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BLASTPol, the Balloon-borne Large Aperture Submm Telescope for Polarimetry,

measures linearly polarized Galactic dust emission in order to map magnetic field

morphology in nearby molecular clouds. The role played by magnetic fields in

providing support against gravitational collapse of clouds and cores and in forming

observed cloud morphology is a key outstanding question in our understanding of

star formation. BLASTPol has the unique combination of sensitivity to large scale

magnetic fields, and sub-arcminute resolution necessary to trace fields into prestellar

cores and dense filaments. Thus BLASTPol provides a crucial link between the low

resolution Planck all-sky maps and the detailed but narrow field of view capabilities

of ALMA.

The telescope operates simultaneously in three bands at 250, 350 and 500 µm

which span the SED peak of 10-20K cold dust. This thesis gives an overview of the

instrument, with special focus on the telescope motor control and scanning strategy.

BLASTPol has had two science flights, both launched from Antarctica. The first

flight began in December 2010 and lasted for 9.5 days. The 2010 flight had a number of

problems, most significantly a damaged IR blocking filter which degraded the optical

performance of the telescope. The second BLASTPol flight began in December 2012

and had much better instrument performance resulting in 12.5 days of science data.
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The performance of the instrument is reviewed, with the goal of providing insight for

future BLASTPol flights and balloon telescopes.

Reduction of the 2010 flight data was challenging because of the systematics

associated with the damaged IR blocking filter. A review is given of the data reduction

pipeline, instrumental polarization characterization, and a series of null consistency

tests designed to reject polarization pseudo-vectors contaminated by systematics. This

pipeline was tested with timestreams generated from an instrument simulator. The

goal of these simulations was to show that the BLASTPol instrument can be used to

reconstruct polarization morphology.

The 2012 data is of better quality and preliminary data reduction products have

been run through the 2010 pipeline. Though the resulting maps are preliminary they

highlight the potential of these data to provide the most detailed maps to date of

magnetic field morphology in molecular clouds. These maps will be used to study the

relationship between large and small scale magnetic fields in molecular clouds, the

degree of order in the field, and the relationship between the magnetic field structure

and the morphology of filaments and cores within the clouds.
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Chapter 1

Introduction

1.1 Overview

Understanding the formation of stars is crucial to understanding our observable

universe. Without the foundations of star formation theory it would be impossible to

construct models of galaxies, chemical evolution of the universe, or planet formation.

Despite major advances in recent decades, there are a number of important unsolved

problems in star formation.

A major outstanding question in star formation is the role that magnetic fields

play in the star formation process. According to some theories magnetic fields play a

dominant role in setting both mass and timescales for star formation (see for example

Shu et al. (1987); Basu & Ciolek (2004)). According to other theories magnetic fields

are relatively unimportant, and it is supersonic turbulence that controls star formation

(e.g. Mac Low & Klessen (2004)). In other star formation theories both magnetic fields

and turbulence play important roles (Nakamura & Li 2008; 2011).

Magnetic fields are difficult to measure, especially in dense molecular clouds. One

method of observing magnetic field structure in star forming regions is to detect

polarized submillimeter or millimeter emission from dust grains aligned with the local

1
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magnetic field. Maps of polarized dust emission can be then used to trace magnetic

field morphology across the molecular cloud.

The Planck satellite will map the polarization of the whole sky but at only ∼5′ res-

olution, meaning Planck will have only a few independent polarization measurements

per molecular cloud (Planck Collaboration et al. 2011). ALMA (Brown et al. 2004) will

map polarization structure in prestellar and protostellar cores and disks but with no

sensitivity to larger scale magnetic fields.

My Ph.D. research focused on the design, construction, science planning and data

analysis for BLASTPol, the Balloon-borne Large Aperture Submillimeter Telescope

for Polarimetry, an experiment designed to map magnetic fields in molecular clouds.

BLASTPol observes simultaneously at 250, 350 and 500 µm, with 30′′ diffraction

limited resolution at 250µm. BLASTPol is unique in that it can trace magnetic fields

across entire molecular clouds with resolution sufficient to follow the fields down into

dense cloud substructures, such as cores and dense filaments. In this way BLASTPol

bridges the gap between the polarization capabilities of Planck and ALMA.

In this chapter I give scientific background information, explain the advantages

BLASTPol has over many other polarimeters and the scientific goals of the experiment.

In Chapter 2 I give an overview of the experiment with a particular focus on the

systems I was involved in designing: the motor control systems, polarimetry strategy,

and motor control software. Chapter 3 focuses on the flight planning work I led and

the performance of the instrument during the two BLASTPol science flights. Chapter

4 reviews the analysis pipeline and shows that the instrument can actually reconstruct

polarization through consistency checks and simulations, even though the 2010 data

had a number of problems. Chapter 5 gives an overview of the data collected in the

latest BLASTPol flight launched in late December 2012 and presents preliminary maps

of magnetic field morphology in three molecular clouds. A brief summary follows.
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1.2 Basic Theory: The Role Magnetic Fields Play in Star

Formation

Using the virial theorem, one can analyze the effects of self-gravity, gas pressure and

magnetic fields on molecular clouds. In its Lagrangian form (i.e. assuming fixed mass)

the virial theorem is
1
2

Ï = 2 (T − TS) + B + W (1.1)

(Chandrasekhar & Fermi 1953), where I =
∫

r2dm is the generalized moment of inertia.

Here

T =
∫

Vcl

(
3
2

Pth +
1
2

ρv2
)

dV =
3
2

ρ̄σ2Vcl (1.2)

is the total kinetic energy of the cloud, where Vcl is the cloud volume, σ is the 1D

mean velocity dispersion, including thermal (σth), bulk motion and turbulence (σnt)

contributions, and ρ̄ is the mean cloud density. The term TS , represents the surface

kinetic term TS =
∮

Pth~r · ~dS. The energy from the magnetic field is B

B =
1

8π

∫
Vcl

B2dV +
1

4π

∮
~r ·
(
~B~B − 1

2
B2~I
)
· ~dS. (1.3)

Finally,W is the gravitational energy, which if the acceleration due to outside masses

is negligible, is just equal to the self gravity (1/2)
∫

ρψ dV or

W = −3
5

a
(

GM2

R

)
, (1.4)

the gravitational energy of a uniform sphere with an extra factor a to account for

deviations in shape and density distribution. The simplest case is an unmagnetized

cloud in virial balance supported solely by thermal gas pressure. Bonnor (1956) and

Ebert (1957) showed that the maximum mass for such a cloud is

MBE = 1.182
σ3

th

(G ρ0)
1/2 = 0.66

(
T

10 K

)2 ( Pth
3 × 105 kb cm−3 K

)−1/2

(1.5)

which is of order a solar mass for typical conditions in dense clumps in low mass star

forming regions (McKee & Ostriker 2007).
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The relative importance of the magnetic field in supporting a cloud against gravi-

tational collapse is usually quantified by the mass to flux ratio µΨ ≡ M/MΨ
1 where

MΨ is the magnetic critical mass defined such that B = |W| for a cold cloud in

equilibrium:

M = cΨ
Ψ

G1/2 (1.6)

where Ψ is the magnetic flux threading the cloud (in the simplest case for a uniform

poloidal field through a spherical cloud Ψ = πr2B) and cΨ is a constant of order

unity which depends on the distribution of magnetic fields and density within the

cloud. A cold cloud with a constant mass to flux ratio poloidal field has cΨ ≈0.17

(Tomisaka et al. 1988). If µΨ >1 the cloud is supercritical and the magnetic field cannot

prevent gravitational collapse on its own. For a cold cloud where µΨ <1 the cloud is

said to be subcritical, and gravitational collapse of this cloud is not possible. In order

for a subcritical core to collapse either the mass must change (e.g. from flows along

field lines), or µΨ must change via ambipolar diffusion.

Ambipolar diffusion results from magnetic field lines in dense regions not being

perfectly frozen to the gas. The magnetic field only interacts directly with ions and

charged grains. Neutrals may drift through the magnetic field lines. In the diffuse

ISM, where the ionization fraction is much higher (≥104), the gas is well coupled to

the magnetic fields and ambipolar diffusion is negligible (Smith, M.D. 2004). However

in dense, shielded regions ionization is primarily due to cosmic ray interaction, thus

the ionization fraction is low and the gas to field coupling is weaker. The resulting

length scale of ambipolar diffusion is:

lAD =
vA

niαni
≈ 0.05pc

( vA

3 km s−1

) ( ni

103 cm−3

)−1
(1.7)

(McKee & Ostriker 2007) where ni is the ion fraction, vA is the Alfvén speed and αni is

the ion-neutral collision rate coefficient. Under the “classical” theory of star formation

1In some papers µΨ is defined as M/Ψ in units such that the critical µΨ=1. This is equivalent to the
above definition.
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(e.g. Shu et al. (1987)) most observed prestellar cores were thought to be quiescent and

subcritical, eventually to collapse once ambipolar diffusion caused µΨ to become >1.

More recently this argument has been challenged by a model where cloud support is

dominated by turbulence and observed structures have lifetimes of order their sound

crossing time (see Mac Low & Klessen (2004) for an overview). In order to test star

formation theories more observations of magnetic fields are needed.

1.3 Measuring Magnetic Fields

A number of different methods have been used to trace magnetic fields in star

forming regions. On the largest scales the Galactic field has been determined by both

synchrotron emission caused by high energy cosmic rays spiralling about magnetic

field lines, and Faraday rotation of pulsar emission. Such observations have led to a

local field strength estimate of 6± 2 µG (Beck 2001).

The only way to directly measure magnetic field strengths in molecular clouds

is to observe Zeeman splitting of line emission. By measuring the Stokes I and V

spectra of the line, one can fit for both the direction and magnitude of the line-of-sight

magnetic field component BLOS (Heiles & Crutcher 2005). However the line splitting

∆vz is generally very small, such that even for lines at radio frequencies the line width

δv >> ∆vz so Zeeman splitting observations are sensitivity limited.

1.3.1 Dust Polarization

Dust polarization observations can be used to map the direction of BPOS, the local

magnetic field direction projected on the plane of the sky. Polarized dust emission

requires both non-spherical dust grains (or at least grains with anisotropies in surface

composition) and a method for aligning the grains with the local magnetic field. This

alignment process need not be instantaneous, but must be fast compared to the typical
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collision timescale that would destroy the alignment of a grain with respect to the

magnetic field.

Alignment of dust grains with an external magnetic field is an area of active

research. A good review of different grain alignment mechanisms can be found

in Lazarian (2007). It is currently believed that the dominant mechanism for grain

alignment is the result of torques produced by anisotropic radiation fields (Hoang &

Lazarian 2008). These torques are thought to be capable of aligning grains in relatively

dense clouds AV ∼10 (Bethell et al. 2007).

If the grains are on average aligned so that their long axes are perpendicular to the

local magnetic field direction, then optical light from a background star is most likely

to be absorbed if its electric field vector is aligned with the plane that contains the long

axis of the grain (see Figure 1.1). Thus starlight polarized from selective extinction due to

magnetically aligned grains should have a net polarization in the direction of the plane of sky

magnetic field component BPOS. On the other hand thermal emission from magnetically

aligned grains are more likely to have electric field vectors along the plane containing

the long axis. By the same logic thermal emission from magnetically aligned grains should

have a net polarization perpendicular to BPOS. Thus by observing the polarized dust

emission from a molecular cloud and rotating the polarization vectors by 90◦one gets

a map of the direction of BPOS.

Linear polarization can be characterized by measuring the linear Stokes parameters

I, Q and U. Stokes I is the total intensity. Stokes Q and U are defined as follows:

Q = p cos 2Φ, (1.8)

U = p sin 2Φ, (1.9)

where Φ is the position angle of polarization pseudovector ~E and p is the degree of

polarization defined as:

p =

√
Q2 + U2

I
. (1.10)
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Ω,B
Sub-mm or
 mm 
emission

Optical
(Transmitted)
and
(Absorbed)

Observer

Figure 1.1: Cartoon showing showing the geometry of polarized radiation from dust grains

with long axes preferentially aligned perpendicular to the cloud magnetic field. Optical/near

infrared photons from background stars are preferentially absorbed if the electric field vector

~E is parallel to the grain long axis. The result is that an observer sees a net linear polarization

of background starlight parallel to the local magnetic field direction projected on the sky BPOS.

A dust grain is more likely to emit radiation with ~E parallel to the grain long axis, resulting in

a net polarization perpendicular to BPOS.
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Polarization is usually plotted with line segments showing the inferred orientation

of BPOS (Φ for optical polarimetry, Φ + π/2 for submm polarimetry), with the length

proportional to p. Φ has a 180◦ ambiguity, as such measurements of polarization can

be used to infer the orientation but not the direction of the magnetic field lines. We

therefore refer to these line segments as pseudovectors rather than true vectors2.

The degree of polarization p is not directly related to the magnetic field strength.

It is typically found to be a few percent, with lower polarization strengths seen in high

density regions and higher p values found in lower density cloud regions (Matthews

et al. 2009).

1.4 Observations of Magnetic Fields in Star Forming Re-

gions

1.4.1 Zeeman Splitting Observations

The largest sample of Zeeman splitting measurements of BLOS, the line-of-sight

magnetic field strength in molecular clouds is reviewed in Crutcher (2012). They

take BLOS measurements for a number of clouds and construct a probability density

function of BLOS which is used to infer information about the underlying probability

density function of BTOT. Bayesian analysis suggests that most molecular clouds

have turbulent and magnetic field energies which are comparable, and that in a

few cases magnetic energy may dominate over turbulent energy. At low densities

(nH <∼ 300 cm−3) the maximum magnetic field strength is consistent with a fairly

constant ∼10µG, while at higher densities the clouds are consistent with a mean mass

to flux ratio of 2-3, suggesting that the clouds are generally supercritical and that

magnetic pressure alone is insufficient to balance gravitational contraction.

2Technically they are Spin-2 tensors.



Chapter 1. Introduction 9

1.4.2 Optical and Near-infrared Polarimetry

Most maps of magnetic field structure across molecular cloud complexes are from

optical or near infrared polarimetry. Optical polarimetry provides a ”pencil beam”

measurement of the magnetic field direction along the line-of-sight to a background

star, but can only probe the relatively low density regions of the cloud (AV of a few).

Goodman et al. (1990) used optical polarimetry to map magnetic field morphology

in three nearby star forming complexes: Taurus, Ophiuchus and Perseus. They found

that the pseudovector directions had considerable uniformity over large distances, but

that the angle between BPOS and individual filamentary clouds within the complexes

varied significantly.

In the Taurus, FCRAO observations of low column density gas (AV < 2) traced by

12CO and 13CO J=1-0 show striations aligned with the local magnetic field direction

(Goldsmith et al. 2008; Heyer et al. 2008). Heyer et al. (2008) calculated 〈µΦ〉= 0.27

implying that the cloud envelope is subcritical and dominated by magnetic support.

Herschel observations of nearby clouds have found tenuous sub-filaments or striations

that are perpendicular to the main filaments, and in several cases where complemen-

tary polarimetry observations exist, appear to align parallel to BPOS (Palmeirim et al.

2013) (Figure 1.2). These observations suggest that dust and gas might be accreting

onto clouds along magnetic field lines. However in order to probe the magnetic field

inside the dense filaments where stars are forming submm or mm polarimetry is

required.

1.4.3 Submillimeter and Millimeter Polarimetry

Submm polarimetry has been used to map BPOS for a large number of clouds. Two

of the most prolific instruments were the SCUPOL polarimeter on the James Clerk

Maxwell Telescope (Matthews et al. 2009) and the Hertz polarimeter at the Caltech

Submillimeter Observatory (Dotson et al. 2010). Most of these polarization maps
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Figure 1.2: From Palmeirim et al. (2013): a) Herschel 250µm observation of the

B211/B213/L1495 region of Taurus with the main filaments labeled. b) Herschel 250µm

map with optical and infrared polarimetry showing BPOS (green lines), and CO striations

found by Heyer et al. (2008) (blue lines) overlaid.

have been fairly small, mapping field structure on the scale of cores, or nearby dense

filaments (for example the Orion filament mapped by Matthews et al. (2001) with the

SCUBA polarimeter).

The degree of polarization can be very low for bright compact objects, for example

the central region of G 331 has p <0.2% in 450 µm observations taken with the SPARO

polarimeter (Li et al. 2006). Many observations have found a decrease in p with

increasing submm intensity (Matthews et al. 2001). This so called depolarization effect

could be due to beam dilution of tangled magnetic field structures, a decrease in grain

alignment efficiency at high densities or a change grain properties at high densities.

The only large scale dust polarization maps to date have come from 450 µm

observations of four bright giant molecular clouds (GMCs) with the SPARO instrument

(Li et al. 2006). Li et al. (2006) found evidence of large scale organization of magnetic

fields, implying that they contribute a significant fraction of energy to cloud support.

However SPARO’s beam FWHM of 4′ means it only traces large scale magnetic fields.
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1.4.4 Estimates of Field Strength from Polarization Observations

It is not possible to calculate field strength directly from the measured degree of

polarization, as even weak fields can align dust grains. Chandrasekhar & Fermi (1953)

outlined a method (hereafter the CF method) to use the dispersion in the measured

magnetic field angles to estimate magnetic field strength. The method depends on the

fact that turbulent motions in the gas will lead to random deviations in the magnetic

fields due to freezing of the field to the gas. Thus observing the irregularities in BPOS

gives an estimate of the magnitude of BPOS:

BPOS = Q
√

4πρ
δv
δΦ
≈ 9.3

√
n(H2)

∆v
δΦ

µG, (1.11)

(Heiles & Crutcher 2005), where Q is a factor of order unity, ρ is the gas density, δv is

the one dimensional velocity dispersion, δΦ is the dispersion in polarization angle

(in degrees), n(H2) is the gas number density and ∆v is the velocity FWHM. Ostriker

et al. (2001) applied the CF method to isothermal cloud simulations and found that the

CF formula could predict reasonably accurate strengths of strong fields if a Q value of

0.5 was used (where Q is used to correct for the smoothing of a tangled magnetic field

along the line of sight). Hildebrand et al. (2009) adapted the CF method to clouds

where there is ordered structure in BPOS that is not associated with turbulence, by

calculating the polarization angular dispersion function. Houde et al. (2009) further

refined this method by including integration over the telescope beam and turbulent

cells along the line of sight.

1.5 BLASTPol

1.5.1 Instrument

My PhD research has focused on the construction, mission planning, science campaign

and now data analysis for BLASTPol (Fissel et al. 2010). BLASTPol is the reconstructed
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BLAST telescope (Pascale et al. 2008), with additional polarimetry capability. Using a

1.8 m Cassegrain telescope, BLASTPol images the sky onto a focal plane consisting

of bolometric detector arrays at 250, 350 and 500 µm. The polarimeter consists of

polarizing grids mounted in front of bolometric detector arrays, with a rotating

achromatic half wave plate. BLASTPol maps linearly polarized dust emission with a

diffraction limited beam FWHM of 30′′at 250 µm.

1.5.2 Advantages of a Balloon Platform

Observing magnetic fields in the densest regions of molecular clouds generally re-

quires submillimeter or millimeter polarimetry, where the emission is optically thin.

However, most ground based polarization observations have been limited to mapping

cores and dense filaments (Matthews et al. 2009; Dotson et al. 2010). Opacity from

atmospheric water vapour requires ground based polarimeters to either observe in

narrow windows in the atmospheric transmission spectrum, or observe at millimeter

wavelengths, far from the peak of the SED of cold dust (T∼10-30k). BLAST and later

BLASTPol were designed to operate on a stratospheric balloon platform, where the

atmospheric transmission is almost 100% (see Figure 1.3).

A balloon platform gives BLAST several advantages over ground based polarime-

ters:

• Because BLAST does not have to observe through narrow windows in the

atmospheric transmission spectrum the three BLAST bands at 250, 350 and

500µm were chosen to bracket the SED peak of 10-20 K dust. For example 12 K

dust (assuming β=2) should be 4.4, 8.8 and 11.7 times brighter at 250, 350 and

500 µm respectively than at 850 µm, the central frequency of SCUBA polarimeter

(Greaves et al. 2003) SCUPol.

• Not observing through atmospheric transmission windows means that the three
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Figure 1.3: Atmospheric transmission at submillimeter wavelengths calculated for the altitudes

used by SOFIA and at 35km and 40km above sea level. BLASTPol’s at float altitude over two

science flights ranged between 36-39 km above sea level. From Wiebe (2008).
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BLAST bands were made very wide: ∆ f / f ∼ 30%. Indeed, the BLAST bands

include most of the radiation between 200-650µm.

• Ground based polarimeters are generally limited by atmospheric loading, which

is not the case for BLASTPol.

The disadvantage of a balloon platform is that the time available for observations

is limited by the length of the balloon flight. At present summer launches from

Antarctica offer the longest stratospheric flights. For Antarctic flights there are no

day/night cycles, which require large quantities of ballast to be dropped to maintain a

stable altitude, and in the summer stratospheric wind patterns set up in a circumpolar

vortex keeping the balloon circling Antarctica (rather than drifting out to sea). Flights

longer than one month are possible though BLASTPol only has sufficient cryogens for

10-14 days of science observations.

1.5.3 Potential of BLASTPol Combined with Other Facilities

Observations from the Herschel telescope have shown that clouds contain ubiquitous

filamentary structure with characteristic widths of ∼0.1 pc (André et al. 2010). Star for-

mation tends to preferentially take place in filaments of high column density (AV ≥8

mag). The role played by magnetic fields in this picture is unclear. Several examples

have been found where optical polarization measurements show field directions which

appear perpendicular to the main filament and parallel to sub-filaments or striations

(Palmeirim et al. 2013), but no polarimeter has had the combination of sensitivity and

resolution to survey the field direction in filaments across entire molecular clouds.

With bands covering the same frequencies as Herschel’s SPIRE instrument and slightly

worse spatial resolution3 BLASTPol is an obvious follow-up to Herschel.

3Herschel 500 µm beam FWHM is 36′′, compared to 60′′for BLASTPol at the same band.
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The Planck surveyor will map polarization of the entire sky at a resolution of

∼5′. Planck will have only have a few pseudovectors per cloud, and it will not have

sufficient resolution to probe fields in individual filaments even in nearby Gould’s

Belt objects (5′ corresponds to 0.2 pc resolution at a distance of 150 pc). ALMA will

provide high resolution measurements of the magnetic field structure in cores and

disks, but it will resolve out all structures on scales of ∼60′′or larger. Thus there

is a gap between the large spatial scales probed by Planck and the high resolution

observations of fields using ALMA polarimetry, which BLASTPol is well suited to fill.

1.5.4 BLASTPol Science Goals

How does magnetic field direction correlate with cloud morphology? Faint, low column

density 12CO filaments observed in Taurus (Goldsmith et al. 2008; Heyer et al.

2008) seem to closely follow magnetic field lines traced by optical polarimetry,

which could indicate streaming of molecular gas along field lines. BLASTPol

will investigate the alignment between intermediate and high density filaments

seen in Herschel observations (e.g. Hill et al. (2011)).

How does magnetic field direction correlate with core and protostellar morphology? In a

magnetically dominated collapse a flattened inner core or "infall envelope” of

∼3000 AU is expected to form with its axis of symmetry parallel to the local

magnetic field. The corresponding magnetic field shape is expected to show a

pinched, or "hour glass” structure (Girart et al. 2009). If cores are supported by

magnetic fields and collapsing along field lines, then there should be a positive

correlation between the core minor axes and the local field direction traced by

BLASTPol. Similar observations have been made for three nearby starless cores

(Ward-Thompson et al. 2000), three low mass protostars (Davidson et al. 2011),

and two Bok globules (Ward-Thompson et al. 2009) but a much larger sample

size is needed to determine if there is a significant statistical correlation.
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How ordered are magnetic fields in molecular clouds? Numerical simulations have shown

that molecular clouds with strong magnetic fields show less polarization an-

gle dispersion than clouds with weak fields (Ostriker et al. 2001). Recently,

polarization maps have been used to characterize the magnetized turbulence

power spectrum (Houde et al. 2011). We plan to apply this analysis to all of our

BLASTPol polarization maps.

What is the polarization spectrum of BLASTPol target clouds? The percentage polariza-

tion at a particular wavelength is a function of grain composition, alignment

efficiency and temperature. The three BLASTPol bands bracket an observed

minimum in the polarization spectrum near 350µm (Vaillancourt et al. 2008)

providing crucial data points at wavelengths which are difficult to observe from

the ground. BLASTPol will make observations of the polarization spectrum over

many different clouds and will use the data to probe the alignment efficiency

with temperature and dust column.

The ultimate goal for BLASTPol data will be to combine our data with comple-

mentary observations (e.g. gas velocity information from molecular line observations,

age and evolutionary state based on embedded source populations) and generate

quantitative statistics which can be compared to predictions from simulations of star

formation.
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The BLASTPol Instrument

2.1 Chapter Overview

In this Chapter I give an overview of the BLASTPol instrument and control software.

Particular detail is given on the systems I was responsible for: instrument polarimetry

modulation strategy and preflight tests, the motor systems, motor control software,

and solar power design. Some of the text in this chapter is adapted from Fissel et al.

(2010).

2.2 Introduction

BLASTPol, the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry,

is a stratospheric 1.8 m telescope which maps linearly polarized submillimeter emis-

sion with bolometric detectors operating in three 30% wide bands at 250, 350, and

500 µm. BLASTPol’s diffraction-limited optics were designed to provide a resolution

of 30′′, 42′′, and 60′′ at the three wavebands, respectively. The detectors and cold

optics are adapted from those used by the SPIRE instrument on Herschel (Griffin

et al. 2003).

17
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BLASTPol is a rebuilt and enhanced version of the BLAST telescope (Pascale et al.

2008) upgraded to include polarization capability. BLAST was designed to conduct

confusion-limited, wide-area extragalactic and Galactic surveys at submillimeter

(submm) wavelengths from a balloon platform. BLAST had two Long Duration

Balloon (LDB) flights. The first was a 4 day flight from Kiruna, Sweden in June of

2005, the second an 11 day flight from Antarctica in December 2006. After termination

of the Antarctic flight the parachute could not be detached, which resulted in the

payload being dragged ∼200 km across the Antarctic plateau in 24 hours. BLAST was

largely destroyed, but fortunately the pressure vessel containing the hard drives that

stored all of the experimental data was recovered. In addition, the mirrors, detectors

and receiver were all recovered and have been used in the construction of BLASTPol.

BLAST provided the first deep, wide area maps at 250, 350 and 500 µmbands that

are very difficult or often impossible to observe from even the best ground-based

sites in the world. Some science highlights include measurement of the cosmic FIR

background at 250, 350 and 500 µm, including a 0.8 deg2 confusion-limited map in the

GOODS South region, where it was shown that more than half of the FIR background

light originates in galaxies at redshift>1.2 (Devlin et al. 2009; Marsden et al. 2009;

Pascale et al. 2009), and the determination of luminosities, masses and temperatures

of more than a thousand compact sources in the Vela Molecular Ridge, which may

form into stars (Netterfield et al. 2009).

After the BLAST 2006 flight a polarimeter was added and BLAST was transformed

into BLASTPol, a uniquely sensitive polarimeter for probing linearly polarized Galactic

dust emission. BLASTPol is designed to map the magnetic field structure across a large

number star forming regions. These maps will provide a fantastic data set for studying

the role magnetic fields play in the star formation process, an important outstanding

question in our understanding of how stars form. BLASTPol can map magnetic fields

across entire Giant Molecular Clouds (GMCs), with sufficient resolution to probe fields
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in dense filamentary sub-structures and molecular cores. The experiment provides a

crucial bridge between the large area but coarse resolution polarimetry provided by

experiments such as Planck (5′ resolution) and the high resolution (<1′′) but small

field view (<60′′) polarization measurements from the ALMA telescope.

2.3 The BLASTPol Telescope

2.3.1 Optical Design

BLASTPol utilizes a Ritchey-Chrétien telescope consisting of a 1.8 m parabolic primary

mirror (M1) and a 40 cm correcting secondary (M2). The field of view of the telescope

at 250 µm is 13.5′× 6.5′ at the focus. The Offner relay re-imaging system redirects

the light to a series of cryogenically cooled (1.5 K) re-imaging optics (M3, M4, M5)

arranged in an Offner-relay configuration, with M4 serving as a Lyot stop. Figure 2.1

shows a schematic of the optical path of the BLASTPol telescope and Figure 2.2 shows

the layout of the cold optics box.

Radiation emerging from M5 is split into three frequency bands by low-pass edge

dichroic filters (Ade et al. 2006), which allow imaging of the sky simultaneously at

250, 350 and 500 µm. Figure 2.3 shows the band-passes of each array measured

with a Fourier Transform Spectrograph (Angilè in press). The first dichroic filter

reflects wavelengths shorter than 300 µm and transmits longer wavelengths. This

reflected light is directed onto a filter directly in front of the 250 µm array, which

reflects wavelengths shorter than 215 µm, and is further defined by the waveguide

frequency cutoff at the exit of each of the feedhorns coupled to the detector array. For

the 350 and 500 µm arrays, the band is defined at the short-wavelength end by the

transmission of a dichroic filter and at the long-wavelength end by the waveguide

cutoff. Each band has a ∼30% frequency width. The frequency performance of the

filters was evaluated with Fourier transform spectroscopy.



Chapter 2. The BLASTPol Instrument 20

Figure 2.1: Schematic of the optical layout for the BLASTPol telescope and receiver is shown

on the left, with the cold optics, located within the cryostat, shown in an expanded view on

the right. The image of the sky formed at the input aperture is re-imaged onto the bolometer

detector array at the focal plane. M4 serves as a Lyot stop, which defines the illumination of

the primary mirror for each element of the bolometer detector arrays. The three wavelength

bands are separated by a pair of dichroic beamsplitters (not shown) which are arranged in a

direction perpendicular to the plane, between M5 and the focal plane. The position of the half

wave plate (HWP), placed 19.2 cm from the focus of the telescope, is labeled.
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Figure 2.2: A cutaway view of the BLASTPol optics box. The light enters from the lower

left and is re-imaged onto the bolometer detector arrays (BDAs). Dichroic filters split the

beam into each of the BDAs for simultaneous imaging of the sky at 250, 350 and 500 µm. A

modulating half wave plate (HWP) is mounted between the entrance to the optics box and M3,

and polarizing grids have been mounted directly in front of each of the BDAs. The stepper

motor which rotates the HWP is located outside the optics box.
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Figure 2.3: Relative frequency response of the BLAST bands from Wiebe (2008). The band-pass

of each filter was measured with a Fourier Transform Spectrometer using a nitrogen source

and normalized to the peak spectral response. Absorption lines from residual water in the

FTS can be seen in all three bands.
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The primary mirror from the BLAST 2006 flight was scratched and could not be

repaired. A replacement primary mirror was manufactured for BLASTPol. The surface

of the new mirror had an RMS of ∼1.0 µm. The secondary mirror was also recovered

after BLAST 2006 and has been reused for BLASTPol (after resurfacing to remove

scratches). The estimated antenna efficiency of the telescope is > 80%, with losses

caused by both the roughness of the primary and the quality of the re-imaging optics.

More information about the optical design and performance of the BLAST telescope

can be found in Olmi (2002) and Pascale et al. (2008).

For the 2010 BLASTPol flight the secondary mirror was mounted directly on the

primary mirror supported by carbon fiber struts. After the 2010 flight the mount-

ing was changed when it was discovered that the weight of the secondary mirror

was causing a large scale deformation of the primary mirror that was introducing

sidelobes (Angilè in press). For the 2012 flight new carbon fiber support struts were

manufactured so that the secondary mirror could be mounted on the gondola inner

frame.

Temperatures of the primary and secondary mirrors do not remain constant

throughout the flight. Diurnal temperature variations of ∼10◦ C have been observed

on previous BLAST flights Pascale et al. (2008). These thermal variations result in

changes to the radii of curvature of various optical surfaces. To compensate, the

position of the secondary mirror with respect to the primary can be changed in flight

by three stepper motor actuators. These actuators are also used to set the original

tip/tilt alignment of the secondary. Analysis of the BLAST optical system indicates

that the distance between the primary and secondary mirrors must be kept to within

100 µm to avoid significant image degradation.
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2.3.2 Detectors

The BLASTPol focal plane consists of 149, 88 and 43 detectors at 250, 350 and 500

µm respectively. The detectors consist of silicon-nitride micro-mesh (“spider-web”)

bolometric detectors coupled with 2 f λ smooth-walled conical feed-horn arrays. The

bolometer detector array design is based on the Herschel SPIRE instrument detectors

(Glenn et al. 1998; Rownd et al. 2003). Each array also contains diagnostic channels:

two dark bolometers, two thermistors and one resistor. Detector transfer functions

have been measured from cosmic-ray hits and typical detector time constants are

∼2 ms (Pascale et al. 2008).

For BLAST the detector sensitivity was limited by photon shot-noise loading from

the telescope. The total emissivity of the warm optics is dominated by blockage from

the secondary mirror and support struts which was estimated to be ∼ 7% (Pascale

et al. 2008).

The responsivity of the detectors changes with loading and with gain variation

in the readout electronics. To correct for the changing responsivity a calibration

lamp located in a hole in the Lyot stop (M4) is pulsed for 300 ms every ∼15 minutes.

Amplitude variations of the calibration pulses as measured by each detector can then

be used to correct for the drift in responsivity over time.

Each bolometer is pre-amplified by differential JFET amplifiers which are thermally

coupled to the cryostat vapour cooled shield. To reduce the effects of low frequency

1/f noise the detectors are AC biased with a sine wave of frequency ν = 200.32 Hz.

The frequency of the sine wave is much higher than the frequencies associated with

the signal from scanning the telescope across the sky. The data acquisition electronics

are then used to demodulate the detector signals and provide noise stability to low

frequencies (< 30 mHz), which allows the sky to be observed in a slowly-scanned

mode. The data are collected using a high-speed, flexible, 22-bit data acquisition

system, which can synchronously sample up to 600 channels at a sample rate of
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10.4 kHz. Output from the bolometer channels is then processed by an Altera FPGA

(where the data are low pass filtered at 4 kHz). The data are then processed by an

Analog Devices Digital Signal Processor (DSP), where it is demodulated and further

low pass filtered to ∼30 Hz and a 100.16 Hz sample rate. The resulting time ordered

data (hereafter TOD) are then written to disk. More details on the bolometer readout

can be found in Pascale et al. (2008).

2.3.3 Cryogenics

For the instrument to operate nominally the detectors must be cooled to <300 mK

and the re-imaging optics must be cooled to 1.5 K. The BLASTPol receiver contains

an optics box mounted inside a long hold-time liquid-nitrogen and liquid-helium

cryostat dewar. A closed-cycle 3He refrigerator keeps the detectors at 300 mK during

flight. This self-contained, recycling refrigerator can maintain a temperature of 280 mK

with 30 µW of cooling power for 4 days. It can be recycled within 2 hours. The 3He

refrigerator uses a pumped 4He pot at ∼ 1 K for cycling. The pumped pot maintains

1 K with 20 mW of cooling power for outside pressures of 15 Torr or less. The entire

optics box containing the re-imaging optics is also cooled to 1.5 K.

2.4 Polarimeter

2.4.1 Overview

Photo-lithographed polarizing grids (see Figure 2.4) are mounted in front of the

feed-horn arrays for each bolometer detector array. The grids are patterned with either

horizontal (H) or vertical (V) wire orientations (Figure2.5) in order to alternate the

polarization component sampled by 90◦ from horn-to-horn and thus bolometer-to-

bolometer along the scan direction . BLASTPol scans primarily in azimuth so a source

on the sky passes along a row of detectors, and thus the time required to measure one
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Figure 2.4: Picture of the 350 µm polarizing grid from Angilè (in press). The lower right

inset is an enlarged image of the boundary between two grid sections corresponding to two

adjacent bolometers, showing where the wire orientation changes from horizontal to vertical.

Stokes parameter (Q or U) is just equal to the separation between bolometers divided

by the scan speed. For the 500 µm detector array where the bolometers are separated

by 90′′, and assuming a typical scan speed of 0.05 ◦/second, this time would be 0.5

seconds. This timescale is short compared to the characteristic low frequency (1/f)

noise knee for the detectors at 0.035 mHz (Pascale et al. 2008).

2.4.2 Half Wave Plate

In order to measure both Stokes Q and U and provide polarization modulation a

cryogenic (4 K) achromatic half wave plate (HWP) has been incorporated into the

optical design as shown in Figure 2.2. The HWP is mounted inside the optics box

19.2 cm from the Cassegrain focus of the telescope to minimize the modulation of any

potential HWP local defects. The predicted modulation efficiency across the BLAST

bands is given in Figure 2.7.
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Figure 2.5: Schematic of the 350 µm polarizing grid layout. Vertical (V) or horizontal (H) lines

show the orientations of the wires in the polarizing grid for each bolometer. The patterned

polarizing grid is designed to have adjacent bolometers sample orthogonal polarization

components. Therefore by scanning the telescope a measurement of a single Stokes Q or U

parameter can be made in the time it takes for a source to move from one detector to an

adjacent detector (≤ 0.5 s).

Figure 2.6: Picture of the BLASTPol sapphire achromatic HWP and rotator mechanism.
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The use of a rotating HWP as a polarization modulator is a widespread technique

at millimeter and submillimeter wavelengths (for example Hanany et al. (2005), Savini

et al. (2006), Pisano et al. (2006) and Johnson et al. (2007)). The BLASTPol HWP

is 10 cm in diameter and is constructed from 5 layers of sapphire, each 500µm in

thickness. The layers are hot pressed together with a 6 µm layer of polyethylene,

and an anti-reflection coating (made from metal mesh filter technology (Zhang et al.

2009)) is hot pressed to each surface of the HWP. Figure 2.7 shows the predicted

transmissions and modulation efficiencies for the BLASTPol HWP as a function of

frequency. They are based on data taken at room temperature, which has been used

to estimate the 4 K performance of the HWP.

The rotator uses a pair of thin-section steel ball bearings housed in a stainless steel

structure. It is driven by a gear train and G-10 shaft connected to a stepper motor

outside the cryostat. A ferrofluidic vacuum seal is used for the drive shaft. Angle

sensing in the cryostat is provided by a potentiometer element making light contact

with phosphor bronze leaf springs and outside the cryostat by an incremental encoder

connected to the motor. Both the rotator and potentiometer are based on a design

used successfully by the SPARO telescope (Renbarger et al. 2004).

We operate the HWP in a stepped mode, rather than a continuously rotating mode,

to avoid heating the cold stages of the cryostat. Rotating the HWP has a noticeable

effect on the bolometer voltage levels. The top panel in Figure 2.8 shows the TOD of

a 500 µm bolometer when the HWP is stepped by 22.5◦. The HWP angular position

is indicated in the middle panel by the HWP motor encoder readings. The large

bolometer signal is likely due to changes in detector loading as the HWP rotates since

transmission is not uniform across the surface of the HWP. Rotating the HWP also

heats the 300 mK stage of the cryostat (bottom panel) likely due to vibrations of the

rotator shaft and bearings. Thermal recovery from the HWP move, seen in the 300 mK

strap temperature and the bolometer TOD, takes about one minute.
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Figure 2.7:

Left: The predicted transmissions through the HWP as a function of frequency. The approx-

imate extent of the BLAST band-passes is also indicated. Solid Black Curve: transmission

between two parallel polarizers (i.e. Q=1 to Q=1) with the HWP axis at 0 deg (black line).

Red Dashed Curve: transmission between two parallel polarizers Q=1 to Q=1 with the HWP

axis at 90 deg (or equivalently Q=-1 to Q=-1 with the HWP axis at 0). Red and Black

Lower Curve: transmission with the HWP axis at 0 deg between two perpendicular po-

larizers. Right: predicted modulation efficiency (as a function of frequency), obtained as

(Tcopol − Txpol)/(Tcopol + Txpol). Note that the y-axis scale ranges from 0.8 to 1.
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Figure 2.8: 500 µm bolometer response to a rotation of the HWP (HWP) by 22.5 degrees. Top

Panel: 500µm bolometer N29C10. Middle Panel: HWP motor encoder readings showing the

angular position of the HWP in time. Lower Panel: Temperature of the 300 mK strap, which

is thermally coupled to the 300 mK stage of the cryostat. Note that just before the HWP was

rotated the calibrator lamp was pulsed. The large change in the bolometer voltage when

the HWP rotates is associated with loading changes due to non-uniformities in the HWP

transmission. A longer timescale thermal recovery can be seen in both the 300 mK strap

temperature and the bolometer timestream.
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The HWP rotator is stepped between a sequence of four different positions corre-

sponding to HWP angles Φ of 0◦, 45◦, 67.5◦ and 22.5◦. This sequence allows Stokes

Q and U to be measured with a single bolometer and avoids HWP rotations larger

than 45◦. The HWP is stepped to the next angle in the sequence after every raster

scan of the target, typically every 15 minutes. In theory, measuring the polarization at

these four HWP positions should be sufficient to reconstruct the I, Q and U Stokes

parameters, even without the patterned polarizing grid. However the measurements

at different waveplate angles take place at least 15 minutes apart, timescales much

longer than the characteristic 1/f knee of the observations. Software controlling the

HWP rotations is described in Section 2.7.4.

2.4.3 Preflight Polarimetry Strategy Tests

BLASTPol is the first submm polarimeter to attempt to reconstruct linear polarization

using a patterned polarizing grid and a stepped HWP for additional modulation.

Before construction of the polarimeter feasibility tests were run using BLAST 2006

observations of the calibrator VY CMa, which was mapped more than 20 times over

the 11 day flight for a total of 6.7 hours. Total intensity maps were made of VY CMa

with the optimized mapmaker almagest (Wiebe 2008) using different combinations of

bolometers corresponding to BLASTPol horizontal (H) and vertical (V) polarizing grid

orientations as shown in Figure 2.5 and also with different data time ranges. Figure

2.9a shows a map of VY CMa (the bright source at the center of the image) using

all 500 µm bolometers and all data ranges. The maps were then differenced to test

BLASTPol’s polarization measurement strategy. The difference maps for a polarimeter

with identical beam shapes for each detector and no 1/f noise should consist of white

noise.

Several residual tests were run:

• H bolometer maps - V bolometer maps Figure 2.9b: This test is equivalent to
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a) b)

c) d)

Figure 2.9: Results from pre-flight tests of the BLASTPol polarization reconstruction strategy

using BLAST 2006 observations of the star VY CMa. a) A 500µm map of VY CMa using

all bolometers and all available data. b) Residual signal from maps of VY CMa made with

H bolometers - maps made with V bolometers. (See Figure 2.5). c) Residuals from maps

of VY CMa made with even numbered scans - maps made with odd numbered scans. d)

Difference between a map of H-V bolometers for even numbered scans - a map of H-V

bolometers for odd numbered scans.
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measuring a single linear polarization Stokes parameter (Q or U) of an un-

polarized source using only a patterned polarizing grid with each adjacent

bolometer measuring orthogonal polarization components and no HWP polar-

ization modulation. Significant residuals of order several percent can be seen

due to differences in the beam shape and responsivity of the 500 µm bolometers.

• Odd numbered scan maps - Even numbered scan maps Figure 2.9c: This test

is equivalent to measuring a single linear polarization Stokes parameter (Q or

U) with a polarimeter consisting of a grid that passes only one polarization

component, with a HWP that rotates the polarization of the light by 90◦ after

every scan. Significant residuals (of order several to ∼10 percent) are seen with

streaking patterns characteristic of low frequency 1/f noise.

• (H-V maps with even numbered scans) - (H-V maps with odd numbered

scans) Figure 2.9d: This test differences maps with both H and V bolometers and

even and odd numbered scans and is equivalent to a polarimeter consisting of a

polarizing grid which samples orthogonal polarizations components for each

adjacent bolometer and a HWP that is stepped after every scan. Most of the

polarization residuals from the previous simulations are not present.

These differencing tests show that both the patterned polarizing grid and HWP

are necessary to reconstruct polarization: the patterned grid allows fast sampling of

Stokes parameters, while the HWP stepping allows single bolometer measurements

of the polarization and can reduce residuals due to differences in bolometer beam

shapes.

2.5 Gondola

The BLASTPol gondola provides a pointed platform for the telescope and attaches to

the balloon flight train. The gondola can generally be broken down into two parts:
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Figure 2.10: Front and side schematic drawings of the BLAST gondola. A 1-m tall Emperor

penguin is shown for scale. The inner frame, which can be pointed in elevation, consists of

the two star cameras, the telescope and its light baffle, the receiver cryostat, and associated

electronics. The telescope baffles and sunshields have been updated for BLASTPol. Taken

from Angilè (in press).

an outer frame, which points the telescope in azimuth and houses the power system,

support electronics, motors and master flight computers, and an inner aluminum

frame which points in elevation and houses the mirrors, cryostat, receiver, data

acquisition system, and primary pointing sensors. Figure 2.10 shows a schematic

layout of the BLAST gondola with several features labeled.

The inner frame is mounted to two pyramids which form an elevation axis. On

the starboard side the inner frame is mounted to an elevation bearing and on the port

side it is mounted to a direct drive rotary motor which is responsible for pointing the

telescope in elevation.

Inner and outer frame sunshields were constructed to keep solar radiation off
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Figure 2.11: A drawing of the BLASTPol gondola showing the inner and outer frame gondola

structures and sunshields, including the inner frame baffle which allows the telescope to point

to an azimuth distance of < 45◦ from the Sun.
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the primary and secondary mirrors. All Antarctic balloon flights take place during

December to January when the Sun is located near the inner Galaxy. Many potential

BLASTPol targets are located at high galactic longitudes (see Section 3.2.1 for a

discussion of BLASTPol target selection), so a requirement for the shields is that

the telescope is able to point in azimuth to within 45◦ of the sun, without sunlight

incident on either the primary or secondary mirrors. Figure 2.11 shows the BLASTPol

sunshields, which are constructed from aluminized mylar. The outer frame shields are

mounted to an aluminum frame, while the inner frame shields are mounted to a 4 m

long asymmetric carbon fiber frame. For more information on the BLASTPol shield

design and thermal properties see Soler (2013). The sunshields allow the telescope to

observe targets with Az − Az� ranging from 170◦ to 40◦, where 0◦would have the

telescope pointing directly at the sun.

2.5.1 Electronics

Because of the long latency of sending commands to the telescope during flight

(typically 20 seconds to 5 minutes) and the probability of intermittent communications

blackouts, the gondola must be able to operate autonomously. The primary control is

provided by a set of redundant master control computers (MCCs). Each computer runs

an identical version of the flight control software, the master control program or mcp,

which handles data acquisition and storage, pointing reconstruction, motor control,

telemetry and housekeeping (Wiebe 2008). Because there is insufficient bandwidth in

the telemetry downlink pathways to transmit the data1, all data are stored on solid

state hard drives connected to the flight computers. The hard drives must therefore

be recovered after the flight.

Figure 2.12 shows the main components of the BLAST electronics systems. A

1The exception is during the first ∼12-24 hours after launch when the payload is still within sight of
the balloon facility so that the line-of-sight (LOS) transmitters can be used.
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detailed discussion of most components is given in Wiebe (2008). Here I give a brief

overview of the major systems, with differences highlighted between the BLAST and

BLASTPol architectures.

Flight Computers

Telescope operations are controlled by two identical redundant flight computers or

master control computers (MCCs). The computers were replaced for BLASTPol (the

old flight computers were destroyed when BLAST was dragged by the parachute in

2006) and are APOLLO boards, manufactured by the Eurotech company. Each flight

computer runs an identical version of the flight control code mcp, or master control

program. The computers read data from the Attitude Control System (ACS) and Data

Acquisition System (DAS) over the BLASTBus and write data to solid state hard disks.

BLAST Cards

The BLAST Cards are a set of flexible electronic cards designed to both read and

generate analog and digital signals. Each card consists of a single motherboard and

can have up to three daughter cards. Types of daughter cards are:

• Analog input/output cards;

• Digital input/output cards;

• Thermometry cards;

• Digital to Analog (DAC) transmitters.

These cards are used in the Attitude Control System.
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Figure 2.12: Schematic overview of the major electronic systems on BLASTPol. Dashed lines

represent communication over serial, gray lines indicate radio transmission. All other forms

of communication are annotated.
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Attitude Control System (ACS)

The Attitude Control System (ACS) uses two BLAST Cards which in total contain

two analog daughter cards, two digital cards and two thermometry cards. The ACS

provides analog and digital sampling for all systems which are not managed by the

DAS or directly by the MCCs, including gyroscope communications, star camera

triggering, pointing sensors and power switching.

Data Acquisition System (DAS)

The Data Acquisition System or DAS reads out the detector signals, using 14 custom

built analog-to-digital (ADC) cards plus an additional two cards for cryostat and bias

generation and general housekeeping. The signals are then communicated to the

flight computers over the BLASTBus (Wiebe 2008).

Watchdog Circuit

The watchdog circuit monitors the flight computers and will power cycle a computer

if an error or loss of communication is detected. The circuit uses counters, one for

each flight computer, and if the countdown reaches zero, the flight computer is power

cycled. The computers can reset the counter by ’tickling’ the watchdog, which consists

of sending a logical signal over three parallel lines generated by an mcp subprocess.

Thus if mcp crashes on one of the flight computers, the affected computer will be

power cycled and control will be switched to the other flight computer. After power

cycling the countdown circuit is inhibited for ∼5 minutes in order for the rebooted

computer to have time to fully boot and restart mcp. The watchdog also ensures that

only the computer in control of the telescope can write to the BLASTBus.
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Serial Communications

Communication with motor controllers, charge controllers, the differential GPS, and

over-the-horizon telemetry is routed through RS-232 serial communication. Most

devices are connected through a Devicemaster 16 port RS-232 serial hub. The serial

hub communicates with the flight computers via an Ethernet link.

Use of the serial hub has one major drawback. The nslink driver for the hub blocks

communications from a computer that has recently rebooted. The blackout lasts for

5.5 minutes. Under normal circumstances, i.e. when both flight computers do not

reboot at the same time this is not a problem, however if both computers reboot

simultaneously there will be a >5 minute serial communication blackout. The serial

lines which send commands to the flight computers are critical to flight operations so

they are routed through the watchdog circuit instead of the RS-232 hub.

Stepper Motors

Several BLASTPol systems use AllMotion EZStep stepper motors:

• Inner frame locking mechanism;

• HWP rotator;

• Secondary Mirror Actuators, which are used to set the focus and tip-tilt of the

secondary relative to the primary mirror;

• The protective shutter for the cryostat vacuum window, which was added for

the 2012 flight.

These motors are controlled by a series of daisy-chained EZStep motor controllers and

communicated with over RS-232 serial via the serial hub.
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Telemetry and CSBF Electronics

During the course of the flight a subset of the data may be transmitted over the

NASA telemetry pathways provided by NASA’s Columbia Scientific Balloon Facility’s

Standard Instrument Package (SIP), which is part of the provided balloon electronics

package. Over most of the flight the telescope is in communication with a ground

station computer, where a subset of (compressed) data are sent to monitor the state of

the telescope. BLASTPol has four downlink channels: high bandwidth line-of-sight

(LOS) transmission, which is only available for the first ∼12-24 hours after launch,

transmission over the TDRSS Network (with both an omni-directional antenna and a

High-gain pointed antenna), and transmission over the Iridium Network. Commands

can also be sent to the telescope via, LOS, TDRSS or Iridium to execute tasks or change

parameters.

2.5.2 Pointing Sensors

In-flight pointing is measured to an accuracy of ∼1′ by a number of fine and coarse

pointing sensors. The primary pointing sensors consist of two optical star cameras

mounted on the inner frame and aligned along the telescope axis and fiber-optic

gyroscopes. The optical star cameras measure positions of stars on the sky and

compare these positions to a star catalog, using the last known pointing solution as an

initial guess. Gyroscopes are then used to integrate the pointing solution in-between

star camera solutions. The star cameras can return a solution approximately every

second, if stationary and pointed at a bright star field.

BLASTPol also uses a number of coarse pointing sensors. The goal for these

sensors is to provide a rough pointing solution, accurate enough to be sure that the

telescope is pointing at the correct field even if the star cameras cannot find solutions.

Additionally the gyroscope output is known to have a non-stationary offset which
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drifts on timescales of order half an hour. Coarse pointing sensors are used to calculate

gyroscope offsets which are then subtracted from the gyroscope TOD.

BLASTPol has a variety of coarse pointing sensors, each of which can be vetoed or

allowed to contribute to the pointing solution depending on the sensor performance:

• Magnetometer: The magnetometer measures the magnetic field of the Earth and

then compares the field direction to a model to reconstruct the orientation of the

gondola. Near the magnetic poles however the field lines are highly inclined so

the accuracy is limited to a few degrees. To avoid magnetic fields from motor

currents the magnetometer is mounted on the outer frame ”chin” sunshields.

• Omni-Sun Sensor: This sensor consists of twelve photodiode sensors mounted

radially which cover 360◦ in azimuth. Sensitivity to shadowing by cables or

other structural components makes the sensor only useful over a limited azimuth

range. The omni-sun sensor was only flown in 2010.

• Pinhole Sun Sensors: Pinhole Sun Sensors (PSS) use voltages generated by a

photodiode array to reconstruct the azimuth and elevation of the sun. Individual

PSS units cover a range of ∼40◦ in azimuth, but a number of units can be

mounted in different locations to give an unobstructed view of the sky. The

PSS units are small and have low power consumption and unlike the omni-sun

sensor do not require a separate computer for processing.

• Differential GPS: A differential GPS (DGPS) consisting of at least three GPS units

mounted a fixed distance apart can be used to reconstruct the orientation of the

gondola. The accuracy of the azimuth reconstruction depends on the baseline

between the antennas. BLASTPol flew a DGPS unit with a largest baseline of

3 meters in 2010. For the 2012 flight BLASTPol used data from a different DGPS

unit which was part of the CSBF electronics package.
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• Roll Star Camera: An additional star camera was mounted on the outer frame,

with the goal of better constraining the roll pendulations of the telescope which

are poorly constrained by the inner frame star cameras and gyroscopes.

• Elevation Encoder: The elevation motor has a built-in encoder. It offers high

precision measurements of the angle between the inner and outer frame, however

its accuracy as an elevation coarse sensor is limited by the fact that the entire

gondola outer frame pendulates with an amplitude of a few arcminutes.

• Inclinometers: Liquid bubble inclinometers are mounted on the inner frame as

a backup for the elevation encoder and on the bottom of the gondola directly

below reaction wheel center as a measure of the tilt of the outer frame. The

sensor measures the direction of acceleration, so it is not sensitive to motions

due to the acceleration of the payload.

Post-flight pointing reconstruction uses only the gyroscopes and star cameras (Rex

et al. 2006). The algorithm is based on a similar multiplicative extended Kalman

filter technique (Markley 2003) used by WMAP (Harman 2005), which has been

modified (Pittelkau 2001) to allow for the evaluation of the star camera and gyroscope

alignment parameters. The offsets between the star cameras and the submm telescope

are measured by repeated observations of pointing calibrators throughout the flight.

Post flight absolute pointing accuracy using this system is typically < 2′′, and random

pointing errors were found to be < 3′′ rms (Pascale et al. 2008; Marsden et al. 2008).

The performance of various pointing sensors and quality of the resulting pointing

solution will be discussed in N. Gandilo’s thesis.

2.5.3 Power Systems

BLASTPol consumed an average of 400 Watts of power during nominal operations in

2010 and 390 Watts in 2012. During large telescope slews the motors required extra
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power of up to ∼150 Watts. Also during the first 12-24 hours while the telescope was

within line-of-sight we used video and telemetry transmitters to communicate with

the payload, which consume an extra ∼150 Watts.

BLASTPol flights take place during the Antarctic summer, which limits the battery

charge capacity (and therefore mass) required as the sun is always above the horizon.

Our solar panels were manufactured by SunCat Solar, LLC of Tucson, Arizona.

The individual cells are A 300 mono crystalline silicon solar cells manufactured by

Sunpower. Each cell is 12.5 by 12.5 cm in size with a thickness of 270 microns and can

produce 6.83 Amps at a voltage of 0.38 V at peak power and an operating temperature

of 100◦C.

The individual cells are arranged into solar panel modules, with each module

containing 30 cells connected in series, which can produce 79 Watts (6.83 A× 30×

0.38 V). Bypass diodes are installed in parallel with every ten cells so that an electrical

break down would only result in the loss of a third of the module power. The

individual modules are connected in series in a ”string” of three panels, which results

in an open circuit voltage for each string of 34.56 V.

The entire solar array consists of six strings connected in parallel. The total power

the array was designed to produce at normal sun illumination was 1147 Watts at a

typical battery voltage of 28 Volts. Even if the sun was at an angle 60 degrees from

the normal of the solar panels, the panels are designed to provide 574 Watts of power

which is well over the typical power consumed by BLASTPol.

The panels were mounted on an aluminum frame with the panel normal angle

∼110◦ from the telescope beam in azimuth and ∼14◦ above horizontal in elevation.

The sun elevation in late December in Antarctica ranges from ∼8-40◦.

BLASTPol uses four Odyssey Extreme PC1200 sealed gel type lead-acid battery

units. Each unit has a nominal voltage of 12 V, and a charge capacity of 40 Amp

hours, which at BLASTPol’s typical power consumption of 400W and battery voltage
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of 28.0 V would last for ∼5.6 hours. Charging of the batteries is controlled by a TriStar

MPPT Solar Controller manufactured by the Morning Star Corporation.

During the 2010 post-flight analysis the bolometer TOD showed anomalous features

which correlated with motor current spikes, probably indicating that cryostat readout

electronics were very sensitive to noise on the power lines (see Section 4.2.1). The

receiver and cryostat were isolated by creating a second power system, with a separate

charge controller which charged half the batteries and used two strings of solar panel

modules. Three strings of solar panels were used to charge all other systems (including

the flight computers, ACS and motors).

2.6 Motor Control

2.6.1 Overview

BLASTPol relies on three direct-drive brushless DC motors to point the telescope.

An elevation drive points the inner frame housing the telescope, receiver, DAS and

primary pointing sensors. The entire balloon gondola is then pointed in azimuth.

Because of conservation of angular momentum changing the velocity requires the

azimuth motors to transfer angular momentum to and from various ”sinks”. The

primary azimuth pointing motor is attached to a high moment of inertia reaction

wheel, which allows control of angular momentum on short timescales (0.1 s to ∼15 s).

Over longer timescales we use a motor attached to an active pivot connecting the

gondola suspension cables to the balloon flight train. This pivot motor can be used

to transfer angular momentum through the flight train into the balloon, which has a

very large moment of inertia.

Motors use magnetic fields to generate a force which moves a rotating part (rotor)

relative to the stationary part of the motor (stator). The force comes as a result of

interacting magnetic fields in the rotor and stator. Different types of motors offer



Chapter 2. The BLASTPol Instrument 46

different degrees of complexity and power consumption. For the BLASTPol pointing

motors we use Brushless DC (BLDC) direct drive motors (DDR). Figure 2.13 shows a

cartoon of a brushless DC motor setup. The rotor usually contains rare earth magnets,

while the stator contains at least three coils of wire which generate a magnetic field

when current is passed through them. The interaction of the rotor magnetic field and

the time varying field from the motor windings causes the rotor to turn.

BLDC motors require a motor controller, a device to which battery power and a

control signal are inputted. The controller outputs time phased AC currents to each

of the stator coils. In order to generate the correct phases the controller also requires

commutation feedback from a sensor measuring the angular position of the rotor with

respect to the stator.

The motors used by BLASTPol are direct drive (DDR), which means the rotor is

coupled directly to the load, not connected through a gear train or belt system. There

are several advantages of using BLDC DDR motors:

• In non-DDR motors which use belts or gears, motor tuning is more difficult,

with additional motor backlash and vibrations;

• Motors which use brushes require periodic replacements. Brushes also wear

out more quickly in the low atmospheric pressure balloon environment (∼0.005

atm), and more importantly are a cause of excess of electromagnetic interference

from arcing due to the lower breakdown voltage of air at float altitudes.

• Gears require periodic lubrication and belts require tightening, while brushless

DDR motors require almost no maintenance.

The properties of the three BLASTPol pointing motors, the reaction wheel, pivot

and elevation drive, are summarized in Table 2.1.

The behavior of direct drive motors can be predicted largely by two constants: the

torque constant kT in units of Nm/Amps, which relates the current required to obtain
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Figure 2.13: Cartoon showing the basic components of a brushless DC motor. The BLDC

consists of a rotor which has a permanent magnet. The stator has a series of windings (in

this case 3 pairs of windings), which produce a time varying magnetic field when an AC

current is run through them. The current run to each of the winding pairs is out of phase

generating a rotating magnetic field in the motor, which causes the rotor to turn. In order for

the motor to rotate smoothly and efficiently the motor controller requires position feedback

on the orientation of the rotor, to phase the winding currents appropriately.
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Motor Elevation Reaction Wheel Reaction Wheel Pivot

(2010) (2012)

Model number C053A D062M D063M K1782008Y1

Manufacturer Kollmorgen Kollmorgen Kollmorgen Bayside

Commutation Feedback Sine Encoder Sine Encoder Sine Encoder Resolver

Motor Controller (MC) EtherCat EtherCat EtherCat AMC Digiflex

Peak Torque (Nm) 53.7 33.5 64.4 81

Max. Continuous Torque (Nm) 20.9 9.8 17.7 30

Max. Continuous Current (A) 12.5 6.0 5.7 10.0

kT (Nm/A) 2.30 2.30 4.42 3.18

kV (VRMS/kRPM) 139 139 268 192

R (Ω) 1.40 3.56 4.83 1.7

Table 2.1: Properties and relevant constants for the BLASTPol pointing motors.

a given torque (assuming zero motor velocity), and the voltage constant kV (V/kRPM)

which gives the back EMF generated by spinning the motor a certain number of

revolutions per minute. The back EMF implies that there is a maximum speed ωmax

at which the motor can rotate where the voltage supplied by the battery (V) is equal

to the back EMF voltage:

ωmax =
V
kv

. (2.1)

The requirement that our motors be able to provide torque means that in practice

the motor systems are designed to operate at a fraction of ωmax. If a motor is rotating

at a velocity ω, the corresponding back EMF voltage is kv ω. The maximum torque

that the motor can supply is then:

τmax =
V − kv ω

R
kT (2.2)
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where R is the motor winding resistance.

2.6.2 Commutation Feedback Sensors

In order for the brushless DC motors (BLDC) motors to phase the currents in the stator

coils to optimize the rotation of the rotor the controller requires high resolution, low

latency measurements of the rotor orientation. The commutation feedback sensors

used by the BLASTPol pointing motors are:

• Sine Encoders: Sine encoders are incremental encoders (which record changes

in position of the rotor relative to the stator), but instead of outputting square

waves, they output two 90◦out of phase voltage signals. Sine encoders therefore

provide analog-encoded rotor position to the motor controller which can be used

to reconstruct the motor position to extremely high precision. Both the elevation

and reaction wheel motors use sine encoders.

• Resolvers: The pivot uses a Harowe Heavy Duty Brushless 21BRCX-601-H91/20

resolver with 16′ accuracy (peak-to-peak). A resolver is a rotary electrical

transformer which has both a rotor and stator. The stator has three windings: an

exciter winding and two phase windings. Running an AC voltage through the

stator exciter winding induces current in the two rotor windings, which in turn

induces current in the stator phase windings. By monitoring the stator phase

winding voltages the sine and cosine components of the angular orientation

of the rotor can be reconstructed. A resolver measures the absolute angular

position of the rotor.

2.6.3 Elevation Drive

The elevation of the inner frame is controlled by a C053A Kollmorgen Cartridge Direct

Drive servo motor mounted on one side of the inner frame at the attachment point
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to the outer frame. A free bearing provides the connection point between the inner

and outer frames on the other side. The motor specifications are given in Table 2.1.

The position feedback is provided by a Heidenhain Endat sine encoder, which is a

sine encoder with added hardware to keep the position of the motor in memory even

when the motor is not powered. The encoder has a resolution of 134,217,728 counts

per revolution.

Before flight the center of mass of the inner frame is adjusted to be along the

cross-elevation axis by attaching 4 to 6 lead bricks. As cryogens boil-off in-flight the

center of mass of the inner frame changes. To compensate and avoid over-taxing the

elevation drive, we have incorporated a balance system consisting of two hermetically

sealed tanks of fluid: one mounted at the front bottom of the inner frame and the

other at the top-back of the inner frame. As cryogens boil-off fluid is pumped from

the bottom tank to the top tank keeping the inner frame more or less in balance. A

high density saline solution (Dynalene HC-50), which has a freezing temperature

below -50◦C, is used as the pumped fluid.

During launch the release of the payload can result in rotational accelerations of

the cable suspended gondola of several hundred ◦/s2. To prevent damage to the inner

frame or elevation drive during launch accelerations, an elevation locking mechanism

is used. The locking mechanism consists of a series of lock holes on the port side of

the inner frame and a steel pin mounted on the outer frame pyramid and controlled by

a stepper motor. Before launch the pin is moved into one of the lock holes, preventing

the inner frame from moving. After launch a command is sent for the lock motor to

retract the pin from the lock hole so that the elevation drive can move freely.

The range of inner frame elevation allowed is limited by the clearance of the inner

frame baffle with respect to the outer frame sunshields and suspension cables. The

lower limit is set by the elevation where the inner frame baffle contacts the ground

shield or telescope ”chin”. In 2010 the lower elevation limit was 23.5◦. For the
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2012 flight modifications were made to the chin design in order to reduce the lower

elevation limit to 19.5◦ so that Saturn could be observed. The upper elevation limit is

set by where the inner frame baffle contacts the suspension cables. The upper limit

was set to 55◦ for both the 2010 and 2012 flights.

2.6.4 Reaction Wheel

The reaction wheel consists of a 0.76-m radius disk made of 7.6 cm thick aluminum

honeycomb, with forty-eight 0.9 kg brass disks mounted around the perimeter. Total

mass of the reaction wheel is ∼100 kg, and the moment of inertia is ∼27 kg m2. The

reaction wheel is mounted at the azimuthal center of mass of the telescope, directly

beneath the active pivot. By spinning the reaction wheel angular momentum can

be transferred to and from the gondola, allowing precise control over the telescope

azimuth velocity with minimal latency.

The original BLASTPol motor was a Kollmorgen Housed Direct Drive Motor

D062M, which is a multi-pole hollow shaft motor that comes pre-assembled in a case

with a cross-roller bearing. The D062M can provide a maximum continuous torque of

9.8 Nm or peak torque of 33.5 Nm for less than two seconds. Commutation feedback

is provided by a high resolution sine encoder which comes pre-installed into the

motor assembly and which offers 27 bit (26′′) resolution. Before delivery from the

manufacturer, the motor unit was opened and the bearing grease was replaced with

low temperature grease.

After the motor failed during the 2010 flight (Section 3.2.7) the reaction wheel

motor was replaced with a D063M motor. The D063M is a higher torque version of

the D062M (see Table 2.1) and also uses a dual bearing system. In addition this time

the low temperature grease was not requested. A Copley Controls Accelnet EtherCat

Drive (AEP-090-36) was used to drive both the 2010 and 2012 motors. The drive can

output a peak current of 36 A or a peak continuous current of 12 A.
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Figure 2.14: Maximum torque vs speed for the reaction wheel motor, made using equation

2.6.1 and motor properties given in Table 2.1. The 2012 motor (blue) can provide more torque

than the 2010 motor (red). Dotted horizontal lines show the maximum continuous torque for

the motor and the dashed vertical lines give the reaction wheel set point speed.

The 2012 motor has a higher back EMF constant (kV) than the 2010 motor (Table 2.1)

but also a higher torque constant (kE). Figure 2.14 shows a Maximum Torque-Speed

Curve for the reaction wheel calculated from Equation 2.6.1. In practice we limit

the motor speed to below 400 ◦/s for safety reasons, indeed the motor control loops

(Section 2.6.7) attempt to keep the reaction wheel spinning close to a commanded set

point velocity (50 ◦/s in 2010 and 30 ◦/s in 2012).

A saturation time tsat, or the amount of time that the motor can be run at the

continuous torque limit (τC) before it reaches a maximum velocity, can be also be

calculated:

tsat =
ωmax

αmax

IRWωmax

τC
, (2.3)

where IRW is the moment of inertia of the reaction wheel. Using ωmax =400 ◦/s, and

IRW = 27 kg m2 the saturation time for the reaction wheel motor was 19.2 s in 2010 and
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10.6 s in 2012. Torque on longer timescales must be provided by the active pivot motor.

2.6.5 Pivot Motor

BLASTPol is a cable suspended gondola. At the interface between the gondola

suspension cables and the balloon flight train is an active pivot with an integrated

motor. The active pivot provides many important functions:

• It allows the gondola to rotate relative to the balloon orientation without saturat-

ing the reaction wheel.

• Over short timescales it can provide torque by torquing against the flight train

which can be modeled as a weak spring (see below).

• Over long scales the pivot can be used to transfer angular momentum to the

balloon, which because of its volume (1.1× 106 m3) has a very high moment of

inertia.

Figure 2.15 (left panel) shows a picture of BLASTPol just after launch in 2012.

The balloon, whose volume is less than 1% of the inflated volume at float altitudes,

connects to a parachute (red). The parachute connects through lifting straps to a steel

cable flight ladder, which connects to the BLASTPol pivot.

The balloon flight train system can be modeled as a series of harmonic oscillators.

By applying torque τ to the bottom of the flight ladder, the pivot can cause an angular

rotation of θ relative to the balloon:

τ = −κe f f (θ) θ. (2.4)

κe f f is the effective torsional spring constant of the flight train and parachute, which

can be described as a series spring constants:

κ−1
e f f = κ−1

1 + κ−1
2 + . . . . (2.5)
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Note that the weakest spring will dominate the effective spring constant.

Here we model the flight train spring constant as shown in Figure 2.15: with the

two dominant terms coming from the flight ladder κ1 and parachute κ2. The parachute

is used to reduce the speed of the descent after balloon termination, while the flight

ladder provides the connection to the science payload (in our case at the pivot) and

also decreases the solid angle of the balloon as viewed from the BLAST telescope,

allowing access to science targets at high elevations.

The spring constant can be determined by considering the energy of the system.

We start by considering just the spring constant of the flight ladder. Rotating the pivot

causes an angular displacement of ∆θ from the equilibrium angle of the flight ladder

and the height of the ladder is correspondingly reduced by:

∆h =
√

l2 − R2θ2 − l u −R2θ2

2l2 , (2.6)

where the right side of the equation is only valid when θR << l. We can generalize

this relation for a displacement from any angle θ,

∆h =

√
l2 − R2 (θ + ∆θ)2 −

√
l2 − R2θ2. (2.7)

Then since

mg∆h = τ∆θ, (2.8)

we can write

τ (θ) ' mgl

(√
1 − R2(θ +∆θ)2

l2 −
√

1− R2θ2

l2

)
∆θ

(2.9)

which if both θR and (θ + ∆θ) R are << l can be simplified to

τ (θ) = −mgR2

2l

(
(θ + ∆θ)2 − θ2

)
∆θ

. (2.10)

So in the limit as ∆θ goes to zero equation 2.9 becomes:

τ (θ) = −mgR2

l
θ, (2.11)



Chapter 2. The BLASTPol Instrument 55

2a

2a

2R

d=59.4m

l=25.9m

Pivot

Parachute

Flight 
Ladder

Balloon

k2

k1

a=0.46m

R=0.20m

Figure 2.15: Left: picture of BLASTPol just after launch in 2012. The balloon, whose volume

is less than 1% of the inflated volume at float altitudes, connects to a parachute (red). The

parachute connects through lifting straps to a steel cable flight ladder, which connects to

the BLASTPol pivot. Right: Cartoon of the model used to estimate the flight train dynamics.

Here the flight train spring constant is modeled as the combination of the flight ladder κ1

spring constant and the spring constant of the parachute κ2. The length of the flight ladder

is 25.9 m, and the two steel cables are kept 40 cm apart by metal rungs. The length of the

parachute is 59.4 m, while the radius of the parachute support rings a =0.46 m (Davison, V.,

private communication).
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Figure 2.16: Right: Cartoon showing the geometry of rotating the bottom parachute ring

by an angle θ relative to the top parachute ring. The change in height from this rotation is

∆h =
√

d2 − q2 − d.

so the spring constant κ1 as defined in equation 2.4 is then

κ1 =
mgR2

l
, (2.12)

which for a 2200 kg telescope, a cable ladder separation of 2R = 0.406m and a flight

train length l = 25.9 m gives a spring constant of 34 Nm/rad or 0.6 Nm/◦.

Calculating the spring constant of the parachute κ2 is complicated by the fact that

the parachute lines are not constrained to be kept apart by a certain distance, so the

equivalent for R in Equation 2.6 is a function of θ. Note that if θ > 180◦ the parachute

lines cross meaning the effective spring constant goes to zero.

Figure 2.16 shows the geometry. Here:

h =
√

d2 − q2 = d cos(φ) u d
(

1 − 1
2

( q
d

)2
)

. (2.13)

But from the geometry of the parachute q can be written as a function of a and

theta:

q = 2a sin
(

θ

2

)
, (2.14)

so

∆h = h − d = −2a2

d
sin2 θ

2
. (2.15)



Chapter 2. The BLASTPol Instrument 57

Generalizing to a rotation of the bottom of the parachute from θ to θ + ∆θ we get:

∆h = −2a2

d

(
sin2 θ

2
− sin2 θ + ∆θ

2

)
. (2.16)

The second term can be Taylor expanded about θ:

sin2 θ + ∆θ

2
u sin2 θ

2
+ 2 sin

θ

2
cos

θ

2
∆θ

2
= sin2 θ

2
+

1
2

sinθ ∆θ, (2.17)

and Equation 2.16 can be rewritten as:

∆h = − a2

d
sinθ ∆θ. (2.18)

A similar analysis to the derivation of κ1 gives

κ2 =
mga2 f (θ)

d
, (2.19)

where

f (θ) =
sin θ

θ
. (2.20)

Combining equations 2.5, 2.12 and 2.19 gives:

κe f f = mg
(

l
R2 +

d
a2 f (θ)

)−1

(2.21)

The predicted spring constants are shown in Figure 2.17. For small or moderate

displacements from the equilibrium point (θ < 100◦) the flight ladder spring constant

dominates Equation 2.21 and the spring constant is relatively flat. As the separation

between the parachute straps decreases the spring constant of the parachute decreases.

Eventually the parachute spring constant starts to dominate Equation 2.21.

At the end of the BLASTPol 2012 flight a measurement was made to estimate

the balloon flight train spring constant. The telescope was made to come to a rest

then the azimuth motors were disabled and the reaction wheel motor was powered

off. The motor control gains were set so that the term proportional to the reaction
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Figure 2.17: Predicted spring constants for the BLASTPol flight train, based on Equations 2.12,

2.19 and 2.21. At moderate displacements from the equilibrium point the effective spring

constant κe f f is dominated by the flight ladder spring constant (κ1) and is relatively flat. After

displacements of θ>100◦, κe f f drops as the parachute flight train spring constant (κ2) starts to

dominate Equation 2.21.
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Figure 2.18: Measurements made of the pivot flight train spring constant. Top: Pivot resolver

angle as a function of time. Middle: Pivot motor current with the three current spikes used to

measure the spring constant labeled. Bottom: Azimuth of the gondola as a function of time.

wheel velocity error was maximized, and the reaction wheel velocity set point was at

a maximum. When azimuth pointing was re-enabled the control software requested

the maximum possible motor current from the pivot controller.

Figure 2.18 shows the response of the pivot system to several of these tests. When

maximum current was applied to the motor the pivot applied a corresponding torque

that would twist up the balloon flight train, as measured by the pivot resolver. A

estimate for the average spring constant can be made using

κmeas = τ/∆θ = ∆IPivkT/∆θ (2.22)

where ∆IPiv is the pivot current needed to twist the flight train up by ∆θ degrees

and kT = 3.2 Nm/A is the torque constant for the pivot motor. Table 2.2 shows the

measured values for each of the three pivot current spikes. The values are in good

agreement with those predicted by Equation 2.21 as shown in Figure 2.17.

As a final note Table 2.2 also shows that even when maximum current was applied

to the pivot motor the bottom of the flight train still only rotated by ∼90-120◦.
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Measurement 1 2 3

∆IPiv (A) 11.8 11.8 -11.7

∆θPiv (◦) 90 87 -122

κ (Nm/◦) 0.42 0.43 0.31

Table 2.2: Measurements of the BLASTPol spring constant κ during the 2012 BLASTPol flight

using the formula κ = ∆IPiv k∆θPiv. For the pivot motor the torque constant k is 3.2 Nm/A.

The measurement numbers refer to different instances when the pivot current was turned to

maximum as shown in Figure 2.18.

This is important because if ∆θ had been 180◦or higher we could have crossed the

parachute straps which would have resulted in the spring constant going to zero. As

a consequence the pivot would no longer be able to provide torque and the reaction

wheel motor would quickly saturate.

2.6.6 Motor Controllers

Two different types of motor controllers were used. For the elevation and reaction

wheel drives Accelnet Ethercat (AEP-090-36) drives manufactured by Copley Con-

trols were used. The pivot motor controller is a DPRALTR-020B080 controller from

Advanced Motion Controls which can incorporate resolver feedback.

The controllers were commanded by sending an analog voltage signal Vin to the

controller. The controller was programmed to produce an output current proportional

to this input voltage:

Iout = C Vin (2.23)

The input voltage was produced by a digital to analog converter mounted inside the

controller electronics box, powered by a DCDC for greater electronic isolation. The

digital signals were generated by DAC transmitter daughter cards in the Attitude
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Control System (ACS) and carried to the controller box over a special DAC cable.

The flight computers also communicate with the controllers over isolated RS-232

serial lines. Serial communications are used to read information from the controllers

such as motor position, velocity, output current, and controller status fields. The most

crucial of these fields are the reaction wheel velocity which is used as an input to the

pivot control loop (Section 2.6.7) and the elevation encoder which is used as a coarse

elevation sensor (Section 2.5.2).

2.6.7 Control Software

Orientation of the telescope is controlled separately in azimuth (using the reaction

wheel (Section 2.6.4) pivot (Section 2.6.5) motors), and elevation (using the elevation

drive as described in Section 2.6.3). The motor control software can be broken down

into three subsystems:

• Velocity Computation: Run as part of the main thread 100.16Hz control loop in

mcp, the master control program (Wiebe 2008). This code takes as inputs the

current pointing solution and scanning strategy and returns requested azimuth

and elevation telescope velocities.

• Current Request Calculation: Compares requested telescope velocities to the ve-

locity measured by the gyroscopes and then calculates current requests which

are sent to the motor controllers.

• Motor Communications: Runs in a separate thread from the main mcp loop and

handles serial communication between the motor controllers and mcp.

The motor control code has two modes: position mode and velocity mode. Position

mode attempts to point the telescope at a location on the sky:

ωreq,az =


−gaz pt

√
|az− azdest| if az < azdest

gaz pt
√
|az− azdest| if az ≥ azdest

(2.24)
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where gaz pt, is the azimuth pointing gain, one of a series of gains terms which can be

commanded in flight to adjust and optimize pointing performance. A similar equation

is used to calculate ωreq,el.

The majority of the flight is spent making raster maps and therefore the telescope

mostly operates in velocity mode. Scan control software (see Section 2.7.1) is used to

calculate the desired telescope velocity.

Once the requested velocity is calculated a velocity error term is then computed:

∆ωaz = ωaz −ωreq,az (2.25)

which is just the difference between the requested velocity and the actual telescope

velocity. Equation 2.25 can be written in terms of the angular roll and yaw velocities

(vroll andvyaw) measured by the gyroscopes as

∆ωaz = (vroll sin (el) vyaw cos (el))−ωreq,az. (2.26)

Then the requested reaction wheel motor current Iaz req is calculated:

Iaz req = gp az ∆ωaz + gp az gi az

∫ t

t−5
∆ωaz. (2.27)

Here, gp az is the proportional gain for azimuth control and gi az is the integral gain.

The proportional gain provides most of the current, but if there are dissipative forces

acting on the system (e.g. motor friction, winds pushing on the gondola) the integral

term will provide extra torque.

Equivalent equations are used to calculate the elevation current:

Iel req = gp el ∆ωel + gp el gi el

∫ t

t−5
∆ωel. (2.28)

The elevation and reaction wheel motors are responsible for providing pointing

control on short timescales, so calculations of equations 2.27 and 2.28 are done on the

DSPs in the attitude control system (ACS), in a kilohertz loop.



Chapter 2. The BLASTPol Instrument 63

The pivot motor control is slightly different than the reaction wheel or elevation

drive. The primary task of the pivot motor is to keep the reaction wheel velocity

near the requested set point ωrw ◦. This is to keep the RW motor speed from passing

through zero velocity, where it would have to overcome static friction.

The pivot control equation is:

Ipiv req = −grw piv ∆ωrw + gp piv ∆ωaz + I f ric (2.29)

where ∆ωrw = ωrw −ωrw ◦ is the difference between the actual reaction wheel velocity

and the set point velocity, so the grw piv term keeps the reaction wheel speed near the

set point. The gp piv term is proportional to ∆ωaz the telescope azimuth velocity error,

and can be used to have the pivot motor also provide torque to drive the gondola

azimuth scans. Note that in this equation there is no integral term. Instead I f ric is

used to provide extra torque to overcome friction, where I f ric is a box car average over

10 seconds of f (Ipiv) and f (Ipiv) is defined as:

f
(

Ipiv
)
=


+I f ric o f f if I > 0.03A

−I f ric o f f if I < −0.03A

0 otherwise .

(2.30)

I f ric o f f is a commandable parameter usually set to 0.3 A.

2.7 Scanning Strategy

BLASTPol is a mapping experiment and operates in a different mode to many previous

ground based polarimeters such SPARO (Dotson et al. 1998) and SCUPOL (Greaves

et al. 2003), which chops the telescope pointing between the science target and a

reference position that is assumed to have I = Q = U = 0.

Large low-frequency so called 1/ f noise caused by drifts in detector gains, requires

that the detector TOD be high-pass filtered. For BLASTPol 2010, we used a high-pass
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filter with a cutoff frequency of 50 mHz, meaning that power on timescales greater

than 20 seconds is attenuated. At a typical scan speed of 0.05 ◦/s this corresponds to

a size scale of 1.0 degrees, which is the typical width of a BLASTPol map.

The BLASTPol scanning strategy is designed to visit each point on the sky many

times, with different bolometers and at different parallactic angles. Making a map

with good uniformity of coverage is also crucial. Ideally we would like to observe

every pixel in our map multiple times, with every detector in our array at each of the

four different HWP positions. In reality, errors in our in-flight pointing and the large

size of many of our maps make this impossible.

2.7.1 Mapping Strategy Overview

As described in Section 2.6.7 the motor control software in the master control program

(mcp) responds to azimuth and elevation velocity requests, which then get translated

into motor current requests through the control loops.

The function of the scanning control subroutines in mcp is to request appropriate

velocities based on the current altitude, azimuth and velocities of the telescope, and

properties of the requested scan pattern.

In conventional scans, used for most science maps, the primary scan direction is in

azimuth. This is because changes in elevation are known to cause thermal drifts in

the bolometer TOD, possibly due to sloshing of cryogens during elevation moves or

observation through an elevation dependent air mass. The telescope scans in azimuth

while drifting at a constant speed in elevation. The goal is for the telescope elevation

to have drifted by δel by the time it has completed one azimuth crossing, where δel

is the elevation step size commanded for the scan. mcp calculates an appropriate

elevation drift speed before each azimuth crossing.

There are three main types of azimuth based scans which trace different shapes on

the celestial sphere:
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Figure 2.19: Trajectory for a complete scan of the Lupus I quad in right ascension/declination

(left) and azimuth/elevation (right). Line colours correspond to the HWP position during

each raster. The telescope scan parameters are set so that a single up and down raster takes

∼15 minutes. This way a full scan or rasters at all four HWP angles can be completed in ∼1

hour, and trajectories follow more or less the same path on the sky (minimal sky rotation).

• box: scans a rectangular area in azimuth-elevation about a center defined in right

ascension and declination. The corners of the box will rotate as the parallactic

angle of the source changes;

• quad: scans a quadrilateral defined by the coordinates of four corners in right

ascension and declination;

• cap: scans a circular region about a defined center.

Figure 2.19 shows an example scan trajectory for the central bolometer of the

Lupus I quad region observed in the 2012 BLASTPol flight, in both RA/Dec (left) and

azimuth/elevation (right). The different colours in the figure show the scan trajectory

for different HWP angles.

When referring to the data taken it is convenient to define some terminology:
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• Raster: Corresponds to a single up and down scan at one HWP position. A

typical raster takes ∼15 minutes.

• Scan: A complete scan of a target consists of four consecutive rasters on a target

which cover all four HWP angles. A scan consists of ∼1 hour of data.

• Observation: An observation is a set of consecutive scans on one target.

2.7.2 Scanning Parameters

The coverage for an individual up and down raster is set by the scanning velocity,

map size and elevation step size.

The azimuth scanning velocity is limited by the sampling rate of the detector

readout and the size of the telescope beam. Requiring n samples of the beam FWHM

per source crossing limits the angular speed to:

ω <
FWHM f

n
, (2.31)

where f is the sampling frequency of 100.16 Hz. For the 250 µm array the diffraction

limited beam FWHM is ∼30′′. So requiring 3 samples per beam limits the telescope to

an angular velocity of less than 0.28◦/s.

The other limiting factor on the BLASTPol azimuth speed is the star cameras. In

order to reconstruct pointing post-flight the star cameras must be able to detect and

centroid stars. Scanning in azimuth during a star camera exposure causes smearing

of the star’s point spread function in the scanning direction. To compensate the star

cameras have a shorter exposure (60-80ms) during azimuth scans than at azimuth

turnarounds. Still at speeds greater than ∼0.1◦/s, smearing of the stars usually means

that stars are only identified at azimuth scan turnarounds.

The regions mapped by BLASTPol are typically of order a degree2, small compared

to the map sizes made by BLAST (Wiebe 2008). Ideally, the azimuth scan speed is kept
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small to 0.05-0.1 ◦/s, so that less time is spent turning around outside of the target

area.

For BLASTPol the goal is to complete a raster in 15 minutes. This way a full scan

with rasters at all four HWP positions can be completed in an hour. Hour long scans

are useful for scheduling observations, but also the requirement of covering all four

halfwave plate positions in an hour means that the telescope scans more or less the

same trajectory at each HWP position (Figure 2.19).

Limits also need to be placed on the elevation step size δel , which needs to be large

enough that a single up and down raster scan can be completed within a reasonable

amount of time but sufficiently small that the array fully covers the target area in a

single raster. The field of view of the telescope is 13.5′× 6.5′ where the short direction

is nearly parallel to elevation. That means that the maximum elevation step size

should be 6.5′/2 ∼ 3′.

2.7.3 Dithering

Ideally BLASTPol would be able to cross every point in the map multiple times

with every detector at all four HWP angles in a single scan. However full coverage

would require an elevation step size of just 10′′(approximately 1/3 the 250µm FWHM).

Observations need to be scheduled in hour long scans, so for most scan regions it is

not possible to have an elevation step size that small at reasonable scan speeds. The

solution is to dither the center of the scan in elevation from δel to −δel. The dither

step size can then be set to 10′′ or whatever size will give the most uniform coverage

in the time available.

Figure 2.20 shows an example scan of the Lupus I map region observed in the 2012

BLASTPol flight. The right panel shows the scan pattern after 2 two scans (green and

blue). In this case the elevation of the center of the scan was increased by 10′′ after the

first scan. The left panel shows the scan trajectory traces after eight such dither steps.
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Figure 2.20: Example scans of Lupus I showing the improved map coverage for a single

detector due to scan dithering. Right: the scan pattern after 2 two scans (green and blue). In

this case the elevation of the center of the scan was increased by 10′′ after the first scan. Left:

the scan trajectory traced after 8 dither steps.

2.7.4 HWP Rotation

An additional task of the scanning software in mcp is to trigger the HWP to rotate to a

new position at the end of every raster. The rotation is triggered at the turnaround

before the last azimuth crossing at the bottom of the raster. A flag to step the HWP is

set and read by the HWP control thread of mcp.

The HWP has two sensors which are used to determine position: a potentiometer

on the HWP which is kept at cryogenic temperatures and an encoder which is

mounted on the stepper motor (outside the cryostat). The encoder is high resolution

(324 encoder steps per 1◦ of HWP rotation), however the encoder is incremental so if

the motor were power cycled we would have no knowledge of its position.

The potentiometer simply gives a voltage as a function of wave plate orientation, so

it gives an absolute measurement HWP angle. However defects on the potentiometer

contacts can lead to errors in the derived angle of the HWP. Four waveplate angles
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were chosen separated by 22.5◦ where the potentiometer readings were repeatable

and accurate.

When a HWP step is triggered, the potentiometer orientation is measured. The

control software uses the potentiometer reading to calculate the current HWP orien-

tation, calculates the number of motor steps required to reach the next target HWP

angle and executes the move. If the potentiometer gets a bad reading (which typically

happens a few times a flight) it will move to the wrong next position. The software is

designed to be able to recover after a bad move.

The HWP angle sequence (Φ) is 0◦, 45◦, 67.5◦ and 22.5◦. This sequence is designed

to measure orthogonal polarization components between consecutive raster scans,

allowing Stokes Q or U to be measured and avoids HWP rotations larger than 45◦ to

minimize heating of the detectors due to motor vibrations.

2.7.5 Calibrator Lamp Control

For the 2010 flight the calibrator lamp was set to pulse for 300 ms every 15 minutes, so

that the drifts in bolometer responsivity could be measured. The pulses are removed

from the clean detector TOD in the data reduction pipeline (Section 4.3.2). However,

the scan parameters were designed so that each raster scan took about 15 minutes. As

a consequence calibrator lamp pulses often took place in the same region of a science

scan.

The control software was changed for the 2012 flight so that a calibrator pulse

would be triggered immediately before a HWP rotation and therefore at the edge of

the map or after 20 minutes if a HWP move had not been triggered.
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BLASTPol Flight Performance

3.1 Chapter Overview

The BLASTPol experiment had two scientific flights, both launched from the Long

Duration Balloon facility near McMurdo Station, Antarctica. The flight tracks of the

two Antarctic flights are shown in 3.1.

In this Chapter I discuss the performance of BLASTPol during the two Antarctic

science campaigns. The 2010 Antarctic flight had several issues including the failure

of the primary azimuth pointing motor, a melted infrared blocking filter which

caused additional systematics, and an additional highly correlated bolometer noise

component. These issues were fixed for the 2012 Antarctic flight, though hard drive

failures of both boresight star camera computers after six days will make pointing

reconstruction for the second half of the flight challenging.

70
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Figure 3.1: Flight paths for the BLASTPol 2010 (left) and 2012 (right) science campaigns. For

both flights the telescope was launched in late December from the NASA Long Duration

Balloon Facility near McMurdo Station, Antarctica and rose to a float altitude of ∼38 km,

where the stratospheric winds pushed the balloon around the continent. The flights were

terminated over the Ross Ice Shelf after 9.5 days for the 2010 flight and 16 days for the 2012

flight.
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3.2 The 2010 BLASTPol Flight

3.2.1 Preflight Planning

BLASTPol Sensitivity Estimates

Prior to the 2010 BLASTPol science flight instrument sensitivity estimates were calcu-

lated based on map noise levels measured from the BLAST 2006 map of a 0.8 degree2

region in the Chandra Deep Field South (Marsden et al. 2009).

The noise of BLAST (note: not BLASTPol) for a map of some defined size and

total integration time is defined to be σI , in units of Jy/unit area. BLASTPol places

polarizing grids in front of the detector arrays in an attempt to measure one of

the linear Stokes parameters Q. The polarizing arrays are arranged so that every

adjacent detector measures an orthogonal polarization component. Essentially half

the detectors are used to make a map of I90 (the component of the incident radiation

with polarization at 90◦) and half the detectors to make a map of I0.

The noise for the measurement of I90 and I0 depends on the dominant source of

noise for BLASTPol. If BLASTPol’s noise is dominated by thermal fluctuations in the

detectors, then σI90 = σI0 is just
√

2σI because only half the detectors were used for

each map. Maps of I90 and I0 can be used to generate a map of Q:

Q = I0 − I90 (3.1)

which then implies

σQ =
√

σ2
I0 + σ2

I90 = 2σI . (3.2)

In order to calculate the percentage polarization p and the polarization angle Φ both

Stokes parameters must be measured. In order to map U (U = I135 − I45), the half

wave plate (HWP) must be rotated by 22.5◦, which in turn rotates the polarization

of the incoming light by 45◦. That implies that half of the observing time is spent
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mapping Q and half is spent mapping U. Thus

σQ = σU = 2
√

2σI . (3.3)

It can be shown that

σp = σu = σq (3.4)

where q = Q/I and u = U/I. So for the case where detector noise dominates:

σp =
2
√

2σI

I
. (3.5)

Now if the noise is dominated by fluctuations in the background loading the

situation is different. Assuming the background loading radiation is unpolarized,

then we would expect that the loading would be reduced by a factor of 2 due to the

polarizing grid. That then implies that σI90 = σI0 =
√

2σI/
√

2 = σI .

Propagating through this factor of
√

2 into equation 3.5 shows that in the case where

background loading fluctuations dominate the noise:

σp =
2σI

I
. (3.6)

For BLAST the noise was dominated by background loading fluctuations due to

the telescope struts and warm optics (Pascale et al. 2008). However, for BLASTPol the

loading is half that of BLAST because the polarizing grid rejects half the incoming

radiation. It is possible that for BLASTPol the noise is no longer dominated by

loading but instead by detector noise. The situation is further complicated by the fact

that changing the detector load will also change the responsivity of the bolometers,

which could lead to a reduced fractional JFET noise contribution. For flight planning

purposes I assumed the pessimistic case that detector noise dominates and therefore

used Equation 3.5 to convert from BLAST to BLASTPol noise levels.

To calculate BLAST noise levels instrumental noise measurements were taken from

the BLAST 2006 0.8 square degree map of the Chandra Deep Field South (CDFS)
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λ (µm) 250 350 500

beam FWHM (′′) 36 42 60

σI (mJy/beam) 11 8.8 6.6

σI (MJy/Str) 0.32 0.18 0.069

Table 3.1: Instrumental noise estimates and beam sizes for the BLAST 2006 0.8 square degree

Chandra Deep Field South map (Marsden et al. 2009).

region, which has much lower signal levels than any of the BLASTPol targets. The

instrumental noise levels for these maps are taken from Marsden et al. (2009). In total

BLAST spent 40.1 hours of telescope time on this map.

There are several advantages to using noise levels from an actual BLAST map to

predict BLASTPol sensitivity instead of using theoretical BLAST detector noise levels.

The CDFS map noise levels include:

• inefficiencies in the scan mapping strategy,

• non-uniformities in the scan coverage,

• time lost to cosmic rays and noise spikes in the the system,

• atmospheric loading,

• a realistic percentage of the detectors not working.

To generalize further one can scale a σI for a BLAST 2006 to a map of an arbitrary

size and total integration time:

σI06 = N ×
√

map area
beam area

× 1√
t
, (3.7)

where t is the integration time for the map in seconds and N is noise equivalent flux

density (NEFD), which is equal to 1.44, 0.97 and 0.52 MJy/Str s0.5 at 250, 350 and 500

µm respectively.
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λ (µm) 250 350 500

Ireq (MJy/Str), t = 5hr 571 330 124

Ireq (MJy/Str), t = 50hr 181 104 39

Table 3.2: Required source fluxes to obtain a percentage polarization 1-σ error of 0.5% for a 1

square degree BLASTPol map.

By rearranging equation 3.5 we can calculate the flux required in a map of an

arbitrary size to obtain a certain percentage polarization error bar σp:

Ireq = 2
√

2
σI

σp
. (3.8)

Table 3.2 uses the above equation (with σI = σI06 and σp = 0.005) to calculate the

minimum source flux needed to get a measurement of percent polarization with

1-sigma error σp <0.5% in a 1.0 square degree map, for total map integration times of

5 and 50 hours1.

The uncertainty in the polarization angle (from which the field orientation is

inferred) limits the ability to interpret magnetic field morphology in nearby molecular

clouds. From the definition of σp in Equation 3.4 and using the relationship between

q, u, p and Φ it can be inferred that if σp << p then

σ2Φ =
σq

p
=

σu

p
=

σp

p
. (3.9)

Equation 3.9 can be used to estimate the minimum signal-to-noise needed for a

measurement of the percentage polarization p to obtain an acceptable σΦ in degrees:

σΦ =
180
2π

σp

p
= 28.6◦

σp

p
. (3.10)

So to measure polarization with an angular uncertainty σΦ of 10◦or less, we require

a signal-to-noise ratio on the measurement of percent polarization of p/σp > 3.

1Note that the estimates in this section assume that the measurement uncertainties are dominated
by statistical errors not systematic errors.
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In some molecular clouds the surface brightness is known in the BLAST bands

from previous BLAST or Herschel SPIRE maps. The above sensitivity relations can

then be used to estimate the minimum polarization required for BLASTPol to make

a three sigma detection of p for a given map size, integration time and scanning

efficiency.

I wrote an IDL software routine called sens_calc which takes an input map and

produces an output map of the minimum source polarization preq for each BLASTPol

beam sized pixel required to get a three sigma detection and the corresponding

histogram of preq for all pixels in the map. The beam sizes are assumed to be the same

as those measured for BLAST in 2006 (Table 3.1).

Figure 3.2 shows the results for the BLASTPol 2010 target map of the nearby Vela C

giant molecular cloud using BLAST maps from Netterfield et al. (2009) and assuming

a scanning efficiency of 80%2. The panels on the left show preq for a 1.4 square degree

map of Vela C. Over most of the Vela C cloud we would expect BLASTPol to detect

flux polarized at 2% to greater than 3σ. The histograms on the right show that if the

cloud had a uniform p of 2%, then we would expect several thousand independent

polarization detections in each of the three bands. This would be the most detailed

submm polarization map of a molecular cloud to date.

In reality, as discussed in Section 1.4.3, p is expected to vary a great deal throughout

the cloud. Lower density outer regions of the cloud tend to have a higher percentage

polarization than the dense inner regions of the cloud.

3.2.2 Target Selection

In order to achieve the science goals for BLASTPol (see Section 1.5.4), we selected a

number of molecular clouds with different properties. Priority was given to:

2Because of azimuth scan turnarounds and the fact that the detector array has a 13.5′×6.5′ field of
view some percentage of map pixel hits will be outside the requested scan region.
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Figure 3.2: Sensitivity estimates for a 1.4 degree2 BLASTPol 2010 map of Vela C using sens_calc

at 500 (top), 350 (middle), and 250 (bottom) µm. The left plots show preq, the minimum

source percentage polarization for which BLASTPol would be able to obtain at least a 3-sigma

detection in a beam sized pixel. The right plots show histograms of preq over the map.
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• Nearby clouds, to maximize linear resolution;

• Clouds off the Galactic plane or if on the Galactic plane clouds with 12CO lines

that show little evidence of multiple clouds at different distances along the line

of sight;

• Relatively cold clouds or clouds where star formation is its initial stages, so as

to avoid observing clouds with HII regions which may dominate the magnetic

field morphology;

• Observational constraints (e.g. number of hours visible per day, scheduling

conflict with high priority targets).

Our goal was to observe different types of molecular clouds, including nearby

Gould’s Belt Objects, Giant Molecular Clouds (GMCs) and Infrared Dark Clouds in

order to create a rich dataset that can be used to investigate magnetic field morphology

in different star formation environments.

Figure 3.3 gives a rough estimate of the sky available for BLASTPol to observe

during an Antarctic summer flight. Target visibility depends on the drift of the

telescope in latitude: as the balloon drifts further north more targets become visible.

In addition, the launch date affects visibility of targets as BLASTPol can only observe

over an azimuth range of 40-170◦ with respect to the sun. Each day the location of the

sun with respect to the celestial sphere moves by ∼1◦, so a later launch date means

that targets closer to the Galactic center are easier to schedule. A detailed discussion of

BLASTPol scheduling considerations can be found in T. Matthew’s thesis (Matthews

2013).

The nearest star forming region visible to BLASTPol was the Lupus Clouds (Com-

erón 2008), consisting of a number of low mass clouds within 200 pc, with a total

mass of a few 104 M�. The Lupus clouds are located well off the Galactic plane, so

there is little chance of confusing polarized emission from the Lupus clouds with
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Figure 3.3: Sky visible to BLASTPol, plotted over the public release Planck all sky image. The

three contours show roughly what areas of the sky could be visible for at least 3 hours of a

flight (Matthews 2013). Inner Contour: Targets should be visible under the the most pessimistic

flight assumptions (e.g. telescope drifts south, early launch), Middle Contour: Targets should

be visible under typical flight trajectories, Outer Contour: Targets that might be visible if the

telescope were to drift far north or launch much later than expected.



Chapter 3. BLASTPol Flight Performance 80

emission from more distant clouds. At 155 pc, the distance of Lupus I, BLASTPol’s best

resolution of 36′′corresponds to a linear scale of 0.02pc, sufficient to resolve filaments

and cores. In addition a dense, bright, relatively isolated clump in Lupus IV which

became visible two days after Lupus I was chosen as a secondary target.

BLAST 2006 created a 48 degree2 map of the Vela Molecular Ridge (VMR) (Net-

terfield et al. 2009), a massive relatively nearby (most gas thought to be at d∼700 pc)

star forming complex (Pettersson 2008) which was visible for approximately three

quarters of the BLASTPol flight. The top priority target was Vela C, a massive3 young

star forming region which contains the ultra compact HII region RCW 36. With a map

size of 1.4 deg2, the 2010 Vela C map was the largest region targeted by BLASTPol:

several thousand polarization detections were expected (Figure 3.2).

Vela Y, selected as a secondary VMR target, was discovered by BLAST (Netterfield

et al. 2009) and appears to be of comparable submm brightness to the cold southern

regions of the Vela C cloud, but has a much simpler morphology with emission

concentrated in a single dense filament.

A high right ascension Galactic plane target was chosen in the constellation of

Puppis. A series of GMCs and IRDCs were also selected from both IRAS and QUAD

(Ade et al. 2008) maps (used to select relatively cold objects) and NANTEN 12CO J=1-0

data cubes (Mizuno & Fukui 2004) (used to select objects with minimal line of sight

contamination).

In addition several calibrators were targeted:

• Polarization Calibrators: The SPARO instrument observed both the Carina

Nebula and G 331 (Li et al. 2006), two GMCs also visible to BLASTPol. Both

have well characterized polarization angle structure, and the central regions

of G 331 were found by SPARO to have negligible polarization < 0.2%. This

3The dense gas mass of Vela C traced by C18O is ∼ 5× 104M� (Yamaguchi et al. 1999)
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central region was used as a check of the instrumental polarization removal in

the BLASTPol 2010 reduction pipeline (Section 4.3.8).

• Beam Calibrator: The only true point source observed was the star, VY CMa

in the Canis Major constellation. For the 2012 BLASTPol flight the sunshields

were altered so that BLASTPol could observe Saturn, which was found to

have negligible polarization in observations at 350 µm taken with the SHARP

polarimeter at the Caltech Submillimeter Observatory (Srisuwananukorn 2013;

Matthews 2013).

• Pointing Calibrators: As the angle between the star camera axes and submm

beam varies with time, periodic maps were made of bright compact sources.

BLASTPol used two primary pointing calibrators: IRAS 08470-4243 and IRAS

15100-5613, which are located near the Vela and Lupus Molecular clouds respec-

tively.

3.2.3 Flight Overview and Performance

BLASTPol was first launched on December 27th, 2010 at 5:06PM New Zealand time

from the Long Duration Balloon Facility near McMurdo Station, Antarctica. The mass

of the science payload (not including NASA electronics, ballast or the balloon flight

train) was 1832 kg. The trajectory of the payload is shown in Figure 3.1. BLASTPol

flew for 230.8 hours, and eventually the flight was terminated over the Ross Ice Shelf,

613 km from McMurdo Station on January 6th, 2011.

The altitude over the course of the flight is shown in Figure 3.4. The payload rose

over the course of six hours to a stable float altitude of approximately 39 km above sea

level. For the rest of the flight telescope altitude varied between 36.5 to 40 km. The

sinusoidal variation in the telescope altitude is diurnal and is caused by the change

in sun elevation. Later in the flight as the telescope began to drift further south the
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amplitude of this diurnal effect decreased.

3.2.4 Balloon Ascent

BLAST was launched on a 39 million cubic foot balloon manufactured by Aerostar

International, Inc. of South Dakota, USA. The launch took place at December 27th

2010 at 5:06PM New Zealand time. The initial climb rate over the first 3 km of altitude

gained was 5.2 m/s. The rate of climb decreased significantly as the atmospheric

pressure dropped off, reaching 1.9 m/s after passing through the tropopause approxi-

mately 45 minutes after launch. Several drops of ballast were made to keep the balloon

rising. Eventually, 6.0 hours after launch the telescope reached a stable altitude of 39.6

km above sea level corresponding to a pressure of ∼0.005 atm.

The motors were powered off before launch and the inner frame was locked at an

elevation of 45◦. The maximum sun elevation at the launch site (latitude= −77.8◦)

is 35.5◦, so there was no chance that the sun would be in the field of view of the

telescope. This was important because after launch a combination of wind and large

pendulations induced by the launch meant that the motor control system did not have

sufficient torque to point the telescope. As shown in Figure 3.7, the telescope acted as

a torsion pendulum in azimuth, crossing the meridian of the sun several times.

At an altitude of 26.8 km 2.9 hours after launch the wind drag had decreased to

the point that we were able to power the motors and point the telescope in azimuth.

Then 3.3 hours after launch the lock pin holding the inner frame in place was removed

and the telescope was able to point in elevation.

3.2.5 Damage to an Infrared Blocking Filter

After the recovery of the telescope it was noted that the first filter in the infrared filter

stack had been damaged (see Figure 3.5). In previous BLAST flights a thicker, white
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Figure 3.4: Altitude of BLASTPol during the 2010 (top) and 2012 (bottom) flights as measured

by on-telescope GPS units. The plot of the 2010 altitude includes the launch and shows the

rapid rise of the telescope before it settled at an altitude of ∼39.5 km. The plot of the 2012

altitude does not include the launch but instead shows in detail the altitude variations at float.

The apparent sudden drop in altitude early in the flights are data interruptions caused by

both flight computers rebooting at the same time.
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Figure 3.5: Picture of the first infrared blocking filter in the filter stack mounted just behind

the cryostat window. This filter was first flown in 2010 (previous BLAST flights used a thicker

filter) and was found to have been damaged after telescope recovery. The likely cause of the

damage was sunlight incident on the filter while under vacuum.

and completely opaque filter was flown, but for 2010 it was replaced with a thin filter

to reduce loading on the cryostat liquid nitrogen stage.

The only optical element in the cryostat before the damaged filter is the cryostat

vacuum window, which is transparent to visible and infrared light. The damaged

infrared blocking filter consisted of copper printed on a substrate and so could absorb

a significant fraction of optical light. Because the filter was mounted just behind the

vacuum window no convective or conductive cooling via air interaction was possible.

The filter is also thin and therefore a poor infrared emitter. Thus the most probable

cause of the damage to the filter is that at some point sunlight shone directly on

the vacuum window of the cryostat. The filter was unable to cool and consequently

deformed.
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Figure 3.6: Model views of BLASTPol viewed from the altitude and azimuth of the Sun. In

these figures the BLASTPol inner frame is at an elevation of 42.5◦, and the Sun altitude is

31◦, the altitude of the Sun at the time of the 2010 launch from Antarctica. Left: View of

the telescope for Az − Az� = 10◦. Right: View of the telescope for Az − Az� = −35◦. In

both cases the receiver vacuum window (directly behind the hole in the primary mirror) is

visible and therefore sunlight would illuminate the IR blocking filter stack directly behind the

window.

BLASTPol was launched with the inner frame housing the telescope locked at an

elevation of 45◦. The maximum altitude of the sun is 35.5◦ at a latitude of -77.85◦, so the

telescope could never accidentially point directly at the sun during launch. However

post-flight it was realized that over a range of azimuths (−35◦ < Az − Az� < 10◦)

the sun could directly illuminate the vacuum window and therefore the first IR

blocking filter, as shown in Figure 3.6.

After launch the telescope spun in azimuth past the Sun several times (Figure 3.7).

Assuming that the Sun illuminated the filter over the Az − Az� range of -35 to 10◦,

the filter was illuminated for a total of 5 minutes, with the longest continuous period

of illumination ∼50 seconds. It is also possible that the telescope was pointed too

close to the Sun before launch, either on the launch day or during preflight outdoor
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Figure 3.7: Azimuth of BLASTPol (as measured by the magnetometer) relative to the azimuth

of the Sun before, during and after the launch on December 27th, 2010 vs time (UTC). The

telescope spun rapidly in azimuth after launch. The two horizontal red lines show the range

in azimuth over which the vacuum window was visible to the Sun.

calibrations.

The damaged filter appears to have degraded the optical performance of the

telescope in terms of both the beam shape and instrumental polarization. Further

discussion can be found in Section 4.2.

3.2.6 Additional Correlated Noise

During the 2010 flight the bolometer time ordered data (TOD) showed intermittent

features which were highly correlated across all bolometers. These correlated features

were also present in the dark channel TOD (Figure 3.8), so it is clear that they were

not caused by astrophysical sources.

This correlated noise component was always present, though the amplitude varied

considerably with time. It also showed a strong correlation with current spikes, in

particular with spikes in the motor currents. Post-flight it was discovered that part
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Figure 3.8: BLASTPol 2010 detector TOD showed an anomalous noise component, which was

highly correlated across all the bolometer data (both science and dark bolometers). The top

panel shows 500 µm bolometer B5C05V data over 1.5 minutes, while second panel shows the

data over the same period for a dark bolometer. This extra noise is also highly correlated with

current spikes in the power system (third panel) and in particular with the reaction wheel

motor current (bottom panel).
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of the noise was caused by a combination of motor current switching noise inducing

radio frequency (RF) noise on the detectors and RF noise associated with TDRSS

transmission (see Figure 3.12).

3.2.7 Reaction Wheel Motor Failure

The pointing motors were switched on 2.90 hours after launch. The reaction wheel

motor (RW) immediately showed increased friction compared to preflight performance,

and thereafter the motor performance continued to degrade.

One way to infer the level of friction in the the reaction wheel motor is to look

at the average current required to keep the reaction wheel spinning at or near its

velocity set point. (A thorough discussion of the reaction wheel control algorithm

can be found in Section 2.6.4). Averaged over long periods of time the reaction wheel

current in a frictionless system should be zero, because the pivot motor provides the

long time constant angular momentum transfer.

Before launch an average current of less than 0.3 Amps was needed to keep the

reaction wheel motor spinning at 50◦/s. After launch when the motors were powered

the average current required was ∼0.7 Amps, and it continued to rise to ∼5 Amps 14

hours after launch (Figure 3.9). The reaction wheel motor controller was limited to

a maximum continuous DC current of 6 Amps, so the controller could not provide

sufficient current to both keep the motor spinning and apply pointing corrections. As

a result BLASTPol was unable to point in azimuth.

Post-flight when the reaction wheel was recovered the motor bearing was found to

have seized. There were several possibilities for the corruption of the bearing:

• Rusted bearing: After cold testing of the motors at the NASA balloon facility

in Palestine, Texas six months before the launch the motors were exposed to

ambient temperature and humidity before coming into thermal equilibrium with

the room resulting in water condensation on the motor surfaces. It is possible
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Figure 3.9: Degradation of the BLASTPol reaction wheel motor performance near the beginning

of the 2010 flight. Black lines show the reaction wheel (RW) current as measured by the motor

controller, while the cyan line is the RW current low-pass filtered a with cutoff frequency of

0.1 Hz. The filtered current shows a gradual rise as the current needed to keep reaction wheel

spinning at an average speed of 50◦/s increased. The left dashed orange marker shows when

the RW motor was powered on 2.90 hours after launch and the right dashed orange line shows

when the RW motor was powered off after the control loop saturated and the telescope was

unable to point in azimuth.
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that some humid air may have passed through the bearing seal and condensed

on the bearing itself, causing rusting. But it is difficult to understand why

the bearing failure would only become apparent during flight and not in the

previous six months of testing.

• Damage to the bearing during low temperature grease application: Before having the

motor shipped, the manufacturing company opened the bearing and replaced

the standard bearing grease with low temperature grease. It is possible that

some contaminant was accidentally added at this point, but again it is difficult

to understand why the problem would only become apparent in flight.

• Bearing damage during launch accelerations: From previous BLAST flights it is

known that the payload can experience angular accelerations of several hundred

degrees per second when the telescope is released from the launch vehicle. It is

possible that the bearing could have been damaged or warped during launch,

and the damage worsened with usage.

Ultimately we still do not know what caused the failure of the reaction wheel motor.

The motor was returned to the manufacturer for analysis but they only replaced the

bearing and returned the motor without providing an explanation for the problem or

any information on whether the bearing itself was warped. A different motor was

purchased for the 2012 flight.

3.2.8 Pointing Control Post-Reaction Wheel Failure

As explained in Section 2.6.7, BLASTPol’s motor control loops were designed to use

the reaction wheel to power the azimuth scans by providing torque proportional to

the velocity error (Equation 2.27). The pivot motor function was to keep the reaction

wheel spinning near the commanded set point speed. In addition there is a term in

the pivot control loop (Equation 2.29) which is proportional to the azimuthal velocity
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Figure 3.10: Two examples of BLASTPol scan trajectories of the Vela C Cloud after the 2010

reaction wheel motor failure. The red dashed quadrilateral shows the boundary of the

requested scan region. Left: An early pivot only scan. Right: A scan with most of the torque

provided by the pivot motor but with the broken reaction wheel motor also contributing.

error, in case the reaction wheel alone could not provide sufficient torque to power

the azimuth scans. At the start of the flight it was thought this term would not be

necessary, so the gain for this term, gp piv was set to zero. However after the reaction

wheel broke, it was this term which allowed us to point the telescope and continue

the BLASTPol science program.

After the reaction wheel broke, early attempts were made to scan in azimuth

using just the pivot motor (Figure 3.10 left panel). The gain term gp piv was set to its

maximum possible value of 32,766 and all other gain terms were set to zero. For much

of the time the pivot was able to roughly scan the correct area, although not with

the same precision as the more responsive reaction wheel motor. The main problems

were that the pivot proportional term was saturated, and that the pivot control loop

did not have an integral term to provide additional current to overcome telescope

cross-winds.
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Time gp az gi az ω◦ gp piv grw err piv I f rict

Pre-RW Failure 4000 1000 50 ◦/s 0 400 0.3 A

Pivot Only Scans 0 0 0 32766 0 0

Pivot+RW Scans 3000-6000 50 -6 to +4 ◦/s 32766 5000 0.3 A

Table 3.3: Azimuth motor current gains for the 2010 BLASTPol flight. The gains are: gp az the

reaction wheel proportional gain, gi az the reaction wheel integral gain, ω◦ the reaction wheel

set point velocity, gp piv the pivot proportional gain, grw err piv the pivot reaction wheel velocity

error gain, and I f rict the pivot friction offset. The gains and motor control loops are discussed

in Section 2.6.7

Control was improved when it was discovered that the broken reaction wheel

motor could still be used, albeit in a limited fashion. The reaction wheel motor could

not spin faster than ∼15◦/s, and the large friction meant that the speed would soon

decay to back to zero. However the reaction wheel was still able to provide torque on

short timescales, while the pivot provided torque on intermediate and long timescales.

Furthermore changing the reaction wheel set point velocity could be used to obtain

additional torque from the pivot (see Equation 2.29). A larger set point velocity would

cause the pivot to output additional current to try and make the reaction wheel

spin faster. However the reaction wheel at this point had too much friction to spin

continuously at any non-zero velocity. In essence, the reaction wheel set point was

used as a commandable pivot integral term. Table 3.3 compares the motor gains used

before the reaction wheel broke, during pivot motor only scans and scans using both

the pivot and the damaged reaction wheel.

3.2.9 Pointing System Performance

Overall the in-flight pointing reconstruction was acceptable. The two boresight star

cameras had intermittent connection problems and had to be power cycled several



Chapter 3. BLASTPol Flight Performance 93

times during the flight. In addition for some targets, in particular for Vela C, the star

cameras had trouble finding enough stars to obtain in-flight pointing solutions.

After 7 days 1 hour and 46 minutes after launch one of the two redundant star

cameras failed. Repeated power cycling of the camera could not restore a connection.

Post flight inspection showed that the hard drive, a conventional magnetic recording

hard disk drive, failed. However the star positions from the first seven days of the

flight had been written to the flight computer hard drives as part of the BLASTPol

dataset.

Coarse sensors performed more or less within required tolerances. A detailed

description of the pointing performance of BLASTPol will be included in N. Gandilo’s

thesis.

3.2.10 Flight Computer Double Reboot

Early in the flight, 7.41 hours after launch, the in charge flight computer was rebooted

by the watchdog circuit (see Section 2.5.1), most likely due to a cosmic ray upset.

During the control switchover the other flight computer also crashed. Post flight it

was found that a percentage of flight computer switchovers would cause a double

reboot, though the frequency depended a great deal on the telescope power load.

The driver for the serial hub will not communicate with a computer which has been

rebooted for a period of ∼5.5 minutes so the elevation encoder could not be readout

and therefore returned an elevation of zero. The star cameras were not returning

pointing solutions immediately after the reboot so the motor control loops applied

maximum current to drive the inner frame to its maximum elevation. Motor control

returned once the serial communications black-out ended.
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3.2.11 BLASTPol 2010 Targets Observed

Table 3.4 lists the fourteen objects observed by BLASTPol during the 2010 flight. The

observations were scheduled in more or less two blocks. First the targets far in azimuth

from the Sun were observed such as Vela C, Vela Y, VYCMa, Puppis, CarinaTan, and

the Carina Nebula. In the second half of the flight BLASTPol observed targets closer

in azimuth to the Sun including Lupus I & IV and several inner Galaxy GMCs and

IRDCs. This observing strategy was designed to minimize changes in the primary

and secondary mirror temperatures which might change the focus of the telescope.

3.2.12 BLASTPol 2010 Data Quality and Lessons Learned

The 2010 dataset had serious problems in terms of the beam shape, systematics due

to the melted filter, extra noise and difficulty pointing due to the damaged reaction

wheel motor.

Pointing control was mostly recovered after the reaction wheel broke by using the

pivot to power the scans with the reaction wheel operating in a reduced capacity for

added control. A new more robust reaction wheel motor was purchased for the 2012

flight.

Approximately ∼50% of the bolometer data had to be rejected because of contami-

nation by spurious TOD features that appeared in both the science and dark detectors

(see Sections 4.2.1 and 4.3.5). This was especially problematic for observations of

bright sources such as G331 and the Carina Nebula, where removing 50% of the data

resulted in minimal coverage of at some HWP angles.

Additionally, there was a problem with our point source calibration strategy. The

goal was to achieve uniform coverage at each of the four HWP angles. Science

targets scans are scheduled in ∼1 hour blocks consisting of an up and down raster at

each HWP position. Pointing calibrators are only observed every 4 to 8 hours, with

an observation consisting of a single fifteen minute raster at one HWP angle. The
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Target Name RA (J2000) Dec (J2000) Map Area Time Observed Typea Dist

(HH:MM:SS) (DD:MM:SS) (deg2) (HH:MM:SS) (kpc)

IRAS 08470-4243 07:22:58 -42:54:24 0.1 4:54:30 Pt 0.7

VYCMa 07:22:58 -25:46:03 0.1 1:18:00 Pt 1.2

Vela C 15:13:50 -56:24:46 1.4 56:43:00 GMC 0.7

Puppis 07:35:00 -23:30:50 0.1 23:29:00 MC 1.0

Vela Y 09:02:52.90 -46:43:04.7 0.1 7:38:00 MC ∼ 0.7

Carina Nebula 10:42:35 -59:42:15 0.8 2:51:00 C, GMC 2.3

Lupus I 15:42:22 -33:50:28 0.7 48:48:30 DC 0.155

Cen A 13:25:28 -43:01:09 0.1 2:25:00 Pt, G 3800

CarinaTan 10:02:07 -57:09:02 1.5 13:28:25 GMC 2-3

IRAS 15100-5613 15:13:50 -56:24:46 0.1 1:08:00 Pt N/A

G331 16:12:10 -51:27:51 0.2 2:51:00 C, GMC 7.5

G3219 15:19:51 -57:20:32 0.5 5:01:00 GMC <8

Lupus IV 16:01:22 -41:57:24 0.3 13:21:30 DC 0.155

G3237 15:31:39 -56:32:43 0.2 2:56:00 IRDC <8

Table 3.4: Regions observed during the 2010 BLASTPol Antarctic flight. Lists the target name,

RA and Dec of the map center, target map area, total time spent observing the target, type of

target, and distance to the target region.

aGMC: Giant Molecular Cloud, DC: dark cloud, MC: molecular cloud, IRDC: Infrared Dark Cloud, Pt:

Pointing Calibrator, C: Polarization Calibrator, B: beam shape calibrator, G: Galaxy
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calibrator rasters therefore tended to be taken at the same HWP angles. For the 2012

flight additional flight code was written to allow the starting HWP angle of the next

observation to be commanded, and the number of rasters at each HWP position was

carefully tracked.

Evidence collected so far indicates that the melted filter acted as a partial polarizer

(at the few percent level) and a partial polarized scatterer at an unknown level. The

implications for the instrumental polarization are discussed in the next chapter, but

the lesson learned for the 2012 flight was that both protection for the cryostat window

and a more robust first IR blocking filter were needed.

For the 2010 flight the map sizes were kept relatively compact around the source,

with the goal of optimizing scan depth on each target. However, because the BLASTPol

data are high-pass filtered at a frequency of 0.05 Hz in the mapmaking stage large-scale

spatial modes are lost and the output I, Q and U maps have a mean of zero. The I, Q

and U maps must therefore be referenced to a region or regions in the map which

have very low flux. For the 2010 data, the small size of our maps meant that only

small reference regions that were usually near bright cloud structures could be used.

3.3 BLAST2012 Flight Preparation

3.3.1 Reference Regions

A major problem for the 2010 analysis pipeline (see Section 4.2) was that the map

making algorithm is unable to solve for low frequency spatial modes which are

supressed due to the high-pass filtering of the TOD in the mapmaker. The resulting I,

Q and U maps have a mean of zero, with large regions of the maps having negative

flux.
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To zeroth order4 this problem can be modelled as:

I′ = I − Ire f (3.11)

where I′ is the measured intensity, I is the true intensity and Ire f is the lost signal due

to the bolometer response/mapmaking strategy. Similar equations hold for Q and U.

To solve for Ire f it is helpful to have regions of the map where it is expected that dust

emission should be minimal. It is then assumed that the true mean I, Q and U levels

in these reference regions are zero. The mean (negative) flux in the reference regions

is measured and subtracted from the rest of the map in an attempt to reconstruct the

total flux (I, Q, and U).

For maps of Stokes I, the total intensity, it is fairly straight forward to define

reference regions. We select a large area of low submm brightness (or of low ex-

tinction if submm maps are not available). However for Q and U, this becomes

more difficult, partially because Q and U can be either positive or negative, but also

the percentage polarization p=
√
(Q2 + U2) /I2 tends to increase with decreasing

submm brightness. Thus the constrast in polarized intensity P where

P =
√

Q2 + U2 (3.12)

between a region of low dust column and a region of high dust column is expected

to be much less than the contrast between the same regions in I. It is therefore

advantageous to have large reference regions, in order to average out any small scale

variations in polarization direction.

In 2010, the focus was to make compact maps in order to maximize the map depth.

In the post-flight analysis it was realized that uncertainty due to zero flux levels was a

significant issue, particularly for the Vela C map, which has several regions of high

percentage polarization but low I5.

4In reality, more spatial modes than the zero mode are lost with the current BLASTPol mapmaking
strategy. To properly correct for these lost modes will require the development of an optimized
polarized mapmaker.

5This can clearly be seen in the 2012 Vela C maps shown in Section 5.4.1.
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For the 2012 flight, the size of the maps was increased to include regions of low

extinction. Additionally for our primary science target, Vela C, a large reference region

map was made. Vela C is part of the extended Vela Molecular Ridge, as such it is

surrounded by regions of significant dust column which may well be polarized. A

much larger (10 deg2) region within Vela was observed as a separate reference map as

shown in Figure 3.11. This reference map includes the science map, but also includes

a large area above Vela C with very low dust column.

3.3.2 Elevation Scans

On long timescales the BLASTPol detector TOD are dominated by low frequency 1/f

noise. As a consquence the 2010 TOD were filtered with a high-pass filter of 0.05Hz.

Thus any signals on timescales longer than ∼20 seconds are lost. A typical map width

for BLASTPol is ∼1◦ and a typical scan speed is 0.1◦/s. So the map crossing time is

∼10 seconds. That implies that while cloud structures along azimuth scan direction

will be well constrained the structure gradients in the elevation direction may be

filtered out.

To compensate I developed elevation scanning modes. For conventional scans the

telescope moves primarily in the azimuth direction while the elevation changes at a

much slower rate. During elevation scans the telescope scans primarily in the elevation

direction while drifting at a slow azimuth speed. Elevation scans should allow the

recovery of intensity gradients in the elevation direction as long as the astrophysical

signals can be separated from the elevation correlated TOD features discussed in 4.3.4.

3.3.3 Experiment Upgrades for the 2012 Flight

Damaged IR Blocking Filter

The damaged filter from the 2010 flight was replaced by a new thicker filter. In

addition an aluminum shutter controlled by a stepper motor was built and placed
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Figure 3.11: Vela C 2012 science map, and reference map areas plotted over a DSS dust

extinction map (Dobashi et al. 2005). The dotted blue lines indicate the azimuth scan direction

for the maximum and minimum parallactic angles at which Vela C could be observed.
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in front of the optics box window. The shutter remains closed during the launch,

protecting the cryostat window from sunlight and is opened once the telescope is at

float altitudes and pointing.

Reaction Wheel Motor Replacement

As described in section 3.2.7 the reaction wheel appeared to have been damaged on

launch and failed completely 14 hours into the 2010 flight. The entire motor was

replaced with a Kollmorgen D063M motor, which has a dual bearing system (the

previous D062M motor had a single bearing). Also for the new motor, we did not

request that the standard bearing grease be replaced with low temperature grease, so

the motor bearing seal did not have to be opened.

Pointing Sensors

Because the pinhole sun sensors (PSS) worked very well during the 2010 flight we

added an additional two PSS units to the gondola for the 2012 flight, bringing the

total to four units. Each of the PSS units provide coverage of 40◦ so we were able to

get azimuth from at least one PSS over the entire range of Az-Az� allowed by the

sunshields. The calibration and perfomances of the PSS units will be discussed in N.

Gandilo’s thesis.

In addition we did not fly a differential GPS unit during the 2012 flight, instead

we read data from the DGPS unit flown as part of the NASA support electronics.

Calibration Strategy

Saturn was added as a beam calibrator for the 2012 flight. It is compact, known to

have low polarization in the submm (Srisuwananukorn 2013) and is very bright. The

brightness of Saturn compared to other beam calibrators, makes it an ideal target to

map out telescope side lobes. However Saturn appears very low on the horizon from
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Antarctica (the maximum elevation of Saturn is <25◦). Modifications were made to

the ground shield so that the telescope could point down to 20◦ in elevation.

In the 2010 data we had poor coverage of our calibrators at some HWP angles (see

Table 4.1 in Chapter 4). A command was added to the flight software program mcp

that allowed the starting HWP angle for the next target to be commanded, and a tally

was kept for each target in the Observation Log of the number of raster scans at each

HWP position.

3.4 The BLASTPol 2012 Flight

The second BLASTPol launch took place on December 26th, 2012 at 6:55AM, again

from the Long Duration Balloon Facility near McMurdo Station, Antarctica.

The payload trajectory is shown in the right panel of Figure 3.1. The balloon did

not drift as far south as in 2010 and the circumpolar wind speeds were also much

slower, so it took BLASTPol 16 days, 3 hours and 17 minutes to complete its journey

around Antarctica (compared to 9.5 days for the 2010 flight). Cryogens were depleted

12 days and 12 hours into the flight, so for the last 3.5 days of the flight no science

data was taken. The altitude over the course of the flight is shown in Figure 3.4.

3.4.1 TDRSS Transmitter Noise

Upon reaching float altitudes and biasing the detectors there was a large component

of level shifting noise seen in the science and dark bolometers similar to the 2010 flight.

This time however the detectors also saw a time varying signal, which appeared to be

a bright source, except it was seen by all detectors simultaneously (Figure 3.12). Upon

switching off the NASA TDRSS transmitters the level shifting noise and spurious

signal dissapeared.

It is quite likely that this apparent RF noise leakage from the TDRSS was the

source of much of the 2010 correlated noise. In 2010 the large synchronous TOD
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Figure 3.12: BLASTPol TOD for two science detectors: B5C05V (central 500µm bolometer)

and B5C01V (500µm bolometer on the edge of the array) and a 500µm dark detector both

before and after the TDRSS transmitter was turned off. TDRSS transmission appears to have

been causing level shifting noise in the bolometers, as well as an occasional large TOD feature

(approximately two minutes into the plot).
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feature shown in Figure 3.12 was not observed, perhaps because of different mounting

postions of the TDRSS antennae.

To compensate the TDRSS transmitters were powered off for the remainder of the

flight. Telescope downlink was sent over the lower bandwidth Iridium platform.

3.4.2 Double Reboot Early in the Flight

At 32.3 hours after launch control of the telescope was temporarily lost when both

flight computers crashed and were rebooted by the watchdog circuit. This was during

the sending of a command to use a new schedule file created out of a schedule file

library on board the flight computers. It is quite possible then that a software bug in

the schedule file code caused the crash.

3.4.3 Star Camera Performance

The boresight star cameras did not perform optimally in 2012. There were many false

’stars’ near the edge of the star camera field of view that were likely caused by dust

specks on the camera CCDs. These false stars were especially problematic at low

telescope elevations. The star cameras were able to get frequent solutions on fields

with bright stars (such as Lupus I). For some other fields the cameras would only

return a few solutions per raster scan.

For the first time in the 2012 flight the star camera computers flew solid state

drives instead of conventional hard drives. Solid state hard drives can operate in

near vacuum, so that even if the star camera pressure vessels leaked the computers

would still be able to function. In 2010 solid state hard drives were flown as the flight

computer data storage units and there were no problems.

Unfortunately the particular model flown, Intel 320, appears to have had severe

problems with float conditions, likely due to the increase in cosmic ray flux in the
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stratosphere. Both star camera hard drives failed: one drive failed 6.06 hours after

launch and the other failed 6 days, 0.58 hours after launch.

3.4.4 BLASTPol 2012 Observing Strategy

Early observations for BLASTPol 2012 were similar to those taken in 2010. (Obser-

vations are listed in Table 5.1.) The plan for the flight was to observe mostly the

same targets as in 2010 but without the systemmatics from the melted filter, with

better referencing and crosslinking. The observations started with targets in the fourth

Galactic quadrent (Puppis and Vela), and moved on day five to observe targets near

the inner Galaxy (Lupus).

The loss of both boresight star cameras six days after launch required a change

of observational strategy. Without the boresight star cameras post flight pointing

reconstruction is difficult. The roll star camera on the outer frame and gyroscopes can

be used to reconstruct telescope azimuth, and it was hoped that a combination of the

elevation encoder, tilt information from the DGPS and inclinometers could be used to

reconstruct the telescope elevation to ∼1′.

After the star camera failures, mapping switched to two surveys:

• Vela Large Polarization Survey: The primary survey was a box of 2◦×6◦centered

on the Vela C cloud, with a goal of providing sensitive polarization maps of the

more diffuse cloud regions around Vela C. The scan was set up so that it crossed

the bright Vela C cloud on every azimuth crossing. The bright structure in the

bolometer TOD can hopefully be used to further refine the telescope pointing.

• Puppis Large Survey: When the Vela C was not visible a very large region in the

Puppis constellation (116 deg2) was observed. Puppis is not as bright as Vela C

so the bolometer TOD may not be useful to constrain the pointing, however the

pointing should be good enough to produce an I map at 250, 350 and 500µm
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with ∼2′ resolution, which can be used to probe both the cloud structure and

ISM dust properties.

3.4.5 BLAST2012 Data Quality

Overall the data quality for the BLASTPol 2012 flight is much better than the 2010.

Putting the reciever electronics on a completely different power circuit than the motors

and turning off the TDRSS transmitters removed the large correlated noise component.

As disscussed in Section 5.2.2 the beamshape still appears to be elongated, but

so far there seems to be no evidence of significant instrumental polarization of the

kind that was quite prevalent in the 2010 data. In addition, careful measurements

were made of several point source calibrators with good source coverage at each HWP

angle. Thus unlike for the 2010 flight data we should be able to properly characterize

the telescope beam.

However, the failure of both star camera hard drives means that the pointing

solution after the first six days of the flight will be limited to ∼1 arcmin. Using the roll

star camera mounted on the outer frame, and a combination of the gyros, tilt sensors

and elevation encoder plus our knowledge of where the bright structures are located

in the map may be enough to produce a coarse resolution (∼ 2′) polarization map of

Vela C and surrounding areas.



Chapter 4

BLASTPol 2010 Analysis Pipeline and

Simulations

4.1 Chapter Overview

BLASTPol makes large (several deg2) maps of linearly polarized dust emission across

entire molecular clouds, and uses these maps to infer magnetic field morphology on

scales ranging from cloud scale fields down to fields in dense filaments and cores. To

do this BLASTPol needs to be able to create accurate maps of the polarization angle

Φ.

Previous chapters have given detail on the instrument (Chapter 2), including a

description of the polarimeter in Section 2.4, and flight performance (Chapter 3).

The purpose of this chapter is to show that BLASTPol can be used to reconstruct

polarization direction, using both simulated observations and actual data from the

BLASTPol 2010 flight.

In Section 4.2 the observations and data pathologies are presented. The BLASTPol

2010 flight had several problems with the instrument which resulted in a polarized non-

Gaussian beam, significant instrumental polarization and additional highly correlated

bolometer noise. The data reduction pipeline and instrumental polarization correction

106
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methods are discussed in Section 4.3. In Section 4.4 a series of internal consistency tests

or ”null” tests are described which are used to test which polarization pseudovectors

are likely contaminated by systematics. Finally in Section 4.5 I give an overview of

simsky, software which generates simulated BLASTPol time ordered data (TOD) that

can include correlated and uncorrelated noise, instrumental polarization and effects

due to a polarized non-Gaussian beam. Using simsky I show that the BLASTPol data

pipeline can measure instrumental polarization and reconstruct input polarization

maps.

The intention is that this chapter will later be adapted into a paper on the BLASTPol

polarization reconstruction methodology. A more thorough description of the instru-

mental polarization determination and null test code can be found in T. Matthew’s

thesis (Matthews 2013). Some of the formalism for the polarization reference frame

conversion in Section 4.5.1 was adapted from Novak (2010).

4.2 Dataset and Pathologies

The first BLASTPol science campaign took place from December 27th 2010 to January

6th 2011. BLASTPol was launched from McMurdo Station, Antarctica and traveled

over continental Antarctica at an altitude >37km (above 99.5% of the atmosphere)

before terminating over the Ross Ice Shelf. For more details on the flight see Section

3.2.

Observations from the 2010 flight are summarized in Table 4.1. The 2010 dataset

had many serious issues. These include:

• Large instrumental polarization, which varies from detector to detector;

• A non-Gaussian and polarized beam shape;

• Additional noise that is highly correlated noise across all detectors;
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• Poor coverage of off source regions where we might expect the sky flux to be

negligible, which could be used to estimate zero point flux levels for our I, Q

and U maps (Section 3.3.1).

Table 4.1 gives a comparison between the time spent observing each target and

the time used in making the 2010 maps. The last four columns list the faction of the

time used in the final maps at each of the four half wave plate (HWP) positions (0◦,

22.5◦, 45.0◦, 67.5◦). For the two primary BLASTPol science targets Lupus I and Vela C,

a large portion of the data was rejected by the data reduction pipeline. Most of the

flagged data was rejected because of severe anomalous correlated noise described in

the next subsection. For Vela C, which was observed early in the flight, a number

of scans were rejected because of poor telescope pointing control resulting in the

telescope executing large loop-like patterns on the sky. The rapid elevation changes

in the these scans caused extra features in the TOD which were problematic for the

mapmaker.

The pointing calibration sources were scheduled in single raster scans at one HWP

position every four to eight hours. As a consequence, the HWP angle was often the

same each time the calibrator was observed. This means that these calibrators cannot

be used to reconstruct the polarized telescope beam.

4.2.1 Additional Correlated Noise

During the 2010 flight it was noticed that there were large features in the TOD that

were correlated across the entire array and therefore not related to astrophysical signal.

These sharp features were also present in the unilluminated ”dark” bolometers. The

amplitude of the noise varied a great deal, but could always be seen in the correlation

between dark and science bolometers. Approximately 50% of the detector samples

were judged to have been so contaminated by this noise that they could not be used

to make science maps.
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Target Name Typea Map Area Time Obs. Time Used f0 f22.5 f45 f67.5

(deg2) (hrs) (hrs)

Vela C GMC 1.4 56:43:00 18.70 0.249 0.224 0.251 0.276

Lupus I DC 0.7 48:48:30 24.98 0.254 0.250 0.243 0.253

Lupus IV DC 0.3 13:21:30 8.86 0.258 0.225 0.269 0.249

Vela Y MC 0.1 7:38:00 0.00 N/A N/A N/A N/A

Puppis MC 0.1 23:29:00 2.44 0.225 0.224 0.243 0.310

CarinaNeb C, GMC 0.8 2:51:00 1.22 0.185 0.187 0.388 0.241

G331 C, GMC 0.2 2:51:00 1.94 0.220 0.261 0.219 0.299

CarinaTanb GMC 1.5 13:28:25 9.54 0.260 0.250 0.274 0.185

G3219 GMC 0.5 5:01:00 4.39 0.222 0.233 0.265 0.279

G3237 IRDC 0.2 2:56:00 2.21 0.332 0.221 0.223 0.223

IRAS 08470-4243 Pt 0.1 4:54:30 2.71 0.592 0.000 0.274 0.134

VYCMa Pt, B 0.1 1:18:00 0.33 0.000 0.000 0.000 1.000

IRAS 15100-5613 Pt 0.1 1:08:00 0.67 0.505 0.000 0.000 0.495

Cen A Pt, G 0.1 2:25:00 0.46 0.000 0.699 0.000 0.301

Table 4.1: Information on targets observed during the 2010 BLASTPol Antarctic flight, which

includes the total time spent observing each target (Time Obs.) and the amount of data which

was unflagged and passed to the mapmaker (Time Used). The final four columns give the

percentage of time used at each of the four HWP positions as calculated for the 500 µm

bolometer B5C05V.

aGMC: Giant Molecular Cloud, DC: dark cloud, MC: molecular cloud, IRDC: Infrared Dark Cloud, Pt:

Pointing Calibrator, C: Polarization Calibrator, B: beam shape calibrator, G: Galaxy

bFor one scan of the Carina Tangent region an error in the HWP potentiometer readout caused the HWP

to rotate to an angle that was not one of the standard positions, so for this source f0 + f22.5 + f45 +

f67.5 6= 1.0.
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Postflight two likely causes were found for this extra noise:

• The detector readout circuit and gondola were both powered by the same

batteries and so shared a common ground. A clear correlation can be seen

between jumps in the detector levels in the science and dark bolometers and

gondola current drawn from the battery (see Figure 3.8). It appears that having

the detectors and motors on the same power system led to motor switching

noise leaking into the detector readout circuitry.

• During the 2012 flight it was noticed that when the TDRSS transmitter was

powered a highly correlated ”level shifting” noise was seen in the TOD (see

Section 3.4.1). TDRSS transmission is part of the NASA telemetry system and

used to transmit data to the ground station. The TDRSS transmitter was powered

for the entire BLASTPol 2010 flight.

4.2.2 Beam Shape

During post-flight analysis it was noticed that the telescope response pattern, or beam

shape, was highly non-Gaussian and varied both from detector to detector and with

waveplate position. To reconstuct the beam shape high signal-to-noise maps of a point

source are needed. Unfortunately of the observations of VY CMa, the red hypergiant

star observed for this purpose, only ∼20 minutes of data was not rejected by the data

reduction pipeline.

Instead observations of the bright compact source IRAS 08470-4243 in the Vela

Molecular Ridge have been used to probe the beam shape1. Table 4.1 shows that the

distribution in coverage of IRAS 08470-4243 at the four HWP positions is not uniform.

Only the observations at HWP angles 0◦and 67.5◦ have sufficient coverage to produce

high signal-to-noise maps.

1Note that IRAS 08470-4243 is not really a point source. The size of IRAS 08470-4243 was found by
BLAST to be approximately 40′′ (Netterfield, private communication).
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Figure 4.1: Maps of IRAS 08470-4243 at 250 (top), 350 (middle) and 500 µm (bottom). Maps

are made for bolometers with horizontal (H) and vertical (V) polarizing grid orientations and

for HWP angles of 0◦ and 67.5◦. If the optics were operating as designed the sources should

be round and compact. Instead a significant part of the beam power is found in an elongated

halo around the main (also elongated) beam core. The shape of the beam also changes slightly

between H and V bolometers and between the two HWP angles, which could imply that the

beam itself has polarization structure.
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Total intensity maps of IRAS 08470-4243 are shown in Figure 4.1. Four maps are

presented for each BLAST band: all bolometers with horizontal (H) polarizing grid

orientations and HWP angle Φ= 0◦, vertical grid orientation (V) bolometers with

Φ= 0◦, H bolometers with with Φ= 67.5◦and V bolometers with Φ= 67.5◦. If the

optics were operating as designed the maps should be compact and round. Instead

the beam appears to have a slightly elongated core, with a highly elongated halo in

the elevation direction and additional side lobes in the cross-elevation direction.

Figure 4.1 also shows that the beam varies between the two HWP positions and

between the H and V bolometer orientations, which could imply that the telescope

beam response itself is polarized2.

In addition, the beam shape changes from bolometer to bolometer. Figure 4.2

shows single bolometer maps of IRAS 08470-4243 using all available HWP angle

observations. The power in the main beam compared to the elongated halo varies

across the array, as does the power in the cross elevation sidelobes.

In summary, for the BLAST 2010 dataset there is insufficient data to properly

characterize the beam shape and polarization structure. Instead all the output maps

have been convolved with a 2.5′ FWHM Gaussian in an attempt to smooth out most

of the beam structure shown in Figures 4.1 and 4.2.

4.2.3 Instrumental Polarization

The damaged IR blocking filter acted both as a partial polarizer (at the few percent

level) and a partial polarized scatterer, resulting in both a polarized beam shape, and

optical efficiency which depends on the polarization of the incident photon. Preflight

measurements of instrumental polarization (IP), the polarization measured when

2The source polarization of IRAS 08470-4243 is unknown though expected to be low as bright
compact sources typically show low p relative to their more diffuse surroundings (Section 1.4.3).
So some of the Φ dependent structure could be due to polarization structure in IRAS 08470-4243,
particularly at 250µm where the source should be resolved.
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Figure 4.2: Images of the compact source IRAS 08470-4243 for every bolometer in the 500µm

bolometer array. Cells marked with a B are broken bolometers.

observing an unpolarized source, were very small (∼0.2%). However the damage

to the filter during the 2010 balloon ascent resulted in a mean IP of 5.8%, 6.0% and

6.8% for the 500, 350 and 250µm detectors respectively. Methods for identifying and

removing instrumental polarization are discussed in Sections 4.3.8 and 4.3.7.

4.3 Data Reduction Pipeline

A great deal of processing is required to convert raw detector TOD into polarization

pseudovectors. The TOD must be cleaned of glitches, cosmic rays and large low

frequency drifts, deconvolved and correlated with sky position. The instrumental

polarization must also be characterized and removed, and a mapmaker must be used

to convert the processed bolometer TOD into output maps of the Q, U and I Stokes

parameters.

The data reduction pipeline is summarized in Figure 4.3. Many components of the

reduction pipeline have been discussed in greater detail elsewhere and are referenced
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where appropriate.

TOD are organized into dirfiles. Each TOD, whether a raw detector, or the elevation

calculated by the pointing solution software, is saved as an individual file, with a

common starting and ending time. In this way both raw data and data products can

easily be viewed, compared and processed simultaneously.

4.3.1 Data Merger

An almost complete set of flight data is recorded on each of the two redundant flight

computers north and south. Gaps in the dataset correspond to when a computer was

in the process of rebooting.

The first task of the data reduction is to take the separate datasets and create

a merged canonical dataset which can be used as a reference for all subsequent

steps in the data reduction process. When both computers are running in nominal

configuration and recording data there should be no difference whatsoever in the

TOD. This has been spot checked by plotting the same bolometer TOD recorded on

both computers as a function of time, subtracting the difference and looking for a

residual. For every check made the residual was identically equal to zero.

To merge the datasets, dirfiles files were created for the data on each flight computer.

Then a merged dataset was created by appending the individual dirfile channels

together to create a continuous dataset, using the data from the in charge flight

computer. For the 2010 dataset there is a 30 second gap in the merged dataset when

both flight computers rebooted at the same time. (This event is discussed further in

Section 3.2.10).

Once the dataset was merged a detailed annotated observation log was created.

Data index ranges for scans of individual targets were identified, these were later

used to choose the data used to make the science maps.
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Figure 4.3: Block-level diagram of the BLASTPol 2010 data reduction pipeline. Rectangles

represent data reduction operations, hexagons represent data products.
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4.3.2 Despiking and Deconvolution

The next step in the data reduction is the identification of short term corruptions in

the data which may be caused by:

• Cosmic rays, which deposit power on the bolometers;

• Glitches arising from the errors data acquisition system readout;

• Pulses from the calibrator lamp;

• Features from rotation of the HWP.

First glitches are identified and removed. Glitches are typically only one sample

(∼0.01 s) long, and are found by calculating the difference between consecutive detector

samples. If the difference is >0.0005 V the sample is flagged. For most bolometers

no glitches were found. Only 10 bolometers had more than ten glitches for the 2010

flight.

Cosmic rays spikes are caused by cosmic rays either hitting a detector (single) or

striking somewhere on the 300 mK stage and causing the detectors to heat temporarily

(multiple). Multiple cosmic ray spikes are more common than single cosmic ray

spikes. The spikes are found by high-pass filtering the detector TOD to remove all

signal associated with the telescope scanning of astrophysical signal, and masking out

anything four times larger than the TOD noise level.

For the 2010 flight an average of 153 minutes of data was identified as cosmic ray

contaminated. Because some cosmic rays that affect all bolometers may be masked

by noise features in the data the despiking code also keeps a count for each 0.01 s

sample of how many bolometers were flagged as cosmic rays. If a particular sample

was flagged for more than 10% of the detectors the sample is flagged for all detectors

in that frequency band.
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Pulses from the calibrator lamp are used to correct for the changing responsivity of

the detectors but should be removed from the science bolometer TOD. The calibrator

lamp pulses for 300 ms every ∼15 minutes. In total 26 minutes of data was flagged as

calibration pulses over the 2010 flight.

Once a set of flags has been produced for each detector, the bolometers can be

despiked and deconvolved. The deconvolver takes as input a set of flags and a

bolometer transfer function determined by the makeup of the readout electronics.

First, the glitches are removed so that they do not cause ringing in later stages when

the data is Fourier transformed. The corrupted data sample is replaced by an average

of the adjacent detector samples. Next the data is deconvolved by dividing the Fourier

transform of the data with the bolometer transfer function. Then finally the flagged

data are removed and the gap is filled with a combination of a linear interpolation

between the adjacent unflagged data, and white noise characteristic of the bolometer

being cleaned. This process is described in more detail in Angile (2013). Examples

of cosmic ray removal (top panel) and calibrator lamp pulse removal (bottom panel)

from bolometer TOD are shown in Figure 4.4

4.3.3 Calibrator Pulse Corrections

The responsivity of the detectors changes over the course of the flight. To correct for

this the calibration lamp (Section 2.3.2) is flashed approximately every 15 minutes for

300 ms. The power outputted by the calibration source is essentially constant, so the

variation in the amplitude of the calibrator pulse measured by the bolometers is a

linear measure of the bolometer responsivity.

Figure 4.5 shows the amplitude fit to a template pulse profile for every calibrator

lamp pulse in the BLASTPol 2010 flight. The fitting procedure is discussed in detail in

Angile (2013). There is a systematic offset between the pulse amplitude at different

HWP positions, most notably a ∼3% difference between the amplitude at Φ = 0◦
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Figure 4.4: Example of cosmic ray removal (top) and calibration lamp pulse removal (bottom)

for the detector N29C10. The ”raw” detector TOD are shown with dashed cyan lines and the

deconvolved and despiked data are shown with solid black lines.
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Figure 4.5: Amplitude fit to each of the calibrator lamp pulses, tracing the change in respon-

sivity of the detectors over the 2010 flight (Angilè 2011). One data index corresponds to 0.2

seconds. Four lines are plotted, one for each HWP position (red: Φ = 0◦, blue: Φ = 22.5◦,

black: Φ = 45◦, green: Φ = 67.5◦).

and Φ = 45◦. Given the observed levels of instrumental polarization it is expected

that the fraction of light transmitted by the damaged infrared blocking filter depends

on the polarization of the incident radiation. Figure 4.5 would then imply that the

changes in transmission are large enough to affect the loading of the detectors, which

in turn affects the responsivity of the detectors as measured by the calibrator lamp.

4.3.4 Preprocessing TOD

Before the map making stage the detectors are preprocessed. The goal of the pre-

processor is to remove long timescale drifts, reduce spurious signals associated with

rapid changes in telescope elevation and produce a set of approved frame ranges for

each scan which exclude data contaminated by telescope slews and HWP rotation.
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First the data is divided up into data ”chunks”, which consist of a complete raster

scan up and down with the HWP postion fixed at one of a set of four positions.

Typically the scan parameters were set so that a single data chunk corresponds to

approximately 15 minutes worth of data. The data chunk beginning and end points

are defined by either a telescope slew to a new target or a stepping of the HWP. Both

telescope slews and HWP movement cause heating of the detectors which results

in large features in the bolometer TOD, so an additional 10 seconds of data after a

slew and 46 seconds after a HWP move are removed from the data chunks. After

preprocessing 13% of the data was flagged, mostly due to HWP moves.

One property of the bolometer TOD is that there is a clear correlation between

telescope elevation and TOD features. This is particularly visible during elevation

turnarounds which can clearly be seen in many cases in the bolometer TOD (for an

example see the left panels of Figure 4.7). This elevation correlated signal is likely

partially due to variations in atmospheric column with telescope elevation, however it

is also known that sudden changes in elevation cause heating of the detectors (even

with the telescope closed to light) so a part of the elevation correlated signal may be

due to the motions of cryogens.

For every chunk and for each individual bolometer, a function was fit to six seconds

of data around the elevation direction change at the top of the raster scan3:

D(t) = ai + bi t + ci (ε(t)− ε◦) (4.1)

where ε is the elevation of the telescope, and ε◦ is the elevation at the start of the data

range being fit.

The ci coefficients vary considerably from bolometer to bolometer and also as a

function of elevation. Figure 4.6 shows the coefficients for several bolometers (black X

3During the 2010 flight the pointing was not always stable due to the reaction wheel not functioning
properly, so there are number of occasions where the telescope would scan well off the target. To
compensate I only fit data chunks with one elevation turnaround.
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Figure 4.6: Elevation correlation coefficients (ci) for 250 µm detectors B2C01V (top left),

B2H01V (top right), 350 µm detector B3C06H (bottom left) and 500 µm detector B5C01V

(bottom right). Black ’X’s are individual ci coefficients fit to each data chunk. Red plus signs

are the median of all ci coefficients cm within two degree bins, and blue shows the linear

interpolation between cm coefficients.

symbols) as a function of elevation. The elevation coefficients were divided into two

degree bins of elevation and a median coefficient cm was found for each bin (red plus

signs in Figure 4.6). The preprocessor then subtracts the following function from each

data chunk:

D′(t) = D(t) − c(ε) (ε(t)− ε◦) (4.2)

where D(t) is the orginal TOD, D′(t) is the elevation corrected TOD, ε◦ is the elevation

at the beginning of the data chunk, and c(ε) is a linear interpolation between the

median elevation coefficients (blue lines in Figure 4.6).

Long timescale drifts can cause leakage into other Fourier modes. To remove these
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low order modes a least-squares 7th order polynomial was fit and then subtracted

from D′(t) for every data chunk in each bolometer. The end points of the preprocessed

data chunk are constrained to be zero by subtracting a line fit between the average of

the first 0.5 seconds of the data chunk and the last 0.5 seconds of the data chunk.

Figure 4.7 shows the preprocessed TOD both without (black) and with (colour)

subtraction of an elevation correlated term for three different bolometers.

4.3.5 TOD Inspection and Additional Flagging

As discussed in Section 4.2 an additonal source of noise was seen in the bolometer

TOD characterized by rapid jumps in bolometer DC level. This noise was likely due

to motor switching noise and radio frequency noise pickup from the NASA TDRSS

transmitters which are used to communicate with the telescope.

To identify this level-shifting noise each bolometer was correlated with a dark

bolometer on the same array. The dark bolometers are blocked from recieving light

but are read out identically to the other bolometers. The level shifting noise is

highly correlated across all bolometers (both science and dark) (see Figure 3.8). Data

chunks with particularly high dark/science bolometer correlations were flagged as

bad (Matthews 2013). After flagging for correlated noise, 44% of the 2010 data was

marked unusable.

The correlated noise component was present over the entire flight, but the severity

of the noise varied. Some targets were more affected: for example all of the 7.6 hours

of Vela Y data were flagged (Table 4.1). It is noticable that many of the smaller maps,

where time between scan turnarounds and therefore motor current spikes is small,

had most of their data flagged due to correlated noise. It is also possible that there

were several telescope orientations for which the reflection of TDRSS transmissions

off the inner frame sunshield to the cryostat window was optimal.
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Figure 4.7: Examples of preprocessor subtraction for three different bolometers. Left: Examples

of preprocessed TOD for a 250µm bolometer (blue), a 350µm bolometer (green) and a 500µm

bolometer (red). The black curve in each plot shows the preprocessed TOD if an elevation

correlated term is not subtracted, and the coloured curves show the preprocessed TOD

including subtraction of elevation correlated terms. The bottom plot shows the telescope

elevation for comparison. Right: Power spectra for the preprocessed TOD in the corresponding

left panels.
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In addition single bolometer I maps were made for each data chunk. The maps

with signficantly higher than average noise were rejected.

4.3.6 Pointing Solution

In order to make science maps a high quality telscope pointing reconstruction with

errors <5′′ is required. During the 2010 flight the in-flight pointing solution was

generally good to 30′′ (Angilè in press).

Post-flight pointing reconstructions were made iteratively, using previous star

camera solutions and gyroscope data to obtain additional star camera solutions.

The reconstruction algorithm is described in detail in (Pascale et al. 2008). The

offset between the star cameras and the submm telescope was measured by repeated

observations of compact structures with known sky coordinates throughout the flight.

The location of the submm beam relative to the star camera axis is known to be a

function of elevation, requiring corrections to pitch and yaw spanning ∼120′′ and

∼190′′ respectively. Post-flight absolute pointing accuracy using this system is typically

< 2′′, with random pointing errors of < 3′′ rms (Pascale et al. 2008).

4.3.7 Mapmaking

The BLASTPol mapmaker naivepol takes in time ordered data including preprocessed

detector TOD, the post-flight pointing reconstructed from gryoscope and star camera

data, the HWP angle measured from the shaft encoder, and a set of data flags and

produces estimates for the sky signal in I, Q and U for each pixel in a map.

Details of naivepol are discussed in (Moncelsi et al. 2012). In brief the mapmaker

assumes that the noise properties of the detectors are uncorrelated and white, at least

on the timescale of the scans. It then performs a weighted binning of the data TOD

into map pixels, with the weighting given by the inverse of the the timeline variance

measured from the white noise floor.
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Because the BLASTPol detectors have a significant low frequency (1/f) noise

component, the input TOD were high-pass filtered with a frequency of 0.05 Hz in

order to ”whiten” the noise spectra. This means that any cloud features on scales

larger than

θ =
ωscan

0.05 Hz
(4.3)

(where ωscan is the scanning speed) were filtered out of the TOD. During the 2010

flight the scan speed was typically 0.05 ◦/s, so any signal on scales larger than a degree

is not present in the output maps. (Typical map sizes are of order a degree in width).

The filtering also causes the maps to have a zero net mean and can cause large sections

of the map to have negative features. This is problematic for the reconstruction of

polarization pseudovectors, so for calculations of the percentage polarization p and the

polarization angle Φ I, Q and U values have been made relative to defined reference

regions so that I = Imap − Ire f , Q = Qmap −Qre f and U = Umap −Ure f . Essentially

this fixes the flux zeropoint of the maps to the mean of the reference region.

Reference regions are chosen to have good map coverage and little dust column

(inferred from previous submm observations, or dust extinction maps). To avoid

including pseudovectors for which the uncertainty in reference region flux could

significantly affect the I, Q and U photometry an intensity cut is applied to all

pseudovectors requiring the unreferenced flux Imap > 0.2Ire f .

The reference region method doesn’t allow the reconstruction of any other large

scale modes lost due to filtering. A more sophisticated mapmaker which accounts for

correlated noise is under development and will be used in the BLASTPol 2012 data

analysis.

To be sure that there is even coverage of all polarization angle components, an

equal number of bolometers with horizontal polarizing grid angles (H) and vertical

grid angles (V) are used to make naivepol maps. Since there were more functioning V

bolometers than H bolometers, several V bolometers at the edge of the array were not



Chapter 4. BLASTPol 2010 Analysis Pipeline and Simulations 126

used in making maps. In total 124, 74 and 36 bolometers were used at 250, 350 and

500 µm respectively.

4.3.8 Instrumental Polarization Determination

Instrumental polarization was measured using sky rotation. The source, and therefore

the source polarization angle, rotates relative to the telescope reference frame as it

rises and sets while the instrumental polarization stays fixed in the telescope reference

frame. Observations of Vela C, a bright molecular cloud with excellent map coverage,

were used to calculate the IP. The Vela C observations were divided into two parallactic

angle bins with a mean angle between the two bins of 8.5◦. A source aperture was

defined around the brightest pixels in the I map (as shown in green contours in Figure

4.8a). For each bolometer mean values of q = Q/I, u = U/I were calculated for the

source aperture from the data in each parallactic angle bin. The I, Q and U maps

require a low flux reference region which is covered by all bolometers (red contours

in 4.8a).

Green crosses in Figure 4.8b show the measurements of q and u in the Vela C

source aperture for each detector in the 500µm array. Each pair of measurements from

the two parallactic angle bins are connected with a red line segment. If BLASTPol

had no instrumental polarization the q and u measurements would lie on qsky, usky.

Instead the q and u values include a significant IP term, which rotates about a circle

centered on qsky, usky. From this data both the instrumental polarization terms and

the mean source polarization qsky, usky can be reconstructed. The qip and uip terms

for each bolometer are plotted in Figure 4.8c and the mean instrumental polarization

levels q̄ip, ūip and p̄ip calculated for each band are given in Table 4.2.

As an additional consistency check the post IP subtraction BLASTPol maps of

G331.5-01 and the Carina Nebula were compared to previous observations made by the

SPARO telescope (Li et al. 2006). Direct comparisons between BLASTPol and SPARO
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a) b)

u

q

c)

Figure 4.8: Instrumental polarization of the 500 µm detectors as measured using sky rotation

of the polarization of the Vela C molecular cloud. a) An intensity map of Vela C smoothed with

a 2.5′ FWHM Gaussian. The source apertures are marked with green contours and reference

regions used in the IP determination are marked in red. b) q and u calculated for the Vela C

data divided into bins based on parallactic angle (green + signs) for each 500 µm bolometer.

The measured polarization rotates about the mean source polarization (blue + sign). c) qIP

and uIP terms for all bolometers (red diamonds= 500 µm, green x=350 µm, blue + =250 µm).
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Wavelength q̄ip ūip p̄ip Nbol

250 µm -0.034 -0.028 0.068 124

350 µm -0.036 -0.004 0.060 74

500 µm -0.050 -0.008 0.058 36

Table 4.2: Mean instrumental polarization calculated from sky rotation of Vela C for each of

the three BLASTPol bands. The last column lists Nbol , the number of bolometers used by the

mapmaker in each band.

maps are complicated because SPARO is a chopped experiment which measures

polarization relative to a chop throw of ±1◦ in the right ascension direction. BLASTPol

measures polarization relative to selected reference regions, but the BLASTPol 2010

maps were not large enough to use the SPARO chop throw regions as reference

regions. Even so the BLASTPol polarization pseudovectors in the Carina Nebula

match the orientation of the SPARO vectors very well. Figure 4.9 taken from Matthews

(2013) shows the inferred magnetic field direction derived from 2010 observations of

the Carina Nebula, compared to similar measurements from SPARO.

IP reconstruction was tested using simulated BLASTPol observations as discussed

in Section 4.5. The simulations were able to reconstruct IP to ∼0.5%. For this reason

we only report pseudovectors which have p > 1.5%. For G331.5-01 SPARO measured

a polarization percentage in the brightest part of the cloud of <0.3%. The BLASTPol

2010 map of the cloud gives a percentage polarization of 0.8%, which is consistent

with the uncertainty in the instrumental polarization (Matthews 2013).

4.4 Null Tests

As discussed in Section 4.2 the BLASTPol observations are marred by solar damage to

an infrared blocking filter during launch. The damaged filter acted as both a partial
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Preliminary*

Figure 4.9: BLASTPol 2010 observations of the Carina Nebula smoothed to a resolution of

2.5′ plotted over a grayscale Herschel 350 µm map, with a pseudovector spacing of 2.5′. The

pseudovector orientation gives the inferred direction of the magnetic field projected on the

plane of the sky. Only pseudovectors which pass the null tests described in Section 4.4 are

shown. The BLASTPol observations at 250 µm (blue), 350 µm (green) and 500 µm (red) show

good agreement with the field direction measured by the SPARO telescope (orange lines) (Li

et al. 2006). From Matthews (2013).
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polarizer and a partial polarized scatterer. Under these circumstances errors are more

likely to by dominated by systematics due to instrumental polarization, polarized

sidelobes, or a polarized beam shape than statistical errors.

In order to characterize which polarization measurements are robust and repeatable

the data was put through a series of internal consistency checks referred to as null

tests. For each test, the data was divided into two groups with an equal number of

samples in each group. A set of I, Q, and U maps were then generated for both

groups. From these residual maps Qres and Ures were calculated:

Qres = Qa −
Qa + Qb

2
=

Qa − Qb
2

, (4.4)

Ures = Ua −
Ua + Ub

2
=

Ua − Ub
2

. (4.5)

If there are no systematic differences between the data in groups a and b, then the

difference maps should show only noise. If however, there are systematic differences

in the data in groups a and b then structure may be visible in the residual maps.

An individual pseudovector only passes a null test if the magnitude of the polarized

flux in the residual maps is less than a third the magnitude of the combined polarized

flux in Q and U maps made with all the data:√
Q2 + U2 > 3

√
Q2

res + U2
res. (4.6)

For each science target the pseudovectors with p > 1.5% and I > 1.2Ire f were put

through a series of six null tests. The results of these tests are summarized in Table 4.3

and Figures 4.10 and 4.11 show the pseudovectors which passed each null test for the

350 and 500 µm arrays respectively for BLASTPol observations of the Lupus I dark

cloud (Matthews et al. 2013).

To be used in the final science map a pseudovector must pass all six null tests. Note

that none the 250 µm polarization pseudovectors passed all six null tests. However

a total of 29 pseudovectors at 500 µm and 25 pseudovectors at 350 µm pass all six

consistency tests.
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Test Name Type Npass 500 Npass 350 Npass250

Parallactic Angle Temporal 42 49 17

Early/Late Temporal 55 65 69

High/Low Elevation Temporal 65 70 68

Top/Bottom bolometers Spatial 36 54 26

Left/Right bolometers Spatial 33 41 14

High/Low IP bolometers Spatial 57 57 14

Total Combined 29 25 0

H/V bolometersa Spatial 13 11 19

Table 4.3: Results of the null tests for observations of Lupus I. The tests were performed for all

pseudovectors with p > 1.5% . Only pseudovectors that pass all six null tests were used in

scientific analysis.

aPseudovectors are not required to pass the H/V bolometer consistency test.
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It is important to note that pseudovectors may fail these tests for reasons other

than experiment systematics. Noise peaks which happen to add constructively in

equations 4.4 and 4.5 can lead to a pseudovector failing a null test. Similarly it is

possible for pseudovectors which are contaminated by beam systematics to pass a

null test if noise spikes lower Qres or Ures. By requiring that the vectors pass a large

number of tests it is hoped that the latter case will be caught.

4.4.1 Temporal Null Test Results

Parallactic Angle: Changing the parallactic angle rotates the sky signal relative to

telescope coordinate system. Thus this test is sensitive to systematics introduced by

polarized structure in the beam including polarized side lobes. For the Lupus I and

Vela C maps the median difference between the parallactic angle in the two bins was

8.5◦.

Elevation: The data was divided into high/low telescope elevation bins. It is

known from previous BLAST flights that the angle between the central bolometer

in the bolometer detector arrays and the boresight star camera axes changes as a

function of elevation. A pointing offset correction is calculated after every ∼15 minute

scan. However, the elevation null test can be used to look for spurious polarization

introduced from changes in the beam as a function of elevation, or polarized sidelobes

from the ground or telescope outer frame. Figures 4.10c and 4.11c shows that almost

all of the pseudovectors pass this test.

Early Flight/Late Flight: Here the first half of the data is differenced with the second

half of the data taken. If the beam shape degraded over time this test should reject

a number of pseudovectors. However, Figures 4.10b and 4.11b show that very few

pseudovectors were rejected.
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(a) Parallactic Angle (b) Early/Late Flight

(c) High/Low Elevation (d) Top/Bottom Bolometers

(e) Left/Right Bolometers (f) High/Low IP Bolometers

Figure 4.10: Results from each 350 µm null test for the BLASTPol 2010 observations of Lupus I.

Pseudovector colours represent the ratio of the amplitude of the polarization residual (shown

in green) to polarized signal (length of the line). For red pseudovectors pres < p/3, purple:

p/2 < pres < p/3, blue: pres > p/2. The pseudovector orientation shows the polarization

angle rotated by 90◦ to show the inferred orientation of the magnetic field. Only pseudovectors

where pres < p/3 (red) pass the null test.
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(a) Parallactic Angle (b) Early/Late Flight

(c) High/Low Elevation (d) Top/Bottom Bolometers

(e) Left/Right Bolometers (f) High/Low IP Bolometers

Figure 4.11: Results from each 500 µm null test for the BLASTPol 2010 observations of Lupus I.

Pseudovector colours represent the ratio of the amplitude of the polarization residual (shown

in green) to polarized signal (length of the line). For red pseudovectors pres < p/3, purple:

p/2 < pres < p/3, blue: pres > p/2. The pseudovector orientation shows the polarization

angle rotated by 90◦ to show the inferred orientation of the magnetic field. Only pseudovectors

where pres < p/3 (red) pass the null test.
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4.4.2 Bolometer Null Tests

Additionally we required that all pseudovectors pass three null tests where instead

of dividing the data in time, maps were made using half the detectors (keeping

an equal number of H and V bolometers in each group). Overall these bolometer

null tests rejected far more pseudovectors than the temporal null tests (Table 4.3),

suggesting that the differences in beam shape and polarization across the array are

more problematic than any change in beam shape with time.

Instrumental Polarization: As discussed in section 4.3.8 the instrumental polariza-

tion (IP) varies considerably from bolometer to bolometer. A consistency test was

performed between the bolometers with the highest IP and the lowest IP.

Top/Bottom and Left/Right: There are also significant beam shape gradients across

the bolometer array (Figure 4.2). Consistency tests between the left and right half of

the array and tests between the top and bottom half of the array reject a significant

fraction of the pseudovectors.

4.4.3 Grid Angle Null Test

As a final check, a null test was run between the detectors with horizontal grid angle

orientations (H bolometers) and detectors with vertical grid angle orientations (V

bolometers). Very few pseudovectors survived the test, but this is not surprising given

that our polarimetry reconstruction method relies on differencing between adjacent

H and V detectors in order to calculate Stokes parameters at sampling frequencies

above the 1/ f knee of the detectors. (This was discussed previously in Section 2.4).

The failure of this null test is a reminder of the importance of the patterned polarizing

grid for the successful operation of BLASTPol.
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4.5 Simulations

4.5.1 Background

In order to create simulated TOD it is necessary to understand how the raw BLASTPol

detector measurements relate to on-the-sky polarization.

To begin we define for vertically polarized bolometers:

qraw ∝ D(θ = 0◦) − D(θ = 45◦) (4.7)

uraw ∝ D(θ = 22.5◦) − D(θ = 67.5◦) (4.8)

where θ is the HWP angle and D is the signal level of the detector. The goal then is to

relate qraw and uraw to qsky and usky.

For horizontally polarized bolometers:

qraw ∝ − (D( θ = 0◦ )−D( θ = 45◦ )) (4.9)

uraw ∝ − (D( θ = 22.5◦ )−D( θ = 67.5◦ )) . (4.10)

The conversion from raw polarization angles to sky polarization is defined by a

number of rotation angles:

Raw to Telescope Coordinates: χ is the HWP angle as measured by the HWP encoder

which maximizes signal in a vertically polarized pixel.qraw

uraw

 =

cos(4χ) −sin(4χ)

sin(4χ) cos(4χ)


qG

uG

 . (4.11)

Telescope to Sky Coordinates: In astronomy position angles are measured with North

at zero, and the angle increasing towards the East. The telescope measures

polarization with respect to the gondola frame ΦG, which we define to be in

the positive elevation direction. To convert from the gondola reference frame to
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the sky reference frame it is necessary to know the angle between the positive

elevation direction in the gondola and north ρ. Then

Φ = ΦG − ρ (4.12)

where Φ is the polarization defined in the sky reference frame.

These equations can be used convert between Stokes parameters in the gondola

and sky reference frames:qG

uG

 =

 cos(2ρ) −sin(2ρ)

−sin(2ρ) cos(2ρ)


qsky

usky

 . (4.13)

qsky = Qsky/I = p cos(2Φ), (4.14)

usky = Usky/I = p sin(2Φ), (4.15)

where p ≡
√

Q2
sky + U2

sky/I2 is the fraction of the emission which is linearly

polarized.

Combining all these equations we can then solve for the signal in a bolometer:

D =
I
2
(1 + η ( q cos β + u sin β + qIP cos β IP + uIP sin β IP)) (4.16)

where

β = 4θ − 4χ − 2ρ + 2α (4.17)

is the phase angle and

β IP = 4θ − 4χ + 2α (4.18)

is the equivalent phase angle for the instrumental polarization, which has no de-

pendence on the sky rotation angle ρ, and α is the grid angle (α = 0◦ for horizontal

bolometers and 90◦ for vertical bolometers).
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4.5.2 simsky

The software package which produces simulated TOD is simsky. This code was

originally developed for the BLAST 2006 analysis to investigate the impact of various

mapmaker pipelines on the output intensity structures. simsky has since been modified

to produce TOD using Equation 4.16. It was also modified to accept beam profiles for

each HWP angle (in order to simulate a polarized beam) and instrumental polarization

terms qIP and uIP.

The inputs to simsky are:

• Maps of the Stokes I, Q and U parameters to be ”observed” with the simulator.

• A list of data ranges over which the simulated TOD should be calculated.

• Time ordered pointing information for raster scans used to ”observe” the input

maps. Typically this data is taken from post-flight pointing reconstructions

(Section 4.3.6) of actual BLASTPol science scans.

• Ancillary pointing information for the three BLAST bolometer arrays including

the pointing offset of each bolometer with respect to the central bolometer, and

corrections to the angle between the star camera axes with respect to the central

bolometer as a function of time.

• Amplitude spectra representing the uncorrelated component of each detector’s

noise.

• Amplitude spectra for the correlated component of the detector noise.

• Time ordered data giving θ the angle of the HWP as a function of time.

• Optionally a beam map or series of beam maps which are given in telescope

coordinates. The program can accept a single map representing the beam for
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Input maps:
I, Q, U

Pointing Data

Beam

Half-wave plate
angle

Uncorrelated 
Noise Spectra
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Noise Spectrum

Instrumental
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Map Convolution

Convolved
maps

Noise TOD

Map Sampler I, Q, U TOD Detector Output
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TOD 
Combination

Final Sim. 
TOD

Figure 4.12: A block-level diagram of the simsky program showing the steps to produce

simulated bolometer time ordered data (TOD). Data are indicated with hexagons, software

processes with rectangles. Blue indicates data which are the same for all bolometers, pink data

which may be different for each bolometer.

all bolometers and all HWP angles, or multiple maps representing the beam for

individual bolometers as a function of HWP position.

Figure 4.12 shows a block-level diagram of the the simsky program run on each

individual data chunk (approximately 15 minutes of data).
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4.5.3 Vela C Simulations: Nominal Case

Source polarization and instrumental polarization reconstruction fidelity were tested

with simulated observations of the Vela C molecular cloud. Vela C is both very bright,

and has a great deal of structure, including a very bright region around RCW 36 which

could be expected to show artifacts from the mapmaker. Simulations were made for

all bolometers in the 500 µm array.

Figure 4.13 shows the input intensity map, obtained from the Herschel Science

Archive4 and described in Hill et al. (2011). At 500 µm the Herschel SPIRE beam has a

FWHM of 36.3′′, which is much smaller the diffraction limited BLAST beam FWHM

of 60′′. The SPIRE map has a pixel size of 14′′. Stokes Q and U maps were generated

assuming a constant polarization fraction: Q = qI and U = uI, where q and u are

constant across the map.

Signal only TOD were generated using pointing and HWP angles from ∼19 hours

of Vela C scans, with roughly equal coverage at each HWP position (Table 4.1). These

pointings correspond to the same data ranges used to calculate the instrumental

polarization for BLASTPol 2010.

Noise TOD were generated and added to the signal TOD. The noise TOD consist

of both a noise component that is uncorrelated between the detectors and a correlated

noise component meant to represent the low frequency 1/f noise. Noise levels were

based on individual bolometer fits to amplitude spectral density plots derived from

18.33 minutes of BLASTPol 2010 data where the telescope was not scanning (Soler

2013). The uncorrelated component consisted of white noise, with the white noise

levels taken from the fit for each bolometer. Correlated noise levels were generated

4http://herschel.esac.esa.int/Science_Archive.shtml. Herschel is an ESA space observatory
with science instruments provided by European-led Principal Investigator consortia and with important
participation from NASA.

http://herschel.esac.esa.int/Science_Archive.shtml
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Figure 4.13: Herschel SPIRE 500 µm map of the Vela C molecular cloud, which was used as an

input to the simulations discussed in this section.
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from an input power spectrum of the form:

PSDcorr = W
f0

f
(4.19)

where W is the median white noise level of all 500 µm bolometers, f0 is the median

1/ f knee, and f is the frequency. For the 500 µm bolometers W= 3.8× 10−6 V Hz−1/2

and f0 = 0.214 Hz.

As a first test the Vela simulations were run using an unpolarized Gaussian beam

with a FWHM of 60′′. This beam was used for all bolometers at all HWP positions.

No instrumental polarization was included in the simulation.

Once the simulated TOD were created they were fed back into the mapmaker in

order to create output maps. The results from a simulation with u = 0 and q = 0.02

are shown in Figure 4.14. The mapmaker reproduces the intensity structure, with

no visible I to U or Q to U mixing. Artifacts can be seen in the map associated

with the scan strategy and filtering. In particular near the brightest source in the

map RCW 36 large negative ”bowls” can be seen. Removing these effects requires an

optimal mapmaker, which will be the subject of future work.

Next, the TOD were run through the full analysis pipeline described in Section

4.3.8. Instrumental polarization values were calculated for every bolometer; they range

from 0 to 1%, with a median IP of 0.48%. The full null test pipeline was run after

correcting the maps for IP found by sky rotation.

In total 178 pseudovectors passed both the intensity cut and the null tests. The

derived polarization vectors (rotated by 90 degrees to show inferred field direction)

are shown in the left panel of Figure 4.16, with histograms in Figure 4.17 showing the

distribution of percentage polarization p (4.17a) and polarization angle Φ (4.17b).
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(a) I (b) q

(c) Φ (d) u
Figure 4.14: Output maps from a 500 µm Vela C simulation made with a round 60′′ FWHM

Gaussian beam and no input instrumental polarization.
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4.5.4 Vela C Simulations With Polarized Beams and Instrumental

Polarization

An additional simulation was created with non-Gaussian, asymmetric beams, and

significant instrumental polarization for each bolometer. The shape of the beam

varied both with polarizing grid angle (H and V bolometers) and with HWP position.

The goal of this simulation was to test whether our data reduction pipeline could

reconstruct polarization for an instrument with similar limitations to BLASTPol in

2010.

The beam shapes are based on a least squares fit of 3 two-dimensional Gaussians

to maps of the source IRAS 08470-4243, a compact and bright object in the Vela

Molecular Ridge. Maps of this IRAS source were made separately for all H and V

bolometers, and for the two waveplate positions with sufficient coverage to produce

high signal-to-noise maps: θ = 0 and 67.5◦. For the other two HWP positions angles

the beam for θ = 22.5◦ was made to be identical to the beam for θ = 0◦, and the

beam for θ = 45◦ was made to be identical to the beam for θ = 67.5◦. All beams

were normalized to have the same total flux, thus difference between any two beams

averaged over a large aperture is zero and the net instrumental polarization over the

simulation beam is zero.

The beam fits are shown in Figure 4.15, with red showing the H bolometer fits,

and green showing the fit for V bolometers. The H bolometer fits are slightly more

elongated compared to the V bolometer fits, and also the H bolometers seem to have

more power in the left most sidelobe. IRAS 08470-4243 is not a point source, so the

beam shape derived from these fits likely has more extended structure than the actual

BLASTPol beam.

Instrumental polarization terms qip and uip from Equation 4.16 were generated for

each bolometer:

qip,j = −0.040 + γj 0.070, (4.20)
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Figure 4.15: Polarized beams based on fits to IRAS 08470-4243. Red in these images corresponds

to the beam for H bolometers, green for V bolometers.
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uip,k = 0.020 + γk 0.030, (4.21)

where γj and γk are random numbers selected from a normal distribution.

The right panel of Figure 4.16 shows pseudovectors for the polarization systematics

simulation. In total 201 pseudovectors passed the intensity cut, polarization cut and

null tests.

Figure 4.17 shows the histograms of p and Φ for both the ideal polarimeter (no IP)

simulations, and the large IP polarized beam simulations. The large IP simulations

span a much larger range of Φ angles and polarization percentage values p. Still

the large IP/polarized beam simulation was able to reproduce the mean polarization

direction of the input maps to ∼5%.

Interestingly, in both simulations the peak of the Φ histogram is offset from the

input polarization angle (marked with a dashed vertical line in Figures 4.17b and d)

by 4 or 5◦. This may be an effect of high-pass filtering of the TOD in naivepol, or it

could be caused by an uncertainty in measuring the IP.

4.5.5 Point Source Reconstruction Simulations

For BLASTPol 2010 the beam is known to be polarized and non-Gaussian. Therefore

in the 2010 science analysis the maps were convolved with a 2.5′ FWHM Gaussian to

try to smooth out all structure on beam scales. Even then a polarized point spread

function can cause significant deviations from the true polarization angle (as shown

in Figure 4.17). As such for the 2010 data analysis we interpret only the large scale

field direction not individual pseudovectors (Matthews et al. 2013). For the 2012 data

these restrictions will hopefully not be necessary, so it is important to understand the

effects of the mapmaker on point source observations.

One aspect of the mapmaking pipeline that required simulations is the pixelization

residuals. Mixing of Stokes I into Q and U is the result of the assumption in the
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Figure 4.16: 500 µm pseudovectors made by passing simulated TOD through the entire

mapmaking/IP correction pipeline. The pseudovectors have been rotated by 90◦ to show the

inferred field direction. The pseudovector in the legend shows the direction of the polarization

(rotated by 90◦) in the input simulation maps. Left panel: Unpolarized 60′′ FWHM beam with

no input instrumental polarization. Input polarization maps were Q=0.02I and U=0.00I. Right

Panel: Instrumental polarization as described in Equations 4.20 and 4.21, and beams were

based on fits to IRAS 08470-4243 for H and V bolometers at different HWP positions. Input

polarization maps were Q=-0.018I and U=0.005I.



Chapter 4. BLASTPol 2010 Analysis Pipeline and Simulations 148

(a) p histogram, Ideal Case (b) Φ histogram, Ideal Case

(c) p histogram, with IP + polarized beam (d) Φ histogram, with IP + polarized beam

Figure 4.17: Histograms of percentage polarization p and polarization angle Φ for Vela C

simulated observations. The vertical blue dashed line in each figure shows the simulation

input.
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Type Ideal Instrument With Poln Systematics

Input q 0.020 -0.018

Input u 0.000 0.005

Input qip 0.000 -0.040±0.070

Input uip 0.000 0.020±0.030

Input Φ 0◦ 82.2◦

¯qout 0.019 -0.017

¯uout 0.004 0.001

Median qip,out 0.0020±0.0033 -0.040±0.051

Median uip,out -0.0036±0.0021 0.019±0.019

Table 4.4: Results from the simulations of Vela C for left: An ideal instrument (no input IP, a

round unpolarized beam), right: Instrument with significant instrumental polarization, and a

beam shape that is non-Gaussian and varies with HWP angle.
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Figure 4.18: Map of the number of hits per pixel for the point source simulation, with contours

from the output map of Stokes I showing the locations of the four Gaussian ”sources”.

Sampling of the input maps was made using the pointing solution derived for 80 scans of the

Vela C molecular cloud from 2010 BLASTPol flight.

mapmaker that the source flux does not vary across a map pixel. That assumption is

reasonable if the pixel size is much smaller than the FWHM of the telescope beam,

but it is not a good assumption if the pixel size is only a few times the beam FWHM.

Simulations were made for the 500 µm array. Input maps consisted of four identical

60′′ FWHM Gaussians with no polarization (Q = U = 0 for the input maps), with a

pixel size of 1′′. These input maps were then observed with simsky using the pointing

reconstructed for 80 scans of Vela C from the BLASTPol 2010 flight. Figure 4.18 shows

the hits per pixel for the output map, with intensity contours showing the locations of

the four simulated sources.

The mapmaker naivepol was then used to make output polarization maps (I,Q

and U) from the simulated TOD. Since the goal of the simulations was to look for I
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to Q and U leakage from pixelization, only the signal+white noise TOD were used

(no correlated noise component or 1/f noise, instrumental polarization or additional

beam convolutions were used), and thus the TOD did not require high-pass filtering.

The signal-to-noise of the point source simulation was set to be very large, ∼8000, so

that the polarization residuals in the output maps can be attributed to I to Q and U

leakage rather than TOD noise.

Output polarization maps were produced with a variety of pixel sizes: 20, 10, 5, 2

and 1′′. Pixels of 20′′ correspond to three pixels per source FWHM. The output maps

were then convolved with a 60′′ Gaussian to obtain the photometry of the source and

smooth out pixel-to-pixel map noise.

The thumbnail images of the each of the sources in Figures 4.19 to 4.22 show the

results of the simulation. I to Q/U mixing can be seen in all the output maps, but

the residuals are larger for maps made with a coarse pixel size. With 20′′ map pixels

the residuals are small compared to the flux of the point source in I (q, u <0.3%), and

with 10′′ map pixels the residuals are even smaller q, u <0.1%.

Figure 4.23 shows the q, u and p values measured for each source as a function

of pixel size. The Q, U and I photometry was calculated by convolving the sources

with a normalized Gaussian of 60′′ FWHM, which gives a weighted average of the

surrounding pixels. The calculated pres values tend to increase with increasing pixel

size, but even with 20′′ pixels the pres values are all below 0.5%, which is our 1-σ

uncertainty limit on the instrumental polarization reconstruction from the Vela C

simulations.

It would appear that the polarization of an isolated point source recovered from

aperture photometry would not be contaminated by I to Q and U mixing due to

pixelization residuals. The limiting error remains the uncertainty of the instrumental

polarization of 0.5%.

The other concern is that I to Q and U mixing could create spurious polarization

that would contaminate the pseudovectors in nearby lower flux regions. Consider a
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Figure 4.19: Output simulation maps made with 20′′ pixels of four point sources mapped

with the Vela C scan strategy from BLASTPol 2010. The first three columns show I, Q and U

simulation output maps smoothed by convolving with a 60′′ FWHM Gaussian. The Q and U

maps have been normalized to the brightest pixel in the I map (Imax). The right most column

shows the spurious polarization p′ that would be observed if this source was embedded in an

extended feature with intensity =0.2× Imax.
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Figure 4.20: Output simulation maps made with 10′′ pixels of four point sources mapped

with the Vela C scan strategy from BLASTPol 2010. The first three columns show I, Q and U

simulation output maps smoothed by convolving with a 60′′ FWHM Gaussian. The Q and U

maps have been normalized to the brightest pixel in the I map (Imax). The right most column

shows the spurious polarization p′ that would be observed if this source was embedded in an

extended feature with intensity =0.2× Imax.
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Figure 4.21: Output simulation maps made with 5′′ pixels of four point sources mapped

with the Vela C scan strategy from BLASTPol 2010. The first three columns show I, Q and U

simulation output maps smoothed by convolving with a 60′′ FWHM Gaussian. The Q and U

maps have been normalized to the brightest pixel in the I map (Imax). The right most column

shows the spurious polarization p′ that would be observed if this source was embedded in an

extended feature with intensity =0.2× Imax.
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Figure 4.22: Output simulation maps made with 2′′ pixels of four point sources mapped

with the Vela C scan strategy from BLASTPol 2010. The first three columns show I, Q and U

simulation output maps smoothed by convolving with a 60′′ FWHM Gaussian. The Q and U

maps have been normalized to the brightest pixel in the I map (Imax). The right most column

shows the spurious polarization p′ that would be observed if this source was embedded in an

extended feature with intensity =0.2× Imax.
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Figure 4.23: Polarization measured from BLASTPol simulated observations of four unpolarized

point sources, scanned with the BLASTPol 2010 pointing reconstruction for scans of the Vela C

molecular cloud.
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point source (A) embedded in a fainter extended flux feature (B). To avoid contamina-

tion from the point source we would want to exclude any map pixels with a spurious

polarization p′ > 0.5%. For each simulated source we can calculate how many map

pixels would need to be excluded assuming a ratio between the peak flux of the point

source IA,Max and IB of ζ:

p′ (x, y) = IA (x, y) + ζ IA,Max. (4.22)

The rightmost panels of Figures 4.19 to 4.22 show p′ assuming ζ = 5. For the case

of 20′′ pixels a few map pixels would have p′ above 0.5%, but for smaller pixel sizes p′

was always less than 0.5%. This experiment was repeated for different values of ζ: 2, 5,

10 and 205. Only the maps made with a pixel size of 20′′ had p′ above 0.5%. From this

study it seems that using a pixel size of 1/6 the beam FWHM or smaller is enough to

ensure that the source photometry is not contaminated by spurious polarization due

to I to Q or U mixing from map pixelization.

4.6 Summary

In this chapter I have outlined the observations made with BLASTPol during the 2010

flight and discussed the various pathologies of the dataset. The 2010 flight had severe

systematics introduced by the damaged infrared blocking filter, which caused large

instrumental polarization which varied from bolometer to bolometer.

I describe in Section 4.3 the data reduction pipeline used for the 2010 data, which

consisted of cleaning the detector TOD, reconstructing telescope pointing, deter-

mining the instrumental polarization through sky rotation, making maps with the

polarized mapmaker naivepol and finding suitable reference regions in the maps to set

a zeropoint for the I, Q, and U maps.

5In the BLAST 2006 maps of Vela C the largest ζ value found was around the brightest point of
RCW 36 in the 250µm map, where the ratio between the brightest pixel in RCW 36 and a pixel three
beam FWHM away was 13. For most compact sources in Vela C ζ is a factor of 2-5.
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In section 4.4 I looked at a series of null tests of the 2010 flight data. These various

null tests were chosen to be sensitive to sidelobes (parallactic angle, elevation angle)

or beam shape differences (high IP/low IP). In the case of the Lupus I cloud a number

of pseudovectors pass all the null tests.

I have shown using instrument simulations that the BLASTPol instrument can be

used to reconstruct polarization angles and percentage polarizations. Even with a po-

larized non-Gaussian beam and large instrumental polarization the output simulated

maps showed the same global polarization direction as the input maps.

The simulations also show that average instrumental polarization can be recon-

structed to within 0.5%. The instrumental polarization was then removed in the

mapmaker. In addition after correcting for the IP the BLASTPol maps of Carina

Nebula and G 331.5-01 showed similar polarization angles to the observations made

by the SPARO instrument at 450µm (Li et al. 2006).



Chapter 5

Preliminary Polarization Maps From

the BLASTPol 2012 Flight

5.1 Chapter Overview

This chapter provides a brief overview of the BLASTPol 2012 data quality and presents

preliminary maps of several BLASTPol targets produced using the 2010 data reduction

pipeline presented in Chapter 4. More work needs to be done on the data reduction

before these maps will be ready for science interpretation, but even the preliminary

maps show the potential of this dataset.

5.2 2012 Data

5.2.1 2012 Observations Overview

Table 5.1 shows a summary of the BLASTPol observations taken during the 2012-2013

BLASTPol flight. The table gives the target name and type as well as the total time

spent observing each target compared to the total amount of unflagged data used in

making the output science maps shown later in this section. The fraction of time spent

at each half wave plate (HWP) position ( f0, f22.5, f45, f67.5) is also listed.
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Comparing the BLASTPol 2012 and 2010 observations (Table 4.1) there are a few

obvious differences. Less data was flagged in the BLASTPol 2012 flight because

the anomalous correlated noise seen in 2010 was fixed (see Section 4.2.1). Also

fewer science targets were observed in 2012 because both boresight star cameras

had failed after six days. After the star cameras failed we switched to observing a

∼12 deg2 region around Vela C. Vela C contains many bright sources for which the

corresponding features in the bolometer TOD can hopefully be used to refine the

pointing solution. A very large map of Puppis was observed when Vela was not

visible. The Puppis data will be used to create Stokes I maps in order to investigate

the submm properties of dust near the Galactic plane.

An additional column fother has been added to Table 5.1. fother is the fraction of

time spent observing the source with a HWP angle greater than 3.0◦away from one of

the four nominal HWP positions (0◦, 22.5◦, 45◦, 67.5◦). The preliminary HWP angles

are based on the HWP potentiometer readout, which occasionally are bad readings.

fother should decrease with a better calibration of the HWP angle based on the shaft

encoder. There were several cases over the flight where the HWP potentiometer gave a

bad reading which caused the stepper motor to rotate the HWP to the wrong position.

These incorrect moves probably also account for some of fother.

Finally the science map sizes for the BLASTPol 2012 flight are generally larger than

maps made during the BLASTPol 2010 flight, in order to allow better coverage of low

flux regions that can be used for referencing the I, Q and U zero points (Section 3.3.1).

For our primary science target Vela C, the time observed listed in Table 5.1 includes 43

hours of science scans, 11 hours observing a much larger reference region, and 4 hours

of elevation scans which will be used to obtain better cross-linking. Reference and

elevation scans were also planned for Lupus I. Unfortunately the second star camera

failed before the Lupus I observations could be completed (Section 3.4.3).

The quality of the 2012 data is much better than the quality of the 2010 data. In
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(a) 250 µm (b) 350 µm (c) 500 µm

Figure 5.1: Preliminary BLASTPol 2012 I maps of compact source IRAS 08470-4243 made

using 38 minutes of data (Shariff, private communication), showing the elongation of the 2012

telescope beam. The white streaks visible in the maps show where there was insufficient pixel

coverage to solve for I.

particular the instrumental polarization (IP) is far less than the 2010 IP, and for most

targets there is more data and better HWP angle coverage because of the absence of

the correlated noise seen in 2010.

5.2.2 2012 Beam Shape

While the analysis is still preliminary it appears that the BLASTPol 2012 telescope

beam is non-Gaussian and non-symmetric. See Figure 5.1 for preliminary I maps

made with 38 minutes of data. This could suggest that not all of the elongation of

the 2010 beam was due to the damaged IR blocking filter, but that some was due to

a deformation in the BLASTPol optics that was not present during the BLAST 2006

flight. BLASTPol uses a different primary mirror than BLAST. The abnormal beam

shape may also be due to a deformation in one of the re-imaging optics elements.

So far there is no evidence that the 2012 beam shape varies with half-wave plate

angle, unlike the 2010 beam. Observations were made of several compact source

(IRAS 08470-4243, Saturn) or point source (VY CMa) calibrators so it should be possible
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Target Name Typea Map Area Time Obs Time Used f0 f22.5 f45 f67.5 fother

(deg2) (hrs) (hrs)

Vela Cb GMC 3.1 61.30 57.41 0.238 0.247 0.240 0.244 0.031

Carina Nebula GMC,C 2.0 4.62 4.33 0.226 0.248 0.252 0.254 0.021

G 331 GMC,C 2.0 4.52 4.05 0.219 0.218 0.274 0.269 0.020

Lupus I DC 1.0 17.00 15.27 0.262 0.216 0.247 0.255 0.020

IRAS 08470-4243 Pt 0.1 2.58 2.46 0.318 0.183 0.268 0.217 0.014

Puppis MC 0.4 13.73 12.86 0.243 0.262 0.230 0.247 0.018

VYCMa S,Pt 0.1 5.60 4.76 0.194 0.203 0.242 0.303 0.058

Saturn C 1 4.17 3.61 0.227 0.212 0.204 0.232 0.125

CG 12 DC 0.1 2.05 1.94 0.340 0.111 0.330 0.204 0.014

IRAS 15100-5613 Pt 0.1 1.01 0.41 0.248 0.218 0.094 0.381 0.058

Vela Y MC 0.4 0.96 0.91 0.247 0.251 0.241 0.246 0.014

Vela Largec GMC 12 99.95 90.71 0.236 0.233 0.2620 0.2466 0.0222

Puppis Largec 113 45.32 37.74 0.246 0.504 0.0838 0.165 0.0005

Table 5.1: Targets observed during the 2012 BLASTPol Antarctic Flight. Time used refers to all

unflagged data (including pointing, bolometer and TDRSS flags) as calculated for the 500µm

bolometer B5C05V. The final five columns give the fraction of the time used at each of the four

HWP angles and fother, the fraction of time the HWP angle was more than 3◦ away from one

of the four nominal HWP angles.

aGMC: Giant Molecular Cloud, DC: dark cloud, MC: molecular cloud, IRDC: Infrared Dark Cloud, Pt:

Pointing Calibrator, C: Polarization Calibrator, B: beam shape calibrator, G: Galaxy

bThe time observed listed for Vela C includes 43 hours of science scans, 11 hours observing a much

larger reference region, and 4 hours of elevation scans.

cVela Large and Puppis Large were the science targets observed after both star cameras hard drives had

failed.
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to reconstruct and characterize the beam shape of BLASTPol from the 2012 data.

5.3 Changes to the Data Reduction Pipeline for 2012

The data reduction pipeline used to make the preliminary 2012 maps is almost the

same pipeline used for the BLASTPol 2010 analysis and described in Chapter 4 with

the following exceptions:

• Preprocessor: There were several changes made to the elevation correlation coeffi-

cient fitting pipeline described in Section 4.3.4:

– Elevation correlation coefficients were fit to every elevation turn around,

not just raster scans with one elevation direction change. Consequently

there are lots of ci fits at very low elevations (El < 26◦), from the Saturn

elevation scans.

– The median of ci coefficients, cm, was calculated for one degree bins in

elevation, rather than the two degree bins used in 2010.

– There were very few scans made at low to intermediate telescope elevations

(26-31◦) due difficulty operating the star cameras at low elevations, so

median coefficients cm were not calculated for these bins.

Figure 5.2 shows a comparison between the elevation coefficients fit in 2010 (a)

and 2012 (b) for a 500 µm bolometer.

• TDRSS Flagging: All bolometer data taken when the TDRSS transmitter was

powered on (see Section 3.4.1) was flagged as bad. This corresponds to approxi-

mately 10% of the flight.

• Correlated Noise Flagging: Correlated noise between the science and dark de-

tectors was not seen during the 2012 flight when the TDRSS transmitter was

powered off, so additional noise flagging was not necessary.
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(a) 2010 (b) 2012

Figure 5.2: Elevation correlation coefficient fits for the same 250 µm bolometer B2A01V in 2010

vs 2012 . Black ’X’s are individual ci coefficients fit to each data chunk. Red plus signs are the

median of all ci coefficients cm (within two degree bins in 2010 and one degree bins in 2012),

and blue shows the linear interpolation between cm coefficients used to subtract elevation

correlated features from the bolometer TOD (see Section 4.3.4).

5.4 2012 Data Preliminary Run Through the Data Reduc-

tion Pipeline

In the next section I present preliminary polarization maps from the 2012 flight. The

2012 data was put through the 2010 pipeline (see Section 4.3) modified as described in

Section 5.3. However several of the data reduction products are preliminary:

• Pointing Solution: The maps use an early version of the reconstructed pointing

solution.

• Bolometer Pointing Offsets: The pointing offsets for each bolometer relative to the

central bolometer are based on the offsets between the brightest pixels in single

bolometer maps of the pointing calibrator IRAS 08470-4243 convolved with a

2′ FWHM Gaussian (Matthews, private communication). For the final dataset

multi-Gaussian fits will be used to calculate beam centroids.
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• Star Camera Pointing Offsets: Offsets between the boresight star camera axis

and the telescope beam were only calculated for observations of the pointing

calibrator IRAS 08470-4243. For the final dataset there will be an offset calculated

for each data chunk for every BLASTPol target.

• HWP Angles: HWP angles were calculated using the potentiometer voltage

(Section 2.7.4). However it is known from preflight tests that the HWP angle

measurements from the potentiometer often have errors of 2-3 degrees and

occasionally may have errors of tens of degrees.

• Flatfielding: No corrections for bolometer responsivity variation with time or flat

fielding corrections have been applied to the input TOD.

Maps were made by running early versions of the 2012 data through the 2010

pipeline (preliminary mapmaking, IP determination, null test vector selection, final

vector determination). The IP determined by the pipeline was very small, <1%, and

consistent with pre-flight measurements of ∼0.2% (Matthews, private communication).

As of the time of writing there is no evidence that the telescope beam shape varies

with HWP angle. Reference regions used to define the I, Q and U flux zero points

were larger and further from the bright cloud regions for the 2012 maps than for the

2010 maps.

To compensate for both the uncertainty in bolometer to bolometer pointing offsets

(of order tens of arcseconds) and pointing offsets between the submm telescope

beam and the star cameras, the maps were convolved with a Gaussian to reduce the

resolution. The largest pointing uncertainty is probably due to the small number

of measurements of the star camera axis to submm beam pointing offsets. In 2010

the difference between the maximum and minimum star camera offset was 2.0′ in

pitch and 3.0′ in yaw (with a standard deviation of 0.48′ and 0.75′respectively). The

range in offsets was less for targets that were observed over short periods of time
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Target FWHMsmooth (′′) Nvec

Vela C 120 8253

Lupus I 150 217

Carina Nebula 60 3551

Table 5.2: List of preliminary BLASTPol 2012 maps shown in this chapter. FWHMsmooth is the

FWHM of the Gaussian used to smooth the I, Q and U maps, and Nvec is the total number

of pseudovectors at 250, 350 and 500 µm which pass all six null tests and have p>1.5%,

I > 1.2 Ire f .

such as the Carina Nebula, which was observed in less than three hours and had star

camera to beam offset variations of less than 30′′peak-to-peak. The range in offsets

was largest for Lupus I, which was observed fairly near the sun resulting in larger

telescope thermal variations. The peak-to-peak differences in star camera pointing

offsets for the 2010 observations of Lupus I were 1.76′ and 2.01′ in pitch and yaw

respectively. Table 5.2 gives FWHMsmooth, which is both the FWHM of the Gaussian

used to smooth the maps and the spacing between pseudovectors in each preliminary

map.

No attempt has been made to assign statistical error bars to the vectors. Instead

pseudovectors which pass all six null tests (see Section 4.4), as well as the same cuts

applied to the 2010 pseudovectors (p>1.5%, I > 1.2 Ire f ) are shown. Table 5.2 lists the

total number of pseudovectors shown for each map.

5.4.1 Preliminary BLASTPol 2012 Maps

Figures 5.3, 5.4 and 5.5 show preliminary maps from the 2012 flight. The smoothing

FWHM and the number of pseudovectors displayed in each map can be found in

Table 5.2. These maps are extremely preliminary and need several months of work

before before they will be ready for rigorous scientific analysis. Nevertheless I will
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finish the chapter with a few comments on the potential of these maps.

The 2012 data is a huge improvement over the 2010 data. In 2010 half the data had

to be thrown away because of large correlated signals associated with motor switching

and TDRSS transmission. Also BLASTPol had large instrumental polarization and a

beam shape which varied with HWP angle.

These maps represent the most detailed look at magnetic field morphology in

star forming regions to date, covering scales ranging from ∼50 pc (Carina) to the

size scales associated with dense filaments (3′ corresponds to 0.14 pc at 155 pc, the

distance to Lupus I). Once the 2012 pointing solution, and in particular the star camera

to submm beam corrections, are improved the linear resolution of the BLASTPol 2012

maps will increase. In order to resolve structures on scales smaller than ∼1′ a new

map maker which can correct for the non-symmetric nature of the BLASTPol beam

will be required.

As was the case for the 2010 data the map of the Carina Nebula (Figure 4.9) the

BLASTPol 2012 pseudovectors show excellent agreement with the measurements

made previously with the SPARO telescope (white lines). The 2012 data shows many

changes in field direction, likely caused by the interaction between the magnetic field

and the ionized gas associated with the many ionizing star clusters in this region.

The Vela C map (Figure 5.3) with over 8,000 pseudovectors shows a particularly

detailed map of the magnetic field morphology of a young massive molecular cloud.

In this view the field appears to be ordered on medium scales but is by no means

uniform throughout the cloud. Indeed the direction of the field appears to change

across the cloud. On the high right ascension side of the cloud the field direction

appears closer to parallel to the cloud elongation direction, while on the other side

the field appears closer to perpendicular to the cloud field direction.

Another interesting observation from Figure 5.3 is that the polarization is very

strong in some areas which contribute little to the total submm flux of the cloud, but

is very weak in some areas of the cloud that are submm bright such as the ”Southern
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Figure 5.3: Preliminary BLASTPol 2012 Vela C map. The grayscale map is the Herschel SPIRE

350µm map of Vela C. Line segments represent polarization pseudovectors at 250µm (blue),

350µm (green) and 500µm (red) rotated by 90◦ to show the inferred direction of the magnetic

field projected on the plane of the sky. The reference region used is outlined in white.



Chapter 5. Preliminary Polarization Maps From the BLASTPol 2012 Flight169

Figure 5.4: Preliminary BLASTPol 2012 Lupus I map. The grayscale map is the Herschel SPIRE

350µm map. Line segments represent polarization pseudovectors at 250µm (blue), 350µm

(green) and 500µm (red) rotated by 90◦ to show the inferred direction of the magnetic field

projected on the plane of the sky. White lines are optical polarimetry measurements from

Rizzo et al. (1998). The reference regions used are outlined in white.
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Figure 5.5: Preliminary BLASTPol 2012 Carina Nebula map. The grayscale map is the Herschel

SPIRE 350µm map. Line segments represent polarization pseudovectors at 250µm (blue),

350µm (green) and 500µm (red) rotated by 90◦ to show the inferred direction of the magnetic

field projected on the plane of the sky. White lines are 450µm polarization pseudovectors from

SPARO observations (Li et al. 2006). The reference regions used are outlined in white.
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Nest” identified by Hill et al. (2011), where the polarization is so weak that it fails in

most cases to pass the p>1.5% threshold.

At a distance of ∼155 pc, Lupus I shown in Figure 5.4 is a much nearer cloud than

Vela C. The BLASTPol 2012 maps show similar structure to the BLASTPol 2010 maps

discussed in Matthews et al. (2013). In general the field is close to perpendicular

to the main cloud filament, and in good agreement with the optical polarization

measurements from Rizzo et al. (1998), but approximately four times more 2012

pseudovectors than 2010 pseudovectors pass the null tests.

5.5 Future Work

Before these maps will be ready for publication the data reduction products need to

be finalized. In particular, the half-wave plate angles and star camera to submm beam

offsets need to be improved.

With the 2010 data it was expected that the dominant error in the polarization

angle determination would be systematics related rather than statistical, due to the

melted filter. That assumption is probably not applicable to the 2012 data. For the

2012 data we will need to produce statistical error bars for our pseudovectors.

Our analysis of the data is limited by the fact that our mapmaker naivepol assumes

uncorrelated and white noise. This means that we must high pass filter our TOD,

so large scale modes are lost from the map. Work is underway to develop an opti-

mal polarized mapmaker, but once complete it will need extensive testing through

simulations.
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Summary & Future Work

6.1 Summary

My Ph.D. research focused on the design, construction, science planning and data

analysis for BLASTPol, a balloon-borne submm telescope that maps linearly polarized

radiation from dust grains in star forming regions. BLASTPol observes simultaneously

at 250, 350 and 500 µm, with 30′′ diffraction limited resolution at 250µm.

BLASTPol is unique in that it can trace magnetic fields across entire molecular

clouds with resolution sufficient to follow the fields down into dense cloud substruc-

tures, such as cores and dense filaments. The experiment was designed to produce

degree scale maps covering entire molecular clouds, with hundreds to thousands of

independent polarization measurements per cloud.

BLASTPol had two scientific flights both launched from Antarctica. During the first

9.5 day flight launched in late December 2010 we encountered a number of problems.

A damaged infrared blocking filter led to degradation of the optical performance

of the telescope and significant instrumental polarization. Approximately half the

2010 data was rejected due to an additional highly correlated noise component. The

reaction wheel motor, the primary azimuth pointing motor, failed a few hours into the
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flight, however we were able to alter our motor control strategy to keep the telescope

pointing.

Problems with the instrument were fixed for the second BLASTPol flight, launched

in late December 2012, which lasted 16 days (the cryogens only lasted 12.5 days). The

instrument performed nearly perfectly, with the exception of the star camera hard

drives both of which had failed after six days. Before the star cameras failed we were

able to complete our calibrator observations, observations of our primary science

target (the Vela C molecular cloud) and 17 hours of observations of our secondary

science target Lupus I.

A data reduction pipeline was constructed for the 2010 data which cleans the

detector TOD, reconstructs telescope pointing, calculates and removes instrumental

polarization, references the maps, and creates final polarization maps. Because

uncertainties in the 2010 data are likely dominated by systematics from the damaged

filter, statistical errors were not used to select polarization pseudovectors. Instead

a series of ”null” or internal consistency tests were used to test for systematics

and reject potentially contaminated pseudovectors. This pipeline was tested with

simulated BLASTPol observations, and I showed that even with a polarized beam

and large instrumental polarization BLASTPol can reconstruct the mean instrumental

polarization to <0.5% and the global polarization direction to ∼5◦.

Data analysis for the 2012 flight is still ongoing, but running the preliminary data

through the 2010 analysis pipeline results in an impressive set of maps that highlight

the potential of the data.

6.2 Future Work

More work is needed to finalize the 2012 data reduction products. A new map maker

is also needed. This mapmaker needs to be able to handle correlated noise and a

non-symmetric beam. In addition a more robust, quantitative, simulation pipeline is
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required that can generate and analyze a large number of simulations, which can be

used to understand the uncertainties of the 2012 polarization pseudovectors.

The final science maps will be used to probe the role played by magnetic fields in

star formation. The magnetic field morphology will be compared to both molecular

cloud morphology (e.g. filamentary structure) and morphology of prestellar and

protostellar cores within the clouds. The goal is to provide quantitative tests of

predictions from numerical simulations of star formation (e.g. Soler et al. (submitted)).

Work is also underway to assemble a complementary dataset that can be used

to probe other cloud physics and build a more complete model of the BLASTPol

target clouds. For example for the Vela C molecular cloud we have access to high

resolution Herschel far infrared data, infrared data from WISE and information on the

gas velocity structure from Mopra CO,13CO and C18O cubes of the J=1-0 transition.

Finally, work is beginning on a next-generation or ”SuperBLASTPol” polarimeter,

which will have a larger 2.5 m mirror for better linear resolution and will incorporate

a focal plane of ∼1000 dual-polarization sensitive MKIDS bolometers for ∼16× the

mapping speed of BLASTPol. The telescope has funding from NASA and a first flight

is planned for late 2016.



Bibliography

Ade, P., Bock, J., Bowden, M., et al. 2008, ApJ, 674, 22

Ade, P. A. R., Pisano, G., Tucker, C., & Weaver, S. 2006, in Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series, Vol. 6275, Society of Photo-

Optical Instrumentation Engineers (SPIE) Conference Series

André, P., Men’shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102

Angilè, F. 2011, Unpublished internal memo

Angile, F. 2013, PhD thesis, University of Pennsylvania

Angilè, F. E. in press, ApJ

Basu, S., & Ciolek, G. E. 2004, ApJ, 607, L39

Beck, R. 2001, Space Science Reviews, 99, 243

Bethell, T. J., Chepurnov, A., Lazarian, A., & Kim, J. 2007, ApJ, 663, 1055

Bonnor, W. B. 1956, MNRAS, 116, 351

Brown, R. L., Wild, W., & Cunningham, C. 2004, Advances in Space Research, 34, 555

Chandrasekhar, S., & Fermi, E. 1953, ApJ, 118, 113

Comerón, F. 2008, The Lupus Clouds, ed. B. Reipurth, 295

175



BIBLIOGRAPHY 176

Crutcher, R. M. 2012, ARA&A, 50, 29

Davidson, J. A., Novak, G., Matthews, T. G., et al. 2011, ApJ, 732, 97

Devlin, M. J., Ade, P. A. R., Aretxaga, I., et al. 2009, Nature, 458, 737

Dobashi, K., Uehara, H., Kandori, R., et al. 2005, PASJ, 57, 1

Dotson, J. L., Novak, G., Renbarger, T., Pernic, D., & Sundwall, J. L. 1998, in Society

of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 3357,

Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed.

T. G. Phillips, 543–547

Dotson, J. L., Vaillancourt, J. E., Kirby, L., et al. 2010, ApJS, 186, 406

Ebert, R. 1957, Zeitschrift fur Astrophysik, 42, 263

Fissel, L. M., Ade, P. A. R., Angilè, F. E., et al. 2010, in SPIE, Vol. 7741

Girart, J. M., Beltrán, M. T., Zhang, Q., Rao, R., & Estalella, R. 2009, Science, 324, 1408

Glenn, J., Bock, J. J., Chattopadhyay, G., et al. 1998, in Proc. SPIE, Advanced Technology

MMW, Radio, and Terahertz Telescopes, Thomas G. Phillips; Ed., Vol. 3357, 326–334

Goldsmith, P. F., Heyer, M., Narayanan, G., et al. 2008, ApJ, 680, 428

Goodman, A. A., Bastien, P., Menard, F., & Myers, P. C. 1990, ApJ, 359, 363

Greaves, J. S., Holland, W. S., Jenness, T., et al. 2003, MNRAS, 340, 353

Griffin, M. J., Swinyard, B. M., & Vigroux, L. G. 2003, in IR Space Telescopes and

Instruments. Edited by John C. Mather . Proceedings of the SPIE, Vol. 4850, 686–697

Hanany, S., Hubmayr, J., Johnson, B. R., et al. 2005, Appl. Opt., 44, 4666



BIBLIOGRAPHY 177

Harman, R. R. 2005, Wilkinson Microwave Anisotropy Probe (WMAP) Attitude

Estimation Filter Comparison, Tech. rep., Flight Mechanics Symposium; Greenbelt,

MD

Heiles, C., & Crutcher, R. 2005, in Lecture Notes in Physics, Berlin Springer Verlag,

Vol. 664, Cosmic Magnetic Fields, ed. R. Wielebinski & R. Beck, 137–+

Heyer, M., Gong, H., Ostriker, E., & Brunt, C. 2008, ApJ, 680, 420

Hildebrand, R. H., Kirby, L., Dotson, J. L., Houde, M., & Vaillancourt, J. E. 2009, ApJ,

696, 567

Hill, T., Motte, F., Didelon, P., et al. 2011, A&A, 533, A94

Hoang, T., & Lazarian, A. 2008, MNRAS, 388, 117

Houde, M., Rao, R., Vaillancourt, J. E., & Hildebrand, R. H. 2011, ApJ, 733, 109

Houde, M., Vaillancourt, J. E., Hildebrand, R. H., Chitsazzadeh, S., & Kirby, L. 2009,

ApJ, 706, 1504

Johnson, B. R., Collins, J., Abroe, M. E., et al. 2007, ApJ, 665, 42

Lazarian, A. 2007, J. Quant. Spec. Radiat. Transf., 106, 225

Li, H., Griffin, G. S., Krejny, M., et al. 2006, ApJ, 648, 340

Mac Low, M.-M., & Klessen, R. S. 2004, Reviews of Modern Physics, 76, 125

Markley, F. L. 2003, Journal of Guidance, Control, and Dynamics, 26, 311

Marsden, G., Ade, P. A. R., Benton, S., et al. 2008, in Society of Photo-Optical Instru-

mentation Engineers (SPIE) Conference Series, Vol. 7020, Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series

Marsden, G., Ade, P. A. R., Bock, J. J., et al. 2009, ApJ, 707, 1729



BIBLIOGRAPHY 178

Matthews, B. C., McPhee, C. A., Fissel, L. M., & Curran, R. L. 2009, ApJS, 182, 143

Matthews, B. C., Wilson, C. D., & Fiege, J. D. 2001, ApJ, 562, 400

Matthews, T. 2013, personal communication

Matthews, T., Ade, P., Elio Angilè, F., et al. 2013, submitted to ApJ, arXiv:1208.4866

Matthews, T. G. 2013, PhD thesis, Northwestern University

McKee, C. F., & Ostriker, E. C. 2007, ARA&A, 45, 565

Mizuno, A., & Fukui, Y. 2004, in Astronomical Society of the Pacific Conference

Series, Vol. 317, Milky Way Surveys: The Structure and Evolution of our Galaxy, ed.

D. Clemens, R. Shah, & T. Brainerd, 59

Moncelsi, L., Ade, P., Elio Angilè, F., et al. 2012, ArXiv e-prints, arXiv:1208.4866

Nakamura, F., & Li, Z.-Y. 2008, ApJ, 687, 354

Nakamura, F., & Li, Z. Y. 2011, ApJ, 740, 36

Netterfield, C. B., Ade, P. A. R., Bock, J. J., et al. 2009, ApJ, 707, 1824

Novak, G. 2010, Polarization Measurement Conventions for BLAST-Pol version 4,

Unpublished internal memo

Olmi, L. 2002, in Highly Innovative Space Telescope Concepts Edited by Howard A.

MacEwen. Proceedings of the SPIE, Vol. 4849, 245–256

Ostriker, E. C., Stone, J. M., & Gammie, C. F. 2001, ApJ, 546, 980

Palmeirim, P., André, P., Kirk, J., et al. 2013, A&A, 550, A38

Pascale, E., Ade, P. A. R., Bock, J. J., et al. 2008, ApJ, 681, 400

Pascale, E., Ade, P. A. R., Bock, J. J., et al. 2009, ApJ, 707, 1740



BIBLIOGRAPHY 179

Pettersson, B. 2008, Young Stars and Dust Clouds in Puppis and Vela, ed. B. Reipurth,

43

Pisano, G., Savini, G., Ade, P. A. R., Haynes, V., & Gear, W. K. 2006, Appl. Opt., 45,

6982

Pittelkau, M. E. 2001, Journal of Guidance, Control, and Dynamics, 24, 1187

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011, A&A, 536, A1

Renbarger, T., Chuss, D. T., Dotson, J. L., et al. 2004, PASP, 116, 415

Rex, M., Chapin, E., Devlin, M. J., et al. 2006, in Presented at the Society of Photo-

Optical Instrumentation Engineers (SPIE) Conference, Vol. 6269, Ground-based and

Airborne Instrumentation for Astronomy. Edited by McLean, Ian S.; Iye, Masanori.

Proceedings of the SPIE, Volume 6269, pp. 62693H (2006).

Rizzo, J. R., Morras, R., & Arnal, E. M. 1998, MNRAS, 300, 497

Rownd, B., Bock, J. J., Chattopadhyay, G., Glenn, J., & Griffin, M. J. 2003, in Mil-

limeter and Submillimeter Detectors for Astronomy. Edited by Phillips, Thomas G.;

Zmuidzinas, Jonas. Proceedings of the SPIE, Vol. 4855, 510–519

Savini, G., Pisano, G., & Ade, P. A. R. 2006, Appl. Opt., 45, 8907

Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23

Smith, M.D. 2004, The Origin of Stars (Imperial College Press, London)

Soler, J. 2013, PhD thesis, University of Toronto

Soler, J. D., Hennebelle, P., Martin, P. G., et al. submitted, submitted to ApJ,

arXiv:1303.1830



BIBLIOGRAPHY 180

Srisuwananukorn, A. 2013, Non-detection of Submillimeter Polarization by Rayleigh

Scattering in Saturn’s B-Ring, Undergraduate Honors Thesis, Northwestern Univer-

sity

Tomisaka, K., Ikeuchi, S., & Nakamura, T. 1988, ApJ, 335, 239

Vaillancourt, J. E., Dowell, C. D., Hildebrand, R. H., et al. 2008, ApJ, 679, L25

Ward-Thompson, D., Kirk, J. M., Crutcher, R. M., et al. 2000, ApJ, 537, L135

Ward-Thompson, D., Sen, A. K., Kirk, J. M., & Nutter, D. 2009, MNRAS, 398, 394

Wiebe, D. 2008, PhD thesis, University of Toronto

Yamaguchi, N., Mizuno, N., Saito, H., et al. 1999, PASJ, 51, 775

Zhang, J., Ade, P. A. R., Mauskopf, P., et al. 2009, Appl. Opt., 48, 6635


	Introduction
	Overview
	Basic Theory: The Role Magnetic Fields Play in Star Formation
	Measuring Magnetic Fields
	Dust Polarization

	Observations of Magnetic Fields in Star Forming Regions
	Zeeman Splitting Observations
	Optical and Near-infrared Polarimetry
	Submillimeter and Millimeter Polarimetry
	Estimates of Field Strength from Polarization Observations

	BLASTPol
	Instrument
	Advantages of a Balloon Platform
	Potential of BLASTPol Combined with Other Facilities
	BLASTPol Science Goals


	The BLASTPol Instrument
	Chapter Overview
	Introduction
	The BLASTPol Telescope
	Optical Design
	Detectors
	Cryogenics

	Polarimeter
	Overview
	Half Wave Plate
	Preflight Polarimetry Strategy Tests

	Gondola
	Electronics
	Pointing Sensors
	Power Systems

	Motor Control
	Overview
	Commutation Feedback Sensors
	Elevation Drive
	Reaction Wheel
	Pivot Motor
	Motor Controllers
	Control Software

	Scanning Strategy
	Mapping Strategy Overview
	Scanning Parameters
	Dithering
	HWP Rotation
	Calibrator Lamp Control


	BLASTPol Flight Performance
	Chapter Overview
	The 2010 BLASTPol Flight
	Preflight Planning
	Target Selection
	Flight Overview and Performance
	Balloon Ascent
	Damage to an Infrared Blocking Filter
	Additional Correlated Noise
	Reaction Wheel Motor Failure
	Pointing Control Post-Reaction Wheel Failure
	Pointing System Performance
	Flight Computer Double Reboot
	BLASTPol 2010 Targets Observed
	BLASTPol 2010 Data Quality and Lessons Learned

	BLAST2012 Flight Preparation
	Reference Regions
	Elevation Scans
	Experiment Upgrades for the 2012 Flight

	The BLASTPol 2012 Flight
	TDRSS Transmitter Noise
	 Double Reboot Early in the Flight
	Star Camera Performance
	BLASTPol 2012 Observing Strategy
	BLAST2012 Data Quality


	BLASTPol 2010 Analysis Pipeline and Simulations
	Chapter Overview
	Dataset and Pathologies
	Additional Correlated Noise
	Beam Shape
	Instrumental Polarization

	Data Reduction Pipeline
	Data Merger
	Despiking and Deconvolution
	Calibrator Pulse Corrections
	Preprocessing TOD
	TOD Inspection and Additional Flagging
	Pointing Solution
	Mapmaking
	Instrumental Polarization Determination

	Null Tests
	Temporal Null Test Results
	Bolometer Null Tests
	Grid Angle Null Test

	Simulations
	Background
	simsky
	Vela C Simulations: Nominal Case
	Vela C Simulations With Polarized Beams and Instrumental Polarization 
	Point Source Reconstruction Simulations

	Summary

	Preliminary Polarization Maps From the BLASTPol 2012 Flight
	Chapter Overview
	2012 Data
	2012 Observations Overview
	2012 Beam Shape

	Changes to the Data Reduction Pipeline for 2012
	2012 Data Preliminary Run Through the Data Reduction Pipeline
	Preliminary BLASTPol 2012 Maps

	Future Work

	Summary & Future Work
	Summary
	Future Work

	Bibliography

