewhat important within these volumes.

This may explain the unexpected result that cl for simulation C1 (10243, 0.25 Mpc) is smaller

than that of simulation B1. Normally, at fixed volume, increasing the mass resolution should

enhance the clumping factor (e.g., as seen by comparing cl between simulations A3, B3, and

C3, which are connected by the dashed curve in the top right panel of Figure 2.9). However, we

may not expect to observe this trend with only one realization of a small box with large sample

variance, and must also keep this in mind when interpreting the results of our convergence test.

The above results indicate that convergence in cl and λ is attained by simulation C3 (10243,

1 Mpc) with mdm = 31 M�. This simulation has a fine enough mass resolution to resolve

small-scale inhomogeneities, and has a large enough volume that sample variance should be

unimportant and large-scale modes should be captured. In order to make this claim more
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rigorous we would have to compare against a box with larger volume and finer particle mass

than currently feasible. Nevertheless, the data presented in Figure 2.9 provides compelling

evidence that numerical convergence is being approached, and we suspect that deviations in our

values for cl and λ from their “true” values are small enough to claim convergence in simulation

C3. Based on this we find that the necessary requirements for describing the inhomogeneity

of an unheated IGM using cosmological hydrodynamics simulations is to use box sizes L & 1

Mpc with dark matter particle masses mdm . 50 M�. Smaller boxes are troubled by sample

variance while coarser mass resolutions are unable to resolve the mass scale where gaseous halos

are dominating the opacity of the IGM.

2.6 Discussion

We have performed high-resolution, cosmological simulations of structure formation at redshifts

z > 6, including adiabatic hydrodynamics. By post-processing the resulting density fields with

a radiative transfer algorithm for hydrogen ionizing radiation, we have determined the opacity

of the unheated IGM, in terms of the mean free path to ionizing radiation, λ, as a function of

redshift and ionizing background intensity. These results are relevant (1) as converged solutions

for the opacity of the IGM early in the reionization process, before photoheating has evaporated

small-scale structure and (2) in determining what mass and length resolutions are necessary to

correctly model the propagation of ionization fronts into the neutral IGM. We derive values of

ncrit, the proper hydrogen number density above which gas remains neutral, that are for the

most part a function of only Γ−12. Simulations that mimic the effect of self-shielding by turning

off the optically-thin flux at high densities should use ncrit ∼ 0.1 cm−3 Γ
2/3
−12, independent of

redshift.

Our post-processing approach neglects the hydrodynamic feedback of photoheating on the

density evolution. These results therefore indicate what the initial degree of inhomogeneity

should be as ionization fronts propagate into the IGM. In addition, they place an upper limit

to this inhomogeneity in patches of the IGM that have already been ionized. We find that the

initial clumping factor of the IGM just as it is being ionized is a strong function of redshift and

ionizing background intensity, with typical values at z = 10 ranging from about cl = 4.4 to 16

and λ = 0.7 to 15 Mpc, for Γ−12 = 0.03 to Γ−12 = 3, respectively.

Modelling the transition from a neutral to ionized IGM requires self-consistent simulations

of the coupled radiative transfer and hydrodynamical photoevaporation process. Shapiro et al.

(2004) used idealized two-dimensional radiative transfer hydrodynamics calculations of the pho-

toevaporation of initially spherical, isolated minihalos, surrounded by infalling gas. Those cal-

culations showed that smaller minihalos are photevaporated faster, and that larger fluxes lead

to faster photoevaporation times as well. Iliev et al. (2005b) extended these models to show that

the typical timescale for minihalo photoevaporation is tev ∼ 10− 100 Myr. This is comparable

to the recombination time trec = 1/(clαB〈nH〉) ∼ 100 Myr at z ∼ 10 for a clumpy IGM with
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cl = 10. This suggests that Jeans smoothing of the IGM occurs before recombinations have had

time to significantly disturb the reionization process. The amount by which recombinations

occurring within minihalos could delay reionization was studied by Ciardi et al. (2006) who

performed numerical simulations using the results of Iliev et al. (2005b) as a subgrid model for

minihalo absorption. For the extreme case where Jeans smoothing fails to suppress minihalo

formation they place ∆z ∼ 2 as the upper limit to the redshift delay of reionization induced by

minihalos. For the opposite and more physically realistic case where minihalo formation is heav-

ily suppressed by photoionization they find only a modest impact on reionization with a volume

averaged ionized fraction that is . 15% lower than the case where minihalo recombinations are

ignored.

However, the photoevaporative process is in reality likely to be more complex than for the

simplified geometries and source lifetimes considered by Shapiro et al. (2004), with halos over a

range of masses clustered in space and arranged within a “cosmic web” of filamentary structure.

Filamentary infall from nearby neutral gas could replenish halos as they are being evaporated,

considerably extending the photoevaporation process, while ionization from highly luminous

but intermittent starburst galaxies could result in large clumping factors and stalled minihalo

evaporation, considerably increasing photon consumption and leading to a much more complex

morphology of early H ii regions (e.g., Wise et al., 2012) than is typically envisioned.

A possible scenario that we have not considered here is the suppression of gas clumping at

early times due to the presence of high-redshift X-ray sources (see, e.g., Haiman, 2011). These

may be associated with traditional X-ray sources like supernova or by more exotic sources like

microquasars (Mirabel et al., 2011). X-rays have a small absorption cross-section meaning that

a high-redshift distribution of X-ray sources would expose the IGM to a nearly uniform source

of heating, inhibiting minihalo formation and growth at early times (Oh & Haiman, 2003). The

result is a warm (T ∼ 1000 K) and weakly ionized IGM that would later become reionized by the

patchy network of star-forming galaxies with softer radiation spectra. In this case the clumping

factor would already be reduced at the onset of reionization and the resolution requirements

presented here would become less strict. Our convergence criteria may therefore be considered

the conservative case where the IGM has not been smoothed by heating processes prior to

reionization.

We find that convergence is reached at a dark matter particle mass of mdm . 50 M�. A box

size of L & 1 Mpc is necessary to sample the IGM for the purpose of modelling absorptions by

small-scale structure. The clumping factors we find from our converged results are somewhat

smaller than the values cl ∼ 30 found in early attempts to characterize the clumpiness of the

IGM which did not accurately separate ionized and neutral gas (e.g., Gnedin & Ostriker, 1997),

but are higher than the clumping factors found by Pawlik et al. (2009) at z ∼ 9, just before

the IGM in those simulations was heated by ionizing radiation. We attribute this difference to

the increased mass resolution of our simulations, which resolve halo masses down to the Jeans

mass in an unheated IGM (∼ 104M�), as opposed to that corresponding to the Jeans mass
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Figure 2.10: Here we compare clumping factors C−1 and C100 from our fiducial simulation B2
(5123, 0.5 Mpc) to the Pawlik et al. (2009) simulation L6N256 (2563, 6 Mpc). The Pawlik et
al. curve corresponds to their reference simulation that did not include photoionization and
has similar attributes to our simulation A6 (2563, 8 Mpc). As expected, A6 and L6N256 are
in good agreement with each other while the higher-resolved simulation B2 shows clumping
factors a few times larger than L6N256.

for a photoionized gas temperature of ∼ 104 K (∼ 108M�). As pointed out by Pawlik et al.

(2009), the clumping factors they find at z ∼ 6, for a patch of the IGM which was ionized

significantly earlier, at z ∼ 9, are converged with respect to the Jeans scale of the heated

IGM. Their value likely approaches the correct2 value for the post-reionization IGM at z = 6

because a long enough time had passed since the gas was ionized for photoheating to evaporate

existing small-scale structure and suppress accretion onto newly formed dark matter minihalos

with masses below ∼ 108−9 M�, which were resolved in their highest resolution simulations by

∼ 100− 1000 dark matter particles.

Pawlik et al. (2009) demonstrate convergence of their clumping factor for the heated IGM

2The correctness of the clumping factor depends on the specific physical processes affecting the evolution of
baryons within the IGM and on the particular context to which the clumping factor is being used to describe.
Here we use the term correct to refer to the value of the clumping factor that would be obtained if the simulation
in question had infinite resolution.
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while noting that convergence would be more difficult to obtain for an unheated IGM. We have

explicitly demonstrated this latter point here and accordingly show that their values for the

clumping factor are likely underestimates during the initial stages of reionization, by about a

factor of a few. This is illustrated in Figure 2.10 where we compare clumping factors from two of

our simulations to the unheated simulation L6N256 of Pawlik et al. Here we plot the clumping

factors C−1 and C100 with this notation being used to emphasize that these clumping factors

are evaluated using all gas below some density cutoff. For C−1 a physical density threshold of

ncrit = 0.1 cm−3 is used while an overdensity threshold of ∆crit = 100 is used for C100. These

definitions differ from the definition of cl in equation (2.11) that we have been using so far which

involves an average over all ionized gas in the box. In any event, the clumping factors we find

in our fiducial simulation B2 are at all times larger, by a factor of 1.2 at z = 20 and 3.5 at z = 6

for C−1. As described above, the clumping factors we obtain at low redshift are overestimates,

and in reality should be closer to C−1 ∼ 6 or C100 ∼ 3 found by Pawlik et al. in the presence of

a photoevaporative background. Combining these two results, the clumping factor of the the

IGM evolves strongly just after a patch of IGM is ionized. For ionization at z = 9, the clumping

factor drops from cl ∼ 20 at z = 9 to a few at z = 6, depending on the intensity of the ionizing

background – with larger intensities leading to higher clumping factors and larger mean free

paths. This strong suppression of the clumping factor due to photoheating was demonstrated

by Pawlik et al. who referred to it as a positive feedback on reionization since it reduces the

total number of recombinations occurring within small-scale absorption systems.

The results presented here for the inhomogeneity of electron density in the presence of an

ionizing background should serve as a foundation for more detailed study of radiative transfer

and hydrodynamical effects in the initial stages of reionization, including the effects of the

initial relative velocity between baryons and dark matter (e.g., Tseliakhovich & Hirata, 2010),

preheating by long mean free path X-ray photons (e.g., Ricotti & Ostriker, 2004; Ricotti et al.,

2005), and photoevaporation (e.g., Shapiro et al., 2004; Abel et al., 2007). In simulating all of

these processes, it will be necessary to resolve small-scale structure in the way outlined here.
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Chapter 3

Evolution of low mass galactic

subhalos and dependence on

concentration

A version of this chapter has been published in the Astrophysical Journal (ApJ) as “Evolution

of low mass galactic subhalos and dependence on concentration” Emberson, J.D., Kobayashi,

T., and Alvarez, M.A., Volume 812, Issue 1, 2015. Reproduced here with permission from ApJ.

3.1 Chapter Overview

We carry out a detailed study of the orbital dynamics and structural evolution of over 6000

subhalos in the Via Lactea II simulation, from infall to present. By analyzing subhalos with

masses down to m = 4 × 105 M�, we find that lower mass subhalos, which are not strongly

affected by dynamical friction, exhibit behaviours qualitatively different from those found pre-

viously for more massive ones. Furthermore, there is a clear trend of subhalos that fell into

the host earlier being less concentrated. We show that the concentration at infall characterizes

various aspects of subhalo evolution. In particular, tidal effects truncate the growth of less con-

centrated subhalos at larger distances from the host; subhalos with smaller concentrations have

larger infall radii. The concentration at infall is further shown to be a determining factor for

the subsequent mass loss of subhalos within the host, and also for the evolution of their internal

structure in the vmax − rmax plane. Our findings raise the prospects of using the concentration

to predict the tidal evolution of subhalos, which will be useful for obtaining analytic models of

galaxy formation, as well as for near field cosmology.

44
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3.2 Introduction

The standard model of cosmological structure formation is based upon the notion that the

gravitational landscape is dominated by cold dark matter (CDM), which initially collapses

on small scales and grows hierarchically to larger scales through the continued merger and

accretion of smaller objects. Many of the accreting systems survive to the present epoch as

independent entities within their host, giving rise to a system of nested substructure within the

largest objects to have formed today. These surviving remnants present a unique opportunity

to study the seeds of galaxy formation and the chance to probe the nature of dark matter on

small scales.

Accomplishing these goals requires the development of an accurate and predictive theory

for the evolution of substructure. This remains a difficult task and a fundamental problem in

the burgeoning area of near field cosmology. Even without taking into account the complicating

role played by dissipative effects associated with, e.g., star formation and feedback, one must

still contend with reconciling the stochasticity in the primordial fluctuations that seed the sub-

sructure in any given object, on the one hand, and the highly nonlinear gravitational dynamics

associated with tidal disruption and dynamical friction, on the other hand. As is often the case,

efforts to tackle this problem generally fall into one of two categories.

First are direct numerical simulations (e.g., Diemand et al., 2008; Springel et al., 2008;

Garrison-Kimmel et al., 2014), which attempt to solve the problem ab initio from cosmolog-

ical initial conditions zoomed on a single host. This class of approaches suffers from small

number statistics, both in the number of individual objects simulated and in the range of un-

derlying background cosmologies (warm dark matter, self-interacting dark matter, broken scale

invariance, etc.). In addition, while simulations have begun to converge on accurate solutions

for individual systems in a ΛCDM universe composed only of collisionless dark matter, star

formation and feedback must still be treated using heuristic sub-grid approaches calibrated

with empirical data, blurring the line between theory and observation and complicating the

interpretation of simulations.

The second class involves semi-analytical galaxy formation models (e.g. Taylor & Babul,

2004; Zentner et al., 2005; Gan et al., 2010; Jiang & van den Bosch, 2014b; Pullen et al., 2014)

which have a long history in cosmology, and have begun to be successfully applied to the local

universe. The standard approach is to generate a mass accretion history using the excursion set

formalism (e.g., Bond et al., 1991; Lacey & Cole, 1993) followed by an integration of individual

accreting orbits from the moment of infall to the present day. Orbital parameters at infall

are drawn from probability distributions motivated by numerical simulations (e.g., Navarro

et al., 1995; Tormen, 1997; Ghigna et al., 1998; Benson, 2005; Zentner et al., 2005; Wang

et al., 2005; Khochfar & Burkert, 2006; Jiang et al., 2008; Wetzel, 2011; Jiang et al., 2015)

and the time integration contains prescriptions for various nonlinear processes such as tidal

stripping, tidal heating, and dynamical friction. The utility of this approach is its computational

speed, allowing one to simulate multiple realizations and cover a broad region of model and
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parameter space compared to what can be achieved using expensive cosmological simulations.

The drawback is that any simplifying assumptions (e.g., symmetries in the host potential,

omission of substructure interaction) inherent to the model may affect the final result in an

unknown or unphysical manner.

In this paper, we present a detailed case study of an individual object simulated at high

resolution – the Via Lactea II (Diemand et al., 2008, VL2) simulation – with the aim of making

connections relevant to semi-analytic models of substructure evolution. We focus on a self-

consistent description of the most important physical processes and relationships, rather than

on direct comparison to specific observations. Our goal is to separate the robust quantitative

predictions of this simulation from those that are unique to the particular background cosmology

and random realization used to generate its initial conditions.

This paper is organized as follows. In Section 3.3 we describe our methodology of extract-

ing substructure evolution from the public VL2 catalogues. In Section 3.4 we present the main

results of our work. We begin in §3.4.1 with a basic description of the host halo and in §3.4.2

statistics of its subhalo population, followed in §3.4.3 with a presentation of orbital properties

at the time of infall, and in §3.4.4 with a quantitative assessment of substructure evolution in-

cluding the physical processes of tidal mass loss and its dependence on subhalo properties, the

orbital timescale, changes in the orientation of the orbital plane, and the dynamical readjust-

ment of the internal structure of subhalos as portrayed by their movement in the rmax − vmax

plane. In §3.5 we compare the surviving and disrupted subhalo populations of VL2 and investi-

gate how survivability depends on infall redshift, mass, concentration, and orbital parameters.

We summarize our conclusions in Section 3.6.

3.3 Data Analysis

The VL2 simulation traced the growth of a galactic host halo within a high-resolution region

sampled with roughly one billion particles of mass 4100 M�. In what follows we make use of

the main halo catalogue made publicly available1 by the VL2 team. This catalogue contains

evolutionary tracks of all 20048 (sub)halos within the simulation box that are resolved at z = 0

and for which their peak circular velocity was larger than vmax = 4 km s−1 at some time during

their evolution. The latter restriction is imposed to discard small halos affected by insufficient

resolution.

The catalogue contains a collection of halo properties at 27 discrete redshifts between 0 ≤
z ≤ 27. These properties include: the x, y, and z positions and velocities relative to the host

halo rest frame; the tidal radius, rtid, and tidal mass, mtid; the maximum of the circular velocity

curve, vmax, and the radius, rmax, at which this occurs. Empty values occur at redshifts when

the halo progenitor either did not exist or overlapped with a more massive halo. In what follows

we consider only the redshift range 0 ≤ z ≤ 4.56 for which the host progenitor was consistently

1http://www.ucolick.org/~diemand/vl/data.html

http://www.ucolick.org/~diemand/vl/data.html
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identified within the simulation. This contains 19 redshift snapshots which we further refine by

performing cubic spline interpolations of the above quantities to generate a total of 181 discrete

sample points equally spaced by 68.8 Myr.

Subhalos are identified in VL2 using the six-dimensional phase-space friends-of-friends (6DFOF)

algorithm described in Diemand et al. (2006). Around each (sub)halo the circular velocity

profile, vcirc =
√
Gm(< r)/r, is computed in spherical bins and is fitted with the sum of contri-

butions from an NFW profile and a constant density background, ρbg. The latter component

is then subtracted from the (sub)halo density profile and a tidal radius is computed by solving

ρsub(rtid) = 2ρbg, corresponding to the tidal radius of an isothermal sphere on a circular orbit

within an isothermal host (Diemand et al., 2007a). The tidal mass is assigned mtid = m(< rtid).

For sufficiently isolated halos, where the background density is small and rtid > r200 (the radius

at which the enclosed density is 200 times the mean matter density), rtid is capped at r200 and

mtid = m200 (Diemand, private communication).

Hence, the subhalo masses used in this paper are not the result of an unbinding procedure of

dark matter particles. Nevertheless, it was shown in the Via Lactea I (VL1) analysis (Diemand

et al., 2007b) that this definition of tidal mass indeed agrees well with the true bound mass when

the subhalo is near apocenter, but may significantly underestimate bound mass near pericenter.

For this reason we generally only report mass quantities near apocenter and explicitly point

out to the reader when this is not the case.

In the following subsections we define concepts and present our methodology of investigating

substructure evolution from the VL2 data. We begin in §3.3.1 with the definition of a subhalo.

In §3.3.2 we model the internal structure of the host and its subhalos via concentration param-

eters. We define in §3.3.3 the redshift, zinfall, at which a subhalo is said to first infall onto the

host. In §3.3.4 we outline our calculations of orbital energy and angular momentum and finish

in §3.3.5 with a description of our method of tracing subhalo orbits after infall.

As a matter of convenience, we remove explicit redshift dependence in our following notation

and remind the reader here that all quantities are computed at discrete times. We use lower case

notation (e.g., m, rmax, vmax) when referring to subhalos while upper case notation (e.g., M ,

Rmax, Vmax) is reserved for the host. The mass of a subhalo is taken to be its tidal mass while

the mass of the host is taken to be its virial mass (see §3.3.2). We often use µ ≡ m(z)/M(z) to

denote the instantaneous mass ratio between a subhalo and the host. At times we normalize to

the present-day host mass in which case we define µ0 ≡ m(z)/M(0). In what follows we assume

the same cosmology as the VL2 simulation; namely, the ΛCDM parameters (Ωm, ΩΛ, h, ns, σ8)

= (0.238, 0.762, 0.73, 0.951, 0.74) from the WMAP 3-year data release (Spergel et al., 2007).

3.3.1 Definition of a subhalo

We flag an object in the VL2 catalogue as a subhalo if at one time during its evolution it passed

within the instantaneous virial radius of the host. This definition includes subhalos that are

presently within the virial radius as well as subhalos that currently reside outside the virial
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radius. We refer to the latter group as ejected subhalos in the sense that they are now removed

from the virial boundary of the host. This terminology, however, does not imply that these

subhalos are unbound from the host, as shown in §3.4.3.

In later sections we explore subhalo tidal mass loss. It was shown in Kazantzidis et al.

(2004) that subhalos with too few particles within their tidal radius experience artificially large

tidal mass loss. For this reason we impose a further restriction on the VL2 catalogue that only

objects with at least 100 particles in their tidal radius at z = 0 may be considered as subhalos.

This sets a minimum mass resolution of m = 4× 105 M�.

We find a total of 7569 objects meeting the above criteria. 5845 (77%) of these currently

reside within the host virial radius of Rvir = 320 kpc (see §3.3.2) while the remaining 1724

(23%) are currently ejected. For the remainder of the paper we exclude those subhalos whose

infall (see §3.3.3) is determined to be zinfall > 4.56. This reduces the total population to 6145

subhalos with 4607 (75%) currently within the virial radius and 1538 (25%) ejected.

3.3.2 Host and subhalo mass distributions

It was shown in Navarro et al. (1997) that dark matter halos obey a universal density profile,

named an NFW profile after its founders. This has the form ρ(r) ∝ x−1(1 + x)−2, where

x ≡ r/rs and rs is the radius at which d ln ρ/d ln r = −2. The virial radius, rvir, is defined such

that the enclosed density is ∆(z) times the critical density, where ∆(z) is calculated using the

fitting function to the overdensity of a virialized uniform sphere in a flat universe given in Bryan

& Norman (1998). An NFW profile is often parameterized by its concentration, cvir ≡ rvir/rs,

which describes the degree to which the mass is contained within the central region.

We assume that the density profile of the host follows an NFW form. We determine its

concentration by finding the unique NFW profile for which the mass enclosed within Rmax is

RmaxV
2

max/G. This involves the implicit solution of

g(Cvir) = g(xm)
∆(z)

2

[
H(z)Rmax

Vmax

]2

, (3.1)

where g(x) ≡ f(x)/x3 with f(x) ≡ ln(1 + x) − x/(1 + x), H(z) is the Hubble parameter, and

xm ≡ Rmax/rs ≈ 2.163. Once the concentration is obtained, the host halo mass is computed as

Mvir = 4πρcrit∆R
3
vir/3 where Rvir = CvirRmax/xm.

The assumption of an NFW profile for the host should be valid over the entire redshift range

considered here. For subhalos, however, an NFW profile is only valid up until its moment of

infall onto the host. It was shown by Hayashi et al. (2003) that the processes of tidal heating

and stripping tend to modify the internal structure of subhalos away from their initial form.

For this reason, we only use cvir obtained from equation (3.1) for subhalos at their time of infall.
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Afterwards, we define a concentration parameter

cmax = 2

[
vmax

H0rmax

]2

, (3.2)

which gives the mean density within rmax in units of the critical density. Comparing to equation

(3.1) shows that, for any given redshift, there exists a monotonic relationship between cvir and

cmax.

3.3.3 Definition of infall

In an idealized description, a subhalo will form distinct from its future host, accreting surround-

ing material and growing steadily in size. This process will occur until the time at which tidal

interactions with its host become important. At this point, the combined action of dynamical

friction and tidal stripping will cause the subhalo to lose mass over time. We therefore define

infall as this turnaround phase in the growth history of the subhalo. That is, we define the

redshift, zinfall, of infall onto the host to be the moment in time at which the mass of the subhalo

is a maximum2.

Recall that masses in VL2 are assigned as the mass contained within the tidal radius. The

tidal radius is derived, at any moment, by equating the subhalo density profile to twice the

local background density. For sufficiently isolated subhalos, where the background density is

small, the tidal radius is capped at r200. The resultant tidal mass provides a good estimation of

the true bound mass when the subhalo is near apocentre, which is generally the case at infall.

As mentioned earlier, we consider only the 6145 subhalos for which zinfall ≤ 4.56 since at earlier

times the host progenitor is only sporadically identified within the VL2 catalogues, preventing

us from computing orbital properties at those times.

An alternative convention that is commonly used in the literature is to define infall as the

moment the subhalo passes through the virial radius of the host. However, as shown previously

(Hahn et al., 2009; Behroozi et al., 2014), subhalos generally undergo strong tidal forces at

distances larger than Rvir. Furthermore, the virial radius evolves with redshift through its

dependence on ∆(z), meaning that its value will change even if the intrinsic mass profile of the

host is unchanging. The virial radius is therefore not well-suited for defining the distance at

which a subhalo becomes tidally truncated by the host, and can be said to undergo infall in the

sense considered here.

2This definition does not filter out the possibility that a subhalo may initially lose mass via tidal interactions
with a halo other than its future host. Such group preprocessing was studied in Wetzel et al. (2015) where it
was found that a significant fraction of subhalos reside within the virial radius of a different halo prior to passing
through the virial radius of the main host. We therefore note the possibility that our zinfall are biased toward
larger values, though it is unclear to what magnitude group preprocessing affects premature mass loss.
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3.3.4 Orbital energy and angular momentum

We determine the energy and angular momentum by assuming that subhalos evolve as isolated

point particles within the spherically symmetric NFW profile of the host. In this case, the host

potential is

Φ(r) = −RmaxV
2

max

f(xm)

ln(1 + xmr/Rmax)

r
, (3.3)

where r = |r| is the radial separation between the subhalo and host. In this expression we have

taken the zero point of the potential to be at infinity. The specific orbital energy of the subhalo

is

E =
1

2
v · v + Φ(r), (3.4)

while its specific orbital angular momentum is

L = r× v. (3.5)

Here v is the physical relative velocity between the subhalo and host which includes the sum

of peculiar motion and Hubble flow.

In general, the continued action of dynamical friction will steadily drain energy and angular

momentum from subhalo orbits. The evolution of a subhalo after infall thus depends strongly

on its initial energy and angular momentum. It is therefore important to characterize the infall

distributions of E and L as inputs in semi-analytic models of subhalo evolution. A common

convention is to normalize these quantities in terms of a circular orbit of the same energy. We

introduce two variables: (i) η ≡ rcirc/Rvir, defined to be the ratio of the radius, rcirc, of a

circular orbit of the same energy E as the subhalo to the virial radius, Rvir, of the host at infall;

(ii) the circularity, ε ≡ L/Lcirc, defined to be the ratio of the subhalo angular momentum, L,

to the angular momentum, Lcirc, of a circular orbit of the same energy. To compute η and ε we

must first evaluate rcirc, which is achieved by numerically solving the expression

ln(1 + y)

y
+

1

1 + y
= −2Ef(xm)

xmV 2
max

, (3.6)

where y ≡ xmrcirc/Rmax. Then Lcirc =
√
GM(rcirc)rcirc where M(rcirc) is the mass contained

within radius rcirc of the host.

The definitions of η and ε used here are self-consistent with the description of a subhalo

orbiting within an isolated NFW profile. This does not, however, conform with the standard

method applied in semi-analytic models of substructure evolution. Instead, it is common to

report these quantities at the time when the subhalo first crosses through Rvir and to model

the host potential as a point mass of Mvir. In this case, the orbital energy is

E =
1

2
v · v − GMvir

Rvir
, (3.7)
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and the radius of a circular orbit of the same energy is

rcirc = −GMvir

2E
. (3.8)

When discussing η and ε at infall we report the results of both methods so that we can make

direct comparisons to previous work.

3.3.5 Definition of an orbit

In §3.4.4 we compute subhalo quantities, such as tidal mass, taken over the course of an orbital

period. To do so requires a precise definition of an “orbit”. This is a complicated task since

an orbit within a spherical potential is not closed, generally, and traces a rosette pattern,

oscillating radially between a minimum pericenter, rperi, and maximum apocenter, rapo (see,

e.g., Binney & Tremaine, 1987). Furthermore, the mass distribution in realistic halos departs

significantly from spherical symmetry, due both to triaxiality in the smooth component, as well

as substructure. Finally, subhalos slowly spiral inward due to dynamical friction both from the

background matter distribution as well as stripped material. Consequently, energy and angular

momentum are not in general conserved, and we require a robust and physical definition of

an orbit that does not depend on simplifying assumptions such as spherical symmetry and

conserved quantities.

We choose to work solely from knowledge of the radial position of the subhalo as a function

of time, determining the local minima (pericenters) and maxima (apocenters). Due to the

somewhat coarse time information, apocenters are generally more accurately determined than

pericenters, since halos spend a larger fraction of time further away from the host center. Thus,

we define an orbit as that segment of the subhalo trajectory between two successive apocenters.

A given orbit is therefore characterized by the time at first and last apocenters t1 and t2, the two

apocenters rapo,1 and rapo,2, and the pericenter, rperi. We take the mean of the two apocenters,

rapo ≡ (rapo,1 + rapo,2)/2, and define an effective eccentricity

eeff ≡
rapo − rperi

rapo + rperi
, (3.9)

while the period of the orbit is torb = t2 − t1.

3.4 Results

3.4.1 Host halo

We begin by presenting the derived properties of the host halo using the method outlined in

§3.3.2. Figure 3.1 shows the redshift evolution of the host virial mass and concentration. Open

circles denote the redshifts for which the VL2 catalogues are sampled while the solid black lines

trace the result we derive after performing a cubic spline interpolation on the time evolution of
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Figure 3.1: Evolution of the viral mass (top panel) and concentration (bottom panel) of the
host halo obtained by finding the unique NFW profile that matches the values of Rmax and
Vmax at each redshift. Open circles denote redshifts at which the VL2 catalogues are sampled
while solid black lines trace the results derived from a cubic spline interpolation of Rmax and
Vmax. The dotted black lines in each panel show the expected evolution for the fitting functions
given by Wechsler et al. (2002) for collapse times zc = 1.7 and zc = 3.7 (see text). The VL2
curves are well contained within the shaded region, which may reflect an initial “collapse” at
z ∼ 3.7 (in the sense of the Wechsler et al. formalism) followed by an episode of significant
mass accretion at z ∼ 1.7 which “resets” the concentration back to the virialization value of
Cvir ∼ 4.

Rmax and Vmax. Our method finds the host to evolve from a virial mass of Mvir = 1.7×1011 M�
at z = 4.56 to Mvir = 1.9 × 1012 M� at z = 0. The concentration evolves from Cvir = 2.6 at

early times to Cvir = 12.2 at the present day.

Wechsler et al. (2002) showed that halo concentration is strongly related to mass assembly

history. In particular, evolution in concentration and virial mass can be described remarkably

well using a single parameter, ac = 1/(1 + zc), defined as the formation or collapse time of the

halo. They provide fitting relations Cvir = 4.1a/ac and Mvir(z) = Mvir(0)exp[−2acz] which we
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plot in Figure 3.1 spanning the redshift range zc = 1.7− 3.7. The VL2 data fits well within the

shaded region which may reflect an initial collapse time of z ∼ 3.7 followed later by an episode

of significant mass assembly at z ∼ 1.7 which resets the concentration back down to Cvir ∼ 4.

3.4.2 Mass functions

The subhalo mass function provides a statistical measure of the amount of substructure within

a host as a function of mass scale. In general, we can speak of two subhalo mass functions:

the unevovled and evolved mass functions. The unevolved mass function counts the number of

subhalos based on their mass at the time of infall. The choice of name emphasizes that this is a

measure of the distribution of subhalos before they have had time to evolve under the influence

of tidal processes within the host. The evolved mass function, on the other hand, counts the

number of subhalos based on their present-day masses.

In the middle panels of Figure 3.2 we plot both the unevolved and evolved subhalo mass

functions measured from VL2. We compare these to the corresponding mass functions from

Boylan-Kolchin et al. (2010, BK10) which were fitted from the Millennium II (Boylan-Kolchin

et al., 2009) and Aquarius (Springel et al., 2008) simulations. This is a useful comparison since

BK10 considered host halos with similar masses to the VL2 host halo and use the same definition

of zinfall as we do here. One difference, however, is that BK10 do not consider subhalos that

reside outside the virial radius of the host at z = 0 (i.e., ejected subhalos; see §3.3.1). For more

of a direct comparison, we also plot the VL2 mass functions with ejected subhalos removed.

The bottom panels show more closely the comparison between VL2 and BK10.

The VL2 and BK10 unevolved mass functions agree well with each other over most of the

mass range seen here. The sharp cutoff at small mass simply reflects the resolution limit of VL2.

There is considerable disagreement at the high mass end, though this regime is inherently noisy

due to small number statistics. This can be seen in the top left panel where the cumulative

distribution in µ0 at infall is shown; only 11 objects with µ0 > 4×10−3 at infall exist. Including

ejected subhalos enhances the VL2 unevolved mass function by a constant factor indicating that

infall mass does not play a significant role in determining whether a subhalo resides outside of

Rvir at z = 0.

Note that the unevolved mass functions shown here correspond only to those subhalos that

accrete onto the host and remain intact at z = 0. The red line in Figure 3.2 traces equation (21)

of Jiang & van den Bosch (2014a) which shows the unevolved mass function for all subhalos

ever accreted onto the host. This mass function is found to have a universal form (van den

Bosch et al., 2005; Giocoli et al., 2008; Li & Mo, 2009), independent of host halo mass and

cosmology, except perhaps a small dependence on ns (Yang et al., 2011). The main difference

between this mass function and that of surviving subhalos occurs at high µ where dynamical

friction selectively disrupts massive subhalos after infall. The VL2 unevolved mass function

(black triangles) agrees well with the red line albeit with a small systematic shift upwards. In

§3.5 we analyze disrupted subhalos in VL2 and find that including them here would further
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Figure 3.2: Top panels show the cumulative distribution in µ0 measured at infall (left) and
at z = 0 (right) for all 6145 VL2 subhalos. The gray histogram shows the reverse cumulative
distribution function. Middle panels show the corresponding unevolved (left) and evolved (right)
mass functions for all subhalos (black triangles) and only “non-ejected” subhalos (gray circles).
Hence, the gray circles correspond to only those 4607 subhalos currently residing within Rvir

at z = 0 (see §3.3.1). This is done for the purpose of comparing to the Aquarius simulation,
shown as the dark dashed blue line, based on the BK10 fitting function. The VL2 and Aquarius
mass functions show only those subhalos that survive to the present epoch. In contrast, the
solid red line traces the fitting function of Jiang & van den Bosch (2014a) for the unevolved
mass function of all subhalos accreting onto the host. The lightly shaded curves in the left
(right) panel correspond to evolved (unevolved) quantities in order to better show the difference
between the two mass functions. The bottom left (right) panel shows the relative difference
between the various data and the unevolved (evolved) BK10 fitting function.

boost the black triangles upward by ∼ 5% in the range 10−5 . µ0 . 10−3 (see Figure 3.16).

We are indeed focusing on the low-mass regime where dynamical friction and tidal disruption

are relatively unimportant for the vast majority of subhalos.

The right panels of Figure 3.2 show the evolved counterparts. The evolved mass function

can be thought of as a shift to lower mass due to tidal stripping. This can be seen by comparing
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the dark and lightly shaded blue lines. The VL2 evolved mass function lies systematically below

the BK10 result at a level of about 30%. BK10 quote an intrinsic halo-to-halo scatter of 18%

for µ0 . 10−3 which is not enough to explain the discrepancy seen here. Instead, the difference

observed here is most likely related to differences in cosmological parameters. In particular,

VL2 uses σ8 = 0.74 while Aquarius simulates larger perturbations with σ8 = 0.9. It is not

straightforward to describe how this difference manifests in the evolved mass function since there

are at least two competing effects. On the one hand, the lower amplitude of fluctuations in VL2

will yield later formation times meaning that subhalos have less time on average to lose mass

since infall. On the other hand, later formation times also yield lower subhalo concentrations

which promote more efficient mass loss (see §3.4.4).

Another factor that may contribute to this difference lies in the definition of tidal mass used

by VL2. As described in §3.3, subhalo masses in VL2 are underestimated at pericenter due to

the simplified scheme used in computing mass based on local density comparisons. This is in

contrast to the unbinding procedure used by Aquarius with the code SUBFIND (Springel et al.,

2001). As a result, the VL2 evolved mass function will be biased toward smaller masses as some

subhalos will be found near pericenter at z = 0 (the unevolved mass function is less affected

since subhalos are generally near apocenter at infall). Nevertheless, we only expect this to be a

partial effect since a suppression of 30% was also seen in Klypin et al. (2011) when comparing

VL2 and Aquarius vmax functions. The physical mechanism leading to the systematic difference

between the VL2 and Aquarius evolved mass functions remains to be seen.

3.4.3 Subhalo properties at infall

In this section we focus on subhalo statistics at the time of infall onto the host. In particular,

we investigate the redshift at which infall occurs (§3.4.3), the radial distance from the host

at which tidal truncation initiates (§3.4.3), and show distributions in orbital energy (§3.4.3)

and angular momentum (§3.4.3) at infall. The results presented here are important as inputs

into semi-analytic models of substructure evolution and extend the results of previous works to

much lower mass.

Redshift: zinfall

In Figure 3.3 we show the cumulative distribution of infall redshift for all 6145 subhalos with

zinfall ≤ 4.56. We see that half of the population has fallen into the host by z = 2. We

also plot separate distributions for the 1σ outliers having the smallest 16% present-day mass

(µ ≤ 5× 10−7) and largest 16% present-day mass (µ ≥ 7× 10−6). We see that presently more

massive subhalos tend to have fallen in at more recent times. There are two reasons for this

trend: (i) structure forms hierarchically, so halos falling in at earlier times were on average less

massive to begin with than those infalling later; (ii) subhalos of a given mass that fell in earlier

have had more time to undergo tidal stripping, and will be less massive today.
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largest present-day mass ratios, respectively.

Radius: rinfall

Figure 3.4 shows the distribution of the radial distance, rinfall, between the subhalo and host

at infall normalized to the virial radius of the host at that time. Hence, we are plotting the

relative distance at which the subhalo has its growth history truncated due to tidal interactions

with the host. We also plot separate distributions for the 1σ outliers with the most recent infall,

zinfall ≤ 1.1, and earliest infall, zinfall ≥ 3.93. In each case, the differential distribution can be

well approximated by a lognormal form in rinfall/Rvir. The mean and standard deviation of the

least-squared lognormal distribution for each population are summarized in Table 3.1.

Somewhat surprisingly, we find that over 90 per cent of subhalos undergo tidal growth

truncation outside of the virial radius, with roughly 50 per cent infalling at a distance of

more than three virial radii from the host. Considering halos falling in at the earliest times,

zinfall > 3.93, this fraction rises above 80 per cent. We emphasize, however, that these numbers
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solid black curve, dotted blue curve, and dashed red curve trace lognormal fits to the black,
blue, and red histograms, respectively. The mean and standard deviation of these fits are given
in Table 3.1.

are likely biased toward larger values since our definition of infall does not exclude the possibility

of group preprocessing for which tidal truncation first occurs via interactions with halos other

than the future host. Nevertheless, our findings are in qualitative agreement with past studies

(Hahn et al., 2009; Behroozi et al., 2014) showing that tidal truncation generally occurs outside

of Rvir. This trend is also apparent in the top panel of Figure 3.5, where we show the relationship

between infall radius and redshift directly. Why do halos at high redshift begin to be affected so

far outside the host?

A first hint is provided upon inspection of the bottom panel of Figure 3.5, where the infall

concentration is plotted against infall redshift. We see a strong correlation, with halos that fall

in earlier having much lower concentrations. This is expected because the typical mass of an
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from Klypin et al. (2011) for a subhalo mass of 1.4× 107M�, which we find to be the median
infall mass, independent of redshift. Halos falling in earlier are less concentrated and have their
growth truncated at larger distances.

infalling halo does not change very strongly with redshift. Thus, the concentrations of infalling

halos grow roughly as expected for halos of a fixed mass, e.g., 1.4 × 107M�, which we find to

be the median infall mass, independent of zinfall (see also Figures 3.2 and 3.16). This is shown

Table 3.1: Lognormal rinfall/Rvir Fits.

Population µ σ

All subhalos 1.09 0.69
zinfall ≤ 1.1 0.53 0.42
zinfall ≥ 3.93 1.76 0.61
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as the blue dashed line, which is the mean concentration–redshift relationship at fixed mass

as determined by Klypin et al. (2011)3. It would seem that a plausible explanation lies in the

concentration of infalling halos.

This can be directly tested by plotting rinfall/Rvir versus cvir, as shown in the top panel of

Figure 3.6. We see a definite trend of more concentrated subhalos coming closer to the host

before undergoing infall. Our physical interpretation is that highly concentrated subhalos with

compact density profiles are more resilient to tidal stripping. Hence, they are able to plunge

deeper into the potential well of the host before appreciable mass loss occurs. Note that the

relationship seen in Figure 3.6 appears weaker than the trend observed when comparing cvir

versus zinfall in Figure 3.5. In particular, there is a significant fraction of halos with cvir < 10

and rinfall/Rvir < 3, with the vast majority of these falling in at late times. This implies there

are other effects at high redshift that hinder the growth of infalling halos, in addition to lower

central densities.

Before advancing we note that a trend in rinfall/Rvir versus cvir is expected to exist even

if rinfall does not change much with time. This is based on the fact that both cvir and Rvir

generally increase with time due to the expansion of the universe. To try to account for this,

we plot, in the bottom panel of Figure 3.6, rinfall/Rs versus cvir/Cvir, where Rs = Rvir/Cvir

is the scale radius of the host. Normalizing cvir and rinfall in this way acts to remove redshift

dependencies in cvir and Rvir. We are thus plotting how close tidal truncation occurs relative

to the central density peak of the host as a function of subhalo concentration relative to that of

the host. Although weaker, we still see a definite trend of more concentrated subhalos coming

closer to the central depth of the host before experiencing tidal truncation. This lends support

to the notion of an intrinsic radius-concentration relation for infalling subhalos.

Orbital energy: ηinfall

Semi-analytic models of substructure evolution require two inputs as initial conditions for sub-

halo orbits: energy and angular momentum. In this section we present the infall distribution of

energy as seen in VL2 and proceed in the next section with angular momentum. In accordance

with past studies, we parametrize the infall energy in terms of the variable η ≡ rcirc/Rvir, where

rcirc is the radius of the circular orbit of the same energy as the subhalo and Rvir is the virial

radius of the host at infall. We compute this quantitiy by first evaluating equation (3.4) for

the orbital energy, and then solving equation (3.6) for rcirc based on an orbit within an isolated

NFW host potential.

This parametrization is only valid for subhalos on bound orbits (E < 0). It turns out that

this condition is not very restrictive since only 38 (0.6%) of the 6145 subhalos are on unbound

3Note that the concentration-redshift relation observed here is systematically lower than the Klypin et al.
(2011) curve. One reason is that the latter was calibrated against the Bolshoi simulation which had an enhanced
amplitude of perturbations with σ8 = 0.82 compared to the value of 0.74 employed by VL2. At a fixed redshift
we expect VL2 concentrations to be lower than in the Bolshoi simulation based on the notion that concentration
reflects the background density of the Universe at the time of halo formation.
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Figure 3.6: Top panel shows the infall radius–concentration relationship at infall. The bottom
panel shows a similar result with cvir and rinfall normalized to the concentration and scale radius
of the host, respectively. In both panels the solid line and shaded region have the same meaning
as in Figure 3.5.

orbits at the time of infall. This number is still small at z = 0 when only 75 subhalos are

found to be on unbound orbits. Interestingly, all 75 of these subhalos are outside of Rvir at

z = 0 (i.e., they are ejected subhalos) meaning that no subhalos within the present virial radius

are unbound. In contrast, only a small fraction (7/38) of unbound subhalos at infall end up

being part of the ejected population of subhalos at z = 0. Moreover, none of the unbound

subhalos at infall are also unbound at z = 0. Being unbound from the host potential at infall

correlates neither with being presently unbound nor with being found outside Rvir at z = 0.

Instead, it is likely that presently unbound subhalos acquire orbital energy from gravitation

interactions after infall. This can be achieved, for example, through three-body interactions

between merging groups of subhalos as they make their first passage together around the host

(Sales et al., 2007; Ludlow et al., 2009).

In Figure 3.7 we plot the VL2 distribution in η at infall for all bound subhalos. This is
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compared to the uniform distribution between [0.6, 1] used in the semi-analytic model of Zentner

et al. (2005, Z05) based on the analysis of the N -body simulations of Klypin et al. (2001) and

Kravtsov et al. (2004). This also serves as the basis for the input distributions of η used in

the semi-analytic models of Gan et al. (2010) and Jiang & van den Bosch (2014b). The VL2

result, with a peak at η ∼ 1.5, is in clear disagreement with the Z05 distribution. However, as

described in §3.3.4, our calculation of η is not directly comparable to that of Z05. Firstly, Z05

report η at the time a subhalo first crosses through Rvir, which occurs at much later times on

average than zinfall (see §3.4.3). In addition, orbital energy and rcirc are computed via equations

(3.7) and (3.8), valid for a point mass host potential. The gray histogram in Figure 3.7 shows

the result of applying this method to the VL2 data. The agreement with Z05 is better, but still

heavily offset toward larger values of η.

In the recent work of Jiang et al. (2015, J15) it was shown that η depends on mass ratio
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Table 3.2: Lognormal df/dη Fits.

zinfall with NFW host zcross with point host
Population µ σ µ σ

All subhalos 0.70 0.50 0.18 0.40
z ≤ 1 0.38 0.21 0.29 0.41

1 ≤ z ≤ 2 0.53 0.36 0.22 0.38
2 ≤ z ≤ 3 0.88 0.44 0.17 0.39
z ≥ 3 1.50 0.54 0.10 0.40

at infall, with smaller objects tending toward larger η. A direct comparison with their result is

difficult, however, due to their choice of a singular isothermal sphere host potential. Nonetheless,

their analysis suggests that looking only at subhalos with µ0 & 10−3, similar to those resolved

in Z05, would shift the gray histogram in Figure 3.7 to the left, presumably in better agreement

with the uniform distribution. Since VL2 samples only one host halo, however, we cannot test

this explicitly due to insufficient statistics in high-mass subhalos. Nevertheless, the result found

here corroborates the work of J15 and indicates that the infall distribution assumed for η in

various semi-analytic models of substructure evolution may only be strictly valid for relatively

massive subhalos. Low-mass subhalos (µ0 . 10−3) tend to have more kinetic energy, making

them less bound to the host, with lower specific binding energy.

We plot in Figure 3.8 the dependence of η on mass for the range of mass captured in VL2.

In this low-mass regime, there does not appear to be any significant trend of η with infall mass.

Instead, we find a strong trend with infall redshift. This trend is attributed to the fact that

Rvir is an increasing function of time so that η is pushed to larger values at earlier times. This

trend is slightly suppressed by a competing evolution in rcirc with redshift: we find typical

values of rcirc increase by a factor of ∼ 2 from z = 4 to z = 0 (whereas Rvir increases by ∼ 8

in this range). This intrinsic evolution in rcirc with zinfall indicates that subhalos falling in at

earlier times do so on slightly more bound (smaller rcirc) orbits. The top right panel of Figure

3.8 shows a strong trend in η with cvir which can be attributed to the concentration-redshift

relation seen earlier in Figure 3.5.

We note that the trends observed in the top panels of Figure 3.8 depend on which version

of η we present. Namely, we find that using η computed at virial crossing for a point mass

host potential mostly washes out the dependence of η with redshift and concentration. The

reason is that subhalos tend to become more bound in time after infall so that η is pushed

to smaller values at the time of virial crossing, zcross, which generally occurs after zinfall (see

Figure 3.5). This seems to occur in such a way as to mostly cancel the evolution in Rvir with

z. The difference between the black and gray histograms in Figure 3.7 can therefore be mostly

explained by two effects: (1) larger Rvir at zcross and (2) smaller rcirc at zcross.

We find that the probability distributions, df/dη, can be well modelled by lognormal dis-

tributions. In Table 3.2 we list the best-fit mean and standard deviations for both the total
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distribution as well as those obtained from different redshift ranges. The latter corresponds to

cuts in zinfall and zcross for the infall and virial crossing methods, respectively. These fitting

functions are appropriate for subhalos with mass ratio µ0 . 10−3. Higher mass subhalos should

shift closer to the Z05 curve in Figure 3.7. In §3.5 we find that subhalos on tightly bound orbits

with η < 1 are preferentially disrupted after infall. However, this has only a small impact on

the distributions presented here since this bias is small and there are far fewer disrupted than

surviving subhalos. Hence, the fitting functions provided here should be applicable to the total

ensemble of subhalos (surviving plus disrupted) that ever accreted onto the host.

Orbital angular momentum: εinfall

Studies of substructure evolution (e.g., Peñarrubia et al., 2008) show that subhalos on more

radial orbits with lower specific angular momentum plunge deeper into their hosts and expe-

rience accelerated mass loss over subhalos on more circular orbits with higher specific angular

momentum (see also §3.4.4). Accurately modelling subhalo evolution therefore requires a good

handle on the distribution of angular momentum at the time of infall. As such, a great deal of

work has been done on measuring this distribution from N -body simulations (Navarro et al.,

1995; Tormen, 1997; Ghigna et al., 1998; Benson, 2005; Zentner et al., 2005; Wang et al., 2005;

Khochfar & Burkert, 2006; Jiang et al., 2008; Wetzel, 2011). The conclusions of these works

agree well with each other: the circularity distribution of infalling satellites is peaked at ε̄ ≈ 0.5

and falls off on either side so that neither largely radial (ε ∼ 0) nor largely circular (ε ∼ 1)

orbits occur. Below we turn our attention to the circularity distribution measured in VL2.

In Figure 3.9 we plot the infall distribution in ε for all bound subhalos. As in Figure 3.7,

we show the result at zinfall for an isolated NFW host potential (black histogram) as well as

the result at first Rvir crossing for a point mass host potential. The latter can be compared to

the various curves showing the infall distributions used in semi-analytic models of substructure

evolution. First, the blue dotted line is the Gaussian distribution used by Taylor & Babul

(2004) with mean ε̄ = 0.4 and standard deviation σ = 0.28 which was selected so that the final

distribution at z = 0 matches the results of Tormen (1997) and Ghigna et al. (1998). Second,

the green dashed line shows the one-parameter β distribution used in the models of Z05 and

Jiang & van den Bosch (2014b). Finally, the red dot-dashed curve shows the infall distribution

assumed in the semi-analytic model of Gan et al. (2010), which was taken from the analysis of

the hydrodynamic simulations of Jiang et al. (2008).

The gray histogram, with median ε = 0.55, is in reasonable agreement with the various

curves used in semi-analytic models. There is, however, a clear excess in nearly circular orbits

with ε ∼ 1. The reason for this is the same as was discussed in the previous section. It was

shown in J15 that circularity is highly dependent on mass, with high mass subhalos tending

to move along radial orbits while low mass subhalos tend to have more circular orbits. One

possible explanation is related to the environment in which these objects form. High mass halos

are more biased towards forming in high density regions such as filaments and are consequently
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Figure 3.9: Cumulative (top panel) and differential (bottom panel) distributions in ε at the time
of infall (black histogram) and first virial crossing with a point mass potential (gray histogram).
Compared to the latter are various curves showing the circularity distributions employed in
semi-analytic models of substructure evolution: the blue dotted curve is the distribution from
Taylor & Babul (2004); the green dashed curve is the distribution given by Z05; the red dot-
dashed curve is the distribution from Gan et al. (2010).

more likely to fall radially into their host with lower specific angular momentum. Low mass

subhalos are less biased to forming within filaments and are thus more likely to fall into their

host with a larger component of tangential motion. Another possible explanation, independent

of the first, is that low-mass subhalos are simply more likely to acquire tangential motion from

gravitational interactions with nearby massive objects prior to infall.

In the bottom panels of Figure 3.8 we show the dependence of ε on mass, redshift, and

concentration. As with η, we find that ε does not exhibit strong mass dependence in the range

µ0 . 10−3 probed by VL2. There also does not appear to be much dependence on zinfall,

consistent with the earlier work of Wetzel (2011). There is correspondingly little dependence

on ε with infall concentration. Replacing the lower panels of Figure 3.8 with ε computed at

virial crossing for a point mass host potential produces the same (lack of) trends.
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Even though the two methods produce similar trends in Figure 3.8, it remains difficult to

qualitatively describe the differences between the black and gray histograms in Figure 3.9. The

reason is the dependence of Lcirc on the form of the host potential assumed. In fact, we find

that ε, unlike η, is very sensitive to the form of the host potential. For example, computing

ε at infall with a point mass host potential pushes the black histogram in Figure 3.9 to even

larger values. Counterintuitively, computing ε at virial crossing with an NFW host potential

also pushes the gray histogram to larger values, being almost on top of the black histogram.

We therefore note that one should be careful in choosing a fitting function for ε that suits their

specific needs.

We fit the circularity distributions in Figure 3.9 with the following form:

df

dε
= aεα(b− ε)β. (3.10)

We find the best-fit coefficients (a, b, α, β) = (3.696, 1.12, 1.07, 0.68) at infall with an NFW

host potential and (a, b, α, β) = (1.508, 1.77, 1.05, 2.45) at virial crossing with a point mass host

potential. These fitting functions are appropriate for subhalos with mass ratio µ0 . 10−3 and

are independent of redshift. Higher mass subhalos should have distributions in closer agreement

with the other fitting functions plotted in Figure 3.9. In §3.5 we show that circularity does not

influence the survivability of low-mass subhalos. The fitting functions provided here are thus

applicable to the total ensemble of subhalos (surviving plus disrupted) that ever accreted onto

the host.

3.4.4 Evolution

In this section we focus on the evolution of subhalo properties over the course of infall to the

present day. This includes internal subhalo properties such as tidal mass and central density as

well as orbital properties including radial period and angular momentum. Our results are used

to test some of the fundamental assumptions underlying models of substructure evolution.

A common assumption in modeling tidal mass stripping is that subhalos of a given mass

lose a certain fraction of their mass in one dynamical time. For example, van den Bosch et al.

(2005) developed a model in which the mass loss rate of a given subhalo is ṁ ∝ m1+ζ/τdyn(z)

where τdyn(z) ∝ (∆ρcrit(z))
−1/2 is proportional to the free fall time of a halo, independent of

mass. Recently, Jiang & van den Bosch (2014b) used numerical simulations to fit the mass

dependence, finding ζ = 0.07. This is very close to the case ζ = 0, in which the fractional mass

loss rate is independent of mass.

Modeling dynamical friction and sinking due to the resultant loss of angular momentum

plays a prominent role in modeling subhalo orbital evolution. The trajectory of subhalos

through the host must be modelled accurately. Assumptions typically involve spherical symme-

try, wherein the torque of dynamical friction is in the direction of the subhalo orbital angular

momentum, and subhalos orbit in the same plane.
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The question naturally arises whether common assumptions such as those discussed above

hold for the low-mass subhalos considered here. In the following sections, we examine separately

the mass lost per orbit per halo mass, the orbital period per host dynamical time, and the

alignment of tidal torques and angular momentum.

Tidal mass loss: ∆m/m

The general picture of mass loss is related to the processes of dynamical friction and tidal

stripping, as follows. The continued force of dynamical friction causes an infalling subhalo

to slowly descend into its host. As the orbital radius shrinks, so too does the tidal radius,

causing the subhalo to continually shed mass from the outside-in. The internal structure of the

subhalo is also affected, generally puffing outwards due to the injection of tidal heat, promoting

additional mass loss. Mass loss will vary over the course of an orbital period, being strongest

(weakest) at pericenter (apocenter) when tidal interactions with the host are greatest (smallest).

Tidal mass loss is clearly a complicated process that will depend on both the internal structure

of a subhalo as well as its orbital parameters.

We begin our investigation of mass loss in Figure 3.10 where we plot distributions in

∆m/minfall. Here, the mass change is ∆m = mapo,1 − mapo,2 where mapo,1 and mapo,2 are

the mass at the start and end of the orbit, respectively. The black histogram shows mass loss

over the course of the first orbit after infall while the blue histogram shows mass loss over the

last orbit before z = 0. Recall that we define an orbit to correspond to the time between succes-

sive apocenter passages so the “first” orbit does not start exactly at infall and the “last” orbit

does not end exactly at z = 0. More specifically, the first orbit begins at the first apocenter

after infall4 while the last orbit terminates at the last apocenter before the present time. We

find that 3966 (65%) subhalos finish at least one orbit after infall while 2714 (44%) finish at

least two. Since we are interested in comparing how mass loss changes with time, we plot only

those 2714 subhalos for which the first and last orbit is different.

Comparing the two distributions in Figure 3.10 shows that subhalos tend to lose a larger

fraction of their initial mass during their first orbit compared to their last orbit. In particular,

the median mass loss in the first orbit is 16% of the initial mass while the median mass loss in

the last orbit is about an order of magnitude smaller, at 3% of the initial mass. Note that not

all subhalos lose mass over the course of an orbital period. In particular, for both the first and

last orbit, roughly 5% of subhalos actually gain mass. This likely occurs either through direct

merger with smaller systems or, more gradually, through the accretion of surrounding material.

We proceed to investigate the dependence of mass loss on subhalo properties. The top row

of Figure 3.11 shows mass loss versus mass ratio at the start of the orbit. For both orbits,

more massive subhalos tend to lose more mass on average. Normally, we would expect this

4We find that infall is roughly symmetric about the turnaround point where the subhalo first detaches from
the Hubble flow and begins its descent towards the host. In particular, 52% of subhalos start to lose mass before
turnaround while 48% begin losing mass after turnaround. Hence, for roughly half of the cases, the first orbit
begins at the turnaround radius, corresponding to the first apocentre.
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Figure 3.10: Cumulative (top panel) and differential (bottom panel) distributions in the mass
loss over the course of an orbit normalized to the mass at infall. The black histogram pertains
to the first orbit after infall while the blue histogram shows the last orbit before z = 0. Only
those 2714 subhalos (44% of the total population) that complete at least two orbits after infall
are shown.

result on the basis of a dynamical friction argument whereby the oribts of massive subhalos are

preferentially dragged into the depths of the host, promoting enhanced mass loss. However, we

do not expect this argument to apply here since the dynamical friction merging timescale for

µ . 10−3 subhalos is much longer than the Hubble time (Boylan-Kolchin et al., 2008).

Instead, the observed correlation with mass is the result of the mass-concentration relation

which states that more massive subhalos will be less concentrated on average. We plot as

blue circles (red triangles) the 2σ outliers with the smallest 2.3% (largest 2.3%) values of

cmax/Cmax at the start of the orbit. From the definition of cmax in equation (3.2), the ratio

cmax/Cmax describes the relative central density of the subhalo to the host. In both panels a

clear dichotomy emerges with the least (most) concentrated, and most (least) massive, subhalos

loosing (retaining) more mass per obit.

This is made more apparent in the middle row of Figure 3.11 where we see a strong negative
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Figure 3.11: Left (right) panels show the fractional amount of mass, ∆m, lost over the course
of the first apocenter-to-apocenter orbit after infall (last apocenter-to-apocenter orbit before
z = 0) normalized to the mass, minfall, of the subhalo at the time of infall. The various rows
show: (i) fractional mass lost as a function of m/Mvir with both quantities computed at the
start of the orbit; (ii) fractional mass lost as a function of cmax/Cmax with both quantities
computed at the start of the orbit; (iii) fractional mass lost as a function of eccentricity eeff

computed from equation (3.9). In each panel the solid black line traces the median mass loss for
bins with equal number of samples in the x axis while the shaded region shows the 1σ spread
about this line. In the top and bottom rows, blue circles and red triangles highlight the 2σ
outliers with the smallest 2.3% and largest 2.3% values of cmax/Cmax. In the middle row, blue
circles highlight the 2σ outliers with the smallest eccentricities while red triangles highlight the
2σ outliers with the largest eccentricities.

slope in mass loss versus concentration. There is still considerable scatter at fixed concentration

which can be partly attributed to eccentricity. Comparing blue circles and red triangles shows

that for fixed concentration, more circular (radial) orbits tend to retain (lose) more mass on
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average. A direct comparison is plotted in the bottom row of Figure 3.11 where we detect a

small correlation between mass loss and eccentricity.

We have also checked for correlation between mass loss and pericenter, rperi. One would

expect that subhalos plunging further into the depths of the host, where tidal forces are strong,

would experience enhanced mass loss. We instead find almost no correlation with rperi
5. The

reason is that subhalos closer to the host center tend to be more concentrated (see §3.4.3) which

washes out the dependence on rperi.

We conclude that tidal mass loss in the regime of low-mass subhalos is most directly cor-

related with concentration. When concentration is held fixed, we find no trend in mass loss

with varying mass. The apparent trend seen when comparing mass loss versus mass is simply

a reflection of the fact that mass is correlated with concentration. This result makes physical

sense in the limit of weak dynamical friction since it is the density of a subhalo, relative to its

host, that determines how tightly a subhalo on a stable orbit retains its contents (e.g., Taffoni

et al., 2003). At fixed concentration, subhalos on more eccentric (i.e., radial) orbits tend to lose

more mass than subhalos on circular orbits. This may highlight the importance of tidal heat-

ing which results when a rapidly varying gravitational potential injects energy into subhalos,

puffing them outwards and promoting further mass loss (e.g., Hayashi et al., 2003).

Orbital period

The dynamical time for a halo is usually defined as the free-fall time of a test particle in a

static, uniform sphere at the virial density,

τ2
dyn ≡ [16Gρcrit∆/(3π)]−1 =

π2R3
vir

4GMvir
. (3.11)

It is natural to expect, all else being equal, that timescales within the halo should scale in

proportion to this dynamical time. For example, the time to complete an orbit is roughly

proportional to the dynamical time. Similar scaling arguments apply for timescales other than

orbital period, such as the tidal mass loss time, m/ṁ. Departures from a simple linear scaling

with the dynamical time occur because orbital shapes vary from subhalo to subhalo. For

example, halos on larger orbits should have longer orbital times, with a correlation between

semi-major axis and period that reflects the mass distribution of the host halo around the virial

radius.

In Figure 3.12 we show the orbital period of halos just after they fall in, defined as the

time between the first two apocenters after infall. The orbital period is plotted in units of the

5Note that our calculation of rperi is based upon a cubic spline interpolation of subhalo radial distance from
discrete VL2 snapshots (see §3.3). The snapshots are separated by 0.688 Gyr which may lead to a potentially
crude estimation of the true rperi. Another way to estimate rperi is to solve the roots in the equation of motion
of a point particle of energy E and angular momentum L in a static NFW host potential (see, e.g., Binney &
Tremaine, 1987). This may lead to a better determination of rperi as E and L vary more smoothly with time
than radial distance. Nevertheless, we have checked that using rperi computed in this way changes neither the
results on mass loss versus eccentricity nor mass loss versus pericentre.
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Figure 3.12: Orbital period, torb, in units of the halo dynamical time, τdyn, for subhalos on
their first orbit, colored by concentration, as a function of first apocenter, rapo, in units of the
host virial radius. All quantities are determined at the beginning of the orbit. Shown as the
dashed line is the relationship expected for radial orbits (eccentricity e = 1) orbiting a point
with mass Mvir.

dynamical time, τdyn, at the beginning of the orbit. On the x-axis we show rapo/Rvir. The first

striking trend is the large spread in torb/τdyn values. There is also a similarly large spread, about

an order of magnitude, in the apocenters, rapo/Rvir of halos on their first orbit. In fact, there is

a strong correlation between orbital period and apocentric distance, as expected. Interestingly,

there are two “clouds” of subhalos. Those with high concentration at small radius, and those

with low concentration at large radius.

Also shown is the relationship expected for radial orbits (where the semi-major axis a =

rapo/2) around a point mass with M = Mvir, t
2
orb = 4π2a3/(GMvir) = π2r3

apo/(2GMvir). Com-

bining with equation (3.11), we obtain

torb

τdyn
= 4

(
rapo

2Rvir

)3/2

. (3.12)
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Subhalos would lie along this line only if they were on radial orbits and all the halo mass

was located at the halo center. In general, departures from radial orbits (a > rapo/2) lead to

longer orbital times, while the presence of matter outside the virial radius (i.e. the overdensity

associated with continuous infall onto the host) leads to shorter orbital times. The latter effect

could be responsible for the shorter times at rapo > 2Rvir, although more information about

the evolving density profile outside the virial radius would be required to make a quantitative

comparison.

Orbital plane

A common assumption made in models of substructure evolution is spherical symmetry of the

host. Subhalo orbits are generally integrated in either a static potential or one that dynamically

adjusts (e.g., through mass accretion) in a spherically symmetric manner. In either case, the

direction of the orbital angular momentum vector is conserved since it is aligned with the

direction of the torque. Hence, an obvious test of spherical symmetry within VL2 is to look for

changes in the orientation of the orbital plane.

In Figure 3.13 we plot the distribution in the dot product between the angular momentum

normal vector at z = 0 and infall:

χ = L̂0 · L̂infall. (3.13)

The black histogram shows the distribution for all subhalos while the blue and red histograms

show the 1σ outliers with the latest and earliest infall, respectively. The median χ for all

subhalos is 0.39 while subhalos with the earliest and latest infall time have median values 0.16

and 0.88, respectively. There is a clear trend of recently infalling halos remaining in the same

orbital plane while subhalos with early infall have their orientation randomly aligned.

Subhalo orbits are continuously torqued after infall, in a direction that is not aligned with

the angular momentum vector. Subhalos spending more time in the host experience larger

changes in L̂. 98% of subhalos with zinfall < 1.1 do not finish an orbital period by z = 0 while

65% of subhalos with zinfall > 3.93 finish at least three orbits. The latter population approach a

uniform distribution in χ, indicating that memory of the initial orbital plane is lost after a few

orbits within the host. It is clear that the assumption of spherical symmetry does not apply.

This result is not too surprising, however, since dark matter halos are generally triaxial

in shape and the host will experience anisotropic mass redistribution as massive objects are

biased toward filamentary accretion (see also, e.g., Zemp et al., 2009). Another possible source

of orbital torque is substructure interaction. Slater & Bell (2013) used VL2 to show that

a significant fraction of subhalos accrete as groups with correlated trajectories that lead to

frequent interaction over time. Such interactions can lead to a complex redistribution of orbital

energy and angular momenta for the low-mass subhalos that are abundant here (Sales et al.,

2007; Ludlow et al., 2009). Though a more detailed inspection of orbits is required to assess

the significance of these effects in VL2, our result highlights the importance of considering host
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Figure 3.13: Cumulative (top panel) and differential (bottom panel) distributions in the dot
product between the angular momentum normal vector at z = 0 and infall. The black histogram
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dotted red line).

anisotropy and subhalo interaction in semi-analytic models of substructure evolution.

Subhalo internal structure: rmax and vmax

The main observable properties of luminous subhalos are their velocity structure, often de-

scribed in terms of the circular velocity profile, v2 = GM(< r)/r. In particular, most dynami-

cal measurements provide robust constraints on the maximum circular velocity, vmax, and the

radius at which this occurs rmax. In this section we show evolution in these two quantities as

subhalos descend into the host. We refer to this as evolution in internal structure in the sense

that vmax and rmax describe central density with ρmax ∝ (vmax/rmax)2 being the mean density

within rmax.
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Figure 3.14: Evolution of vmax (top), rmax (middle), and ρmax (bottom) as a function of mass
retained at z = 0. In each panel, points represent individual subhalos coloured according to
concentration at infall while the solid black line shows the median trend with the associated
1σ scatter shaded in gray. The P10 relation for isolated NFW subhalos of fixed concentration
falling into a static host is shown as the dashed black line in each panel. The thin dashed gray
line in the top panel traces the Bolshoi vmax relation as reported in van den Bosch & Jiang
(2014), while the dashed purple line traces the corrected relation including only sufficiently
resolved subhalos in Bolshoi (van den Bosch, private communication).
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A number of previous works (Hayashi et al., 2003; Peñarrubia et al., 2008, 2010) have

studied the evolution in rmax and vmax using numerical simulations where isolated subhalos

are dropped into the potential of a static host. These studies come to the same conclusion

that vmax and rmax evolve along tightly defined trajectories when written in terms of the mass

fraction retained after infall. In particular, defining x = m/minfall and taking y to represent

either rmax/rmax,infall or vmax/vmax,infall, it is found that subhalos starting at (x, y) = (1, 1) move

steadily along the track

y(x) =
2αxβ

(1 + x)α
, (3.14)

where α and β are fitting coefficients. For the case of NFW subhalos, Peñarrubia et al. (2010,

P10) find the result (α, β) = (0.4, 0.3) for vmax and (α, β) = (−0.3, 0.4) for rmax.

In Figure 3.14 we plot the ratio of the present-day values of vmax, rmax, and ρmax to their

infall values versus the fraction of mass retained at z = 0. In each panel, the solid black line

traces the median relation and the shaded region shows the 1σ scatter. The vast majority of

subhalos experience reduction in rmax and vmax, with a larger suppression in the former, leading

to a net increase in ρmax with increasing mass loss. The median relation in each panel can be

compared to the dashed black line showing the P10 result. We find VL2 agrees well with P10

for vmax but begins to diverge at low mass retention for rmax and ρmax. The dashed gray line in

the top panel shows equation (3.14) with (α, β) = (0.60, 0.44) which was reported by van den

Bosch & Jiang (2014) to fit evolution in vmax for subhalos in the Bolshoi simulation. The VL2

data sits systematically above the Bolshoi result. The dashed purple line shows a corrected

form (α, β) = (0.36, 0.33) which fits the Bolshoi relation when insufficiently resolved subhalos

are removed from the sample (van den Bosch, private communication). This shows much better

agreement with the VL2 result.

The points in Figure 3.14 are coloured in terms of subhalo concentration at infall. In the

case of vmax we do not see much dependence on concentration other than the fact that subhalos

with larger cvir tend to have fallen in more recently and therefore have not had as much time

to evolve to the left side of the plot. In contrast, rmax and ρmax show strong stratification in

cvir with the least concentrated subhalos showing systematically greater reduction in rmax and

enhancement in ρmax. We offer a heuristic explanation as follows. Subhalos on slowly sinking

orbits experience mass loss until the tidal radius shrinks to the point at which the mean interior

density is proportional to the local density of the host. Since subhalos are exposed to (roughly)

the same local density, those that were initially more dense (i.e., larger cvir) naturally approach

a smaller value of ρmax/ρmax,infall at late times.

P10 do not find significant scatter since they consider subhalos of fixed concentration. They

do find, however, that varying the shape of the subhalo inner density profiles at fixed con-

centration changes the coefficients α and β. We find the complementary result that varying

concentration at fixed shape leads to substantially different structural evolution.

This point is made more illuminating by plotting vmax versus rmax, as in Figure 3.15. In the
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Figure 3.15: Evolution of subhalos in the normalized vmax − rmax plane. Left panel shows
subhalos coloured according to the fraction of mass remaining at z = 0 while the right panel
colours subhalos according to their concentration at infall. The thick black line shows the
median trend with the associated 1σ scatter shaded in gray. The thin purple line shows equation
(3.14) with (α, β) = (0.25, 0.34) chosen to match the median relation. The dashed black line
shows the P10 relation for isolated NFW subhalos of fixed concentration falling into a static
host.

left panel we colour points according to the mass retained at z = 0 while the right panel shows

concentration at infall. The left panel shows a clear gradient in colour, reinforcing the notion

of previous works (Hayashi et al., 2003; Peñarrubia et al., 2008, 2010) that evolution in internal

structure does not depend on how mass is lost, but only how much mass is lost. As expected,

however, subhalos are not bound to a single trajectory in the vmax − rmax plane. The right

panel shows that scatter at fixed mass loss can be attributed to concentration, as in Figure

3.14. The median evolution for all subhalos is shown as the solid black line in each panel with

1σ scatter shaded in gray. The purple line fits the median trend using equation (3.14) with

(α, β) = (0.25, 0.34). This sits above the P10 result that was derived from subhalos of fixed

cvir = 23; a considerably larger value than the median concentration of 7 found in VL2.

3.5 Disrupted Subhalo Population

Up to this point we have only considered the population of subhalos that survive to the present

day. This leaves open questions regarding any potential biases that may exist in our results due

to the omission of disrupted subhalos. In this section we attempt to address these questions by

making use of the second VL2 public catalogue.

The second catalogue contains a similar set of evolutionary tracks as the main catalogue

except that it pertains to the 20000 largest systems in the simulation box identified at z = 4.56.

The two catalogues are not mutually exclusive as some of the surviving subhalos at z = 0

also happened to be of the largest systems present at z = 4.56. The utility of the second



Chapter 3. Low mass galactic subhalos and concentration 77

10
0

10
1

10
2

10
3

10
4

dN/dx

0
1

2
3

4
z i

n
fa

ll

0

0.
2

0.
4

0.
6

0.
8

fraction

10
−

6
10
−

5
10
−

4
10
−

3
10
−

2

µ
0

=
m

(z
in

fa
ll
)/
M

(0
)

V
L

2
-D

1

V
L

2
-D

2
(S

)

V
L

2
-D

2
(D

)

5
10

15
20

c v
ir

N
D

2
(S

)
/N

D
1

N
D

2
(D

)
/N

D
2
(S

)

F
ig

u
re

3.
16

:
T

o
p

p
an

el
s

sh
ow

th
e

d
is

tr
ib

u
ti

on
of

su
b
h

al
os

b
as

ed
on

z i
n

fa
ll

(l
ef

t)
,

m
as

s
ra

ti
o

at
in

fa
ll

(m
id

d
le

),
an

d
co

n
ce

n
tr

at
io

n
at

in
fa

ll
(r

ig
h
t)

.
T

h
e

so
li

d
b

la
ck

li
n

e
sh

ow
s

th
e

d
is

tr
ib

u
ti

on
of

su
b

h
al

os
fr

om
th

e
m

ai
n

ca
ta

lo
gu

e,
V

L
2-

D
1,

co
n

si
d

er
ed

in
th

e
p

re
ce

d
in

g
se

ct
io

n
s

of
th

is
p

a
p

er
.

T
h

e
so

li
d

b
lu

e
(d

a
sh

ed
re

d
)

li
n

e
tr

ac
es

th
e

d
is

tr
ib

u
ti

on
of

su
rv

iv
in

g
(d

is
ru

p
te

d
)

su
b

h
al

os
fr

om
V

L
2-

D
2.

T
h

e
ve

rt
ic

al
d

ot
te

d
li

n
es

sh
ow

th
e

m
ed

ia
n

va
lu

e
o
f

th
e

d
is

tr
ib

u
ti

on
of

th
e

co
rr

es
p

on
d

in
g

co
lo

u
r.

T
h

e
d

as
h

ed
re

d
li

n
es

in
th

e
b

ot
to

m
p

an
el

s
tr

ac
e

th
e

ra
ti

o
N

D
2
(D

)/
N

D
2
(S

)
of

d
is

ru
p
te

d
to

su
rv

iv
in

g
su

b
h

al
os

in
V

L
2-

D
2

w
it

h
th

e
d

ot
te

d
re

d
li
n

e
sh

ow
in

g
th

e
m

ea
n

va
lu

e
10

00
/
38

43
.

T
h

e
so

li
d

b
lu

e
li

n
es

tr
a
ce

th
e

fr
a
ct

io
n
N

D
2
(S

)/
N

D
1

o
f

su
rv

iv
in

g
su

b
h

al
os

in
V

L
2-

D
2

to
su

rv
iv

in
g

su
b

h
al

os
in

V
L

2-
D

1.
T

h
e

d
ot

te
d

b
lu

e
li

n
e

sh
ow

s
th

e
m

ea
n

fr
ac

ti
o
n

3
84

3/
6
14

5.



Chapter 3. Low mass galactic subhalos and concentration 78

catalogue is that it contains subhalos that disrupt prior to the present day. Though this

does not constitute the full ensemble of disrupted subhalos (some subhalos that disrupt were

not of the largest systems at z = 4.56) it should be enough to elucidate differences between

surviving and disrupted subhalos. For convenience we henceforth refer to the main VL2 data

set (considered in all preceding sections) as VL2-D1 and refer to the second data set as VL2-D2.

We apply the same framework outlined in §3.3 to VL2-D2. Namely, we identify subhalos as

those systems that at some point passed within the instantaneous virial radius of the host. Of

these subhalos we identify the surviving population as those that still exist as intact objects at

z = 0. Conversely, the disrupted population consists of those subhalos that fall below the mass

resolution of the VL2 halo finder some time before reaching z = 0. We find a total of 4843

subhalos in VL2-D2 of which 3843 (79%) belong to the surviving group and 1000 (21%) belong

to the disrupted group. Note that ∼ 63% of the 6145 subhalos from VL2-D1 are also part of

VL2-D2.

We examine in Figure 3.16 the dependence of survivability on infall redshift, mass ratio,

and concentration. In the top panels, we plot the distribution in each quantity for all surviving

(disrupted) subhalos from VL2-D2 as solid blue (dashed red) lines. For comparison, the solid

black line traces the distribution in each quantity for the VL2-D1 subhalos. The vertical dotted

lines denote the median value of the distribution with the corresponding colour. In the bottom

panels, the dashed red line traces the ratio, ND2(D)/ND2(S), of disrupted to surviving subhalos

in VL2-D2, with the horizontal red line denoting the mean value 1000/3843. To test for bias

in the surviving fraction of VL2-D2 subhalos, the solid blue line traces the ratio, ND2(S)/ND1,

of the surviving subhalos in VL2-D2 to the full ensemble of surviving subhalos contained in

VL2-D1. The horizontal blue line denotes the mean fraction 3843/6145.

We begin with infall redshift. The blue line in the bottom left panel shows that VL2-D2

is slightly biased towards containing those surviving subhalos with larger values of zinfall. This

reflects the fact that subhalos with smaller values of zinfall were less likely to exist as large

objects at z = 4.56 when VL2-D2 was constructed. Comparing the surviving and disrupted

populations in VL2-D2 shows that subhalos with zinfall & 3 are much more likely to belong to

the latter group. That is, subhalos spending more time exposed to the tidal field of the host

are more likely to disrupt by the present day.

Next we investigate mass ratio at infall. The middle panels of Figure 3.16 show little

dependence of survivability in the mass range 10−5 . µ0 . 10−2. For larger masses, we expect

the disrupted fraction to increase as dynamical friction preferentially causes massive subhalos

to plummet into the depths of the host where tidal forces are strongest. We indeed see an

upturn at µ0 & 10−2 though VL2 is hindered by small number statistics in this regime to

make a meaningful statement here. We also observe a rapid rise in the disrupted fraction for

µ0 . 10−5. This is expected due to the finite mass resolution of the simulation – subhalos

closer to the resolution limit are more likely to “disrupt”. There is a related drop in the blue

line in the bottom middle panel indicating that the missing surviving population in VL2-D2 are
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Figure 3.17: Cumulative (top panel) and differential (bottom panel) distributions in η for all
surviving VL2 subhalos (black histogram), the surviving subhalos in the VL2-D2 catalogue
(blue histogram), and the disrupted subhalos in the VL2-D2 catalogue (red histogram). The
gray histogram shows the result of combining the total population of surviving subhalos with the
VL2-D2 disrupted population. In each case we report η at zinfall for an NFW host potential. The
results are qualitatively similar if we consider virial crossing with a point mass host potential.

almost exclusively low-mass subhalos. This reflects the early infall bias in VL2-D2: subhalos

nearer the resolution limit are only likely to survive to z = 0 if they infall later.

We finish by examining infall concentration in the right panels of Figure 3.16. First, we

see that VL2-D2 is biased towards containing low-concentration surviving subhalos, consistent

with the early infall bias via the concentration-redshift relation (see Figure 3.5). Moreover, of

all subhalos in VL2-D2, those with cvir . 5 are much more likely to disrupt by z = 0. This

is consistent with our previous finding that low-concentration subhalos are more susceptible to

tidal stripping from the host (see Figure 3.11). In fact, the strong dependence of survivability

on cvir and not on µ0 strengthens the notion that mass loss is more strongly connected to

concentration than mass for low-mass (µ0 . 10−3) subhalos.

We now shift focus to the infall distribution of orbital energy and angular momentum for
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Figure 3.18: Cumulative (top panel) and differential (bottom panel) distributions in ε for all
surviving VL2 subhalos (black histogram), the surviving subhalos in the VL2-D2 catalogue
(blue histogram), and the disrupted subhalos in the VL2-D2 catalogue (red histogram). In
each case we report ε at zinfall for an NFW host potential. The results are qualitatively similar
if we consider virial crossing with a point mass host potential.

surviving versus disrupted subhalos. In Figure 3.17 we plot the infall distribution of η for the

surviving (disrupted) subhalos in VL2-D2 as a blue (red) histogram. The blue histogram can

be compared to the black histogram showing the infall distribution for all surviving subhalos

in VL2-D1 (i.e., the black histogram in Figure 3.7). We see good agreement between the

surviving VL2-D2 subhalos and the full VL2-D1 population. The disrupted population, on the

other hand, agrees well with the other curves for η > 2, but displays a much flatter distribution

for smaller η. Most importantly is the excess at η < 1, indicating that subhalos strongly bound

to the host at infall are preferentially disrupted by z = 0.

This result suggests that the black histogram is suppressed at η < 1 compared to the

distribution of all subhalos that ever fell onto the host, regardless of survivability. The gray

histogram in Figure 3.17 shows the result of combining the disrupted subhalos in VL2-D2

with the VL2-D1 catalogue. Doing so results in only a minor change to the black histogram
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since there are six times fewer disrupted subhalos than surviving subhalos. Though we do not

have access to the full ensemble of disrupted subhalos, it seems unlikely that we are missing a

large enough fraction for there to be a significant impact on the infall distribution and fitting

functions for η presented in §3.4.3.

In Figure 3.18 we plot the infall distribution of ε for the surviving (disrupted) subhalos in

VL2-D2 as a blue (red) histogram. The surviving population can be compared to the black

histogram showing the infall distribution for all surviving subhalos in VL2-D1 (i.e., the black

histogram in Figure 3.9). In this case, we see good agreement between all histograms. Hence,

unlike orbital energy, angular momentum does not appear to play a significant role in determin-

ing the survivability of subhalos. The infall distribution and fitting functions for ε presented in

§3.4.3 are therefore robust to the inclusion of disrupted subhalos.

3.6 Summary

We have analyzed the publicly available VL2 halo catalogue in order to characterize the infall

properties, orbital dynamics, and structural evolution of over 6000 subhalos within a galactic

host. Our main focus is on the role of subhalo concentration in each of these categories, and

how this relates to z = 0 observables, such as circular velocity and size.

We define subhalo infall as the time when a halo reaches maximum mass. In other words, a

halo becomes a subhalo when its growth is halted, mainly due to tidal truncation from the host.

After infall, subhalos experience mass loss from tidal forces and exhibit internal readjustment

as they gradually sink toward the host center. We focus on low-mass subhalos for which

dynamical friction plays only a minor role, leading to qualitatively different behaviour than is

often described for high-mass subhalos. In the following paragraphs we report the main results

of our paper.

Subhalo mass function: We compare the unevolved and evolved subhalo mass functions

with the results published from the Aquarius simulations. The unevolved mass function uses

the mass of each subhalo when it fell in while the evolved mass function uses the mass at z = 0,

showing the cumulative effect of tidal mass loss after infall. While the unevolved mass functions

agree well, the evolved VL2 mass function is systematically lower, by 30%, corresponding to a

downward shift in mass (Figure 3.2). The lower normalization of the VL2 simulation (σ8 = 0.74

vs. σ8 = 0.9) could be the origin, although the physical explanation remains unclear (see §3.4.2).

Properties at infall: Several important relationships among subhalo properties at the time

of infall emerge: (1) The typical infalling halo mass does not evolve significantly with time, with

a value of ∼ 107 M� (Figure 3.5 and also Figure 3.16). (2) Rare, massive halos fall in much later

than less massive ones, as expected in hierarchical structure formation (Figure 3.3). (3) Halos

that fall in earlier have lower concentrations, consistent with the well-known concentration-

mass-redshift relationship for dark matter halos at fixed mass (e.g., Klypin et al., 2011, see

Figure 3.5). (4) Halos that fall in earlier or, equivalently, that have lower concentrations at
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infall, tend to experience tidal growth truncation at a larger radius (Figures 3.4 and 3.5).

Energy and angular momentum: The orbital energy and angular momentum of sub-

halos at infall are significantly different than reported in previous studies that focused on more

massive subhalos. The low-mass subhalos found in VL2 are skewed toward lower specific bind-

ing energy (Figure 3.7) and slightly more circular orbits (Figure 3.9). This is consistent with

the recent results of Jiang et al. (2015). The explanation for these trends may be related to

the environment in which objects form – massive subhalos fall into the host preferentially along

filaments, leading to tightly bound, radial orbits – and/or gravitational interactions prior to

infall that preferentially inject energy and tangential motion into low-mass subhalo orbits.

Mass loss: We find that subhalos undergo most of their mass loss on the first pericenter

passage, with a median mass loss fraction of ∼ 0.2 (Figure 3.10). The fraction of mass lost in the

first pericenter passage is most correlated with halo concentration at infall – less concentrated

halos tend to undergo more mass loss, nearly independent of mass (Figure 3.11). There is

a significant but less pronounced correlation of mass loss fraction with subhalo mass, but

this trend is only apparent, being explained by the fact that more massive halos have lower

concentrations on average and are thus more susceptible to tidal effects. Scatter in mass loss at

fixed concentration can be mainly attributed to eccentricity with radial orbits tending to lose

more mass than circular orbits.

Orbital period: The period of the first orbit after infall is roughly proportional to the

dynamical time of the host halo, torb ∝ τdyn ∝ [∆(z)ρcrit(z)]
−1/2. There is significant scatter,

however, in the apocenter, rapo/Rvir, which results in a comparable scatter in torb/τdyn (Figure

3.12). The scatter originates in the concentration of the infalling subhalos: low-concentration

subhalos begin to be disrupted earlier and thus experience much longer initial orbits than

subhalos with higher concentrations.

Spherical Symmetry: Motion in a spherical potential, in which the direction of angular

momentum does not change, is not a good approximation to subhalo orbital dynamics. In

particular, the direction of the angular momentum vector is not fixed. After a few orbits,

the direction of the angular momentum is essentially randomized. This seems to be a generic

feature of subhalo evolution in highly inhomogeneous, triaxial host halos (Figure 3.13).

Evolution in the vmax–rmax plane: As subhalos are tidally disrupted by the host halo,

their maximum circular velocities and radii steadily decrease, tracing out tracks in the vmax–

rmax plane. While the joint median evolution, as well as their individual dependence on tidal

mass, are in qualitative agreement with previous studies, we find a substantial amount of scatter.

Furthermore, this scatter can be mostly attributed to variations in the concentration at infall.

The difference is most pronounced in the evolution of rmax: subhalos that are more concentrated

at infall experience a weaker evolution in rmax as they lose mass (Figure 3.14). Concentration

at infall determines evolution in the vmax–rmax plane (Figure 3.15).

Disrupted Subhalo Population: We find that subhalos with early infall and/or low
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concentration are preferentially disrupted within the host (Figure 3.16). We find no dependence

of survivability on mass within the range probed by VL2. These results are consistent with

the notion that tidal mass loss is correlated with concentration instead of mass for low-mass

subhalos. The typical infalling mass of m ∼ 107 M� (µ0 ∼ 10−5) is true for both surviving and

disrupted subhalos. Circularity does not influence subhalo survivability. There is a slight bias

in tightly bound orbits with η < 1 being preferentially disrupted though this is a relatively small

effect. The infall distributions and fitting functions for η and ε presented in §3.4.3 and §3.4.3

based on surviving VL2 subhalos should do a good job at representing the infall distribution

for all subhalos (surviving plus disrupted) that ever fell onto the host (Figures 3.17 and 3.18).

This is the case at both zinfall with an NFW host potential as well as zcross with a point mass

host potential.

In this work we have extended previous detailed analyses of subhalo dynamics and evolution

to the much lower mass ratios probed by the Via Lactea II data. We have found qualitatively

different behaviour in this low-mass regime, with dynamical friction and orbital dynamics play-

ing a lesser role, and the interior structure of the subhalos, expressed in terms of concentration,

playing a much more important role.

The ‘concentration bias’ we find here raises the prospects of significantly improving our

ability to connect ultra-faint dwarf galaxies to the primordial fluctuations from which they

collapsed. More detailed study, in particular with finer time resolution and a larger sample of

simulated Galactic host halos, will be necessary before we can reliably use concentration bias

in near field cosmology.
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Chapter 4

Precision reconstruction of the cold

dark matter-neutrino relative

velocity from N-body simulations

A version of this chapter has been published in the Physical Review D as “Precision recon-

struction of the cold dark matter-neutrino relative velocity from N -body simulations”, Inman,

D., Emberson, J.D., Pen, U.-L., Farchi, A., Yu, H.-R., Harnois-Déraps, J., Volume 92, Issue 2,

2015. Reproduced here with permission from PRD.

4.1 Chapter Overview

Discovering the mass of neutrinos is a principle goal in high energy physics and cosmology. In

addition to cosmological measurements based on two-point statistics, the neutrino mass can

also be estimated by observations of neutrino wakes resulting from the relative motion between

cold dark matter (CDM) and neutrinos. Such a detection relies on an accurate reconstruction

of the CDM-neutrino relative velocity which is affected by nonlinear structure growth and

galaxy bias. We investigate our ability to reconstruct this relative velocity using large N -body

simulations where we evolve neutrinos as distinct particles alongside the CDM. We find that the

CDM velocity power spectrum is overpredicted by linear theory whereas the neutrino velocity

power spectrum is underpredicted. The magnitude of the relative velocity observed in the

simulations is found to be lower than what is predicted in linear theory. Since neither the

CDM nor the neutrino velocity fields are directly observable from galaxy or 21 cm surveys, we

test the accuracy of a reconstruction algorithm based on halo density fields and linear theory.

Assuming prior knowledge of the halo bias, we find that the reconstructed relative velocities

are highly correlated with the simulated ones with correlation coefficients of 0.94, 0.93, 0.92

and 0.88 for neutrinos of mass 0.05, 0.1, 0.2 and 0.4 eV. We confirm that the relative velocity

field reconstructed from large scale structure observations such as galaxy or 21 cm surveys can

84
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be accurate in direction and, with appropriate scaling, magnitude.

4.2 Introduction

Despite extensive research in the particle physics and cosmology communities, many properties

of neutrinos remain elusive. For instance, neutrino oscillation experiments (Fogli et al., 2012)

have accurately measured the mass-squared splittings between neutrino species, but individual

neutrino masses have yet to be measured. It is also unknown whether the neutrino masses follow

a normal hierarchy in which there are two light neutrinos and a single heavy one, an inverted

hierarchy with the opposite configuration or are quasi-degenerate with all three masses being

approximately equal and much larger than the mass splittings. Moreover, it is still unknown

whether neutrinos are Dirac or Majorana fermions.

Cosmological techniques for determining neutrino masses are currently insensitive to indi-

vidual neutrinos and instead constrain the sum of all neutrino masses. For instance, cosmic

microwave background (CMB) observations made by the Plank satellite place
∑
mν < 0.194 eV

(Planck Collaboration et al., 2015). Recently, a new technique for constraining neutrino mass

using large-scale velocity fields was proposed in Zhu et al. (2014a,b). Neutrinos and cold dark

matter (CDM) are expected to have a relative velocity arising due to the free streaming of neu-

trinos over large scales. As neutrinos bulk flow over large scale structures they become focussed

into wakes. Such downstream overdensities introduce a unique dipole distortion in the matter

field in the direction of the neutrino flow which could be observed via either direct lensing of

the wake or through a dipole component of the correlation function.

Unlike other probes of cosmological neutrinos, this method is expected to be background free

and only relies on knowledge of the relative velocity field. Determining velocity fields directly

is particularly challenging even for luminous matter and certainly impossible for neutrinos.

However, the relative velocity is predicted to be coherent over several megaparsecs. We therefore

expect linear theory to be accurate enough to allow for a reconstruction of the velocity field

from the easier to obtain matter density field.

Our goal is to quantify the accuracy of this linear reconstruction when nonlinear structure

formation, which affects both the density and velocity fields, is taken into account. We further-

more wish to understand whether the reconstruction procedure is robust when only a tracer

of the CDM field is used. To achieve this we use large cosmological simulations. Neutrinos

have been implemented in a variety of ways within the framework of N -body simulations: (i)

Brandbyge & Hannestad (2009) used a grid-based approach where an additional neutrino den-

sity field is evolved alongside N -body CDM; (ii) Brandbyge & Hannestad (2010) employed a

hybrid method where neutrinos start as a grid and are converted to particles as their energy de-

creases; (iii) Bird et al. (2012) evolved neutrinos as distinct N -body particles; (iv) Ali-Häımoud

& Bird (2013) computed the neutrino linear response alongside the evolving CDM. In general,

the grid-based approaches have been unable to resolve nonlinear neutrino structure formation
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while particle-based approaches are hindered by the requirement that many neutrino particles

are needed to reduce Poisson noise on small scales. In this work, we adopt the particle based

approach since an accurate computation of nonlinear neutrino dynamics is a main focus of our

work.

In §4.3 we discuss our implementation of neutrino particles into the cosmology code CUBEP3M

(Harnois-Déraps et al., 2013) and our method for computing density and velocity fields. In §4.4

we present the results of our simulations and analyze the accuracy of various reconstruction

methods. In §4.5 we discuss a practical procedure to estimate cosmic velocity fields from density

tracers.

4.3 Theory and Implementation

4.3.1 Neutrino N-body Particles in CUBEP3M

We simulate a single neutrino species as an N -body particle. Initial neutrino positions are

generated separately from CDM using the same Gaussian noise map. We use neutrino density

transfer functions, Tδ, computed via CAMB (Lewis et al., 2000) for a universe with one massive

and two massless neutrinos. The initial neutrino velocity is composed of two parts: a linear

component (analogous to the Zel’dovich velocity) plus a random thermal component. For the

linear component, we first compute the linear neutrino velocity transfer function, Tv, via the

continuity equation under the assumption that initial conditions are adiabatic and velocities

are linear (e.g. δ(k, z) = Tδ(k, z)δi(k) and ~v(~k, z) = Tv(k, z)δi(k)k̂ for an initial perturbation

δi(k)):

δ̇ +
1

a
~∇ · ~v = 0→ Tv = −iH

k

Tδ(z + δz)− Tδ(z − δz)
2δz

, (4.1)

where we convert time derivatives to redshift derivatives and evaluate numerically using a

spacing δz = 0.1. We have checked that the transfer functions computed via equation 4.1 are

in good agreement with those produced by the CLASS code (Blas et al., 2011) in Newtonian

gauge1.

From this velocity transfer function, we compute a velocity potential, φv(k), such that

~v(k) = i~kφv(k) = (Tv/Tδ)δk̂. When combined with equation 4.1 this yields:

φv(k) = −H
k

Tδ(z + δz)− Tδ(z − δz)
2δz

δ

Tδ
. (4.2)

This potential is then Fourier transformed and a two-sided finite difference is taken to obtain

the linear velocity. Using a real-space gradient reduces the number of Fourier transforms to be

computed and is consistent with our calculation of the displacement field.

1The CAMB density transfer functions are in the synchronous gauge whereas the velocity transfer function
we desire are in the longitudinal Newtonian gauge. However, the gauge transformation terms are proportional
to the time derivatives of the Newtonian potentials which we already ignore in the continuity equation.
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The random component of the velocity is computed via the cumulative distribution function,

CDF[v, β], which follows from the relativistic Fermi-Dirac distribution, PDF[v, β], for neutrinos:

PDF[v, β] =
1

N

(mν

kT

)3 v2

emνv/kT + 1
=
β3

N

v2

evβ + 1

CDF[v, β] =

∫ v

0
PDF[u, β]du

=
1

N

∫ w=βv

0

w2

ew + 1
dw

= CDF[βv, 1] (4.3)

where mν and T are neutrino mass and temperature, respectively, β ≡ mν/kT and N =∫∞
0 w2/(ew + 1)dw ' 1.803 is a normalization constant. Our numerical evaluation of the CDF

gives a maximum particle speed of 0.013 (0.2 eV/mν) (1 + zi)c for a given starting redshift zi.

Neutrinos in the mass regime we are interested in are relativistic at the redshift for which CDM

initial conditions are generated (zc = 100):

〈v〉 =

∫∞
0 vPDF[v, β]dv∫∞
0 PDF[v, β]dv

≈ 800

(
0.2 eV

mν

)
(1 + z) km s−1. (4.4)

This thermal motion would dominate the time step constraining the maximum distance a

particle may travel, making the simulation impractically slow. To circumvent this issue we

evolve the CDM in isolation to a lower redshift, zν ∼ 10, at which point neutrinos are added

and the two components evolve together.

During their subsequent evolution, CDM and neutrino particles are treated identically ex-

cept for their masses, which are weighted by their energy fractions as well as number ratio:

mi =
Ωi

Ωm

Ng

Ni
, (4.5)

where Ωi is the energy fraction of species i, Ωm is the total matter energy fraction, Ng is

the number of cells in the simulation grid, and Ni is the number of particles of species i.

These masses are used when adding particles to the grid for the computation of the long-range

gravitational force as well as the short-range pairwise force. The particle type is distinguished

within the code using 1 byte particle identification tags.

4.3.2 Density and Velocity Fields

We compute CDM, neutrino, and halo density fields using a standard cloud-in-cell interpolation

method for both CDM and neutrinos. Computing velocity fields from particle-based simulations

has only recently been studied in depth. This may be related to the ambiguity associated with

defining a velocity field from a sample of point particles. Unlike quantities such as mass or

momentum, the velocity of a particle cannot be simply added to a grid. The most obvious
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method for generating a velocity field is to divide a gridded momentum field by its corresponding

density field. However, within void regions it is possible that empty cells exist for which no

well-defined velocity can be assigned. Alternatively, one may define the velocity at a given grid

cell to be the average velocity of the Nnear nearest particles about this point. The application

of the nearest particle method was studied by Zhang et al. (2015) and Zheng et al. (2015)

where it was found that the velocity power is suppressed for low particle number densities,

n < 1 (Mpc/h)−3, due to the sampling procedure. In our simulations we use high number

densities, ndm ∼ 10 (Mpc/h)−3, and therefore do not expect this effect to be significant. More

advanced methods for computing velocity fields exist such as phase-space interpolation discussed

in Pueblas & Scoccimarro (2009) and more recently in Hahn et al. (2014). The neutrino velocity

distribution has been studied by Villaescusa-Navarro et al. (2013).

In what follows we compute the velocity fields of CDM and neutrinos in different ways. For

CDM, we adopt the nearest particle method and take the Nnear = 1 nearest particle about the

centre of each cell using the same grid resolution as neutrinos. We have found that the nearest

particle method can also be used for neutrinos albeit with a much larger Nnear = 64 to smooth

the field on small scales. However, searching over this many particles is a computationally

expensive task. For neutrinos we therefore employ the approach of dividing their momentum

field by their density field on grids coarsened so that there is always at least one neutrino per

cell. This is possible since neutrinos are rather homogeneously distributed and form voids to a

lesser extent than CDM.

We treat the velocity fields obtained from the nearest particle and momentum methods as

faithful tracers of the actual field. However, these fields are not comparable to observational

data since neither CDM nor neutrino velocities can be directly measured. For this purpose we

reconstruct velocity fields from density fields using linear theory:

~v =
Tv
Tδ

~k

k
δ, (4.6)

where we use CDM and halo density fields separately for δ (although with the same Tδ). In

what follows we treat halos as point particles of unit mass in order to represent the information

available through galaxy surveys.

Poisson noise is a severe hindrance in computing neutrino statistics as the large thermal

velocity causes neutrino particles to be more homogeneously distributed. For density spectra it

is possible to subtract out the flat Poisson noise spectrum but this is not possible for velocity

fields. Instead, we use a method that exploits the fact that Poisson noise arises from particles

being randomly distributed. The procedure for either density or velocity fields is:

1. Randomly divide the particles into two groups.

2. Interpolate particles of each group into a field (density or velocity).

3. Compute the cross spectrum between groups as an estimate of the auto spectrum.
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This procedure ensures that Poisson noise is highly suppressed as the noise between the two

groups is uncorrelated due to the random assignment to groups. We use this method for density

and velocity auto-spectra for both CDM and neutrinos; we do not use it for CDM-neutrino cross

spectra where it is redundant (there are already two groups of particles).

The accuracy of the reconstructed field is measured using a correlation coefficient:

rij(k) =
∆2
ij(k)√

∆2
ii(k)∆2

jj(k)
(4.7)

where ∆2
ij is the cross power spectrum between species i = c, h, ν or rel using reconstruction

method sim,Rec DM,Rec HA (nearest particle/momentum, equation 4.6 with CDM and equa-

tion 4.6 with haloes respectively) and species j (with potentially a different reconstruction

method). We also define the integrated correlation coefficient as:

rij =

∫
∆2
ij
dk
k√∫

∆2
ii
dk
k

√∫
∆2
jj
dk
k

(4.8)

which no longer depends on wavenumber.

4.4 Results

In this section we present the results for a suite of four simulations of CDM and neutrinos. We

simulate neutrinos of mass mν = 0.4, 0.2, 0.1 and 0.05eV. Each simulation contains Nc = 15363

CDM particles and Nν = 30723 neutrino particles within a periodic box of side length L =

500 Mpc/h. In each case CDM is started from an initial redshift zc = 100 and gravitational

forces are softened below the scale rsoft = 24 kpc/h. Neutrinos are added in at redshift 10 for

all species except 0.05 eV which we add at redshift 5. We assume a base cosmology compatible

with Planck results: Ωb = 0.05, Ωc = 0.27, σ8 = 0.83, ns = 0.96, h = 0.67, and compute

Ων =
mν

93.14 h2
(4.9)

as in Mangano et al. (2005). We hold Ωb and Ωc fixed in each simulation and maintain a flat

universe by adjusting ΩΛ = 1−Ωm = 1−Ωb −Ωc −Ων . In what follows we mainly investigate

a fiducial simulation with mν = 0.2 eV. We label our simulations based on neutrino mass with

S05, S1, S2, and S4 denoting the simulations with mν = 0.05, 0.1, 0.2, and 0.4 eV respectively.

Halo catalogues are generated for each simulation at z = 0 using a spherical overdensity

algorithm that considers all halos with at least 100 CDM particles. This corresponds to a

minimum halo mass of 3 × 1011 M�/h. Recall, however, that we assign each halo unit mass

when constructing halo density fields in order to emulate the information available in galaxy

surveys. In what follows, density and velocity fields for CDM, neutrinos, and halos are computed
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on uniform rectilinear grids containing 15363 mesh cells.

4.4.1 Density

Figure 4.1 compares slices of the CDM and halo density fields at z = 0 from simulation S2

to the neutrino density fields from simulations S05, S1, S2, and S4. It is easy to see that the

neutrino density fields are correlated with the CDM density field albeit with much less clumping

in the former than the latter as evidenced by their respective colour bars. In addition, we see

that higher mass neutrinos tend to clump more than lower mass neutrinos as they are more

influenced by the underlying CDM distribution due to their lower thermal velocities.

Figure 4.2 shows the dimensionless power spectra for CDM, halos, and neutrinos at z = 0

from S2. Also plotted are theoretical predictions for CDM and neutrinos, which are computed

via

∆2
i (k) =

k3

2π2
Pm

(
Ti
Tm

)2

, (4.10)

where Ti is the linear transfer function for species i, Tm is the total matter linear transfer

function, and Pm is either the linear (computed from CAMB) or the nonlinear [computed from

HALOFIT (Smith et al., 2003)] total matter power spectrum. We first note that the group

cross-correlation method we employ effectively removes the shot noise allowing us to understand

statistical properties even of the noisy neutrino density field. We find that the CDM power

spectrum agrees well with the nonlinear prediction up to large k. The neutrino power spectrum,

on the other hand, is significantly enhanced on small scales compared to the theoretical curve

demonstrating that the linear response of equation 4.10 fails to capture neutrino dynamics on

small scales. This trend was previously observed by Ali-Häımoud (private communication) and

modelled in Massara et al. (2014).

Despite their enhanced power on small scales, neutrinos remain highly correlated with the

CDM density field, as was qualitatively discussed with Figure 4.2. More quantitatively, Figure

4.3 shows the z = 0 cross-correlation coefficient between CDM and neutrinos from S2 as a

function of wavenumber. We find that neutrinos exhibit rcν & 0.9 correlation with CDM on

all scales k < 1 h/Mpc and achieve rcν ∼ 0.85 down to the smallest scales resolved in the

simulation.

The halo power spectrum is also plotted in Figure 4.2. As expected, the halo power follows

the general shape of the CDM power spectrum, but with a reduced amplitude, or bias. We

define the bias as:

b ≡
√
Phh
Pcc

, (4.11)

and plot it as a function of k in Figure 4.4. Defining the bias with respect to the CDM power

spectrum instead of the total matter spectrum (e.g. including neutrinos) was shown to be

less scale dependent in Castorina et al. (2014). The bias is roughly constant on large scales

with b ∼ 0.8 and falls off on small scales as the halo density field does not include contributions
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Figure 4.1: Density slices of equal width 500 Mpc/h and thickness 1.3 Mpc/h from various
simulations at z = 0. The top row shows cold dark matter (left) and halo (right) density slices
from the 0.2 eV neutrino simulation. The middle row compares neutrino density slices from
the 0.05 (left) and 0.1 (right) eV simulations while the bottom row shows the 0.2 (left) and 0.4
(right) eV simulations. It is easy to see by eye that the cold dark matter and neutrino density
fields are highly correlated and that heavier neutrinos cluster more than lighter ones.
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Figure 4.2: The dimensionless matter power spectra at z = 0 for cold dark matter (solid black
line), halos (solid blue line) and neutrinos (solid red line) from S2. Shot noise has been removed
by computing the cross-spectrum between two randomly chosen groups for each species. Also
plotted are the linear and nonlinear cold dark matter (dotted black and dashed black lines) and
neutrino (dotted red and dashed red lines) power spectra. Note that there is a small numerical
artifact in the linear neutrino transfer function just above k = 1 h/Mpc that should be ignored.
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Figure 4.3: The cold dark matter-neutrino cross correlation coefficient at z = 0 from S2. As
expected, neutrinos are highly correlated with cold dark matter over a large range of scales.
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Figure 4.4: The halo bias parameter measured from S2 at z = 0. On scales k . 0.2 h/Mpc the
bias is roughly constant with b ∼ 0.8. The bias falls off on smaller scales as power is suppressed
within the typical virial radii of halos.

from the “one-halo” term describing the internal mass profile of halos (Scherrer & Bertschinger,

1991). Hence, halo power is suppressed on scales comparable to the typical virial radii of halos

which occurs at k ∼ 0.2 h/Mpc for the largest halos in the box.

4.4.2 Velocity

Figure 4.5 compares slices of CDM, neutrino, and CDM-neutrino relative velocity computed

from the simulation particles as well as reconstructed from the CDM and halo density fields

using equation (4.6). We observe a similar trend as the density fields with CDM and neutrinos

highly correlated in velocity. In addition, we see that the velocity fields reconstructed from

only knowledge of either the CDM or halo density field qualitatively agree with the large-scale

structure of the velocity fields obtained within the simulation.

Figure 4.6 compares the simulated CDM and neutrino velocity power spectra to the CDM

and halo reconstructed fields. Note that for the latter we take δ = δh/b in equation (4.6) to

account for the halo bias. We use a value of b = 0.80 consistent with the large-scale bias found

in Figure 4.4. We compute theoretical predictions for the velocity power using equation (4.10)

with Ti being a velocity transfer function. We note that the groups method has also effectively

removed shot noise from the velocity power just as for the density.

Figure 4.6 demonstrates that the simulated CDM velocity field is suppressed on scales

0.2 . k . 4.0 h/Mpc compared to the linear and nonlinear expectations. This suppression

was also seen in Pueblas & Scoccimarro (2009); Hahn et al. (2014) and may be due to the

thermalization of CDM within collapsed objects. The velocity field reconstructed from CDM

agrees well with the nonlinear expectation of equation (4.10). This is simply a reflection of the

agreement between the CDM density field and HALOFIT shown in Figure 4.2. If we used the

full bias curve, b(k), instead of a constant then the halo reconstruction method works equally

well. Neutrinos, on the other hand, have a velocity power spectrum that agrees well with the
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Figure 4.5: Slices of equal width 500 Mpc/h and thickness 1.3 Mpc/h showing the z = 0 velocity
component perpendicular to the page for cold dark matter (top row), neutrinos (middle row),
and the relative velocity between cold dark matter and neutrinos (bottom row). Columns
show the velocity fields from the simulation particles (left column), reconstructed from the
cold dark matter density field (middle column), and reconstructed from the halo density field
(right column). We see that both of the reconstruction methods agree well with the large-scale
structure of the simulation velocity fields.
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Figure 4.6: Velocity power spectra at z = 0 from S2 for cold dark matter (top) and neutrinos
(bottom) normalized to the linear theory result obtained from equation (4.10). In each panel,
the dotted black line shows the nonlinear expectation of equation (4.10), the solid black line
shows the simulation result, and the dashed blue line (dot-dashed red line) shows the velocity
field reconstructed from equation (4.6) using the cold dark matter (halo) density field.

nonlinear expectation on scales k . 0.15h/Mpc. However, we find that they are underpredicted

by linear theory on small scales. It is unclear why neutrinos behave in an opposite manner from

CDM.

The efficacy of reconstructing velocities using equation (4.6) relies on the linearity of the

velocity field. To test this we decompose velocity into divergence and curl components. We

have performed this computation using both real-space finite differencing of the velocity field

as well as Fourier space decomposition:

~vk = k̂(k̂ · ~vk) + k̂ × (k̂ × ~vk)
= k̂D + ~C, (4.12)



Chapter 4. Relative velocity reconstruction 96

0.0

0.2

0.4

0.6

0.8

1.0

∆
2 v
v
/∆

2 v
v
,t

o
t

Divg

Curl

10−2 10−1 100 101

k [h/Mpc]

0.0

0.2

0.4

0.6

0.8

1.0

∆
2 v
v
/∆

2 v
v
,t

o
t

Figure 4.7: Relative fraction of the divergence (solid black line) and curl (dotted black line)
components of the cold dark matter (top) and neutrino (bottom) velocity power at z = 0 from
S2. In each case, the curl component is negligible on scales k . 1 h/Mpc. The oscillations seen
with the neutrino power on small scales is indicative of their shot noise.

where D is the divergence field and ~C = ~vk − k̂D is the curl field. Both the real-space and

Fourier-space methods produce equivalent results. In linear theory, the velocity is parallel to k̂

and therefore has no curl. Hence, the presence of a curl component of the velocity field allows

us to measure its degree of nonlinearity.

In Figure 4.7 we plot the divergence and curl components of both the CDM and neutrino

velocity fields. In each case, we see that the velocity is curl-free on scales k . 1 h/Mpc. The

only significant curl component occurs for CDM on scales k & 5 h/Mpc. This result highlights

that the discrepancy between the simulated CDM velocity and theoretical curves in Figure 4.6

is not due to the presence of a curl component, but rather due to nonlinear processes affecting

the divergence.
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Figure 4.8: The cold dark matter-neutrino relative velocity power spectrum at z = 0 for S2
(black line) compared to the cold dark matter (dashed blue) and halo (dotted red) reconstructed
fields as well as the linear (solid gray) and nonlinear (dashed gray) predictions. The simulated
relative velocity power is similar to the linear prediction whereas the two reconstructed fields
deviate from the linear curve due to nonlinear structure formation.

4.4.3 Relative Velocity

Figure 4.8 compares the CDM-neutrino relative velocity power spectrum to linear and nonlinear

predictions as well as to the two reconstruction methods. The relative velocity field from the

simulations is roughly similar to the linear theory expectation, being within a factor of 3 on

scales k < 5 h/Mpc. The power spectra from the halo reconstruction method is also similar

to the linear theory result. The field reconstructed from CDM looks very different from the

previous two but is consistent with the nonlinear expectation. This can be made consistent

with the linear theory result by simply multiplying equation (4.6) by the ratio between the

linear and nonlinear CDM density power spectra.

Figure 4.9 shows the correlation coefficient defined in equation (4.7) between the simulated

and reconstructed relative velocity fields. We see that both reconstruction methods reproduce

the relative velocity field well over the scales of interest. In particular, the halo reconstruction

achieves nearly perfect correlation on scales k . 1 h/Mpc. The velocity correlation coefficient is

a measure of how well the vector fields agree in direction as the denominator in equation (4.7)



Chapter 4. Relative velocity reconstruction 98

10−2 10−1 100 101

k [h/Mpc]

0.0

0.2

0.4

0.6

0.8

1.0

r S
im
,R

e
c

Rec DM

Rec HA

Figure 4.9: The cold dark matter-neutrino relative velocity correlation coefficient between the
simulated field and the field reconstructed from cold dark matter (solid black line) and halo
(dashed blue line) density fields. Both methods are highly correlated over all relevant scales.

divides out the magnitudes. Thus, Figure (4.9) demonstrates that we are able to reconstruct

the direction of the relative velocity field accurately.

Figure 4.10 shows the relative velocity power spectra for each of the four neutrino masses

using the nearest particle/momentum method. We find that they follow the same trends: lighter

neutrinos have less relative velocity and the linear prediction is larger than in simulation. Table

4.1 lists the integrated correlation coefficients as a function of neutrino mass between simulated

and halo reconstructed velocities for CDM, neutrino and CDM-neutrino relative velocities. We

find that there is a large correlation between these methods indicating that the reconstruction

method is accurately reproducing the simulation velocities.

Finally, in Figure 4.11 we show the relative velocity correlation lengths, ξ1/2, defined as in

Zhu et al. (2014b) to be the point at which the relative velocity correlation function,

ξνc(r) =

∫
dk

k
∆2
νc

sin(kr)

kr
(4.13)

reaches half its maximum value. This scale can be thought of as the size of a region with

a uniform velocity field. Lighter neutrinos are less affected by large scale structure due to

their larger thermal velocities and so are coherent over larger regions. Figure 4.11 shows these

Table 4.1: The integrated correlation coefficient defined in equation (4.8) between the simulated
velocities and those reconstructed by halos for cold dark matter, neutrinos and cold dark matter-
neutrino relative velocities.

mν Cold Dark Matter Neutrinos Relative

0.05 0.95 0.98 0.94
0.1 0.95 0.97 0.93
0.2 0.95 0.97 0.92
0.4 0.95 0.97 0.88
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Figure 4.10: The cold dark matter-neutrino relative velocity power spectra via the nearest par-
ticle/momentum method for all four neutrino masses (solid) along with theoretical predictions
(dashed). The power is clearly suppressed compared to linear theory but behaves qualitatively
similar with varying masses.

correlation lengths as a function of neutrino mass. We find that the simulations exhibit a slightly

larger correlation length for each neutrino mass compared to the theoretical predictions. The

shapes of the curves remain similar, however, with both having power law slope which we fit

to have an exponent −0.44.

4.5 Discussion

We have tested four methods of computing the velocity field: a nearest particle method, a

momentum method, and reconstruction via CDM and halo density fields. Our results are

generally consistent with theoretical expectations and highly correlated among each other.

Specifically we have demonstrated that reconstructing the velocity from point-particle halos

produces a velocity field highly correlated with that of our N -body particles. It is the near unit

correlation coefficient - a measure of the angle between the two fields - that ensures that the

reconstructed velocity points in the right direction. The magnitude of the velocity can then

simply be scaled to the correct value as long as the bias is known.
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Figure 4.11: The correlation length defined to be the distance for which the correlation function
in equation (4.13) drops to half its maximum value for varying neutrino masses. The simulations
have longer correlation lengths but follow a similar power law behaviour.

This result allows for a prescription to determine the actual velocity fields in our own

Universe.

1. Reconstruct the galaxy density field from a galaxy survey catalogue. We expect this

reconstruction to be very comparable to the halo reconstruction we use here except with

the addition of a 1-halo term to make the bias constant over more wavenumbers.

2. Fourier transform the gridded density field. Then, use equation (4.6) to compute the

CDM, neutrino and relative velocity fields in Fourier space. Here, a nonlinear correction

can be applied by additionally multiplying by a factor of ∆Sim
v /∆RecHA

v .

3. Fourier transform back to real space.

We first note that a similar process could be performed on the density fields produced by 21 cm

observations. We also note that redshift distortions and masking effects might result in extra

biases in the reconstruction scheme. We intend to investigate these effects in a future paper.

Our results also provide support for the applicability of the analysis performed in Zhu et al.

(2014a,b). They used moving background perturbation theory to study the neutrino relative

velocity effect. The moving background approximation relies on having a coherent background

relative flow and our simulation results indicate that the coherency scales of such motions are

larger than predicted. Thus, we expect that inaccuracies in the predicted dipole distortion to

the correlation function will come from nonlinear evolution rather than the moving background

approximation. We note that we can also directly measure the dipole correlation function in

our simulations and plan to report on this in a subsequent paper.
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4.6 Conclusion

We performed a set of four large N -body simulations including cold dark matter and neutrinos

of varying mass. We have accurately measured the cold dark matter-neutrino relative velocity.

We find that we can accurately reconstruct this velocity using a linear theory approach and

halo density fields. We have described a simple method for accurately predicting the relative

velocity field via a galaxy survey or 21 cm observations. Since such a reconstruction allows for

an independent measurement of neutrino masses, we expect this technique to provide significant

constraints in upcoming astronomical surveys.
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Chapter 5

TianNu: simulating the neutrino sky

This chapter presents preliminary results from a research project that we plan to soon submit

for publication as “TianNu: simulating the neutrino sky” Yu, H.-R., Emberson, J.D., Inman,

D., Zhang, T.-J., Pen, U.-L., Harnois-Déraps, J., Yuan, S., Zhu, H.-M., Chen, X., Teng, H.-Y.,

Xing, Z.-Z.

5.1 Chapter Overview

Constraining the absolute neutrino mass hierarchy remains one of the most elusive challenges of

modern science. Neutrino oscillation experiments confirm the existence of at least two massive

neutrino species, but only place lower bounds on their mass. Cosmological experiments, on the

other hand, have so far been only able to place upper bounds on the total sum of neutrino mass.

The existence of massive neutrinos requires physics beyond the standard model and determining

individual neutrino mass would shed light on the mysterious nature of these particles. In this

work, we study new cosmological neutrino detection methods using a pair of high-resolution N -

body simulations; one with massive neutrinos and one without. The neutrino simulation, named

“TianNu” or the “Neutrino Sky”, is currently the world’s largest N -body simulation containing

69123 cold dark matter (CDM) particles and 138243 neutrino particles. The neutrino-less

simulation, named “TianCold” or the “Cold Sky”, contains 69123 CDM particles. We present

here preliminary results from our analysis of TianCold and TianNu. These include detailed

measurements of the matter power suppression on small scales caused by neutrino free-streaming

as well as an assessment of the dipole distortion in the matter density field induced by the

relative flow of CDM and neutrinos. By comparing TianCold and TianNu on a halo-by-halo

basis, we obtain a measure of neutrino bias, and propose a new method of searching for neutrinos

in galaxy surveys. This method measures the difference between neutrinos and the rest of

matter, making it potentially easier to observe compared to standard cosmological approaches

(e.g., matter power spectrum) that measure the sum of neutrinos with the rest of matter.

102
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5.2 Introduction

The conjecture of massless neutrinos has been convincingly disproved by the observation of

neutrino flavour oscillations in a multitude of solar, atmospheric, accelerator, and reactor ex-

periments (see Wang & Xing, 2015). These observations imply that at least two of the three

neutrino species are massive, with minimum masses of roughly 0.009 and 0.05 eV (Fogli et al.,

2012). Unfortunately, oscillation experiments are only sensitive to the mass-squared splittings

between mass eigenstates and cannot be used to infer the hierarchy of individual neutrino

masses. This leaves many open questions into the nature of these fundamental particles.

To this end, particle physicists have devised a number of methods to constrain the absolute

neutrino mass scale with exquisite precision. Experiments such as GERDA (Agostini et al.,

2013) and EXO-200 (The Exo-200 Collaboration et al., 2014) attempt to observe neutrinoless

double-β decay (0νββ), a process through which an atomic nucleus decays with the emission of

two electrons and nothing else. If observed, this process implies that neutrinos are Majorana

particles (i.e., they are their own anti-particle) and may also place constraints on the absolute

mass scale. At present, this observation has proven difficult and no statistically significant

evidence for 0νββ has been found. Another method of measuring neutrino mass comes from

observations of the energy spectrum of emitted electrons from the β decay of tritium: 3
1H →3

2

He + e− + ν̄e. Current constraints from tritium experiments place an upper limit on the mass

of the electron neutrino at mνe ≤ 2.3 eV (Kraus et al., 2005) while the upcoming KATRIN

experiment is expected to reduce this bound to the level of ∼ 0.35 eV (Eitel, 2005).

Cosmologists have also been working hard to constrain the neutrino mass scale. Relic neu-

trinos produced during the early universe have the potential to impact cosmological phenomena

including big bang nucleosynthesis, the cosmic microwave background, and large-scale struc-

ture. Currently, the best constraint comes from the Plank satellite, which places an upper

bound on the sum of neutrino mass at
∑
mν < 0.194 eV (Planck Collaboration et al., 2015).

At least two of the three neutrino species are massive enough to be relativistic today since the

neutrino temperature, Tν ≈ 10−4 eV, is much smaller than the minimum masses of 9 and 50

meV derived from oscillation experiments. Non-relativistic neutrinos contribute to the matter

density of the universe and act as a hot dark matter (HDM) component that smooths structure

formation on small scales. Future galaxy surveys such as Euclid (Amendola et al., 2013) and

LSST (LSST Dark Energy Science Collaboration, 2012) will measure the matter power spec-

trum with extreme precision and are expected to reduce the cosmological bounds on the sum

of neutrino mass to the ∼ 0.04 eV scale (Costanzi Alunno Cerbolini et al., 2013).

Current and future cosmological observations have thus far been sensitive to only the sum

of neutrino mass. Furthermore, constraints from matter power spectrum observations are hin-

dered by the complicated details of unknown baryonic physics that can also suppress structure

formation on small scales. Zhu et al. (2014b) recently proposed a cosmological observation that

circumvents both of these issues. The idea is based on the relative flow between CDM and

neutrinos that establishes a local dipole asymmetry in the matter density field. This dipole is



Chapter 5. Simulating the neutrino sky 104

a unique feature of neutrinos and has the potential of being observed by galaxy-galaxy cross-

correlations, weak lensing surveys, and future 21 cm observations (Zhu et al., 2014a). The dipole

distortion is sensitive to individual mass so that the total signal can be deconstructed to provide

constraints on the neutrino mass hierarchy. Moreover, the scale on which this dipole operates

(∼ 10 Mpc) is too large to be affected by baryonic physics. The only information required to

search for the signal is knowledge of the direction vector of the relative CDM-neutrino velocity.

Inman et al. (2015) used N -body simulations to show that this can be accurately reconstructed

by applying linear transformations to an observed galaxy survey.

In this Chapter, we explore the neutrino dipole distortion as well as a new method of

potentially observing neutrinos based on their impact on the clustering of CDM halos. In §5.3

we discuss the two N -body simulations used in this work. In §5.4 we present preliminary results

from our analysis of the simulation data. We finish in §5.5 with a brief summary.

5.3 Numerical Simulations

Our aim is to make accurate predictions of the impact of neutrinos on cosmological observations

within the nonlinear regime. We therefore require the use of numerical simulations that trace

the nonlinear evolution of both CDM and neutrino particles. In this work, we adopt the

technique described in Inman et al. (2015) for simulating both species in cosmological N -body

simulations. We provide a brief summary of this algorithm and point the reader to Inman et al.

(2015) for technical details.

The N -body simulations are performed using the cosmology code CUBEP3M (Harnois-

Déraps et al., 2013) modified to contain neutrino particles. CDM initial conditions are generated

at z = 100 using the Zel’dovich approximation (Zel’dovich, 1970). At this redshift, neutrinos

are still relativistic, demanding a prohibitively slow time step to trace their dynamics. We avoid

this issue, we first evolve CDM particles in isolation from z = 100 to z = 5. Adiabatic initial

conditions for neutrino particles are generated at z = 5 using the same Gaussian random noise

map as the CDM. Neutrino velocities are given both a traditional linear term and a random

thermal component. The latter is drawn from the relativistic Fermi-Dirac distribution and is

applied in a random direction. CDM and neutrino particles evolve together from z = 5 to

z = 0, interacting through particle-particle-particle-mesh (P3M) gravitational forces.

We simulate a box size of width L = 1200 Mpc/h and focus on a single neutrino of mass

mν = 0.05 eV. The box size was chosen to have a similar volume as an all-sky survey out to

z ≈ 0.2. The neutrino mass was chosen as the minimum mass of the most massive neutrino

from oscillation constraints (Fogli et al., 2012) in order to test minimum observability prospects.

We choose a cosmology consistent with the Planck (Planck Collaboration et al., 2015) results:

(Ωb,Ωc, σ8, ns, h) = (0.05, 0.27, 0.83, 0.96, 0.67). Neutrinos contribute an additional energy frac-

tion (Mangano et al., 2005):

Ων =
mν

93.14h2 eV
, (5.1)
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and the dark energy fraction is chosen to satisfy ΩΛ = 1−Ωm where Ωm = Ωb + Ωc + Ων is the

sum of baryons, CDM, and neutrinos.

We perform two simulations for cosmologies with and without the presence of neutrinos.

The first simulation, named “TianCold” (the “Cold Sky”), contains 69123 CDM particles that

evolved in isolation from z = 100 to z = 0. The second simulation, named “TianNu” (the

“Neutrino Sky”), started with the z = 5 CDM distribution from TianCold and added 138243

neutrino particles, which evolved alongside CDM to z = 0. The two simulations differ by the

influence of massive neutrinos between redshifts 5 and 0. Both simulations were performed

using 86% (331,776 cores) of the Chinese supercomputer Tianhe-2.

TianNu contains a total of 2.97×1012 particles making this the world’s largest cosmological

N -body simulation to date. The large number of neutrino particles is necessary to suppress shot

noise on small scales due to the thermal motion of the hot neutrinos. The particle masses are

4.7×108 M�/h and 9.8×104 M�/h3 for CDM and neutrinos, respectively. Gravitational forces

are smoothed below a softening length of 13 kpc/h. CDM halos are identified in CUBEP3M

using a spherical overdensity algorithm that considers all halos with at least 500 particles

(2.3× 1011 M�/h) within the virial radius. The virial radius is defined such that the enclosed

density is 200 times the mean matter density of the universe.

5.4 Preliminary Results

5.4.1 Matter Power Suppression

We begin in Figure 5.1 with slices of the CDM and neutrino density fields from TianNu at

z = 0. Neutrinos clearly cluster around the largest CDM structures in the cosmic web, but

have significantly suppressed clumping on small scales. The fluctuations in neutrino density,

being only a factor of a few in this image, are also much suppressed compared to that of CDM,

where the density in collapsed objects easily exceeds the mean density by orders of magnitude.

The zoom-in region in the right panel shows that neutrinos still exhibit noticeable shot noise on

the smallest scales of the simulation. This highlights the importance of using a large number

of neutrino particles to sufficiently sample the simulated volume.

We study this picture more quantitatively in the top panel of Figure 5.2 where the density

power spectra of CDM and neutrinos from TianNu are shown at z = 0. Power spectra are

obtained by interpolating each species to a 69123 mesh using the nearest grid point scheme.

The solid blue and red curves in Figure 5.2 confirm the trends noticed visually in Figure 5.1.

The neutrino power approaches that of CDM on large scales, k . 10−2 h/Mpc, where both

agree well with linear theory. On small scales, neutrino power is increasingly suppressed due to

free-streaming. These results are consistent with our findings presented in Inman et al. (2015).

The solid blue line in the bottom panel of Figure 5.2 shows the ratio, PTN
mm/P

TC
mm, between

the total matter power spectrum of TianNu and TianCold. Hot neutrinos lead to a suppression

in the matter power spectrum of TianNu on all scales probed here. The upturn at k & 1
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Figure 5.1: Slices of the CDM (on the left, in blue) and neutrino (on the right, in red) density
fields at z = 0 from the TianNu simulation. Each slice is 1000× 1125 Mpc/h on a side and has
a depth of 8 Mpc/h. The inset on the bottom-right of each slice shows a closeup on a region
150× 170 Mpc/h on a side. The slices are coloured according to the logarithm of the projected
density. The colour map of CDM (neutrinos) spans 3.5 (0.3) decades in log density.

h/Mpc is due to small-scale structure that has had sufficient time since collapse for nonlinear

CDM dynamics to drive the evolution into closer agreement with TianCold (see also Brandbyge

et al., 2008; Viel et al., 2010; Bird et al., 2012; Massara et al., 2014). Though small, the total

suppression seen here has observational ramifications, being potentially observable in upcoming

galaxy surveys such as Euclid and LSST. Recall that mν = 0.05 eV is situated at the lower

bound of neutrino mass, so the effect seen here can be viewed as the minimum suppression made

by massive neutrinos. The large dynamic range of TianNu offers the most accurate prediction

to date of the level of matter power suppression induced by 0.05 eV neutrinos.

Recently, Bird et al. (2012) updated HALOFIT (Smith et al., 2003) to allow for predictions of

the nonlinear matter power spectrum in massive neutrino cosmologies. However, the simulations

used by Bird et al. (2012) for this calibration were focused more on mν ∼ 0.3 eV neutrinos. Due

to the present lack of fully nonlinear mν = 0.05 eV simulations, it remains to be seen how well

the new HALOFIT modifications fare in the low mass regime. We are currently in the process

of comparing our results to those expected from the Bird et al. calibration. Unfortunately, this

is somewhat complicated due to the nature in which the neutrinos were turned on at z = 5

in TianNu. We are thus working to disentangle this effective two-stage cosmology in order to

make a fair comparison with HALOFIT.
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Figure 5.2: (top) Dimensionless density power spectra measured at z = 0 for CDM (solid black
line) and neutrinos (solid red line) from TianNu. Dotted lines show the corresponding linear
theory predictions for CDM (black) and neutrinos (red). (bottom) The ratio between the total
matter power spectra, PTN

mm and PTC
mm, measured in TianNu and TianCold, respectively.

5.4.2 Dipole Distortion in Galaxy Cross-Correlation Functions

The relative flow between CDM and neutrinos establishes a unique dipole distortion in the

matter density field. This can be imagined by considering a coherent flow of neutrinos becoming

gravitationally focused into a high density wake downstream from a massive CDM halo. This

dipole asymmetry can be measured in the CDM-neutrino cross-correlation function:

ξcν1(r) = 〈δc(x)δν(x + r)µ〉, (5.2)

where δc and δν are the density contrasts of CDM and neutrinos, respectively, and µ ≡ r̂ · v̂cν
with vcν the CDM-neutrino relative velocity. The angle brackets in equation (5.2) represent

averages over spatial coordinate x and radial separation r.

The dipole distortion given above was first presented in Zhu et al. (2014b) where predictions
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Figure 5.3: The dipole component of the CDM-neutrino cross-correlation function as obtained
from TianSmall (solid black line) and as predicted from the moving background perturbation
theory calculations of Zhu et al. (2014b) (dotted black line).

of its form were made using moving background perturbation theory (MBPT). We reproduce

their prediction here as the dotted blue line in Figure 5.3. We are currently in the process

of measuring ξcν1 directly from the simulation particles in TianNu. For testing purposes, we

have performed a scaled-down version of TianNu, named TianSmall, containing 5763 CDM

plus 11523 neutrino particles in a box of side length 100 Mpc/h. The dipole signal measured

from TianSmall is shown as the solid black line in Figure 5.3. For this calculation, CDM and

neutrino particles are interpolated onto a 5763 mesh and ξcν1 is averaged over pairs of cells.

The relative velocity in equation (5.2) is taken to be the mean value of vcν over a given pair

of cells. Velocities for CDM and neutrinos are computed at each mesh cell using the procedure

outlined in Inman et al. (2015). The two curves in Figure 5.3 show a significant discrepancy

between the MBPT prediction and that found in TianSmall. Evidently, nonlinear structure

formation induces an appreciable boost on small scales and shifts the peak of ξcν1 to lower

values. However, as described below, this signal may also be influenced by a nonlinear dipole
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term found in the CDM density field. In either event, the comparison will be made more

illuminating once the signal is computed from TianNu as the small volume of TianSmall limits

its ability to probe larger scales.

In practice, the application of equation (5.2) is of limited use since neither δc nor δν can

be observed directly. We must therefore rely on indirect means to measure the CDM-neutrino

dipole distortion. One possibility is to uncover the dipole from the cross-correlation of two

galaxy populations of differing mass (Zhu et al., 2014b). To see this, we first write the halo1

density field, δh, as the sum

δh = bcfcδc + bνfνδν , (5.3)

where fi is the relative fraction contributed by species i to the matter density (i.e., fi = Ωi/Ωm)

and bi is the halo bias with respect to component i. Suppose we limit ourselves to halos of

mass ∼ 1012 − 1013 M�. In this range, we expect bν to be independent of mass since these

halos are below the free-streaming scale of neutrinos. For simplicity, we take bν = 1 in what

follows though our conclusion is unchanged as long as bν is constant. If we consider two halo

populations, labelled δα and δβ, their cross-correlation follows from equation (5.3):

ξαβ = 〈δαδβ〉 = bαbβf
2
c ξcc + (bα + bβ)fcfνξcν + f2

ν ξνν , (5.4)

where bα and bβ represent the CDM bias for halo population α and β, respectively. The dipole

component in ξcν , given by equation (5.2), will also manifest in ξαβ. In particular, ξαβ has

a dipole component, µ(bα − bβ)fcfνξcν1, that is observable provided that bα 6= bβ. It is well

known that bias is a generally increasing function of halo mass (e.g., Cooray & Sheth, 2002). If

we take the populations α and β to represent populations of different mass, Mα and Mβ, then

their cross-correlation contains a dipole term proportional to the relative bias, b(Mα)− b(Mβ).

We are currently working at computing the dipole component of the cross-correlation func-

tion of two halo populations of differing mass in TianNu. For this calculation, the relative

velocity vector is reconstructed by applying linear transformations to the total halo density

field, as outlined in Inman et al. (2015). This represents the observational pipeline for measur-

ing the dipole signal. However, based on our analysis, it seems that this process may be more

complicated than originally thought. Interestingly, there appears to be an additional dipole

coming from the halo density fields themselves and overwhelming the neutrino signal. This

additional dipole is found in both TianNu and TianCold, indicating that it is unrelated to neu-

trinos and instead due to some difference in the clustering of low- and high-mass halos. If real,

this signal should be easily observable in current galaxy surveys, and may serve as a predictive

indicator of halo mass. For now, it presents a burden to uncovering the neutrino signal, which

we are currently working to solve.

1We assume here that halos can be used in place of galaxies.
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Figure 5.4: (left) We plot the mass difference between counterpart halos in TianNu (with mass
MTN) and TianCold (with mass MTC). The x axis represents the relative deviation of δrec

ν away
from its expected value based on the local value of δrec

c . Here 〈δrec
ν (δrec

c )〉 is obtained by fitting
a linear relation δrec

ν = Aδrec
c +B. The scatter points show a subset of 8000 halos from the total

62,812 halos with TianCold mass between 1014 and 2× 1014 M�. The red line shows a best-fit
linear relationship for all counterpart halos in this mass bin. (right) The slope and intercept
of the best-fit linear relationship for different mass bins is plotted. Points denote the median
value from 1000 bootstrap realizations of each mass bin and error bars show the corresponding
1σ scatter.

5.4.3 Neutrino Bias

In this section, we propose a new method of detecting neutrinos within galaxy surveys. This

method is based on the change in halo clustering, or bias, induced by the presence of massive

neutrinos. We study this effect by comparing halo catalogues between TianCold and TianNu.

We exploit the fact that TianCold and TianNu have the same CDM initial conditions meaning

that differences in their evolved state directly reveal the impact of neutrinos on halo clustering.

Our procedure is as follows. For each halo in TianCold, we search for a “counterpart halo”

in TianNu representing the same physical object evolved in the alternate cosmology. More

precisely, we say that a halo in TianNu is the counterpart of a halo in TianCold if the two halos

are no further separated than 100 kpc/h on the simulation grid and their masses are within

10% of each other. With this definition, we find that 98% (27 million) of halos in TianCold can

be associated with a counterpart halo in TianNu.

For each pair of counterpart halos we calculate two quantities: δrec
c and δrec

ν . These are the

linearly reconstructed CDM and neutrino density contrasts, computed in a spherical region of

radius 6.25 Mpc/h centred on the halo in TianCold. We reconstruct CDM and neutrino density

fields by applying linear transformations to the total TianCold halo density field, as done in

Inman et al. (2015). We do this so that the following discussion may be expressed in terms of
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observable quantities only2.

In the left panel of Figure 5.4 we plot the relative difference in mass, MTC, of a halo in

TianCold and its counterpart halo of mass MTN in TianNu. For now, we restrict attention to

only those halos of mass 1014 ≤MTC/M� ≤ 2× 1014. Since δrec
ν is correlated with δrec

c (regions

of higher CDM density also correspond to regions of higher neutrino density), we rescale the x

axis so that it represents the relative deviation in δrec
ν from its expected value given δrec

c . This

is achieved by fitting a linear relationship, δrec
ν = Aδrec

c + B, and subtracting this from δrec
ν .

Rescaling allows us to compare the change in halos mass as we vary δν with δc held fixed.

The most obvious feature in Figure 5.4 is that TianNu halos are systematically less massive

than their TianCold counterparts. This is a feedback effect due to the gravitational backreaction

of neutrinos delaying the collapse of CDM halos. More importantly, we find a positive slope

between the mass difference and neutrino density, as shown by the best-fit red line in Figure 5.4.

When we fix the level of CDM clustering (i.e., when we fix δrec
c ), we find the mass difference is

smaller in regions of higher neutrino density. Evidently, the enhanced neutrino density contrast

in these regions contribute to the gravitational collapse of the halo, driving it closer to its

TianCold counterpart. In regions of suppressed neutrino density, the opposite is true and the

growth of TianNu halos are increasingly delayed with respect to their TianCold counterpart.

The positive slope in Figure 5.4 is indicative of a non-zero neutrino bias, bν . In the right

panel of Figure 5.4 we show the slope and intercept of the best-fit line for different bins in halo

mass. Points represent median values from 1000 bootstrap realizations of each mass bin while

error bars represent the 1σ spread about the median. In analogy to the CDM bias, bc, we expect

bν to be a function of halo mass; this is indeed the case. Firstly, the neutrino bias goes to small

numbers at low mass. This is simply a reflection of the fact that low-mass halos collapsed at

earlier times so their present evolution is strongly driven by CDM with neutrinos playing little

role. This is also indicated by the intercept approaching zero as halo mass is decreased. This

reasoning was also used before when explaining the upturn seen on small scales in the matter

power suppression of Figure 5.2. In contrast, the slope rises with increasing mass and peaks

around the scale where halos are forming today. There further appears to be a turnover of the

slope on cluster scales though the error bars due to small number statistics are too large to

make a meaningful statement here.

The process outlined above is useful in connection to theoretical studies that predict the

impact of neutrinos on halo collapse and bias (e.g., LoVerde, 2014). Observationally, however,

our procedure is of little use since we do not have access to two universes with counterpart

halos to compare. Instead, we propose an alternative method for which the neutrino bias can

be observed from just one universe. Suppose we have a galaxy survey from which we identify

masses, M , and linearly reconstructed local values of δrec
c and δrec

ν . As before, we group galaxies

into mass bins. Then, in each mass bin, we further group galaxies into different bins in δrec
c .

We are left with a collection of galaxy bins of fixed mass and CDM density. Within each bin,

2We assume that halo masses can be determined observationally using a proxy such as luminosity.
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we find the galaxy with the median value of δrec
ν , and denote its mass and neutrino density as

〈M〉 and 〈δrec
ν 〉, respectively. In a similar manner as Figure 5.4, we collect all δrec

c bins in a

given mass bin and plot (M − 〈M〉)/M versus δrec
ν − 〈δrec

ν 〉. In a universe without neutrinos,

we should not observe any correlation between M − 〈M〉 and δrec
ν − 〈δrec

ν 〉. In a universe with

neutrinos, we should observe a positive slope whose value depends in some way on mν .

We are currently in the process of testing this procedure using the halo catalogues of Tian-

Cold and TianNu. There is some difficulty associated with this method due to the intrinsic

stochasticity in halo mass at fixed δrec
c and δrec

ν . The simple method of choosing 〈M〉 based on

the halo with the median δrec
ν leads to a considerable amount of scatter that complicates the

analysis. Some form of smoothing or interpolative procedure for fixing a pivot point will likely

resolve this issue.

5.5 Summary

We have completed the world’s largest cosmological N -body simulation (TianNu) containing

∼ 2.6×1012 neutrino plus 3.3×1011 CDM particles. The staggering number of neutrino particles

is necessary to suppress shot noise due to the thermal motion of mν = 0.05 eV neutrinos. We

simulate neutrinos at the lower bound of current mass constraints so that our results represent

the conservative case where neutrinos have the least impact on structure formation. We also

perform a second simulation, TianCold, with identical parameters as TianNu, but containing

only CDM. In each simulation, we resolve ' 3×107 halos of mass M & 1011 M�/h in a volume

comparable to an all-sky survey out to z ≈ 0.2.

We have presented preliminary results from the analysis of our two simulations. We provide

results on the suppression of the matter power spectrum on small scales and will compare these

against the recent modifications made to HALOFIT by the simulations of Bird et al. (2012).

We are working at testing the efficacy of measuring the neutrino dipole distortion from the

cross-correlation of low- and high-mass galaxy populations. We have serendipitously discovered

the presence of an additional dipole, that dominates over the neutrino signal, and appears to be

related to the formation of low- and high-mass halos. If real, this dipole should be detectable

in current galaxy surveys, and may be a useful probe of structure formation. For our purposes,

this signal represents a contaminant that we are currently working to remove. Finally, we have

compared counterpart halos in TianNu and TianCold to provide a measure of neutrino bias.

We propose a new method of detecting neutrinos by observing differences in halo mass due to

neutrino bias. This method differs from conventional cosmological probes, such as the matter

power spectrum, that search for neutrinos by isolating them from the sum of the effects of

all matter. The neutrino bias approach is based on the relative difference between neutrinos

while all other matter effects are held constant. This may provide a more systematic probe of

cosmological neutrinos.
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Conclusions and Outlook

In this thesis, we used cosmological simulations to study the role of nonlinear structure in an

array of astrophysical scenarios. We have made a number of important contributions to the

fields of cosmic reionization, galactic substructure evolution, and cosmic neutrinos. The main

conclusions of this work are described in detail in the closing sections of Chapters 2 through 5.

We provide a brief summary below in relation to the relevant fields of astrophysics.

• Epoch of reionization: We have performed a numerical convergence study on the

small-scale opacity of the IGM during the onset of reionization. We parameterize the

IGM opacity by the mean free path of ionizing radiation, λ, and clumping factor, cl,

of ionized gas. We present converged results for λ and cl on smaller scales and earlier

times than considered before. At early times, the IGM opacity is dominated by small-

scale absorption systems collapsing at the Jeans mass. These systems act as important

sinks of ionizing photons during the epoch of reionization. We show that hydrodynamic

simulations require a CDM particle mass mdm . 50 M� and box width L & 1 Mpc to

properly resolve and sample the smallest absorption systems in the IGM. These criteria

are relevant to any numerical study that resolves the Jeans scale of the unheated IGM.

• Galactic substructure evolution: We have investigated the infall and dynamical evo-

lution of CDM subhalos within a galactic host. We utilize the public data from a cosmo-

logical simulation with large dynamic range allowing the study of smaller subhalos than

considered before. We find that low-mass subhalos, with mass ratios µ . 10−3, have

qualitatively different evolution than high-mass subhalos, whose fate is mainly driven by

dynamical friction. In particular, we find that low-mass subhalo evolution is strongly

driven by concentration. Concentration is correlated with the distance at which a sub-

halo first becomes tidally truncated by the host as well as the rate at which mass is

subsequently lost via tidal stripping and heating. Furthermore, the evolution of internal

density due to mass loss can be parametrized by concentration in the vmax − rmax plane.

These results point to the existence of a “concentration bias” that may be used to unwind

the evolution of ultra-faint dwarf galaxies to their infall on the Milky Way.

113
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• Cosmic neutrinos: We have investigated the potential use of cosmological observations

to constrain the absolute mass scale of neutrinos. First, is the dipole distortion in the

matter density field caused by the bulk flow of neutrinos relative to CDM. This has the

potential of being observed in weak lensing surveys or through the cross-correlation of

galaxy populations of different mass. The relative velocity field of CDM and neutrinos

is required for such observations. We show that this can be accurately reconstructed

by applying linear transformations to an observed galaxy field. We have completed the

world’s largest cosmological N -body simulation containing ' 3×1012 neutrino plus CDM

particles. We are currently working with the simulation data to forecast the ability of

upcoming surveys to constrain neutrino mass. This includes the dipole distortion as well

as a new method we propose that relies on the neutrino biasing of CDM halos.

6.1 Future Work

The work presented here provides a gateway to an avenue of potential research projects. For

starters, a natural extension of our work on the opacity of the unheated IGM is to present

converged results for the case where radiative transfer affects the thermal state of the gas. This

is a nontrivial task, however, since it requires the use of self-consistent hydrodynamic simulations

with radiative transfer and photoionization heating. A simple post-processing scheme applied

to a static density field is no longer sufficient in this case. On the other hand, it may be

sufficient to incorporate our converged results for the unheated IGM as a subgrid model in a

large-scale reionization simulation with some prescription that accounts for photoevaporation

as the Jeans scale is raised. In either event, it is important to quantify the total impact that

small-scale absorption sinks had on the total ionizing photon budget during reionization.

Our work on galactic substructure evolution hinted at the possibility of using concentra-

tion as a predictive indicator of the tidal evolution of low-mass subhalos. This has relevance

in near-field cosmology as ultra-faint dwarf galaxies are increasingly observed. In terms of

galaxy formation, there is considerable interest in connecting the observed population of dwarf

galaxies back to their initial infall on the Milky Way. An application of our work would be to

unwind present observations of ultra-faint dwarf galaxies to their initial conditions based on

the connection between concentration and tidal evolution.

We presently have ongoing work in the analysis of our TianNu simulation. This includes in-

vestigation of the neutrino dipole, matter power suppression, and neutrino biasing. On another

front, we are testing a scheme to effectively simulate multiple mass eigenstates at once using

a reweighing of the final velocity distribution. Neutrino cosmology is becoming an important

field as upcoming observations are expected to measure structure formation with unprece-

dented levels of precision. Matching this precision from theoretical predictions requires the

proper simulation of nonlinear neutrino structure formation. We will thus have a plethora of

cosmic neutrino research opportunities in the future.
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