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Gravitational waves are one of the most exciting predictions of General Relativity.

Due to their compactness, binary black hole (BBH) systems are likely sources for grav-

itational waves detectable by ground-based interferometric detectors such as Advanced

LIGO. Distinguishing a true signal from noise requires accurate models of gravitational

waves from BBH systems. In the last decade, numerical relativity has been instrumen-

tal in generating these models. The Spectral Einstein Code (SpEC) developed by the

SXS Collaboration has been used to investigate many aspects of BBH systems. Generi-

cally, the spins of the black holes in the binary are misaligned with the orbital angular

momentum, causing the orbital plane and the spins to precess. Such systems are of

particular importance as they exhibit interesting dynamics and large modulations of the

gravitational waveform.

In this thesis, we explore the problem of modelling precessing BBH by extending the

capabilities of SpEC both in the construction of initial data and in dynamical evolution.

We thereafter compare numerical relativity results to Post-Newtonian theory to assess

the accuracy of precessing dynamics in Post-Newtonian theory.

We begin this dissertation by examining the problem of robustly constructing initial

data for high mass ratio, high spin precessing BBH. We discuss many technical improve-

ments that now enable the construction of constraint-satisfying initial data for a much

larger region of the parameter space.

Next, we discuss the implementation of an important technical improvement that

permits the evolution of arbitrarily precessing BBH systems; in particular, those where
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the orientation of the orbital plane changes by more than 90 degrees.

We then compare the results of precessing BBH simulations done with SpEC to PN

theory. We find generally good agreement between PN and NR precession dynamics,

supporting the creation of phenomenological waveforms constructed using rotated non-

precessing waveforms.

Finally, we examine a case of transitional precession in NR, where the total angular

momentum changes drastically during the inspiral, and once more find good agreement

with PN predictions.
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“Nothing in life is to be feared, it is only to be understood. Now is

the time to understand more, so that we may fear less. ”

-Marie Curie
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Chapter 1

Introduction

About a century ago, Albert Einstein published his seminal work on General Relativity.

It revolutionized the way gravity is viewed and today forms a cornerstone of modern

physics. In this framework, gravity is represented by the curvature of spacetime as

embodied by the Riemann curvature tensor. The relationship between the matter content

and curvature is given by the Einstein Field equations, which relate the Ricci tensor Rαβ

to the stress energy tensor Tαβ:

Rαβ −
1

2
Rgαβ = 8πTαβ. (1.1)

Two of the most striking predictions of general relativity are the existence of black

holes and gravitational radiation. Black holes are regions of spacetime which are causally

disconnected from the rest of spacetime by an event horizon. The famous “no hair

theorem” [128] asserts that black holes in equilibrium are completely characterized by

mass m, spin ~S and charge Q. The most common scenario for black hole formation is

gravitational collapse of a star, when the core of the star is so massive that not even

neutron degeneracy pressure is enough to support it against collapse.

Gravitational radiation is a propagating perturbation in spacetime itself. Gravita-

tional waves carry energy and angular momentum and only couple weakly to matter,

which means that they are largely unaffected by circumstances that make electromag-

netic observations difficult (e.g. scattering by dust). This implies that gravitational waves

preserve more information about the source and thus may allow us to receive information

not available via EM observations. Of course, the weak coupling to matter also makes

gravitational waves incredibly difficult to detect. However, we already possess indirect

evidence for their existence. Indeed, the 1993 Nobel Prize in Physics was awarded to

Russell A. Hulse and Joseph H. Taylor, Jr. for observations of the change in orbital

1
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period of a binary pulsar system (known as the Hulse-Taylor binary) [184, 178]. The

prediction of the decay of the orbital period due to the emission of gravitational waves

matches the observations spectacularly. Since then, several other systems with pulsars

have confirmed this result (see [185] and references therein).

In the next year, advanced laser-interferometric detectors Advanced LIGO and Virgo

will begin operating. It is expected that binary black hole (BBH) systems will be some

of the primary sources of signals for these detectors. Due to the weakness of the gravita-

tional wave signal, one must employ matched filtering techniques to distinguish signals

from the noise. Matched filtering requires template waveforms for comparison with the

incoming signal. This necessitates extremely accurate modelling of binary black hole

systems. Some of the leading approaches are semi-analytical approximants such as the

Post-Newtonian (PN) expansion (see e.g. [25] and references therein) and Effective One

Body (EOB) theory (see [62] and references therein). However, to accurately describe the

highly dynamic final orbits and coalescence, one must solve the full two-body problem

of GR numerically. Today, many groups have successfully simulated binary black holes,

and many facets of the BBH problem have been explored (see [103, 147, 94, 126, 83] for

reviews).

Lately, precessing systems have become of particular interest. In these systems, the

interaction between the spins of the black holes and the orbital angular momentum causes

the orbital plane and the spins to precess. This precession is reflected in the gravitational

wave signal. It changes the direction of dominant emission of gravitational waves and af-

fects the phasing of the binary. In the past, only non-precessing templates have been used

to search for signals. However, several studies have indicated that neglecting precession

(for BH and NSBH binaries) can significantly impact detection and parameter estimation

for Advanced LIGO [88, 50, 59]. Thus, generating accurate precessing waveforms that

can be used to assess the accuracy, or to inform semi-analytic approximants, is of prime

importance. The SXS collaboration has recently released a catalogue of simulations done

with the SpEC code [1]. This code has been used to successfully explore many aspects

of binary black hole dynamics, but much work remains to be done to explore the full

parameter space of precessing binaries.

SpEC is a multi-domain pseudo-spectral code that is capable of efficiently solving

elliptic and hyperbolic partial differential equations. For binary black holes, it utilizes

a first order formulation of the Einstein Field Equations (see Section 1.3). Employing

spectral methods gives the ability to simulate very long inspirals [174]. SpEC is also

capable of simulating black hole - neutron star and neutron star - neutron star compact

binaries.
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The goal of this thesis is two-fold. The first is to improve and extend our ability to

simulate precessing binary black hole systems in full numerical relativity. The second

is to use numerical relativity simulations to explore the dynamics of precessing binaries,

and to compare them to predictions of Post-Newtonian theory, in order to assess their

accuracy.

Thus, this dissertation focuses on several topics associated with modelling precessing

binary black hole systems:

i) In Chapter 2 we discuss many enhancements to the initial data solver in the SpEC

code. These additions allow robust creation of initial data for high mass ratio (q & 10),

high spin (χ & 0.9) precessing binaries. We also introduce and test a new method to

control linear momentum in initial data that eliminates spurious gravitational wave mode

mixing during the inspiral. Finally, we explore other applications of the new code, such

as hyperbolic encounters.

ii) Chapter 3 describes a new technique that allows the simulation of arbitrarily pre-

cessing binaries in SpEC and in particular those where the change of the orientation of

the binary is & 90◦. These cases are particularly interesting, as they feature the largest

modulations of the gravitational waveform. The techniques described here have been

used for simulations in [130] and other publications since.

iii) Chapters 4 and 5 are concerned with results of numerical simulations of precess-

ing binaries and their comparison to semi-analytic approximations. In Chapter 4, we

introduce a framework to compare the dynamics of precessing binaries from the SXS

catalogue and Post-Newtonian theory. We find good agreement despite any gauge issues

that may be involved. In Chapter 5, we concentrate on a new numerical relativity sim-

ulation of a system undergoing transitional precession - an extremely dynamical regime

where the angular momentum of the binary changes direction dramatically during the

inspiral. This behaviour has been observed previously in Post-Newtonian theory [11], but

never before simulated in full numerical relativity. We apply the formalism of Chapter 4

to this case and once again recover good agreement between Post-Newtonian theory and

numerical relativity, even for this unusual regime.

iv) In Chapter 6, we summarize the results and discuss possible future work.
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The material from Chapter 2 has been submitted to Classical and Quantum Gravity

[137]. The material of Chapter 3 is published in [138]. Finally, the material of Chapter

4 is based on [136].

In the rest of the introduction we briefly summarize the steps towards simulating bi-

nary black hole systems numerically. For brevity we focus in particular on the techniques

used in the SpEC code.

1.1 3+1 decomposition

To evolve the Einstein field equations numerically, it is natural to recast them in 3+1

form. In this formulation, the initial data is prescribed on a hypersurface and evolution

equations are used to evolve the geometric quantities forward in time. We assume that

the spacetime manifoldM is globally hyperbolic and thus admits a foliation. We denote

by t a regular scalar field defined on M such that each spacelike hypersurface Σt is a

level set of t, i.e.

Σt = {p ∈M, t(p) = t}, ∀t ∈ R. (1.2)

In this chapter, we reserve Greek letters to denote space-time indices (0,1,2,3) while

Latin letters represent spatial indices (1,2,3). The 4-dimensional metric with signature

(−,+,+,+) is denoted by gµν ; ∇ is the compatible connection. Meanwhile, we use γij

and Di to indicate the metric and its compatible connection in a hypersurface Σ.

The vector field ∇µt = gµν∇µt is normal to the hypersurface. Renormalizing, we

define the unit normal to Σt as:

nµ ≡ (−gαβ∇αt∇βt)
−1/2∇µt ≡ α−1∇µt, (1.3)

where α is the lapse function that determines the interval of proper time for observers

travelling along the normal vector nµ. We define the time-vector field

tµ = αnµ + βµ, (1.4)

where the shift βµ is an arbitrary spatial vector. The integral curves of tµ will have the

same spatial coordinates on different hypersurfaces. In standard adapted coordinates

{t, xi}, the time-vector has components (1, 0, 0, 0). Given a time vector tµ, Eq. (1.4)

shows that the lapse and shift are (up to a minus sign) simply the projections of tµ along

the normal and into the hypersurface respectively.
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In adapted coordinates, the spacetime metric can be written as:

ds2 = −α2dt+ γij(dx
i + βidt)(dxj + βjdt). (1.5)

This equation can be interpreted as ds2 = −(proper time between hypersurfaces)2 +

(proper distance within each hypersurface)2 [22].

The geometric information is carried by two tensors: the induced metric γµν and

the extrinsic curvature Kµν . The induced metric determines the curvature within each

hypersurface, while the extrinsic curvature tensor Kµν describes how the hypersurface Σt

bends inside the manifold M. They are given explicitly by

γµν = gµν + nµnν , (1.6)

Kµν = −1

2
Lngµν . (1.7)

To obtain Einstein’s equations in 3+1 form, one performs projections along the nor-

mal nµ and into the hypersurface Σ [22, 9, 80]. The field equations can be written as

Gµν = 8πTµν , where Gµν ≡ Rµν − 1
2
Rgµν is the Einstein tensor. There are 3 non-trivial

projections that can be done. First, entirely along the unit normal: nµnνGµν ; secondly, a

mixed projection γµρn
νgµν . These projections give the famous Hamiltonian and momen-

tum constraint equations respectively:

R +K2 +KµνK
µν = 16πρ, (1.8)

Dµ(Kαµ − γαµ)K = 8πSα, (1.9)

where K ≡ Kµ
µ is the mean curvature and ρ ≡ nµnνT

µν and Sα ≡ −γµαnνTµν represent

matter terms. These equations involve only the geometric quantities defined on the

hypersurface Σt. In the rest of this chapter, we will always work only with vacuum

solutions, so we set ρ = 0 and Sα = 0.

Switching for convenience to adapted coordinates, Eqs. (1.8) and (1.9) are given by:

R +K2 +KijK
ij = 0, (1.10)

Dj(K
ij − γijK) = 0. (1.11)
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Finally, performing a full projection of the Einstein field equations into Σt gives the

evolution of the extrinsic curvature tensor:

∂tKij = α(Rij − 2KikK
k
j +KKij)−DiDjα + βk∂kKij +Kik∂jβ

k +Kjk∂iβ
k. (1.12)

The evolution of the spatial metric γij is purely kinematic and is the definition of extrinsic

curvature:

∂tγij = −2αKij +D(iβj). (1.13)

Just like Maxwell’s equations, the Einstein field equations have split into the con-

straint equations Eqs. (1.10) and (1.11), and the evolution equations Eqs. (1.12) and (1.13).

Once constraint-satisfying initial data for γij and Kij is found on the initial hypersurface,

the evolution equations determine them for all time. Notice that in order to solve the

evolution equations, we also need to choose the lapse α and the shift βi, which amount

to the choice of coordinates.

1.2 Construction of initial data

The construction of initial data amounts to solving Eqs. (1.10) and (1.11) on the initial

hypersurface. Two immediate complications arise. The first is to rewrite Eqs. (1.10)

and (1.11) as elliptic equations, which involves choosing which data is free. The second

is to choose the free data to describe a physical situation of interest. Fortunately, there are

several standard techniques which have been employed extensively in the literature (see

e.g. [22, 80] for detailed descriptions) that address both of these issues. The techniques

all start with the conformal decomposition of the form

γij = ψ4γ̃ij, (1.14)

where ψ is a spatially dependent scalar function, called the conformal factor ; and γ̃ij is

the conformal metric. The goal is to derive an equation for the conformal factor so that

it is solvable with choice of the conformal metric. Using Eq. (1.14), we can rewrite the

Hamiltonian constraint, Eq. (1.8), as

8D̃2ψ − ψR̃ + ψ5K2 + ψ5KijK
ij = 0, (1.15)

where D̃ is the covariant derivative compatible with the conformal metric γ̃ij. Given a

choice of γ̃ij (which determines R̃), Eq. (1.15) is an equation for the conformal factor. Of

course, the extrinsic curvature Kij must satisfy the momentum constraint. It is beneficial



Chapter 1. Introduction 7

to decompose the extrinsic curvature tensor into trace and trace-free parts:

Kij = Aij +
1

3
γijK. (1.16)

Defining Aij = ψ10Ãij and K = K̃, we can rewrite the momentum and Hamiltonian

constraints as

D̃jÃ
ij − 2

3
ψ6γ̃ijD̃jK = 0, (1.17)

8D̃2ψ − ψR̃− 2

3
ψ5K2 + ψ−7ÃijÃ

ij = 0. (1.18)

There are standard ways to proceed from here. The technique adapted by most groups

is the transverse traceless decomposition [187]. By employing the analytic solutions of

the momentum constraint due to Bowen and York [28], one can reduce the problem to the

solution of the Hamiltonian constraint for the conformal factor. A decomposition of the

conformal factor into an analytic singular piece, and a well-behaved solution u, allows u

to be determined without any special treatment of the black holes. This puncture initial

data is easily extendable to cases with more than two black holes [36].

In this thesis, we focus on an alternative approach known as the Extended Conformal

Thin Sandwich (XCTS) method [150]. It allows for a natural choice of “free” data that

corresponds to a quasi-equilibrium situation. We define ũij ≡ ∂tγ̃ij and choose γ̃ijũij = 0

to determine ũij completely. From Eq. (1.13), it follows that

Ãij =
1

2α̃
((L̃β)ij − ũij), (1.19)

where α̃ = ψ6α is the conformal lapse. We have also introduced the longitudinal operator,

(Lβ)ij ≡ Diβj +Djβi − 2

3
γijDkβ

k. (1.20)

This operator has the conformal scaling (Lβ)ij = ψ−4(L̃β)ij and the conformal version of

the operator is given by Eq. (1.20) with all quantities now associated with the conformal

metric.

The momentum and Hamiltonian constraints are now recast as equations for the shift
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βi and the conformal factor ψ:

D̃j

(
1

2α̃
(L̃β)ij

)
− D̃j

(
1

2α̃
ũij
)
− 2

3
ψ6D̃iK = 0, (1.21)

D̃2ψ − 1

8
ψR̃− 1

12
ψ5K2 +

1

8
ψ−7ÃijÃij = 0. (1.22)

In addition, the lapse function is fixed via the evolution equation for K:

D̃2(αψ) = αψ

(
7

8
ψ−8ÃijÃ

ij +
5

12
ψ4K2 +

1

8
R̃

)
− ψ5∂tK + ψ5βiD̃iK. (1.23)

In this formulation, the free data are the Lagrangian-type pairs (γ̃ij, ũij) and (K, ∂tK).

Consider a system of binary black holes in a quasi-circular orbit in a coordinate system

that co-rotates with the binary. Then, the system should appear time-independent up to

corrections due to radiation of gravitational waves that carry away energy and angular

momentum. In such a corotating system, it is natural to choose [146]

ũij = ∂tK = 0. (1.24)

More formally, we assume the existence of an approximate helical Killing vector ξµ, which

generates the circular orbit. The corotating frame can then be chosen by setting tµ ∝ ξµ.

In such a frame, we expect the partial derivatives of the metric to vanish approximately.

Given a choice for γ̃ij and K (for example γ̃ij = δij and K = 0), Eqs. (1.21) to (1.23)

above can be solved, if the boundary conditions have been provided. These boundary

conditions must be imposed at spatial infinity1 and are determined by the requirement

that the hypersurface is asymptotically flat. For binary black holes, the boundary con-

ditions must also include a treatment of the singularities. For the XCTS system, the

standard approach is to use excision, where the region inside black holes is removed

from the computational domain. In this case, the boundary conditions on the excised

surfaces for the lapse and shift ensure that these surfaces are apparent horizons, and also

determine the physical properties (mass, spin) of the black holes. The details of how the

boundary conditions can be chosen are found in [57].

1In practice, at a timelike artificial boundary of the computational domain far away from the black
holes.
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1.3 Evolution

With the initial data constructed in Sec. 1.2 in hand, one might hope that the evolution

in time can be done by simply integrating the ADM evolution equations Eqs. (1.12)

and (1.13). Unfortunately, this is not the case, as this system turns out to be ill-posed

and small perturbations grow exponentially as the evolution progresses. There are several

approaches to curing this instability. One can make a gauge choice that eliminates

problematic terms, or introduce new auxiliary variables, or recast the evolution equations

in strongly hyperbolic form.

In practice, several of these approaches are combined to yield stable evolution schemes.

The most popular scheme is BSSNOK formulation [21, 165, 131], which is used by the

majority of numerical relativity groups today (see e.g. [95] for an overview of many

numerical relativity codes). BSSNOK recasts the ADM equations by using a conformal

rescaling of the spatial metric and the traceless part of the extrinsic curvature, and then

promoting the contracted Christoffel symbols to a new evolved field. By exploiting the

Hamiltonian constraint, the equations are brought to a strongly hyperbolic form [160],

guaranteeing well-posedness. However, in this work, we describe instead the Generalized

Harmonic (GH) approach, which was originally used by Pretorius [153] for the first stable

evolution of the binary black hole spacetime. In particular, we focus on the first order

formulation due to Lindblom et al [108], introduced below.

The starting point of the GH approach is to abandon the 3+1 view and return to the

full 4-dimensional Einstein equations. In vacuum, they can be written as

− 1

2
gµν∂µ∂νgαβ +∇(αΓβ) + gµνgρσ(∂ρgµα∂σgνβ − ΓαµρΓβνσ) = 0. (1.25)

Here, Γµ ≡ gαβΓµαβ is the trace of the Christoffel symbol Γαβγ, and

∇αΓβ = ∂αΓβ − gµνΓµαβΓν . (1.26)

The first 2 terms on the left-hand side of Eq. (1.25) contain second derivatives of the

metric. If we could eliminate the term given by Eq. (1.26), Eq. (1.25) would become a

non-linear wave equation. One way of achieving this is to make a gauge choice Γβ = 0,

such that ∇αΓβ = 0. The choice Γβ = 0 is equivalent to the requirement that the

coordinates satisfy the covariant scalar homogeneous wave equation:

gµν∇ρ∇ρx
ν = −Γµ = 0, (1.27)
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also known as harmonic coordinates. These coordinates have been used for many applica-

tions in general relativity, ranging from a convenient gauge choice for the Post-Newtonian

expansion [25], to a rigorous formulation of the Cauchy problem of General Relativity

(see [78] for a review).

We can generalize Eq. (1.27) to satisfy the wave equation with a source:

gµν∇ρ∇ρx
ν = −Γµ = Hµ, (1.28)

where Hµ(xα, gαβ) is an arbitrary gauge source function. If Hµ = 0, one recovers standard

harmonic coordinates. In GH coordinates, the field equations Eq. (1.25) are given by

(e.g. [108]):

gµν∂µ∂νgαβ = −2∇(αHβ) + 2gµνgρσ(∂ρgµα∂σgνβ − ΓαµρΓβνσ). (1.29)

They must also be supplemented with the constraint

Cα ≡ Hα + Γα. (1.30)

Of course, the condition that Cα = 0 is equivalent to the definition of GH gauge Eq. (1.28).

In principle, the 2nd order formulation Eq. (1.29) can be integrated directly for the

spacetime metric gαβ. However, in practice, this system is still not numerically sta-

ble. In his seminal work [153], Pretorius modified Eq. (1.29) by adding multiples of the

constraints to achieve a stable evolution.

Instead, SpEC recasts Eq. (1.29) as a first-order system. To do so, new variables are

defined to represent the derivatives of the metric:

Φiµν ≡ ∂igµν , (1.31)

Πµν ≡ −nα∂αgµν . (1.32)

Choosing these auxiliary variables lets the same techniques used previously for scalar

fields [97] to bring the system to first-order form. The use of Eq. (1.31) introduces a new

constraint function:

Ciαβ = ∂igαβ − Φiαβ. (1.33)
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It turns out that this constraint grows exponentially during numerical evolution.

To prevent the runaway growth, multiples of Ciαβ are added to the evolution system,

parametrized by constraint damping parameters γ0, γ1, γ2. The resulting equations are

given by [108]

∂tgµν − (1 + γ1)βk∂kgµν = −αΠµν − γ1β
iΦiµν , (1.34)

∂tΠµν − βk∂kΠµν + αγki∂kΦiµν − γ1γ2β
k∂kgµν

= 2αgρσ
(
γijΦiρµΦjσν − ΠρµΠσν − gαβΓµραΓνσβ

)
− 2α∇(µHν)

−1

2
αnρnσΠρσΠµν − αnρΠρiγ

ijΦjµν

+αγ0

[
2δρ(µnν) − gµνnρ

]
(Hρ + Γρ)− γ1γ2β

iΦiµν , (1.35)

∂tΦiµν − βk∂kΦiµν + α∂iΠµν − αγ2∂igµν

=
1

2
αnρnσΦiρσΠµν + αγjknρΦijρΦkµν − αγ2Φiµν . (1.36)

This system is symmetric hyperbolic and thus is guaranteed to be well-posed. It has also

proven robust in numerical evolution.

One can relate the choice of gauge via Hµ to the lapse and shift introduced in Sec-

tion 1.1. Because Eq. (1.28) is an evolution equation for the coordinates, we expect it to

yield evolution equations for the lapse and shift. Indeed, we get:

∂tα− βk∂kα =− α(Ht − βiHi + αK), (1.37)

∂tβ
i − βk∂kβi =αγij[α(Hj + γklΓjkl)− ∂jα]. (1.38)

Simple conditions on the gauge source functions (e.g. harmonic coordinates Hµ = 0) yield

complicated evolution equations for the lapse and shift. Conversely, simple conditions

on the lapse and shift (e.g. geodesic coordinates α = 1, βi = 0) yield a complicated

expression for Hµ. It should be emphasized that in this formulation, Hµ is a fixed

algebraic function and not an evolved field.

In SpEC, the gauge source function Hµ is chosen to minimize the changes of the lapse

and shift at the start of the numerical simulation. Hµ is then rolled off smoothly to the

damped harmonic gauge:

Hα = µ0

[
ln

(√
γ

α

)]2 [
ln

(√
γ

α

)
nα − α−1γαiβ

i

]
, (1.39)
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where µ0 is an arbitrary coefficient and γ is the determinant of the spatial metric

γij [109, 175, 173].

To evolve the system in Eqs. (1.34,1.35,1.36), boundary conditions are required on

the artificial timelike boundary of the computational domain, as well as on the apparent

horizons of the black holes. The prescription used in SpEC can be found in [108, 109].



Chapter 2

Improvements to the construction of

binary black hole initial data

2.1 Chapter overview1

Construction of binary black hole initial data is a prerequisite for numerical evolutions

of binary black holes. This chapter reports improvements to the binary black hole initial

data solver in the Spectral Einstein Code, to allow robust construction of initial data for

mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving

efficiency for lower mass-ratios and spins. We implement a more flexible domain decom-

position, adaptive mesh refinement and an updated method for choosing free parameters.

We also introduce a new method to control and eliminate residual linear momentum in

initial data for precessing systems,and demonstrate that it eliminates gravitational mode

mixing during the evolution. Finally, the new code is applied to construct initial data

for hyperbolic scattering and for binaries with very small separation.

2.2 Introduction

Almost a century ago the existence of gravitational waves was first predicted [70]. Grav-

itational radiation offers an exciting new observational window [161, 96] and the enticing

possibility of multimessenger astronomy. With the second generation of gravitational

wave detectors poised to come online [87, 3, 181], it is more important than ever to

model the likely sources of gravitational waves. Some of the most promising are binary

1The material herein is based on Serguei Ossokine, Francois F. Foucart, Harald P. Pfeiffer, Michael
Boyle, and Béla Szilágyi. Improvements to the construction of binary black hole initial data. In prep,
2015. Submitted to CQG.

13
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black holes, with predicted detection rates of 0.4−1000 per year for Advanced LIGO [4].

To detect such systems, matched filtering techniques must be used in order to extract the

signal from the noise [71]. This requires accurate models of binary black hole inspiral,

merger and ringdown. A vast amount of work has been done in this direction in full

numerical relativity which is necessary to describe the very dynamic plunge and merger

regimes (see e.g. [103, 147, 94, 126, 83] for overviews of the field).

While many groups now successfully simulate binary black hole systems [143, 15, 7,

8, 95], much of the vast 7-dimensional parameter space consisting of the mass ratio q

and the dimensionless spins χA,B remains unexplored. Most of the attention has been

focused on binaries close to equal mass (q . 8) and modest spin (χA,B . 0.8) (although

see [113, 170, 162, 183, 45, 166]) For stellar mass black hole binaries, one can expect mass

ratios . 15 and arbitrary spin magnitudes and orientations, which leads to precession

of the spins and the orbital plane. Precessing, high mass-ratio binaries have interesting

dynamics, causing large modulations of the gravitational waveform. One can expect even

higher mass ratios (q ' 30) for neutron star-black hole (NSBH) binaries (see [167] a BH-

Wolf-Rayet system with BH mass 30M�). At high mass ratios, BBH systems can be

used as proxies for NSBH systems(e.g. [73]). One would thus like to simulate high-mass

ratio BBH systems.

Intermediate mass black holes (IMBH) with masses m = 102 − 104M� have been

hypothesised to exist to complete the BBH mass hierarchy (e.g., the review [53]). Searches

for IMBH have been performed and several candidates have been identified (see e.g. [127,

142] for recent observations). Higher mass ratio (10 . q . 100) systems may serve as

models for binaries containing an IMBH and a stellar mass black hole or neutron star.

Advanced era gravitational wave detectors might be able to observe gravitational waves

from such systems, with a detection rate of up to 10 events per year for stellar-mass -

IMBH binaries [4]. It is thus important to explore these systems in numerical relativity.

The first step to numerically evolving a binary black hole spacetime is the construction

of appropriate data on the initial hypersurface [55]. This involves the solution of the ellip-

tic constraint equations with free data that corresponds to a binary in quasi-equilibrium,

ideally allowing for arbitrary masses, spins and velocities of the two black holes. The

Spectral Einstein Code (SpEC) [1] includes a BBH initial data solver [145] based on the

extended conformal thin sandwich equations [188, 150], incorporating quasi-equilibrium

black hole boundary conditions [56, 57, 49]. This solver has been used to construct BBH

for a wide range of configurations [130]. Construction of BBH with increasing mass-ratio,

increasing spin magnitudes and the desire to construct initial data for highly spinning

BBH with arbitrary spin axes have necessitated a variety of improvements to the initial
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data code compared to its original presentation [145, 57, 148, 118, 38].

This chapter summarizes these improvements and extends the original code even

further, in anticipation of future desire to study even more generic BBH systems. Specif-

ically, here, we present:

(i) Flexible domain-decomposition to allow a wider range of mass-ratios, spins and sep-

arations.

(ii) Adaptive mesh-refinement to enhance computational efficiency and to ensure robust

numerical convergence for mass-ratios q & 5 and dimensionless spins & 0.9.

(iii) Improved updating formulae for iterative determination of the free parameters. These

formulas allow one to achieve very high spins and mass ratios, for example an equal-mass

binary with aligned spins of 0.9999, and a q = 50 single-spinning binary with spin of 0.95

on the large black hole.

(iv) Building on previous work [75, 93], we control of the ADM linear momentum to

avoid drifts of the center of mass in BBH evolutions. This eliminates gravitational mode

mixing due to the motion of the centre of mass with respect to a fixed extraction sphere.

(v) Control of the center of mass.

This chapter is organized as follows. In Sec. 2.3 we describe in detail the numerical

enhancements and additions to the code. In Sec. 2.4 we present the results of initial data

construction for several challenging configurations as well as an exploratory evolution of

a new data set that demonstrates that the control of linear momentum in initial data

leads to the elimination of gravitational wave mode mixing. Finally we summarize the

results in Sec. 3.5 and introduce the construction of initial data for closely separated

binaries and binaries on hyperbolic orbits as applications of the techniques developed in

this work.

2.3 Numerical techniques

The main task of constructing initial data is twofold: first, to solve the elliptic constraint

equations on the initial hypersurface; and then, to ensure that the solution represents the

astrophysical situation of interest (in our case, a black-hole binary in quasi-equilibrium).

In SpEC, the former is achieved by using a pseudo-spectral multidomain method; see [145].

The number of subdomains is kept fixed, but the resolution of each subdomain is dynam-

ically adjusted to obtain low truncation error. To enforce quasi-equilibrium conditions,

SpEC employs the extended conformal thin sandwich (XCTS) formalism [150]. Before

solving the conformal thin-sandwich equations, various free parameters must be chosen -

for example, the sizes of the excision regions, and certain other parameters that affect the
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location, spin or motion of the black holes. The free parameters differ from the physical

parameters one desires to control, such as the masses and spins of the black holes, or the

linear momentum PADM of the initial data hypersurface. Therefore, iterative root-finding

is needed, as described in Buchman et al [38]. To minimize the computational cost as-

sociated with many iterations of high resolution solves, we adopt a hybrid approach.

The resolution of the domain and the free parameters are adjusted simultaneously based

on the current estimated truncation error and the differences between the desired and

obtained physical quantities.

In the remainder of this section, we describe in detail the improvements to the initial

data code.

2.3.1 Domain decomposition

Figure 2.1 indicates the geometry of the domain-decomposition employed here. There

are two inner spherical shells (thick black circles labeled A and B), which are surrounded

by a set of cylinders (light blue) that are aligned with the axis connecting the two black

holes.

Along the axis of the cylinders there are three subdomains with rectangular cross-

section (indicated in green). One of these is located between the two excision spheres,

and is a truncated square pyramid. The other two are rectangular blocks. In earlier

work [145] the two inner spherical shells were restricted to have the same outer radius,

and all cylinders were restricted to have the same inner radius. This restriction results

in a comparatively larger shell around the smaller black hole (B). For very unequal

mass systems, mB � mA, in particular, it may be preferable to have a smaller outer

radius of shell B, roughly comparable with the sphere of influence of black hole B. This

would maximize the agreement of the geometry of the domain decomposition with the

structure of the solution. Therefore, here, we allow unequal radii of the two inner shells,

as indicated in Fig. 2.1. This has the largest impact when we consider small separations

in initial data (for example, for studying remnant properties) where the old domain

decomposition requires a larger separation between the two black holes than the new

domain-decomposition in order for the solver to converge.
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Figure 2.1: Schematic of the domain decomposition for the initial data solver. The
thick black circles denote the inner and outer boundaries of the inner spherical shells
(labeled A and B next to their centers). The blue shaded regions represent five open
cylinders with axis along the line connecting A and B. The green solidly filled regions
represent three domains with square cross-section. The thin black circle represents the
inner boundary of the outer spherical shell, with center indicated by the letter C. Dashed
lines are guides to the eye, to indicate the dimensions of the various subdomains.
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The new domain-decomposition uses several parameters from which the placement

and dimension of each subdomain follow unambiguously. We begin by specifying the

inner and outer spherical shells:

• The centres of the inner spherical shells, cA and cB, and of the outer spherical shell,

cC. Note that cC is not required to lie on the line connecting cA and cB.

• The inner and outer radii of the inner spherical shells and the outer spherical shell,

rA, rB, rC, and RA, RB, RC.

The remaining parameters α, fcyl, fblock, and fC determine the relative sizes of the cylin-

ders and rectangular blocks:

• The rectangular blocks and cylinders end on planes orthogonal to the axis connect-

ing the centers of the excision spheres. The location of these planes is determined

by the parameter α, through the requirement that these planes intersect the inner

spherical shells A and B in circles of radius RA,B sinα. The opening angle of these

circles as viewed from the center of the spheres is chosen to have the same value

for all four planes.

• The inner radii of the cylinders are determined by the parameter fcyl via

ρA,B = fcylRA,B sinα. (2.1)

Note that fcyl < 1 is required for the cylinders 1 and 3 to cover all volume outside

the spheres A and B.

• The size of the blocks orthogonal to the line connecting the two spheres is deter-

mined by the parameter fblock,

aA,B = fblockRA,B sinα. (2.2)

The multiplier fblock must satisfy fblock > fcyl to ensure that the blocks cover the

entire open region within cylinders 0, 2, and 4.

• The multipler fC, which measures how much larger the outer size of the cylinders

is compared to the inner edge of the outer spherical shell:

aC = ρC = fCrC . (2.3)

To ensure complete overlap between the cylinders and the sphere C, fC > 1+C⊥/rC,

with C⊥ being the distance from point C to the axis of the cylinders.
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The value of fblock will determine the relative size of the face of the blocks to the inner

spheres: If fblock > 1, then the edge of the block will be entirely outside the inner

spherical shell. Conversely, if fblock < 1/
√

2, then the face of the rectangular block is

completely contained within the inner spherical shell. These considerations will impact

which subdomain (sphere of cylinder) will provide boundary data for the blocks.

Our standard values for the grid-internal geometry coefficients are α = 45◦, fcyl =

0.95, fblock = 1.05, and fC = 1.1. We have found these choices to be robust for a wide

variety of component masses, spins and separations.

2.3.2 Adaptive mesh refinement

An important factor in efficiently generating high-accuracy initial data is the choice of

resolution in each of the subdomain used in our domain decomposition (see Fig. 2.1).

Typically, we want our representation of the solution to have about the same accuracy

in all subdomains. Unfortunately, we do not know a priori what resolution is needed

in a given subdomain to reach a target accuracy. Furthermore, the optimal resolution

varies significantly with the physical parameters of the binary. The old initial data

solver [145, 57] used hard-coded resolutions, tuned to equal-mass low spin BBH. For

unequal mass systems, rapidly spinning black holes, and/or widely separated binaries

the old resolutions are less efficient and can even prevent convergence of the elliptic

solver when a high accuracy is requested.

To generate initial data, we generally go through multiple intermediate solves, pro-

gressively improving the accuracy of the solution while converging towards the desired

binary parameters. So instead of predetermining the resolution which will be used in

each subdomain at each level of refinement, we can use the preceding numerical solution

to predict the optimal resolution in each subdomain to reach a target accuracy. This

significantly improves the efficiency of the initial data solver, with computing times de-

creased by about an order of magnitude for challenging configurations. And it also allows

us to push the binary parameters to more extreme values.

Our multi-domain spectral solver represents the solution in each subdomain as a

tensor-product of basis-functions. Depending on the topology of the subdomain, the

basis functions are Chebyshev polynomials, and/or Fourier series, and/or spherical har-

monics (see [145] for details). Following Szilágyi [173], for a given subdomain and

a given basis function, we define the power Pi in the i-th mode by the root-mean-

square value of all the coefficients of the i-th mode across all spectral coefficients of

the other basis-functions. For instance, in a spherical shell with spectral expansion
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of the form u(r, θ, φ) =
∑Nr−1

i=0

∑
l≤L,|m|≤l ũilmTi(r)Ylm(θ, φ), the radial power would be

Pi =
(

1
Nθφ

∑
l≤L,|m|≤l |ũilm|2

)1/2

, where Nθφ = (L+ 1)2 represents the number of angular

coefficients2.

For the expected spectral convergence, Pi should decay exponentially as a function

of i [29, 145], i.e. log10 Pi when plotted vs. i should be a straight line. The slope f ′

of this line represents the decrease in the magnitude of the spectral coefficients when

going from mode i to mode i + 1. We estimate f ′ using Eq. (53) of Szilágyi [173].The

current truncation error of the spectral expansion is approximated as the highest retained

coefficient [29].

Given the current estimate of the error as ε and the estimate of the convergence rate

as f ′, we can reach a target accuracy ε∗ by adding

∆N = −ε− ε
∗

f ′
(2.4)

modes to the spectral expansion (recall f ′ < 0 and a higher accuracy means a lower ε).The

answer is rounded up so that ∆N > 1 if the current accuracy is worse than the target

accuracy, and we set ∆N = 0 if ε < ε∗, i.e. the resolution is not allowed to decrease.

For the configuration q3 from Table 2.1 the resolution was allowed to decrease without

noticeable impact on the convergence behaviour, cf. Figure 2.7.

The outer spherical shell needs comparatively small angular resolution ∼ 10, and

sometimes AMR yields the same resolution at neighbouring EDT . Because the ADM-

quantities are exclusively evaluated in the outer spherical shell (cf. Sec. 2.3.4 below),

this would result in apparent non-convergence of ADM linear and angular momentum.

Therefore, we increase the angular resolution of the outer sphere by one extra grid-point

in the θ direction and the corresponding two extra grid-points in the φ direction, whenever

AMR triggers an adjustment to the domain decomposition.

2.3.3 Iterative determination of free parameters

When constructing initial data, we wish to achieve desired masses M∗
A, M∗

B and desired

black hole spin vectors χ∗A and χ∗B. The free data, however, is instead given by the radii

and angular frequencies of the apparent horizons rA,B and ΩH
A,B, which we write as

u = (rA, rB,Ω
H
A ,Ω

H
B ). (2.5)

2For spherical harmonic basis-functions, the top two modes are filtered [145] and are therefore not
included in the data Pi.
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Therefore, one needs to determine values of the free parameters that result in the desired

physical parameters. Thus we must solve the system of equations

F = (MA −M∗
A,MB −M∗

B,χA − χ∗A,χB − χ∗B) = 0. (2.6)

The standard approach to the problem would be to use Newton’s method; however,

evaluating the Jacobian Jn is too expensive numerically as every evaluation of the function

F requires an elliptic solve. We instead use the following approach: make an initial guess

u0 based on the Kerr expressions for both black holes,

MA,B = rA,B/(1 +
√

1− 4r2
A,BΩ2

A,B), (2.7)

χA,B = −2rA,BΩH
A,B, (2.8)

and perform an elliptic solve for F0. We then construct an analytic Jacobian J0 by

using Eqs. (2.7,2.8) to evaluate the partial derivatives, and update the initial guess by

u1 = u0 − J−1
0 F0. After this we update the Jacobian using Broyden’s method [152]:

Jk = Jk−1 +
1

‖∆uk‖
F(uk)∆uTk , (2.9)

where ∆uk = uk − uk−1. This corresponds to the “secant” approximation for a function

of one variable. Finally we set

uk+1 = uk − J−1
k Fk. (2.10)

The major advantage of this approach lies in the use of numerical information in

the update of the Jacobian. This is important in the regime where the simple analytic

Jacobian becomes inadequate. Broyden’s method is applied to the intrinsic physical

properties of each black hole, i.e. the eight parameters listed in (2.5). We also control

more general properties of the binary, such as the total linear momentum and the position

of its centre of mass. As discussed in Sec. 2.3.5 this is done with explicit updating formulae

that are applied simultaneously at every step of Broyden’s method.

We are now faced with two intertwined iterations: AMR to tune grid-sizes to a

desired truncation error; and root-finding to adjust free parameters to achieve the desired

physical masses, spins, etc. When the physical parameters are still far away from the

desired values, very stringent AMR resolution would waste computing time, so we aim

to tighten the AMR resolution while simultaneously decreasing root-finding errors. We

do so by using an overall truncation error target EDT for AMR. We start with a large
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value for EDT , corresponding to a small grid-size. As root-finding residuals decrease, we

will decrease EDT . We proceed as follows: At iteration k = 0, 1, 2, . . ., we compute two

measures of progress in root finding: First, the residual Rk which quantifies how close

the physical parameters are to their desired values. Rk is simply the rms error in the

physical parameters:

Rk =

√
1

5

(
(∆MA)2 + (∆MB)2

M2
+ ∆χ2

A + ∆χ2
B +

P 2
ADM

M2

)
. (2.11)

Second, the improvement Ik that indicates how quickly root-finding converges, defined

as

Ik = max
Qi

(
Qi
k−3Q

i
k−2

Qi
k−1Q

i
k

)1/2

, k ≥ 3, (2.12)

where Qi = {∆MA,∆MB, ‖∆χA‖, ‖∆χB‖, ‖P ADM‖}.
We monitor 2 conditions:

1. Ik ≤ εI ,

2. Rk ≤ εREDT ,

where EDT is the desired truncation error, and εR and εI are tunable parameters. The

first condition assures that the resolution is increased if the root-finding convergence

becomes “flat” (e.g., due to the inability to measure the masses accurately enough at the

current resolution). The second condition ensures AMR resolution is sufficiently high

to ensure the physical parameters can be computed more accurately than the current

Rk, with εR being a safety factor. If either condition is satisfied and we have already

reached our termination truncation error then the initial data construction is completed.

Otherwise, we divide EDT by a factor of 10 and continue with the next itertion. For all

cases we have encountered, the choices εR = 102 and εI = 1.5 have proven to be robust.

2.3.4 Calculation of asymptotic quantities

Accurate knowledge of the total energy, linear momentum and angular momentum of the

constructed initial data sets aid their characterization. Even more important, accurate

control of the total linear momentum is essential to avoid a drift of the center of mass of

the binary during long evolutions, cf. Fig. 2.6.

We define the linear and angular momenta on a slice Σ intersecting spatial infinity on

the surface S∞ using the Arnowitt-Deser-Misner (ADM) prescription. Our initial data
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satisfy the asymptotic gauge conditions [186]

∂γ̃ij
∂xj

= O(r−3), (2.13)

γijKij = O(r−3), (2.14)

needed to remove ambiguities in the definition of the ADM angular momentum, as well

as the boundary condition gµν = ηµν on S∞. The old code [145, 149] directly evaluated

the resulting surface integrals at infinity [12, 186],

P i
ADM =

1

8π

∮
S∞

(Kij −Kγij) dSj, (2.15)

JADM
i =

1

8π

∮
S∞

εijkx
j(Kkl −Kγkl) dSl, (2.16)

using extrapolation in powers of 1/r to infinite radius [149]. PADM is then found to be

a combination of 1/r2 terms of Kij, and JADM a combination of 1/r3 terms. The old

technique, therefore, is very sensitive to small errors in Kij in the outermost sphere of

our computational domain (the outer boundary is typically located at rout ∼ 1010M) and

particularly to the presence of constraint violating modes in that sphere. Typically, this

leads to large errors in PADM at low resolution, and large errors in JADM even at our

highest resolution.

Higher accuracy can be obtained by assuming that the constraints are satisfied on

our computational domain, and utilizing Gauss’ law to recast the surface integrals on S∞

as the sum of a surface integral on a sphere S0 located at a smaller radius and a volume

integral. Utilizing Ψ(S∞) = 1, we write

P i
ADM =

1

8π

∮
S0

Ψ10(Kij −Kγij) dSj +
1

8π

∫
V0

∂

∂xj
[
Ψ10(Kij −Kγij)

]
dV. (2.17)

Here the normal dSj to S0 points into the interior of V0 (e.g. along +r̂ if it is a coordinate

sphere) and the factor Ψ10 was inserted to eliminate terms with spatial derivatives of Ψ

from Eq. (2.21). Using the momentum constraint in the absence of sources,

∇j(K
ij − γijK) =

∂(Kij −Kγij)
∂xj

+ Γijk(K
jk − γjkK) + Γjjk(K

ik − γikK) = 0, (2.18)

the volume integral can be simplified to

P i
ADM =

1

8π

∮
S0

P ij dSj −
1

8π

∫
V0

Gi dV. (2.19)
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Here,

P ij = Ψ10(Kij −Kγij), (2.20)

Gi = Γ̃ijkP
jk + Γ̃jjkP

ik − 2γ̃jkP
jkγ̃il∂l(ln Ψ), (2.21)

where Γ̃ijk are the connections derived from the conformal metric γ̃ij. Note that for

conformal flatness and maximal slicing, Gi = 0 and the volume integral disappears

(see [76]).

In practice, for conformally curved initial data, The outer spherical shell extends to

outer radius ∼ 1010M . Therefore, in the numerical evaluation of the volume integral in

Eq. (2.19), the volume element associated with the outermost grid-point becomes very

large and introduces numerical noise. To avoid this, we roll off the integrand Gi beyond

a certain radius Rc, i.e. we replace Gi by G̃i given by

G̃i =

{
Gi, r ≤ Rc,
R2
c

r2
Gi, r > Rc.

(2.22)

We choose Rc = 1000 max(wA, wB), where wA,B are the widths of the Gaussians that

enforce exponential falloff to conformal flatness (cf. Eqs. 45 and 46 of Lovelace et al [118]).

The ADM angular momentum is also rewritten using Gauss’ law as

JzADM =
1

8π

∮
S0

(xP yj − yP xj) dSj −
1

8π

∫
V0

(xGy − yGx) dV, (2.23)

with cyclical permutations of (x, y, z) yielding the other components. For maximal slicing

and conformal flatness in V0, Eq. (2.23) simplifies to

JzADM =
1

8π

∮
S0

Ψ10(xKyj − yKxj) dSj. (2.24)

Because Eq. (2.23) relies on the cancellation of large volume terms, it can be sensitive

to errors in Kij . Accordingly, we use Eq. (2.24) using a surface S0 at sufficiently large

radius such that in V0 the metric is conformally flat and K = 0.

To illustrate the importance of the transformations applied to the ADM integrals, we

consider the convergence test for configuration q50. We evaluate PADM using Eq. (2.15)

and Eq. (2.19), and we evaluate JADM using Eq. (2.16) and Eq. (2.23). Figure 2.2 shows

the results.

The calculation of PADM is improved by about one order of magnitude when utilizing

Gauss’ law, whereas JADM improves by several orders of magnitude. We point out that,
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Figure 2.2: Accuracy of the calculation of PADM and JADM for two different methods
of evaluation. We evaluate PADM and JADM when truncation error EDT = 10−n−3 is
reached, and plot differences to the next lower resolution n− 1. Data shown for case q50
in Table 2.1.

in order to achieve any convergence for the old JADM calculation, we had to manually

increase the radial resolution in the outer sphere by 1 whenever the domain decomposition

is adjusted.
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We also compute a new diagnostic, the centre-of-mass CCoM of the initial data sets

using the formalism developed in Ref. [20]. In conformal flatness, the expressions from [20]

reduce to

CCoM =
3

8π EADM

lim
R→∞

∮
Ψ4 n dA, (2.25)

where n is the outward-pointing unit normal, n = r/r. Equation (2.25) is numerically

evaluated by expanding the conformal factor Ψ in a power-series in 1/r. We read off the

(angle-dependent) coefficient of the 1/r2 term, and expand this coefficient in spherical

harmonics. Each individual spherical harmonic term can be integrated against n analyt-

ically, so that the integral (2.25) collapses to a linear combination of spherical-harmonic

coefficients.

2.3.5 Control of linear momentum and centre of mass

The quasi-equilibrium conformal thin-sandwich formalism to construct binary black hole

initial data was developed in a series of papers [57, 49, 148, 118, 38]. In this formalism, one

chooses two excised regions (usually taken to be coordinate spheres) with centres cA,B,

and solves the extended conformal thin sandwich equations [188, 150] in the exterior.

Boundary conditions on the excised regions ensure that they are apparent horizons, and

control the spin of each black hole. The locations and the sizes of the excised regions

correlate with the position and masses of the two black holes. Orbital rotation is induced

by the requirement that certain time-derivatives vanish in a frame rotating with orbital

velocity Ω0 about the origin. One finally incorporates a radial expansion factor ȧ0, which

allows fine control of the orbital eccentricity [148, 33, 43, 38]. By a suitable choice of

the conformal quantities, the quasi-equilibrium approach can generate initial data with

black hole spins of order 0.9998 [118].

One shortcoming of the formalism presented in [38] lies in a lack of control of the

center of mass of the binary, and only incomplete control of the ADM linear momentum

PADM. The past implementations use the location of the black holes to partially control

PADM. Consider a small displacement δc applied to the centres of both excision regions.

Through the orbital rotation Ω0 about the origin, the displacement δc induces a change in

velocity of the black holes of Ω0 × δc, with a corresponding change in PADM. Therefore,

δc could be used to cancel the components of PADM orthogonal to Ω0; however, the

cross-product in Ω0 × δc prevented any correction parallel to Ω0. For head-on collisions

with Ω0 = 0, no control of PADM is possible at all. For the non-precessing simulations

presented in [38], the component of PADM parallel to Ω0 vanishes by symmetry, and no

problems arose. However, for generic precessing binaries, there will be a non-zero linear
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momentum orthogonal to the orbital plane, which results in a drift of the center of mass

for very long simulations (see [138] for an extreme example).

Here, we propose a different means to control the full PADM, while simultaneously

allowing us to control the center of mass as well. We fix the relative separation of the

centres of the excision spheres,

cA − cB = D, (2.26)

where the separation vector D is user-specified. We use the choice of cA to control the

center-of-mass CCoM of the binary. Once a first initial data set is computed (with, in

general, CCoM 6= 0), we can update

cA,k+1 = cA,k −CCoM,k −
MA,k∆MB,k −MB,k∆MA,k

(MA,k +MB,k)2
D. (2.27)

With the black-hole centres now used to control the centre of mass, we need a different

means to control PADM. We add in the outer boundary condition on the shift (Eq. (38c)

of [118]) a constant velocity v0:

βi = (Ω0 × r)i + ȧ0r
i + vi0 on B. (2.28)

Here B represents the outer boundary, a sphere with radius R = 1010M . The velocity

v0 will effect the overall motion of the binary, and will be reflected in a corresponding

change in PADM by EADMv0, where EADM is the ADM-energy of the binary. During

iterative root-finding of the free parameters, we adjust v0 to achieve PADM = 03.

To motivate the updating formula for v0, consider a perturbation of v0 by δv0, and

a perturbation of cA by δc. If we allow the masses to vary, then a Newtonian-inspired

formula is

v0,k+1 = v0,k −
PADM,k

Mk

+ (∆MA,k + ∆MB,k)(vk + Ω× cA,k)−Ω× δcA,k −
∆MB,k

Mk

Ω×D.

(2.29)

To summarize, relative to earlier initial-data sets, we modify the outer boundary

condition for the shift by the term v0, cf. Eq. (2.28), and use updating formulae (2.27)

and (2.29) to adjust cA and v0. Section 2.3.4 describes how we compute PADM and CCoM.

We demonstrate the efficiency of the updating formulas Eqs. (2.27,2.29) in Fig. 2.3

that shows the magnitude of CCoM and PADM as a function of root-finding iteration for a

q = 10 precessing binary (case q10 in Table 2.1). The convergence is evidently very fast,

3Using the obtained vector βi as the shift-vector in an evolution results in a translating outer bound-
ary; this effect is eliminated by evolving with a shift vector of βi − vi0.
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precessing binary (see case q10 in Table 2.1) . Shown are the magnitude of CCoM (black
solid lines) and PADM (red dashed lines) as a function of root-finding iteration k.

Table 2.1: Physical parameters of the initial data sets used for testing the new initial
data code.

Name q χ1 χ2 D0/M MΩ0

Spin0.9999 1 (0, 0, 0.9999) (0, 0, 0.9999) 14.17 0.01682
q3 3 (0, 0.49, -0.755) (0, 0, 0) 15.48 0.01515
q10 10 (0.815, -0.203, 0.525) (-0.087, 0.619, 0.647) 15.09 0.01547
q50 50 (-0.045, 0.646, -0.695) (0, 0, 0) 16 0.01428

with the final values of ∼ 10−6 and ∼ 10−8 respectively. This means that even for an

inspiral lasting 106 M, the drift of the centre of mass due to residual linear momentum

in initial data will be only ∼ 0.01M .

2.4 Numerical results

2.4.1 Initial data construction

We test the improvements described in the previous sections on several cases of interest,

whose parameters are summarized in Table 2.1. The parameters were chosen to demon-

strate the range of initial data sets that can be constructed with the new code and to

provide some overlap with regions of parameter space which could be achieved previously.
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We first illustrate the performance of the AMR outlined in Sec. 2.3.2 with the case

q3, a configuration we will compare with the old BBH solver below. To demonstrate

AMR in isolation, we fix initial data parameters, and start with target truncation error

EDT = 10−3. We solve the constraint equations, estimate spectral truncation errors and

update numerical resolution via Eq. (2.4). Whenever we reach the desired truncation

error, we tighten the AMR error tolerances by dividing EDT by 10, until a truncation

error of 10−9 is reached. Figure 2.4 illustrates the behaviour of the AMR algorithm

during this test. The top panel shows the total number of collocation points in the

domain, which grows with each AMR iteration. The bottom panel demonstrates that

the largest truncation error across all subdomains, max ε, closely tracks the truncation

error target EDT .

Figure 2.5 shows a convergence test of the AMR sequence shown in Fig. 2.4. Plotted

are various quantities as a function of the effective number of grid-points N1/3. The top

panel demonstrates the exponential decrease in the L2 norms of the Hamiltonian and

momentum constraints, which implies that this data set is constraint-satisfying. The
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constraints are given explicitly by:

CHam =
1

2

(
R +K2 −KabK

ab
)
, (2.30)

CMom = DbK
b
a −DaK, (2.31)

where D is the covariant derivative associated with the spatial metric. The L2 norm is

simply the normalized pointwise norm over all collocation points:

‖s‖L2 =

√√√√ 1

N

N∑
i

s2
i . (2.32)
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The convergence of the masses and spins is shown in the middle panel. Here we plot

the norms of the differences between the quantity at a given iteration and its value at

the highest resolution:

∆Q = |Qi −Qmax|. (2.33)

Once again, the convergence is essentially exponential. The bottom panel of Fig. 2.5,

finally examines the convergence of the ADM quantities and the center-of-mass compu-

tation. Though convergence is not as clean as for the constraints, the bottom panel of

Figure 2.5 shows that all the asymptotic quantities can be determined to better than

10−6.

To conclude our detailed examination of the initial data set q3, we contrast the new

code described here with the old code [145, 38]. One of the most important upgrades

lies in the control of P ADM. Figure 2.6 shows the components of P ADM as a function

of root-finding iteration k for both the new and the old code.4 Both codes successfully

drive P x
ADM and P y

ADM to zero as expected. But only the new code also drives P z
ADM to

zero, whereas the old code yields P z
ADM ' 0.00138 . As we shall see in the next section,

this produces non-trivial differences in the evolution.

4Both codes compute PADM in the same way (via Eq. (2.19)), but differ in the way it is controlled.
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Turning to the more challenging cases listed in Table 2.1, we have performed sim-

ilar tests to case q3, with the free parameters fixed to their values at the end of root

finding and only the resolution changing from iteration to iteration. As an example,

Figure 2.7 shows a subset of the convergence data. This figure demonstrates that the

exponential convergence shown previously for case q3 extends to all cases. In particular,

the constraints are exponentially convergent. All four cases complete with a maximal

resolution of less than 2.5× 105 points, an improvement of a factor of 2− 3 over the old

code.5 Owing to the more challenging configurations, however, the constraints are 1-2

orders of magnitude larger. The physical parameters are also exponentially convergent

with resolution, as illustrated in the lower panel of Fig. 2.7. We use ∆MB since it is

frequently harder in a high mass ratio to resolve the smaller black hole, so this provides

a conservative convergence test.

5We note that the case q50 could not be constructed with the old code.
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2.4.2 Root-finding

It is also important to examine the performance of the updated root-finding procedure

based on Broyden’s method. Figure 2.8 shows the root-finding results for cases q3,

q10 and Spin0.9999 done with the old and new versions of the code. Note that during

root-finding the resolution of the subdomains is also allowed to change to achieve the

desired truncation error. For low mass ratio both codes show similar rates of convergence

and final errors. The situation changes for case q10, where the old code has trouble

achieving low errors in masses and spins, while the new root-finding procedure described

in Sec. 2.3.3 results in errors of order 10−6. Finally, for case Spin0.9999, the results are

drastically different: the old code has errors in the masses of order several ×10−3 and

spins of order 10−4. Since we are attempting to construct a binary with dimensionless

spins of 0.9999 it becomes clear that the old code is inadequate for this purpose. On the

other hand, the new root-finding procedure successfully reduces the errors in physical

quantities to the level of 10−6. Thus, the new algorithm allows us to achieve the desired

values of the physical quantities which is especially important as we push to higher spin

magnitudes.
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On average, the new code is about 25-50% as fast as the old one. For example, for

the case q10, the old code took 12.4 hours to complete, whereas the new took 6 hours on

12 cores of a Westmere node of the Briarée compute cluster. Therefore, the new code is

indeed more efficient than the old while achieving the same or better accuracy.

2.4.3 Exploratory evolution

We have emphasized above the importance of controlling P ADM. We now evolve initial

data for case q3 constructed with the old and the new initial-data code, and compare

the two evolutions in detail.

We being by considering the convergence of constraints and quasi-local quantities

during the evolution. The top panel of Figure 2.9 shows the L2 norm of the normalized

constraint violations during the evolution (see Eq.(71) of [108]). It is obvious that both
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codes show similar convergence properties, as expected. Further, the initial spike of

constraint violations due to junk radiation is virtually indistinguishable, which indicates

that the new method of constructing initial data does not introduce additional constraint-

violating modes. The middle and bottom panels of Fig. 2.9 show the evolution of the

Christodoulou mass and the spin magnitude of the large black hole. The differences

between the evolutions of the old and new initial data sets are consistent with truncation

error. Thus we conclude that the quasi-local quantities are the same in both data sets.

Turning attention to the trajectories of the black holes, we find a stark difference in

the evolutions. Figure 2.10 shows the motion of the large black hole in inertial coordinates

for both runs. The uncontrolled residual linear momentum P z
ADM in the old initial data

causes the centre of mass of the binary to drift linearly during the evolution, as shown in

the right panel of Figure 2.10. Such a drift may have multiple undesirable consequences.

Most immediately, it causes the gravitational wave extraction spheres to be off-center

from the center-of-mass of the binary, which will cause mixing of the spherical harmonic

modes of the gravitational radiation, an effect discussed in more detail below. Moreover,

SpEC’s constraint preserving outer boundary conditions [156, 155, 37] are designed to

work best for low-order spherical harmonic modes of the outgoing radiation. If the

binary is offset relative to the outer boundary (for instance due to a drift of the center of

mass), higher order spherical harmonic components will become more important, possibly
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leading to an additional runaway acceleration of the center of mass [174].

To examine the dynamics of the binary, we study the orbital frequency vector

Ω ≡ r × ṙ/|r|2. The left panel of Figure 2.11 shows the projection of Ω onto the unit

sphere, making it apparent that the precession and nutation dynamics are very similar

until very close to merger. The right panel shows a plot of Ω ≡ |Ω| from which several

features are apparent. The evolution of Ω is qualitatively the same in both cases, con-

sistent with expectation that removing a coordinate motion of the centre of mass does

not change the binary dynamics. Likewise the initial pulse of junk radiation (inset A)

appears quite similar. However, small oscillations in Ω are more pronounced in the new

code (inset C). This is reflected in the measured values of the eccentricities: e = 10−4 for

the old, e = 2.5×10−4 for the new code. The difference in eccentricity arises because the

new term vio in the outer boundary condition Eq. (2.28) does slightly modify the content

of the initial data. In this particular case, |v0| ∼ 10−3, so that it is not unreasonable to

expect the orbital eccentricity to change by a comparable magnitude. The initial orbital

frequency Ω0, initial radial velocity ȧ0, and initial separation D0 listed in Table 2.1 were

tuned to result in essentially vanishing eccentricity in the old initial data [43]. The new

initial data constructed from the identical initial data parameters must therefore have a

slightly larger eccentricity. If we had tuned to vanishing eccentricity with the new initial

data, then the old initial data would exhibit the larger eccentricity.

The evolutions of the old and new initial data also result in a different time to merger,

cf. panel B of Fig. 2.11. This difference could be caused either by the slightly different

inspiral dynamics like eccentricity, or could simply be due to truncation error of our low

resolution evolution.

Finally, we examine the waveforms for the two runs. Most strikingly, the movement

of the coordinate centre of mass shown in Figure 2.10 is also reflected in the spherical-

harmonic decomposition of the waveform. This is most easily seen in the sub-dominant

modes. Figure 2.12 shows the (`,m) = (3, 1) modes of the spin-weighted spherical-

harmonic (SWSH) decompositions of the waveforms hold measured from the old initial

data and hnew measured from the new initial data. Since gravitational waves in SpEC

are extracted on a coordinate sphere centered on the origin, a drifting source mixes the

modes of the SWSH decomposition. As seen in the lower panel of the figure, this mixing

introduces very large effects. To verify that these effects are primarily due to the motion

of the center of mass, we have also transformed hnew to a frame in which the center of

mass is moving as in the original initial data. The initial position of hnew is transformed

to agree with the center of mass of the old initial data as measured by Eq. (2.25), and its

velocity is transformed to agree with P ADM/MADM of the old initial data as measured by
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Note the excellent agreement in precession dynamics. Right: The magnitude Ω(t) of the
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Eq. (2.19). This transformation is applied entirely at future null infinity by the method

described in [32], and is a special case of a BMS transformation [158, 132]. It will thus be

seen in any waveforms, whether extrapolated [34] (as seen here) or extracted by Cauchy

characteristic methods [23, 16, 179, 81]. As shown in the lower panel of Fig. 2.12, the

transformation reproduces the features seen in hold very well.

Mode decompositions like this one are used very frequently for analyzing numerical

models, and for constructing analytical models. If they are unmodeled and uncontrolled,

effects like those seen in the lower panel will simply appear to be errors in the waveform.

This could negatively impact uncertainty estimates of numerical simulations, error esti-

mates for analytical waveforms, or calibration of waveform models to numerical results.

These effects will also be present in any calculation that uses the waveforms to com-

pute physical quantities such as the flux of linear and angular momentum. By removing

extraneous displacements and boosts, this new initial data code simplifies such analyses.6

6The drift described here is a linear motion due to residual linear momentum in initial data. Con-
trolling this drift will not help for other types of motion present in very long simulations; see [174].
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Chapter 2. Improvements to the construction of binary black hole initial data39

2.5 Discussion

Numerical evolution of binary black hole spacetimes requires accurate initial data. In

this work we have improved the initial data techniques in SpEC to allow access to a much

wider parameter space of generically precessing high mass ratio, high-spin binaries. A

more flexible domain decomposition allows for stable solution for high-mass ratio and

high spin binaries. An enhanced root-finding algorithm is used to achieve desired physi-

cal parameters for the binary. This becomes important when a naive analytic Jacobian

is not appropriate, which is precisely the case for high mass ratios and spins, see Fig-

ure 2.8. Adaptive mesh refinement drastically improves efficiency and robustness of the

code, displaying exponential convergence of constraints, c.f. Figure 2.7. Finally, a new

method to control the linear momentum is used to eliminate a linear drift of the cen-

tre of mass during evolution. This in turn nullifies spurious gravitational mode mixing,

which is of paramount importance for construction of hybrid waveforms or calibration of

phenomenological models as demonstrated by Figure 2.12.

An interesting application of the improved initial data code is the construction of

initial data for hyperbolic encounters. Such systems have been studied in the past

(e.g. [63, 169, 90]) and provide a laboratory for exploring strong field physics in a different

regime than the binary inspiral. Using the new code, we have successfully constructed

initial data for hyperbolic encounters for a selection of mass ratios and spins, which was

not possible before in SpEC. As a simple example, we evolve two systems of two equal

mass black holes that are initially separated by 60M and have a velocity of ≈ 0.14c.

Both systems have the same impact parameter bNR = 15M , and differ only in the black

hole spins: In one case the black holes are non-spinning, in the other both holes have

dimensionless spins χ = 0.5 initially in the x direction. Figure 2.13 shows the trajectories

of the two black holes. In the presence of spin, the spin-orbit interactions cause the plane

of scattering to change and also change the deflection angle of the hyperbolic encounter.

Exploration of other parameters is left to future investigations.

Another application is the construction of initial data for binaries with very small

initial separation, corresponding to only a few orbits before merger. This is useful if

one is interested in the properties of the merger remnant, e.g. for calibrating analytical

waveform models but evolving a long inspiral is too computationally expensive. As an

example, we construct initial data for a system with q = 21, χ1 = 0.66, χ2 = 0.41

(oriented in random directions) and initial orbital frequency of MΩ = 0.032, and initial

coordinate separation D0 = 8.82 M.
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Figure 2.13: Hyperbolic encounter of two equal mass black holes shown through the
coordinate trajectories of the black holes. Left: non-spinning black holes. Right: black
holes with spin χ1 = χ2 = (0.5, 0.0, 0.0). The black holes start on the x-axis in the x− y
plane (shown in grey). In the spinning case the motion is not confined to this plane.

We note that initial data for binaries near ISCO at high mass-ratio is challenging and

further work remains to be done to make it robust for q > 10 regime.
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Chapter 3

Simulating precessing binaries in

SpEC

3.1 Chapter overview1

Binary black hole simulations with black hole excision using spectral methods require a

coordinate transformation into a co-rotating coordinate system where the black holes are

essentially at rest. In this chapter we present and discuss two coordinate transformations

that are applicable to precessing binary systems, one based on Euler angles, the other

on quaternions. Both approaches are found to work well for binaries with moderate pre-

cession, i.e. for cases where the orientation of the orbital plane changes by � 90◦. For

strong precession, performance of the Euler-angle parameterization deteriorates, eventu-

ally failing for a 90◦ change in orientation because of singularities in the parameterization

(“gimbal lock”). In contrast, the quaternion representation is invariant under an over-

all rotation, and handles any orientation of the orbital plane as well as the Euler-angle

technique handles non-precessing binaries.

3.2 Introduction

Gravitational waves offer an exciting new observational window into the universe. With

the second generation of gravitational wave detectors such as Advanced LIGO and Ad-

vanced Virgo commencing observations in 2015 [2], it is extremely important to develop a

detailed picture of the gravitational physics of the most likely sources. A very promising

1The material herein is based on Serguei Ossokine, Lawrence E. Kidder, and Harald P. Pfeiffer.
Precession-tracking coordinates for simulations of compact-object-binaries. Phys. Rev. D, 88:084031,
2013.

42
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source of gravitational waves are inspiraling and merging binary black holes [4]. Because

of the weakness of the gravitational wave signal, matched filtering is necessary to pick

out the waveform from the noise [71, 72]. Constructing such templates, in turn, re-

quires direct numerical integration of Einstein’s equations for the late inspiral, merger

and ringdown phase of the coalescing compact object binary; see, e.g. [134]. Since 2005,

starting with the seminal works of Pretorius [153], Campanelli et al [48] and Baker et al

[17], many groups have successfully simulated binary black hole systems using a variety

of different techniques. For recent overviews of the state of the field, see [94, 147].

Compact object inspirals fall into two categories: non-precessing and precessing.

While the non-precessing aligned-spin systems arguably represent an important subspace

of all binary black hole systems, the more general case features arbitrary spin orienta-

tions. In this non-symmetric situation, the interaction of the orbital angular momentum

and the black holes’ spins leads to precession of the orbital plane, changing its orientation

by as much as 180 degrees.

Precession modulates the gravitational waveform. Therefore, it is crucial to explore

these strongly precessing systems. Furthermore, precessing systems allow the study of

gravitational dynamics in an underexplored regime, providing a new opportunity for

comparing numerical relativity to various analytic approximations like Post-Newtonian

(see e.g. [25, 24]) and effective-one-body theory (see e.g. [39, 61, 64, 62]). The numerical

simulations can be used both to test the accuracy of the analytic treatments and to

calibrate them, in some cases, thus improving their accuracy [67, 44, 176]. Furthermore,

one can attempt to reproduce numerically predictions from analytic computations such

as transitional precession [11], which is known from PN theory but has not yet been

observed in numerical simulations.

Numerical simulations of precessing binary black holes have already been undertaken;

for example [47, 46, 172, 171, 164, 189, 112, 114]. Given the vastness of parameter space

and the need for simulations lasting at least 10 orbits - possibly 100’s of orbits - to

optimally exploit gravitational wave detectors [134, 60, 159, 31, 135, 122], a lot of extra

work remains to be done.

The Spectral Einstein Code SpEC [1] allows efficient and accurate simulations of bi-

nary black holes; see e.g. [33, 121, 52, 38, 117, 119, 122, 129]. This code applies black hole

excision and uses time-dependent coordinate mappings to rotate and deform the compu-

tational grid such that the excision regions remain inside the black hole horizons at all

times. For non-precessing inspiralling binaries, these coordinate mappings are described

in detail in previous work [33, 38, 92].

The purpose of the present chapter is to develop coordinate mappings that are able
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to follow a precessing compact object binary through the inspiral, even for strongly

precessing systems. We present two different approaches. The first one is based on

Euler angles; it works well for moderate precession, but fails when the orientation of

the orbital plane changes by 90 degrees or more. The second approach is designed to

avoid the deficiencies of the Euler angle parameterization. By using quaternions, we

devise coordinate mappings that work for any change of orientation of the orbital plane

with a performance comparable to the earlier non-precessing techniques. The techniques

developed here have already been used in [74, 130]

This chapter is organized as follows. Section 3.3 describes the computational setup

of SpEC in more detail (Sec. 3.3.1), and develops the coordinate mappings based on

Euler angles (Sec. 3.3.2) and quaternions (Sec. 3.3.3). Section 3.4 presents a sequence

of numerical results obtained with both approaches, starting from Newtonian and Post-

Newtonian test-cases to simulations of binary black holes with numerical relativity (NR).

We summarize our results in Sec. 3.5.

3.3 Methods and Techniques

3.3.1 Dual frames and control systems

As described in Scheel et al. [163], SpEC utilizes a dual-frame approach to simulate com-

pact object binaries. Einstein’s equations are written down in an asymptotically non-

rotating coordinate-system xā = (t̄, xı̄), referred to as the “inertial frame”, and all tensors

are represented in the coordinate basis of this frame. In the inertial frame, tensor com-

ponents remain finite even at large separation. The computational grid is specified in

“grid coordinates” xa = (t, xi). The collocation points of the spectral expansion are at

constant grid coordinates, and numerical derivatives are computed with respect to these

coordinates. The two coordinate frames share the same time-coordinate

t̄ = t. (3.1)

The spatial coordinates of the two frames are related by a coordinate transformation

xı̄ = xı̄
(
xi;λµ(t)

)
, (3.2)

which depends on a set of parameters λµ(t) to be discussed in detail later. The coordinate

transformation Eq. (3.2) maps the grid-coordinates into the inertial frame such that

the excision surfaces (coordinate spheres in the grid-frame) are mapped to locations
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somewhat inside the apparent horizons of the black holes in the inertial frame.

In the original work [163], this coordinate transformation was taken as the composition

of a rotation about the z-axis and an overall scaling of the coordinates2,

xı̄ =


x̄

ȳ

z̄

 = a(t)


cosψ(t) − sinψ(t) 0

sinψ(t) cosψ(t) 0

0 0 1



x

y

z

 . (3.3)

In this simple case, the map λµ(t) = {a(t), ψ(t)} depends on two parameters: the

scale factor a(t) and the rotation angle ψ(t). The map parameters λµ(t) are chosen

dynamically during the simulation, such that the map tracks the actual motion of the

black holes. This can be accomplished by introducing a set of control-parameters Qµ,

such that

1. Qµ = 0 if the mapped excision spheres are at the desired location in inertial coor-

dinates.

2. Under small variations of the mapping parameters around their current values, the

control-errors satisfy
∂Qµ

∂λν

∣∣∣∣
λµ=λµ(t)

= −δµν (3.4)

While not strictly required, Eq. (3.4) allows one to write down uncoupled feedback control

equations for the λµ(t). In the special case of a linear, uncoupled system, this reduces to

Qµ = λµtarget − λµ.

For black holes orbiting in the xy-plane, Eq. (3.3) suffices to keep the excision bound-

aries inside the inspiraling black holes, resulting in successful simulations of inspiraling

BH–BH binaries in Ref. [148]. Subsequently, the map was refined to avoid a rapid inward

motion of the outer boundary [121], to adjust the shapes of the mapped excision bound-

aries to more closely conform to the distorted apparent horizons [175, 117, 119], and was

generalized to unequal mass binaries [38]. Hemberger et al [92] summarizes these maps,

and introduces further mappings that are needed during the merger phase of the black

hole binary.

The purpose of the present chapter is the development of coordinate mappings that

can handle precessing binaries. Because in general the center of mass will move (e.g due

to asymmetric GW emission), these coordinate mappings must also allow for a translation

2Note that in Ref. [163], the equations give the transformation from the inertial coordinates to the
grid coordinates, the rotation angle is φ instead of ψ, and the scale factor a is the inverse of the scale
factor in this chapter.
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of the binary. Rotation and translation couple to each other and must therefore be dealt

with simultaneously. The questions addressed in this work are therefore (1) determination

of a suitable coordinate mapping for precessing, translating binaries, (2) suitable choice

of mapping parameters λµ, and (3) derivation of control-parameters Qµ. Specifically, we

will discuss below two generalizations of Eq. (3.3), one based on Euler-angles and one

based on quaternions. We will show that the Euler-angle representation suffers from

singularities when the inclination of the orbital plane passes through π/2, and we will

demonstrate that the quaternion representation fixes these problems.

3.3.2 Euler angle representation

In the general case where the orbital plane precesses, we use a mapping that composes a

scaling a(t), a rotation R(t) and a translation ~T (t). The mapping is given by

~̄x = a(t)R(t) ~x+ ~T . (3.5)

A rotation matrix can be specified by Euler angles,

R =

cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ

 .

(3.6)

where φ is the roll angle around the x-axis, θ is the pitch angle around the y-axis, and

ψ is the yaw angle around the z axis and we have suppressed the explicit time-dependence.

For our application, the desired locations of the black holes lie parallel to the x-axis,

i.e. the black holes are at grid coordinates (cxA, c
y, cz) and (cxB, c

y, cz). It is straightfor-

ward to show that for these two points a rotation about the x-axis is degenerate with a

particular translation because only the location of the black holes is important. Therefore,

we can set φ(t) = 0 so that3

R =


cos θ cosψ − sinψ sin θ cosψ

cos θ sinψ cosψ sin θ sinψ

− sin θ 0 cos θ

 . (3.7)

Thus the mapping in Eq. (3.5) will have six parameters in this case, a scaling a(t), a

3Note that if the motion is confined to the x − y plane, the pitch will remain fixed at θ = 0 and we
recover the rotation matrix in Eq. (3.3).
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pitch angle (rotation about y-axis) θ(t), a yaw angle (rotation about z-axis) ψ(t), and a

translation (TX(t), T Y (t), TZ(t)).

The goal of the scaling-rotation-translation map is to keep the horizons of the two

black holes centered on the excision surfaces. As the binary evolves, the map parameters

need to be adjusted by the control system. To derive the control parameters Qµ, c.f.

Eq(3.4), one can consider perturbations of the mapping parameters around their current

values. Let λµ = {a, θ, ψ, ~T = (TX , T Y , TZ)} be the current imperfect mapping param-

eters at some time during the evolution. Furthermore, denote the desired parameters

λµ0 = λµ + δλµ = {a0, θ0, ψ0, T
X
0 , T

Y
0 , T

Z
0 }. Finally, let ~xA and ~xB denote the current

location of the center of black hole A and B, respectively4, and let ~cA and ~cB denote

the desired location of the black hole centers; i.e., the centers of the excision spheres.

For convenience we also define the vectors ~X = ~xA − ~xB and ~C = ~cA − ~cB. The target

mapping λµ0 is such that the points ~cA, ~cB are mapped onto the inertial frame position

of the black holes, ~̄cA = ~̄xA, ~̄cB = ~̄xB:

~̄xA,B = a0R(θ0, ψ0)~cA,B + ~T0. (3.8)

Rewriting this equation in terms of the current mapping and the grid location of each

black hole (i.e ~xA,B) yields

aR(θ, ψ)~xi + ~T = (a+ δa)R(θ + δθ, ψ + δψ)~ci + ~T + ~δT . (3.9)

where i = A, B.

Equation (3.9) represents six equations for the six unknowns δλµ. Solving this system

4The precise definition of “center” is not important; we shall use the coordinate point around which
the coordinate radius of the apparent horizon has vanishing l = 1 multipoles.



Chapter 3. Simulating precessing binaries in SpEC 48

of equations to leading order in the perturbations yields

δa = a

(
Xx

Cx
− 1

)
, (3.10a)

δθ =
−Xz

Cx
, (3.10b)

δψ =
1

cos θ

Xy

Xx
, (3.10c)

δTX =
a

Cx

(
δtX cos θ cosψ − δtY sinψ

+ δtZ sin θ cosψ
)
, (3.10d)

δT Y =
a

Cx

(
δtX cos θ sinψ + δtY cosψ

+ δtZ sin θ sinψ
)
, (3.10e)

δTZ =
a

Cx

(
−δtX sin θ + δtZ cos θ

)
, (3.10f)

where

δtX = cxAxB − cxBxA + cyXy + czXz,

(3.11a)

δtY = cxAyB − cxByA − cyXx

− czXy tan θ, (3.11b)

δtZ = cxAzB − cxBzA + cyXy tan θ

+ czXx, (3.11c)

Furthermore, we have assumed that the centers of the excision surfaces are aligned parallel

to the x-axis so that cyA = cyB = cy and czA = czB = cz.

Perhaps surprisingly, the δλµ given by Eq. (3.10a –3.10f) are the desired control

parameters Qµ. This can be seen as follows. For a perfect map, λµ = λµ0 , i.e. δλµ =

Qµ = 0. Moreover, by definition

∂Qµ

∂λν
=

∂

∂λν
(λµ0 − λµ) =

∂λµ0
∂λµ
− ∂λµ

∂λν
= −δµν . (3.12)

Thus δλµ defined by Eq. (3.10a –3.10f) satisfy the conditions for Qµ outlined in section

3.3.1.

The Euler angle prescription as described above is adequate for describing rotations

that are close to the x− y plane, and has been used for the SpEC simulations presented

in [175]. However, the Euler angle prescription carries with it an inherent coordinate

singularity that causes a breakdown of the control system for high inclination angles.
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Figure 3.1: Typical behaviour of the Euler angles and their derivatives for a nearly polar
orbit inclined at 85 degrees with respect to the x− y plane.
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Firstly, note that Eq. (3.10c) shows that δψ will diverge when θ = π
2
, which would lead

to the breakdown of a feedback control system. Further, since SpEC uses proportional-

derivative-control or proportional-integral-derivative-control [92], we must examine the

behaviour of the derivatives of the Euler angles, θ̇, ψ̇. Notice that we can relate the

angular velocity to the derivatives of the Euler angles simply by the relationship

(ω1, ω2, ω3)T = A (φ̇, θ̇, ψ̇)T , (3.13)

the superscript T denotes the transpose and A is the Euler angle rates matrix:

A =

cosψ cos θ − sinψ 0

sinψ cos θ cosψ 0

− sin θ 0 1

 . (3.14)

The black holes move on regular trajectories with a slowly varying orbital frequency ~ω

in inertial coordinates; therefore, the left-hand side of Eq. (3.13) is continuous. However,

| detA| = | cos(θ)|, so that for θ = π
2

the time-derivatives of the Euler angles will diverge

since, by Cramer’s rule, the inverse of A scales as 1/ detA.

There is another way to envision the divergence of the derivatives of the Euler angles.

Consider the unit vector in the direction connecting the centers of the two compact

objects in inertial coordinates, û =
~̄xB−~̄xA
|~̄xB−~̄xA| . Before, we considered ψ, θ as parameters in

a mapping. Let us now consider them as spherical polar coordinates that describe this

vector5 
ux

uy

uz

 =


cosψ cos θ

sinψ cos θ

sin θ

 . (3.15)

We can immediately derive the expressions for θ̇, ψ̇ as functions of u̇x, u̇y, u̇z:

θ̇ =
u̇z

cos θ
, (3.16)

ψ̇ =
1

cos θ

√
u̇2
x + u̇2

y − u̇2
z tan2 θ. (3.17)

From these equations it is obvious that the derivatives of θ and φ behave abnormally

when û moves across one of the poles at uniform velocity. In fact, θ̇ does not exist, and

5θ here means the angle to the xy plane rather then the angle to the z-axis. Therefore the following
equations differ slightly from standard spherical polar coordinates.
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its second derivative diverges (see the top panels of Fig. 3.1). Meanwhile, ψ̇ diverges:

letting δθ = π
2
− θ we can write, for δθ � 1:

ψ̇ ∝ ω

δθ
. (3.18)

This behaviour is demonstrated clearly in Figure 3.1, where the derivatives of both

Euler angles angles demonstrate sharp and nearly discontinuous features.

This is the fundamental reason why Euler angles are not a suitable parametrization

of rotations: there exist situations, which we would like to study, when their derivatives

grow extremely fast numerically.

3.3.3 Rotation–invariant Quaternion representation

The origin of the break-down of the Euler angle representation lies in its reliance of

a preferred coordinate system, which is implicit in the adoption of Euler angles. The

physics of compact object inspirals is invariant under rotations of the spatial coordinates.

Ideally, the numerical methods used to describe such a system should also be invariant,

and should work equally well independent of the orbital plane of the black holes.

The singularities in the Euler angle representation arise from a poor choice of rep-

resentation of the rotation group, which relied on preferred directions in space (namely

the coordinate axes). Therefore, a suitable representation must be independent of any

special directions. We employ quaternions to represent rotations and build up the overall

rotation from a sequence of infinitesimal rotations.

It should be noted that a similar construction can be done with a different paramtetriza-

tion of rotations. See the Appendix for an example using orthogonal infinitesimal rotation

matrices.

Quaternion algebra

Quaternions are an extension of the complex numbers, with three imaginary units i, j,

and k, obeying

i2 = j2 = k2 = ijk = −1, (3.19)

as well as certain further multiplication rules. A quaternion q has the form

q = q0 + q1i+ q2j + q3k, q0, . . . , q3 ∈ R. (3.20)

This is conveniently written as q = (q0, ~q), where ~q = (q1, q2, q3). Addition and
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scalar multiplication are defined in analogy with complex numbers. With the structure

introduced so far, the set of quaternions

H = {q0 + q1i+ q2j + q3k|qi ∈ R} (3.21)

is a 4-dimensional vector space over the real numbers. Multiplication is defined by

q p = (p0q0 − ~p · ~q, p0~q + q0~p+ ~p× ~q), (3.22)

where ~q · ~q and ~q × ~p are the standard Euclidean dot and cross products respectively.

Complex conjugation is given by

q∗ = (q0,−~q). (3.23)

It follows that the multiplicative inverse is given by

q−1 =
q∗

|q| , (3.24)

where the norm |q| satisfies

|q|2 = q q∗ = q2
0 + ~q 2. (3.25)

More details can be found for example in [102].

Restricting our attention now to the set of all unit quaternions

Sp(1) = {q ∈ H, |q| = 1}, it is easy to show that Sp(1) is isomorphic to SU(2) where

SU(2) is the group of all 2 × 2 unitary matrices with unit determinant [10]. SU(2)

is a double cover of the rotation group SO(3), which means that unit quaternions do

represent rotations.

Unit quaternions are related to rotations in the following manner. Let n̂ be a unit-

vector, and define

q = (cos
θ

2
, n̂ sin

θ

2
) (3.26)

for some angle θ. The quaternion q rotates a vector ~v into the vector ~v′, around the axis

n̂ by angle θ in the right-handed sense via

v′ = q v q∗. (3.27)

In this equation, 3-vectors are to be promoted to quaternions by the rule v = (0, ~v),

v′ = (0, ~v ′),and |q| = 1 implies that v′ has indeed a vanishing real part. Equation (3.27)
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is equivalent to ~v ′ = Rq~v, with rotation matrix

Rq=


q2

0 +2q2
1− ~q 2 2(q1q2−q0q3) 2(q0q2+q1q3)

2(q1q2+q0q3) q2
0 +2q2

2− ~q 2 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q0q1+q2q3) q2
0 +2q2

3− ~q 2

 . (3.28)

We can now rewrite Eq. (3.5) in quaternion language,

x̄ = a q x q∗ + T . (3.29)

Here, ~x, ~̄x, ~T have been promoted to quaternions; e.g., T = (0, ~T ).

Our next task is to derive equations that determine the time evolution of q as well

as the control parameters Qµ.

Quaternion kinematics

In this section we derive the differential equation obeyed by the rotation quaternion q.

Consider a time-dependent unit-quaternion q(t) : R → Sp(1). The derivative is defined

by

q̇ = lim
h→0

q(t+ h)− q(t)

h
. (3.30)

We write the rotation q(t + h) at time t + h, as a product of q(t) and a quaternion u

representing an infinitesimal rotation,

q(t+ h) = uq(t). (3.31)

The quaternion u is easily obtained by expanding the right hand side of Eq. (3.26) to

first order in θ using cos θ
2
≈ 1, sin θ

2
≈ θ

2
:

u = (1, n̂
θ

2
) = 1 + δq/2, (3.32)

with δq = (0, n̂θ). If the rotational velocity is ~ω in inertial coordinates, then n̂ = ω̂ and

δθ = ω h, so that δq = ω h. Thus we can write q(t+ h) = (I + δq/2)q(t). Substituting,

q̇ = lim
h→0

(I + δq/2)q(t)− q(t)

h
=

1

2
ω q. (3.33)

Noting that in grid coordinates the angular velocity is Ω = q∗ωq, we finally obtain
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[13]6

q̇ =
1

2
qΩ. (3.34)

Quaternion control system

The goal of the sector of the control-system for rotations is to keep the vector ~X parallel

to the vector ~C. The misalignment between them can be measured by the rotation needed

to make these vectors parallel:

~QR =
~C × ~X

‖~C‖2
'

~C × ~X

~C · ~X
, (3.35)

where the subscript ‘R’ indicates that this quantity is of relevance for rotations.7 The

dot and cross products are defined in the standard Euclidean sense. The control-system

needs to adjust the angular velocity ~Ω such that ~QR ≈ 0. As long as the control-system

works, this instantaneous rotation is small, and therefore, non-commutativity of rotations

can be neglected. This suggests to control the angular velocity in the moving frame ~Ω

based on the control-parameter ~QR.

We proceed as follows: We measure ~QR regularly during the BBH evolution,and

compute its first and second time-derivatives. As in earlier work [163] (and in many

papers since [119, 52, 33, 148, 121, 38, 129]), we use this to reset the third time-derivative

of the mapping-parameters that determine the rotation. These parameters are the second

time-derivative of ~Ω(t); thus, we choose ~Ω(t) such that it has constant second time-

derivative. We periodically reset this constant using the equation

d2~Ω

dt2
= α~QR + β

d~QR

dt
+ γ

d2 ~QR

dt2
. (3.36)

A constant value of d2~Ω/dt2 implies that Ω(t) is a piece-wise quadratic polynomial.

Whenever the second derivative is reset, we choose integration constants such that ~Ω and

d~Ω/dt are continuous. Finally, we use ~Ω(t) to determine the actual rotation-matrix via

Eq. (3.34).

There are alternative control-feedback equations to Eq. (3.36). Some of them are

discussed in [92]. The details of the feedback equation do not influence the main focus

of this chapter which is how to represent rotations and control parameters.

6This reference uses the opposite convention of the one adapted here: Ω is the angular velocity in the
fixed frame whereas ω is the angular velocity in the rotating frame.

7The normalization chosen corresponds to the fact that only the direction of the two vectors matter in
the context of rotations, and due to the scaling control system we should have to first order, ‖ ~X‖ ' ‖~C‖.
The second approximate equality holds when the deviation from the initial position is small.
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In SpEC, Eq. (3.34) is integrated with a 5-th order Dormand-Prince time-stepper [152].

While Eq. (3.34) analytically preserves the unit-norm of q, numerical integration will

not identically preserve |q| = 1. Therefore, the q(t) returned by the ODE-integrator is

rescaled to unit-length, q → q/|q| before it is used to construct rotations.

Whenever d2~Ω/dt2 is reset via Eq. (3.36), q of the ODE integrator is also rescaled to

unit length.

Equation (3.35) can also be derived with the formal procedure introduced in Section

3.3.2. This derivation will highlight an ambiguity not visible in Eq. (3.35), and will also

result in the control parameters for scaling and translation. We start with

x̄ = a q x q∗ + T , (3.37)

where x̄, x, q, T are quaternions and a ∈ R. All vector quantities are now treated as

quaternions via the identification map v = (0, ~v). We now perturb a → a + δa, T →
T + δT , q → q

(
1 + δq

2

)
. The q - perturbation will result in vectors ~v being mapped to

v′ = q

(
1 +

δq

2

)
v

(
1− δq

2

)
q∗ = q w q∗, (3.38)

where w ≡
(
1 + δq

2

)
v
(
1− δq

2

)
. This shows that the imaginary part ~δq of δq = (0, ~δq)

represents a rotation in grid coordinates.

The quaternion version of Eq. (3.9) is:

aqxiq
∗ + T =

(a+ δa)q

(
1 +

δq

2

)
ci

(
1− δq

2

)
q∗ + T + δT . (3.39)

with i = A,B. Because the real part of Eqs. (3.39) are trivially satisfied, Eqs. (3.39)

represent six equations, three each for black hole A and for black hole B. We seek to solve

Eqs. (3.39) for the unknowns δa, δT = (0, ~δT ), and δq = (0, ~δq). Because δT and δq

have three components each, we have in total seven unknowns. The additional degree of

freedom arises because the rotation around ~C is not yet fixed. Recall that in the Euler

angle representation, we remove this degree of freedom by setting φ = 0, c.f. Eq. (3.7).

Expanding Eq. (3.39) to linear order in the perturbations and subtracting the equation

for black hole B from that for black hole A, it is straightforward to show that

δa =

(
~X · ~C
‖~C‖2

− 1

)
a, (3.40)
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~δq =
~C × ~X

‖~C‖2
+ α~C, (3.41)

and

(0, ~δT ) = aq

(
xA − cA − δq ∧ cA −

δa

a
cA

)
q∗. (3.42)

In Eq. (3.42, δq∧cA ≡ (0, ~δq×~cA) and δq, δa are to be substituted from Eq. (3.40, 3.41).

The parameter α in Eq. (3.41) is undetermined, reflecting the extra degree of freedom

already mentioned after Eq. (3.39). It parameterizes the component of ~δq parallel to ~C;

i.e., a rotation about the axis ~C connecting the two excision spheres. We shall choose it

to minimize the overall rotation ‖ ~δq‖:

α = 0. (3.43)

With this choice Eq. (3.41) simplifies to Eq. (3.35). The choice α = 0 is equivalent to the

minimal rotation frame of Boyle et al. [35]; it minimizes artificial activity of the control

system that is not connected to the physics of the binary black hole.

3.4 Numerical Results

To test our new approach to the rotation control system we begin with the simplest

possible system that still exhibits the desired behaviour, namely a Newtonian circular

binary. We consider an equal mass, non-spinning, circular binary at separation of 20 M .

The orbital plane is inclined with respect to the xy-plane by angles β = 0, 10, 70 degrees.

The performance of the control system is quantified by the magnitude of the control

parameters ‖Q‖ ≡
√∑

iQ
2
i where the summation extends over all the components of

the control error for rotation, defined by Eqs. (3.10b, 3.10c) for Euler angles and Eq. (3.41)

for quaternions. Independent of the inclination β, we always initialize the control system

as if the binary is in the xy-plane. This is of course only correct for β = 0; for β 6= 0,

the control system will also have to demonstrate that it can compensate for an utterly

erroneous initialization. All our numerical results are obtained with a PD controller [92].

Because the Quaternion control system removes temporal structure from the mapping

parameters, the improvements we demonstrate here with the PD controller will carry

over to any other controller, e.g. a PID controller [92].

Figure 3.2 shows ‖Q‖ for the three cases. For β = 0◦ both control systems perform

very well with an extremely small value of Q ∼ 10−11. For β 6= 0, there are initial

transients due to the intentionally wrong initialization of λµ. These transients decay
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Figure 3.2: Newtonian simulations with inclination of the orbital plane of angle
β = 0, 10, 70 degrees from the xy plane, performed with both control systems. Time
is measured in units of orbital period.
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exponentially on the damping timescale of the control system; here, τ = P/56 where P

is the orbital period. Once the transients have disappeared for β = 10◦, the quaternion

results are unchanged while the Euler-angle control error has increased by 6 orders of

magnitude. This comparatively large value even for the seemingly small inclination

β = 10◦ is not related to the singularity in the Euler angle parameterization at β = 90◦.

Rather, it arises, because the control system needs to track the angle θ(t), which oscillates

between −β and β in each orbit. Analyzing the control-feedback equation for this motion

(see Appendix B), one finds an oscillatory Q(t) which is π/2 out of phase with θ(t) and

which oscillates with amplitude β(ωτ)3 ∼ 2.5×10−4. In contrast, the controlled mapping-

parameters of the quaternion-representation, the instantaneous orbital frequency ~Ω(t), is

constant for any value of β. The absence of time-dependence in ~Ω(t) allows the quaternion

control-system to achieve Q ∼ 10−10. This is demonstrated with the β = 70◦ data in

Fig. 3.2. In this case, the Euler-angle parameterization shows sharp oscillatory features

in ‖Q‖ when θ(t) is extremal, caused by the approach to the pole singularity of the Euler

angles.

Figure 3.2 foreshadows already the main conclusion of this work: The Euler-angle

approach depends on the plane of the orbit, and has increasing difficulty in controlling

the coordinate mappings as the orbital plane becomes orthogonal to the xy-plane. While

the Euler-angle control system becomes singular only at exactly β = 90◦, the effects of

this singularity are already clearly visible for β=70◦. In contrast, the quaternion control

system is rotationally invariant, and hence, it controls the coordinate mapping equally

well for any inclination β.

Next, we turn to a more interesting test that also involves the control system for the

expansion factor a(t). We consider a Post-Newtonian equal mass, non-spinning black hole

binary. The relevant PN equations of motion can be found in [98]. Figure 3.3 displays a

set of three runs done with both control systems, again choosing to tilt the orbit relative

to the xy-plane by angles β = 0, 10, 70 degrees.

After the initial transients due to intentionally wrong initialization of the control

system, both of the control systems handle the β = 0 case equally well with ‖Q‖ ∼ 10−5

showing regular oscillations due to a small eccentricity of the orbit. When β = 10◦, the

Euler-angle system is dominated by tracking the θ(t) angle, as for the Newtonian case in

Fig. 3.2, with ‖Q‖ ∼ 10−3. The situation grows worse still for Euler angles when β = 70◦,

where the control error increases by another two orders of magnitude and sharp features

appear.

Meanwhile, the curves corresponding to the quaternion control system show exactly

(to within numerical accuracy) the same value of ‖Q‖ for all inclinations. This is exactly
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Figure 3.3: Post-Newtonian simulations with inclination of the orbital plane angle
β = 0, 10, 70 degrees from the x−y plane, performed with both control systems. Time is
measured in units of initial orbital period. The binary is equal mass and non-spinning,
with the initial coordinate separation of 20.
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Name q ~χ1 ~χ2 D0/M ȧ0 MΩ0

d11.68q2.5 2.5 (0.000, 0.575, -0.556) (0.000, 0.360,-0.347) 11.68 -0.000290589649 0.02264246
d12q2.5 2.5 (0.000, 0.410, -0.287) (0, 0, 0) 12 -0.000108923113 0.02180603

d14.5q1.5 1.5 (0.000,0.285, 0.093) (0, 0, 0) 14.5 -0.000016947638 0.01664958

Table 3.1: The initial conditions used for the numerical relativity runs. Given are the
mass ratio q = m1/m2, the dimensionless spin-vectors ~χ1 and ~χ2, the initial separation
D0, initial radial velocity ȧ0, initial orbital frequency Ω0. The initial orbital angular
momentum is in the ẑ direction and the line connecting the two black holes is parallel to
the x-axis.
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Figure 3.4: The inclination angle, β for the three systems under study. The curves stop
just after a common horizon is detected.

what we expect from a rotationally invariant control system - the orientation of the

orbital plane is irrelevant.

Finally, we test the quaternion-based control system using its main application: simu-

lations of precessing binary black hole systems in full numerical relativity. Quite generally,

this precession may cause the orbital plane to rotate by 90 or more degrees with respect

to the initial conditions. The behaviour of the system depends on mass ratio and the

two spin vectors. We choose a set of three simulations to be evolved using full numerical

relativity that exhibits mild to significant precession. Table 3.1 summarizes the initial

conditions. The initial data was constructed from the superposition of two Kerr-Schild

metrics for the conformal metric as in [118] (so called SKS initial data). The eccentricity

has been removed by an iterative process [43], so that the final eccentricities for all three
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cases are a few ×10−4.

Figure 3.4 shows the inclination angle β ≡ arccos(Ωz/|~Ω|) which measures the angle

between the normal to the instantaneous orbital plane and the initial direction of the

normal, which is by convention in the z-direction. The high-frequency oscillatory features

are due to the nutation of the orbital angular momentum, while the secular evolution

is due to precession. Notice that the d14.5q1.5 run completes a full precession cycle at

t = 4000M . The curves end when the black holes merge. The maximum inclination

angles are similar to those used for the Post-Newtonian evolutions above. Figure 3.5

shows the trajectories of the black holes in inertial coordinates.

Figure 3.6 presents ‖Q‖ for the three runs done with the quaternion control system.

In the main panel of Figure 3.6 it is difficult to compare the ‖Q‖ of different runs be-

cause of the difference in orbital frequency. The inset shows the same ‖Q‖ residuals for

the three simulations but timeshifted such that the orbital frequency of MΩ = 0.025

occurs at t = 0. As one can see the control error norms lie very close to each other, and

exhibit qualitatively similar oscillations with virtually no sharp features.The remaining

differences in behaviour are associated mostly with the different eccentricities as well as

masses and spins. The growth of the control parameters with time is caused by the more

rapid inspiral towards merger. Our numerical experiments demonstrate that the quater-

nion approach is indeed suitable for simulating arbitrarily precessing configurations.

To close this section, we compare two simulations of the same initial data performed

with the new Quaternion control system, and the older Euler-angle parameterization.

We choose the simulation d14.5q1.5, which was already discussed, and also evolve it with

the Euler angle-parameterization.

Figure 3.7 shows the translation parameters T i(t) for these two simulations. Dur-

ing the inspiral, t . 4100M , the translation parameters change linearly in time with

modulations on the orbital time-scale. The linear change arises because of a non-zero

initial ADM linear momentum P i
ADM, and the drift is indeed consistent with a velocity

of P i
ADM/M . The modulations arise because the center of rotation of the rotation map

R is not precisely at the center of mass of the binary. SpEC simulations generally impose

P i
ADM = 0 to a much higher precision than the simulation shown here; in the present

case, the linear drift is used as an additional test of the translation control systems (the

linear drift was removed from the data plotted in Fig. 3.5). The trajectories in Fig. 3.7

exhibit a change in slope around time of merger, t ∼ 4100M , indicating a mild BH kick

imparted on the remnant black hole of approximately 700km/s, predominantly along the

+z direction.

The lower panel of Fig. 3.7 shows the differences in translation parameters between
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Figure 3.5: The trajectories of the centers of the apparent horizons of the black holes in
inertial coordinates for the 3 simulations. Top to bottom: d11.68q2.5, d12q2.5, d14.5q1.5.
The left panels show the projection onto the xy plane and the right, the xz plane.
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Figure 3.8: Top: the real part of rh22 extracted at R = 304 for the simulation d14.5q1.5
done with both control systems. Bottom: the phase differences. The data has been
time-shifted by the extraction radius.

the Quaternion- and Euler-angle evolutions. The translation parameters agree to about 1

part in 1000. There is a slight difference, corresponding to a change in the center-of-mass

velocity of about 2×10−7c. This difference is smaller than the numerical truncation error

of these runs, and so these small differences are consistent with our expectations.

Figure 3.8 compares the (2,2) mode of the gravitational waveforms between the

Quaternion and the Euler-angle evolutions of the configuration d14.5q1.5. The wave-

forms itself in the upper panel cannot be distinguished. The lower panel indicates a

phase-difference of less than 0.004 radian, about an order of magnitude smaller than

numerical truncation error of high accuracy SpEC simulations (e.g. [38, 130]). The runs

presented here are not at such high resolution, and so the phase differences shown in

Fig. 3.8 are significantly smaller than the numerical truncation error.
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3.5 Discussion

Simulating precessing binaries poses a challenge for dual-frame, spectral codes using

excision-based numerical techniques. This challenge is resolved here by developing coor-

dinate mappings which make the black holes be at rest in grid coordinates. This trans-

formation is dynamically controlled by a feedback control system since the trajectories of

the black holes are not known in advance. In the most general case this map involves a

rotation, and while Euler angle parametrization works well for mildly precessing binaries,

it exhibits coordinate singularities for polar orbits which leads to the breakdown of the

simulation. To rectify the situation, we have created a control system that represents

rotations using quaternions. Quaternions do not suffer from coordinate singularities and

work for generically precessing systems. The quaternion-based control system is able to

successfully perform fully general relativistic simulations of highly-precessing binaries, al-

lowing the investigation strongly precessing binary black holes and broadening the range

of parameter space that can be explored. The techniques developed here have already

been utilized in the simulations presented in [74, 130]

The quaternion control system, as described and developed above, is related to the

minimal rotation frame [35] (see also [41]). For the control-system developed here, as

in the minimal rotation frame, a preferred axis exists (the line connecting the two black

holes vs. the instantaneous preferred emission axis of the gravitational waves). In both

cases, the rotation about this axis is not a priori determined. And in both cases, this

rotation is chosen such that the instantaneous rotation frequency of the rotating frame

is minimal. In the present context, this condition is imposed by Eq. (3.43).

As a useful byproduct of the quaternion control system, one obtains an accurate

estimate of the orbital frequency and the orbital phase during the numerical run without

the need for any post-processing. The Ω in Eq. (3.34) is the instantaneous rotation

frequency of the grid frame relative to the inertial frame, given in components of the grid

frame. Converting to the inertial frame,

(0, ~ω) = qΩ q∗. (3.44)

If the control system were perfect —i.e. if Q ≡ 0— then ~ω given by Eq. (3.44)

would be the instantaneous orbital frequency. Because Q 6= 0, Eq. (3.44) only gives

an approximate orbital frequency, albeit a very good one: The upper panel of Fig. 3.9

shows the fractional difference between |~ω| from Eq. (3.44) and the exact numerical

orbital frequency obtained by post-processing. The difference oscillates around zero with

relative amplitude of 1× 10−3. It is also straightforward to integrate
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Figure 3.9: The fractional difference in orbital frequency estimated from quaternions and
from trajectories (solid) and the orbital phase difference in radians (dashed). The data
is from the run d14.5q1.5.

φ̇ = |~Ω| = |~ω| (3.45)

to obtain the orbital phase of the precessing binary. In practice, we add Eq. (3.45) to

the set of ordinary differential equations Eq. (3.34) that are integrated to obtain the

rotation quaternion q(t). The difference between the orbital phase from the control

system Eq. (3.45) and the exact orbital phase from the BH trajectories is shown in the

lower panel of Fig. 3.9. The difference is ∼ 10−4 radians until merger, during an inspiral

lasting 105 radians. Incidentally, this again demonstrates that our control system works

exactly as expected.
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3.6 Appendix

3.6.1 Rotation control parameters in matrix notation

The underlying idea for the rotational control system that we have described in section

3.3.3 is independent of the use of quaternions to represent rotations. For example, one

could have used infinitesimal rotation matrices to achieve the same goal. Below is the

demonstration of the same derivation as in section 3.3.3 but now in terms of a rotation

matrix R. We start with the following version of Eq. (3.9):

aR~xi + ~T = (a+ δa)R(I + δR)~ci + ~T + ~δT (3.46)

where as usual i = A, B, ~xi,~ci, ~T , ~δT ∈ R3, I is the identity matrix, a, δa ∈ R
and R, δR ∈ M3×3 . Once more we seek to solve this system of six equations for

the unknowns δa, ~δT , and δR. Note that since δR is an infinitesimal rotation matrix,

it is skew symmetric and thus has three independent components, for a total of seven

unknowns. Expanding Eq. (3.46) to first order in perturbation and subtracting the

equation for black hole B from that of black hole A one can show that:

δa =

(
~X · ~C
‖~C‖2

− 1

)
a, (3.47)

δRij = εijkδφ
j, ~δφ =

~C × ~X

‖~C‖2
+ α~C, (3.48)

~δT = aR

(
~xA − ~cA − ~δφ× ~cA −

δa

a
~cA

)
. (3.49)

These results match exactly Eqs. (3.40)-(3.42). Thus we see that indeed infinitesimal

rotation matrices could have been used to represent rotation. We selected quaternions for
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our work primarily for numerical reasons, the main being the ease of correcting numerical

drift from a rotation, which for quaternions amounts to a simple renormalization.

3.6.2 Euler angle control system for small inclinations

Assume a circular motion with orbital frequency ω around an axis tilted by an angle

β � 1 relative to the z-axis. To first order in β, the Euler angles behave as

θ̂(t) = βeiωt, ψ̂(t) = ωt. (3.50)

Because ψ̂(t) is linear in t, it will be tracked precisely by the control system after initial

transients decay. θ̂(t), however, oscillates and the control system must continuously

update θ(t) to track θ̂(t). This is accomplished via the differential equation (Eq. (15) of

Ref. [163])
d3θ

dt3
= 3λ

d2Q

dt2
+ 3λ2dQ

dt
+ λ3Q, (3.51)

where Q(t) = θ̂(t) − θ(t), and λ = 1/τ is the inverse of the damping time-scale of the

control system. Substituting θ = θ̂ −Q into the left-hand-side of Eq. (3.51), we find

d3Q

dt3
+ 3λ

d2Q

dt2
+ 3λ2dQ

dt
+ λ3Q =

d3θ̂

dt3
= −iβω3eiωt. (3.52)

Equation (3.52) is solved by

Q =
−iβ(ωτ)3

(1 + iωτ)3
eiωt. (3.53)

In the limit τ � ω this reduces to Q = −iβ(ωτ)3eiωt, the result quoted in Sec. 3.4.
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Comparing Post-Newtonian and

Numerical-Relativity Dynamics

4.1 Chapter overview1

In this chapter we compare the results of numerical relativity simulations of precessing

binary black hole systems done to Post-Newtonian theory. In BBH systems if the spins are

not colinear with each other or with the orbital angular momentum, these systems exhibit

complicated precession dynamics that are imprinted on the gravitational waveform. We

develop a new procedure to match the precession dynamics computed by post-Newtonian

(PN) theory to those of numerical binary black-hole simulations in full general relativity.

For numerical relativity (NR) simulations lasting approximately two precession cycles, we

find that the PN and NR predictions for the directions of the orbital angular momentum

and the spins agree to better than ∼ 1◦ with NR during the inspiral, increasing to 5◦

near merger. Nutation of the orbital plane on the orbital time-scale agrees well between

NR and PN, whereas nutation of the spin direction shows qualitatively different behavior

in PN and NR. We also examine how the PN equations for precession and orbital-phase

evolution converge with PN order, and we quantify the impact of various choices for

handling partially known PN terms.

1The material herein is based on Serguei Ossokine, Michael Boyle, Lawrence E. Kidder, Harald
P. Pfeiffer, Mark A. Scheel, and Béla Szilágyi. Comparing post-Newtonian and numerical-relativity
precession dynamics. arXiv:1502:01747, 2015.

69
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4.2 Introduction

Binary black holes (BBH) are among the most important sources of gravitational waves

for upcoming gravitational-wave detectors like Advanced LIGO [180] and Virgo [182].

Accurate predictions of the gravitational waveforms emitted by such systems are impor-

tant for detection of gravitational waves and for parameter estimation of any detected

binary [5]. When either black hole carries spin that is not aligned with the orbital angular

momentum, there is an exchange of angular momentum between the components of the

system, leading to complicated dynamical behavior. Figure 4.1 exhibits the directions

of the various angular momenta in several simulations described in this chapter. This

behavior is imprinted on the emitted waveforms [11, 143, 30], making them more feature-

rich than waveforms from aligned-spin BBH systems or non-spinning BBH systems. In

order to model the waveforms accurately, then, we need to understand the dynamics.

The orbital-phase evolution of an inspiraling binary, the precession of the orbital

angular momentum and the black-hole spins, and the emitted gravitational waveforms

can be modelled with post-Newtonian theory [25], a perturbative solution of Einstein’s

equations in powers of v/c, the ratio of the velocity of the black holes to the speed of

light. Such post-Newtonian waveforms play an important role in the waveform modeling

for ground-based interferometric gravitational-wave detectors (see, e.g., [134]).

For non-spinning and aligned-spin BBH, a large number of comparisons between PN

and NR have been performed, among them [18, 66, 33, 85, 84, 123, 117, 168, 122, 95, 174].

For these non-precessing systems, gravitational wave phasing reduces to only one degree

of freedom, generally taken to be the argument of the complex-valued (2, 2) mode of

the emitted gravitational radiation. Because phasing is of high importance for matching

filtering, PN-NR comparisons for non-precessing binaries have focused on the accumu-

lated phase differences in the dominant (2,2) mode of the gravitational waveform. It was

found that the PN error due to truncation of the PN-series at some finite order (typically

3.5PN) can be quite large, especially at mass-ratios & 5 and for spinning black holes.

The resulting phase error was identified as one of the dominant limitations of waveform

modeling for non-precessing BBH [60, 31, 135, 123, 122, 133]. By coincidence, the un-

controlled higher-order terms in PN approximants can sometimes be close to the correct,

unknown values. Comparisons that rely on only one PN approximant are therefore prone

to underestimate the error of PN. The best known case for this behavior are equal mass,

non-spinning BBH, where the TaylorT4 approximant appears significantly more accurate

than other Taylor approximants [18, 33].

Precessing waveform models (e.g., [86, 177, 141, 120, 30]) depend on the orbital phase
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Figure 4.1: Precession cones of the six primary precessing simulations considered here, as
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evolution and the precession dynamics. Therefore, it is important to quantify the accu-

racy of the post-Newtonian approximation for modeling the precession dynamics itself,

and the orbital-phase evolution of precessing binaries. The first such comparison was

performed by Campanelli et al [46] finding fairly good agreement between PN and NR,

with phase differences of about a cycle close to merger. They also found that 3.5 PN

approximant performed significantly better than 2.5 PN. Lousto and Zlochower [111]

studied the precession dynamics of a long numerical relativity simulation undergoing a

reversal of the black hole spin direction, and found excellent agreement between NR and

PN until close to merger.

In 2013, the SXS collaboration published numerical-relativity solutions to the full Ein-

stein equations for precessing BBH systems [130]. These simulations cover & 30 orbits

and up to two precession cycles. Therefore, they offer a novel opportunity to systemati-

cally quantify the accuracy of the post-Newtonian precession equations, the topic of this

chapter. The first such comparisons based on the SXS catalog were made in [141, 130].

Ref. [141] found that Taylor T4 model disagreed with the the NR data much more than

the spinning EOB model. The PN precession equations used in [141], however, were

only leading order, and it remained unclear whether the disagreement of Taylor T4 arises

because of the low order of precession equations, or more general deficiencies of PN. The

preliminary comparison of 2 precessing cases in [130] demonstrated good agreement of

spin and angular momentum precession and motivated the current work. That study is

expanded and refined here to include higher-order PN terms in the precession equations

and the evolution of the orbital frequency.

While this chapter focuses on comparison of the orbital dynamics (angular momenta

directions and orbital phase), in order to disentangle different aspects of the precessing

BBH inspirals, some authors have performed comparisons of the emitted waveforms [46,

177, 86].Tarrachini et al [177] computed the unfaithfullness of the SEOBNRv3 model for

a q = 5, χ1 = 0.5, χ2 = 0 (see case q5 0.5x in Table 4.1) and found to be less than 3%

which would translate to negligible losses in detection rate. Hannam et al [86] computed

fitting factors between PN-NR hybrid models and a phenomenological precessing PhenomP

model and found fitting factors ≥ 0.965 for most sky orientations for cases with q ≤ 3,

in contrast to lower fitting factors obtained when using the non-precessing PhenomC [159]

model.

In this chapter, we develop a new technique to match the initial conditions of post-

Newtonian dynamics to a numerical relativity simulation. We then use this technique

to study the level of agreement between the post-Newtonian precession equations and

the numerical simulations. The agreement is remarkably good, the directions of orbital
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angular momentum and spin axes in post-Newtonian theory reproduces the numerical

simulations usually to better than 1 degree. We also investigate nutation effects on the

orbital time-scale that are imprinted both in the orbital angular momentum and the spin-

directions. For the orbital angular momentum, NR and PN yield very similar nutation

features, whereas for the spin direction, nutation is qualitatively different in PN and the

investigated NR simulations. Considering the orbital-phase evolution, we find that the

disagreement between post-Newtonian orbital phase and numerical relativity simulation

is comparable to the aligned-spin case. This implies that the orbital phase evolution will

remain an important limitation for post-Newtonian waveforms even in the precessing case.

Finally, we study the convergence with post-Newtonian order of the precession equations,

and establish very regular and fast convergence, in contrast to post-Newtonian orbital

phasing.

This chapter is organized as follows: Section 4.3 describes the post-Newtonian expres-

sions utilized, the numerical simulations, how we compare PN and NR systems with each

other, and how we determine suitable “best-fitting” PN parameters for a comparison

with a given NR simulation. Section 4.4 presents our results, starting with a compar-

ison of the precession dynamics in Sec. 4.4.1, and continuing with an investigation in

the accuracy of the orbital phasing in Sec. 4.4.2. The following two sections study the

convergence of the PN precession equations and the impact of ambiguous choices when

dealing with incompletely known spin-terms in the PN orbital phasing. Section 4.4.5,

finally, is devoted to some technical numerical aspects, including an investigation into

the importance of the gauge conditions used for the NR runs. We close with a discussion

in Sec. 4.5. The appendices collect the precise post-Newtonian expressions we use and

additional useful formulae about quaternions.

4.3 Methodology

4.3.1 Post-Newtonian Theory

Post-Newtonian (PN) theory is an approximation to General Relativity in the weak-field,

slow-motion regime, characterized by the small parameter ε ∼ (v/c)2 ∼ Gm
rc2

, where m, v,

and r denote the characteristic mass, velocity, and size of the source, c is the speed of

light, and G is Newton’s gravitational constant. For the rest of this chapter, the source is

always a binary black-hole system with total mass m, relative velocity v and separation

r, and we use units where G = c = 1.

Restricting attention to quasi-spherical binaries in the adiabatic limit, the local dy-
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namics of the source can be split into two parts: the evolution of the orbital frequency,

and the precession of the orbital plane and the spins. The leading-order precessional

effects [19] and spin contributions to the evolution of the orbital frequency [100, 99] en-

ter post-Newtonian dynamics at the 1.5 PN order (i.e., ε3/2) for spin-orbit effects, and

2 PN order for spin-spin effects. We also include non-spin terms to 3.5 PN order [25],

the spin-orbit terms to 4 PN order [125], spin-spin terms to 2 PN order [99]2. For the

precession equations, we include the spin-orbit contributions to next-to-next-to-leading

order, corresponding to 3.5 PN [27]. The spin-spin terms are included at 2 PN order3.

Orbital dynamics

Following earlier work (e.g., Ref. [99]) we describe the precessing BH binary by the

evolution of the orthonormal triad (n̂, λ̂, ˆ̀), as indicated in Fig. 4.2: n̂ denotes the unit

separation vector between the two compact objects, ˆ̀ is the normal to the orbital plane

and λ̂ = ˆ̀× n̂ completes the triad. This triad is time-dependent, and is related to the

constant inertial triad (x̂, ŷ, ẑ) by a time-dependent rotation Rf , as indicated in Fig. 4.2.

The rotation Rf will play an important role in Sec. 4.3.3. The orbital triad obeys the

following equations:

dˆ̀

dt
= $n̂× ˆ̀, (4.1a)

dn̂

dt
= Ωλ̂, (4.1b)

dλ̂

dt
= −Ωn̂+$ ˆ̀. (4.1c)

Here, Ω is the instantaneous orbital frequency and $ is the precession frequency of the

orbital plane.

The dimensionless spin vectors ~χi = ~Si/m
2
i also obey precession equations:

d~χ1

dt
= ~Ω1 × ~χ1, (4.2a)

d~χ2

dt
= ~Ω2 × ~χ2. (4.2b)

2During the preparation of this manuscript, the 3 PN spin-spin contributions to the flux and binding
energy were completed in [26]. These terms are not used in the analysis presented here.

3The investigation of the effects of spin-spin terms at higher PN orders (see e.g. [89, 104, 151, 105, 107]
and references therein), and terms which are higher order in spin (e.g cubic spin terms) [124, 106] is left
for future work.
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ˆ̀

n̂

λ̂
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Rf

x̂

ŷ

ẑ

Figure 4.2: Vectors describing the orbital dynamics of the system. The yellow plane
denotes the orbital plane. Rf(t) is the rotor that rotates the coordinate triad (x̂, ŷ, ẑ)
into the orbital triad (n̂, λ̂, ˆ̀).
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The precession frequencies ~Ω1,2, $ are series in the PN expansion parameter ε; their

explicit form is given in Appendix 4.6.1.

The evolution of the orbital frequency is derived from energy balance:

dE

dt
= −F , (4.3)

where E is the energy of the binary and F is the gravitational-wave flux. E and F are PN

series depending on the orbital frequency Ω, the vector ˆ̀, and the BH spins ~χ1, ~χ2. Their

explicit formulas are given in Appendix 4.6.1. In terms of x ≡ (mΩ)2/3 ∼ ε, Eq. (4.3)

becomes:
dx

dt
= − F

dE/dx
, (4.4)

where the right-hand side is a ratio of two PN series.

There are several well known ways of solving Eq. (4.4), which lead to different treat-

ment of uncontrolled higher-order PN terms—referred to as the Taylor T1 through T5

approximants [65, 6]. The most straightforward approach is to evaluate the numerator

and denominator of Eq. (4.4) and then solve the resulting ordinary differential equation

numerically, which is the Taylor T1 approximant. Another approach is to re-expand

the ratio F/(dE/dx) in a new power series in x, and then truncate at the appropriate

order. This gives the Taylor T4 approximant. Finally, one can expand the inverse of

the right-hand-side of Eq. (4.4) in a new power series in x, truncate it at the appropriate

order, and then substitute the inverse of the truncated series into the right-hand side

in Eq. (4.4). This last approach, known as the Taylor T5 approximant [6], has been

introduced fairly recently.

Handling of spin terms

When constructing Taylor approximants that include the re-expansion of the energy

balance equation, the handling of spin terms becomes important. In particular, terms

of quadratic and higher order in spins, such as (~Si)
2, appear in the evolution of the

orbital frequency at 3 PN and higher orders. These terms arise from lower-order effects

and represent incomplete information, since the corresponding terms are unknown in the

original power series for the binding energy E and the flux F ,
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Table 4.1: Numerical relativity simulations utilized here. SXS ID refers to the simula-
tion number in Ref. [130], q = m1/m2 is the mass ratio, ~χ1,2 are the dimensionless spins,

given in coordinates where n̂(t = 0) = x̂, ˆ̀(t = 0) = ẑ. D0, Ω0 and e are the initial coor-
dinate separation, the initial orbital frequency, and the orbital eccentricity, respectively.
The first block lists the precessing runs utilized, where ~χ1,r = (−0.18,−0.0479,−0.0378)
and ~χ2,r = (−0.0675, 0.0779,−0.357). The second block indicates 31 further precessing
simulations used in Fig. 4.13, and the last block lists the aligned spin systems for orbital
phase comparisons.
Name SXS ID q ~χ1 ~χ2 D0/M mΩ0 e

q1 0.5x 0003 1.0 (0.5,0.0,0) (0,0,0) 19 0.01128 0.003
q1.5 0.5x 0017 1.5 (0.5,0,0) (0,0,0) 16 0.01443 < 2× 10−4

q3 0.5x 0034 3.0 (0.5,0,0) (0,0,0) 14 0.01743 < 2× 10−4

q5 0.5x 5.0 (0.5,0,0) (0,0,0) 15 0.01579 0.002
q1 two spins 0163 1.0 (0.52,0,-0.3) (0.52,0,0.3) 15.3 0.01510 0.003
q1.97 random 0146 1.97 ~χ1,r ~χ2,r 15 0.01585 < 10−4

31 random runs 115–145 [1, 2] χ1 ≤ 0.5 χ2 ≤ 0.5 15 ≈ 0.0159 [10−4, 10−3]

q1_0.5z 0005 1.0 (0,0,0.5) (0,0,0) 19 0.01217 0.0003
q1_-0.5z 0004 1.0 (0,0,0.5) (0,0,0) 19 0.01131 0.0004
q1.5_0.5z 0013 1.5 (0,0,0.5) (0,0,0) 16 0.01438 0.00014
q1.5_-0.5z 0012 1.5 (0,0,-0.5) (0,0,0) 16 0.01449 0.00007
q3_0.5z 0031 3.0 (0,0,0.5) (0,0,0) 14 0.01734 < 10−4

q3_-0.5z 0038 3.0 (0,0,-0.5) (0,0,0) 14 0.01756 < 10−4

q5_0.5z 0061 5.0 (0,0,0.5) (0,0,0) 15 0.01570 0.004
q5_-0.5z 0060 5.0 (0,0,-0.5) (0,0,0) 15 0.01591 0.003
q8_0.5z 0065 8.0 (0,0,0.5) (0,0,0) 13 0.01922 0.004
q8_-0.5z 0064 8.0 (0,0,-0.5) (0,0,0) 13 0.01954 0.0005
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E(x) = −1

2
mνx

(
1 +

∑
k=2

akx
k/2

)
, (4.5)

F(x) =
32

5
ν2x5

(
1 +

∑
k=2

bkx
k/2

)
, (4.6)

where m = m1 +m2 and ν = m1m2/m
2, and m1,2 are the individual masses.

In these expansions, the spin-squared terms come in at 2 PN order and thus appear

in a4 and b4, cf. Eqs. (4.38) and (4.44). Then, in the re-expansion series of Taylor T4,

S ≡ − F
dE/dx

=
64ν

5m
x5(1 +

∑
k=2

skx
k/2), (4.7)

the coefficients sk can be recursively determined, e.g.

s4 = b4 − 3a4 − 2s2a2, (4.8)

s6 = b6 − (4a6 + 3s2a4 +
5

2
s3a3 + 2s4a2). (4.9)

Thus, the spin-squared terms in a4 and b4 will induce spin-squared terms at 3PN order

in s6. The analogous conclusion holds for Taylor T5. These spin-squared terms are

incomplete as the corresponding terms in the binding energy and flux (i.e. in a6 and b6)

are not known.

This re-expansion has been handled in several ways in the literature. For example,

Nitz et al. [133] include only terms which are linear in spin beyond 2 PN order. On the

other hand, Santamaŕıa et al. [159] keep all terms in spin arising from known terms in

E and F . In the present work, we also keep all terms up to 3.5 PN order, which is the

highest order to which non-spin terms are completely known. Similarly, we include all

terms when computing the precession frequency (see 4.6.1). We investigate the impact of

different spin-truncation choices in Sec. 4.4.4, along with the impact of partially known

4 PN spin terms.

4.3.2 Numerical Relativity Simulations

To characterize the effectiveness of PN theory in reproducing NR results, we have selected

a subset of 16 simulations from the SXS waveform catalog described in Ref. [?].4 Our

4The waveform and orbital data are publicly available at https://www.black-holes.org/

waveforms/.

https://www.black-holes.org/waveforms/
https://www.black-holes.org/waveforms/
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primary results are based on six precessing simulations and a further ten non-precessing

ones for cross-comparisons. To check for systematic effects, we use a further 31 precessing

simulations with random mass-ratios and spins. The parameters of these runs are given in

Table 4.1. They were chosen to represent various degrees of complexity in the dynamics:

(i) precessing versus non-precessing simulations, the latter with spins parallel or anti-

parallel to ˆ̀; (ii) one versus two spinning black holes; (iii) coverage of mass ratio from

q = 1 to q = 8; (iv) long simulations that cover more than a precession cycle; and (v) a

variety of orientations of χ̂1, χ̂2, ˆ̀. Figure 4.1 shows the precession cones of the normal

to the orbital plane and the spins for for the six primary precessing cases in Table 4.1.

The PN data were computed using the Taylor T4 3.5 PN approximant.

The simulations from the catalog listed in Table 4.1 were run with numerical methods

similar to [38]. A generalized harmonic evolution system [77, 79, 154, 108] is employed,

and the gauge is determined by gauge source functions Ha. During the inspiral phase

of the simulations considered here, Ha is kept constant in the co-moving frame, cf. [121,

52, 33]. About 1.5 orbits before merger, the gauge is changed to damped harmonic

gauge [109, 175, 51]. This gauge change happens outside the focus of the comparisons

presented here.

The simulation q5 0.5x analyzed here is a re-run of the SXS simulation SXS:BBH:0058

from Ref. [?]. We performed this re-run for two reasons: First, SXS:BBH:0058 changes to

damped harmonic gauge in the middle of the inspiral, rather than close to merger as all

other cases considered in this work. Second, SXS:BBH:0058 uses an unsatisfactorily low

numerical resolution during the calculation of the black hole spins. Both these choices

leave noticeable imprints on the data from SXS:BBH:0058, and the re-run q5 0.5x allows

us to quantify the impact of these deficiencies. We discuss these effects in detail in

Secs. 4.4.5 and 4.4.5. The re-run q5 0.5x analyzed here is performed with improved

numerical techniques. Most importantly, damped harmonic gauge is used essentially

from the start of the simulation, t & 100M . The simulation q5 0.5x also benefits from

improved adaptive mesh refinement [?] and improved methods for controlling the shape

and size of the excision boundaries; the latter methods are described in Sec.II.B. of

Ref. [?].

We have performed convergence tests for some of the simulations; Sec. 4.4.5 will

demonstrate with Fig. 4.19 that numerical truncation error is unimportant for the com-

parisons presented here.
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4.3.3 Characterizing Precession

The symmetries of non-precessing systems greatly simplify the problem of understanding

the motion of the binary. In a non-precessing system, the spin vectors are essentially

constant, and two of the rotational degrees of freedom are eliminated in the binary’s

orbital elements. Assuming quasi-circular orbits, the entire system can be described

by the orbital phase Φ, which can be defined as the angle between n̂ and x̂. In post-

Newtonian theory the separation between the black holes can be derived from dΦ/dt.

Thus comparison between post-Newtonian and numerical orbits, for example, reduces

entirely to the comparison between ΦPN and ΦNR [42, 33]. For precessing systems, on

the other hand, the concept of an orbital phase is insufficient; Φ could be thought of as

just one of the three Euler angles. We saw in Sec. 4.3.1 that the orbital dynamics of a

precessing system can be fairly complex, involving the triad (n̂, λ̂, ˆ̀) (or equivalently the

frame rotor Rf) as well as the two spin vectors ~χ1 and ~χ2—each of which is, of course,

time dependent. When comparing post-Newtonian and numerical results, we need to

measure differences between each of these quantities in their respective systems.

To compare the positions and velocities of the black holes themselves, we can condense

the information about the triads into the quaternion quantity [?]

R∆ := RPN
f R̄NR

f , (4.10)

which represents the rotation needed to align the PN frame with the NR frame. This is

a geometrically meaningful measure of the relative difference between two frames. We

can reduce this to a single real number by taking the magnitude of the logarithm of this

quantity, defining the angle5

Φ∆ := 2 |logR∆| . (4.11)

This measure has various useful qualities. It is invariant, in the sense that any basis

frame used to define RPN
f and RNR

f will result in the same value of Φ∆. It conveniently

distills the information about the difference between the frames into a single value, but

is also non-degenerate in the sense that Φ∆ = 0 if and only if the frames are identical. It

also reduces precisely to ΦPN − ΦNR for non-precessing systems; for precessing systems

it also incorporates contributions from the relative orientations of the orbital planes.6

5More explanation of these expressions, along with relevant formulas for calculating their values, can
be found in Appendix 4.6.2.

6It is interesting to note that any attempt to define the orbital phases of precessing systems separately,
and then compare them as some ΦB−ΦA, is either ill defined or degenerate—as shown in Appendix 4.6.2.
This does not mean that it is impossible to define such phases, but at best they will be degenerate;
multiple angles would be needed to represent the full dynamics.
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Despite these useful features of Φ∆, it may sometimes be interesting to use differ-

ent measures, to extract individual components of the binary evolution. For example,

Eq. (4.1a) describes the precession of the orbital plane. When comparing this precession

for two approaches, a more informative quantity than Φ∆ is simply the angle between

the ˆ̀ vectors in the two systems:

∠L = cos−1
(

ˆ̀PN · ˆ̀NR
)
. (4.12)

Similarly, we will be interested in understanding the evolution of the spin vectors, as

given in Eqs. (4.2). For this purpose, we define the angles between the spin vectors:

∠χ1 = cos−1
(
χ̂PN

1 · χ̂NR
1

)
, (4.13a)

∠χ2 = cos−1
(
χ̂PN

2 · χ̂NR
2

)
. (4.13b)

We will use all four of these angles below to compare the post-Newtonian and numerical

orbital elements.

4.3.4 Matching Post-Newtonian to Numerical Relativity

When comparing PN theory to NR results, it is important to ensure that the initial con-

ditions used in both cases represent the same physical situation. We choose a particular

orbital frequency Ωm and use the NR data to convert it to a time tm. To initialize a PN

evolution at tm, we need to specify

q, χ1, χ2, (4.14)

ˆ̀, n̂, χ̂1, χ̂2, (4.15)

Ω. (4.16)

The quantities (4.14) are conserved during the PN evolution. The quantities (4.15)

determine the orientation of the the binary and its spins relative to the inertial triad

(x̂, ŷ, ẑ). The orbital frequency Ω in Eq. (4.16), finally, parametrizes the separation

of the binary at tm. The simplest approach is to initialize the PN evolution from the

respective quantities in the initial data of the NR evolution. This would neglect initial

transients in NR data as in, e.g., Fig. 1 of Ref. [52]. These transients affect the masses

and spins of the black holes, so any further PN-NR comparisons would be comparing

slightly different physical configurations. The NR transients decay away within the first

orbit of the NR simulation, so one can consider initializing the PN evolution from NR
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Figure 4.3: Examples of the averaging procedure and error estimates employed for all
comparisons. Shown here are q1.97 random and q5.0 0.5x. PN evolutions were performed
with the Taylor T1 approximant. The thin blue lines show all the PN-NR matching
intervals.
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at a time after the NR run has settled down. However, the generally non-zero (albeit

very small) orbital eccentricity in the NR simulation can lead to systematic errors in the

subsequent comparison as pointed out in Ref. [33].

Therefore, we use time-averaged quantities evaluated after the initial transients have

vanished. In particular, given a numerical relativity simulation, we set the PN variables

listed in Eq. (4.14) to their numerical relativity values after junk radiation has propagated

away.

The remaining nine quantities Eqs. (4.15) and (4.16) must satisfy the constraint
ˆ̀· n̂ ≡ 0. We determine them with constrained minimization by first choosing an orbital

frequency interval [Ωm − δΩ/2,Ωm + δΩ/2] of width δΩ. Computing the corresponding

time interval [ti, tf ] in the NR simulation, we define the time average of any quantity Q

by

〈Q〉 =
1

tf − ti

∫ tf

ti

Qdt. (4.17)

Using these averages, we construct the objective functional S as

S = 〈(∠L)2〉+ 〈(∠χ1)2〉+ 〈(∠χ2)2〉+ 〈(∠n)2〉+ 〈(∆Ω)2〉 (4.18)

where ∆Ω = (ΩPN − ΩNR)/ΩNR, and ∠n is defined analogously to Eq. (4.12). When a

spin on the black holes is below 10−5 the corresponding term is dropped from Eq. (4.18).

The objective functional is then minimized using the SLSQP algorithm [101, 144] to allow

for constrained minimization. In Eq. (4.18) we use equal weights for each term; other

choices of the weights do not change the qualitative picture that we present.

The frequency interval [Ωm± δΩ/2] is chosen based on several considerations. First it

is selected after junk radiation has propagated away. Secondly, it is made wide enough so

that any residual eccentricity effects average out. Finally, we would like to match PN and

NR as early as possible. But since we want to compare various cases to each other, the

lowest possible matching frequency will be limited by the shortest NR run (case q8 -0.5z).

Within these constraints, we choose several matching intervals, in order to estimate the

impact of the choice of matching interval on our eventual results. Specifically, we use

three matching frequencies

mΩm ∈ {0.021067, 0.021264, 0.021461}, (4.19)

and employ four different matching windows for each, namely

δΩ/Ωm ∈ {0.06, 0.08, 0.1, 0.12}. (4.20)
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These frequencies correspond approximately to the range between 10-27 orbits to merger

depending on the parameters of the binary, with the lower limit for the case q1.0 -0.5x

and the upper for q8.0 0.5x.

Matching at multiple frequencies and frequency windows allows an estimate on the

error in the matching and also ensures that the results are not sensitive to the matching

interval being used. In this article, we generally report results that are averaged over the

12 PN-NR comparisons performed with the different matching intervals. We report error

bars ranging from the smallest to the largest result among the 12 matching intervals.

As examples, Fig. 4.3 shows Φ∆ as a function of time to merger tmerge for the cases

q1.97 random and q5 0.5x for all the matching frequencies and intervals, as well as the

average result and an estimate of the error. Here tmerge is the time in the NR simulation

when the common horizon is detected.

4.4 Results

4.4.1 Precession Comparisons

We apply the matching procedure of Sec. 4.3.4 to the precessing NR simulations in Table

4.1. PN–NR matching is always performed at the frequencies given by Eq. (4.19) which

are the lowest feasible orbital frequencies across all cases in Table 4.1. Figure 4.1 shows

the precession cones for the normal to the orbital plane ˆ̀ and the spins χ̂1,2. As time

progresses, ˆ̀ and χ̂1,2 undergo precession and nutation, and the precession cone widens

due to the emission of gravitational radiation. Qualitatively, the PN results seem to

follow the NR results well, until close to merger.

We now turn to a quantitative analysis of the precession dynamics, establishing first

that the choice of Taylor approximant is of minor importance for the precession dynam-

ics. We match PN dynamics to the NR simulations q5 0.5x and q1 0.5x for the Taylor

approximants T1, T4 and T5. We then compute the angles ∠L and ∠χ1. Figure 4.4

shows the resulting ∠L. During most of the inspiral, we find ∠L of order a few 10−3

radians increasing to ∼ 0.1 radians during the last 1000M before merger. Thus the di-

rection of the normal to the orbital plane is reproduced well by PN theory. This result

is virtually independent of the Taylor approximant suggesting that the choice of approx-

imant only weakly influences how well PN precession equations track the motion of the

orbital plane. In other words, precession dynamics does not depend on details of orbital

phasing like the unmodeled higher-order terms in which the Taylor approximants differ

from each other.
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Figure 4.4: Angle ∠L by which ˆ̀PN(t) differs from ˆ̀NR(t) for the configuration q1 0.5x
(red lines) and q5 0.5x (black lines). ∠L ≤ 0.2◦ except very close to merger. In each
case, the PN predictions based on different PN approximants are shown in different line
styles. Shown is the point-wise average of 12 ∠L(t) curves, i.e. the thick red line of
Fig. 4.3. The thin horizontal lines show the widest edges of the PN matching intervals.
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Figure 4.5: Angle ∠χ1 by which ~χPN
1 (t) differs from ~χNR

1 (t) for the configuration q1 0.5x
(red lines) and q5 0.5x (black lines). In each case, the PN predictions based on different
PN approximants are shown in different line styles. The thin horizontal lines show the
widest edges of the PN matching intervals.

Turning to the spin direction χ̂1 we compute the angle ∠χ1 between χ̂NR
1 (t) and

χ̂PN
1 (t) and plot the result in Fig. 4.5. While Fig. 4.5 looks busy, the first conclusion is

that ∠χ1 is quite small . 0.01 rad through most of the inspiral, and rises somewhat close

to merger.

The pronounced short-period oscillations of ∠χ1 in Fig. 4.5 are caused by differences

between PN-nutation features and NR-nutation features. To better understand the nuta-

tion features and their impact on the angle ∠χ1, we remove nutation features by filtering

out all frequencies comparable to the orbital frequency. This is possible because the pre-

cession frequency is much smaller than the nutation frequency. The filtering is performed

with a 3rd order, bi-directional low pass Butterworth filter [140] with a fixed cutoff fre-

quency chosen to be lower than the nutation frequency at the start of the inspiral. Due to

the nature of the filtering, the resulting averaged spin will suffer from edge effects which

affect approximately the first and last 1000 M of the inspiral. Furthermore, the precession

frequency close to merger becomes comparable to the nutation frequency at the start of

the simulation and thus filtering is no longer truthful in this region. Therefore, we only

use the “averaged” spins where such features are absent.

Applying this smoothing procedure to both χ̂PN
1 and χ̂NR

1 for the run q5 0.5x, we
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Figure 4.6: Angle ∠χ̃1 between the “orbit-averaged” spins for the configuration q5 0.5x.
The non orbit-averaged difference ∠χ1 (cf. Fig. 4.5) is shown for comparison. Shown is
one matching interval as indicated by the thin horizontal line.

compute the angle ∠χ̃1 between the averaged spin vectors, χ̃PN
1 and χ̃NR

1 . This angle is

plotted in Fig. 4.67, where results only for the Taylor T1 approximant are shown, and

for only one matching interval specified by mΩm = 0.0210597 and δΩ/Ωm = 0.1. The

orbit-averaged spin directions χ̃
NR/PN
1 agree significantly better with each other than the

non-averaged ones (cf. the black line in Fig. 4.6, which is duplicated from Fig. 4.5). In

fact, the orbit-averaged spin precessing between NR and PN agrees as well as the orbital

angular momentum precession, cf. Fig. 4.4. Thus, the difference in the spin dynamics is

dominated by the nutation features, with the orbit-averaged spin dynamics agreeing well

between PN and NR.

Motivated by the separation of timescales, orbit-averaged PN precession equations

were developed and widely used in literature (see e.g. [11, 99, ?]). Because these equa-

tions eliminate the orbital time-scale, they are much easier to integrate. For example,

the SpinTaylorT4 model of the LIGO Algorithm Library [54] utilizes the leading order

orbit-averaged precession equations [40]. As an example, we construct and match orbit-

averaged and full PN precession equations at leading order in spin-orbit and spin-spin

couplings (i.e, the precession equations are at 2 PN order). Figure 4.7 presents χ and ˆ̀

7To illustrate edge effects of the Butterworth filter, Fig. 4.6 includes the early and late time periods
where the filter affects ∠χ̃1.
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for the case q5 0.5x for averaged and unaveraged 2 PN precession equations, as well as

the full 3.5PN precession equations and NR data. It is evident that the orbit-averaged

equations do indeed reproduce the non-averaged behaviour. Further, we note that the

2PN results diverge from the NR data quickly outside of the matching region. Mean-

while the 3.5PN precession equations match the NR results much better throughout the

inspiral. Therefore, to improve on the leading-order orbit-averaged precession equations,

it is more important to increase the PN order than to avoid orbit-averaging.

We also test that our a posteori orbit-averaging reproduces the analytically orbit-

averaged precession equations. This is indeed the case as can be seen in Fig. 4.8. Shown

are the angles ∠χ1 and ∠L for the various choices of PN approximants. As one can

see, the angle between the aposteori-averaged PN equations and smoothed NR data

(e.g. χ̃1) lies on top of the angle between the orbit-averaged PN precession equations

and the smoothed NR data. Further, all of the curves lie essentially on top of one

another, reflecting that a priory and aposteori matching do not significantly bias the

comparison. Finally, the angle between the aposteori-averaged PN and the averaged

precession equations is approximately 10− 20 times smaller than the angle between PN

and NR. We thus have further confidence that the ad-hoc filtering procedure is a useful

tool for smoothing the NR data.

To characterize the nutation features in the spin vectors, we introduce a coordinate

system which is specially adapted to highlighting nutation effects. The idea is to visualize

nutation with respect to the averaged spin vector χ̃. We compute the time-derivative ˙̃χ

numerically. Assuming that the “averaged” spin is undergoing pure precession, so that

χ̃· ˙̃χ = 0, we define a new coordinate system (ê1, ê2, ê3) by ê1 = χ̃, ê2 = ˙̃χ/| ˙̃χ|, ê3 = ê1× ê2.

The spin is now projected onto the ê2− ê3 plane, thus showing the motion of the spin in

a frame “coprecessing” with the averaged spin. This allows us to approximately decouple

precession and nutation and compare them separately between PN and NR.

Figure 4.9 plots the projection of the spins χNR
1 and χPN

1 onto their respective “orbit

averaged” ê2− ê3 planes. We see that the behavior of the NR spin and the PN spins are

qualitatively different: For this single-spin system, the PN spin essentially changes only

in the ê3 direction (i.e., orthogonal to its average motion ˙̃χPN). In contrast, the NR spin

undergoes elliptical motion with the excursion along its ê2 axis (i.e., along the direction

of the average motion) about several times larger than the oscillations along ê3. The

symbols plotted in Fig. 4.9 reveal that each of the elliptic “orbits” corresponds approx-

imately to half an orbit of the binary, consistent with the interpretation of this motion

as nutation. The features exhibited in Fig. 4.10 are similar across all the single-spinning

precessing cases considered in this work. The small variations in spin direction exhibited
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Figure 4.7: Comparison of orbit averaged PN precession equations with the non-orbit
averaged equations. Plotted are χ̂ (left) and ˆ̀(right) on the unit sphere for 2 PN averaged
and non-averaged precession equations, 3.5 PN unaveraged precession equations and NR
data. The large black dot represents the centre (in time) of the matching interval (several
symbols overlap here). The other black dots represent the interval ±2000 M from the
matching point. The same is done for 2PN (orange dots) and 3.5PN (blue squares). Both
2PN curves lie on top of each other and match the NR data well close to the matching
region but then quickly diverge away. The 3.5 PN curve matches the NR result much
better throughout the inspiral.
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Figure 4.8: Comparison of aposteori averaging procedure described above to using
orbit-averaged PN precession equations for PN evolution for configuration q5 0.5x. The
curves labelled with 2PN avg use orbit-averaged precession equations. A ṽ means apos-
teori smoothing of v̂. There is virtually no difference between using the full precession
equations and filtering aposteori and using the orbit-averaged precession equations. The
angle between the orbit-averaged PN results and the aposteori-averaged PN results is
10-20 times smaller than the angles between PN and NR data showing that aposteori-
averaging does not bias the comparison. Shown is one matching interval as indicated by
the thin horizontal line.
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Figure 4.9: The projection of χ̂NR
1 and χ̂PN

1 onto the ê2−ê3 plane described in the text for
case q5 0.5x. The system is shown in the interval t− tmerge ∈ [−6662,−1556]. along the
ê3 axis. Meanwhile, the NR data show variations in ê2 and ê3 directions of comparable
magnitude. The solid symbols (black diamond for NR, red square for PN) indicate the
data at the start of the plotted interval, chosen such that χ̂1·n̂ is maximal—i.e., where the
spin projection into the orbital plane is parallel to n̂. The subsequent four open symbols
(blue diamonds for NR, green squares for PN) indicating the position 1/8-th, 1/4-th,
3/8-th and 1/2 of an orbit later.
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Figure 4.10: Characterization of nutation effects of the orbital angular momentum.
Top: angle ∠L̃ between the “averaged” ˆ̀ in PN and NR for the configuration q5 0.5x
(thick red line). ∠L is shown in thin black line for comparison (cf. Fig. 4.6). The thin
blue line shows ∠(ˆ̀, ˜̀) between the averaged and the filtered signal. Note that it is larger
than both ∠L and ∠L̃. Bottom: the projection of ˆ̀NR (gray) and ˆ̀PN (red) onto the
ê2 − ê3 plane described in the text for case q5 0.5x (cf. Fig. 4.10). The system is shown
in the interval [−6662,−1556]. Both PN and NR show the same behavior, in contrast to
the behavior of the spin in Fig. 4.9. The PN-NR matching interval is indicated by the
horizontal line in the top panel.
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Figure 4.11: Comparison of orbital plane and spin precession for the primary six pre-
cessing NR simulations. Top Left: ∠L as a function of time to merger. Top right: ∠L
as a function of orbital phase in NR. Bottom left: ∠χ1 as a function of orbital phase.
Bottom right: ∠χ̃1 between the averaged spins. All data plotted are averages over
12 matching intervals, cf. Fig. 4.3, utilizing the Taylor T4 PN approximant. The thin
horizontal lines in the top left panel show the widest edges of the PN matching intervals.

in Fig. 4.9 are orders of magnitude smaller than parameter estimation capabilities of

LIGO, e.g. [?], and so we do not expect that these nutation features will have a negative

impact on GW detectors. To understand the features of Fig. 4.9 in more detail, it would

be beneficial to carefully compare gauge conditions between NR and PN, and to consider

spin supplementary conditions.

Let us now apply our nutation analysis to the orbital angular momentum directions ˆ̀.

Analogous to the spin, we compute averages ˜̀NR and ˜̀PN, and compute the angle between

the directions of the averages, ∠L̃ = ∠
(

˜̀PN, ˜̀NR
)

. This angle—plotted in the top panel

of Fig. 4.10—agrees very well with the difference ∠L that was computed without orbit-

averaging. This indicates that the nutation features of ˆ̀ agree between NR and PN. The

top panel of Fig. 4.11 also plots the angle between the raw ˆ̀NR and the averaged ˜̀NR,

i.e. the opening angle of the nutation oscillations. As is apparent in Fig. 4.10, the angle
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between ˆ̀NR and ˜̀NR is about 10 times larger than the difference between NR and PN

(∠L or ∠L̃), confirming that nutation features are captured. The lower panel of Fig. 4.10

shows the projection of ˆ̀ orthogonal to the direction of the average ˜̀. In contrast to the

spins shown in Fig. 4.9, the nutation behavior of ˆ̀ is in close agreement between NR and

PN: For both, ˆ̀ precesses in a circle around ˜̀, with identical period, phasing, and with

almost identical amplitude. We also point out that the shape of the nutation features

differs between ˆ̀ and χ̂1: ˆ̀ circles twice per orbit around its average ˜̀, on an almost

perfect circle with equal amplitude in the ê2 and ê3 direction.

We now extend our precession dynamics analysis to the remaining five primary pre-

cessing NR simulations listed in Table 4.1. The top left panel of Figure 4.11 shows ∠L.

The difference in the direction of the normal to the orbital plane is small; generally

∠L . 10−2 radians, except close to merger. Thus it is evident that the trends seen in

Fig. 4.4 for ∠L hold across all the precessing cases. To make this behavior clearer, we

parameterize the inspiral using the orbital phase instead of time, by plotting the an-

gles versus the orbital phase in the NR simulation, as shown in the top right panel of

Fig. 4.11. Thus, until a few orbits to merger PN represents the precession and nutation

of the orbital plane well.

The bottom left panel of Fig. 4.11 establishes qualitatively good agreement for ∠χ1,

with slightly higher values than ∠L. As already illustrated in Fig. 4.6, nutation features

dominate the difference. Averaging away the nutation features, we plot the angle ∠χ̃1

between the smoothed spins in the bottom left panel of Fig. 4.11, where the behavior of

∠χ1 is very similar to that of ∠L. This confirms that the main disagreement between

PN and NR spin dynamics comes from nutation features, and suggests that the secular

precession of the spins is well captured across all cases, whereas the nutation of the spins

is not. For completeness, we also show a parametric plot of ∠L and ∠S versus orbital

frequency in the NR simulation in Fig. 4.12.

All configurations considered so far except q1.97 random have ~S · ˆ̀ = 0 at the start

of the simulations, where ~S = ~S1 + ~S2 is the total spin angular momentum of the system.

When ~S · ˆ̀= 0, several terms in PN equations vanish, in particular the spin orbit terms

in the expansions of the binding energy, the flux and the orbital precession frequency,

see Eqs. (4.34), (4.35), and (4.51) in Appendix A.

To verify whether ~S · ˆ̀ = 0 introduces a bias to our analysis, we perform our com-

parison on an additional set of 31 binaries with randomly oriented spins. These binaries

have mass ratio 1 ≤ q ≤ 2, spin magnitudes 0 ≤ χ1,2 ≤ 0.5, and correspond to cases

SXS:BBH:0115 - SXS:BBH:0146 in the SXS catalog. Fig. 4.13 plots ∠L for these ad-

ditional 31 PN-NR comparisons in gray, with q1.97 random highlighted in orange. The
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Figure 4.12: Comparison of orbital plane and spin precession for the primary six pre-
cessing NR simulations as functions of orbital frequency in NR. Right: ∠L;Left: ∠χ1.
All data plotted are averages over 12 matching intervals, cf. Fig. 4.3, utilizing the Taylor
T4 PN approximant.
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Figure 4.13: ∠L for additional 31 precessing configurations with arbitrary oriented spins
as well as the case q1.97 random. Here q ∈ (1, 2), χ1,2 ≤ 0.5. For all cases, ∠L < 0.5◦

throughout most of the inspiral. All data plotted are averages over 12 matching intervals,
cf. Fig. 4.3.
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disagreement between PN and NR is similarly small in all of these cases, leading us to

conclude that our results are robust in this region of the parameter space.

4.4.2 Orbital Phase Comparisons

Along with the precession quantities described above, the orbital phase plays a key role

in constructing PN waveforms. We use Φ∆, a geometrically invariant angle that reduces

to the orbital phase difference for non-precessing binaries (cf. Sec. 4.3.3) to characterize

phasing effects. We focus on single spin systems with mass-ratios from 1 to 8, where

the more massive black hole carries a spin of χ1 = 0.5, and where the spin is aligned or

anti-aligned with the orbital angular momentum, or where the spin is initially tangent to

the orbital plane. We match all NR simulations to post-Newtonian inspiral dynamics as

described in Sec. 4.3.4, using the 12 matching intervals specified in Eqs. (4.19) and (4.20).

We then compute the phase difference Φ∆ at the time at which the NR simulation reaches

orbital frequency mΩNR = 0.03.

The results are presented in Fig. 4.14, grouped based on the initial orientation of

the spins: aligned, anti-aligned, and in the initial orbital plane. For aligned runs, there

are clear trends for Taylor T1 and T5 approximants: for T1, differences decrease with

increasing mass ratio (at least up to q = 8); for T5, differences increase. For Taylor T4,

the phase difference Φ∆ has a minimum and there is an overall increase for higher mass

ratios. For anti-aligned runs, Taylor T5 shows the same trends as for the aligned spins.

Taylor T4 and T1 behaviors, however, have reversed: T4 demonstrates a clear increasing

trend with mass ratio, whereas T1 passes through a minimum with overall increases for

higher mass ratios. Our results are also qualitatively consistent with the results described

in [84] as we find that for equal mass binaries, the Taylor T4 approximant performs better

than the Taylor T1 approximant (both for aligned and anti-aligned spins).

For the in-plane precessing runs, we see clear trends for all 3 approximants: Taylor

T4 and T5 both show increasing differences with increasing mass ratio, and T1 shows

decreasing differences. These trends for precessing binaries are consistent with previous

work on non-spinning binaries [122], which is expected since for ~S · ˆ̀ many of the same

terms in the binding energy and flux vanish as for non-spinning binaries. Overall, we

find that for different orientations and mass ratios, no one Taylor approximant performs

better than the rest, as expected if the differences between the approximants arise from

different treatment of higher-order terms.
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Figure 4.14: Φ∆ as a function of mass ratio for BBH systems with χ1 = 0.5, and spin
direction aligned (top), orthogonal (middle), and anti-aligned (bottom) with the orbital
angular momentum. For clarity, the aligned/anti-aligned data are offset by +0.5 and
−0.5, respectively, with the thin horizontal black lines indicating zero for each set of
curves. Plotted is Φ∆ averaged over the 12 matching intervals, cf. Fig. 4.3, and for three
different Taylor approximants.
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Figure 4.15: Comparison of PN-NR precession dynamics when the expansion order of
the PN precession equations is varied. Shown is the case q3 0.5x. The top panel shows
the precession of the orbital plane, and the bottom panel of the spin χ̂1 (without and
with averaging). All data shown are averages over 12 matching intervals, cf. Fig. 4.3.
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4.4.3 Convergence with PN order

So far all comparisons were performed using all available post-Newtonian information.

It is also instructive to consider behavior at different PN order, as this reveals the con-

vergence properties of the PN series, and allows estimates of how accurate higher order

PN expressions might be.

The precession frequency $, given in Eq. (4.51), is a product of series in the fre-

quency parameter x. We multiply out this product, and truncate it at various PN

orders from leading order (corresponding to 1.5PN) through next-to-next-to-leading or-

der (corresponding to 3.5PN). Similarly, the spin precession frequencies ~Ω1,2 in Eqs. (4.2)

and (4.52) are power series in x. We truncate the power series for ~Ω1,2 in the same fashion

as the power series for $, but keep the orbital phase evolution at 3.5PN order, where

we use the TaylorT4 prescription to implement the energy flux balance. For different

precession-truncation orders, we match the PN dynamics to the NR simulations with the

same techniques and at the same matching frequencies as in the preceding sections.

When applied to the NR simulation q3 0.5x, we obtain the results shown in Fig. 4.15.

This figure shows clearly that with increasing PN order in the precession equations, PN

precession dynamics tracks the NR simulation more and more accurately. When only the

leading order terms of the precession equations are included (1.5PN order), ∠L and ∠χ1

are ≈ 0.1rad; at 3.5PN order this difference drops by nearly two orders of magnitude.

We repeat this comparison for our six main precessing cases from Table 4.1. The

results are shown in Fig. 4.16 and once again the angles are evaluated at the time the

NR simulation reaches orbital frequency of mΩNR = 0.03. It is evident that for all cases

∠L decreases with increasing order in the precession equations with almost 2 orders of

magnitude improvement between leading order and next-to-next leading order trunca-

tions. A similar trend is seen in the convergence of the spin angle ∠χ1 shown in bottom

panel of Fig. 4.16. The angle decreases with PN order almost monotonically for all cases

except q1.0 twospins. However, this is an artificial consequence of picking a particular

matching point at mΩ = 0.03: as can be seen from the bottom panel of Fig. 4.15 ∠χ1

shows large oscillations and it is a coincidence that the matching point happens to be in

a “trough” of χ1.

So far we have varied the PN order of the precession equations, while keeping the

orbital frequency evolution at 3.5PN order. Let us now investigate the opposite case:

varying the PN order of the orbital frequency and monitoring its impact on the orbital

phase evolution. We keep the PN order of the precession equations at 3.5PN, and match

PN with different orders of the orbital frequency evolution (and TaylorT4 energy-balance

prescription) to the NR simulations. We then evaluate Φ∆ (a quantity that reduces to the
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Figure 4.16: Convergence of the PN precession equations for all cases in Table 4.1. The
evolution was done with the Taylor T4 approximant at 3.5 PN order. The leading order
spin-orbit correction is at 1.5 PN order and the spin-squared corrections appear at 2 PN
order. Each data point is the average ∠L over PN-NR comparisons performed using 12
matching intervals, cf. Fig. 4.3, with error bars showing the maximal and minimal ∠L
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orbital phase difference in cases where the latter is unambiguously defined) at the time

at which the NR simulation reaches the frequency mΩNR = 0.03. We examine our six

primary precessing runs, and also the aligned-spin and anti-aligned spin binaries listed

in Table 4.1.

When the spin is initially in the orbital plane, as seen in the top panel of Fig. 4.17,

the overall trend is a non-monotonic error decrease with PN order, with spikes at 1 and

2.5 PN orders as has been seen previously with non-spinning binaries [33]. All of the

aligned cases show a large improvement at 1.5 PN order, associated with the leading

order spin-orbit contribution. The phase differences then spike at 2 and 2.5 PN orders

and then decrease at 3 PN order. Finally, different cases show different results at 3.5 PN

with some showing decreases differences while for others the differences increase.

For the anti-aligned cases the picture is similar to precessing cases with a spike at

1 and 2.5 PN orders and monotonic improvement thereafter. The main difference from

precessing cases is the magnitude of the phase differences, which is larger by a factor of

∼ 5 at 3.5 PN order for the anti-aligned cases (see for example q1.5 s0.5x 0).

These results suggest that convergence of the orbital phase evolution depends sensi-

tively on the exact parameters of the system under study. Further investigation of the

parameter space is warranted.

4.4.4 Impact of PN spin truncation

As mentioned in Sec. 4.3.1, post-Newtonian expansions are not fully known to the same

orders for spin and non-spin terms. Thus, for example, the expression for flux F is

complete to 3.5 PN order for non-spinning systems, but spinning systems may involve

unknown terms at 2.5 PN order; a similar statement holds for dE/dx. This means that

when the ratio in Eq. (4.4), F/(dE/dx), is re-expanded as in the T4 approximant, known

terms will mix with unknown terms. It is not clear, a priori, how such terms should be

handled when truncating that re-expanded series.

Here we examine the effects of different truncation strategies. We focus on the Taylor

T4 approximant while considering various possible truncations of the re-expanded form of

F/(dE/dx). We denote these possibilities by the orders of (1) the truncation of non-spin

terms, (2) the truncation of spin-linear terms, and (3) the truncation of spin-quadratic

terms. Thus, for example, in the case where we keep non-spin terms to 3.5 PN order,

keep spin-linear terms to 2.5 PN order, and keep spin-quadratic terms only to 2.0 PN

order, we write (3.5, 2.5, 2.0). We consider the following five possibilities:

(i) (3.5, 3.5, 3.5)
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(ii) (3.5, 4.0, 4.0)

(iii) (3.5, 2.5, 2.0)

(iv) (3.5, 3.5, 2.0)

(v) (3.5, 4.0, 2.0).

To increase the impact of the spin-orbit terms, we examine aligned and anti-aligned

cases from Table 4.1, with results presented in Fig. 4.18,where once more Φ∆ is evaluated

at the time at which the NR simulation reaches the frequency mΩNR = 0.03 . For

aligned cases, no one choice of spin truncation results in small differences across all mass

ratios. All choices of spin truncation excepting (3.5, 4.0, 4.0) have increasing errors

with increasing mass ratio. Truncating spin corrections at 2.5 PN order (3.5, 2.5, 2)

consistently results in the worst matches. On the other hand, we find that, for anti-

aligned runs, adding higher order terms always improves the match, keeping all terms

yields the best result, and all choices of truncation give errors which are monotonically

increasing with mass ratio. Overall, anti-aligned cases have larger values of Φ∆ when

compared to cases with same mass ratios. This result is consistent with findings by Nitz

et al. [133] for comparisons between TaylorT4 and EOBNRv1 approximants.

4.4.5 Further numerical considerations

Numerical truncation error

Still to be addressed is the effect of the resolution of NR simulations in the present

work. The simulation q1 twospins is available at four different resolutions labeled N1,

N2, N3 and N4. We match each of these four numerical resolutions with the Taylor T4

approximant, and plot the resulting phase differences Φ∆ in Fig. 4.19 as the data with

symbols and error bars (recall that the error bars are obtained from the 12 different

matching regions we use, cf. Fig. 4.3). All four numerical resolutions yield essentially

the same Φ∆. We furthermore match the three lowest numerical resolutions against the

highest numerical resolution N4 and compute the phase difference Φ∆. The top panel

of Figure 4.19 shows Φ∆ computed with these 4 different numerical resolutions. All the

curves lie on top of each other and the differences between them are well within the

uncertainties due to the matching procedure. The bottom panel shows the differences

in Φ∆ between the highest resolution and all others. Throughout most of the inspiral,

the difference is ∼ 10%. Similar behavior is observed in other cases where multiple

resolutions of NR simulations are available. We therefore conclude that the effects of

varying numerical resolution do not impact our analysis.
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Figure 4.19: Convergence test with the numerical resolution of the NR simulation
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curves lie within uncertainties due to the matching procedure, indicating that numerical
truncation error does is not important in this comparison. The difference between each
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Numerical gauge change

The simulation SXS:BBH:0058 in the SXS catalog uses identical BBH parameters than

q5 0.5x, but suffers from two deficiencies, exploration of which will provide some addi-

tional insights. First, the switch from generalized harmonic gauge with fixed gauge-source

functions [33] to dynamical gauge-source functions [109, 175] happens near the middle

of the inspiral, rather than close to merger as for the other simulations considered. This

will give us an opportunity to investigate the impact of such a gauge change, the topic of

this subsection. Second, this simulation also used too low resolution in the computation

of the black hole spin during the inspiral, which we will discuss in the next subsection.

We emphasize that the comparisons presented above did not utilize SXS:BBH:0058, but

rather a re-run with improved technology. We use SXS:BBH:0058 in this section to

explore the effects of its deficiencies.

While the difference between PN and NR gauges does not strongly impact the nature

of the matching results, a gauge change performed during some of the runs does result

in unphysical behavior of physical quantities such as the orbital frequency. Figure 4.20

demonstrates this for case q5 s0.5x. The old run SXS:BBH:0058 with the gauge change

exhibits a bump in the orbital frequency (top panel), which is not present in the re-run

(solid curve). When matching both the old and the new run to PN, and computing the

phase difference Φ∆, the old run exhibits a nearly discontinuous change in Φ∆ (bottom

panel, dashed curves) while no such discontinuity is apparent in the re-run.

Problems in quasi-local quantities

Computation of the quasi-local spin involves the solution of an eigenvalue problem on

the apparent horizon followed by an integration over the apparent horizon, cf. [118,

139, 58]. In the simulations q1.0 0.5x, q1.5 0.5x and q3.0 0.5x and in SXS:BBH:0058

(corresponding to q5 0.5x), too low numerical resolution was used for these two steps.

While the evolution itself is acceptable, the extracted spin shows unphysical features.

Most importantly, the reported spin magnitude is not constant, but varies by several per

cent. Figure 4.21 shows as example χ1 from SXS:BBH:0058. For t − tmerge ≤ 3200M

oscillations are clearly visible. These oscillations vanish at t−tmerge ≈ 3200M , coincident

with a switch to damped harmonic gauge (cf. Sec. 4.4.5). Similar oscillations in q3 0.5

disappear when the resolution of the spin computation is manually increased about 1/3

through the inspiral, without changing the evolution gauge. Our new re-run q5 0.5x

(using damped harmonic gauge throughout), also reports a clean χ1, cf. Fig. 4.21. Thus,

we conclude that the unphysical variations in the spin magnitude are only present if both
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resent the recent re-run of q5 0.5x that is analyzed in the rest of this chapter. The
dashed curves represent an earlier run SXS:BBH:0058 which changes the gauge at
t − tmerge ≈ −3200M . Top: behavior of the orbital frequency mΩ in evolution with
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the resolution of the spin computation is low, and the old gauge conditions of constant

Ha are employed.

The NR spin magnitude is used to initialize the PN spin magnitude, cf. Eq. (4.14).

Therefore, an error in the calculation of the NR spin would compromise our comparison

with PN. For the affected runs, we correct the spin reported by the quasi-local spin

computation by first finding all maxima of the spin-magnitude χ between 500M and

2000M after the start of the numerical simulation. We then take the average value of

χ at those maxima as the corrected spin-magnitude of the NR simulation. Figure 4.21

shows the case q5 0.5x as well as the rerun described in Sec. 4.4.5. It is evident that this

procedure produces a spin value which is very close to the spin in the rerun where the

problematic behavior is no longer present. Thus, we adopt it for the three cases where

an oscillation in the spin magnitude is present.

The nutation features shown in Fig. 4.9 are qualitatively similar for all our simulations,

independent of resolution of the spin computation and evolution gauge. When the spin

is inaccurately measured, the nutation trajectory picks up extra modulations, which are

small on the scale of Fig. 4.9 and do not alter the qualitative behavior.

The lower two panels of Fig. 4.21 quantify the impact of inaccurate spin measurement

on the precession-dynamics comparisons performed in this chapter: The middle panel

shows the differences between the spin directions in the original 0058 run and our re-run

q5 0.5x. The spin directions differ by as much as 0.01 radians. However, as the lower

panel shows, this difference can mostly be absorbed by the PN matching, so that ∠χ1

and ∠L are of similar magnitude of about 10−3 radians.

4.5 Discussion

We have presented an algorithm for matching PN precession dynamics to NR simulations

which uses constrained minimization. Using this algorithm, we perform a systematic

comparison between PN and NR for precessing binary black hole systems. The focus

of the comparison is black hole dynamics only, and we defer discussion of waveforms to

future work. By employing our matching procedure, we find excellent agreement between

PN and NR for the precession and nutation of the orbital plane. The normals to the

orbital plane generally lie within 10−2 radians, cf. Fig. 4.11. Moreover, nutation features

on the orbital time-scale also agree well between NR and PN, cf. Fig. 4.10.

For the black hole spin direction, the results are less uniform. The NR spin direction

χ̂NR
1 shows nutation features that are qualitatively different than the PN nutation fea-

tures, cf. Fig. 4.9. The disagreement in nutation dominates the agreement of χ̂NR
1 with
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χ̂PN
1 ; averaging away the nutation features substantially improves agreement, cf. Fig. 4.6.

The orbit-averaged spin directions agree with PN to the same extent that the ˆ̀ direction

does (with and without orbit averaging), cf. Fig. 4.11.

Turning to the convergence properties of PN, we have performed PN-NR comparisons

at different PN order of the precession equations. For both orbital angular momentum ˆ̀

and the spin direction χ̂1, we observe that the convergence of the PN results toward NR

is fast and nearly universally monotonic, cf. Fig. 4.16. At the highest PN orders, the

spin results might be dominated by the difference in nutation features between PN and

NR.

The good agreement between PN and NR precession dynamics are promising news

for gravitational wave modeling. Precessing waveform models often rely on the post-

Newtonian precession equations, e.g. [14, 86]. Our results indicate that the PN precession

equations are well suited to model the precessing frame, thus reducing the problem of

modeling precessing waveforms to the modeling of orbital phasing only.

The accuracy of the PN orbital phase evolution, unfortunately, does not improve

for precessing systems. Rather, orbital phasing errors are comparable between non-

precessing and precessing configurations, cf. Fig. 4.17. Moreover, depending on mass-

ratio and spins, some Taylor approximants match the NR data particularly well, whereas

others give substantially larger phase differences, cf. Fig. 4.14. This confirms previous

work [60, 82, 82, 159, 122, 123] that the PN truncation error of the phase evolution is

important for waveform modeling.

We have also examined the effects of including partially known spin contributions

to the evolution of the orbital frequency for the Taylor T4 approximant. For aligned

runs, including such incomplete information usually improves the match, but the results

are still sensitive to the mass ratio of the binary (top panel of Fig 4.18). For anti-

aligned runs, it appears that incomplete information always improves the agreement of

the phasing between PN and NR (bottom panel of Fig 4.18).

In this work we compare gauge-dependent quantities, and thus must examine the

impact of gauge choices on the conclusions listed above. We consider it likely that the

different nutation features of χ̂1 are determined by different gauge choices. We have also

seen that different NR gauges lead to measurably different evolutions of χ̂, ˆ̀, and the

phasing, cf. Fig. 4.20 and 4.21. We expect, however, that our conclusions are fairly robust

to the gauge ambiguities for two reasons. First, in the matched PN-NR comparison, the

impact of gauge differences is quite small, cf. lowest panel of Fig. 4.21. Second, the near

universal, monotonic, and quick convergence of the precession dynamics with precession

PN order visible in Fig. 4.16 would not be realized if the comparison were dominated by
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gauge effects. Instead, we would expect PN to converge to a solution different from the

NR data.
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4.6 Appendix

4.6.1 Post-Newtonian dynamics

We consider compact object binary with masses m1,2 and carrying angular momentum
~S1,2. The post-Newtonian expressions are most conveniently written using the following

symbols:

m = m1 +m2, (4.21)

ν =
m1m2

m2
, (4.22)

δ =
m1 −m2

m
, (4.23)

~S = ~S1 + ~S2, (4.24)

sl =
~S · ˆ̀
m2

, (4.25)

sn =
~S · n̂
m2

, (4.26)
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~Σ =
m

m2

~S2 −
m

m1

~S1, (4.27)

σl =
~Σ · ˆ̀
m2

, (4.28)

σn =
~Σ · n̂
m2

, (4.29)

~χs =
1

2
(~χ1 + ~χ2) , (4.30)

~χa =
1

2
(~χ1 − ~χ2) , (4.31)

~S0 =
m

m1

~S1 +
m

m2

~S2, (4.32)

~s0 =
~S0

m2
. (4.33)

Energy and Flux

The energy and flux are written as power series in the expansion parameter x ≡ (mΩ)2/3:

E(x) = −1
2
mνx

(
1 +

∑
k=2 akx

k/2
)
, (4.34)

F(x) = 32
5
ν2x5

(
1 +

∑
k=2 bkx

k/2
)
. (4.35)

For the energy, coefficients are given explicitly by:

a2 = −3

4
− ν

12
, (4.36)

a3 = 2δσl +
14

3
sl, (4.37)

a4 = −27

8
+

19

8
ν − 1

24
ν2 + ν(~χ2

s − ~χ2
a − 3[(~χs · ˆ̀)2 − (~χa · ˆ̀)2]

+(
1

2
− ν){~χ2

s + ~χ2
a − 3[(~χs · ˆ̀)2 + (~χa · ˆ̀)2]}

+δ{~χs · ~χa − 3[(~χs · ˆ̀)(~χa · ˆ̀)]}, (4.38)

a5 = 11sl + 3δσl + ν

[
−61

9
sl −

10

3
δσl

]
, (4.39)

a6 = −675

64
+

[
34445

576
− 205

96
π2

]
ν − 155

96
ν2 − 35

5184
ν3, (4.40)

a7 =

(
135

4
− 367

4
ν +

29

12
ν2

)
sl + δ

(
27

4
− 39ν +

5

4
ν2

)
σl. (4.41)

Meanwhile for the flux F :

b2 = −1247

336
− 35

12
ν, (4.42)
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b3 = 4π − 4sl −
5

4
δσl, (4.43)

b4 = −44711

9072
+

9271

504
ν +

65

18
ν2 +

(
287

96
+

ν

24

)
(~χs · ˆ̀)2

−
(

89

96
+

7ν

24

)
~χ2
s +

(
287

96
− 12ν

)
(~χa · ˆ̀)2 +

(
−89

96
+ 4ν

)
~χ2
a

+
287

48
δ(~χs · ˆ̀)(~χa · ˆ̀)−

89

48
δ(~χs · ~χa), (4.44)

b5 = −8191

672
π − 9

2
sl −

13

16
δσl + ν

[
−583

24
π +

272

9
sl +

43

4
δσl

]
, (4.45)

b6 =
6643739519

69854400
+

16

3
π2 − 1712

105
γE −

856

105
log(16x) +

(−134543

7776
+

41

48
π2

)
ν

−94403

3024
ν2 − 775

324
ν3 − 16πsl −

31π

6
δσl, (4.46)

b7 =

(
476645

6804
+

6172

189
ν − 2810

27
ν2

)
sl +

(
9535

336
+

1849

126
ν − 1501

36
ν2

)
δσl

+

(
−16285

504

214745

1728
ν +

193385

3024
ν2

)
π, (4.47)

b8 =

(
−3485π

96
+

13879π

72
ν

)
sl +

(
−7163π

672
+

130583π

2016
ν

)
δσl, (4.48)

where γE denotes Euler’s constant.

Precession dynamics

The evolution of the orbital plane is governed by the frequency $ in Eq. (4.1a), which is

defined in terms of two auxiliary quantities, γ = m/r and al = ~a · ˆ̀:

γ = x

{
1 +

3− ν
3

x+
3σl + 5sl

3
x3/2 +

12− 65ν

12
x2 +

(
30 + 8ν

9
sl + 2σlδ

)
x5/2

+

[
1 + ν

(
−2203

2520
− 41π2

192

)
+

229ν2

36
+
ν3

81

]
x3

+

(
60− 127ν − 72ν2

12
sl +

16− 61ν − 16

6
σlδ

)
x7/2

+x2
(
~s 2

0 − 3(~s0 · ~̀)2
)}

, (4.49)

al =
x

7
2

m

{
7sn + 3σnδ + x

[
sn

(
−29ν

3
− 10

)
+ σnδ

(
−9ν

2
− 6

)]
+ x2

[
sn

(
52ν2

9
+

59ν

4
+

3

2

)
+ σnδ

(
17ν2

6
+

73ν

8
+

3

2

)]}
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−3x4

m
(~s0 · ˆ̀)(~s0 · n̂). (4.50)

Note that we have dropped the pure gauge term −22
3

ln (r/r′0) from γ. We now have

$ =
al γ

x3/2
. (4.51)

The spins obey Eqs. (4.2) with

~Ω1 = ˆ̀x
5
2

m

{
−3δ + 2ν + 3

4
+ x

[
10ν − 9

16
δ − ν2

24
+

5ν

4
+

9

16

]

+x2

[−5ν2 + 156ν − 27

32
δ − ν3

48
− 105ν2

32
+

3ν

16
+

27

32

]}

+
x3

m3

[
3m2

1

q
(~χ1 · n̂)n̂−m2

2~χ2 + 3m2
2(~χ2 · n̂)n̂

]
. (4.52)

The expression for ~Ω2 is obtained by ~χ1 ↔ ~χ2, m1 ↔ m2, δ ↔ −δ and q ↔ 1/q.

We re-expand the right-hand-side of Eq. (4.51), and truncate the expansion for $

and ~Ω1,2 at the same power of x beyond the leading order. We refer to the order of

the last retained terms as the precession PN order. For the majority of comparisons

presented in this chapter, we truncate at 3.5PN; truncation at lower PN order is only

used in Sec. 4.4.3. Note that spin-squared interactions imply the lack of circular orbits

for generic orientations of the spins. We neglect these complications in the present work.

4.6.2 Useful quaternion formulas

We refer the reader to other sources [68, ?] for general introductions to quaternions. Here,

we simply give a few formulas that are particularly important in this chapter. First, we

introduce some basic notation to be used for the four components of a general quaternion

Q:

Q = (q0, q1, q2, q3) = q0 + ~q . (4.53)

In this notation, the quaternion conjugate is just Q̄ = q0 − ~q, and we note that the

product of quaternions is given by

P Q = p0 q0 − ~p · ~q + p0~q + q0~p+ ~p× ~q . (4.54)
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The norm of a quaternion Q is defined by |Q|2 = QQ̄. The inverse of a quaternion is

Q−1 = Q̄/|Q|2, which means that the inverse of a unit quaternion is simply its conjugate.

The components of a unit quaternion R = r0 + ~r satisfy R R̄ = r2
0 + ~r · ~r = 1. Unit

quaternions are usually referred to as “rotors”. Any rotation can be expressed as a rotor,

where the rotor acts on a vector ~v according to the transformation law

~v ′ = R~v R̄ . (4.55)

The form of this expression ensures that ~v ′ is a pure vector; it has zero scalar part. To

see this, we note that a quaternion has zero scalar part if and only if its conjugate equals

its negative, which is true of the right-hand side above. We can use this fact, along with

~p · ~q = −1
2
(~p ~q + ~q ~p) and the unit-norm property R R̄ = 1, to see that the right-hand

side above is indeed an isometry. Finally, simple arguments using the cross product can

show that such a transformation preserves orientation, and since the origin is fixed, it is

therefore a simple rotation for any rotor R.

Exponential, logarithms, and square roots

The quaternions are closely analogous to complex numbers, except that quaternions do

not commute in general. One striking example of this analogy is Euler’s formula, which

generalizes quite directly. If we define the exponential of a quaternion by the usual power

series, we get for a unit vector û

exp[θ û] = cos θ + û sin θ , (4.56)

which is precisely Euler’s formula with i replaced by û. Every rotor R = r0 + ~r can be

expressed in this form, so it is easy to see that the logarithm of any rotor has zero scalar

part and is given by

~r := logR =
~r

|~r | arctan
|~r |
r0

. (4.57)

It is useful to note that the logarithm of a rotor is parallel to the vector part of the

rotor. Finding the magnitude of ~r, of course, is just the usual square root of the sum of

the squares of its components. And the arctan function is applied to real values, so we

can use standard implementations of the atan2 function to evaluate it. So we see that

both the exponential and logarithm of quaternions are extremely simple and numerically

robust to calculate.

These formulas can also be used to define general powers of quaternions. For the

purposes of this chapter, however, we only need one particular power of a quaternion:
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the square root. More specifically, given two unit vectors û and ŵ, we need the rotor

that takes ŵ to û by the smallest rotation possible, which is a rotation in their common

plane. This rotor is given [?] by

Rŵ→û =
√
−û ŵ = ± 1− û ŵ√

2[1− (û ŵ)0]
. (4.58)

In this expression, û ŵ represents the result of quaternion multiplication of the quater-

nions û and ŵ. (û ŵ)0 represents the scalar part of this product, so that the square root

in the denominator is acting on a real number. The sign ambiguity is generally irrele-

vant because of the double-sided transformation law for vectors, Eq. (4.55). However, in

certain special applications such as rotor interpolation, the sign must be chosen carefully

to be continuous [?].

Deriving the frame rotor from ˆ̀ and n̂

For both numerical relativity simulations and Post-Newtonian evolutions we have data

about the positions and velocities of the black holes, that can be used to derive the frame

rotor Rf, cf. Fig. 4.2. Given positions of the black holes as functions of time, it’s a simple

matter to calculate their unit separation vector n̂, and then to calculate ˆ̀ using

Ω ˆ̀= n̂× ˙̂n . (4.59)

Going from ˆ̀ and n̂ to the frame rotor Rf, the idea is to first rotate ẑ onto ˆ̀. This will

also rotate x̂ onto some x̂′. We then need to rotate x̂′ onto n̂, while leaving ˆ̀ in place.

Of course, the n̂-x̂′ is orthogonal to ˆ̀, so we just perform a rotation in that plane. This

is easily accomplished by the following formula:

Ri =

√
−ˆ̀ẑ , (4.60a)

Rf =
√
−n̂ (Ri x̂ R̄i) Ri . (4.60b)

Again, the square roots are to be evaluated using Eq. (4.58).

Comparing frame rotors

Reference [?] introduced a simple, geometrically invariant measure R∆ that encodes the

difference between two precessing systems as a function of time, easily reduced to a

single real number Φ∆ expressing the magnitude of that difference. These quantities were
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mentioned in Sec. 4.3.3 without much motivation, here we briefly review that motivation.

In general, we assume that there are two (analytical or numerical) descriptions of

the same physical system, and that we have two corresponding frames RfA and RfB. To

understand the difference between the frames, we can simply take the rotation that takes

one frame onto the other. In this case, the rotor taking frame A onto frame B is

R∆ := RfB R̄fA. (4.61)

Rotors compose by left multiplication, so it is not hard to see that this does indeed take

RfA onto RfB because the inverse of RfA is just its conjugate, so R∆ RfA = RfB.

A particularly nice feature of R∆ is that it is completely independent of the inertial

basis frame (x̂, ŷ, ẑ) with respect to which we define the moving frames. That is, if we

have another basis frame (x̂′, ŷ′, ẑ′), there is some Rδ such that x̂′ = Rδ x̂ R̄δ, etc. The

frame rotors would transform as RfA 7→ R′fA = RfA R̄δ, in which case we obtain

R′fB R̄
′
fA = RfB R̄δ Rδ R̄fA = RfB R̄fA. (4.62)

That is, R∆ is invariant.

Now, we seek a relevant measure of the magnitude of the rotation R∆. We know that

it may be written as a rotation through an angle φ about an axis v̂. Clearly, φ is the

measure we seek. The rotor corresponding to such a rotation is given by R = exp[φ v̂/2].

Thus, to find the angle, we just use the logarithm: φ = 2|logR|, where the norm is the

usual vector norm. Again, the formula for the logarithm of a rotor is a simple combination

of standard trigonometric functions applied to real numbers, as shown above. Using this

interpretation with our difference rotor, we see that the appropriate definition is

Φ∆ := 2
∣∣log

[
RfB R̄fA

]∣∣ . (4.63)

There is information contained in the direction of the logarithm. For example, the

component along ˆ̀ is related to the difference in orbital phase for non-precessing systems,

while the component orthogonal to ˆ̀ is related to the direction and magnitude of the

difference in ˆ̀ itself. For the sake of simplicity, however, we focus on the magnitude of

the logarithm, as given above.

Inadequacy of ΦA − ΦB for comparisons of precessing systems

In this Appendix we show that it is impossible—when analyzing precessing systems—to

compare two rotations RA and RB in a non-degenerate and geometrically invariant way
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by defining some phases ΦA and ΦB for them separately, and then comparing them as

ΦA − ΦB. This conclusion motivates our use of the Φ∆ quantity defined above, which

is both non-degenerate and geometrically invariant. Here, “non-degenerate” means that

the phase difference is zero if and only if RA and RB represent the same rotation, and

“geometrically invariant” means that the result is not affected by an overall rotation of

the basis used to define RA and RB.

The basic idea will not come as a surprise. Essentially, the conclusion stems from the

simple fact that—even locally—the three-dimensional rotation group does not look like

a (one-dimensional) phase. Any map from the former to the latter cannot be one-to-one,

even in an infinitesimal neighborhood of a point. In practical terms, this means that any

prescription for ΦA − ΦB can be “fooled”, and there will exist a two-dimensional space

of distinct rotations for which the corresponding values of ΦA − ΦB will be identical.

The basic result does not depend in any way on the topology of the groups involved;

it is a purely algebraic argument. As long as RA and RB could be non-commuting, the

conclusion will still hold. The phase function Φ need not be continuous; indeed, even

that very most basic topological notion—the open set—is superfluous. The inadequacy

of ΦA − ΦB is also independent of time; it holds at each instant of time, and for any

extended period of time. It does not rule out the possibility of using multiple measures

of the difference between the rotations simultaneously, one of which may take the form

ΦA −ΦB (though constructing a geometrically invariant measure in this way is not triv-

ial). Rather, it is simply the statement that ΦA −ΦB alone would be degenerate, and is

therefore inadequate for measuring the difference between general rotations. Moreover,

this inadequacy will be a problem for every system with nonzero precession, no matter

how small that precession may be. This conclusion has been the source of some con-

tention, but is an important point in guiding the analysis of precessing systems, so we

take this opportunity to present a careful explication and proof.

We begin by defining a function Φ such that Φ(RA) = ΦA and Φ(RB) = ΦB. The

domain of this function is a rotation group, which could be the one-dimensional group

U(1) for non-precessing systems, but must be the full three-dimensional group8 SU(2)

for general precessing systems. The range of Φ is the usual range of phases, the additive

group of real numbers modulo 2π. It will be useful to note that this is isomorphic

to U(1). Finally, non-degeneracy is the condition that ΦA − ΦB = 0 [or equivalently

Φ(RA) = Φ(RB)] if and only if RA = ±RB.

8Even though it is a double cover of the physical rotation group SO(3), we use SU(2) here for
consistency of notation, because it is the group of unit quaternions. The proof would actually be slightly
simpler for SO(3); we would have Φ(RA) = Φ(RB), if and only if RA = RB , and ker Φ′ = {1}.
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The condition of geometric invariance can be written as a condition on Φ itself. If, for

example, we measure everything with respect to some basis (x̂, ŷ, ẑ), and then measure

again with respect to some other basis (x̂′, ŷ′, ẑ′), we should get the same answer. Now,

there is some rotor Rδ that takes the first basis into the second. If RA is defined with

respect to the first basis, then the equivalent quantity will be RARδ with respect to the

second. Geometric invariance is then the statement

Φ(RARδ)− Φ(RB Rδ) = Φ(RA)− Φ(RB), (4.64)

for any choice of Rδ in SU(2). We will show that there is no such Φ because the rotation

group SU(2) is not isomorphic to U(1).

Since Eq. (4.64) is true for any rotor Rδ, we can choose Rδ = R−1
B , and find that

Φ(RAR
−1
B )− Φ(1) = Φ(RA)− Φ(RB). (4.65)

Now, we define another function Φ′(R) = Φ(R)− Φ(1). The last equation becomes

Φ′(RAR
−1
B ) = Φ′(RA)− Φ′(RB). (4.66)

In exactly the same way, we can see that

Φ′(RB R
−1
A ) = Φ′(RB)− Φ′(RA) = −Φ′(RAR

−1
B ). (4.67)

This must be true for all values of RA and RB, so we have shown that

Φ′(R−1) = −Φ′(R), (4.68)

for arbitrary R. Therefore, we can also see from Eq. (4.66) that

Φ′(R1R2) = Φ′(R1) + Φ′(R2), (4.69)

for arbitrary R1 and R2. This is precisely the statement that Φ′ is a group homomorphism

[from SU(2) to the additive group of real numbers modulo 2π].9

However, now we can impose the condition that ΦA−ΦB = 0 if and only if RA = ±RB.

Using the properties of homomorphism, it is clear that this is equivalent to the statement

that the set of all elements that map to 0 under Φ′ (the kernel) is just ker Φ′ = {−1, 1}.

9Note that this means only that Φ′ is a group homomorphism, rather than a topological group
homomorphism; Φ′ (equivalently Φ) is not required to be continuous.
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Then, the First Group Isomorphism Theorem [69] says that the image of Φ′ is iso-

morphic to SU(2) modulo this kernel, which of course is just SO(3). But the image

of Φ′ is (possibly a subgroup of) the group U(1), which is obviously not isomorphic to

SO(3). Therefore, it is impossible to construct a function Φ fulfilling our requirements

for precessing systems.

This conclusion holds whenever RA and RB come from a non-commutative group.

Topological structures associated with SU(2), SO(3), and U(1) are completely unused in

this proof. However, if we now consider the standard topology of SO(3), we know that

it is possible to find non-commuting elements inside any neighborhood of any point—

and in particular, inside any neighborhood of the identity. But precessing systems will

necessarily explore some such neighborhood, which means that their orientations may be

described by non-commuting rotors RA and RB. Thus, ΦA−ΦB would be an inadequate

measure of rotations for any system with any nonzero amount of precession.

It is, however, interesting to note that if we could restrict our rotations (including the

allowed coordinate rotations Rδ) to some subgroup of SU(2) isomorphic to U(1), there

would be no contradiction. This is why it is possible to construct a useful measure of

the form ΦA−ΦB for non-precessing systems—because the rotations can be restricted to

rotations about the orbital axis, which results in precisely the group U(1). On the other

hand, for precessing systems, the measure Φ∆ described in Secs. 4.3.3 and 4.6.2 is able to

satisfy both key features of a useful measure (non-degeneracy and geometric invariance)

because it simply does not attempt to define a homomorphism from the rotation group;

rather, it defines a (non-homomorphic, but non-degenerate and rotationally invariant)

function from two copies of the rotation group onto the phase group, SU(2)× SU(2)→
U(1).



Chapter 5

Modelling transitional precession

5.1 Chapter Overview

In this chapter, we introduce the notion of transitional precession in binary black hole

systems. During transitional precession, the total angular momentum of the binary

changes direction drastically, causing the orbital and angular momentum vectors to also

undergo a sudden change. This makes the dynamics of the binary much richer than usual.

Transitional precession has long been known in Post-Newtonian theory [11], but has

never been simulated in full numerical relativity. We outline the conditions necessary for

transitional precession to occur and examine a case of transitional precession in numerical

relativity.

5.2 Conditions for transitional precession

When the spins of the black holes and the orbital angular momentum are mis-aligned,

the spin-orbit interaction causes both the orbital plane and the spins to precess. Quite

generally, the dynamics is complicated, but for most configurations, the orbital angular

momentum ~L and the spins ~S1,2 precess around the total angular momentum ~J , which

approximately retains its direction during the entire inspiral. Such a system is said to

be undergoing simple precession [11]. However, when the spins are nearly anti-aligned

with angular momentum, and the total spin vector is equal in magnitude to the orbital

angular momentum, i.e., ~S ≡ ~S1 + ~S2 ' −~L, then the total angular momentum ~J

undergoes a drastic change of direction, migrating towards ~S. This is the regime of

transitional precession [11] that will be the focus of this chapter. Figure 5.1 shows an

example of of the dynamics for simple and transitional precession. The “migration” of

120
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x̂ 1.00.50.00.51.0 ŷ
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ẑ

1.0

0.5

0.0

0.5

1.0

Figure 5.1: Examples of simple (left) and transitional (right) precession. Shown are L̂
(solid) and Ĵ (dashed). The green and blue dots indicate the initial and final positions
respectively. Note that in the left plot, Ĵ is confined to a very small region. The binary
has q = 9, χ1 = 0.9, χ2 = 0. For the left panel, the misalignment angle is 145◦; for the
right, 175◦.The evolution was done with leading order PN equations [11].

Ĵ and L̂ between the 2 periods of simple precession around virtually fixed axes is the

hallmark of transitional precession.

Suppose the binary starts in the regime L = |~L| > S = |~S| with ~L and ~S nearly

anti-aligned. As the orbit shrinks due to the emission of gravitational waves, a stage

is reached when L < S so that J must have a minimum, and the system may undergo

transitional precession. In practice, the black holes might first merge.

Therefore, in order for transitional precession to occur before coalescence, the orbital

frequency of transitional precession ωtrans must be less than the orbital frequency at

merger. As an estimate for orbital frequency at merger, we take the ISCO frequency:

ωISCO =
1

63/2

1

m
. (5.1)

Thus, transitional precession occurs when

ωtrans . ωISCO. (5.2)

The simplest estimate for ωtrans is to find the orbital frequency when

~L ' −~S. (5.3)

Eqs. (5.2) and (5.3) have been used in literature to estimate the mass ratios that

are necessary for transitional precession to occur. Buonanno et al [41] take maximally
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spinning bodies and assume complete misalignment between the spins and the orbital

angular momentum (~S1 = −m2
1L̂, ~S2 = −m2

2L̂). Taking to lowest order ~L = ~LN =

µm2/3ω−1/3 ˆ̀, where ˆ̀ is the normal to the orbital plane, gives

µm2/3ω−1/3 = m2
1 +m2

2 =
m2(1 + q2)

(1 + q)2
= (1− 2ν)m2. (5.4)

Solving for ωtrans:

ωtrans =
ν3

m(1− 2ν)3
. (5.5)

Applying the condition Eq. (5.2) yields 1:

ν3

m(1− 2ν)3
.

1

63/2

1

m
=⇒ ν . 0.22, q & 2. (5.6)

Thus, no transitional precession can occur for equal-mass binaries.

Lousto and Zlochower [115] put a bound on the minimum mass ratio by taking the

test-particle limit and setting the magnitude of the orbital angular momentum at the

ISCO equal to the total spin vector (once again, perfect misalignment is assumed and

the spins are maximal). This gives

LISCO =
22

3
√

3

q

(1 + q)2
m2 = S = m2 (1 + q2)

(1 + q)2
. (5.7)

Solving the resulting quadratic yields q & 4, giving a more conservative estimate.

So far, we have assumed complete misalignment of the spin angular momentum with

the orbital angular momentum. Of course, no precession occurs if the spin vector ~S is

completely misaligned with ~L. Using Eq. (5.3), we can write to lowest order:

L = LN = −~S · ˆ̀ =⇒ µm2/3ω
−1/3
trans = −Sκ, (5.8)

where κ ≡ cos Ŝ · ˆ̀. This gives the estimate:

ωtrans =

(
−µm

2/3

Sκ

)3

. (5.9)

For a single spinning binary, Eq. (5.9) reduces to

ω = − 1

m

(
1

qχκ

)3

, (5.10)

1Reference [41] contains a typo in its Eq.(58) which reverses the sign of the inequality.
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where χ is the magnitude of the dimensionless spin of the spinning body.

The estimates Eqs. (5.6), (5.7) and (5.10) demonstrate that, even for high spin, we

require moderate mass ratios and close to complete misalignment between the total spin

and orbital angular momentum for transitional precession to occur before merger.

Following the discussion in Apostolatos et al [11], we define the dimensionless quantity

ε:

ε ≡ L

J

L̇/L

Ωp

, (5.11)

where Ωp is the precession frequency of the orbital angular momentum, and only the

more massive body (m1) carries spin. To lowest order, Ωp is given by:

Ωp =

(
2 +

3

2

m2

m1

)
J

r3
. (5.12)

We can rewrite ε as

ε =
16

5

1(
1 + 3

4
1
q

) (M
r

)3/2
1

γ2 + 2κγ + 1
, (5.13)

where M = m1 +m2, q = m1

m2
, and γ(t) ≡ S

L(t)
∝ S√

r
. It can be shown [11, 99] that

Ĵ = Ĵ0 + εĴ0 × ˆ̀+O(ε2). (5.14)

This demonstrates that when ε � 1, the direction of Ĵ is approximately fixed to a

constant direction Ĵ0. On the other hand, if ε becomes large, Ĵ will depart from Ĵ0 during

the inspiral. Thus, one can formulate the condition to distinguish simple precession

from transitional precession based on ε: if ε is small then the binary undergoes simple

precession, and if ε & 0.5 then transitional precession is taking place [11].

The typical behaviour of ε is shown in Figure 5.2 for a range of misalignment angles.

Depending on the misalignment angle, ε can have either one or two critical points. Sys-

tems that undergo the sequence simple-transitional-simple must have 2 critical points.

This is because in this sequence, ε & 0.5 at the start of transitional precession and ε . 0.5

at the end, so that ε must have a local maximum before merger. But ε → ∞ as r → 0,

so by continuity, ε must also have a local minimum.

For completeness, we note that there is no universally accepted notion of what con-

stitutes transitional precession. Various authors have adapted different criteria, all of

them based on some aspect of behaviour of Ĵ ; see e.g. [41], where transitional precession

is broadly defined to have taken place if
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Figure 5.2: ε as a function of r for several values of the misalignment angle for a q = 9,
χ1 = 0.9, χ2 = 0 binary.

min
t
Ĵ(t) · Ĵ0 < 1− εJ , (5.15)

where εJ = 0.05, 0.1. Thus, this criterion checks how much Ĵ has changed from its initial

direction.

An important feature of transitional precession is the number of orbits spent “tum-

bling”. To lowest order, this can be taken to be [99]

N =
Φ

2π
=

1

64νπ
((mωi)

−5/3 − (mωf )
−5/3), (5.16)

where ωi and ωf are the starting and ending orbital frequencies respectively. For the

example shown in the right panel of Figure 5.1, this yields ' 180 orbits from the start of

transitional precession (ε & 0.5) to the end (ε . 0.5). The total number of orbits from

the start of transitional precession to merger is ' 2000.

Apostolatos et al [11] point out that, in order for the entire simple-transitional-simple

sequence to occur, the binary must start with Li/S & 2 and have Lf/S . 1
2

before

merger. Since L ∝ √r and
√
r ∝ ω−1/3, it follows that

Li
Lf

= 4 =⇒ ωf
ωi

= 43 = 64. (5.17)

Therefore, the orbital frequency must change by a factor of 64 during inspiral. This is
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q ~χ κ MΩ D0/M Norbits Ecc.

6 (0.0, 0.0679, -0.646) 0.9947 0.0148 15.76 28 1.2× 10−3

Table 5.1: The parameters of the numerical relativity transitional precession candidate.
Here q is the mass ratio, ~χ is the dimensionless spin, κ = cos(ˆ̀ · Ŝ) at the initial time,
Mω is the dimensionless orbital frequency, and D0/M is the coordinate separation.

indeed the case for the transitionally precessing example of Figure 5.1, where L/S ∼ 2.25

at the start of the simulation and L/S ∼ 0.3 at ISCO. Taking the ending frequency to

be ωf = ωISCO, we obtain ωi ' 0.001. Then, considering as a lower bound the case of an

equal-mass binary, Eq. (5.16) above gives ' 1500 orbits. This is presently outside the

reach of full numerical relativity. A more complete analysis taking into account the full

PN evolution to highest available order is the subject of future work.

5.3 Transitional precession in numerical relativity

As shown in the previous section, transitional precession requires a fine-tuning of initial

conditions to take place before the black holes merge. In particular, we found that

moderate mass ratios and high spins are needed; therefore, simulating the sequence

simple-transitional-simple in full numerical relativity is outside our current computational

abilities. Instead, we attempt to capture only the highly dynamical transitional part. The

parameters of the system under study are outlined in Table 5.3. For simplicity, we chose

a system with only one black hole spinning.

The coordinate trajectories of the black holes in the inertial frame are shown Fig-

ure 5.3. One can see that the orbital plane is precessing and that the coordinate centre

of mass is slowly drifting linearly along x and z directions. This motion is due to the

residual linear momentum in the initial data 2. For the analysis here, we ignore this

effect.

To establish that the binary is undergoing transitional precession, we compute the

total angular momentum ~J as

~J ≡ ~JADM − ~Jrad, (5.18)

where ~JADM is ADM angular momentum evaluated in initial data and ~Jrad is the angular

momentum emitted by the binary, which is computed from the gravitational waves [157].

The properties of the total angular momentum ~J are shown in Figure 5.4. Several

2See Chapter 2 for a more detailed description of this effect
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Figure 5.3: Trajectories of the apparent horizons in inertial coordinates projected onto
the x–y plane(left) and x–z plane (right).

important features are obvious. Firstly, the total angular momentum changes direction

drastically during the evolution, essentially reversing its z component. The angle α(t) ≡
Ĵi · Ĵ(t) grows to ' 1.8 radians at merger, which is much larger than observed in any

previous simulations. Computing the angle between ~JADM and the final spin of the

black hole ~Sf , and comparing this angle to the final value of α, we find the fractional

difference in the angles to be ' 0.3%, confirming the validity of our use of Eq. (5.18)

and the determination of ~Jrad. Secondly, the magnitude of total angular momentum

goes through a minimum shortly before merger, decreasing by about 60% before growing

again. Both of these observations are consistent with the binary undergoing transitional

precession. In this case, the period of transitional precession started before the numerical

relativity simulation began and ended due to the black holes merging.

We also monitor the spin of the black holes during the evolution using quasi-local

measures [118, 139], and compute the orbital angular momentum ~L:

~L = ~J − ~S. (5.19)

There is an ambiguity in this definition: ~S is measured as a function of coordinate time,

whereas ~J is evaluated at a retarded time t − r∗ as defined in Eqs.(14a,14b) of [34].

This ambiguity would be present in any comparison of quantities evaluated in the wave

zone with quantities from the near zone. For simplicity, we disregard this ambiguity and

assume that the retarded and coordinate times are the same.
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Ĵf

α

0.04

0.06

0.08

0.1

0.12

0.14

J 
 (

M
2
)

0 2000 4000 6000 8000

t-r* (M)

π/4

π/2

3π/4

α
 (

ra
d

)

t
m
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unit sphere. The blue dots show time intervals of 1000 M, and the green dots denote
the final positions of L̂ and Ŝ. Right: Top panel shows the evolution of κ. The bottom
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Figure 5.5 shows the motion of the spin ~S and the orbital angular momentum ~L.

They start with a misalignment angle of 174 degrees and travel in opposite directions

on the unit sphere. This motion is very different from typical precession and does not

correspond to precession cones (see Chapter 4 for examples). Instead, we observe a

secular “migration”, when spins and orbital angular momentum are “precessing” around

the transiting total angular momentum, coupled with nutations that take place on the

orbital timescale. The top panel of Figure 5.5 shows that κ is conserved to a very good

approximation (' 2%) throughout the inspiral. This means that the angle between ~L and
~S is nearly constant during the period of transitional precession. Finally, we examine the

difference between the direction of total orbital angular momentum L̂ and the normal

to the orbital plane ˆ̀. From Figure 5.5, we see that β = cos−1 ˆ̀ · L̂ is smaller than

0.005 radians throughout the inspiral, which means that ˆ̀and L̂ evidently have the same

secular evolution but differ in their instantaneous nutations. All of these observations

are consistent with expectations from PN theory.

We make a direct comparison with Post-Newtonian theory by applying the for-

malism developed in Chapter 4. The matching is performed at orbital frequencies

Mω = 0.0171203, 0.0172804, 0.0174404, and with four different window widths. We

evolve both the orbital frequency and the precession equations at 3.5 PN order.

Figure 5.6 shows angle ∠L between the normals to the orbital plane; and ∠χ, the angle

between the spins. Both angles are . 0.03 radians throughout the inspiral, regardless

of the Taylor approximant used. This suggests that PN precession equations are fairly

accurate, even for transitionally precessing binaries.

We illustrate the motion of ˆ̀ and Ŝ on the unit sphere in Figure 5.7. As one can see,

there is fairly good agreement between PN and NR.

Turning our attention now to the orbital phasing, we examine the phase differences

between PN and NR for different Taylor approximants, using the rotationally invariant

quantity Φ∆ introduced in Chapter 4. The results follow the same trend found previously

for comparably high mass ratios (q ≥ 5): Taylor T1 and T5 agree better with NR than

T4, as seen in Figure 5.8. However, even for the best performing Taylor approximant,

the phasing error is over a radian close to merger, which is again consistent with previous

results for non-spinning binaries of similar mass ratios.

Finally, we compare the PN prediction for the total angular momentum ~JPN to the

NR results. We find good agreement both in direction and magnitude up until close to

merger, as shown in Figure 5.9. The angle ∠J between the PN and NR predictions stays

below 0.1 radians throughout the inspiral, and the magnitude of ~J is accurate to within

' 1%.
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In the future, we plan to extend the scope of the study in three ways: by examining in

detail the behaviour of the waveforms with the goal of constructing hybrids, by including

a comparison with the precessing EOB model (SEOBNRv3 described in [141]), and by

performing more numerical relativity simulations to explore parameter space dependence

of the dynamics, utilizing Post-Newtonian theory results to pick appropriate candidates.

5.4 Summary

We have characterized the conditions necessary for transitional precession to occur and

analyzed a full numerical relativity simulation that displays transitional precession. We

have found that Post-Newtonian precession equations fairly accurately describe the mo-

tion of the angular momentum and spin vectors during this highly dynamical phase.



Chapter 6

Conclusions and future work

It is a very exciting time to be part of the gravitational physics community. With the ad-

vent of advanced gravitational wave detectors, and more accurate long-term observations

of pulsars by pulsar timing arrays, the possibility of detection of gravitational waves is

very likely. This will open up an entirely new branch of astronomy that will allow us

to glean new information about many interesting systems and about the universe itself.

The prospect of combining gravitational wave observations with their electromagnetic

and neutrino counterparts for astrophysical phenomena, such as neutron star - neutron

star mergers, is a particularly enticing one.

One of the more promising sources of gravitational waves are black hole binaries.

Very little is known observationally about such systems; gravitational wave astronomy

will allow us to probe them for the first time. Of special interest are precessing binaries,

as they exhibit rich dynamics that lead to complicated modulations of the gravitational

waveform. For ground-based interferometric detectors, extremely accurate models of the

gravitational wave signal are required for reliable signal detection and for parameter es-

timation. Many different approaches to this problem have been developed. Enormous

progress has been made in the semi-analytic approximation domain, including success-

ful methods such as Post-Newtonian theory, Effective One Body model and self-force

expansion. Meanwhile, advances in numerical relativity have allowed direct numerical

integration of the two-body problem.

While much has been accomplished, many challenges remain. Chief among them are

the numerical exploration of precessing BBH parameter space and construction of fast

analytical models that can be used as templates for GW searches.

In this dissertation, we have explored various aspects of modelling precessing binary

black hole systems. In Chapters 2 and 3, we have examined new techniques to enhance

and extend the abilities of SpEC to simulate generically precessing binaries, especially at

132
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high mass ratio and high spin. In particular, we first presented a new version of the ini-

tial data solver which featured enhanced robustness in a much larger region of parameter

space. An updated method to control linear momentum in initial data was also shown

to eliminate spurious gravitational wave mixing due to the drift of the centre of mass

during the evolution. We then discussed a novel parametrization of rotations via quater-

nions that allowed for generically precessing binaries to be simulated in SpEC. Chapters

4 and 5 used results of numerical simulations of precessing binaries to explore their dy-

namics and to perform a comparison to post-Newtonian predictions. After developing a

matching procedure to associate physical parameters between numerical relativity and

post-Newtonian theory in Chapter 4, we performed a systematic comparison of preces-

sion dynamics. We found good agreement for the precession of the orbital planes and

the spins. We also found that the nutation features of the spin dynamics do not match

between numerical relativity and post-Newtonian theory. Examining the orbital phasing,

we found that different Taylor approximants match numerical relativity best in different

regions of parameter space, in line with previous investigations. Finally, the convergence

of the post-Newtonian precession equations and of the Taylor T4 approximant were inves-

tigated. The precession equations were found to converge essentially monotonically with

PN order, in sharp contrast to the convergence of the orbital phase, which experienced

sharp features at some PN orders. Chapter 5 explored a particularly interesting regime

of precession, in which the direction of total angular momentum changes significantly

during the inspiral. This transitional precession has been predicted in Post-Newtonian

theory but has not been simulated in numerical relativity. We reviewed features of tran-

sitional precession and then presented a numerical relativity simulation exhibiting the

characteristics of transitional precession. Applying the formalism developed in Chapter

4, we again found good agreement with post-Newtonian theory.

The above projects have several interesting extensions. On the numerical side, the

new initial data code has opened up the possibility of simulating high-mass ratio and/or

high spin precessing binaries. While the evolution itself remains computationally very

demanding, simulations starting close to merger are of interest for determining the phys-

ical properties of the remnant black hole (i.e. mass, spin, and velocity) for calibration of

fitting formulae and analytical waveform models (for the former, see e.g. [91, 116]; for

the latter, see [62] and references therein). With the new code, hyperbolic encounters

between black holes and dynamical capture binaries can also be explored. These simula-

tions can serve as models for strong-field interactions in dense stellar environments. They

also provide interesting new regimes for calibrating semi-analytic approximations [63]. Fi-

nally, we can simulate more transitionally precessing binaries to explore this phenomenon
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in the fully non-linear regime. On the analytic side, the work of Chapters 4 and 5 can

be extended to use the precessing EOB model (SEOBNRv3 [141]). Further, creating

precessing hybrid waveforms is of great interest for data analysis purposes.
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Scheel, and Béla Szilágyi. Comparing post-Newtonian and numerical-relativity

precession dynamics. 2015.

[137] Serguei Ossokine, Francois F. Foucart, Harald P. Pfeiffer, Michael Boyle, and Béla
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