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Abstract
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2013

In this thesis we investigate the two cosmic epochs of inflation and recombination, through their

imprints on the temperature and polarization anisotropies of the cosmic microwave background

radiation.

To probe the early universe we develop a map-based maximum-likelihood estimator to

measure the amplitude of inflation-induced gravity waves, parametrized by r, from the cosmic

microwave background (CMB) polarization maps. Being optimal by construction, the estimator

avoids E-B mixing, a possible source of contamination in the tiny B-mode detection, the target

of many current and near future CMB experiments. We explore the leakage from the E- to

the B-mode of polarization by using this estimator to study the linear response of the B-mode

signal at different scales to variations in the E-mode power. Similarly, for various observational

cases, we probe the dependence of r measurement on the signal from different scales of E

and B polarization. The estimator is used to make forecasts for Spider-like and Planck-like

experimental specifications and to investigate the sky-coverage optimization of the Spider-like

case. We compare the forecast errors on r to the results from a similar multipole-based estimator

which, by ignoring the mode-mixing, sets a lower limit on the achievable error on r. We find that

an experiment with Spider-like specifications with fsky ∼ 0.02–0.2 could place a 2σr ≈ 0.014

bound (∼ 95% CL), which rises to 0.02 with an `-dependent foreground residual left over

from an assumed efficient component separation. For the Planck-like survey, a Galaxy-masked

(fsky = 0.75) sky would give 2σr ≈ 0.015, rising to ≈ 0.05 with the foreground residuals. We

also use a novel information-based framework to compare how different generations of CMB

experiments reveal information about the early universe, through their measurements of r.

We also probe the epoch of recombination by investigating possible fluctuations in the free
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electron fraction Xe around the fiducial model of the standard recombination scenario. Though

theoretically well studied, the detailed assumptions in the recombination history, based on

standard atomic physics, have never been directly tested. However, for our CMB-based cosmo-

logical inferences to be reliable, the recombination scenario needs to be observationally verified.

We approach this problem in a model-independent way and construct rank-ordered parame-

ter eigen-modes with the highest power to probe Xe. We study various properties of these

modes, including their convergence, fiducial model-dependence, dataset dependence, and the

eigen-modes response to marginalization over different standard parameters. We demonstrate

that, if enough modes are included, the eigen-modes form a practically complete set of basis

function for expanding different physically motivated Xe perturbations. We also develop an

information-based criterion to truncate the eigen-mode hierarchy, which can be used in similar

hierarchical model selections as well. We show how our measurements of cosmic parameters

will be affected if possible deviations in the recombination history are ignored. The method is

applied to simulations of Planck+ACTPol and a cosmic variance limited survey with differing

simulated recombination histories and the recovered Xe trajectories are constructed. We also

apply the method to the best currently available CMB datasets, WMAP9+ACT/SPT. The first

constructed eigen-mode turns out to be a direct measure of the damping envelope. Its current

measurement with SPT slightly indicates a damping tail anomaly, while ACT data agree well

with the standard scenario. High resolution Planck data will resolve this tension with high

significance.
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Chapter 1

Introduction

1.1 The Cosmic History

According to the concordance model of cosmology, the universe started from an extremely hot

and dense state, the Big-Bang. A pivotal building block of this standard model is the epoch

of inflation, a period of accelerated expansion in the very early universe, around 10−35sec after

the Big-Bang. Inflation left behind a homogenous isotropic universe filled with particles of

the standard model of particle physics. These particles were generated by the decay of the

hypothesized inflaton field, through the so-called reheating process. Afterwards, through its

expansion and cooling, the universe went through a long chain of physical processes of different

energy scales.

Among these phenomena and of particular importance in observational cosmology, is the

so-called recombination epoch. It refers to a period in the life of the young universe, at about

the age of 380, 000 years, when it was cool enough for the protons to capture electrons and form

neutral hydrogen atoms. Helium was fully recombined earlier at the redshift of z ∼ 1800 (and

singly recombined at z ∼ 5000). At around this point an important milestone in the cosmic

history took place: with electrons now trapped in the Coulomb potential of nuclei, the photons,

which formerly frequently Thomson-scattered off free electrons, decoupled from matter and

freely travelled afterwards. These photons formed the Cosmic Microwave Background (CMB)

radiation. With no further photon-baryon interactions, the transparent universe went through

”dark ages”, which only finished when the first luminous objects formed, probably after z ∼ 30.

The UV radiation of these objects also reionized the hydrogen in the intergalactic medium.

However, the interaction of the photons with the now free electrons was much less frequent

since the plasma had diluted due to the expansion.

The two epochs of inflation and recombination are the focus of this work. Inflation provides

a unique opportunity to study physics at energy scales well beyond those achievable by man-

1
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made accelerators. The recombination process, on the other hand, lays the framework for CMB

formation. The detailed assumptions about that epoch impact our CMB-based cosmological

inferences, including the measurements of some of the inflationary parameters. The following

sections briefly review the periods of inflation and recombination, and how they are explored

by CMB data.

1.1.1 The Epoch of Inflation

Inflation as an early phase of accelerated expansion was postulated to solve some of the problems

of the otherwise successful standard model of cosmology, including its observed flatness, and

homogeneity and isotropy beyond the causally connected scales. Moreover, inflation is thus

far the unrivalled theory to seed cosmic structures. According to inflation, all structures in

the universe grew gravitationally from small perturbations against a homogenous background

distribution of matter, which, in turn, had arisen from scalar quantum fluctuations in the

space-time metric during inflation. Inflation also generated tensor fluctuations in the space-

time metric, commonly referred to as gravity waves. Vector perturbations, although probably

generated in the early universe, decay in an expanding universe and thus are not considered

observationally important in cosmology.

In the slow-roll models of inflation, the expansion is driven by the slow rolling, compared

to the expansion rate of the universe, of a single scalar field, dubbed inflaton, φ, down a

relatively flat potential field V (φ) and ends when this potential field becomes steep. Except

for the smallness of the slow-roll parameters, ε ≈ Mpl
2/2(V ′/V )2 and |η| ≈ Mpl

2|V ′′/V |, the

potential field is, theoretically, quite arbitrary. Here, Mpl is the reduced Planck mass and the

derivatives are with respect to the (homogenous) inflaton filed. However, the uniquely predicted

power spectra of fluctuations for an assumed potential field1 should agree with observations.

Generically, the power spectra Ps,t(k) of inflation-induced perturbations, predicted by most

inflationary models to be near scale-invariant, are modeled by power laws around relevant

scalar and tensor pivots, ksp and ktp. The main inflationary observables that parametrize these

power laws include As and r for parametrizing the scalar amplitude and tensor-to-scalar ratio,

and ns and nt for the spectral index of scalar and tensor perturbations:

Ps(k) ≈ As(ksp) (k/ksp)ns(ksp)−1 , Pt(k) ≈ At(ktp) (k/ktp)nt(ktp) .

r ≡ r(ktp) ≡ Pt(ktp)/Ps(ktp).

The running of the scalar spectral index, dns/d ln(k), where k is the perturbation wavenumber,

is also sometimes introduced to characterize possible deviations from power-law spectrum. The

1The distributions of perturbations predicted by most inflationary models are (close to) Gaussian, and can
thus be well characterized by their power spectra.
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primordial perturbations provide initial conditions for the observed anisotropies in the temper-

ature and polarization of the CMB. These anisotropies, still in the linear regime, make CMB

measurement a unique probe of the early universe and its initial conditions.

1.1.2 The Epoch of Recombination and CMB Formation

The last scattering surface

The combination of electrons and protons to form hydrogen atoms, at z ∼ 1100, is called

(hydrogen) recombination. Recombination, by transforming the universe from an ionized to

a neutral plasma, is accompanied by the unavoidable decoupling of matter and radiation and

thus the formation of CMB photons. The last scattering surface, i.e., when it is most likely

that the CMB photons had their last scatter off the electrons, is described by the differential

visibility function g(z),

g(z) = −de−τ/dκ, τ =

∫
σTnecdt. (1.1)

g(z)dz determines the probability that a photon last scattered between redshifts of z and z+dz.

Its peak defines the last scattering surface and its width shows how long the recombination

process took. Here κ is the conformal time, adκ = cdt, and τ is the optical depth to the last

scattering surface, and c, ne and σT are the speed of light, number density of free electrons and

the Thomson scattering cross section, respectively.

CMB anisotropies

The cosmic background radiation is highly isotropic on all scales, as was detected by Penzias

and Wilson in the mid 60s (Penzias and Wilson, 1965). However, as observed in early 90s by

the COBE satellite (Smoot et al., 1992), it encompasses small anisotropies of the order of 10−5,

seeded by chiefly adiabatic perturbations during the epoch of inflation. The patterns of CMB

spatial fluctuations, usually expressed by their power spectra in harmonic space, have been the

subject of intense study in the last two decades and revealed immense amount of information

about our universe.

The primary cosmological information revealed by primordial CMB anisotropies, generated

by acoustic oscillations during recombination, is about the initial conditions of the fluctuations,

as well as the matter and energy content of the universe, its curvature and also our distance

to the last scattering surface. On the other hand, secondary anisotropies, generated during the

journey of CMB photons from the last scattering surface toward the observer today, shed light

on the conditions at the epoch of reionization (through the re-scattering of CMB photons off

the newly freed electrons), on the large scale structure of the universe (through the Sunyaev–

Zel’dovich effect), and on the characteristics of dark energy (through the late-time Integrated



Chapter 1. Introduction 4

Sachs-Wolf effect).

CMB polarization

The primary CMB polarization is produced at the last scattering surface when the quadrupole

component of the anisotropic radiation field is Thomson-scattered by free electrons. For this

to happen, the electron plasma should be dilute enough so that the anisotropies are no longer

washed out by too frequent scatterings. On the other hand, the low free electron density reduces

chances of scattering, the basic requirement for the generation of polarization. As a result, CMB

polarization, which can only form toward the end of recombination, is relatively small.

An inevitable source of CMB quadruple anisotropy is the gradient of the electron veloc-

ity field at the last scattering, generating polarization patterns which are out of phase with

temperature anisotropies. In inflationary models of cosmology, the stochastic background of

gravity waves also contributes to the quadrupole component of anisotropies and thus produces

polarization. Polarization is also generated at late times on large scales by Thomson-scattering

of CMB photons off free electrons during and after the epoch of reionization, so far as there are

still adequate scatterings in the expanding universe.

The CMB polarization is described by the two Stokes parameters Q and U (with the circular

V component theoretically vanishing). It is common to decompose the CMB polarization fields

into two of their linear combinations, the curl-free E-mode and the gradient-free B-mode (more

in chapter 2). The B-mode component on large scales can only be produced by inflation-induced

gravity waves, while the E-mode has contributions from both scalar and tensor perturbations.

As gravity waves, with a measurable, yet tiny amplitude, are definite predictions of most models

of inflation, B-mode detection is regarded as the smoking gun for inflation. On small scales,

however, contributions from lensed E-modes dwarf the primordial B-modes from gravity waves,

requiring accurate separation techniques to extract the primordial signal. The lensing signal,

on the other hand, is a great source to study the large scale structure of the universe.

1.2 CMB As A Probe of the Cosmic History

The analysis of the cosmic background radiation has been so far the most powerful tool in

providing cosmologists with precise measurements of cosmic parameters. In the following we

briefly review how the CMB carries traces of the epochs of inflation and recombination.

1.2.1 Probing Inflation

The main inflationary observables, As, ns and dns/d ln k for scalar perturbations and r and nt

for tensor perturbations can be directly measured by CMB data at given proper pivots. As sets
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the amplitude of temperature fluctuations, with small contribution from tensor perturbations.

However, it is degenerate with τ , the optical depth of CMB to reionization, as the anisotropies

are damped during the reionization epoch by a factor of e−τ (in the power spectrum). Mea-

surements of large scale CMB polarization, produced during the reionization epoch, break this

degeneracy by independently estimating τ . The scalar spectral index determines the slope of

the power spectrum. It is thus degenerate with parameters that modify the CMB damping tail,

such as the primordial helium abundance Yp and the effective number of relativistic species Neff .

The running of ns is also most sensitive to small scale anisotropies, and similarly, modifications

to the damping tail, primordial or secondary, significantly impact its measurement.

The current upper limit on the tensor-to-scalar ratio, r, comes from the amplitude of temper-

ature fluctuations. However, due to the tininess of the signal compered to density perturbations,

B-mode measurement is required to pin it down. The signal is contaminated by foreground

radiation and the lensed E-mode signal. Extra care should be given to foreground separation

which puts the most hindering challenge for B-mode detection. That is because, unlike the lens-

ing signal, the much larger foreground radiation is not well characterized. Given the tininess

of r, the tensor spectral index nt, being about an order of magnitude smaller2, will probably

evade our measurements even with the proposed post-Planckian CMB satellites.

1.2.2 Probing the Recombination History

The recombination history is well studied and modeled based on the standard physics and

is treated, for a given set of cosmological parameters, as a theoretical input in the standard

CMB analysis. The analysis of high precision data is measurably sensitive to the details of

this process. This explains the extensive effort made so far in the theoretical study of the

recombination physics and the relevant atomic processes. However, observational verification

of the details of the recombination scenario is needed for the CMB–based higher–precision

cosmological inferences to be reliable. We put this model to test by searching for fluctuations

around it, using the high-` CMB anisotropies. Detection of possible deviations around the

standard scenario would point to exotic physics at those early times, such as variations in the

physical constants or energy injection from dark matter annihilation.

Any physical process that impacts the recombination history inevitably affects the CMB

power spectrum, but not necessarily in a measurable way. The CMB spectrum is most sensitive

to variations in the recombination history around the last scattering surface. For example,

changes in the width or position of the visibility peak, leading to shifts in the position of CMB

peaks and also its small scale damping, are among the best constrained observables. These,

2nt ≈ −r/8
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however, are degenerate with other cosmic parameters with similar impacts on the CMB spectra,

again justifying the extra care required in modeling the recombination history.

1.3 CMB Surveys

The cosmological information revealed by the CMB emerges from a broad range of angular

scales, from arc minute to degree. After the discovery of CMB anisotropies in early 90s,

many ground-based and balloon-borne experiments were designed and deployed to probe the

anisotropies at different scales with increasing precision. BOOMERanG (de Bernardis et al.,

2000a), MAXIMA (Hanany et al., 2000), Saskatoon (Netterfield, 1995), MAT/TOCO (Nolta

et al., 2003) and other experiments determined our distance to the last scattering surface,

which, when combined with the measurements of the Hubble parameter, revealed the flatness

of our universe. These were followed by higher precision experiments (including ACBAR (Re-

ichardt et al., 2009a), CBI (Sievers et al., 2007a), DASI (Halverson et al., 2002) and the WMAP

satellite (Hinshaw et al., 2012)) which measured higher multipoles. With these experiments,

cosmologists could make unprecedented measurements of the basic cosmic parameters and a

new era in cosmology began.

The more recent ACT (Dunkley et al., 2011; Sievers et al., 2013) and SPT (Keisler et al.,

2011; Hou et al., 2012) have measured the CMB temperature at very high multipoles (up to

` ∼ 10000). These small scales carry information about standard cosmic parameters, such as

Neff and Yp, as well as being affected by possible extensions to the standard model, e.g., through

dark matter annihilation or decay and cosmic strings.

The E-mode polarization of the CMB is also a powerful probe of cosmic parameters. It

does not suffer from foreground contamination as much as temperature anisotropies do, and

can therefore more tightly constrain cosmic parameters. Moreover, it helps break the degeneracy

between some parameters measured by temperature anisotropies such as τ and As. The E-mode

polarization of CMB was first detected by DASI experiment (Kovac et al., 2002), with its power

spectrum first measured by CBI (Sievers et al., 2007a), followed by other experiments including

BOOMERanG 2003 (Montroy et al., 2006), CAPMAP (Barkats et al., 2005) and WMAP(Page

et al., 2007).

The large-scale B-mode signal is unique in constraining the amplitude of gravity waves

by measuring r. The best constraint on the tensor spectral index will also be from B-mode

measurements. However, it will not be very tight due to the short baseline of the primordial

B-mode signal. The small scale B-mode measurements, on the other hand, will provide us with

the stringent measurements of the sum of neutrino masses, by measuring the amplitude and

shape of the lensing structure. Many ground-based and balloon-borne experiments are now
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being developed with the goal to measure the B-mode on small and large scales. These include

Spider (Fraisse et al., 2011), KECK (Sheehy et al., 2010), QUIET (QUIET Collaboration et al.,

2012), ABS (Essinger-Hileman et al., 2010), BICEP (Chiang et al., 2010), EBEX (Reichborn-

Kjennerud et al., 2010) and PIPER (Chuss et al., 2010). These experiments have different

targets, e.g., broad vs deep observations, but all share the detection of the gravity-wave-induced

B-modes. ACTPol (Niemack et al., 2010) and SPTPol (Austermann et al., 2012), on the other

hand, mainly target the small-scale lensing sector of the B-mode. Planck, being broad and

relatively deep, will be able to address both.

1.4 This work

This work concentrates on the two important cosmic epochs of inflation and recombination, and

decoding the CMB signal at large (low-`) and small (high-`) scales respectively to study them.

Getting most from the current and near future high precision CMB data calls for detailed and

unbiased modeling of relevant cosmological scenarios as well as accurate handling of computa-

tional and numerical complications. In Chapter 2, we develop a map-based maximum likelihood

estimator for optimal measurement of the amplitude of inflationary gravity waves from CMB

polarization. This method bypasses E-B mixing, an important source of contamination to B-

mode detection. We demonstrate its feasibility and power for the current generation of B-mode

experiments and apply the method to investigate sky-coverage dependence of r measurement

for various experimental setups. Throughout the analysis, in parallel, we study the effect of

foregrounds on the results by considering a few percent residual foreground contamination af-

ter an assumed efficient foreground subtraction. We also compare the results to a simplified

multipole-space maximum likelihood analysis, which, by ignoring the mode mixing, sets the

lower limit on the obtainable error on r. We also introduce a Shannon information-based figure

of merit to assess the performance of different experiments. Similar information-based criteria

are used in the later sections of this work in different contexts.

In Chapters 3 and 4, we investigate the reliability of some of the observable theoretical

details of the recombination history. We study perturbative fluctuations in the free electron

fraction around the standard recombination scenario, using a model-independent approach.

In chapter 3 the general framework is built up and various related theoretical and numerical

issues are studied. The method is applied to Planck+ACTPol-like simulations, as well as to

the extreme case of a full sky, noise-free survey. Chapter 4 concentrates on the application of

the method to the best available CMB data to date and puts the tightest constraint, in a blind

analysis, on deviations from the standard recombination history.

Chapter 5 is a summary of the main results of previous chapters and an outlook to further
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extensions of the current work and future plans.

The main chapters of this work, chapters 2–4, consist of three papers, published in or

submitted to the Astrophysical Journal (Farhang et al., 2011, 2012a,b). I was the lead author

and writer in these papers, developing the required softwares, performing the analysis and

presenting the results. I largely benefited from the scientific advice of my advisors, Prof. J.

Richard Bond and Prof. C. Barth Netterfield, everywhere throughout this work, as well as their

comments on issues as detailed as wordcrafting. Also, Prof. Bond was the main developer and

writer of section 2.1 of Farhang et al. (2011), section 3.6 of Farhang et al. (2012a) and section

2.3 of Farhang et al. (2012b). He also significantly revised section 5 of Farhang et al. (2011).

This work also improved a lot through lively interactions with former and current CITAzens,

in particular our collaborators, Olivier Doré (in Farhang et al., 2011), Jens Chluba (in Farhang

et al., 2012a,b) and Eric Switzer (in Farhang et al., 2012b).



Chapter 2

Primordial Gravitational Wave

Detectability with Deep Small-Sky

CMB Experiments

A version of this chapter has been submitted to the Astrophysical Journal as “Primordial Grav-

itational Wave Detectability with Deep Small-Sky CMB Experiments”, Farhang, M., Bond, J.

R., Doré, O., Netterfield, C. B.

2.1 Chapter Overview

We use Bayesian estimation on direct T -Q-U CMB polarization maps to forecast errors on the

tensor-to-scalar power ratio r, and hence on primordial gravitational waves, as a function of

sky coverage fsky. This map-based likelihood filters the information in the pixel-pixel space

into the optimal combinations needed for r detection for cut skies, providing enhanced infor-

mation over a first-step linear separation into a combination of E, B and mixed modes, and

ignoring the latter. With current computational power and for typical resolutions appropriate

for r detection, the large matrix inversions required are accurate and fast. Our simulations

explore two classes of experiments, with differing bolometric detector numbers, sensitivities

and observational strategies. One is motivated by a long duration balloon experiment like Spi-

der, with pixel noise ∝
√
fsky for a specified observing period. This analysis also applies to

ground-based array experiments. We find that, in the absence of systematic effects and fore-

grounds, an experiment with Spider-like noise concentrating on fsky ∼ 0.02–0.2 could place a

2σr ≈ 0.014 bound (∼ 95% CL), which rises to 0.02 with an `-dependent foreground residual

left over from an assumed efficient component separation. We contrast this with a Planck-like

fixed instrumental noise as fsky varies, which gives a Galaxy-masked (fsky = 0.75) 2σr ≈ 0.015,

9
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rising to ≈ 0.05 with the foreground residuals. Using as the figure of merit the (marginalized)

1D Shannon entropy of r, taken relative to the first 2003 WMAP CMB-only constraint, gives

−2.7 bits from the 2012 WMAP9+ACT+SPT+LSS data, and forecasts of -6 bits from Spider

(+ Planck); this compares with up to -11 bits for a CMBPol, COrE and PIXIE post-Planck

satellites and -13 bits for a perfectly noiseless cosmic variance limited experiment. We thus

confirm the wisdom of the current strategy for r detection of deeply probed patches covering

the fsky minimum-error trough with balloon and ground experiments.

2.2 Introduction

2.2.1 Inflation and Its Observables

Inflation, a period of accelerated expansion in the very early universe, is the most widely

accepted scenario to solve the problems of the otherwise successful standard model of cosmology.

In the simplest models the expansion is driven by an effective potential energy V (φ) of a single

scalar field degree of freedom,

H2 =
1

3M2
P

(
φ̇2

2
+ V (φ)

)
ä

a
= − 1

3M2
P

(
φ̇2 − V (φ)

)
.

The evolution of the scalar field is described by

φ̈+ 3Hφ̇+ V ′(φ) = 0.

An unavoidable consequence of inflation is the quantum generation of scalar and tensor zero-

point fluctuations in the space-time metric. The former are curvature perturbations, with

associated density fluctuations that can grow via gravitational instability to create the cosmic

web, with its rich observational characterization. The latter are gravity waves that induce

potentially observable signatures in the spatial structure of the Cosmic Microwave Background

(CMB), in particular in its polarization, the focus of this paper. Whereas curl-free E-modes of

polarization can be produced both by tensor and scalar perturbations, divergence-free modes

of CMB polarization (B-modes) would be induced on large scales by primordial gravitational

waves but not by scalar curvature fluctuations. At smaller scales, B modes are induced from

primordial E modes through gravitational lensing distortions of the CMB polarization patterns,

adding to the complexity of making a clean separation of the tensor-induced signal.

The primordial scalar and tensor power spectra (fluctuation variances per ln k) and their

ratio r(k) are often approximated by power laws in the 3D comoving wavenumber k,

Ps(k) ≈ As(ksp) (k/ksp)ns(ksp)−1 ,
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Pt(k) ≈ At(ktp) (k/ktp)nt(ktp) .

r(k) ≡ Pt(k)/Ps(k) ≈ r (k/ktp)nt(ktp)−ns(ktp)+1 ,

r ≡ r(ktp) ≡ Pt(ktp)/Ps(ktp) ,

where the normalization factors As(ksp) and At(ktp) are the amplitudes of the scalar and tensor

power spectra at the pivots ksp and ktp respectively. The pivots ksp and ktp about which the

expansions occur are usually chosen to be different for scalars and tensors to reflect where the

optimal signal weights come from. The main target of many of the current and coming CMB

polarization experiments is, firstly, a one-parameter uniform r. An advantage of this ratio over

Pt(ktp) is that it removes a dominant near-degeneracy with the Thompson depth to Compton

scattering τ . The trajectory r(k) also measures the inflation acceleration history ε(a). Note

that in r(k), ns is approximated by ns(ktp), i.e., at a different pivot, assuming small running of

ns with wavenumber. To the first oder in the slow-roll parameter ε ≡ −d lnH/d ln a, r(k) can

be directly related to V through the relation

r(k) ≈ 16ε, (a ≈ k/H)

V ≈ 3π2

2
M4

P rPs ∼ (1016GeV)4r/0.008.

We have used 1010As ≈ 24.41. Here MP = 1/
√

8πG is the reduced Planck mass, with c and ~
set to unity. The relation k ≈ Ha, of resolution k−1 to the dynamics encoded in the expansion

and Hubble parameters, a and H, is only approximate of course, but very useful (e.g., Bond,

1996a).

There is no consensus on what pure theory will tell us about the best value for r, or

even its likely range. However, if r drops below the benchmark r ∼ 0.01 set by the GUT

scale ∼ 1016 GeV, the consequences will be profound (Baumann et al., 2009). Experiments

with Spider-like sensitivity could probe such a limit. In this paper, we explore the very small

rfid < 0.01 regime. To show what happens when there are detections, we often use rfid = 0.12 as

a fiducial high-r case for tests, a value which lies just below the 0.13 coming from the simplest

V = m2φ2/2 chaotic inflation model.

We would of course like to learn as much as we can about the full r(k), hence ε(a), from

CMB data. In addition to the deviations of the slopes from scale invariance (nt = 0 and

ns − 1 = 0), the slopes are expected to “run with k” just as the power does, although they

may be approximately constant over the observable CMB range. The first order variations in

ln k define scalar and tensor “running ” parameters, the first terms in polynomial expansions

in higher order “running of running” parameters. In this paper ns(k) is not our target, nor are

1http://lambda.gsfc.nasa.gov/product/map/dr4/params/
lcdm sz lens wmap7 bao h0.cfm
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high multipole CMB experiments which are necessary to get the long baseline needed to show

whether ns runs or not.

A consequence of the fall-off of the tensor-induced CMB signal beyond ` ∼ 150 is that only

limited information can be obtained on nt(k) — enough to allow a number of broad bands for

r(k), but not enough for nt(ktp), let alone nt(k), to be determined with sufficient accuracy to

test well the inflation consistency relation for gravity waves. In the limited 2-parameter tensor

parameter space of r and uniform nt, this consistency condition to the first order of the slow

roll parameters is (e.g., Bond, 1996a)

nt ≈ −
r

8
, (2.1)

so a convincing test would require an order of magnitude better determination of nt than r.

Another complication in relating the experiments to inflation theory is that there is still

observational room for subdominant scalar isocurvature perturbations in addition to the dom-

inant curvature ones when multiple fields are dynamically important during or immediately

after inflation; such fields are widely invoked for catalyzing the production of entropy at the

end of inflation. Isocurvature perturbations with a nearly scale invariant primordial spectrum

have significantly enhanced low-` CMB power because of the isocurvature effect (Bond, 1996a),

and that region, overlapping with the gravity wave-induced CMB power, is where the constraint

on the overall isocurvature amplitude comes from (Sievers et al., 2007b; Larson et al., 2011).

2.2.2 Observations

All CMB polarization experiments are limited in sky coverage by instrumental or Galactic

foreground constraints. Thus, even though the B-modes provide a unique r-signature and are

orthogonal to the E-modes over the full sky, realistically mode-mixing must always be dealt

with, even though it may be larger for smaller fsky. Assessing the trade offs between shallow

large-sky and deep small-sky observational strategies is the target of our investigation. Going

for deep and small has the advantage that one can select the most foreground-free patches

to target to decrease the high level of foreground subtraction. As well, the long waves which

dominate foregrounds are naturally filtered. Ground-based or balloon-borne experiments using

the deep and small-sky strategy include BICEP (Chiang et al., 2010) and BICEP22, QUIET3

(QUIET Collaboration et al., 2010), PolarBear4 (The Polarbear Collaboration et al., 2010),

EBEX5 (Reichborn-Kjennerud et al., 2010), Spider6 (Fraisse et al., 2011), KECK(Sheehy et al.,

2http://bicep.caltech.edu/public/
3http://quiet.uchicago.edu/
4http://bolo.berkeley.edu/polarbear/
5http://groups.physics.umn.edu/cosmology/ebex/
6http://www.astro.caltech.edu/ lgg/spider/spider front.htm
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2010), ABS7 (Essinger-Hileman et al., 2010), PIPER (Chuss et al., 2010). Planck (and WMAP)

are (relatively) shallow and large-sky. Proposed next-generation satellite experiments such as

COrE (The COrE Collaboration, 2011), PIXIE (Kogut et al., 2011) and LiteBIRD8 are deep

and large-sky.

The current 2σ r-constraints come from the CMB-only data from ACT+SPT+WMAP9

(< 0.17) and with LSS added (< 0.12). Figure 2.1 gives a succinct summary of the current

status of r measurements and what can be achieved with the Spider-like sensitivities we use as

an example throughout the text, compared to a case of Spider with more realistic specifications

as envisaged in Fraisse et al. (2011) (labeled as “Spider” in the plot), and for an even more

ambitious campaign of subsequent flights of the Spider instrument, as proposed for SCIP. It

also shows a CMBPol case. The various theoretical possibilities shown for r are swept through

by these achievable (foreground-less) r-likelihood curves. The main purpose of this paper is to

explain how these forecasted likelihoods are obtained.

In this paper, we first review the general Bayesian framework for determining parameters to

introduce the notations we use. We cast the quest for r into an information-theoretic language

in which the forecasted outcomes of different experiments can be contrasted by considering the

differences in their reduced a posteriori Shannon entropies for r, S1f(r|expt). We discuss the

two basic approaches for constraining cosmological observables, such as those associated with

inflation, and the relation of these to E-B mixing: (1) the `-space approach in which CMB

maps are first compressed onto power spectrum parameters for TT -TE-EE and BB, which

are then compressed onto cosmic parameters; and (2) direct parameter extraction of r from

map likelihoods. Our primary target is r and not the B-mode spectrum, hence the optimal

one-step estimation from maps is preferred, provided it is computationally feasible – which it

is for Spider-like experiments. The leakage between the E and B modes and its impact on r is

quantified in § 2.4. In § 4.4 we present details of the method we use to bypass explicit E-B de-

mixing and apply it to simulated data for realistic instrumental and foreground-residual noise

levels for Spider-like and Planck-like experiments as fsky varies. We end with our conclusions

from this study.

2.3 Bayesian CMB Analysis of Bandpowers and Cosmic Pa-

rameters

As has become conventional in CMB analysis, the framework envisaged to compress the informa-

tion from Spider-like raw time-ordered data to constraints on cosmic parameters, in particular

7http://www.princeton.edu/physics/research/cosmology-experiment/abs-experiment/
8http://cmbpol.kek.jp/litebird/index.html
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Figure 2.1: Forecasted r-likelihood values for the Spider-like specifications used in the paper ob-

serving 8% of the sky. The one labeled as Spider corresponds to the actual, more recent Spider

proposal with two flights described in Fraisse et al. (2011) (see the footnotes of table 2.5.1). The

SCIP envisages three subsequent flights of the Spider payload. This is contrasted with the cur-

rent constraints from the ACT+SPT+WMAP9 data, and also combined with the measurements

of LSS (Hinshaw et al., 2012). The marginalized 1D likelihood curves are based on the publicly

available chains http://lambda.gsfc.nasa.gov/product/act/act chainsv2 get.cfm binned into 50

bins, and Gaussian-fitted to plot the very small r region where not enough points were available.

These are compared with a forecast for an idealized CMBPol all-sky experiment like PIXIE or

COrE with a σr ∼ 0.0002 error. A model input of rfid = 0.001 was assumed, which would

give a solid CMBPol detection for it. A rfid = 0.0001 case is also shown. Foregrounds and

systematic errors were ignored in these plots; modifications resulting from errors in foreground

subtractions are shown in other plots in the paper. A number of theoretical predictions are

also shown, for power law inflation potentials with slope ranging from 0.25 up to 4. The width

covers the range of 60 to 50 e-folds for inflation. The linear potential is contrasted with the

similar range for a string-inspired mixed model called monodromy (McAllister et al., 2010) with

a linear potential added to a sinusoidal pseudo-Nambu-Goldstone potential. A few target lines

are also shown, one at 0.03 which many theories of the 80s and 90s were above, one at 0.008

corresponding to an inflation energy scale about the Grand Unification scale, which is near the

Lyth bound (Lyth, 1997) as indicated. Supergravity-inspired theories can get values anywhere

in the range from ∼ 0.003 to ∼ 0.3 (Kallosh & Linde, 2010). Thus small-patch experiments

with Spider-like specs could explore much of the r-terrain of theoretical relevance.
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our target r, is one of a long Bayesian chain of conditional probabilities (Bond, 1996a; Bond &

Crittenden, 2001). It includes reducing noisy data to maps, maps to band-powers and then to

cosmic parameters, or directly maps to parameters. Starting from pixel maps, we review the

framework with polarization to introduce our notation. We also remark on how the associated

conditional Shannon entropies decrease as the maps are reduced to a precious set of parameter

bits.

Pixel Maps and E-B Maps

The map data vector ∆ for CMB experiments is composed of a number of signals s as well

as the map noise n. The noise encompasses true instrumental noise, experimental systematic

effects, and possibly, may draw terms from the signal side that are unwanted residuals on the

sky, e.g., from foreground subtraction uncertainty. Each signal has a frequency dependence and

polarization components, labelled by 4 Stokes parameters x = T,Q,U, V referred to a fixed

polarization sky reference frame in real space. The map components for each x, each pixel

p = 1, ..., Npix and each frequency channel c are expressible as

∆cxp =
∑
J

sJcxp + ncxp, x ∈ {T,Q,U, V },

sJcxp =
∑
`m

∫
ν
Fcxp,Jνx`maJνx`m, (2.2)

where the spherical harmonic signal amplitude for signal J is aJνx`m. The transformation from

this natural multipole space for the signals to the pixel map space is encoded in Fcxp,Jνx`m,

which includes beam information, the frequency response function for the channels, and the

mask, whether a sharp cookie cutter or a tapered one.

For Thompson scattering anisotropies, the V Stokes parameter associated with circular

polarization vanishes, as it also does for most Galactic foregrounds contaminating the primary

CMB signal, so we now drop it from our consideration. It would of course be of interest to

show experimentally that there is indeed no circular polarization in the CMB data.

The aJνx`m are the coefficients in the standard expansion of the CMB temperature and po-

larization fields in orthogonal mode functions. The mode functions are the spherical harmonics,

spin-0 for T and spin-2 for polarization:

TJν(θ, φ) =
∞∑
`=2

∑̀
m=−`

aJνT`mY`m(θ, φ),

(Q± iU)Jν(θ, φ) =
∞∑
`=2

∑̀
m=−`

±2aJν`m [±2Y`m(θ, φ)].

Further linear combinations of the spin-2 expansion coefficients define the E and B modes:

aJνE`m = −1

2
(2aJν`m + −2aJν`m) ,
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aJνB`m = − 1

2i
(2aJν`m − −2aJν`m) .

The separation of CMB polarization into E and B-modes is useful because scalar perturbations

only result in the E mode whereas tensor perturbations generate both (Kamionkowski et al.

(1997), Zaldarriaga & Seljak (1997)). Nonlinear transport effects associated with the weak

lensing of primary CMB fluctuations turn some scalar E-mode into scalar B-mode, mostly at

higher `s than the tensor component gives, so separation for r detection can be done. Note that

this lensing source has non-Gaussian features which means the power spectra are not enough

to characterize its signal.

Maps to Parameters with Map-based Likelihoods

Following the familiar Bayesian analysis techniques applied to CMB data (e.g., Bond, 1996a),

we wish to construct the a posteriori probability distribution P (q|∆, T ) of parameters q =

(q1, ..., qn), an update from the a priori probability P (q|T ) on the theory space T of the

parameters that is driven by the likelihood of the data ∆ given q, L∆(q) ≡ P (∆|q, T ),

P (q|∆, T ) = P (∆|q, T )P (q|T )/P (∆|T ).

The prior may include theoretical prejudice, information derived from other data, and, at the

very least, the specific measure adopted for the parameters. The evidence, P (∆|T ), a single

normalization, is also needed to ensure the posterior integrates to unity. Its determination is

generally computationally intense if one integrates over all parameter space, but it may only

be needed at late stages of reduction, e.g., over 2D and 1D reduced parameter spaces.

If the noise is Gaussian with a covariance matrix Cn and the signals are also Gaussian with

their own covariance Cs about a zero mean, then

lnL∆(q) = −1

2
∆TC−1

t ∆− 1

2
ln detCt −

1

2
Npix ln(2π), (2.3)

where Ct = Cn +
∑

JJ ′ Cs,JJ ′ , with

Cn,cxp,c′x′p′ = 〈ncxpnc′x′p′〉

Cs,Jcxp,J ′c′x′p′ = 〈sJcxpsJ ′c′x′p′〉.

We have assumed no correlation between signal and noise.

The extra ingredient needed to determine the posterior P (q|∆, T ) is the prior defining the

measure on q, Lprior(q) ≡ P(q|T ). The prior is most often taken to be uniform within some

parameter region. Another simple possibility is a Gaussian prior with correlation matrix F−1
prior

about the mean q̄. In this work we usually assume the uniform prior, though sometimes for
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small coverage experiments we shall use a Gaussian prior reflecting the WMAP determination

of parameters.

In this paper we usually determine the full likelihood lnLt ≡ ln(L∆ + Lprior) on a suitably

chosen grid in the parameter space. We can then search for the maximum likelihood qm

and, with suitable marginalizations over other variables, get 2D significance contours and 1D

Bayesian errors. It is customary to refer to methods which directly search for the maximum

likelihood point as (map- or pixel-based) maximum likelihood estimators (MLE).

Bandpower estimation

For statistically isotropic signals there are generally six cross-spectra among the coefficients,

〈ax`ma∗x′`′m′〉 = CX`δ``′δmm′ , X = xx′,

for x ∈ {T,E,B}, X ∈ {TT,EE,BB, TE, TB,EB} .

Typically the EB and TB power vanish (theoretically anyway) and only four power spectra

are needed to characterize the CMB temperature and polarization fields. However, EB and

TB may be kept for systematics monitoring. For statistically homogeneous and isotropic 3D

Gaussian initial conditions, the primary CMB T,Q,U are isotropic 2D Gaussian fields whose

probability distribution depends only upon the power spectra CX`, or, equivalently the X-power

per ln(`+ 1/2),

CX` ≡
`(`+ 1)

2π
CX` .

The goal of bandpower estimation is to radically-compress the map information onto `-bandpower

amplitudes qXβ, with templates of the form CXβ,X`. With sufficiently fine `-space banding, this

stage of compression can be relatively lossless, allowing the cosmic parameters to be derived

accurately. The inter-band shape of these templates may be crafted to look like theoretically

expected shapes, or could just be flat, which imposes no prior prejudice. Both approaches have

been effectively used.

With cut-sky maps, bands are coupled even though they would not be for full sky observa-

tions with statistically homogeneous noise. The optimal method for estimating power spectra in

the general case is the computationally expensive brute-force maximum likelihood analysis (e.g.,

Bond et al., 1998). This method iteratively corrects a quadratic expression for deviations of

the various bandpowers qβ from their initial values until the maximum likelihood qβm is reached.

The weight matrix C−1
t (q) is adjusted at each step, until it settles into C−1

t (qm). The weight

enters in two ways, one is quadratically in the likelihood-curvature matrix (approximately the

Fisher matrix) and the other is in the force that drives the relaxation of the parameters to qβm.
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These map-based methods for bandpower estimation were used by Boomerang (de Bernardis

et al., 2000b; Ruhl et al., 2003) and in all CBI papers. If bandpowers are linear in the cosmic

parameter of interest, like r, then the parameter can be viewed as a single-template big-band

bandpower. Even with the fully nonlinear CX`(q), the amplitudes δq can be iteratively solved

for using linear derivative templates, and, with convergence, the result is the same as a full

nonlinear treatment gives.

Pseudo-CX` cf. Map-based Methods

Several fast sub-optimal approximate methods have been developed to make the bandpower

computation less computationally intense than in the map-based method, e.g., pseudo-C` esti-

mators (Hansen & Górski, 2003; Chon et al., 2004), SPICE (Szapudi et al., 2001), MASTER

(Hivon et al., 2002) and Xfaster (Contaldi et al., 2010; Rocha et al., 2010, 2011). Pseudo-C`’s

are constructed by direct spherical harmonic transform of the cut-sky maps, or more generally,

taper-weighted CMB maps. The all-sky bandpower centred on a specific `β, qXβ, is then related

to the desired `β-band by an appropriate filtering which draws the pseudo-CX`’s from a wide

swath of `’s determined by a mask-defined coupling matrix. In spite of this `-space mixing,

extensive testing has shown these methods to be accurate for temperature anisotropies for large

pixel numbers where the matrix inversions of the iterated quadratic approach are prohibitively

expensive computationally. They have also been applied effectively to polarization datasets

such as Boomerang (Montroy et al., 2006; Piacentini et al., 2006).

The pseudo-CX`’s for X = EE,BB suffer from E-B mixing in addition to the `-space mix-

ing: the estimated CBB` receives contributions from both E and B-modes. The contamination

coming from the E-mode can be removed from CBB` in the mean by having the estimators

undergo a de-biasing step. However, there is still an extra contribution to the variance of

estimators which is due to the dominance of the relatively large E signal mixed into the B

measurement. This can limit the primordial gravitational wave detection to r ≈ 0.05 for deep

small sky surveys (covering about 1% of the sky) as shown by Challinor & Chon (2005). Lewis

et al. (2002) show how to construct window functions that cleanly separate the E and B modes

in harmonic space for azimuthally symmetric sky observations at the cost of some information

loss due to the boundary of the patch. In another treatment of the E-B mixing problem,

Bunn et al. (2003) show that the polarization maps can be optimally decomposed into three

orthogonal components: pure E, pure B, and ambiguous modes. The ambiguous modes re-

ceive a non-restorable contribution from both E and B signals, and are dominated by E signal,

thus should be removed in B-mode analysis. Based on this decomposition, a near-optimal pure

pseudo-C` estimator was proposed (Smith, 2006) and developed (Smith & Zaldarriaga, 2007;

Grain et al., 2009) which ensures no E-B mixing. Recently Bunn (2011) has given a more
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efficient recipe for decomposing polarization data into E,B and ambiguous maps, although still

along the lines of Bunn et al. (2003).

It is clear that if the full map-likelihood analysis can be done, then it should be done, since

relevant information is not being thrown away. There are two drawbacks to this map-based

approach. The first is that Ct should saturate all contributions to signal and noise since we are

in quest of a small, essentially perturbative, component associated with r whose values can be

biased by the missing components. This could be challenging in the presence of complex filtering

resulting from time-ordered data processing. Also the computational cost of the required large

matrix manipulations is high compared to the suboptimal methods. The matrix size depends

upon the fraction of sky covered and the resolution. For example, for an experiment covering

25% of the sky analyzed at a Healpix resolution of Nside = 64, the sizes are 35K × 35K and

we find the likelihood calculation takes about 5 minutes on a node with 16 Dual-Core Power

6 CPU’s at 4.7 GHz (and theoretically capable of doing 600 GFLOPS/node). In practice, our

matrices are usually smaller than this since the quest for r requires a relatively low resolution

analysis. Also only a few other parameters that are correlated with r need to be carried along

(see § 2.5.3). To include many more parameters standard Bayesian sampling algorithms such

as MCMC and adaptive importance sampling (Wraith et al., 2009) can be used. If we need to

cover small angular scales as well as large, the matrices become prohibitively large, and hybrid

methods, with a map-based likelihood for large scales joined to an `-space-based likelihood for

small scales, are needed.

2.3.1 The Downward Flow of Shannon Entropy from Maps to Theory Sub-

spaces

The Shannon entropy Sf of the final (posterior) probability distribution is an average of the log

of the local phase space volume 〈ln p−1
f 〉f over the posterior probability distribution pf , and is

considered to provide an estimate of the total information content in the final ensemble (see,

e.g., MacKay, 2003),

Sf(T |D) = 〈lnP (q|D, T )−1〉f = −
∫
dNqpf ln pf .

where D represents data (here CMB maps ∆). The initial entropy is similarly averaged over

the initial ensemble Si ≡ 〈lnP (q|T )−1〉i. For a uniform prior over a volume Vq,i in q-space, it is

Si = lnVq,i. The final entropy can be thought of as having a contribution from (the log of) an

effective phase space volume, reduced relative to the initial one because of the measurement, plus

a term related to the average χ2 associated with the mean-squared deviations of q. This term

is usually just the number of degrees of freedom unless the model is a very poor representation

of the information content of the data.
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It should not seem curious to say that the information entropy decreases as a result of

measurements, but it may seem curious to word it as: the average information content decreases.

That is because the fully random initial state has more information, in that the variables can

take on a wider range of values. We think the reduced post-experiment information content is

of higher quality. What constitutes Quality in information is subjective of course.

The common figure of merit for error in parameter (here r) measurement is 2σr. That is also

what we primarily quote in this paper, determined as explained in § 2.3.2. However, a better

figure of merit than 2σr is the change in 1D Shannon entropy which tells us the average amount

by which the log of the allowed volume in the r parameter space shrinks in response to varying

the experimental setups. It is 1D because we marginalize over all other N − 1 parameters,

the cosmic ones of interest and any nuisance parameters deemed necessary for the analysis,

such as those characterizing uncertainties in calibration, beams, bolometer T -Q-U leakage, and

foreground uncertainties.

The 1D Shannon information entropy, S1f(r) = 〈S1I(r)〉f +lnP (∆|T ), where the information

action S1I(r)f = − lnP (∆|r, T ) − ln(r|T ), is best calculated by numerical integration over the

r-grid. The result is very simple if we truncate the ensemble-averaged expansion of S1I(r) at

quadratic order

S1f(r) ≈ 1
2 + 1

2 ln(2π) + ln(σr) = 1
2 + lnVr,

where Vr (defined by the equation) is the compressed phase space volume for r after the mea-

surements.

Although we have used the natural log to make the entropy expressions familiar for physi-

cists, in information theory one often uses the binary logarithm, lb ≡ log2. With natural logs

the information is in nats, but with lb it is in bits. When expressing information differences in

§ 2.6 we translate to bits. Since a full bit represents a factor of 2 improvement in the error bar,

∆S1f(r) may only be a fraction of a bit, trivial perhaps, but subtle too, given the mammoth

information compression from raw data to this one targeted parameter degree of freedom.

2.3.2 2σ Calculation

We define σ95 through ∫ rb+σ95

max(0,rb−σ95)
L(r)dr = 0.954

∫ ∞
0
L(r)dr (2.4)

where rb is the best-fit value of r. The σ95-limit is determined by numerically integrating the

Gaussian-fitted 1D likelihood curve.

In most cases considered in this paper the likelihood curves turn out to be well approximated

by Gaussians. Therefore, when there is a few σ detection (e.g. for r = 0.12) or when r ∼ 0, to
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Figure 2.2: The filters WX`,X′`′ , X,X
′ ∈ {EE,BB}, show how the mode CX` linearly responds

to a small change in the mode CX′`′ . The leakage responses shown here are for an `′ = 100

stimulus, for a Spider-like experiment with fsky = 7% at Nside = 64 (left) and fsky = 0.7% at

Nside = 128 (right). Note the different scales for the y-axis. The corner box of the right panel

magnifies WEE`,BB100 for fsky = 0.7%, whose details are not clear in the main plot.

a very good approximation we have σ95 = 2σ where σ is the width of the Gaussian fit. Thus,

throughout this paper we will use the common notation of 2σ which represents σ95 and has

been calculated through eq. 2.4. The only exception to this way of determining 2σ is when it

is being directly given by the inverse of the Fisher matrix, where σ represents the width of the

likelihood function, under the assumption of its Gaussianity.

2.4 Constrained Correlations and Linear Response In Pixel-

Pair and Parameter Space

Here we quantify the sensitivity of cosmic parameters to variations in different CX` spectra.

We find general forms for filters or “susceptibilities” which relate the linear response of a

target variable to the stimulus of a driver variable (with the CX` as a special case) through the

CMB data. These filters can also be referred to as window functions to be consistent with the

language used for bandpowers, in which the driver is the CX` and the response is the bandpower.

The window function attached to each bandpower “gathers in `-space” from a given CX` the

bandpower. There is a long history of making such windows publicly available. They were

used in likelihood evaluations in the 2000 release of the Boomerang “B98” results (Lange et al.,
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Figure 2.3: Beam and pixel window functions for different resolutions are compared to the

polarization power spectra for the best fit WMAP7-only parameters for the ΛCDM + lensing

+ SZ + tensor model, with the addition of a tensor component of strength rfid = 0.12. B-mode

(GW) shows just the gravity wave-induced contribution and B-mode (GW+lens) includes the

lensing contribution as well.
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2001). Tegmark & de Oliveira-Costa (2001) used similar window functions in a quest for the

best quadratic estimator.

In the following we use qS for the stimuli (or driver parameters) and qR for the response

parameters. Assume that ∆ is a realization of the CMB sky for qR = q∗R and qS = q∗S. In

the attempt to estimate the maximum likelihood parameters from ∆, if qS is displaced from

its fiducial value by δqS, in response qR needs to be readjusted to achieve the (constrained)

maximum likelihood. Here we search for this displacement δqR. We Taylor-expand the loga-

rithm of the likelihood function (eq. 2.3) to the second order of δqR around qR = q∗R, with the

constraint that qS is fixed at q∗S + δqS. We solve for the δqR that maximizes the likelihood

(Bond et al., 1998)

δqRα =
1

2

∑
β∈R

[F−1]αβTr
[
C−1

t Cs,βC
−1
t (〈∆∆T〉 −Ct)

]
where Cs,β = ∂Cs/∂qβ and the sum (over β ∈ R) only runs over the response parameters. We

have approximated the curvature term by its ensemble average, i.e., by the Fisher matrix F,

Fαβ ≡ −
1

2
〈∂

2 lnP (q|∆, T )

∂qα∂qβ
〉 =

1

2
Tr(C−1

t Cs,αC
−1
t Cs,β), (2.5)

assuming uniform prior distributions for the parameters. We have also replaced ∆∆T by its

ensemble average 〈∆∆T〉 to remove the fluctuations in the response parameters due to cosmic

variance. Inserting the first order approximation 〈∆∆T〉 − Ct = −
∑

µ∈S Cs,µδqSµ (with the

sum µ ∈ S only over stimulus parameters) yields

δqRα = −
∑
µ

δqSµ

∑
β

[F−1]αβFβµ.

Note that we have reserved α and β for the response parameters and µ for the stimuli. One

can equivalently write

δqRα

qRα
= −

∑
µ∈S

Wαµ
δqSµ

qSµ
, Wαµ = +

qSµ

qRα

∑
β∈R

[F−1]αβFβµ.

One can consider the qR,S to represent extended parameters of CX`’s as well. A case of

special interest for us is when qS is the CX` while qR is r or another subset of CX`’s. The

explicit form of the filter for qS = CX` would be

Wα,X` = +
CX`
qα

∑
β

[F−1]αβFβ,X`. (2.6)
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2.4.1 Linear Response of CBB` to CEE`: Power Leakage

We can quantify the leakage of CMB power among different CX`’s, which are already the

stimulating drivers in eq. 2.6, by taking them to be the response variables as well,

WX`,X′`′ =
CX′`′
CX`

∑
X′′,`′′

[F−1]X`,X′′`′′FX′′`′′,X′`′ .

Here the X` and X ′′`′′ correspond to the parameters which are being measured, while the X ′`′

only refer to constrained variables. The case of specific interest in this work is X = BB,X ′ =

EE, that is the leakage of the larger E-mode into B-mode. We also consider X = EE,X ′ = BB

for comparison. One could investigate the X = X ′ filters, which characterize the mask coupling,

but we leave them out as they are not of direct relevance to our power leakage study.

We have verified numerically that for a full sky observation using the map-based methods

gives uncorrelated modes WEE`,BB`′ = WBB`,EE`′ = 0. Figure 2.2 shows the cross filters for

an ` = 100 stimulus, i.e., WEE`,BB100 and WEE`,BB100, for fsky = 0.07 (at Nside = 64, pixel

size ≈ 56′) and fsky = 0.007 (at Nside = 128, pixel size ≈ 28′). The observed patches are in

the form of spherical caps. (Figure 2.3 shows the associated beam and pixel window functions

along with the polarization power spectra.) We see that the mode correlation increases with

decreasing fsky for a fixed observation time. The high-` rise in the filters is due to finite pixel

sizes, hence is more pronounced at lower resolution. We also see that variations in the E-mode

at most scales have a relatively larger impact on the small B signal compared to the impact of

the B-mode on the E signal. The width of the oscillation ∆` ∼ θ−1
patch is related to the cap size,

narrowing as fsky goes up. The leakage is larger for smaller r, hence must be well characterized

for highly sensitive B-mode experiments.

2.4.2 Linear Response of r to CBB` and CEE`

We now use these filters to quantify the linear response of r to uncertainty in the CX` through

the following filter

Wr,X` =
Fr,X`
Frr

CX`
r
.

The filter for a Spider-like experiment with a fiducial r = 0.12 is shown in Figure 2.4, as fsky

varies (as does the pixel size). The red, purple, blue and green curves correspond to fsky =

0.75, 0.25, 0.07 and 0.007, calculated at Nside = 16, Nside = 32, Nside = 64 and Nside = 128

respectively. As expected, the figures show that the measured r is more sensitive to BB than

to EE on most scales.
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Figure 2.4: Window functions Wr,X` for X ∈ {EE,BB} for different sky cuts show that, as

expected, all-sky experiments are nicely sensitive to the reionization BB bump, but smaller sky

experiments are not, although they pick up well the ` ∼ 50−100 region. We have used r = 0.12

for the fiducial model. The rapid declines to high ` are more due to the onset of experimental

noise than to the onset of the lensing-induced B “noise”. Residual foreground noise has not

been included in these plots. Note that even a coverage with fsky only 0.007 can punch out a

robust detection from 50 to 150 in `. The coverage with fsky = 0.07, although loses out a bit

(relatively) at 150, its detection would come from a wider stretch in ln `, out to ` ∼ 20 before

falling off. Only at fsky > 0.25 does one begin to pick up the reionization bump. The curious

drop in the all-sky Nside = 16 red line at the top is due to the Spider-like noise for higher ` being

heavily enhanced because all of the sky is covered in the same amount of observing time. To

illustrate the role of this, a CMBPol-like experiment with CN decreased by ∼ 1000 is plotted,

with Nside = 16 (dashed straight line) and Nside = 64 (triple-dot-dashed line). The reason all

three are offset from one another is because the normalizing σ2
r depends upon the amount the

filter captures of the total r signal.
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2.5 Simulation Methods and Calculational Results

In this section we use the map-based T -Q-U likelihood procedure of § 2.3 to compute the

posterior P (q|fsky,∆, T ) in parameter subspaces and, by marginalization, the 1D posterior

P (r|fsky,∆, T ) as a function of fsky. We also make identical calculations to the T -Q-U pixel-

based ones in `-space using TT , TE, EE and BB, and assuming no mixing. We show that

such a naive approach does quite well in predicting the errors: if properly handled, polarization-

mode-mixing is not a significant error source in most cases. Of course for either method to be

successful, all generalized noise sources need to be identified including instrumental leakage

from T to Q and U .

2.5.1 Calculation of Ensemble-Averaged Posteriors on Parameter Grids

We calculate the posterior distribution on a gridded parameter space, a method mostly ap-

plicable to low dimensional parameter spaces. At each point of the parameter grid the CX`’s
are calculated using the public code CAMB 9. These are then multiplied by beam windows,

B2
` = e−`(`+1)σ2

b , assuming a Gaussian beam of width σb = 0.425θFWHM, and by pixelization

windows W 2
pix,`, an isotropized approximation to finite pixel size effects. (Timestream digiti-

zation filters are also generally required, but are swamped by these two filters.) The product

is used to construct the symmetric 3Npix × 3Npix theoretical pixel-pixel signal covariance ma-

trices, with 6 independent sub-matrices, Cs,X , X ∈ {TT, TQ, TU,QQ,QU,UU}. We assume

experimental noise is Gaussian and usually take it to be white. So Cn,T = σ2
n,TI for the tem-

perature block and Cn,Q,U = σ2
n,polI for the polarization block of the covariance matrix, where

we usually have σn,pol ∼
√

2σn,T. Here the σn’s are effective noises per pixel, an amalgamation

of the noises coming from different frequency channels. I is the identity matrix. We neglect

leakage from T to Q and U .

Since we are forecasting the uncertainties in r from different experimental setups, and not

analyzing actual CMB maps, we can bypass creating a large ensemble of simulated CMB maps

by replacing the observed correlation matrix Ct,O ≡ ∆∆T by its ensemble average:

Tr(C−1
t (q)Ct,O)→ Tr(C−1

t (q)C̄t,O).

Here C̄t,O is the ensemble-averaged “pixel-pair data”, namely the covariance matrix of the

input fiducial signal model together with the instrument noise, and Ct(q) is the signal pixel-

pixel covariance matrix for the parameters q plus the various noise contributions, instrumental

and otherwise. An advantage of this approach is that the recovered values of the parameters

are what the ensemble average of sky realizations would yield, and will not move hugely due

9http://camb.info/
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to the chance strangeness of any one realization (as the real sky may provide for us). Note

that while sample variance does not impact the location of the maximum likelihood in this

ensemble-averaged approach, it is fully reflected in the width of the posterior distribution from

which our uncertainties are derived.

We mask out the part of Galaxy falling in the observed patch (the P06 WMAP-mask in

Page et al., 2007), assuming it to be too foreground-dominated for useful parameter extraction.

We also project out modes larger than the fundamental mode of the observed patch since, due to

time-domain filtering, information is not usually recoverable on such large scales. For instance,

if the mask has the shape of a spherical cap extending from the north pole to θ = θpatch, we

add a very large noise to the modes with 2`+ 1 < [2π/$] where [..] takes the integer part and

$ = 2 sin(θpatch/2) is the flat 2D radius of the disk with an area equal to the solid angle of the

cap. This makes the likelihood insensitive to any information at and beyond the patch scale.

This large scale mode cut is especially important to include for larger values of fsky, where the

low ` modes contribute significantly to r measurement through the reionization bump. In real

large sky experiments it will not be easy to draw such modes from maps.

Our simulations cover two observational cases: an all-sky experiment with Planck-like white

noise levels, and a partial sky experiment with Spider-like white noise levels, each with two

frequency channels, assuming other frequencies are used for subtracting foregrounds. We have

also made the simplifying assumption that in each experiment, the FWHM of both channels is

the same as the channel with the larger beam. This does not affect the results much due to the

crude size of the pixelization and the absence of the gravitational wave signal at small scales.

See Table 2.5.1 for other experimental assumptions.

For the Spider-like case we keep the flight time constant so that the observation gets deeper

as fsky decreases, while for the Planck-like experiment the pixel noise is assumed constant for

different values of fsky. The latter case, with small values of fsky, is used to illustrate how well

a strategy of only analyzing the lowest foreground sky could work, if, e.g., foreground removal

turns out to be prohibitive over much of the sky. If foregrounds can be well removed from

Planck, then full sky is appropriate.

We calculate the constraints on targeted cosmological parameters for different fsky’s, as-

suming the observed patches are spherical caps from θ = 0 to θ = θpatch, corresponding to

θ = cos−1(1− 2fsky). We perform the analysis at different resolutions for different sky cuts to

minimize the effect of pixelization for small fsky on the one hand, and to keep the computational

time reasonable for large fsky on the other hand. We use Nside = 32, Nside = 64 and Nside = 128

for fsky > 0.25, 0.007 < fsky ≤ 0.25, and fsky ≤ 0.007, respectively. We checked the results

for two neighbour resolutions at resolution switches. For the low fsky switch, results are not

sensitive to the change of resolution while for the switch at larger fsky we are about 10%− 15%
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Table 2.1: Specifications of Spider-like, Planck-like and CMBPol (mid-cost) experiments for

simulations.
Experiment Freq FWHM num. of det. ∆T a ∆T obs. time

(GHz) I Q & U

Spider-likeb 96 50′ 768 3.2 4.5 580 hr

Spider-like 150 32′ 960 2.7 3.8 580 hr

Planck-like c 100 10′ 8 3.8 6.1 2.5 yr

Planck-like 143 7′ 8 2.4 4.6 2.5 yr

CMBPol (mid-cost) d 100 8′ – 0.18 0.26 –

CMBPol (mid-cost) 150 5′ – 0.19 0.27 –

a nK, the instrument sensitivity divided by
√

total observation time.

b These Spider-like specifications which are used as the default in this paper are different from

the ones proposed in Fraisse et al. (2011) with two 20 day flights. The first flight uses three 90

and three 150 GHz receivers each with 288 and 512 detectors respectively. In the second flight,

two 280 GHz receivers replace one 90 and one 150 GHz telescope, leaving the configuration of

the flight identical to the first one. The detector sensitivity as proposed in Fraisse et al. (2011)

is 150, 150 and 380 µKCMB
√

s at 90, 150 and 280 GHz, respectively. The performance of the

default Spider-like experiment in this paper and the more recent proposal as in Fraisse et al.

(2011) are very close (see Figure 2.1).

c http://www.rssd.esa.int/index.php?project=planck d For a mid-cost full-sky CMBPol exper-

iment based on table 13 of Baumann et al. (2009). We are using 100 and 150 GHz channels in

our simulations. Adding more channels, in the unrealistic case of no foreground contamination

we simulate, would not affect the limits on r, since with these low instrument noise levels,

either lensing or cosmic variance, depending on how small r is, would be the dominant source

of uncertainty.
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pessimistic in the results by choosing the lower resolution, specifically for a Planck-like case

(with small beam) and for a higher value of r, e.g., r = 0.12. In these cases, lensing starts to

dominate at higher multipoles and choosing a high enough resolution for the analysis would

improve the errors on r by resolving the primordial gravity waves at relatively high multipoles.

2.5.2 Residual Foreground-Subtraction “Noise”

No study of gravitational wave detectability by B-mode experiments can ignore the impact of

polarized foreground emission. Component separation is a major industry in itself. Various

techniques have been utilized with CMB data up to now - often involving template parameter

marginalization of one sort or another. We have been lucky so far in that the foregrounds have

been manageable for TT, TE and EE. The level of subtraction needed to unearth the very tiny

gravity wave- induced B-signal is rather daunting, especially since the foregrounds are largest

at the low `. Thus, although we may wrestle the generalized noise from the detectors and from

experimental systematics to levels allowing small r to be detectable, the foregrounds will need

to be well addressed before any claim of primordial detection will be believable. Although we

have learned much already about the TT foregrounds and, from WMAP, the synchrotron EE,

we do not know the `-shape or the amplitude of the polarization for dust.

In O’Dea et al. (2011, 2012), the polarization emission from thermal dust is based on a three-

dimensional model of dust density and two-component Galactic magnetic field. It is assumed

that the degree of polarization has a quadratic dependence on the magnetic filed strength and

its direction is perpendicular to the component of the local magnetic field in the plane of the sky,

similar to the model assumed by WMAP in Page et al. (2007). In forecasting for proposed post-

Planck satellite experiments, simple approximations for thermal dust and synchrotron emission

have been made, (e.g., Baumann et al., 2009, and references therein). The dusty `-structure in

this model is similar to the O’Dea et al. (2011) form: CX` ∼ `−0.5 for X = EE,BB. We follow

this Baumann et al. (2009) approach here, but apply it to our pixel-based analysis.

We therefore assume that the maps are already foreground-subtracted, possibly with the

wider Planck frequency coverage used in conjunction with the Spider maps, with the CMB-

component having a residual uncertainty, which we incorporate in our analysis as an additional

large-scale (inhomogeneous) noise component C
(fg)
N . We assume the power spectrum of the

foreground residuals has the same shape as the original foreground spectrum, but with only a

few percent of the amplitude

CX` → CX` +
∑

fg=S,D

ε
(fg)
X C

(fg)
X` , X = EE,BB,

with the sum over synchrotron (S) and dust (D) emissions. The tunable removal-efficiency
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Table 2.2: Parameters of our assumed foreground model, adopted from Baumann et al. (2009).

Parameters Synchrotron Dust

AS,D(µK2) 4.7× 10−5 1

ν0 30 94

`0 350 10

α −3 2.2

βE −2.6 −2.5

βB −2.6 −2.5

parameters ε(fg) are taken to be 5% in our plots. The shapes are

C(S)
X` (ν) =

`(`+ 1)

2π
AS

(
ν

ν0

)2αS
(
`

`0

)βS
C(D)
X` (ν) =

`(`+ 1)

2π
p2AD

(
ν

ν0

)2αD
(
`

`0

)βD
×

[
ehν0/kT − 1

ehν/kT − 1

]2

.

The dust polarization fraction, p, is assumed to be around 5%. The values for the other

parameters taken from Baumann et al. (2009) are listed in Table 2.5.2. They were chosen

to give agreement with WMAP, DASI and IRAS observations (and the Planck sky model,

which is based on these). Although this model provides only a rough guide to the impact

that incomplete foreground subtraction will have on r-estimation, it does include the crucial

large-scale dependence which differentiates it so much from the structure of the instrumental

noise.

A natural question when considering deep small sky observations is how many patches there

are on the sky with low foregrounds so the requisite cleaning is at a minimum. The Planck Sky

Model for the polarized foreground emission (Leach et al., 2008; Delabrouille et al., 2012) is simi-

lar to the one we have adopted. Using a code developed by Miville-Deschênes, we have calculated

for patches of radius R the pixel-averaged variance at pixel p, σ2
pol,fg(p,R) = 〈(P − P̄ (< R))2〉

of the polarization intensity P =
√
Q2 + U2 about the patch-average P̄ arising from the syn-

chrotron and dust foregrounds. We compare this with the σ2
pol,gw(p,R) we obtain for each patch

in a single tensor-only primordial polarization realization (which is proportional to r2). The

patches are sorted in decreasing order of the “signal-to-noise” ratio σpol,gw(p,R)/σpol,fg(p,R).

The next pixel on the list is included in a patch list if it has no overlap with the patches in

the previously-determined higher signal-to-noise list. A patch is considered to be r-clean if

this polarization signal-to-noise exceeds unity, a rather strong criterion. At 100 GHz, we found
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no “r=0.01”-clean patches, seven “r=0.05”-clean patches and ten “r=0.1”-clean patches with

fsky & 0.007 (R = 10◦). There are one “r=0.05”-clean patch and two “r=0.1”-clean patches for

fsky & 0.03 (R = 20◦). At 150 GHz, we found no “r=0.05”-clean patches and one “r=0.1”-clean

patch with fsky & 0.007 but no r=0.1-clean patches for fsky & 0.03.

The non-overlapping criterion is quite severe. Another measure of r-cleanliness is to de-

termine the fraction of sky with σpol,gw(p,R)/σpol,fg(p,R) above unity. The r-clean fraction is

clearly ∼ 0 for those values of r and R with no corresponding clean patches (as stated above).

Here only the non-zero values are reported. At 100 GHz, the “r=0.05”-clean fraction is ∼ 0.14

(R = 10◦) and the “r=0.1”-clean fraction is ∼ 0.24 (R = 10◦); For both values of r, there is no

appreciable decrease in the sky fraction by increasing the patch sizes to R = 20◦. At 150 GHz,

the “r=0.1”-clean fraction is ∼ 0.04 (R = 10◦). It should be noted that as these sky fractions

do not necessarily correspond to contiguous regions, the sky fraction of interest for small-sky

B-mode experiments is in principle smaller. The Planck Sky Model at the lower frequencies

agrees with the (extrapolated) synchrotron emission from WMAP, but the higher frequency

polarized dust emission really requires the better observations of the Planck mission.

2.5.3 Correlations of r with Other Cosmic Parameters

Either detecting r or placing a tight upper bound is crucial for progress in inflation stud-

ies. Correlations of r with other parameters qα must be properly accounted for, since they

are marginalized in the reduction to the 1D r-posterior. The relative importance of the var-

ious qα is determined by calculating the posterior-averaged cross-correlations ρrα ≡ 〈δrδqα〉f ,
which depend upon the experimental configuration and its noise. Within the Gaussian ap-

proximation for the posterior distribution, the correlations can be estimated from the inverse

components, [F−1]rα, using the Fisher matrix equation (eq. 2.5). Lensing and instrumen-

tal noise are included in the generalized noise matrix. Here F is determined from numerical

differentiation by taking small steps in the main parameters of the standard ΛCDM model

(ln(Ωbh
2), ln(Ωch

2), H0, ns, τ, r) from the fiducial WMAP7 values10. The scalar amplitude As

is treated as a normalization parameter here, so it is not included in the parameter list. We

use two different fiducial values for r, 0.2 and 0.01, and three values of fsky, 0.007, 0.07 and

0.75, for a Spider-like experiment. We use a Gaussian prior on all parameters qα but r, with

the mean and width given by the WMAP7 measurements. For these parameters we choose

(Fprior)αβ = σ−2
α,WMAP7δαβ, which gives a weaker prior than the true WMAP7 results would

give. In the quadratic approximation to the posterior information action, the correlation of r

10http://lambda.gsfc.nasa.gov/product/map/dr4/params/
lcdm sz lens wmap7.cfm
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Table 2.3: σr from the full likelihood computed on a 2D r-τ grid (bottom) cf. 1D, 2D and 6D

Fisher determinations [F−1]rr using pixel-space matrices (middle) and the simplified `-space

sums, with rfid = 0.12. This demonstrates that the use of reduced parameter spaces gives robust

results, independent of cap sizes, here for fsky = 1, 0.07, 0.007.

method param space Nside = 32 Nside = 64 Nside = 128

fsky = 1 fsky = 0.07 fsky = 0.007

Fisher 1 param 0.022 0.018 0.037

`-space 2 param 0.023 0.018 0.037

6 param 0.025 0.020 0.037

Fisher 1 param 0.022 0.019 0.034

pixel-space 2 param 0.023 0.019 0.034

6 param 0.025 0.020 0.035

grid-based 2 param 0.021 0.018 0.036

with other parameters is approximated by

ρrα ≈
[F−1

t ]rα√
[F−1

t ]rr[F
−1
t ]αα

(2.7)

where Ft = F + Fprior is the total Fisher matrix.

For the full sky case, we find the largest ρrα for τ and ns, with ρrτ and ρrns both ≈ 0.25. For

smaller sky coverage, the degeneracy between r and τ disappears since the main constraints

on τ come from the large scale polarization, which small cut-sky cases are not sensitive to.

The dominant correlations of r are with the matter density parameters Ωch
2 and Ωbh

2, at the

0.1−0.2 level, a consequence of the gravitational lensing-induced BB noise. Note that under the

quadratic approximation the conditional uncertainty in r for given q̄α is 〈δr2|q̄α〉 = σ2
r (1−ρ2

rα),

where σr is the fully marginalized error on r. As a results, even in the 25% case for ρrα, the

error diminishes only by 3% for fixed qα relative to the full σr.

Thus we should be able to safely estimate the error on r with all or none of the basic

cosmic parameters held fixed. We verified this explicitly by comparing the 2D uncertainties

calculated from the full 2D r− τ -grid with the full 6D uncertainties calculated from the inverse

Fisher matrix, in `-space and in pixel space, in Table 2.5.3, for different fsky and at different

resolutions, defined here by the value of Nside. With all six parameters included, σr increases

by only ∼ 10% over the single τ -marginalized σr, which justifies our exploration using a heavily

truncated parameter space to determine the errors on r.
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Figure 2.5: Uncertainty in measuring r for different sky coverages with Spider-like (top) and

Planck-like (bottom) experiments, with and without foregrounds (squares and triangles respec-

tively), for the fiducial model rfid = 0.12. The solid lines are the results of `-space analysis

(ignoring foregrounds). The analysis has been performed with different resolutions for different

fsky, ranging from Nside = 32 for full sky to Nside = 128 for the smallest sky coverage. The

fsky refers to the sky coverage before applying the Galactic cut so for full sky fsky is effectively

∼ 0.75. The dashed line is the 2σr if the full sky needs to be effectively considered as a combi-

nation of several smaller patches with the individual observed sky fraction being fsky and the

total area of all patches equal to the Galaxy-masked full sky.
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Figure 2.6: Similar to figure 2.5 with rfid = 0.001.
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2.5.4 Results in r–τ Space

In this section, we use τ as well as r to make our 2D parameter space since it has a direct impact

on the BB reionization bump. We fix the overall C` normalization for each parameter pair to

the WMAP TT measurement at ` = 220. This is equivalent to having As as an adjustable

parameter. If not otherwise stated, lensing has been included in all of the following simulations

with a fixed noise template, linearly scaled with As accordingly. Treating lensing in the noise

covariance completely takes into account its effect on sample variance. It may be possible for

it to be partly removed in the patch using delensing algorithms (see, e.g., Smith et al., 2008,

and references therein), leading to a reduced variance in the same way that we are treating a

foreground residual. However, treating lensing as a noise source is a good assumption for our

purposes here.

The 2σr(fsky) plots in Figures 2.5 and 2.6 are our main results. Shown are two fiducial

models with rfid = 0.12, 0.001, both having τfid = 0.09. The fsky in the plots is the sky

coverage before the Galaxy is masked. The Galaxy cut starts coming into the observed patch

for θpatch ∼ 40◦.

The results are compared to the expected error bars on r from a simplified `-space analysis.

Proper mode counting is a difficulty in the `-space approximation for cut-skies. (This differs

from the full pixel-pixel covariance matrix analysis in which all modes are naturally taken

care of.) For the `-space approximation, we have taken the mode number to be the naive

[fsky(2` + 1)] where [..] indicate the integer part. This imposes a low `-cut on the modes by

demanding [fsky(2`+1)] ≥ 1 which overrides the `-cut from the fundamental mode of the patch,

2`+ 1 = [2π/2 sin(θpatch/2)], up to θ ≈ 30◦.

This `-space σr(fsky) is a lower bound since it ignores the mode mixing on the cut sky. Still,

in the absence of systematic errors and for the simplified noise assumed here, the errors we find

are near the true (matrix) values, as Figure 2.5 confirms for rfid = 0.12. A similar measurement

with rfid = 0.2 shows the same thing, though with a more-flattened curve for σr(fsky) for the

Spider-like case and with foregrounds playing a smaller role. E−B mixing does not seem to be

a serious impediment, at least down to fsky ≈ 0.01. For the Spider-like experiment, the error

minimum is 2σr = 0.035 for rfid = 0.12, at fsky ≈ 0.15, but the trough is broad. For the low

rfid = 0.001, for which only an upper limit can be expected, Figure 2.6 shows the agreement

in σr(fsky) between `-space and pixel-space is not quite as good. This is especially true for

fsky ≈ 0.25− 0.5 for which considerable observation time is expended on the ` ≈ 12 BB valley

(see Figure 2.3) where there is little signal. The naive `-space approximation underestimates

this, but agreement with pixel-space is regained in runs with the reionization bump removed,

by setting τ = 0; for this case the monotonic rise in σr(fsky) with increasing fsky continues to
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Figure 2.7: The curves show 2σr as a function of rfid obtained from the Fisher matrix in ` and

pixel-space for fsky = 0.007 (top) and 0.07 (bottom). The choices for the curves are meant to

unravel the impact of the cosmic variance, lensing, instrument noise and mode mixing on σr.

The symbols show errors from the full likelihood calculated on a gridded 2D parameter space,

and agree nicely for both pixel-space (squares) and `-space (diamonds).

Figure 2.8: 1σ and 2σ r–τ contours with and without foregrounds for a Spider-like experi-

ment with different sky cuts and for a Planck-like Galaxy-masked experiment with effective

fsky ∼ 0.75. In the two right panels the contours for the combined Spider-like and Planck-like

experiments are also plotted. The black plus signs denote the input rfid = 0.12 and τfid = 0.09.

Expending Spider-like observing time on large sky coverage would not improve much the Planck

forecasted τ error, but would decrease the combined r error, suggesting the deep small-sky op-

tion is better.
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Figure 2.9: r-ns contours for a Spider-like (fsky ∼ 0.08)+WMAP7 experiment, contrasted

with a Planck-like (Galaxy-masked fsky ∼ 0.75) experiment, assuming no foreground contam-

ination, compared to the results for the combination of the two (the solid and dot-dashed

blue curves). The r − ns correlation has been ignored, as discussed in § 2.5.3. We also ex-

plicitly verified this for the specific case of the Planck-like survey from post-processing the

CosmoMC chains. The r constraints are calculated by the numerical methods used through-

out the paper. For the case of Spider+WMAP7, we assumed an asymmetric Gaussian likeli-

hood for ns with the widths coming from the lower and upper 1σns as measured by WMAP7

(http://lambda.gsfc.nasa.gov/product/map/dr4/params/lcdm sz lens tens wmap7.cfm). For

the ns likelihood from the Planck-like case, CosmoMC chains (http:// cosmolo-

gist.info/cosmomc/) were used to properly take into account the correlations of ns with other

cosmic parameters, which, unlike r, are non-negligible. Top has rfid = 0.12 and bottom has

0.001; both have ns,fid = 0.98. The plots indicate a possibly very rosy picture for constraining

these two critical inflation parameters.
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Figure 2.10: 1σ and 2σ r-nt contours for a Spider-like experiment with different sky cuts

and for a Planck-like Galaxy-masked fsky=0.75 experiment. The contours for a CMBPol-like

experiment as well as those for the combined Planck-like and Spider-like experiments are plotted

for comparison. The black line is the inflation consistency line and the black plus sign is the

fiducial input, r = 0.12 and nt = −0.015. Even with this CMBPol, inflation consistency is not

that well tested.

full sky.

Extending to the full Galaxy-masked sky improves the upper limit on r since the window

function captures the low-` bump. The `-space and pixel-space calculations disagree slightly,

but when the Galaxy mask is removed, the estimates agree.

At small fsky, 2σr increases due to lensing which dominates the total BB spectrum at small

scales. The competition between avoiding contamination by lensing and avoiding the ` ≈ 12

valley produces a weak minimum in σr at fsky ≈ 0.15 for r = 0.12, when a detection is expected,

and at fsky ≈ 0.03 for r = 0.001, when an upper limit is expected. The full sky is weakly optimal

for setting an upper limit in the absence of foregrounds.

The Planck-like measurements in the lower plots of Figures 2.5 and 2.6 show a rise in

2σr as fsky drops. In this case, the information on the large scales are lost while the pixel

noise stays unchanged. The dashed lines in these plots show the approximate 2σr for a full-sky

Galaxy-masked Planck-like experiment if the large-scale modes are filtered, e.g., by time-domain

filtering or due to high foreground contamination and thus the observed region is considered to

be a combination of smaller patches (adding up to the full sky in total observed area).

Not surprisingly, we see that foregrounds mostly affect experiments with larger fsky, and

for fiducial models with smaller r. We also see that deep observations of quite small patches

seem to do as well as larger patches (observed less deeply) and even much better if r is small

(for which the sample variance is very small and instrument noise plays the dominant role).
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Figure 2.7 shows how different components contribute to the error on r calculated using

the Fisher matrix for various rfid and fsky = 0.007 and 0.07. As before the mode mixing is

ignored in the `-space calculation. If there were no lensing and no mode-mixing, in the limit

of no instrument noise, the only source of error would be the sample variance, which is, as

expected, proportional to r. The solid black lines show the minimum irreducible errors due

to sample variance and lensing. We contrast this with calculations in both pixel and `-space

of two Spider-like experiments. One has 10 times less noise than the fiducial Spider case.This

noise level can be seen to give almost no contribution to the errors for these sky cuts since

lensing noise is dominant. The other has our standard Spider-like noise, which can be seen to

significantly add to the error. The impact of neglecting mode-mixing in determining σr vanishes

as r increases, since sample variance dominates the error, as a comparison of the curves from

the pixel-space and `-space analyses shows. The over-plotted symbols represent the errors from

measuring the likelihood curve in a gridded 2D parameter space (as explained earlier). The

2σr’s from the full method and the Fisher matrix approximation are close. The small difference

is because the r-likelihood curve is not a perfect Gaussian.

Figure 2.8 shows the 2D r–τ contours for 3 different values of sky coverage for a Spider-like

experiment compared to a full-sky Planck-like experiment (with Galaxy mask cut), with and

without foreground contamination. As expected, τ is unconstrained as fsky decreases for the

Spider-like experiment since τ -constraints come from the largest angular scales: what is optimal

for r detection is awful for τ determination, for which all-sky is best.

2.5.5 Results in r–ns Space

In Figure 2.9, we have plotted the r–ns contours for an fsky = 0.08 Spider-like experiment and

for a full-sky Planck-like survey, with and without foregrounds, using the model discussed in

§ 2.5.4. This shows almost no correlation between the two parameters for these experimental

cases, as expected from the discussion in § 2.5.3. It also shows the remarkable set of inflation

constraints that may arise from Planck and Spider-like experiments.

2.5.6 Results in r–nt Space

Although detecting r would provide an invaluable measure of the mean acceleration parameter

(and energy scale) of inflation, we want more, the shape of the tensor power embodied in

the tensor tilt nt. We explore this here in a 2D space by fixing τ, ns and the other cosmic

parameters. Figure 2.10 shows the 2D contours for r–nt with rfid = 0.12, and fiducial tensor

tilt nt,fid = −0.0150 satisfying the inflation consistency condition (eq. 2.2.1). Alas, we see

that nt is hardly constrained by Spider-like and Planck-like experiments, no matter how large
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fsky is. To see whether a post-Planck deep all-sky experiment could modify this conclusion,

we ran our analysis using the specification of a putative mid-cost CMBPol mission outlined

in Baumann et al. (2009), using the frequency channels described in Table 2.5.1. There is of

course improvement, and the COrE and PIXIE post-Planck missions would do better, but the

relatively short ∆` ∼ 150 baseline precludes even an ideal experiment from providing a powerful

test of inflation consistency.

2.5.7 Breaking r up into rXβ-Shape Parameters: A Tensor Consistency Check

Because r is essentially a linear parameter (for given As), we are effectively determining a

single (very) broad bandpower amplitude multiplying a collection of fiducial X-template shapes

C(g)
X` given by the gravitational wave powers. It is natural to test this locked-in monolithic

parameterization by introducing a collection of parameters rXβ multiplying individual X and

`-band templates, i.e.,

CEE` = C(s)
EE` + rEEβχβ(`)C(g)

EE`

CBB` = C(lens)
BB` + rBBβχβ(`)C(g)

BB` . (2.8)

Here C(s)
EE` is the scalar part of CEE`, including lensing, and C(lens)

BB` is the lensed BB power.

The overall normalization is arranged so that rXβ = r is the tensor consistency condition. The

χβ(`)’s are the β-windows. These have often been taken to be top-hats satisfying a saturation

property
∑

β χβ(`) = 1 and an orthogonality property χβ(`)χ′β(`) = δββ′ in bandpower work.

However, the modes could also be quite overlapping as long as saturation and the rXβ = r

normalization are satisfied.

This is a reasonable path to finding the tensor bandpowers for BB and EE but, given the

§ 2.5.6 result on nt, we will content ourselves with a 2D example using one `-band β and two X

parameters, rEE and rBB. For this study, we keep As fixed (cf. § 2.5.4 and 2.5.6). The contours

in Figure 2.11 show the degree to which the tensor consistency encoded in the rEE = rBB line,

can be checked. The contours confirm the expectation that the B-modes are the most influential

source of information about primordial tensor perturbations, since the large scalar contribution

to EE swamps the tiny tensor signal and inflates the error bars. Using checks like these for

showing consistency have had a long history. In the first EE polarization detection papers, the

EE amplitude was shown to be consistent with the amplitude expected from TT parameters

(Kovac et al., 2002; Sievers, 2004). In the first lensing detections in the TT power spectra,

the deviations from lens-free results were shown to be consistent with expectations from the

parameters determined from the primary TT data (Reichardt et al., 2009b; Dunkley et al.,

2011).
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Figure 2.11: 1σ and 2σ contours in the rEE–rBB plane for a Spider-like experiment with different

sky cuts and for a Planck-like experiment with fsky=0.75. The black solid lines show the tensor

consistency curves rEE = rBB and the plus signs show the fiducial rEE = rBB = 0.12 input

model. As expected, rBB is better determined than rEE and this tensor consistency is not well

tested.

2.5.8 Breaking fsky into Many Fields

Using multiple (foreground-minimized) fields to make up a total fsky is an approach that has

been advocated for ground-based strategies (e.g., for ABS11). In Figure 2.12 we show the impact

of splitting fsky into four patches, while keeping the total integration time and the instrument

noise constant. One does not lose that much as long as the total probe is a few percent of the

sky, a consequence of the broad single-patch σr(fsky) minimum. The number of polarization-

foreground-clean patches is of course still to be determined. We also varied the patch geometry;

e.g., for an fsky ∼ 0.08 rectangular region with rfid = 0.12, we get 2σr = 0.048 without

foregrounds, in good agreement with the cap result 2σr = 0.050.

2.6 Summary and Conclusions

In this paper, we applied a full map-based likelihood analysis to multifrequencyQ-U polarization

maps and T -maps of forecasted data to determine the posterior probability distribution of r.

2.6.1 Leakage Levels and Leakage Avoidance

This method avoids the explicit linear E-B decomposition of the polarization maps before doing

the likelihood analysis and gives the best possible determination of r, provided that systematic

11http://www.princeton.edu/physics/research/cosmology-experiment/abs-experiment/
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Figure 2.12: When one patch covering fsky is broken up into four fsky/4 cap-patches, but

the noise and observing time remain constant, the (τ -marginalized) r-errors remain similar

except at very small fsky. We also show that factors of two changes in the noise swamp this

effect. The calculations were done with rfid = 0.12 in the pixel-space except for the highest

sky coverages where the pixel and `-space analysis are in excellent agreement. The effect of

foreground contamination and Galaxy cut has not been taken into account here.
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errors are correctly modelled. For realistic cut-sky observations, we measured the level of BB

contamination from the inevitable mode-mixing from the much larger EE power. In addition,

there is leakage from instrumental effects, in particular with T seeping into Q and U , which

has to be included in any approach. We have left the investigation of this issue to future work.

2.6.2 Computational Feasibility of Exact Likelihoods

It is often the case in CMB cosmology that the shear number of pixels precludes a direct full

map-based likelihood procedure and necessiates an intermediate power spectrum determination

before parameter estimation. However, for Spider and similar ground and balloon experiments

targeting r, relatively low resolution and restricted sky coverage are all that is really needed

for detection. The result is a total pixel number that allows computationally feasible inverse

and determinant calculations of the large signal-plus-noise correlation matrices Ct = Cn +

Cs(q) – with contributions from both the parameter-dependant signal covariance Cs(q) and the

generalized noise Cn, which includes uncertainties from the foreground subtraction as well as

from instrumental and systematic noise in the maps

Map-based methods have had a long history, dating from the earliest CMB data sets (e.g.,

Bond & Crittenden, 2001). For example, they were used for COBE, Saskatoon, Boomerang,

and CBI analyses. Often compression was used, e.g., to signal-to-noise eigenmodes (Bond, 1995;

Bond & Crittenden, 2001) or by coarse-grained gridding (Myers et al., 2003), to make the matrix

manipulations tractable. With Boomerang, an important aspect was to make sure all issues

regarding data-filtering, inhomogeneous and aspherical beams, transfer functions, striping, etc.

were properly included. Invariably, a Monte Carlo simulator of each experiment has been built,

in which simulated timestreams have as many effects from systematic and data processing as

one can think of included.

2.6.3 Matrix Estimation from Monte Carlo Noise and Signal Simulations

and Relation to Master/XFaster

The Master/XFaster approach encodes this in isotropized `-space filters and rotationally sym-

metrized masks which allow one to relate the underlying all-sky Cs,cX` to the filtered cut sky.

Similarly an isotropized noise Cn,cX` is also determined by taking processed noise timestreams,

creating maps with them, Y`m transforming them, then forming a quadratic average over noise

samples Js, Cn,cX` =
∑

Js,m
|anJs,cX`m|2/[(2`+ 1)Ns].

When one has a large number of detectors, using only cross-correlations and no auto-

correlations has an advantage, namely that the cross-noise is small, from systematic effects

in the arrays and instrument as a whole. Precise modelling of the auto-noise is not easy. How-
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ever, any operation that can be done for Master or XFaster can also be done to estimate the

noise matrices, using noise sample sums. (Getting convergence of small off-diagonal compo-

nents may require many samples.) Matrices have the advantage that they naturally allow for

anisotropic and inhomogeneous components, in the noise maps - including striping effects - and

in the beam maps and in the foreground maps. There are issues about optimal estimation of

the generalized pixel-pixel matrices that one would like to tune, but there are no fundamental

obstacles to making the Cn and Cs matrices highly accurate for parameter estimation.

WMAP used a map-based likelihood for low `, connected to an isotropized `-space likelihood

covering the high `’s. Planck is doing the same. We expect such a hybridized likelihood code

will also be used for Spider-like experiments for routine parameter estimation, even though we

think one can get away with a full map-based likelihood code.

If simulated timestreams are used for Cn and Cs estimation, generalized pixels may prove

preferable to the usual spatial pixels. The Cosmic Background Imager CBI (Myers et al., 2003;

Sievers, 2004) used the reciprocal space pixels for the primary construction, rather natural

for an interferometry experiment where the timestream analog is a set of visibilities. ACT and

QUaD also have done their power spectrum estimation in the Fourier transform space of spatial

maps.

2.6.4 The CBIpol Approach as a Guide for Small Deep-sky Analyses

The use of map-based likelihood codes does not mean that E and B maps will not be con-

structed, just that parameters would not be extracted from them. The CBI example of how

such E and B maps were made and used, and why bandpower and parameter estimations

did not use E and B maps serves as a paradigm for how things could proceed for Spider-like

data. The CBI data were compressed (via a GRIDR code) onto a discrete (reciprocal) lattice of

wavenumbers by projecting measured interferometer visibilities onto a gridded 2D K-space. A

direct unitary transformation takes such a basis of “momentum” modes into a basis of spatial

modes in real space where Q-U is a more appropriate representation. An important point is

that the polarization map estimators evaluated on the discrete wavenumbers of the lattice are

linear combinations of the continuous wavenumbers, the mode-coupling of finite maps which

also leads to an E-B mixing.

In the lattice representation, the resulting size of the correlation matrices for CBI was quite

tractable for direct inversion and the full likelihood was evaluated (via an mLikely code) to

determine bandpowers for TT , EE, BB and TE, without separation of the Fourier maps into

E and B.

An optimal linear map reconstruction of E and B was done for visualization purposes,

with real-space and momentum-space maps showing the CBI E and B Wiener-filtered means,
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accompanied by a few maps showing typical fluctuation maps about the mean maps. These were

contour maps, since the usual headless vector polarization plots are of the length of polarization

degree,
√
Q2 + U2, tilted at an angle arctan(U/Q)/2.

For Spider-like bolometer-based experiments for which the raw data are bolometer time-

streams from which Q-U maps are constructed, the compression step leads to tractable ma-

trices as in the CBIpol case, although in the first instance the pixelization choice may be

in real space rather than in wavenumber space or in a generalized-pixel space. Just as with

CBIpol, parameters and bandpowers would be determined with direct likelihood calculations,

yet Wiener-filtered E and B maps would still be made for visualization.

2.6.5 Exact 2D Likelihood Computation

Given the matrix construction method, we determined the posterior probabilities on reduced

2D-grids consisting of r and one other cosmic parameter, in many cases the Thomson scattering

depth to reionization, τ . The grid could be extended to higher dimensions, as they were in

early CMB analyses of COBE, Boomerang, CBI and ACBAR. More efficiently, MCMC chains

could be used to explore the posterior probability surface. Since, as we have shown, r is

relatively weakly correlated with the other standard cosmic parameters, our use of a reduced

dimensionality is accurate. We targeted τ for a second parameter because of its importance for

the reionization bump in BB which is picked by large fsky experiments such as Planck. However,

it too is weakly correlated for Spider-like experiments probing modest fsky. We showed that

as long as the input value rfid is reasonably larger than the error σr, e.g., ∼ 0.1, rfid can be

well-recovered by our methods.

2.6.6 The Inflation and Tensor Consistency Checks

We have used r and nt for our reduced 2D parameter space to see how well the inflation

consistency condition, nt ≈ −r/8, can be tested. For example, with rfid = 0.12 and the

consistency value nt,fid = −0.015 , we obtain 2σr ≈ 0.036 and 2σnt ≈ 0.28. The large 1-sigma

error on nt is what one might have expected given the relatively small `-baseline (reminiscent

of the ±0.2 limit on ns from the even smaller baseline COBE DMR data). Thus, although

breaking up r into bands will be useful, the nt slope that follows will not be powerful enough to

test consistency. With CMBPol and at Nside = 512, the errors are 2σr ≈ 0.014 and 2σnt ≈ 0.07

, still too large. A more prosaic internal consistency check was done to show that what one

thinks is r from the total BB agrees with what one gets from the less-tensor-sensitive total EE.
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2.6.7 Relation to Planck

We based our Planck-like case on the Blue Book detector specifications. The actual in-flight

performance is quite similar (Planck HFI Core Team et al., 2011; Mennella et al., 2011). What

will emerge from the actual Planck polarization analysis may be quite different from the sim-

plified foreground-free 2σr(fsky = 0.75) ∼ 0.015 forecast of white experimental noise and with

no systematics. This relies on the BB reionization bump being picked up, but the required low

`’s are especially susceptible to the foreground-subtraction residuals (2σr(fsky = 0.75) ∼ 0.05

for a model of well-subtracted foregrounds of known residual) and systematic effects. Some

of the issues are described in Efstathiou et al. (2009). Irrespective of how well Planck wres-

tles with the low ` issues, it will be able to analyze many patches within the 75% of the sky,

rank-ordered by degree of foreground contamination. Although such a procedure would lose

the reionization bump, robustness to foreground threshold variation of any r-detection could

be well demonstrated. Apart from its many other virtues, Planck should be very good for this.

2.6.8 Relation to Spider

The same strategy of using many fields with the lowest foregrounds to make up the total fsky

may also prove useful for Spider-like experiments (such as the ground-based ABS). We showed

that splitting fsky into four patches with fixed integration time and the instrument noise results

in only a small loss in r-sensitivity because σr(fsky) has a relatively wide single-patch minimum.

How many polarization-foreground-clean patches there are is still to be determined.

Although the specifications we chose for “Spider-like” was motivated by a bolometer array

experiment feasible with current technology, our forecasts should not be taken as realistic

mocks of the true Spider which is under development, and for which a number of campaigns

are envisaged (see the footnote under Spider-like in Table 2.5.1). The techniques used here

have, however, already been applied in Spider forecast papers using more realistic statistically

inhomogeneous noise, scanning strategies and observational durations, e.g., in Filippini et al.

(2010) and Fraisse et al. (2011). On fsky ∼ 0.1, rfid = 0.01 simulations, we compared the

Fraisse et al. (2011) non-uniform noise modulated spatially by the scanning strategy’s number-

of-hits-per-pixel with uniform white noise with the same integrated noise power. Although the

deviation in the standard deviation of the noise rms was about a factor of two times the mean

noise rms, with largest impact near the scanning boundaries, we found very similar results

for the posterior, showing this paper’s conclusions are insensitive to our use of uniform white

noise. (Of course the foreground noise radically alters the whiteness, and this of course has been

included by us, but only in a statistically isotropic way — the Galactic latitude dependence

breaks this isotropy just as the pixel hits do.) In § 2.5.4, we showed that in the absence of
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foregrounds our Spider-like case could achieve 2σr ≈ 0.02 over a broad range of fsky.

We presented Figure 2.1 in the introduction as a summary of the current and future r-

posteriors. The forecasted likelihood curves were made with the numerical codes described here,

for the Spider-like case (the default experiment of this paper), for the Spider experiment labeled

as “Spider” in the plot (Fraisse et al., 2011), and for a more ambitious campaign of Spider,

labeled as SCIP. We see that the performance of the experiment with Spider-like specifications

used in this paper is very close to the actual Spider. A different foreground model used in

Fraisse et al. (2011) for fsky ∼ 0.1 led to a similar ∼ 50% error degradation.

2.6.9 History and Forecasts of r Constraints

When the large angle CMB anisotropies were first detected with COBE DMR, the broad-band

TT power amplitude (` . 20), with wavenumbers k−1 ∼> 1000 Mpc, was related to the linear

density power spectrum amplitude at the radically different k−1 ∼ 6 Mpc scale, assuming a

nearly scale-invariant primoridial spectrum: σ8 ≈ 0.85e−(τ−0.1)/
√

1 + 0.6r × 10.7
−0.6 for typical

ΛCDM parameters popular in mid nineties, ΩΛ ∼ 2/3, h ∼ 0.7 (Bond, 1996a), rather similar

to the values now. Requiring σ8 > 0.7 to get reasonable cluster abundances at zero redshift

– a venerable cosmological requirement from the 80s – gives a rough constraint on r from the

COBE data in conjunction with large scale structure (LSS) data: 2σr < 1 for current τ values

– but τ only had an upper limit until WMAP1, with a more accurate determination waiting

until WMAP3.

The first 2003 WMAP constraint on r from TT and TE CMB-only data (with weak priors)

was 2σr < 0.81, reducing to 2σr < 0.64 with the WMAP3 TT, TE and EE data, and other TT

CMB data available in 2005. It decreased to 0.31 with the LSS data of the time (MacTavish

et al., 2006). The most recent r-constraint from the low ` amplitude and shape of the TT and

EE spectra from WMAP9+ACT+SPT (Hinshaw et al., 2012) is the upper limit 2σr ∼ 0.17,

reducing to 0.12 when LSS is added (Figure 2.1).

To make a further leap awaits an effective B-mode constraint. The current best constraint

on r from the measurements of the B-mode amplitude comes from the QUIET experiment with

2σr < 2.8 (QUIET Collaboration et al., 2012). As we have seen, Planck can give 0.015-0.05,

Spider 0.014-0.02. The COrE satellite proposal (The COrE Collaboration, 2011) suggests better

than a 3-sigma detection could be made for rfid above 0.001 with bolometer arrays in space.

The PIXIE satellite proposal (Kogut et al., 2011) claims 2σr ≈ 4 × 10−4 is achievable with

Fourier Transform Spectrometry. We apply our methods to CMBPol specifications (Baumann

et al., 2009). The two cases in Figure 2.1 show what a (very small) detection with rfid = 0.001

(2σr ≈ 4×10−4) and a non-detection with rfid = 0.0001 (2σr ≈ 1.2×10−4) would look like. If rfid

is as large as 0.12, as in the simple m2φ2 chaotic inflation, we get 2σr ≈ 0.015 (and 2σnt ≈ 0.07
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encompassing the consistency input of nt = −0.015). For a noiseless all-sky experiment, hence

with errors from cosmic variance only, we get 2σr ≈ 10−4 for Nside = 128 for tiny rfid. It is

unclear at this time how much inexact foreground subtraction and lensing noise will limit r

determinations in these ideal cases.

2.6.10 The 1D Shannon Entropy of r

We have described another way to cast the improvements expected in r-estimation as experi-

ments attain higher and higher sensitivity, the marginalized 1D Shannon entropy for r, ∆S1f(r).

This measures the (phase-space) volume of r-space that the measurement allows. It is obtained

by direct integration over the normalized 1D likelihood for r, with all non-Gaussian features in

the likelihood properly included. We have found in practice that ∆S1f(r) ≈ ∆ ln[σr
√

2π], with

σr determined by the forced Gaussianization described in the paper, works quite well, so in a

way we are just restating the error improvements in the information theoretic language of bits.

We use the current WMAP9+ACT+SPT TT, TE and EE + LSS 2σr ∼ 0.12 constraint

(Hinshaw et al., 2012) for our baseline. The first WMAP constraint in 2003 (Spergel et al., 2003),

with ∆S1f(r) = 2.7 bits had, of course, higher information entropy. Here, as in the abstract, we

have translated from nats to bits. The asymptotic perfect noiseless all-sky experiment gives (the

somewhat r-dependent) ∆S1f(r) ≈ −10 bits, the limit on obtainable knowledge from the CMB.

The proposed post-Planck COrE, PIXIE and CMBPol-like experiments claim about -8 bits.

For the Spider-like experiments forecasted here, the foreground-free decrease is -3.1 bits (and

-2.6 bits with a 95% effective component separation). Thus balloon-borne and ground-based

experiments with large arrays making deep surveys focussing on a relatively clean few-percent

of the sky yield tensor information at least comparable to shallow and wide surveys and are a

powerful step towards a near-perfect deep and wide satellite future.
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Propulsion Laboratory, California Institute of Technology, under a contract with the National

Aeronautics and Space Administration. The large matrix computations were performed using
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Chapter 3

Semi-blind Eigen-analyses of

Recombination Histories Using

CMB Data

A version of this chapter has been published in the Astrophysical Journal as “Semi-blind Eigen

Analyses of Recombination Histories Using Cosmic Microwave Background Data”, Farhang,

M.; Bond, J. R.; Chluba, J. , Volume 752, Issue 2, article id. 88, 26 pp. (2012).

3.1 Chapter Overview

Cosmological parameter measurements from CMB experiments such as Planck, ACTPol, SPT-

Pol and other high resolution follow-ons fundamentally rely on the accuracy of the assumed

recombination model, or one with well prescribed uncertainties. Deviations from the standard

recombination history might suggest new particle physics or modified atomic physics. Here we

treat possible perturbative fluctuations in the free electron fraction, Xe(z), by a semi-blind ex-

pansion in densely-packed modes in redshift. From these we construct parameter eigenmodes,

which we rank order so that the lowest modes provide the most power to probe Xe(z) with CMB

measurements. Since the eigenmodes are effectively weighed by the fiducial Xe history, they

are localized around the differential visibility peak, allowing for an excellent probe of hydrogen

recombination, but a weaker probe of the higher redshift helium recombination and the lower

redshift highly neutral freeze-out tail. We use an information-based criterion to truncate the

mode hierarchy, and show that with even a few modes the method goes a long way from the

fiducial recombination model computed with Recfast, Xe,i(z), towards the precise underlying

history given by the new and improved recombination calculations of CosmoRec or HyRec,

Xe,f(z), in the hydrogen recombination regime, though not well in the helium regime. Without

49
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such a correction, the derived cosmic parameters are biased. We discuss an iterative approach

for updating the eigenmodes to further hone in on Xe,f(z) if large deviations are indeed found.

We also introduce control parameters that downweight the attention on the visibility peak

structure, e.g., focusing the eigenmode probes more strongly on the Xe(z) freeze-out tail, as

would be appropriate when looking for the Xe signature of annihilating or decaying elementary

particles.

3.2 Introduction

The Planck Surveyor1 is now well into its mission, observing the temperature and polarization

anisotropies of the cosmic microwave background (CMB) with unprecedented accuracy (Planck

HFI Core Team et al., 2011; Mennella et al., 2011). Both ACT (e.g., see Hajian et al., 2011;

Dunkley et al., 2011; Das et al., 2011) and SPT (Lueker et al., 2010; Vanderlinde et al., 2010) are

pushing the frontier of TT CMB power spectra at small scales, and in the near future SPTpol2

(Austermann et al., 2012) and ACTPol3 (Niemack et al., 2010) will provide additional small

scale E-mode polarization data, complementing the polarization power spectra obtained with

Planck and further increasing the significance of TT power spectra.

Using these datasets, cosmologists will be able to determine the key cosmological param-

eters with high precision (The Planck Collaboration, 2006; Tauber et al., 2010), making it

possible to distinguish between various models of inflation (e.g. see Komatsu et al., 2011, for

recent constraints from WMAP) by measuring the precise value of the spectral index of scalar

perturbations, ns, and constraining its possible running, nrun, as well as the tensor-to-scalar

ratio, r. In addition many non-standard extensions of the minimal inflationary model are under

discussion, and the observability of these possibilities with Planck(The Planck Collaboration,

2006) and future CMB experiment is being considered.

These encouraging observational prospects have motivated various independent groups (e.g.

see Dubrovich & Grachev, 2005; Chluba & Sunyaev, 2006b; Kholupenko & Ivanchik, 2006;

Switzer & Hirata, 2008; Wong & Scott, 2007; Rubiño-Mart́ın et al., 2008; Karshenboim &

Ivanov, 2008; Hirata, 2008; Chluba & Sunyaev, 2008; Jentschura, 2009; Labzowsky et al., 2009;

Grin & Hirata, 2010; Ali-Häımoud & Hirata, 2010) to assess how uncertainties in the theoretical

treatment of the cosmological recombination process could affect the science return of Planck

and future CMB experiments. The precise evolution of the free electron fraction, Xe, with

time influences the shape and position of the peak of the Thomson visibility function, which

1http://www.rssd.esa.int/Planck
2http://pole.uchicago.edu/
3http://www.physics.princeton.edu/act/

http://www.rssd.esa.int/Planck
http://pole.uchicago.edu/
http://www.physics.princeton.edu/act/
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defines the last scattering surface (Sunyaev & Zeldovich, 1970; Peebles & Yu, 1970), and hence

controls how photons and baryons decouple as electrons recombine to form neutral helium and

hydrogen atoms. Consequently, the ionization history changes the acoustic oscillations in the

photon-baryon fluid during recombination and therefore directly affects the CMB temperature

and polarization power spectra. For the analysis of future CMB data this implies that in

particular close to z ∼ 1100 the ionization history better be understood at the ∼ 0.1% level.

Probing the ionization history in time is equivalent to probing it in space with the light

cone relating the two. Thus what we try to do in this paper, namely to come up with optimized

probing functions for the recombination history, is quite akin to creating probes of the spatial

structure of the boundary between HII and neutral hydrogen regions. Here of course we look

from neutral to ionized, the cosmological recombination problem being an inside-out HII region,

except in a predominantly electron scattering regime with a very large photon to baryon ratio

which lowers the transition temperature between ionized and neutral.

The old recombination standard was set by Recfast (Seager et al., 1999, 2000), but its

reliability for the precision cosmology was brought into question, e.g., by Seljak et al. (2003).

For the standard six parameter cosmology in particular our ability to measure the precise value

of ns and the baryon content of our Universe may be compromised if modifications to the

recombination model of Recfast are neglected (Rubiño-Mart́ın et al., 2010; Shaw & Chluba,

2011), introducing biases of a few σ for Planck.

Currently it appears that all important corrections to the standard recombination scenario

(SRS hereafter) have been identified (e.g., see Fendt et al., 2009; Rubiño-Mart́ın et al., 2010,

for an overview). The new recombination codes, CosmoRec (Chluba & Thomas, 2011) and

HyRec (Ali-Häımoud & Hirata, 2011) both account for these modifications to the SRS, su-

perseding the physical model of Recfast and allowing fast and accurate computation of the

ionization history on a model-by-model basis. CosmoRec and HyRec presently agree at a

level of ∼ 0.1% − 0.2% during hydrogen recombination, so that from standard recombination

physics little room for big surprises seems to be left.

However, what if something non-standard happened? What if something was overlooked in

the standard recombination scenario? From the scientific point of view the ionization history is a

theoretical ingredient to the cosmological model, which usually is assumed to be precisely known

and not subject to direct measurement. Clearly, it is important to estimate the possible level of

uncertainty in the recombination model and to confront our understanding of the recombination

problem with direct observational evidence. Here we describe how well future cosmological data

alone are able to constrain possible deviations from the SRS.

In the past, several non-standard extensions of the recombination scenario have been con-

sidered. These include models of delayed recombination, in which hypothetical sources of ex-
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tra photons that can lead to ionizations or excitations of atoms are introduced using simple

parametrizations (Peebles et al., 2000). In particular, models of decaying (e.g., see Chen &

Kamionkowski, 2004; Zhang et al., 2007) and annihilating particles (e.g., see Padmanabhan &

Finkbeiner, 2005; Zhang et al., 2006; Galli et al., 2009a; Hütsi et al., 2009; Slatyer et al., 2009;

Hütsi et al., 2011; Galli et al., 2011) were discussed. In addition to extra photons, varying fun-

damental constants (e.g., see Kaplinghat et al., 1999; Scóccola et al., 2009; Galli et al., 2009b)

could affect the recombination dynamics in subtle ways.

All these ideas rely on a specific model for the (physical) process under consideration,

with the derived constraints depending on the chosen parametrization. This minimizes the

number of additional parameters, but does not allow us to answer questions about more general

perturbations around the SRS and how well they can actually be constrained.

Here we approach this problem in a different way. We introduce perturbations to the SRS

over a wide range of redshifts around hydrogen (z ∼ 1100) and helium (z ∼ 1800) recom-

bination, using different basis functions. We then compute the corresponding signals in the

CMB power spectra and perform a principal component decomposition to obtain eigenmode

functions, ordered with respect to the level at which they can be constrained by the data. We

study in detail how the eigenmodes depend on the chosen parametrization for the recombination

perturbations as well as the fiducial model and different experimental settings.

Our method is similar to the one used by Mortonson & Hu (2008), where the eigenmodes

for different reionization scenarios (6 . z . 30) were constructed. However, here we explicitly

construct the mode functions at redshifts z & 200, with particular attention to the dependence

of the eigenmodes on different assumptions. We investigate how to use our prior knowledge of

possible perturbations of the ionization history to choose the parametrization which is more

preferred by the data. We also carry out a careful convergence study and show the equiva-

lence of different basis functions (e.g., triangles, Gaussian bumps, Fourier series and Chebyshev

polynomials). We particularly focus on the helium recombination problem, showing that in the

absence of very tight constraints on the hydrogen recombination, we are unable to unravel well

remaining uncertainties in helium recombination with CMB data. Similarly, small changes in

the freeze-out tail of recombination are only weakly constrained, if possible ambiguities during

hydrogen recombination are included.

Details of the general methodology to construct the eigenmodes for perturbations to ion-

ization history are given in § 4.3 and Appendices 3.7.1, 3.7.2 and 3.7.3. In § 3.4 we compute

different eigenmodes over a rather wide redshift range (z ∈ [200, 3000]) and investigate their

properties. In § 3.4.6 we develop a criterion which allows us to truncate the hierarchy of the

eigenmodes based on their information content. In § 3.5 the modes are applied to two specific

examples of ionization scenarios, illustrating how the method should be used with real CMB
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data. At the end of that section, we also discuss how the approach should be iterated if hints

toward a considerable difference between the assumed and true model of recombination are

indicated by the data. We close the paper by a brief discussion.

3.3 Methodology

In this section we introduce the approach and parametrization used to construct the principal

components, or the eigenmodes, which is later used to describe possible corrections to the

recombination scenario. Our method is mainly driven by the assumption of small relative

perturbations around the fiducial model computed with the Recfast code (Seager et al. (1999);

see Wong et al. (2008) for recent updates). As an example we have in mind the recombination

corrections obtained with refined recombination models (Chluba & Thomas, 2011; Ali-Häımoud

& Hirata, 2011). However we also briefly discuss the possibility to constrain significant changes

in the freeze-out tail of recombination and modes that mainly focus on helium recombination.

Throughout this paper the cosmic parameters, referred to as the standard (cosmological)

parameters, are (Ωbh
2,Ωdmh

2, H0, τ, ns, As) as measured by WMAP74, unless stated otherwise.

In several cases we also vary Yp as a seventh parameter. Lensing is included in all simulations

if not explicitly stated otherwise.

3.3.1 The standard recombination scenario

The cosmological recombination history is one of the major theoretical inputs for computations

of the CMB anisotropies. Consequently, high precision unbiased cosmic parameter measure-

ments from current and future CMB experiments require a sufficiently accurate model for

hydrogen and helium recombination.

The ionization fraction for the SRS is shown in the left panel of Fig. 3.1. It was calculated

using Recfast v1.4.2, which accounts for some of the modification to helium recombina-

tion (Kholupenko et al., 2007; Switzer & Hirata, 2008; Rubiño-Mart́ın et al., 2008; Chluba

& Sunyaev, 2010) using fudge parameters, but neglects detailed radiative transfer corrections

(see Chluba & Thomas, 2011; Ali-Häımoud & Hirata, 2011, and references therein) around

z ∼ 1100. The solid curve corresponds to an ionization fraction with the measured tempera-

ture of the CMB radiation, TCMB ∼ 2.726K (Fixsen, 2009). For comparison and to illustrate

the temperature dependence of the ionization history, the ionization fraction corresponding to

TCMB = 3K is also plotted (dashed curve). A larger value of TCMB means more photons in the

4http://lambda.gsfc.nasa.gov/product/map/dr4/params
/lcdm sz lens wmap7.cfm
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Figure 3.1: The cosmological ionization history (left), Xe ≡ Ne/[Np + NHI], and differential

visibility function (right) for the standard recombination scenario with TCMB = 2.726K (Fixsen,

2009) contrasted to a case with TCMB = 3K. Here Np and NHI represent the number density

of ionized and neutral hydrogen, while Ne denotes the number density of free electrons. The

visibility function has been plotted in units of maximum visibility.

Wien tail of the CMB blackbody, so that the matter is kept ionized until lower redshift.

On the right the corresponding differential visibility functions (or visibility functions for

short) are plotted:

g(z) ≡ de−τ(z)

dη
,

where η is the conformal time and τ is the Thomson scattering optical depth from redshift z

to now.

The visibility function describes the probability that a photon we observe today last scat-

tered off free electrons at a certain position along the line of sight. The CMB anisotropies

formed mainly during the epoch of hydrogen recombination defined by the peak of the visibil-

ity function located at redshift z ∼ 1100. They are thus most sensitive to changes around the

maximum of visibility. For example, an increase in the width of the visibility bump corresponds

to a more extended or slower recombination process, leading to more Thomson scatterings of

photons off free electrons. These scatterings lead to the cancellation of the CMB anisotropies

along the line of sight on scales comparable and smaller than the recombination width, while

enhancing the polarization signal on larger scales. The location of the maximum of the visibil-

ity function for an assumed cosmological model, on the other hand, determines the distance to

the last scattering surface. This in turn affects the positions of the peaks of the CMB power

spectra. Similarly, any change in the ionization history, through affecting the visibility, leads
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to (possibly measurable) changes in the CMB power spectra.

As the right panel of Fig. 3.1 indicates, at high redshifts z & 1400 the visibility function falls

off very quickly. At those times the number of free electrons is still so large that scatterings

occur very frequently and the mean free path is very short. Consequently, the part of the

ionization history which is connected to helium recombination mainly affects the damping tail

of the CMB anisotropies, but even there the effect is rather moderate, as in the redshift range5

1400 . z . 3000 helium can at most alter the number of electrons by ∼ 8%.

3.3.2 Choice of perturbation parametrization

There are different ways to parametrize possible deviations from the assumed fiducial ionization

history in a (semi-)model-independent way. For example, to study how well the low redshift

ionization history (6 ≤ z ≤ 30) can be constrained by future CMB data, Hu & Holder (2003)

and Mortonson & Hu (2008) introduced changes in the ionization fraction in different redshift

bins with δXe(z) = const to parametrize the uncertainties. This is a valid choice for the low

redshift region, because our ignorance of the underlying model of reionization does not suggest

any preferred non-uniform weighting of the perturbations at different redshifts. In this regime

δXe(z) probes the ionization fraction itself and not perturbations guided by a fiducial model.

The results from this choice of parametrization are shown to be fiducial model-independent

which is expected due to the weak signal from the reionization process.

In contrast to this, at high redshifts (z ∼ 1100) there is strong theoretical support for

the exhaustively studied model of recombination in the realm of standard atomic physics and

radiative processes. Also, the current generation of CMB data is sensitive to changes in Xe at

the level of a few percent. Therefore the main assumption in this paper is that the fiducial model

for the ionization history, Xfid
e (z), is close to the true underlying history, Xe(z), which we are

looking for. We call this method semi-blind emphasizing our belief in the SRS as the framework

of recombination, with the search for deviations being limited to small perturbations around

this reference model. The goal is to detect or place upper limits on possible small deviations.

Clearly, if data point toward significant deviations from the SRS, an iterative approach should

be adopted, as discussed in § 3.5.4.

With small deviations in mind we can write:

Xe(z) = Xfid
e (z) + δXe(z),

with |δXe|/Xfid
e � 1. A natural parameter to describe the perturbation is then the relative

5The recombination of doubly ionized helium ends around redshift z ∼ 5000.
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deviation in the ionization fraction:

δu(z) ≡ δXe(z)/X
fid
e (z) with |δu(z)| � 1. (3.1)

This parametrization has the advantage of always satisfying the necessary condition Xe ≥ 0.

It is also straightforward to fulfill Xe ≤ Xe,max in the simulations, where Xe,max is determined

by Yp, the primordial helium mass abundance, through Xe,max ' 1 + Yp/2(1 − Yp). The

parametrization in Eq. (3.1) weights possible perturbations at different redshifts by the fiducial

ionization fraction. This implies that for δu(z) = const the absolute change in the ionization

fraction |δXe| is down-weighted in the freeze-out tail of Xe (z . 800; see Fig. 3.1), compared

to perturbations around maximum visibility (z ∼ 1100) where Xe rapidly approaches unity.

Throughout this paper δu(z) as defined in Eq. (3.1) is our main choice of parametrization.

A more general parameter which includes the above parametrization as a special case is

given by:

δu(z) ≡ δXe(z)/[X
fid
e (z) + σ(z)], (3.2)

where σ(z) ≥ 0 can be a constant or otherwise convenient function of redshift allowing to focus

on different redshift ranges of interest. In particular, when considering possible modifications

to the ionization history introduced by energy injection, e.g. because of annihilating dark

matter, or decaying relic particles (Chen & Kamionkowski, 2004; Padmanabhan & Finkbeiner,

2005; Zhang et al., 2006, 2007; Hütsi et al., 2009; Slatyer et al., 2009; Galli et al., 2009a; Hütsi

et al., 2011; Galli et al., 2011), where the freeze-out tail of recombination is disturbed, a value

of σ � Xfid
e might be a good choice, giving higher weight to the perturbations in the lower

redshift part (see § 3.4.1 and Fig. 3.12). In the limit of a high value of σ relative to the fiducial

Xe the parameters approach δu(z) = δXe(z) which uniformly weights perturbations at different

redshifts. This, as already discussed, is a good choice for regions where there is no strong a priori

belief in the underlying model or if the redshifts of interest have comparatively low Xe where

δu(z) with σ = 0 does not lead to strong enough signals to probe. In principle, a conveniently

chosen redshift dependent σ(z) is a tool to effectively incorporate our prior knowledge of the

ionization history in the parametrization of its perturbations. For example, with δu(z) defined

by Eq. (3.2) one can smoothly interpolate between relative and absolute perturbations to Xe, at

high and low redshifts respectively. Also it is clear that one can focus on different parts of the

recombination history by limiting the redshift range over which the eigenmodes are constructed,

e.g., just on reionization (0 . z . 30) or helium recombination (1400 . z . 3000).

Alternative parametrizations

We comment that instead of directly perturbing the ionization fraction, as we chose here,

it is plausible to parametrize possible changes in the physical sources of perturbation to the
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Figure 3.2: Localized perturbations in the Xe history, in the form of M4 splines (left) and the

derivatives of the C`’s with respect to the amplitude of each perturbation (TT power spectrum

in the center, EE on the right).

Figure 3.3: Similar to Fig. 3.2 but for non-localized perturbations in the form of Chebyshev

polynomials.



Chapter 3. Eigen-analyses of recombination histories 58

ionization history, such as energy injection in the medium which leads to excitation or ionization

of atoms, or the Lyα escape probability during recombination (see introduction). For example

Mitra et al. (2011) chose the number of photons in the IGM per baryon in collapsed objects as

the parameter to study the low redshift ionization history. Alternatively, one could modify the

fudge factors or functions in Recfast, or alter the expansion rate given by the Hubble factor,

H(z).

Each of these possibilities implies different priors on the regions that can be altered and,

e.g., in the case of H(z), other aspects of the cosmological model are also affected. They also

cover, in general, only a limited class of changes to the recombination history. When interested

in perturbations to the ionization history, Xe is the physical quantity which, via the visibility

function and the optical depth, most directly enters the Boltzmann equations describing the

evolution of radiation anisotropies routinely solved using the Boltzmann codes such as Camb

(Lewis et al., 2000) or Cmbfast (Seljak & Zaldarriaga, 1996).

The ionization fraction has the additional advantage, over the visibility and the optical

depth, of being straightforward to limit to physically allowed values. The nearly direct mathe-

matical encounter of Xe with CMB anisotropies guarantees that any perturbation in the plasma

that would lead to changes in the radiation anisotropies should go through and thus be reflected

in Xe. Therefore the relative changes in Xe constitute our preferred physical parameters.

We close by mentioning that, it is also theoretically possible to consider different vari-

ables for time such as (conformal) time, optical depth and scale factor. However, for our

purpose we choose to work with redshift to describe temporal dependence. In principle differ-

ent parametrizations, if they cover the same range of physical perturbations, can be transformed

to one another with the proper change of the a priori distribution of parameters. Here, in the

absence of physically motivated constraints, a uniform prior is assumed for perturbations at

different redshifts regardless of parametrization (here, e.g., for various values of σ in Eq. (3.2)).

If the perturbation is strongly constrained by data, the choice of the prior does not play a major

role.

3.3.3 Basis functions and their different characteristics

Having chosen the parametrization, we now expand the perturbations in a discrete set of mode

(or basis) functions, ϕi(z):

δu(z) =

N∑
i=1

yi ϕi(z) + r(z) zmin ≤ z ≤ zmax (3.3)

and δu(z) = 0 elsewhere. Here r(z) is the residual and yi’s are the parameters defining the

strength of the mode ϕi(z). Often we take ϕi(z) to be localized in z about a knot value zi, but
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this is not necessary. We can, for example, choose the ϕi(z) to form a complete orthonormal set

in which case N →∞ and the residual r approaches zero. Below we discuss different possibilities

for the mode functions. We modified the publicly available code Camb6 to simulate CMB power

spectra for a more general recombination scenario that includes perturbations on top of the SRS.

Introducing narrow features into the ionization history also required an increase in the redshift

sampling of Xe. We checked the numerical convergence and stability of the results by using

high accuracy settings.

Localized basis functions. We first investigated three sets of localized basis functions: Gaus-

sian and triangular bumps, which can be considered as approximations to the Dirac δ-function,

and M4 splines, a commonly used kernel in Smoothed-Particle Hydrodynamics. For a detailed

description of these functions and how their properties compare, see Appendix 3.7.1. As exam-

ples for localized perturbations, Fig. 3.2 shows three perturbation functions δu(z) = δ ln(Xe)

using M4 splines (left panel) and the corresponding C` response in TT and EE. The pertur-

bations are located at different redshifts and have equal widths. We see that the amplitude

of the response typically increases at smaller scales indicating a change in the duration of the

recombination epoch (i.e., the effective width of the visibility function). The C` response also

has an oscillatory component similar to a change of the position of the visibility peak. These

oscillations are most noticeable for the perturbations close to the visibility peak (z ∼ 1100).

Non-localized basis functions. We also expanded the perturbations in terms of two non-

localized basis functions, namely a Fourier series and Chebyshev polynomials. For more details

see Appendix 3.7.2. The non-local basis functions are very different in nature from the localized

ones discussed above. Therefore the response of the observables (here the C`’s) to the pertur-

bation δu(z) in the form of these functions is also expected to be rather different. Figure 3.3

shows the C` responses when perturbing the ionization history using Chebyshev polynomials

with different frequencies. We see that perturbations with low frequencies, covering a large

redshift range, lead to C` responses with much larger mean amplitudes when compared to the

perturbations in the form of local bumps (Fig. 3.2). However, as the frequency of the oscillations

of the basis function increases, the response becomes weaker and its oscillations damp away.

That is because neighbouring oscillations lead to similar responses in the C`’s with opposite

signs and can partially cancel each other. In other words, the CMB power spectra are less

sensitive to high frequency perturbations in the ionization history.

In principle, in the limit of large mode number, all bases work well (see §3.4.1). However, we

found that for the recombination history, although non-localized basis sets have their virtues,

the z-localized bases are better, especially if we are trying to describe narrow features in redshift.

6http://camb.info/
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We return to this point in § 3.4.1.

3.3.4 Constructing the eigenmodes

So far we introduced our choice of parametrization for characterizing possible perturbations to

Xe and illustrated how different set of basis functions affect the CMB power spectra. In principle

all the amplitudes yi defined in Eq. (3.3) are needed for a (nearly) complete reconstruction of

a general perturbation δu(z). However, in practice data cannot constrain the perturbations in

detail in many cases. As we saw in Fig. 3.3, very high frequency perturbations are expected to

lead to much smaller signals.

To avoid dealing with many correlated (and possibly weakly constrained) parameters (i.e.,

the yi’s), we construct a set of their linear combinations which are uncorrelated with each other

and only keep those combinations that are most constrained by data. This procedure provides

a hierarchy of mode functions and their corresponding signals in the CMB temperature and

polarization power spectra. Exclusion of the weakly constrained eigenmodes does not affect

the measurement of the rest of parameters since the eigenmodes describing the recombination

perturbations are by construction uncorrelated. The standard well-developed procedure of

using an orthogonal transformation to replace the parameters of the problem with a set of

uncorrelated variables is called principal component analysis or PCA for short. The parameter

eigenmodes were used for CMB in Bond (1996a) and subsequently in Bond et al. (1997) and

many subsequent papers.

In the process of eigenmode construction for the perturbations, assuming the standard pa-

rameters are known with high precision (see discussion in § 3.4.3), one only needs to deal with

the perturbations in a fixed background cosmology. We call these modes Xe eigenmodes, or

XeMs for short. However, for cases where the cosmic parameters are also measured simulta-

neously with the perturbations, these XeMs are no longer the optimal perturbation patterns.

They do not stay uncorrelated and the uncertainty in their measurement increases, as we see

in § 3.5.1. In such cases, the effect of the correlation of the cosmic parameters with the pertur-

bations needs to be taken into account while constructing the eigenmodes. In other words, the

modes should be marginalized over the standard cosmic parameters. We call these eigenmodes

the extended Xe eigenmodes or eXeMs. The eXeMs stay uncorrelated to each other (but not

necessarily to the standard parameters) even in the presence of varying background cosmology.

A detailed discussion of the PCA for both fixed and varying background cosmology is presented

in Appendix 3.7.3.

In general, the PCA needs to be applied to the whole ionization history simultaneously (as

well as the standard cosmic parameters), since we do not know a priori how the ambiguity

in one epoch affects the measurements of perturbations in other epochs. However, if it turns
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Figure 3.4: The six most constrained XeMs with δu(z) = δ ln(Xe +σ) as the parameter, having

four different values for σ, and with Gaussian bumps as the basis functions. The maximum

and width (at 68% and 95% levels) of the Thomson visibility function have been marked in all

figures.

out that a particular period of Xe history could be relatively well constrained, e.g. by other

cosmological probes, one could leave that epoch out of perturbations. Moreover, choosing

a suitable parametrization, potentially changing over time to properly take into account the

different physics at different epochs, is a necessary but not straightforward task. In this work,

the focus is on the epoch of recombination since that is where the main CMB signal is coming

from. A more complete analysis for the whole ionization history or where different parts of it

are considered simultaneously is for future work.

We mention that in the process of eigenmode construction it is also possible to treat the

standard parameters depending on the way they affect the power spectra. Among the standard

parameters, Yp has this unique property of influencing C`’s only through its impact on Xe.

In other words, if we find the Xe template in Xe parameter space corresponding to Yp, i.e.,

dXe/dYp, small changes in Yp can be mimicked by properly changing the amplitude of this
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template while Yp is left unchanged. Note that changes in other standard parameters either

directly lead to changes in the CMB with no influence on Xe (such as ns and As), or have

both direct and indirect (i.e., through Xe) impacts on the CMB (such as Ωb). Therefore, when

including a Yp-like parameter in the analysis, we can restrict our search for the perturbation

eigenmodes to the part of Xe space which is uncorrelated to the Xe template corresponding to

this parameter as described above. In this way if perturbations to Xe are initially described

by N parameters, in the end we have the Yp-like parameter or its associated template as one

parameter and N −1 eigenmodes which are uncorrelated to the Yp-like parameter. These N −1

eigenmodes together with the Yp-like parameter fully describe the original N -dimensional space

of the perturbations. However, for the purpose of this work we did not further explore this

possibility.

3.4 Perturbation eigenmodes for Recombination

In this section we follow the procedure of § 3.3.4 (and Appendix 3.7.3) to find the eigenmodes

for perturbations in the ionization fraction at high redshifts. We choose the redshift range

of [200, 3000] which covers hydrogen and singly ionized helium recombination (z ∼ 1100 and

z ∼ 1800 respectively) as well as part of the dark ages while leaving reionization (z . 30)

unaltered. We assume the fiducial recombination history is given by the SRS, as explained in

§ 3.3.1, unless otherwise stated.

In the following (and in Appendix 3.7.4) we compare the eigenmodes generated by using

various bases and several different parametrizations and study some of the aspects associated

with them, such as their convergence and fiducial model dependence. Special attention is given

to perturbation to helium recombination. We also study how including the standard cosmic

parameters in the analysis changes the eigenmodes. We propose an information-based criterion

for truncating the eigenmode hierarchy to be used in the data analysis. Finally, in two examples,

we show how these eigenmodes help reconstruct some physically motivated perturbations.

3.4.1 XeM construction

In this section we use the perturbation parametrization δu(z) = δ ln(Xe +σ) with various values

of σ, including σ = 0. For each σ we calculate the N×N Fisher information matrix as explained

in the Appendix 3.7.3 where the N parameters are the amplitudes of the perturbations in the

form of the basis functions (e.g., Gaussians), i.e., yi’s introduced in Eq. (3.3). The standard

cosmic parameters are fixed to their fiducial values. For the data we simulate the TT , TE

and EE spectra up to ` = 3500 for a full-sky, cosmic variance-limited (hereafter CVL) CMB

experiment, unless otherwise stated. We then construct the Fisher matrix (Eq. (3.8)) and from
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Figure 3.5: The three most constrained XeMs for five different basis functions (with 160 pa-

rameters).

Table 3.1: The forecasted standard deviations of the first six XeMs (σ = 0) from the Fisher

analysis for different observational cases.

XeM 1 2 3 4 5 6

CVL(`max = 3500) 0.003 0.009 0.013 0.016 0.022 0.047

CVL(`max = 2000) 0.011 0.019 0.024 0.041 0.094 0.190

CVL(`max = 3500, T only) 0.004 0.021 0.064 0.103 0.208 0.275

Planck-ACTPol(`max = 3500) 0.015 0.047 0.068 0.13 0.22 0.31
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Figure 3.6: Testing the convergence of the eigenmodes. As examples, the second and the sixth

most constrained XeMs are shown for cases with different number of parameters (40, 80, 160

and 320) and with M4 splines as the basis functions. We see that the modes for 160 and 320

parameters are basically the same, indicating that these modes have already converged with

160 parameters.
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it the N XeMs (Eq. (3.10)). The first six XeMs for N = 160 and for four values of σ are shown

in Fig. 3.4. The first row in Table 3.4 shows the forecasted errors of these XeMs for σ = 0,

obtained from the eigenvalues of the Fisher matrix. Note that including standard parameters

in the analysis, e.g. in Markov-Chain Monte-Carlo (MCMC) simulations, increases the error

bars, as we discuss in § 3.5.

We see that the first six XeMs – which are the most constrained modes – all have the

strongest variations close to the maximum of Thomson visibility function and the freeze-out

tail is not perturbed significantly, especially for lower values of σ’s. As σ increases, however,

the amplitude of the XeMs in the freeze-out tail increases. This is because choosing σ > 0

results in over-weighting the signal from perturbations at low z (with low Xe) compared to a

case with σ = 0 for the same value of δu(z). It is illustrated in § 3.4.7 that a relatively high

value for σ is the preferred choice for studying perturbations that most significantly alter the

freeze-out tail.

The oscillations around helium recombination (z ∼ 1800) have also much smaller amplitude

than those at z ∼ 1100. This is expected since the CMB anisotropies are most sensitive to

perturbations during maximum visibility and features at low and high redshift are not weighing

as much in the CMB power spectra, if uncertainties close to z ∼ 1100 are admitted. This in

turn implies that only once the ionization history during hydrogen recombination is known well

can small modifications at higher redshift or in the freeze-out tail be constrained.

In Fig. 3.4, we can observe another aspect of the XeMs: the larger the expected error bar

the more high frequency oscillations the modes have and the further away from the visibility

peak they probe. This is again understandable, since neighbouring ups and downs in the mode

functions lead to partial cancelation of the effect on the C`’s. Once several oscillations are

occurring close to z ∼ 1100, signals produced farther away from maximum visibility can start

competing with those from z ∼ 1100, and hence become constrainable by the data.

One also expects the XeMs to be independent of the choice of the basis functions. We demon-

strate this by trying the five different sets of basis functions of § 3.3.3 (see also Appendix 3.7.1

and 3.7.2): Chebyshev polynomials and Fourier series as orthogonal non-local functions of red-

shift, and M4 splines, triangular and Gaussian bumps as localized basis functions. We find that

the first few XeMs are practically the same independent of the chosen expansion basis (three

sample XeMs are shown in Fig. 3.5), although individual perturbations in different bases lead

to totally different C` responses (cf. Figs. 3.2 and 3.3).

The eigenmodes are also converged and do not change by including a larger number of

parameters. We tested this by trying N = 40, 80, 160 and 320 in different bases and found

that by N = 160 the first few modes are converged (cf. Fig. 3.6). For the case of M4 spline

functions the robustness of the results should also be checked against increasing the width of
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the kernel. By comparing the (first six) XeMs with h = 1.5δz (as defined in Appendix 3.7.1) to

those with h = 3δz, we conclude that the modes have already converged for h = 1.5δz which

we adopt for the rest of this paper.

However, as we go to modes with higher uncertainty (not shown and used here), the XeMs

from different bases start to slightly differ from each other. A larger number of basis functions

are required to make these higher XeMs agree as well. Moreover, we found that the higher

(poorly constrained) XeMs, in particular from the extended basis expansions such as Fourier,

become dominated by numerical noise. The reason is that for weakly constrained modes where

the higher frequencies start to play a more important role, the impact of adjacent ups and

downs from the high frequency perturbations (e.g. sine functions) may not be well resolvable

in the C`’s, resulting in their net effect being dominated by numerical noise. For the localized

basis functions, as long as the individual bumps are numerically resolvable, we do not find this

issue, because each perturbation has just one bump with no destructive neighbour.

For more precise computations of the higher XeMs improvements of the numerical treatment

in Camb would become necessary. We tried several obvious modifications, as well as different

settings for the accuracy level, but were unable to stabilize the results for very high frequency

modes. However, since in the analysis we are hardly using more than a few XeMs, for the

purpose of this work this was sufficient.

In Appendix 3.7.4 we also studied how the eigenmodes respond to changes in the fiducial

model and simulated CMB dataset used for their construction.

3.4.2 eXeM construction

The XeMs discussed so far were constructed with non-varying standard parameters and there-

fore can be considered as the limiting case of zero errors on the standard parameters. However,

as mentioned in § 3.3.4, the eigenmodes become correlated when they are simultaneously being

measured with the standard parameters, due to their degeneracy with standard parameters.

The strength of the impact of these correlations on the XeM estimation depends on the (prior)

constraints on the standard parameters. It is therefore worthwhile to see how the modes and

their rank ordering change if the standard parameters are allowed to vary as well.

Fig. 3.7 illustrates the first three eXeMs constructed after marginalization over the main six

and seven (including Yp) standard parameters. For all cases considered in this section we set

σ = 0. The eXeMs have stronger high redshift features compared to the XeMs. This implies

that the degeneracy between the standard parameters and some features in the perturbations

of the ionization fraction has pushed back some patterns of high significance to lower levels

opening up the room for some high redshift or higher frequency patterns which only had the

chance to show up at lower significance XeMs.
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Figure 3.7: The three most constrained eXeMs. The solid blue lines correspond to modes

constructed after marginalization over six standard parameters while for the dashed red curves

Yp is marginalized over in addition.

Table 3.2: The forecasted standard deviations of the first six eXeMs from the Fisher analysis

constructed by marginalization over different number of standard cosmic parameters and for

different observational cases. In all cases, `max = 3500.

eXeM 1 2 3 4 5 6

CVL, marg: six std 0.011 0.012 0.029 0.052 0.059 0.064

CVL, marg: six std + Yp 0.011 0.027 0.029 0.052 0.059 0.071

Planck-ACTPol, marg: six std 0.058 0.074 0.189 0.308 0.439 0.532

CVL, marg: ns, As 0.009 0.011 0.016 0.018 0.033 0.059

Table 3.3: The coefficients of projection of the six most constrained eXeMs on the first eight

XeMs.
XeM 1 XeM 2 XeM 3 XeM 4 XeM 5 XeM 6 XeM 7 XeM 8

eXeM 1 -0.00 -0.90 0.21 -0.29 -0.12 0.02 0.02 0.01

eXeM 2 -0.76 -0.05 -0.48 -0.35 0.16 -0.02 -0.02 -0.01

eXeM 3 -0.31 0.34 0.42 -0.38 -0.54 -0.41 0.02 -0.11

eXeM 4 -0.35 0.13 -0.48 -0.31 -0.50 0.27 -0.28 0.37

eXeM 5 0.24 -0.01 -0.15 -0.20 0.06 -0.48 0.63 0.49

eXeM 6 -0.19 -0.22 -0.07 0.41 0.00 -0.41 -0.55 0.49
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The modes in the shown two cases (i.e., marginalized over six and seven standard param-

eters) differ only slightly. That is because Yp is rather weakly constrained using CMB data

alone and in the presence of other standard parameters its role in shaping the eigenmodes is

only secondary. If, on the other hand, we hold the six standard parameters fixed and only let

Yp vary, the eigenmodes are more significantly affected (see Fig 3.8). The reason is that Yp is

comparable in significance to small changes in the ionization fraction and marginalizing over it,

without the dominance of the standard parameters, leads to marked changes in the eigenmodes.

The forecasted errors on the first six eXeMs with and without Yp included are compared in Ta-

ble 3.4.2. We see that the errors are mostly the same, again implying the subdominant role of

Yp. In terms of the errors the most affected modes are eXeM 2 and 6.

It is instructive to see how the eXeMs can be constructed from the XeMs. Table 3.4.2 shows

the coefficients of the projection of the first six eXeMs on the best eight XeMs. Note that the

most constrained eXeMs have their strongest projections along these first few XeMs and the

contribution from all other modes, i.e., higher than the eighth mode, is at most about a percent

for these first six eXeMs. This means that allowing the standard parameters to vary mixes

and rearranges the first few XeMs with negligible leakage from higher neglected XeMs. This

implies that using similar number of XeMs and eXeMs in an analysis of possible recombination

perturbations should give similar results for the reconstructed modification in the ionization

history, at least for the CVL case where relatively large number of eigenmodes are included.

However, it also turns out that the eXeMs perform better than the XeMs in the simulated

analysis of Planck data, where only 1-3 modes seem to be constrainable. The main advantage

of the eXeMs is that one can obtain more realistic estimates for the error bars directly after

the construction of these modes.

3.4.3 From eXeMs to XeMs

The two sets of ionization perturbation eigenmodes introduced and constructed so far, i.e., the

XeMs and the eXeMs, allow us to best describe and measure the uncertainties in the ionization

fraction in the two extreme ends of our knowledge of the standard cosmic parameters. The

eXeMs present a case where the tightest constraints on the standard (six) parameters are from

CMB data alone. Therefore a simultaneous measurement of the standard parameters and the

uncertainties in the ionization fraction, using the CMB dataset at hand, is required. The

construction of the XeMs, on the other hand, assumes the standard cosmic parameters are

measured with high accuracy from other cosmological probes and the CMB data are only used

for the direct measurement of the ionization history. In other words, the XeMs, by ignoring the

uncertainties in the standard parameters, extract the maximal amount of information that the

CMB data would ever have to offer about the ionization fraction.
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Figure 3.8: The first three eXeMs with only Yp being marginalized over (dashed blue curves).

For comparison, the first three XeMs are also plotted (solid black curves).

Between these two limiting cases, there is a gray region where, depending on the dataset at

hand, tight priors from non-CMB surveys can be imposed on some of the standard parameters

while the rest are marginalized over when constructing the eigenmodes. For example, if all

standard parameters, but the inflationary ones As and ns, are measured to very high precision by

other probes, such as large scale structure, baryonic oscillation, lensing and supernova surveys

(e.g. LSST7, Pan-STARRS8, BigBOSS, WFIRST9, EUCLID10), the corresponding eigenmodes

would be constructed after marginalization only over these inflationary parameters.

Fig 3.9 compares the first three XeMs with eigenmodes only marginalized over As and ns.

The forecasted errors on these eigenmodes (from the Fisher analysis) are presented in the last

row of Table 3.4.2. Not surprisingly, these modes have smaller errors compared to the eXeMs

which have been made after marginalization over six standard parameters, and have larger

errors compared to XeMs (with no standard parameter varying). These modes and similar

ones after marginalization over different sets of standard parameters smoothly bridge the gap

between the XeMs and the eXeMs. Depending on the datasets available at the time of real

data analysis, the proper eigenmodes marginalized over the appropriate standard parameters

must be constructed. With the current (and very near future) surveys, the most realistic choice

are the eXeMs, constructed according to the experiment under consideration, which should be

quite similar to the Planck-ACTPol-like case studied here.

7http://www.lsst.org/lsst/
8http://pan-starrs.ifa.hawaii.edu/public/home.html
9http://wfirst.gsfc.nasa.gov/

10http://sci.esa.int/science-e/www/object/index.cfm?
fobjectid=42266
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Figure 3.9: The best three eXeMs with the two inflationary parameters As and ns being

marginalized over, compared to the XeMs, where all standard cosmic parameters are held

fixed in the construction process of perturbation eigenmodes.

3.4.4 Perturbations to helium recombination

As mentioned early in this section, the redshift range chosen in our analysis of perturbations

to ionization fraction includes the recombination of singly ionized helium. Some of the most

constrained XeMs we found also extend up to z ∼ 1600. These, therefore imply some impact

from the helium recombination epoch on the XeMs.

One way to confirm this statement is to limit the redshift range of perturbations to mainly

include singly ionized helium recombination, e.g., [1500, 3000], while the total Xe (from both

hydrogen and helium) is perturbed. We observe that the XeMs constructed this way have

comparably large values at the lower redshift boundary (z = 1500) and would steeply go to

zero if enforced by the imposed boundary conditions, e.g., by prior knowledge that only this

specific redshift range of helium recombination is uncertain and the perturbations outside this

range are enforced to be zero. This indicates that despite being restricted to the helium recom-

bination epoch, the XeMs are still most sensitive to changes in the signal from the hydrogen

recombination and changes in Xe due to helium recombination are hardly constrainable, unless

a properly chosen non-uniform prior on δXe is imposed.

As already emphasized, the parameters δu(z) only characterize relative changes in Xe and

the full description of the ionization fraction depends also on the standard cosmic parameters

as well as the relevant theoretical assumptions about the physics of recombination. Among the

standard parameters, Yp has a distinct role in describing an aspect of the ionization fraction

complementary to δu(z) by determining the maximum total number of electrons available at

each redshift: Ne,max = NH
e,max+NHe

e,max ≈ (1−Yp/2)Nb, where Nb is the baryon number density.
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Figure 3.10: The δvis = (vis − visfid), normalized to the maximum of the fiducial visibility,

(left) and the relative changes in the TT and EE power spectra (middle and right) for the six

most constrainable XeMs.

Therefore, although Yp, in the first instance, requires to be marginalized over when constructing

the eXeMs, due to its intimate relation with the ionization fraction it is also legitimate to treat

recombination perturbations and the maximum number of electrons available at each redshift

separately.

In § 3.5.1 we use MCMC to measure constraints on Yp alongside the six standard parameters

and the first few XeMs using (simulated) CMB data. Also in the next section, we explore in

more detail how the eigenmodes change if they are marginalized over Yp.
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3.4.5 Impact of the eigenmodes on differential visibility and CMB power

spectra

It is worthwhile to see how the eigenmodes affect the visibility function and the CMB power

spectra. The left panel of Fig. 3.10 shows the change in the visibility function (normalized to the

maximum of the fiducial visibility) for the first six XeMs. The central and right panels illustrate

the relative changes in the CMB temperature and E-mode polarization power spectra due to

these first six XeMs. The amplitudes of XeMs are chosen proportional to their corresponding

1σ values. Thus, we expect the perturbations to lead to comparable changes in the C`’s. It is

remarkable that such tiny relative changes in Xe (and correspondingly in the visibility) lead to

potentially measurable effects (∼ tenth of a percent) in the CMB power spectra. This confirms

the high sensitivity of the C`’s to tiny changes in the visibility.

From Fig. 3.10 we see that the most constrained mode, XeM 1, has an effect on the CMB

power spectra consistent with changes in the width of the visibility function and a slight shift

of its peak position. For this XeM, due to its narrower visibility width compared to the fiducial

model, the high ` damping in the temperature and polarization anisotropies is smaller. At the

same time, because of fewer scattering opportunities for the photons, this mode leads to less

polarization (negative δCE` at low `’s). Higher XeMs lead to less trivial changes in the width

and position of the visibility function. However, the mainly oscillatory impact of these modes

on the C`’s suggests an effective shift in the position of the visibility function. But, e.g., for

mode XeM 4 the tail of the power spectrum is also less strongly damped, corresponding to a

change in the effective width of the visibility.

3.4.6 Criteria for truncating the eigenmode hierarchy

For the full reconstruction of perturbations to the ionization fraction, all eigenmodes are in

principle needed since they form a complete basis set. In practice, sequentially adding modes

rank ordered in the (possibly renormalized) eigenvalues f−1
k = σ2

k of F−1 (or the eigenvalues

of (F−1)pp in the more general case where the background cosmology also changes ) from low

to high gives a rapidly diminishing return once one goes beyond a dozen or so. And often we

can learn much from using just the first few. As more modes are added, the width covered by

the allowed Xe trajectories increases, as Figs. 3.19 to 3.23 in § 3.5.3 show. The errors in those

standard cosmic parameters which are correlated with the Xe eigen-parameters also increase.

On both counts, it behooves us to develop criteria for selecting which modes to keep, bearing

in mind Occam’s Razor for minimizing the number of new parameters to be added. Thus we

show in § 3.5 what happens when one mode, a few modes and a handful of modes are added.

To be more quantitative, we explore an additional criterion based on not allowing the Shannon
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entropy to increase too much as the next eigenmodes in the hierarchy are added.

The information action is defined in terms of the a posteriori probability of the variables pf

and the evidence E as SI,f(q) ≡ ln p−1
f − ln E . As explained in Appendix 3.3.4, the a posteriori

probability pf ≡ p(q|d, T ) of variables q = (q1, ..., qN ) given the theory space T and the datasets

d is related to the a priori probability pi ≡ p(q|T ), the likelihood L(q|d, T ) ≡ p(d|q, T ) and

the evidence E ≡ p(d|T ) through Bayes theorem: pf = L(q|d, T )pi/E . The information action

can then be written in terms of pi and L:

SI,f(q) = ln p−1
i + lnL−1 .

For basic information theoretic and Bayesian notions and notations see, e.g., the MacKay (2003)

textbook. The framework given here was used in a CMB context by Farhang et al. (2011).)

For us the qk’s are the amplitudes of the ordered eigenmodes for XeMs or eXeMs. Generally

the fluctuations in the standard cosmic parameters from their maximum likelihood values are

included along with these eigen-parameters. We shall assume the prior distribution of the

parameters to be uniform in the qk. The expansion of SI,f to quadratic order is the basic

perturbative approach used throughout this paper, leading to a Gaussian pf : SI,f(q) ≈ SI,m +

q†Fq/2 in terms of the Fisher matrix and the information action minimum SI,m = − ln(piLmax).

The posterior Shannon entropy is related to the final-state ensemble-average of the infor-

mation action and the evidence:

Sf ≡ 〈ln p−1
f 〉f = 〈SI,f(q)〉f + ln E .

For the quadratic order expansion it is

Sf ≈ 1

2
Tr lnF−1 +

N

2
ln(2π) +

1

2
Tr
(
〈qq†〉F

)
=

1

2
Tr lnF−1 +

N

2
(ln(2π) + 1).

The second line follows from the first since the correlation matrix of the q is 〈qq†〉 = F−1. The

associated evidence involves the information action minimum, ln E ≈ Sf − SI,m − N
2 .

The entropy associated with mode n is

Sn ≡ −
1

2
ln fn + (1 + ln 2π)/2 = S(≤ n)− S(≤ n− 1) .

It is a finite difference of the total entropy of the first n modes in the eigen-hierarchy,

S(≤ n) =
n

2
(1 + ln 2π)− 1

2

n∑
k=1

ln fk

and

〈s〉n ≡ S(≤ n)/n
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is the associated mean entropy-per-mode. Fig. 3.11 shows how the relative entropy Sn − S1

and the mean entropy 〈s〉n − S1 = S(≤ n)/n− S1 grow with n for the modes derived from the

localized Gaussian expansion. We also plot two versions of ”white-noise” entropy.

S(wn,≤ n)(σ2) ≡ n(lnσ + (1 + ln 2π)/2),

mean− variance σ2 =
∑
k≤n

f−2
k /n,

mean− weight σ2 = [
∑
k≤n

f2
k/n]−1.

These are entropies maximized subject to the constraint that we only have knowledge of the

integrated σ2, whereas S(≤ n) is the maximized entropy given knowledge of the full spectrum

{f−1
k }. The mean-variance white noise lies above S(≤ n) and the mean-weight white noise

lies below. The mean-weight behaviour is dominated by a ln(n) rise, since the total weight

of modes below n, ln
∑

k≤n f
2
k , quickly approaches a constant, reflecting the dominance of the

high-weight eigenmodes in the sum.

We first discuss why we do not use the traditional evidence ratio often used in Bayesian

theory to decide if a new parameter qn should be added. The log-evidence difference for the

addition of qn is

∆ ln En ≡ ln E(≤ n)− ln E(≤ n− 1)

= Sn − 1/2−∆SI,m.

This requires evaluation of the change in the information minimum. It also has the usual

disadvantage of depending upon the fk measure. Although using eigen-parameters ensures

the same dimensionality for the different fk, it does not fully remove this re-parameterization

ambiguity since there can be a k-dependent scaling. (In fact, we have usually renormalized our

fk so that the associated eigenmodes Ek(z) have unit norm upon z-integration.)

Our preferred approach for hierarchy truncation is to use suitably-defined entropy differ-

ences. In particular we wish to set a threshold control on the injection entropy,

δSinj,n = Sn − 〈s〉n ,

the entropy from adding mode n relative to the mean-entropy from all ≤ n modes. It is related

to the relative increase in phase space volume V (≤ n) = exp(S(≤ n)−n/2) = exp(n(〈s〉n−1/2))

associated with mode additions:

ln
[
V (≤ n+ 1)/V (≤ n)(n+1)/n

]
= Sn+1 − 〈s〉n.

We chose Sinj,n instead because it is zeroed out for mode one, but Sinj,n quickly approaches

Sn+1 − 〈s〉n. For example, if we impose a ∆St ∼ 1/2 threshold in Fig. 3.11 on the CVL XeM
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case, we would use only one mode, whereas ∆St ∼ 1 picks up about 5, ∼ 3/2 harvests about

10, and 2 gives about a dozen. Similar tales can be told for the eXeM CVL case and for both

Planck+ACTpol forecasts.

Another more erratic measure is relative injection jumps, which is nearly Sn+1 − Sn. In

Fig. 3.11, the negative of this is plotted for clarity of presentation. Either reading off from the

figure, or using the lists of errors in Tables 3.4 and 3.4.2, the sample threshold ∆St = 1/2 again

yields only a mode or two.

The fluctuating nature of Sn+1 − Sn implies we can use it to split the modes into groups

of similar information content which arise by thresholding it. Thus, for a chosen threshold

value all the modes between two successive boundaries, where ∆S exceeds a certain value, are

considered as one mode-group. If a mode is selected to be included in the analysis by, say, sharp-

thresholding the injection entropy, it is logical that all of its co-modes be included, which is

akin to softening the threshold. The groupings found with ∆St = 1/2 imposed upon Sn+1−Sn
creates boundaries at one mode, five modes, and so on. These are, not surprisingly, similar to

mode numbers obtained as we move the threshold on injection up, hence that criterion can be

used instead to define mode groups.

Although these entropy difference criteria imply that relatively little additional information

is gained by including more than a handful of higher modes, in real data analysis the situation

is subtler, with other criteria important to consider. For example, depending on how close

the assumed model is to the true underlying history, our measurements of standard cosmic

parameters might be biased. In that case one would like to add enough modes to remove the

bias, sequentially checking if the recovered values of the standard parameters are robust against

introduction of the next eigenmode. A reasonable strategy is to add one mode-group at a time

to the analysis until the biases are removed. In the next section, we show how varying the mode

number cutoff affects our results, roughly following this grouping procedure.

3.4.7 Perturbation reconstruction: eigenmodes as a complete basis

Any function Xe(z) (in the redshift range under consideration) can be expanded in terms of

these XeMs unless it has highly localized features compared to the highest frequency present

in the basis functions or to the width of the bumps in the case of localized modes. That is

because the XeMs are just linear combinations of the original basis functions, and thus cannot

have frequencies higher than the maximum frequency present in the basis functions. On the

other hand, as is clear from Fig. 3.5, strongly localized features in possible perturbations to

recombination history are not constrained with CMB datasets. Therefore the lost features

of an ionization model via expansion by these eigenmodes are not measurable even if modes

with higher frequencies are included in the analysis. In other words, the XeMs serve as a
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Figure 3.11: Various measures of entropy differences defined in the text are plotted against

increasing eigenmode number, for (a) the XeM case and (b) the eXeM case. The Cosmic

Variance Limited mode results have heavy lines or points, the Planck+ACTpol forecast has

lighter lines and points, as indicated. They look quite similar. For this figure, the modes are

determined by the densely-packed Gaussian bump expansion, but the triangular and spline

expansions look similar, differences becoming notable only at higher n. The basic information

on growing entropy is given by Sn − S1, and the mean difference S≤n/n − S1, with the latter

bracketed by the two white-noise entropies. The criteria for threshold selection discussed in the

text involve the injection entropy, Sn − S≤n/n and Sn+1 − Sn (plotted with opposite sign for

clarity). Thresholding at ∆St ∼ 1/2 selects the first mode or two, but mode-groups are also

evident, suggesting modes should be added in blocks rather than singly as we eliminate bias,

check convergence and demonstrate robustness.
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Figure 3.12: The reconstruction of two physically motivated Xe perturbation scenarios on (dif-

ferent number of) XeMs generated with Gaussian bumps (top) and the relative difference in

the temperature power spectrum between the reconstructed perturbations and the full correc-

tions (bottom). Right: The perturbations come from deviation from physical corrections to

the recombination process (CT2011). Here the perturbation parameter is δ ln(Xe). Left: The

perturbations are due to a model of dark matter annihilation. As the perturbation parameter

we used δ ln(Xe + 0.01) to better accommodate for the freeze-out perturbation. A case with

δu(z) = δ ln(Xe), i.e., σ = 0, is shown for comparison.



Chapter 3. Eigen-analyses of recombination histories 78

complete basis for the expansion of constrainable features in the possible perturbations in the

recombination history.

To demonstrate the reconstruction of perturbations using the XeMs we choose two physically

motivated ionization perturbations, one associated with physical corrections to the recombina-

tion process (Chluba & Thomas (2011), hereafter CT2011) and the other due to energy injection

coming from a model of dark matter annihilation (using the description of Chluba, 2010).

Standard recombination corrections

The modification to Xe corresponding to CT2011 is shown in the top left panel of Fig. 3.12

(black solid line). This correction should be added to the Xe from the original version of

Recfast (or the Xe from Recfast v1.4.2 setting HeSwitch = 0). At high redshifts one can see

the effect of accelerated helium recombination caused by absorption of photons in the Lyman

continuum of hydrogen. During hydrogen recombination the corrections are caused by detailed

radiative transfer effects as well as two-photon and Raman scattering events. The freeze-out tail

is slightly higher than obtained with Recfast because of deviations from statistical equilibrium

in the angular momentum sub-states. We note that with Recfast v1.5 a large part of all these

corrections can be accounted for, however, these corrections are not explicitly modelled using

a physical description but have been fudged to reproduce the results obtained with detailed

recombination codes.

We project this δ ln(Xe) on the 160 XeMs constructed from perturbations in the recom-

bination history in the form of Gaussian bumps and with the perturbation parameter being

δu(z) = δ ln(Xe) for the CVL case with `max = 3500, as described in § 3.4.1. Figure 3.12 com-

pares the reconstructed perturbation for three cases with different number of XeMs included.

First note that by including all 160 XeMs the original perturbation is practically fully recov-

ered. If only the 15 most constrained modes are included, the helium correction (z ∼ 1800)

and also hydrogen correction around z ∼ 1100 are well restored while for lower z regions higher

modes are required. The reconstruction by six XeMs, however, is most sensitive to variations

around z ∼ 1100 and cannot tell much about the helium correction. The projection coefficients

for the first six XeMs are shown in Table 3.4.7. For this particular model of corrections to the

perturbation scenario we see that the XeM 1, 3 and 6 are strongly dominant among the first

six modes.

The lower left panel in Fig. 3.12 illustrates the relative difference between the temperature

power spectrum for the reconstructed perturbations and the original full corrections. We see

that with only six modes the error in the recovered C`’s is less than 0.1% although the difference

with respect to the SRS is ∼ 4% at high `’s. Remembering that the changes in the C`’s due to

the full corrections are about a few percent, this shows that the main corrections to the CMB
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Table 3.4: The projection of the modifications to recombination history on the first six XeMs.

Note the different values of σ used for the two cases.
XeM 1 2 3 4 5 6

CT2011 (σ = 0) -0.32 0.08 0.16 0.02 -0.09 0.25

DM annihilation (σ = 0.01) -0.31 -0.30 0.46 -0.14 0.33 0.88

power spectra can be captured by just introducing a small number of modes. The CMB data

indeed are not very sensitive to all the details in the freeze-out tail of recombination and during

helium recombination, unless prior knowledge renders uncertainties at z ∼ 1100 very small. As

we see below, part of the corrections from higher modes are compensated for by biasing the

XeMs included in the analysis.

Dark matter annihilation scenario

As the second example we chose the perturbations arising from a model of dark matter annihi-

lation. It was computed using the description of Chluba (2010) with an annihilation efficiency

fDM ∼ 2× 10−24 eV/s. The difference with respect to Recfast is shown in the right panel of

Fig. 3.12. In contrast to the previous case, the perturbations here are not concentrated around

the maximum of differential visibility but are most significant at lower redshifts. Therefore, for

the decomposition of the DM perturbations we choose δu(z) = δ ln(Xe + 0.01) (see § 3.4.1 and

Fig. 3.4) to allow a better recovery of the relatively large perturbations in the freeze-out tail

without the need to include too many modes. This procedure can be interpreted as placing a

strong prior on (physically) expected changes in the freeze-out tail.

The top right panel of Fig 3.12 shows the reconstructed perturbation including three different

number of XeMs. Here the recovered curve becomes very close to the original perturbation by

including the first 15 XeMs, while six XeMs have a poor recovery of the low-z part. Note that

the plots are illustrating δ ln(Xe(z)) although the XeMs and thus the decomposition of the

perturbation are all performed with δ ln(Xe + 0.01).

For comparison the reconstruction of the perturbation with δu(z) = δ ln(Xe), i.e., with

σ = 0, and with 15 XeMs taken into account is also shown. As expected, this reconstruction

is much poorer compared to the previous case with δu(z) = δ ln(Xe + 0.01) due to its lack

of coverage of corrections in the freeze-out tail. This demonstrates that when there is prior

knowledge in favour of the freeze-out tail of recombination being affected, a parametrization

with σ > 0 should be used in the analysis. However, it is still correct that the main signal is

produced by the modifications close to z ∼ 1100, even if the freeze-out tail apparently has the

largest deviation from the SRS. This is why the first few mode functions for σ = 0 do not have
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any strong low redshift tails. The eigenvectors naturally order the perturbations in the strength

of the associated change in the CMB power spectra, as explained in § 3.4.1. This point is visible

from the lower right panel where the C` difference is plotted for reconstructed perturbations

with different number of modes included compared to the full perturbations. Similar to the

previous case, these differences are several times smaller than the changes in the C`’s caused

by this model of DM annihilation, again meaning that these few modes can well capture the

constrainable features of the perturbations.

Also if we look at the decomposition of the recombination correction into the first six XeMs

(see Table 3.4.7) we see that they all have comparable contributions. This seems reasonable

if we remember that the mode functions, despite being weighted toward the low redshift part,

still have a significant component at high redshift which need to be cancelled out to recover

this pattern of perturbation with its low redshift modification. Therefore the neighbouring

modes have the same order of amplitude to properly cancel out the high redshift perturbations.

This implies that the distribution of the mode amplitudes can in principle hint to the type

of perturbation involved. However, a detailed analysis of this kind requires a model selection

study. E.g., in the data analysis, one could treat σ as a hyper-parameter and estimate its

best fit value at the same time as the corresponding perturbation eigenmodes and the standard

cosmic parameters. This allows us to choose the most preferred model among the class of all

models parametrized by σ.

3.5 Measuring the amplitudes of perturbation eigenmodes for

simulated data

Having constructed the eigenmodes, their amplitudes can now be considered as additional

parameters to be plugged into CosmoMC, ”a Fortran 90 Markov-Chain Monte-Carlo (MCMC)

engine for exploring cosmological parameter space”11. In this section we investigate how well the

most constrained XeMs and eXeMs can be measured by simulated data. To study the impact

of these new variables on the standard parameter estimation, we first consider the case in which

the data are both simulated and analyzed using the SRS (§ 3.3.1). We then study the case for

which the effects of physical corrections to the recombination history (CT2011, see § 3.4.7) are

included in the constructions of the mock data, but are neglected in the fiducial recombination

model used in the analysis. Here the question is how well the eigenmodes compensate for the

deviations from the fiducial model and how much the data are telling us about the amplitudes

of the modes. We also briefly discuss how the eigenmodes should be used in a more general

11 http://cosmologist.info/cosmomc/
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Figure 3.13: 2D contours for the amplitudes of some of the best five XeMs, chosen as examples,

as measured by a CVL experiment and with the standard recombination history. Here the six

standard cosmic parameters were also allowed to vary. That is why the measured eigenmodes

are correlated. The solid black lines mark the 1σ and 2σ contour levels.

Table 3.5: The standard deviations of the first five XeMs from chains produced by CosmoMC,

marginalized over the main six standard parameters (for the CVL case with `max = 3500).

XeM 1 2 3 4 5

1σ 0.046 0.030 0.057 0.088 0.086

case where little prior knowledge about the recombination perturbations is available.

3.5.1 Case 1: The standard recombination scenario

As the first example we choose the fiducial recombination model (here the SRS) to be identical

to the ionization history used in the simulation of the data. We ran CosmoMC to estimate the

best-fit values and errors of the six standard parameters together with those for the perturbation

eigenmodes. We tried the two sets of eigenmodes described before: the first five XeMs and the

first six eXeMs. The number of modes in each case was chosen in rough agreement with the

mode cutoffs described in § 3.4.6 (more precisely with ∆St = Sn+1−Sn = 1
2). The simulations

were carried out for a CVL experiment.

One expects no detection of eigenmodes since the fiducial model for Xe and the underly-

ing model used to simulate data are the same, as verified by Figs. 3.13 and 3.14. Also, by

construction there is almost no visible correlation between the measured parameters for the
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Figure 3.14: 2D contours for the amplitudes of some of the best six eXeMs, chosen as examples,

as measured by a CVL experiment and with the standard recombination history. The six

standard cosmic parameters were also allowed to vary in the simulations.

eXeMs, at least sufficiently close to the best-fit model where the assumptions of the Gaussian-

ity for the likelihood surface approximately holds. However, Fig. 3.13 indicates that the XeMs

become partially correlated with each other, although by construction these were initially un-

correlated12. The reason is that the standard parameters were held fixed during the process

of XeM construction, but now that they are allowed to vary, their degeneracy with the XeMs

induces correlations. These new correlations lead to larger errors than those deduced from the

simple Fisher analysis (Table 3.4 cf. Table 3.5.1) and can also change the rank ordering of the

modes, e.g., the error on XeM 2 is smaller than XeM 1 (Table 3.5.1).

The standard parameters remain unbiased, as the model used for simulating data and the

theoretical model used in the analysis were the same. This is no longer true once recombination

corrections to the SRS are added (see Fig. 3.17). However, the correlations of the eigenmodes

with some of the standard parameters increase the errors of the standard parameters.13 From

Fig. 3.15 we see that among the standard parameters, Ωbh
2, ns and As are the ones most

affected by the introduction of the eigenmodes into the analysis. This can be understood by

noting the relatively high degeneracy between these parameters and some of the eigenmodes.

The most evident one is the correlation of ns with the first XeM which by changing the width

of the visibility function leads to a tilt in the power spectra (compare Figs 3.16 and 3.10).

12We confirmed this statement by running MCMC with non-varying standard parameters.
13It should also be noted that the correlations between the standard parameters themselves also change when

the eigenmodes are introduced.
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Figure 3.15: The contours at 1σ and 2σ levels for the standard parameters as measured by

an ideal experiment in the presence of five (six) XeMs (eXeMs) compared to the case with no

eigenmodes included. The input value of the parameters is shown by the black diamond.
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Figure 3.16: The derivatives of the CT,E` ’s with respect to some of the standard parameters.

table:yp

Table 3.6: Yp and its measured error from simulations for a CVL and a Planck-ACTPol-like

experiment (abbreviated as Pl-Apol), with XeMs and eXeMs taken into account as perturbation

eigenmodes, compared to the case with no eigenmodes.

CVL(std) Pl-APol(std) CVL(+5XeMs) CVL(+6eXeMs) Pl-APol (+3XeMs)

Yp 0.240± 0.0016 0.240± 0.006 0.239± 0.005 0.240± 0.004 0.238± 0.017

For the case of Ωbh
2 and As it is harder to give a visual interpretation. Ωbh

2, leading to

both tilt changes and oscillations in the C`’s, correlates with most of the first five XeMs (the

highest being with XeM 1), while As, being an amplitude multiplier, mainly correlates with

XeM 1. These correlations between the standard parameters and the eigenmodes emphasize

the fact that uncertainties in the recombination scenario in particular undermine our ability

to measure the precise values of ns and Ωbh
2 (see e.g., Shaw & Chluba, 2011). Also note that

the changes in the error bars of the standard parameters are actually practically independent

of which set of eigenmodes are used (Fig. 3.15). This suggests that in terms of the standard

parameter estimation, the use of XeMs or eXeMs should not lead to vastly different results in

the parameter estimation. However, the perturbations are measured to higher accuracy with the

eXeMs (Table 3.4.2) than XeMs (Table 3.5.1) especially if only a few modes are included in the

analysis. Therefore, as long as only CMB data are used, the eXeMs are the more appropriate

choice of eigenmodes.
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Figure 3.17: Contours of some of standard parameters for CT2011 case, with eight XeMs in

one case and 20 eXeMs in the other case included in the analysis, compared to a case where no

perturbation eigenmodes (of any kind) has been included (the solid red curves). The simulations

are performed for a CVL experiment. The input value of the parameters is shown by the black

diamond.
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Figure 3.18: Similar to Fig. 3.17 but for a Planck-ACTPol-like experiment. Here three eigen-

modes were added for both the XeM and eXeM case.
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Finally, we studied how much the presence of perturbations to recombination could affect

our ability to determine the precise value of Yp. The abundance of helium affects the CMB

anisotropies mainly because more helium implies fewer free electrons during hydrogen recom-

bination. Consequently, Yp should also couple significantly to the perturbation eigenmodes.

We therefore performed simulations in which Yp was also allowed to vary. The analysis was

performed with three and five XeMs in the Planck-ACTPol-like and CVL case, and with six

eXeMs for the simulated CVL data. Table ?? compares the 1σ error bars on Yp in these cases.

We see that for the CVL case similar number of XeMs and eXeMs used as the eigenmodes lead

to similar constraints on helium abundance. However, a Planck-ACTPol-like observation gives

a few times larger error due to lack of very high sensitivity to very small scales, although fewer

XeMs compared to the CVL case have been used.

3.5.2 Case 2: A perturbed recombination scenario

As the second example of parameter estimation and perturbation reconstruction, we simulate

data assuming the recombination calculation of CT2011 (Fig. 3.12), while we take the fiducial

model to be as of Recfast v1.4.1 or older (equivalent to SRS with Heswitch = 0, to remove

the helium correction which has been assumed as part of the perturbations in the data). The

purpose here is to find out how well the biases in the standard parameters due to this lack

of knowledge about the physical corrections can be removed by including the perturbation

eigenmodes, and whether or not, data can reconstruct part of the true recombination history.

Constructed from CosmoMC chains for a CVL experiment, Fig. 3.17 illustrates the 2D-

contours of some of the standard parameters. The large biases in the estimated values of

the parameters when only the six standard parameters are measured is due to the mismatch

between the ionization histiry in the theoretical model and the data. Here only contours for

parameters with the largest biases are shown. See also Shaw & Chluba (2011). To compensate

for this mismatch we separately add to the parameters the two different sets of the eigenmodes,

the XeMs and eXeMs, as the new parameters.

As Fig. 3.17 demonstrates, without the eigenmodes the bias in, e.g., Ωbh
2 and ns is about 5σ

and 7σ, while adding the eigenmodes eliminates the bias at the cost of increased error bars (the

difference in measured uncertainty of τ with and without the eigenmodes is rather small). Our

computations also indicate that with the XeMs as the eigenmodes and for a CVL observation,

the minimum number of modes required to remove the bias from these standard parameters is

six. However, we included eight modes in the analysis to take into account the mode-selection

criterion of § 3.4.6 (determined by the relative injection jumps).

We also observe that the recovered values for the amplitude of the XeMs are biased (com-

pared to the theoretically expected values from direct projection on the XeMs, Table 3.4.7), and



Chapter 3. Eigen-analyses of recombination histories 88

Figure 3.19: Left: The δXe/Xe as measured by a CVL experiment by including eight XeMs

(and six standard parameters) in the analysis. The colors show the density of trajectories going

through each point in the z-δXe/Xe space, normalized to one at each z. The maximum and 1

and 2σ widths of the Thomson visibility function have been marked at the bottom of the plot.

As this plot and the next ones indicate, the main recovery of Xe is the slope of the cure around

this visibility peak. Middle and right: similar to the left figure, but for δCTT,EE` /CTT,EE`

trajectories.

change by varying the number of modes included in the analysis. That is due to the correlation

of the XeMs in the presence of the standard parameters, and the fact that not all XeMs are

included into the parameter estimation. As a results, parts of the perturbation that project on

the neglected higher XeMs leak into the lower XeMs. The bias in the measured XeM amplitudes

is similar to the bias in the standard parameters when there are no eigenmodes in the analysis,

but with a much lower significance.

For the same reason, the errors on the XeMs also change when the number of modes included

in the analysis changes. However, as mentioned before, due to the low significance of the

perturbation detection for most of the XeMs this is not as important as for the main cosmic

parameters. For the CVL simulations with six and eight XeMs included, we see that the most

significant contribution comes from the first mode (respectively µ1 = −0.23±0.05, µ1 = −0.18±
0.04) while the other modes are consistent with zero. This is also true for a Planck-ACTPol-

like case, which we come to shortly, where the first XeM is measured to be µ1 = −0.22± 0.06

µ1 = −0.24± 0.12 for one and three XeM measurements.

If instead eXeMs are used as the perturbation eigenmodes, our computations show that at

least ten modes should be added to get rid of the bias for a CVL case. However, as a test case,

we tried including the best 20 eXeMs (see Fig. 3.17).

We also found that although the errors on the standard parameters keep increasing by

adding more eXeMs to the analysis up to around the tenth mode (which is required to remove

the bias) it stays more or less the same afterwards. This suggests that in terms of the constraints
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Figure 3.20: Similar to Fig. 3.19 but with the first ten eXeMs.

on the standard parameters, we do not lose much by increasing the number of eXeMs. Besides,

including more eXeMs does not affect the measurement of the previously included eigenmodes,

as they are by construction uncorrelated (in the presence of standard parameters). Including

more eXeMs, on the other hand, makes the reconstructed perturbations closer to the input

model of perturbations (as in Fig. 3.12). However, as the errors of modes increase by going to

higher orders, the error on the reconstructed curve increases. We address this point in the next

section.

Among the first 20 eXeMs for a CVL experiment, the modes with the most significant contri-

butions (i.e., with at least 1σ detection) are µ2 = 0.11±0.02, µ3 = 0.10±0.03, µ9 = −0.31±0.16

and µ11 = −0.36 ± 0.24 (compare to their theoretical prediction from direct projection of the

perturbations on the eXeMs: µ2 = 0.14, µ3 = 0.10, µ9 = −0.33 and µ11 = −0.39). The reason

that the recovered value, though close, is not exactly the same as the forecast is that the as-

sumption of the Gaussianity of the distributions of the eXeMs and the standard parameters is

only approximate. Also the eigenmodes have been slightly smoothed in the construction pro-

cess which may cause numerical inaccuracy and induce slight correlation between the smoothed

modes. By comparing the theoretical values of projection of the perturbation on the eXeMs

and their forecast errors (from Fisher analysis) we do not expect any perturbation detection

after eXeM 11.

Fig. 3.18 shows similar contours but for a simulated Planck-ACTPol-like observation. For

the analysis we used the eigenmodes (both eXeMs and XeMs) constructed with the Planck-

ACTPol simulated noise. The results from the two sets of eigenmodes are very similar. For

both XeMs and eXeMs, one mode was sufficient to remove the bias (µ1 = −0.22 ± 0.06 and

µ1 = −0.20± 0.06 respectively). This happens to be in agreement with the cutoff mode for the

XeMs while with the eXeMs the second mode should also be included. The lower number of

modes required for the Planck-ACTPol-like case compared to the ideal experiment is expected

due to higher sensitivity of the data in the latter to deviations from the underlying Xe history.
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Figure 3.21: Similar to Fig. 3.19 but with the first twenty eXeMs. As this figure demonstrates,

including a higher number of modes does not necessarily lead to better Xe recovery. Here the

recovered Xe becomes noisier compared to the case with only ten modes included, while the C`

trajectories do not change significantly except for the diminished oscillations around the input

model, as discussed in the text.

We also tried three modes, with no significant detection of the new modes, while the error on

the XeM 1 increases by a factor of 2.

3.5.3 Trajectories

In this section we investigate the reconstruction of the Xe-perturbations using the simulated

data to illustrate the corresponding uncertainty at different redshifts. The left plot in Fig. 3.19

shows the redshift interval covered by 500 δ lnXe-trajectories corresponding to an ideal observa-

tional case with eight XeM included, for the CT2011 model. The color indicates the number of

trajectories passing through each (z, δXe/Xe) bin, normalized to one at each redshift snapshot.

The trajectories clearly show deviations from the SRS, slowly morphing into the correction

obtained by CT2011 (the cyan curve). However, the recovery is not perfect, as the model of

CT2011 has non-zero (and relatively significant) projection on higher XeMs which are not well

constrained by data, and therefore were not included into the analysis. Most obviously, correc-

tions to helium recombination are not captured well when using only the first few XeMs. These

trajectories do not recover the analytical projection of the CT2011 corrections on the first eight

XeMs very well either. The reason, as discussed before, is that the correlation of the XeMs

induced by the standard parameters draws some contribution from the higher absent modes

which biases the measurement of the first few XeMs included in the measurement.

To test this impact of higher, excluded modes on the recovered (low XeM) trajectories, we

ran simulations with the data that only accounted for the contributions from these low modes.

As expected, in the absence of higher modes in the data, the measured XeMs were non-biased

and thus the highest probability region of the trajectories covered the δ lnXe curve of the input
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Figure 3.22: Similar to Fig. 3.19 but for a Planck-ACTPol-like experiment and with only three

XeMs taken into account.

Figure 3.23: Similar to Fig. 3.20 but for a Planck-ACTPol-like experiment and with only three

eXeMs taken into account.

model.

Although our basic target isXe-recovery, the relevant space for determining how well we have

done is that of the CMB data, reduced to the power spectra, CTT` and CEE` . The central and

right panels of Fig. 3.19 show the δCTT` /CTT` and δCEE` /CEE` trajectories, where δCX` /C
X
` =

(CX` − C
X,fid
` )/CX,fid

` and Cfid
` is the fiducial power spectrum without any perturbations. The

transformation from Xe trajectories to C` trajectories shows a much tighter band around the

input signal. This is a visual confirmation of the point that some features in the δ lnXe which

make the Xe trajectories thick do not leave a measurable imprint on the C`’s. Notice there

are small residual oscillations, i.e., in the difference between the recovered trajectory and the

input power spectrum. They coincide with the peaks and troughs of the C` curves for both

TT and EE (which is out of phase with TT ). One source for the oscillations seems to be the

eigenmode truncation, as we will see later. Using only a limited number of the modes in the

analysis causes the non-Xe cosmic parameters to try to match the injected Xe perturbations.

There is also an issue of accuracy of the C` code for some of the distortions.

Fig. 3.20 similarly shows the 2D histograms of trajectories for the case with the first ten
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eXeMs included. Around the maximum of the Thomson visibility function the Xe reconstruc-

tion is slightly stronger and less fuzzy than in Fig. 3.19, with part of the helium recombination

correction being recovered. The improvement in the reconstruction is because for the compu-

tation of these eigenmodes their correlation with the standard parameters have been optimally

taken care of. In contrast, the XeMs used in the previous case are non-optimal if no strong

additional priors can be placed on the standard parameters, leading to confusion in the errors

and the rank-ordering of the modes. Fig. 3.21, constructed with 20 eXeMs included, shows

that the oscillation effect mentioned above around the input C` signal is diminished (and also

partially swamped by the slightly higher dispersion around the input curve) for the 20-mode

compared to the ten-mode case. We also see that including a higher number of modes does not

necessarily lead to better Xe recovery.

Similar trajectories for a Planck-ACTPol-like experiment are shown in Figs. 3.22 and 3.23,

with three XeMs and three eXeMs as the eigenmodes respectively. The trajectories for the

XeMs are more widely spread and blurred due to experimental noise. The eXeMs perform

slightly better. However, the overall reconstruction is clearly lacking detailed agreement with

the full recombination correction of CT2011. In particular, most of the modification during

helium recombination is not captured, as the corresponding signals can only be picked up

with higher modes, which in the considered case are not constrainable at a significant level.

In the δC`/C` plots of these Planck-ACTPol-like cases, there is a small disagreement at high

multipoles between the theoretical curve and the highest probability region of the chains. That

is mainly due to mode truncation at a relatively low mode number, i.e., three. We tested this

by including eight modes and as expected, observed a wider spread around the input signal

with the disagreement diminished.

Although we do not plot the equivalent δC`/C` for the DM case discussed in § 3.4.7, very

similar plots result, namely good recovery of the power spectra with a dispersion around the

input perturbation signal.

3.5.4 Beyond small perturbations

In this paper it was explicitly assumed that the model best explaining the ionization fraction

(or the true model underlying the ionization history) is only slightly different from our fiducial

model, justifying our choice of parameter δ lnXe. Therefore, the eigenmodes constructed for

the fiducial model are also very close to the eigenmodes for the perturbations to the true Xe,

the corrections to the eigenmodes arising from the difference between the fiducial and true Xe

model being only of second order. Under this assumption, a one step search for the best-fit

parameters suffices to extract the available relevant information from the data, provided that

the minimum required number of modes are included in the analysis. Finding the minimum
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number of required modes can by itself involve several parameter estimation steps in parameter

spaces with different dimensions, the criterion being that the best fit values for the standard

parameters stop changing. That is what was done in the examples in this work (§ 3.5.2), to

illustrate how the method works.

However, if the fiducial model is very far from the true Xe history, such that the eigenmodes

are expected to be affected at a significant level, an iterative approach toward finding the best

modes with their associated amplitudes and errors is required: starting with our best guess for

the fiducial model, we estimate its deviation from the true ionization history using the dataset

available and the eigenmodes constructed based on this fiducial model. We then update the

model by adding to it the measured deviations in the eigenmodes (and the standard parameters,

if required). This process is repeated until the convergence of the model and its eigenmodes.

However, current constraints seem to indicate that such an iterative procedure is not nec-

essary within the standard picture. For example, as shown by Shaw & Chluba (2011), the

recombination corrections of CT2011 are readily incorporated using one calibrated redshift de-

pendent correction function relative to the original recombination model of Seager et al. (1999).

Even for CVL errors a second update of the correction functions leads to minor effects. Nev-

ertheless, if something more surprising occurred during recombination, an iterative approach

might be required.

3.6 conclusion and discussion

CMB data today are becoming so precise that small modifications in standard ionization his-

tory are important. This impressive progress not only implies that measurements of the main

cosmological parameters are becoming increasingly accurate, but also means that remaining un-

certainties in the recombination dynamics, e.g., caused by neglected standard or non-standard

physical processes, should be quantified. In this work we discuss a novel approach to constrain

this remaining ambiguity with future CMB data. We performed a principal component anal-

ysis to find parameter eigenmodes that can be used to describe uncertainties in the ionization

fraction. We constructed Xe eigenmodes over the redshift range of [200, 3000], performing sev-

eral consistency checks to prove the correctness of our method. This approach automatically

delivers a hierarchy of mode functions that can be selected according to their error and then

are added to the standard cosmological parameters when analyzing CMB data.

Due to the strong CMB signal imprinted by hydrogen recombination, the most constrained

modes are mainly localized around z ∼ 1100, with some extensions to lower and higher red-

shift regions (see Fig. 3.5 and 3.7). This emphasizes that CMB data are very sensitive to

small changes during hydrogen recombination, while details of helium recombination or small
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changes in the freeze-out tail are hard to constrain, unless strong priors on the reliability of the

hydrogen recombination model are imposed. With the method described here it is possible to

construct mode functions for different experimental situations, also folding in prior knowledge

on the recombination history using appropriate weight functions and fiducial Xe models. For

example, if there are physically motivated and experimentally supported hints toward (signif-

icant) changes in the freeze-out tail of recombination, e.g., due to energy injection from dark

matter annihilation, we propose a parametrization which weights the low redshift part more

strongly (see Fig. 3.4).

After we completed this work, we received a preprint (Finkbeiner et al., 2012) which investi-

gated the use of CMB data to constrain details of energy injection scenarios related to decaying

or annihilating particles. They also used parameter eigenmodes, but these were constructed

based on an energy release history which is in our language akin to the imposition of a strong

prior on the recombination dynamics around z ∼ 1100 and a focus on the freeze-out tail of the

recombination.

We applied the method to different simulated datasets with the aim to assess how well future

CMB experiments will be able to constrain modifications to the standard recombination sce-

nario. (Current WMAP plus ACT and SPT data will provide only relatively weak constraints,

but Planck plus ACTPol and SPTPol will considerably improve the situation.) As a working

example we used the refined recombination calculations of CosmoRec. For simulated CMB

datasets corresponding to Planck-ACTPol-like experiments we found that the first 3 eigenmodes

can be rather well constrained. The addition of these modes allows us to compensate for the

measurable differences between the fiducial old Xe model as given by Recfast to the new

recombination history computed with CosmoRec, and thus partially reconstruct the true Xe

history, without actually directly using the recombination corrections in the analysis. However,

because the first few mode functions are strongly localized around z ∼ 1100 details during

helium recombination and in the freeze-out tail are not captured (Fig. 3.23). The addition of

the first 3 eigenmodes is sufficient to remove the biases in the standard parameters, however, at

the cost of increased error bars. We also show that for CVL limited experiments up to l ∼ 3500

up to 10 modes might be constrainable, in this case allowing us to pick up part of the details

during helium recombination (Fig. 3.20).

The significance of the detection of any perturbation obviously depends on the underlying

ionization history of the real data. In the specific CosmoRec example for Planck-ACTPol-like

experiments, all three modes but the first one are consistent with zero. A significant source

for large errors on the eigenmodes is their correlation with the standard parameters. If tight

constraints are imposed on the standard parameters by non-CMB experiments such as BAO or

SN data, the errors on the eigenmodes will be correspondingly reduced. Comparing the first
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rows of Table 3.4 (where all standard parameters are held fixed) and Table 3.4.2 (where all

standard parameters are being marginalized over) illustrates the effect of this correlation in the

extremes.

This also shows how important one’s knowledge in how well elements of recombination are

known, expressed through prior probabilities, will be. If the uncertainty in the ionization history

during hydrogen recombination can be reliably reduced by other methods then the sensitivity

to small perturbations at higher or lower redshifts is enhanced. We note that measurements

of the cosmological recombination radiation (e.g., see Chluba & Sunyaev, 2006a; Sunyaev &

Chluba, 2009) could in principle provide an alternative way of constraining the recombination

dynamics in the future. In particular, the recombination radiation could exhibit significant

features if something more unexpected occurred during different cosmological epochs (e.g., see

Chluba & Sunyaev, 2009; Chluba, 2010).

In principle, for a complete study of ionization history, late reionization should also be

included in the analysis. Ambiguities in the low redshift part of the ionization history may

affect the measurements of high redshift perturbations and vice versa. However, the main signal

from the reionization epoch is measurable from the very large scale CMB polarization, and the

high redshift perturbations of Xe affect anisotropies with smaller angular scales. Therefore the

signals from these two regions are rather uncorrelated. A more complete analysis for the whole

ionization history or where different parts of it are considered simultaneously is for future work.

An aspect requiring decision when analyzing real data is the choice of parametrization. For

most of this work we weighted the perturbations in Xe by the fiducial history. If, for example,

the recovered perturbations point towards modifications in the freeze-out tail of recombination,

or if there is strong belief that no sign of significant deviations around the maximum of visibility

are present, an alternative parametrization which allows better reconstruction of the tail can

be constructed, using appropriate weight functions that quantify our belief in the underlying

fiducial model.

As discussed in § 3.5.4, our semi-blind XeMs are designed to only probe small perturbations

about the fiducial model Xfid
e . When it comes to real CMB data analysis, iterations of Xfid

e

may be required to ensure no leftover bias remains. We look forward to the application of

iteratively-improved eigenmodes to the coming high resolution CMB data from Planck, ACTPol

and SPTPol.

We thank Doug Finkbeiner, Tongyan Lin and Olivier Doré for useful discussions and Eric

Switzer for his comments on the text. Support from NSERC and the Canadian Institute for

Advanced Research is gratefully acknowledged.
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3.7 Appendix

3.7.1 Localized basis functions

To expand perturbations to the ionization scenario, three sets of localized mode functions have

been considered in this paper: Gaussian and triangular bumps andM4-splines. For the Gaussian

and triangular bumps, we define the ith basis function centered at redshift zi and having width

σi by

ϕi(z) ∝ exp

(
− [z − zi]2

2σ2
i

)
(3.4)

for the Gaussian case and by

ϕi(z) ∝

{
1− |z−zi|σi

|z − zi| < σi,

0 otherwise,
(3.5)

for the triangles. The widths of the bumps σi’s can in general be redshift dependent, enabling us

to differently sample different intervals. However, throughout this work, we have taken them to

be constant. Triangular bumps were used earlier in the principal component analysis of different

reionization scenarios (Hu & Holder, 2003; Mortonson & Hu, 2008). In some circumstances,

the sharp edges in the triangles could cause numerical problems. Smoothed localized functions

such as Gaussians and the M4 splines introduced below have therefore numerical advantage.

Instead of Gaussian and triangular bumps, one can also adopt an approach similar to that

used in Smoothed-Particle Hydrodynamics (SPH), and think of the basis functions as window

functions (or kernels) used to interpolate the properties of particles to any point in the medium.

For us, the particles would be the spline knots (e.g. see De Boor, 2001) at the specific zi with

the associated magnitude yi. There is a smoothing length h associated with the kernel over

which the properties of the particles are smoothed. Another commonly used kernel (other than

the Gaussian considered above) is the cubic M4 spline (e.g. Monaghan, 2005), defined by:

ϕi(z) ∝M4(|z − zi|)

=


1
6 [(2− q)3 − 4(1− q)3] 0 ≤ q ≤ 1;

1
6(2− q)3 1 ≤ q ≤ 2;

0 q > 2 ;

(3.6)

where q = |z − zi|/h. Whereas the Gaussian kernel has non-zero contributions from every

redshift (though the range is usually truncated beyond about 3σ), the cubic spline is compact,

reaching zero for particles beyond 2h.

As mentioned above, in this work the width of the bumps of these mode functions is chosen to

be independent of redshift. We choose σi = δz/2 for Gaussian and triangular bumps (Eqs. (3.4)

and (3.5)) and h = 1.5δz for M4 splines (Eq. (3.6)). In all cases, δz = ∆z/(N+1) is the spacing
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between the centers of adjacent bumps, where ∆z is the redshift range of interest and N is the

number of basis functions used.

As basis functions, it is more convenient if the set of ϕi’s is an orthogonal set. For this, there

should be no overlap between different bumps. On the other hand, there is no way to cover the

whole redshift range – a necessary condition for completeness – with a finite number of non-

overlapping bumps. However, depending on the problem of interest, the width and separation

of the (overlapping) bumps can be properly chosen to ensure all points in the redshift interval

have been covered, while at the same time the orthogonality is not strongly violated.

3.7.2 Non-localized basis function

The most commonly used set of non-localized basis functions is the Fourier series:

ui(z) ∝ cos(iπy) i = 0, 1, 2, ... (3.7a)

ui(z) ∝ sin(iπy) i = 1, 2, ... (3.7b)

y = z−zmid
∆z/2 (3.7c)

where ∆z and zmid are the width and central point in the redshift range of interest. Thus we

have |y| ≤ 1 as is required for Fourier expansion.

Alternatively, we can use Chebyshev polynomials of the first kind, Ti, to form the basis.

These modes are constructed using the recursion formula:

Ti+1(y) = 2y Ti(y)− Ti−1(y)

with initial conditions T0(y) = 1 and T1(y) = y, and y is given by Eq. (3.7c). Chebyshev poly-

nomials of the first kind are orthogonal with respect to the weight function w(y) = 1/
√

1− y2.

These non-localized mode functions, unlike the localized case (with finite number of basis

functions), do not suffer from non-orthogonality. However, both localized and non-localized

sets of basis functions can in practice be considered complete if sufficiently many functions are

taken into account.

3.7.3 Eigenmodes with fixed and varying background cosmology

For a model described by N possibly correlated parameters, there is in general an orthogonal

transformation which linearly maps these parameters into a set of N uncorrelated ones. These

parameters are determined by the eigenmodes of the (N ×N) Fisher information matrix:

Fij ≡ −
〈
∂2 ln pf

∂qi∂qj

〉
, 1 ≤ i, j ≤ N
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where in the language of Bayesian analysis, pf ≡ p(q|d, T ) (with q = (q1, ..., qN )) describes

the posterior probability of the parameters qi’s for the given data d in the theory space T .

I.e., pf = L(q|d, T )pi/E is an update from the prior probability distribution of the parameters,

pi = p(q|T ) driven by the likelihood L(q|d, T ) ≡ p(d|q, T ). Here the evidence E ≡ p(d|T ) is a

normalization factor. We include T in the notation only if there is ambiguity in the theory space

under consideration. The derivatives are calculated at the fiducial values of the parameters.

The ensemble average 〈..〉 is over realizations of the CMB sky and instrument noise.

Under the assumption of uniform priors for the qi’s, the Fisher matrix reduces to:

Fij = −
〈
∂2 lnL
∂qi∂qj

〉
.

In the standard CMB analysis with Gaussian signal and noise, we have L = exp(−∆†C−1∆/2)/
√

2π|C|.
Here ∆ represents the temperature and polarization maps including CMB signal as well as in-

strumental noise and C =
〈
∆∆†

〉
is the theoretical pixel-pixel covariance matrix. With this

likelihood function, the Fisher matrix simplifies to:

Fij =
1

2
Tr

(
C−1∂C

∂qi
C−1 ∂C

∂qj

)
.

In the limit of full sky observation, or in cut-sky cases where coupling between modes of different

scales can be ignored, F can be written as:

Fij = fsky

`max∑
`=2

2`+ 1

2

∂C`

∂qi
C−1
`

∂C`

∂qj
C−1
` (3.8)

with

C` =

(
CTT` e−`

2σ2
+NT

` CTE` e−`
2σ2

CTE` e−`
2σ2

CEE` e−`
2σ2

+NE
`

)
,

where we have included CMB temperature T , E-mode polarization and their cross correlation

TE. Here NT,E
` stands for instrumental noise contribution to the power spectra and σ is the

width of the Gaussian beam. The effect of incomplete sky coverage has been naively taken into

account by the fsky multiplier which reduces the effective number of observed modes.

Our goal here is to find the uncorrelated set of parameters that describe possible perturba-

tions to the ionization history. For this purpose we need to eigendecompose the block of the

inverse of the Fisher matrix which corresponds to the perturbation parameters. In the most

general case with the background cosmology also being varied, the Fisher matrix has the the

following general form

F =

(
Fss Fsp

Fps Fpp

)
, (3.9)



Chapter 3. Eigen-analyses of recombination histories 99

where we have Fss = −
〈
∂2 lnL
∂s∂s

〉
, Fsp = Fps = −

〈
∂2 lnL
∂s∂p

〉
and Fpp = −

〈
∂2 lnL
∂p∂p

〉
, with s and p

symbolically representing the standard and perturbation parameters.

To find the eigenmodes for perturbations after marginalization over the standard param-

eters, under the assumption of ellipsoidal parameter contours, we need to eigendecompose

(F−1)pp and find the eigenvectors. However, the inversion of the Fisher matrix is numerically

problematic as it is ill-conditioned due the non-constrainable parameters which exist in the

parameter space under study.

In the case of fixed standard parameters, the Fisher matrix reduces to the perturbation

block only, and since the eigenvectors of a symmetric matrix and its inverse are the same (with

inverse eigenvalues), there is no need to invert the Fisher matrix before its eigendecomposition.

Similarly to get the eXeM, i.e., the eigenvectors of (F−1)pp with F as in Eq. (3.9), we avoid the

direct full inversion of F by noting that

(F−1)pp = (Fpp − FpsF
−1
ss Fsp)

−1.

The eigendecomposition of Fpp−FpsF−1
ss Fsp then only requires the inversion of the well-behaved

standard parameter block. It is straightforward to directly check that (F−1)pp properly describes

the marginal likelihood of the perturbation parameters:

L(p|d) ∝ e−pTFppp/2
∫
e−s

TFsss/2e−p
TFpssds

∝ e−pT (Fpp−FpsF−1
ss Fsp)p/2.

Here p and s are the arrays of the perturbation and standard parameters.

The eigenmodes we are looking for can now be constructed using the eigenvectors of the

inverse of the pp block of the Fisher matrix (Fpp)
−1 = Sf−1ST where the columns of S are the

eigenvectors of (Fpp)
−1 with their corresponding (non-negative) eigenvalues on the diagonal of

the real diagonal matrix f−1. The eigenmodes we are looking for can now be constructed using

these eigenvectors of the Fisher matrix and the basis functions we started with:

Ek(z) =

N∑
i=1

Sikϕi(z). (3.10)

If the ϕi’s happen to be orthonormal, then we have:∫ zmax

zmin

Ek(z)Ek′(z)w(z)dz = δkk′ . (3.11)

Here w(z) is the weight function with respect to which ϕi’s are orthonormal. Since Eq. (3.11)

is not necessarily fulfilled, we enforce the Ek(z)’s to be normalized to unity (as a matter of

convenience), which is equivalent to a renormalization of the eigenvectors of F. Although in
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general this could change the rank ordering of the modes, in our case a reordering was not

required for the modes included in the analysis. Now, instead of the original ϕi’s, the set of

the eigenmodes can serve as basis functions for the expansion of perturbations (compare with

Eq. (3.3)):

δu(z) =
N∑
k=1

µk Ek(z) + r(z).

In § 3.4.7 we discuss two examples of perturbation reconstruction with different numbers of

eigenmodes taken into account (Fig. 3.12). We demonstrate how well these eigenmodes serve

as basis functions and also which features of the original perturbations are restored (or lost) if

only a subset of the eigenmodes are used in the reconstruction process.

The square root of the eigenvalues of the inverse of the Fisher matrix can be used to forecast

the error bars of the eigenmodes, i.e., fij = σ−2
i δij , assuming the probability distribution of

the parameters is multivariate Gaussian close to the maximum. For non-Gaussian likelihoods,

the σi’s give the lower bound for the errors. In the rest of this paper we use the term error

for the σi’s, as the Gaussianity of the likelihood function close to its maximum is usually a

good assumption. If the modes are sorted in descending order of eigenvalues, the first few (with

smallest σi’s) are the most constrainable. Thus, the constrainable part of the perturbations

to the ionization history can be described by the eigenmodes which have reasonably small

uncertainties (i.e., high eigenvalues), while the rest is practically unconstrainable by the dataset

under consideration.

3.7.4 Fiducial model and dataset dependence

The eigenmodes are by construction fiducial model dependent. In principle, the observables

(such as C`’s) for different fiducial models respond differently to the same perturbations de-

pending on the strength of the signals, at different redshifts, from the unperturbed fiducial

model.

As an example, in Fig. 3.24 we compare the eigenmodes for three fiducial Xe histories.

Two of the models have different CMB temperatures and in the third one lensing has not been

included. In the first two, the different TCMB’s lead to different fiducial Xe’s. Here, the main

difference in the eigenmodes is their shift towards lower z’s for the case with higher CMB

temperature. This is consistent with the delayed recombination shown in Fig. 3.1, remember-

ing that XeMs are primarily localized around the maximum of visibility where the C`’s are

most sensitive to. For the latter case with no lensing, although Xe and the physics around

recombination have not changed, there are still slight changes in some of the XeMs as seen in

Fig. 3.24.

We also checked the robustness of the eigenmodes against changes in the fiducial value of
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Figure 3.24: The three most constrained XeMs for three different fiducial models. The default

model corresponds to the SRS and the effect of gravitational lensing on the CMB anisotropies

has been included. One model corresponds to a recombination history with a different CMB

temperature and in the other model lensing is not included. For the case of the two different

CMB temperatures, the major difference is the shift in the eigenmodes associated to the shift

in the fiducial Xe and visibility functions (see Fig. 3.1).

other parameters and the assumed reionization scenario. We tried a different value for Ωb, as

the parameter most strongly affecting the ionization fraction, 1σ away from its fiducial value.

For the late reionization we tried an extended reionization scenario (i.e., Xe = 1 for z ≤ 6;

Xe = 0.5 for 6 < z ≤ 30 and Xe = 0 elsewhere) radically different from our sharp fiducial

reionization model (the default in Camb). For both of these tests the first six eigenmodes were

found to be the same as our main eigenmodes (Fig 3.5) with tiny differences in the fifth and

sixth modes for the latter case.

This implies that, although the eigenmodes are fiducial model dependent, the constrainable

ones are not practically sensitive to changes in the fiducial model or its parameters in the

limits currently allowed by the data for the standard model of cosmology. That is because

small changes in the fiducial parameters and the corresponding small changes in the ionization

history only affect the XeMs at second order. Here by small we mean changes that lead to

(smaller than or) the same order of magnitude signal in the simulated data as the (few best)

XeMs. The higher XeMs with larger uncertainties are more affected by the same changes in

the fiducial parameters, as these changes are no longer considered small relative to these poorly

constrained XeMs. This non-sensitivity of the best modes to the fiducial values of parameters

does not contradict their significant correlation once the standard parameters are also allowed

to vary, as we see in § 3.5.1.

We also studied the dependence of the XeMs on some properties of the simulated CMB
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Figure 3.25: The three most constrained XeMs with and without polarization and with `max =

2000 and 3500.

Figure 3.26: The three most constrained XeMs for a Planck-ACTPol-like experiment compared

to a CVL experiment.
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datasets used for their construction, such as different `max corresponding to the smallest scale

information present in the data, and different experimental noise levels. The results for a CVL

experiment up to ` = 2000 in temperature and polarization and also a CVL experiment only

sensitive to temperature (up to ` = 3500) are shown in Fig. 3.25. As a more experimentally

motivated case, we calculated the XeMs for simulated Planck-like data14 (using 100, 143 and 217

GHz channels, with effective galaxy-cut sky coverage of 75%) and ACTPol-like data, including

both wide and deep surveys (Niemack et al., 2010). As shown in Fig. 3.26, there is a tiny shift

in the first mode relative to the mode for an ideal experiment and the changes grow as we

proceed to higher modes.

More significant than the small changes in the XeMs constructed with different assumptions

about data, are the forecasted error bars in different cases (see Table 3.4). By removing the

temperature at high `’s or the polarization spectrum, the constraints on the amplitudes of the

modes, determined from the eigenvalues of the Fisher matrix, become considerably larger. All

these errors are calculated with the standard parameters fixed. However, the considered cases

illustrate the general behaviour of the method. Taking into account the correlation between

the perturbations and the standard cosmic parameters leads to relatively higher error bars,

depending on the dataset used (Table 3.4.2).

14http://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESA-SCI282005291 V2.pdf



Chapter 4

Constraints on perturbations to the

recombination history from

measurements of the CMB damping

tail

A version of this chapter is published in the Astrophysical Journal as “Constraints on pertur-

bations to the recombination history from measurements of the CMB damping tail”, Farhang,

M.; Bond, J. R.; Chluba, J.; Switzer, E. R.

4.1 Chapter Overview

The primordial CMB at small angular scales is sensitive to the ionization and expansion history

of the universe around the time of recombination. This dependence has been exploited to con-

strain the helium abundance and the effective number of relativistic species. Here we focus on

allowed ionization fraction trajectories, Xe(z), by constraining low-order principal components

of perturbations to the standard recombination scenario (Xe-eigenmodes) in the circa 2011 SPT,

ACT and WMAP7 data. Although the trajectories are statistically consistent with the standard

recombination, we find that there is a tension similar to that found by varying the helium frac-

tion. As this paper was in press, final SPT and ACT datasets were released and we applied our

framework to them: we find the tension continues, with slightly higher significance, in the new

2012 SPT data, but find no tension with the standard model of recombination in the new 2012

ACT data. We find that the prior probabilities on the eigenamplitudes are substantially influ-

enced by the requirement that Xe trajectories conserve electron number. We propose requiring

104
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a sufficient entropy decrease between posterior and prior marginalized distributions be used as

an Xe-mode selection criterion. We find that in the case of the 2011 SPT/ACT+WMAP7 data

only two modes are constrainable, but upcoming ACTPol, Planck and SPTPol data will be

able to test more modes and more precisely address the current tension.

4.2 Introduction

A primary goal of CMB experiments after the discovery of the acoustic features in the angular

power spectrum was to measure the damping tail. This was achieved by the CBI (Sievers

et al., 2003, 2007a) and ACBAR (Goldstein et al., 2003; Reichardt et al., 2009a) experiments,

and spectacularly verified by the Atacama Cosmology Telescope (ACT, e.g., Dunkley et al.,

2011) and the South Pole Telescope (SPT, e.g., Keisler et al., 2011). There is even higher

precision data on its way from ACT, SPT and Planck. Initially the goal was simply to confirm

that the damping tail agreed with theoretical predictions based on cosmological parameters

determined from the first set of peaks and troughs. Contemporary high-precision data opens

the opportunity for new constraints of cosmological parameters that specificalprogrely influence

the damping tail and have little influence on larger scales. The parameters wagged the tail,

and now the tail can wag the parameters. Examples of these parameters are the primordial

helium abundance Yp and the effective number of relativistic species, Neff . Both experiments

have hinted at a deficit of power in the damping tail through the Yp and Neff probes (Keisler

et al., 2011; Dunkley et al., 2011; Hou et al., 2011). Other physical possibilities have also been

investigated to explain this damping tail tension; these include dark radiation (Smith et al.,

2012; Eggers Bjaelde et al., 2012), the annihilation or decay of dark matter particles (Giesen

et al., 2012), cosmic strings (Lizarraga et al., 2012) or a high-frequency cosmic gravitational

wave background (Sendra & Smith, 2012).

CMB anisotropies are suppressed on small scales by shear viscosity and thermal diffusion

when the photons and electrons are tightly coupled, and by higher order transport effects as

the photons break out from their random-walk Thomson scatterings by electrons to approach

free-streaming. The physics of Silk damping (Silk, 1968) has been heavily explored, as reviewed

in Bond (1996b); Hu & White (1997); Sievers et al. (2003), and is very accurately computed

numerically in CMB transport codes (Seljak & Zaldarriaga, 1996; Lewis et al., 2000). One can

associate a characteristic damping wavenumber kD(z) with the processes, determined by the

steep variation in the mean free path (ne(z)σT)−1 with redshift, where ne(z) is the free-electron

number density at redshift z and σT is the Thomson scattering cross section. The overall

effect on the CMB power spectrum C` can be approximately characterized by an exponentially

damped envelope suppressing the baryon acoustic oscillations, encoded in an associated angular
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multipole damping scale `D ∼ kD(zdec)χ(zdec) ∼ 1350, where χ(zdec) is the comoving distance

to the last scattering redshift zdec ∼ 1088.

Our focus here is how the damping tail is impacted by perturbations of the free-electron

fraction, Xe(z) = ne/(np + nHI), where np and nHI are the number density of ionized and

neutral hydrogen atoms, during cosmological recombination in a model-independent way. This

complements model-independent studies of H(z) variations (Samsing et al., 2012). Opening the

constraint to the functional form of Xe(z) broadens the range of non-standard physics that can

be tested, such as energy injection from decaying particles or dark matter annihilation (Chen &

Kamionkowski, 2004; Padmanabhan & Finkbeiner, 2005), which cause a delay of recombination

(Peebles et al., 2000).

The present data are only suggestive of a damping deficit, so discrimination between physical

causes is not yet possible, but we develop a framework for considering general modifications and

the impact of physical requirements on the posterior distributions. The recombination history

is a central quantity in the interpretation of CMB data, and it has evolved significantly over

time as more and more effects have been included (Zeldovich et al., 1968; Peebles, 1968; Seager

et al., 1999), and, with extensive recent work, it may now have nearly converged (Chluba &

Thomas, 2011; Ali-Häımoud & Hirata, 2011). It is important, however, to test directly whether

tensions may exist which suggest that there are missing elements to the recombination story.

For example, residual uncertainties in Xe(z) directly affect our ability to distinguish between

different inflationary scenarios (Hu et al., 1995; Lewis et al., 2006; Rubiño-Mart́ın et al., 2010;

Shaw & Chluba, 2011).

In this paper we follow the approach of Farhang et al. (2012a) to generate eigenmodes for

perturbations to the high redshift ionization history focussing on the epoch of recombination.

The method is applied to the seven-year WMAP data combined with the 2011 SPT, ACT data

and their recent updates, using a Fisher matrix eigenanalysis (Section 4.3) of finely binned

redshift-localized Xe-modes. In Farhang et al. (2012a) the eigenanalysis was performed for

simulated datasets consisting of CMB maps (or their spherical harmonic amplitudes a`m). Here,

the modes are defined from the measured CMB bandpower errors, which leads to a different

structure for the Fisher matrix. Further extending Farhang et al. 2012, we jointly treat the

foreground nuisance parameters of the ACT, SPT, and WMAP7 experimental data. We use

these data to constrain the amplitude of deviations from the standard recombination scenario in

Section 4.4. In Section 4.5, we investigate the impact of imposing electron number conservation

(through Xe(z)) on the initial and final probability distributions of the parameters and quantify

its effect relative to the information delivered by the data. We conclude with a brief discussion

in Section 4.6.
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4.3 Eigenmodes for Perturbations to the High-z Ionization His-

tory

4.3.1 Eigenmode construction

The functional form of deviations from the standard recombination history can be decomposed

into a set of uncorrelated functions ranked by their significance in the data, here the increasing

order of their forecasted errors. We construct these functions from the inverse of the Fisher

information matrix F for the given combination of data used,

Fij =
∑
b,b′

∂Cb
∂qi

Cov−1
bb′
∂Cb′

∂qj
, (4.1)

where the Cb’s are the simulated bandpower measurements for a fiducial set of cosmic pa-

rameters and for a given experiment, and Covbb′ is the bandpower covariance matrix for that

experiment. The parameters qi include recombination perturbation parameters as well as the

standard cosmological parameters and the various nuisance parameters for the experiments and

for secondary effects. This form for Fij assumes uniform prior distributions for the parameters,

Gaussian likelihoods for the bandpower data points and that information on the parameters

mainly comes from the mean of the bandpowers, Cb, rather than their covariance, Cov. The

latter can be verified for the high multipoles of interest by comparing the contributions to

the Fisher matrix from the mean and the covariance of data (see, e.g., Tegmark et al., 1997).

Gaussianity is a reasonable approximation again for the high multipoles which are of interest in

this work (see, e.g., Verde et al. (2003)). Further, it is the assumption adopted in the released

likelihood codes for SPT and ACT.

We use δ ln(Xe(z)) as the perturbation parameter. Xe is the parameter of direct relevance

to probe the atomic physics involved at recombination. It is also straightforward to limit

its variations within physical ranges. However, it does not affect the CMB anisotropies as

closely as, e.g., ne and τ do. Using ne would also decrease possible degeneracies with baryonic

matter density. Using the log in the expansion balances the low and high z-regimes, but the

data define the region of dominant impact, namely around decoupling, rather solidly in the

hydrogen recombination regime. These perturbations can be represented interchangeably by

any basis that represents their degrees of freedom and does not produce numerical errors (see

Farhang et al., 2012a, for a discussion on other parametrizations as well as various extended and

localized basis functions). Here we have used the cubic M4 spline (see e.g. Monaghan, 2005)

representation, and confirmed convergence against an increasing number of basis functions, for

the explicit Fisher form, eq. 4.1, for these experiments.

As mentioned above, the Fisher matrix considered here includes the Xe(z) amplitudes,

the instrument-dependent nuisance parameters and the six primary cosmological parameters



Chapter 4. recombination history from damping tail 108

(Ωbh
2,Ωdmh

2, θs, τ, ns,∆
2
R), respectively describing the physical baryon density, physical dark

matter density, the angular size of sound horizon at the last scattering surface, the reionization

optical depth, the scalar spectral index, and the curvature fluctuation amplitude. In taking

the full Fisher inverse and focussing on sub-blocks of it, we are in effect marginalizing over the

parameter directions not in the block in the approximation of a Gaussian posterior.

To analyze multiple experiments with different sets of nuisance parameters, their individual

Fisher matrices should be constructed and marginalized to give effective matrices containing

only standard cosmological and Xe perturbation parameters which are common between all

experiments. The effective Fisher matrices, now with the same dimension, are added to get the

total Fisher matrix F̃. The Xe perturbation eigenmodes are the eigenvectors of the perturbation

block of F̃−1 with their uncertainties estimated from the roots of the corresponding eigenvalues,

assuming a Gaussian distribution for the mode amplitudes in the vicinity of their maximum

likelihoods. Henceforth, the Xe eigenmodes are unambiguously referred to as the eigenmodes

or simply the modes. Details on the Fisher eigenanalysis for multiple experiments with different

nuisance parameters are discussed in Appendix 4.7. To generate the bandpowers required in

the Fisher matrix construction we modified the publicly available code Camb1(Lewis et al.,

2000) to include the more general ionization histories required for this work.

4.3.2 Datasets and their eigenmodes

Throughout this work, the SPT (Keisler et al., 2011) and ACT (Dunkley et al., 2011) measure-

ments of the CMB temperature and the seven-year WMAP measurement of CMB temperature

and polarization (Larson et al., 2011) are used to study perturbations around the ionization

history of the universe during recombination.2 The SPT and ACT data consist of observation

of 790 and 296 deg2 of the sky, at 150 and 148 GHz, during 2008- 2009 and 2008 seasons,

respectively. For simplicity, we neglect non-CMB cosmological constraints.

The left plot in Figure 4.1 shows the first two ionization eigenmodes generated for the

combined SPT+WMAP7 dataset. The right and middle plots show the impact of these modes

(with an amplitude equal to their 1σ error bars) on the CMB temperature power spectrum and

on the Thomson differential visibility g(z) = neσTc(1 + z)−1e−τ , where the Thomson depth

to redshift z is τ(z) =
∫
neσT/Hd ln(1 + z). The first two ACT+WMAP7 modes look very

similar, so for definiteness, unless stated otherwise, modes refer to these and lower significance

SPT+WMAP7 eigenmodes in this paper. Indeed, it turns out that the first two Xe perturbation

modes for Planck+ACTPol data and for a high resolution cosmic variance limited experiment

1http://camb.info/
2The small overlap of the observed regions of SPT and ACT telescopes with WMAP has been neglected in

this work.



Chapter 4. recombination history from damping tail 109

Figure 4.1: The first two modes (constructed for SPT+WMAP7 data), normalized to have unit

norm (left), the corresponding changes in the visibility functions (middle), and the resulting

differential changes in the temperature power spectrum C` (right). The middle and right plots

corresponds to perturbations with SNR=1. The visibility function is defined as g(z) = de−τ/dη,

where η is the conformal time and τ is the optical depth to the last scattering surface. The

visibility functions have been normalized to the maximum of the fiducial model’s visibility,

which occurs at zdec = 1088. The width (at 68% and 95% levels) of the visibility function has

been marked as error bars about zdec in the figures.

also have similar shapes (Farhang et al., 2012a), with their order reversed in some cases. We now

show that the physical significance of the dominant first mode is, not surprisingly, intimately

related to basic perturbative features in the differential visibility.

4.3.3 The Damping Physics of the Low Order Recombination Modes

Since the rank-ordered eigenmodes are direct probes of the map from Xe-trajectories to C`,

the data-sensitive top-ranked modes should reflect the most basic C`-sensitive recombination

effects, namely through the damping tail, which is intimately related to the sharply-peaked

differential visibility. We find the first two SPT+WMAP7 modes confirm this: they largely

describe shifts in the decoupling redshift (defined as the peak of g(z), zdec ≈ 1088) and shifts

in the decoupling width, σz,dec, the “1-sigma” spread in g. We find that a +1σ amplitude for

the first mode changes the visibility by ∼ −1.4% in the width and by ∼ 0.4% in the position of

the peak; for the second mode, the width increases by ∼ 6.2% and the peak by ∼ 0.8%.

The physical processes that define the structure of the damping tail have been well un-

derstood for a long time (for a review see Bond, 1996b; Hu & White, 1997, and references

therein), and were discussed in relation to the experimental unveiling of the damping tail,

first by CBI (Sievers et al., 2003) and then by ACBAR (Goldstein et al., 2003). Not surpris-
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ingly, the tail is controlled by the Compton scattering rate, neσTc, and the way it runs as the

baryon density nb drops, characterized by the local power law index, pe = 3d ln(ne/nb)/d lnnb

= d lnXe/d ln(1 + z) (Bond, 1996b). The basic recombination quantities can be related to pe,

which is zero at low and high z, has a maximum of about 12 and is about 9 at zdec for ΛCDM.

The peak of the differential visibility g(z) occurs when neσT/H(z) = pe + 2, and the “Gaus-

sian” width of decoupling in ln(1 + z)/ ln(1 + zdec) is σz,dec ∼ (pe + 2)−1. Thus for ΛCDM, the

Compton time is about 1/20 of the horizon size at zdec, about 1/5 of the sound crossing time,

and the relative width is about 0.09.

Earlier than decoupling, the photons and baryons are so tightly coupled by Thomson scat-

tering that they can be treated as a single fluid with sound speed cs = (1 + R)−1/2c/
√

3,

lowered by the extra inertia of the baryons, R ≡ 3ρ̄b
4ρ̄γ

, a photon+baryon kinematic shear viscos-

ity (4/5)c2
s (neσTc)

−1 (in a full treatment of Thomson scattering including angular anisotropy

and polarization effects), zero bulk viscosity, and thermal conductivity κγ = nbsγ(neσTc)
−1,

where sγ ∼ 109.8 is the photon entropy per baryon. In this tightly coupled regime, a WKB

treatment of the perturbed photon density shows the baryon acoustic oscillations are expo-

nentially damped, ∝ exp(−
∫

Γ/Hd ln a), where the sound wave damping rate relative to the

Hubble expansion rate is (see section C.3.1 in Bond, 1996b; Kaiser, 1983)

Γ/H =
1

2
(kcs/Ha)2 H

neσTc

16

15

[
1 +

Γdiff

Γvisc

]
,

Γdiff

Γvisc
=

15R2

16(1 +R)
. (4.2)

Here a = (1 + z)−1. kcs/Ha multiplies the comoving wavenumber k of the acoustic oscillations

by (approximately) the comoving distance sound travels in a Hubble time, cs(Ha)−1. The

contribution of thermal diffusion relative to that of shear viscosity is Γdiff/Γvisc ≈ 0.22.

To relate this to a WKB damping envelope acting on C`, we replace k by `/χdec, where χdec

is the comoving distance from us to decoupling, and integrate up to ln adec. The damping scale

obtained is

`D ≈ 1.7(pe + 2)(1 + zdec)
1/2(c/cs,dec) (4.3)

×[1 + Γdiff/Γvisc]
−1/2(1 + aeq/adec)

1/2

×(cs,dec/c̄s,dec)

√
1 +

1/2

pe + 2
.

The dominant first line gives the main dependences, (1 + zdec)
1/2(pe + 2)(1 + R)1/2. With

pe,dec ≈ 9 and zdec ≈ 1088, cs,dec ≈ 0.79c/
√

3 at decoupling, the first line gives `D ∼ 1360.

The terms in the second and third line are subdominant. The first adds the thermal diffusion

contribution to the viscous one, giving a ∼ 10% decrease; the second from the relativistic matter
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contribution to H gives a ∼ 14% rise. With these two, `D ∼ 1410. The fourth correction

accounts for the decoupling sound speed being about 10% lower than the speed averaged over

the z > zdec range; and the last 2.4% correction occurs if we use a sharp integration down to

zdec, then stop. The third line terms change `D to 1290, but are not there if we just replace∫
Γ/Hd ln a by Γ/Hσz,dec.

Of course a full transport treatment taking into account multipoles beyond the three which

enter tight coupling (density, velocity and anisotropic stress) is required to get an accurate

damping rate. The phenomenology adopted by Hu & White (1997) estimated damping envelope

functions multiplying “undamped” acoustic C`’s from numerical C`-results, fitting them to a

form exp[−(`/`D)mD ], similar to the WKB approximation but with a floating slope to allow for

a slower falloff reflecting complexities beyond WKB physics (such as the less severe damping

associated with fuzziness of last scattering reflected in the g(z) structure cf. the stronger

viscous damping; the break-out into higher temperature multipoles in the Thomson-thick to

Thomson-thin transition). For ΛCDM parameters, we get `D ≈ 1345 and mD ≈ 1.26, in

better-than-expected accord with the WKB estimate.

Apart from the residual memory of the acoustic oscillations, the rise in δ ln C` of the first

mode seen in Fig. 4.1(c) conforms to the (`/`D)mD form. The fluctuations in C` are dominated

by those in `D, with less sensitivity to mD. These are related to the fluctuations in the peak

position and width (which is in turn related to pe,dec) by eq. 4.3,

δC`/Cf` ∼ (`/`fD)mDmDδ`D/`fD

δ`D/`fD ∼ −
δσz,dec

σfz,dec
+

1

2

δzdec

(1 + zf,dec)
,

with respect to the fiducial values with subscript f. So we can interpret the first, most significant,

mode as primarily due to `D variations. Similarly we can understand the sign change in ∆g for

the first mode as being in response to δzdec.

If we use the same approach for the influence of helium abundance fluctuations, the effect

would be the smaller number of hydrogen nuclei near decoupling, suggesting a δC`/Cf` ∼
−(`/`fD)mDmDδYp/(1− Yp) form, in accord with what we see in Fig. 4.4.

4.4 Constraints from circa 2011 ACT, SPT and WMAP7 data

To search for perturbations in the standard recombination history (Recfast (Seager et al.,

1999) with recent recombination corrections included (Chluba & Thomas, 2011; Ali-Häımoud

& Hirata, 2011), we use the amplitude of the modes introduced in Section 4.3.2 as a set of new

parameters, and estimate them jointly with the six primary and three nuisance parameters. The

nuisance parameters follow Keisler et al. (2011) and Dunkley et al. (2011) and are the amplitudes
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of the Poisson and clustered power from point sources, and a template for the total thermal and

kinetic SZ power. The shapes of the associated C` templates do not look like our Xe-modes, and

the data can differentiate what is nuisance from what may be standard recombination deviation,

albeit with correlations that are fully taken into account in the statistics. This statement holds

even though we restricted ourselves to single effective frequency analyses for SPT and ACT.

The priors used for the nuisance parameters are taken from multi-band data particular to the

flux cut for point source removal. Unless stated otherwise, throughout the analysis, Yp and

Neff are fixed to Yp = 0.2478 (from SPT data for the ΛCDM model and standard BBN, Keisler

et al., 2011) and Neff = 3.046 (from the standard model of particle physics, Beringer et al.,

2012).

For parameter estimation we use the publicly available code, CosmoMC3, and modify it

to include estimation of the mode amplitudes. We use the versions of CosmoMC adapted for

SPT4 and ACT5 dataset likelihood functions. We checked that when the mode amplitudes

are fixed to zero, the modified CosmoMC recovers the reported SPT and ACT parameter

measurements (Keisler et al., 2011; Dunkley et al., 2011). Lensing of the C`’s has been included

throughout this work.

Tables 4.4 and 4.4 summarize the results when one and two modes are used in the analysis,

for SPT+WMAP7 and ACT+WMAP7 respectively, and compares them to the standard six-

parameter model. Both experiments find a non-zero (but different) amplitude for the first

mode, but they are only of 1.7σ significance and so do not correspond to a detection; they have

∆χ2 ∼ 2. ACT+WMAP7 also has a non-zero mean for the second mode, but only at 1.3σ.

When the second mode is added to the ACT+WMAP7 analysis, the shift and uncertainty of

the first mode change slightly.

While this paper was in press, improved measurements of the damping tail were released

by SPT (Hou et al., 2012, referred to as SPT12) and ACT (Dunkley et al., 2013; Sievers et al.,

2013, referred to as ACT13). We present our new results using these recent datasets for the

SPT11+WMAP7 modes in Table 2. We verified our SPT12 and ACT12 implementations in

COSMOMC by checking we reproduce the Hou et al. (2012) and Sievers et al. (2013) deter-

minations for the standard six cosmological case and also for the cases including Yp or Neff

variation. The table shows that the mode amplitudes for SPT12 are highly consistent with

those of SPT11, with a slight error decrease, with a mean for the first mode amplitude now

1.9σ away from zero. As our discussion of the similarity of the first mode δC` shape and the

perturbed Helium abundance shape illustrates, this is as expected from the new Hou et al.

3http://cosmologist.info/cosmomc/
4http://lambda.gsfc.nasa.gov/product/spt/spt spectra 2011 get.cfm
5http://lambda.gsfc.nasa.gov/product/act/act likelihood get.cfm
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Table 4.1: The constraints on cosmological parameters with different sets of parameters used, as

measured by SPT+WMAP7. µ1 and µ2 refer to the amplitudes of the first and second modes.

SPT+WMAP7

parameters 6s + mode 1 + mode 2

100Ωbh
2 2.221± 0.042 2.253± 0.046 2.249± 0.047

Ωch
2 0.1110± 0.0048 0.1123± 0.0049 0.1118± 0.0052

100θs 1.041± 0.002 1.041± 0.002 1.040± 0.003

τ 0.086± 0.015 0.089± 0.015 0.089± 0.015

ns 0.964± 0.011 0.977± 0.013 0.975± 0.016

109∆2
R 2.43± 0.10 2.40± 0.10 2.40± 0.10

µa
1 (0) −0.77± 0.46 −0.76± 0.47

µ2 (0) (0) −0.39± 1.09

σ8(derived) 0.807± 0.024 0.825± 0.027 0.818± 0.032

δzdec/z
b
dec – −0.6% −0.7%

δσz,dec/σ
c
z,dec – 1.5% −0.5%

(|δXe|/Xe)
d
max – 5% (z ∼ 1196) 5% (z ∼ 1039)

∆χ2 – 2.5 2.5

a The mode amplitudes and errors in this table (and throughout the paper) should be inter-

preted with respect to the normalized version of the modes as plotted in Figure 4.1. So, e.g.,

perturbations with µ1 = 1 correspond to Xe changes in the form of mode 1 and with an ampli-

tude exactly as plotted in Figure 4.1.

b relative change in the redshift of maximum visibility where zdec = 1088 is the fiducial maxi-

mum visibility point.

c relative change in the width of the visibility function.

d maximum relative change in the ionization fraction. The redshift corresponding to this max-

imum change is also included.
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Table 4.2: The constraints on cosmological parameters with different sets of parameters used,

as measured by ACT+WMAP7. µ1 and µ2 refer to the amplitudes of the first and second

modes.
ACT+WMAP7

parameters 6s + mode 1 + mode 2

100Ωbh
2 2.219± 0.051 2.240± 0.050 2.236± 0.053

Ωch
2 0.1121± 0.0052 0.1155± 0.0056 0.1121± 0.0061

100θs 1.039± 0.002 1.039± 0.002 1.035± 0.004

τ 0.086± 0.015 0.089± 0.015 0.0875± 0.015

ns 0.963± 0.013 0.976± 0.015 0.960± 0.019

109∆2
R 2.45± 0.11 2.43± 0.11 2.45± 0.11

µ1 (0) −1.27± 0.74 −1.67± 0.86

µ2 (0) (0) −3.5± 2.7

σ8(derived) 0.814± 0.028 0.841± 0.031 0.802± 0.040

δzdec/zdec – −1.0% −1.7%

δσz,dec/σz,dec – 2.6% −14.0%

(|δXe|/Xe)
a
max – 8% (z ∼ 1006) 31% (z ∼ 1076)

∆χ2 – 2.1 2.5

a This large deviation, though looking curious, is not statistically significant. This point is

understandable given the relatively large estimated values for µ1 and µ2 and their uncertainties.

Table 4.3: The constraints on the first two modes (µ1 and µ2), as measured by SPT12+WMAP7

and ACT12+WMAP7.

SPT12+WMAP7 ACT12+WMAP7

parameters + mode 1 + mode 2 + mode 1 + mode 2

µ1 −0.73± 0.38 −0.68± 0.39 0.30± 0.47 −0.06± 0.55

µ2 (0) −1.04± 0.83 (0) 1.3± 1.1
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Figure 4.2: Black lines: marginalized 1D-prior (dotted lines) and posterior probabilities (solid

lines) with SPT+WMAP7 data for the first three modes, in an analysis where six standard

parameters, three nuisance parameters and the first three Xe perturbation modes were used.

Blue lines, left plot: the prior (dashed line) and posterior (solid line) distributions for µ1, similar

to black lines, but with only one mode included in the analysis. Note that the solid black and

blue curves coincide in the left plot.

(2012) SPT measurement of Yp = 0.300 ± 0.025 (and Neff = 3.62 ± 0.48). ACT12 reported

values of these parameters that were consistent with the unperturbed values of the basic-six

parameter case, and as expected we see consistency with zero for the ACT12 mode amplitudes.

Updated measurements of the amplitude of the first mode with WMAP9 are quite close to

their WMAP7 values, −0.80± 0.37 for WMAP9+SPT and 0.14± 0.45 for WMAP9+ACT, and

again indicate a mild tension for SPT and none for ACT; the combined SPT+ACT+WMAP9,

−0.44± 0.33, lessens the tension to about 1σ.

4.5 The impact of electron number conservation on the poste-

rior

Our perturbed ionization history is required to satisfy electron conservation through

0 ≤ Xe(z) ≤ xmax
e

where xmax
e = 1 +

2Yp
3.97(1−Yp) is the maximum total electron fraction, using mHe/mH ≈ 3.97,

obtained when helium and hydrogen are fully ionized. When the mode amplitudes are poorly

determined by data, the reconstructed Xe(z) could break through this bound, which of course

we do not allow. Thus, although our starting prior may have been uniform with a wide possible

spread in the amplitudes, the true prior distribution can only be determined with a full suite of

Monte Carlo calculations restricting the allowed range. The Fisher analysis does not catch this
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because the amplitudes are supposed to be tiny. They are not in our case for which the data do

not have strong discriminatory power so allowed variations in the ionization history can be very

broad. Intuitively, if the volume spanned by the prior space is comparable to or smaller than the

volume of the likelihood space (at a given significance level), the posterior will be influenced

by the physical constraint, and the Fisher matrix analysis will be a poor approximation to

the full analysis. Experiments with higher sensitivities will provide information about a larger

number of modes before running into this condition, (see simulations for Planck+ACTPol-like

observations in Farhang et al., 2012a).

Figure 4.2 shows the marginalized 1D-distributions of the amplitudes of the first three

modes, µ1 to µ3, in an analysis with three modes included, and for two experimental setups:

the posterior distributions of the SPT+WMAP7 case (solid black lines) and the prior-only

simulations (dotted black lines) by ignoring the likelihood, i.e., assuming infinite errors in the

data. The overplotted blue lines (in the left plot only) correspond to a case with only one mode

being included in the analysis. Note that the prior distributions of the first and second modes

are skewed toward negative values for the case with three modes in the analysis (black lines).

However, the prior distribution for the first-mode-only case (the quite symmetric blue dashed

curve) shows that the µ1 measurement is not prior-driven.

The very narrow posterior distributions of µ1 and µ2 relative to their priors illustrate the

power of the ACT/SPT data in constraining these parameters, although they are not found to be

significantly different from zero. For µ3, on the other hand, the comparable widths of the prior

and posterior distributions imply that the dataset under consideration hardly contains more

information about this parameter than the limits set by electron conservation. The measured

errors on the fourth and higher modes differ significantly from their Fisher forecasts, not even

keeping their ranking. The insensitivity of the data to higher modes explains why we have

limited our study to the first two modes.

We can quantify the impact of the prior by measuring the Shannon entropy decrease in

the measurement of n-parameters, q = {qi}, associated with the transition from the prior

distribution pi to the posterior distribution pf when data are added,

R(n) ≡ Si(n)− Sf(n) ≡ 〈ln pf〉f − 〈ln pi〉i . (4.4)

For us the relevant qi’s are the amplitudes of the first n modes.

Although the full calculation can be made, we have found that a Gaussian approximation

works reasonably well, and does not have the numerical challenges associated with an accurate

full calculation. The posterior pf is closer to Gaussian than is the prior pi. With an nD-Gaussian

distribution with zero mean and covariance matrices C, S = 1/2 ln det(C) + n ln(2π)/2 +

1/2〈qTC−1q〉. The last term is 1/2 of the mean χ2 associated with the measurement, hence is
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Figure 4.3: Increase in the information content of the measured modes delivered by data relative

to the volume of parameter space allowed by electron conservation, for different number of

modes included in the analysis and various experimental cases. The modes in each case are

constructed for the corresponding dataset.

n/2 since 〈qTC−1q〉 = n. The entropy difference is then the ratio of mean log-volumes of the

parameter space in question, namely

R(n) =
1

2
ln(det(Ci)/det(Cf)), (4.5)

where Ci,f are the prior and posterior parameter covariance matrices. We checked the Gaussian

approximation by comparing eq. 4.5 with estimates of the integral form eq. 4.4 of the entropies.

The integral was calculated from the nearest neighbor entropy estimate (Singh et al., 2003).

This non-parametric entropy estimation method is based on the distribution of the nearest

neighbor distance of the samples, here the MCMC chain outputs, and is used for parameter

spaces with more than one dimension. We found that the results from Gaussian approximation

agree well with those from full integration, and are less noisy as the dimensionality of the

parameter space increases. Using the determinant ratio to measure the level of improvement

with improved data is familiar as a figure-of-merit (see, e.g., Mortonson et al., 2010). Although

we have found for our application for deciding which modes to include that eq. 4.5 is adequate,

eq. 4.4 is the better expression for a more accurate figure-of-merit (Farhang et al., 2011).

As n increases, the data add less information about the parameters relative to the prior.

Thus, the difference between successive R’s gradually decreases. By adding new parameters,

the volumes of the posterior and prior spaces change by a similar prior-dominated factor. In the

limit of very large n, R(n)→ constant. This is shown in Figure 4.3 where we compare R(n) for
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different datasets and various numbers of modes included, n. For this plot, the modes of each

curve are the eigenmodes constructed for the corresponding experiment. For ACT+WMAP7

and SPT+WMAP7, the difference between one and two parameters is greater than the difference

between other subsequent modes. This shows that these datasets are much more informative

about the second mode than the higher modes, which are entering the prior-dominated regime.

This difference between the first two modes and the higher ones is also evident from Figure 4.2.

With higher precision datasets, we expect the transition from likelihood to prior-dominance to

happen at a higher mode number. This prior-likelihood dominance transition hints to a natural

criterion for mode-hierarchy truncation. However, one should note that choosing a quantitative

mode selection criterion can be rather subjective and not necessarily applicable to all datasets.

The mode-selection criterion introduced here is much stronger than the Occam’s razor ar-

gument developed in Farhang et al. (2012a), where the truncation of the mode hierarchy was

based on the change in the information content as more ordered modes were added. Here, we

have used the posterior information that the modes have in excess of the prior, a change of

perspective motivated by the weak constraints from current datasets. The analysis enters a

prior-dominated regime beyond just one or two modes and there is no need to consider the

more sophisticated Farhang et al. (2012a) criteria.

4.6 Discussion

In this work we studied how allowing for some freedom in the recombination history gives a

better fit to the damping tail of the CMB power spectrum as measured by SPT and ACT,

compared to the primary six-parameter model. The red solid line in Figure 4.4 shows the

relatively small shift between the best-fit SPT+WMAP7 C`’s, one with the basic six parameters

fixed at their best-fit values with the Xe-perturbations on, and the other with the basic six

parameters fixed at their unperturbed values. That is because the non-zero µ1 is accompanied

by compensation in the values of the standard parameters, most significantly shifting ns and

Ωbh
2 (see Figure 4.5) to give a small net ∆C`. (Although the modes are marginalized over

standard parameters, they are generally correlated with them.) When the basic six parameters

are set to their Xe-unperturbed values, and only µ1 varies, the red dashed line is obtained.

Apart from the oscillation difference, the shape and value look rather like that for Yp variation,

for the reasons discussed in Section 4.3.3.

The goodness of fit with µ1 added to the analysis is comparable to cases where the recombi-

nation history is assumed to be perfectly known (see Chluba & Thomas, 2011; Ali-Häımoud &

Hirata, 2011, for the most recent calculations) and instead either Yp or Neff are allowed to vary

(Keisler et al., 2011; Dunkley et al., 2011). (The corresponding best-fit C` difference between
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Figure 4.4: The solid red line corresponds to the difference between the best-fit C`’s for the

standard case and the case with the first mode included, measured by SPT+WMAP7. That is,

the two cases have different background cosmology (as measured by data) as well as different

values for µ1 (µ1 = 0 and µ1 = −0.77). The dashed and dotted curves show the response to

changes in Yp, Neff and the first mode. In these cases, the six standard parameters are fixed

for all models, while Yp = 0.296, Neff = 3.898 and µ1 = −0.77 have been chosen for their

corresponding curves.

Figure 4.5: The marginalized 68% and 95% ns-Ωbh
2 contours for various sets of parameters

being included in the analysis. The 6s contours represent the standard model with six param-

eters. Other cases each have one extra parameter, being Yp, Neff and µ1. Note that these

extended models favor a slightly higher value of ns compared to the standard case.
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Figure 4.6: The relative Xe and differential visibility changes due to relative infinitesimal

changes in Yp and Neff (with other parameters fixed). The first mode has been added in

the background (the gray dotted lines) to aid visual comparison. It has been normalized to be

comparable to Yp changes.

these two cases with the standard six parameter case is not shown here but is similar to the red

solid line for the µ1 case.) As mentioned, including Yp has a similar impact on the standard

parameter measurements to that of µ1, as illustrated in Figure 4.5, where ns and Ωbh
2 have the

most significant shifts. Neff , on the other hand, behaves differently, with a different C`-shape,

and it also has a large impact on Ωdmh
2 and H0 (see Keisler et al., 2011; Dunkley et al., 2011).

It is also noteworthy that the measurements of σ8 (the amplitude of linear matter fluctua-

tions at z = 0 on scales of 8h−1Mpc) for the model with Neff for ACT data (σ8 = 0.906±0.059,

Dunkley et al., 2011) and for SPT data (σ8 = 0.859± 0.043, Keisler et al., 2011) are currently

slightly disfavored by σ8 inferred from clusters (σ8(Ωm/0.25)0.47 = 0.813 ± 0.013 ± 0.024; here

the second set of errors is systematic and due to the uncertainty in cluster masses, Vikhlinin

et al., 2009). Including µ1 and especially µ2 in the analysis, with fixed Neff = 3.046, brings σ8

towards lower values (see Tables 4.4 and 4.4), consistent with external datasets.

The first principal component Xe-mode, Yp, and Neff are strongly correlated due to their

similar effects on the damping tail of the power spectrum as illustrated in Figure 4.4. The cor-

relation coefficients of µ1 with the other two are corr(µ1, Yp) = 0.95 and corr(µ1, Neff) = 0.72,

based on results from CosmoMC for SPT+WMAP7 bandpower data. Due to this partial

degeneracy, varying more than one of these parameters simultaneously would significantly in-

crease their uncertainties. The improvement in errors forecasted for near-future data and the

addition of polarization information will modestly reduce the degeneracy of µ1 with Yp and

Neff . For example, for a Planck+ACTPol -like scenario the correlation coefficients for an `-by-`
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analysis from CosmoMC are forecasted to be corr(µ1, Yp) = 0.77 and corr(µ1, Neff) = 0.60.

(An `-by-` analysis is more sensitive to acoustic oscillation phase information than data with

wide bandpowers.)

The perturbative Xe(z)-eigenmodes are, by definition, those that are most constrained by

the CMB. The perturbations in Xe(z) induced by varying Yp and Neff , are shown in Fig. 4.6.

They look very different than our most significant mode. What is interesting is the response in

differential visibility. The first mode and the Yp-induced perturbations look somewhat similar,

although the differences are important. In C` the dominant damping tail behaviour of ∆C`

is even closer, although the details of the peak-trough oscillations about it differ. The full

Yp-induced perturbation involves a coherent sum over many eigenmodes, but the data are

mostly trying to constrain its component in the first mode, as Figure 4.4 shows. The low order

mode amplitudes are therefore a way to efficiently transfer information from the CMB into

constraints on ionization perturbations. Alternative high-z ionization history models due to

specific physical effects (and priors they may impose) could then be differentiated in e.g. the

µ1 − µ2 plane.

There are several alternative effects that can cause modifications to the CMB power spec-

trum in the damping tail. These include possible modifications to the physics of recombination,

dark radiation (e.g., Archidiacono et al., 2011, and references therein), changes in the fine

structure constant α (Kaplinghat et al., 1999; Battye et al., 2001; Scóccola et al., 2008), high-

frequency cosmic gravitational wave background (Smith et al., 2006), dark matter annihilation

and particle decay (Chen & Kamionkowski, 2004; Padmanabhan & Finkbeiner, 2005; Zhang

et al., 2006, 2007; Hütsi et al., 2009; Galli et al., 2009a; Hütsi et al., 2011; Galli et al., 2011;

Giesen et al., 2012). Deviations from standard recombination may be differentiated or corrobo-

rated by non-CMB measurements. Apart from invoking additional physical processes to explain

damping tail measurements, it is important to note that the tail is sensitive to experimental

issues, such as the instrumental beam, point sources in the maps, and detector time constants.

As shown in table 4.4, we have now found the damping tail tension in the SPT11 and ACT11

data of table 4.4 persists in the full 2500 deg2 SPT data reported in Story et al. (2012) and Hou

et al. (2012), but not in the three-season ACT12 data. The combined SPT12-ACT12-WMAP9

data are also consistent with the standard recombination scenario (Calabrese et al., 2013). The

Planck data, with its much larger sky coverage, should be able to address whether tension exists

or not. Our forecasts for Planck 2.5 year data show that the current SPT11 best-fit amplitude

of the first mode, µ1 = −0.77 (which is only 1.7σ now), could be detected at more than 10σ.

If such a deviation were found, it would be well beyond the levels of the standard recom-

bination corrections which have been discussed extensively over the past several years (see

Dubrovich & Grachev, 2005; Chluba & Sunyaev, 2006b; Kholupenko & Ivanchik, 2006; Switzer
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& Hirata, 2008; Hirata, 2008; Grin & Hirata, 2010; Ali-Häımoud & Hirata, 2010, and additional

references) and would have to indicate a new and possibly non-standard process at work. These

physical mechanisms, with their high level of nuance and theoretical concordance, result in a

modification to recombination which is 3.5 times smaller than the 1σ errors found here (Dunk-

ley et al., 2011). In the far future, measurements of the cosmological recombination radiation

from hydrogen and helium (see Sunyaev & Chluba, 2009, for an overview) may provide another

way to investigate this question and break some of the expected degeneracies.

If a detection of deviation is made with high significance, further explorations could be

done with the same sort of analysis as that given here, but with modes weighted towards

different redshift regimes. Indeed, although we have focussed here on just the recombination

epoch, viewing recombination and reionization as a connected Xe-trajectory has appeal, since

CMB data (though at large rather than small angular scales) inform the latter. In these

extended studies one needs to explore other possible variables to linearly expand in rather

than δ ln(Xe(z)), as discussed in Farhang et al. (2012a). The merit of Xe(z) expansions is

that one can weight them to concentrate on specific recombination regions, e.g., at higher z

where helium recombines, or at lower z as Xe-freeze-out is approached. Ultimately showing in a

model-independent way that the allowed Xe-trajectories do not compromise our determination

of cosmological parameters would further increase our confidence in conclusions drawn from

CMB datasets.

This work was accomplished by support from NSERC and the Canadian Institute for Ad-

vanced Research.

4.7 Appendix: Fisher Analysis

The goal of this work is to search for deviations from the standard ionization scenario at high

redshifts, around the epoch of recombination. For this purpose, we search for the perturbation

patterns in Xe best constrained by data (see Farhang et al., 2012a, for more details). The most

constrained perturbation parameters are the eigenvectors of the Xe-perturbation block of the

inverse of Fisher information matrix. The Fisher matrix for each dataset under consideration

is

Fij =
∑
b,b′

∂CTb
∂qi

Cov−1
bb′
∂Cb′

∂qj

where the q’s represent any of the standard, the Xe-perturbation, the secondary or experimental

nuisance parameters. The bandpowers Cb are

Cb =
∑

Wb`C̃` , C̃` =
`(`+ 1)

2π
C`
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where the window functions, Wb`’s, are specific to the experiment and Covbb′ = 〈δCbδCb′〉 is their

covariance matrix. The derivatives are calculated at the fiducial qi’s. If multiple experiments

are used, the total Fisher matrix is the sum of the individual Fisher matrices constructed for

each experiment — if they are statistically independent — and marginalized over their nuisance,

experiment-dependent parameters. To make this marginalized Fisher matrix, we divide F into

blocks of nuisance parameters (represented by n) and the cosmologically interesting parameters,

represented by y. We then have

F =

(
Fyy Fyn

Fny Fnn

)
, F|m = Fyy − FynF

−1
nnFny

where F|m is the Fisher matrix (including only cosmologically interesting parameters) marginal-

ized over nuisance parameters. The individual F|m’s should be added to get the total Fisher

matrix. The Xe perturbation eigenmodes are the eigenvectors of the perturbation block of the

total Fisher matrix after it has been marginalized over the standard parameters, similar to the

above marginalization.

Another approach is to calculate Fisher matrices that include all nuisance parameters. Then,

for those experiments that provide no constraint on a set of nuisance parameters, set those

matrix entries to zero, sum the matrices over experiments and marginalize over nuisance and

standard cosmic parameters.



Chapter 5

Outlook

In this work the two important cosmic epochs of inflation and recombination were investigated

through their imprints on the cosmic background radiation. The results, challenges and future

prospects are discussed at the end of the relevant chapter in details. Here is a summary of the

main points.

5.1 Summary

• Chapter 2

– A map-based maximum likelihood estimator was developed for optimal measurement

of the amplitude of inflationary gravity waves from CMB polarization. This direct

map-to-parameter estimator, by construction, bypasses E-B mixing which, in cut-

sky observations, is a possible source of contamination to the tiny gravity wave

signal.

– Due to large matrix manipulations, the method is computationally costly relative to

suboptimal fast parameter estimators, yet feasible and accurate thanks to current

computation power. We find that, with current experiment characterizations, the

correlation of r with other standard parameters is relatively small. Thus, one could

safely limit the analysis to the 1D parameter space of r, for which a direct map-based

approach is feasible.

– The method was used for investigation of sky coverage optimization of B-mode

surveys for various observational cases. For Spider specifications we found that with

fsky ∼ 0.02 − 0.2, the 95% confidence limits on r are ∼ 0.014 for a foreground-

free sky and ∼ 0.02 with a modest treatment of `- dependent foreground residual.

Similarly, we find that for a Planck-like experiment with a Galaxy-masked sky the

124
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95% confidence limit on r is 0.015 for a foreground clean sky, rising to 0.05 with the

foreground residual.

– We also explored the 2D parameter space of r−nt and found that a powerful test of

the inflation consistency relation nt ≈ −r/8 will evade our measurements even with

a post-Planck deep full-sky experiment.

• Chapters 3 and 4

– The goal in these chapters was to study the details of the recombination history

by investigating perturbative fluctuations in the free electron fraction Xe. Using

a model-independent approach, the rank-ordered parameter eigen-modes with the

highest power to probe Xe were constructed. The modes were shown to be converged,

against increasing the number of basis functions, and expansion-basis independent.

Also, various properties of the modes were studied, such as their fiducial model

dependence, their response to different Xe parametrizations and their sensitivity to

marginalization over different cosmic parameters. As a sanity check, we showed

that they serve as a full basis for decomposing various physically motivated Xe

perturbations if enough modes are included in the expansion. We found that the

most constrained modes are localized around z ∼ 1100, where the CMB signal mainly

comes from, with some extensions to higher and lower redshifts. The details of helium

recombination and the freeze-out tail are hard to recover, unless strong priors are

imposed on the Xe history around z ∼ 1100 .

– An information-based criterion for the truncation of eigen-mode hierarchy was de-

veloped. The criterion uses the added amount of information when a new mode is

included in the analysis and compares it to the previous steps (chapter 3). A slightly

different criterion was suggested for cases when available data are not highly infor-

mative about the modes compared to the limits set on the parameters by enforcing

physical requirements (chapter 4). This criterion uses the difference in the informa-

tion content of the prior and posterior distributions as more modes are added. It

then suggests keeping the modes for which this difference is not too small relative to

the previous step. These criteria can be adapted for other similar hierarchical model

selections as well.

– The method was applied to simulations of Planck+ACTPol and a cosmic variance

limited survey with differing simulated recombination histories (chapter 3). We stud-

ied how ignoring possible fluctuations around the recombination history can lead to

biased measurement of standard parameters. Also, Xe trajectories for the simulated
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perturbations were constructed for different number of modes. The trajectories,

being tightest around the recombination epoch, hardly recovered any information

about helium recombination and low-z perturbations. This result is to be expected

from the patterns of the best constrainable modes.

– The method was also applied to the available CMB data at 2012, i.e., WMAP7+2010

ACT/SPT, and updated to the recent 2012 ACT/SPT and WMAP9. We also did

the joint WMAP9-SPT-ACT analysis (chatter 4). The first constructed eigen-mode

turns out to be a direct measure of the CMB damping envelope. It is highly de-

generate with variations in Yp and to a smaller degree with Neff . However, it has

the advantage of not being a priori associated to any physical processes, although

prejudices are unavoidable in Xe parametrization. Its measurement by SPT slightly

indicates a damping tail anomaly while the recent ACT as well as the joint ACT-SPT

data are consistent with a standard recombination scenario. Future high resolution

data will address this issue. If the currently observed deviation by SPT is real, our

simulations show that it should be detectable with more than 10σ by Planck.

5.2 Future Prospects

The natural follow-up of this work is to adapt the developed tools, already used for forecasts

of future and the analysis of current CMB data, to the high precision data of the coming

experiments.

The map-based maximum likelihood estimator discussed in chapter 2 is the optimal method

for measuring r with Planck and other CMB polarization experiments. The estimator should

be hybridized with `-space methods if simultaneous high-` analysis is required. This is similar

to what was done for WMAP analysis and is done for Planck.

The estimator also needs to be extended for a more sophisticated treatment of foreground

contamination and to deal with experiment-dependent analysis issues and complex noise char-

acteristics, not taken care of in the simulations of this work.

Planck and SPTPol/ACTPol, combined with non-CMB data to break parameter degen-

eracies, will provide excellent opportunities to test our assumptions about the physics at high

redshifts. In this work, the focus was on the recombination epoch, a legitimate choice for the

precision level of current CMB data. To properly deal with the coming high precision data,

however, requires searching for deviations around the standard scenario at other redshift in-

tervals as well. This could be achieved through using different parametrizations focusing on

different epochs. One way could be expanding the δ ln(Xe) used in this work to δ ln(Xe + σ),

with σ a positive free parameter, to adjust the weight toward lower redshifts. In the search for
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the maximum likelihood point, σ can be treated as a hyper parameter with the parameter space

extended to include σ as well. In other words, including the floating σ in the analysis allows us

to select between models with different parametrizations. If there are hints of fluctuations in the

data, an iterative approach needs to be taken toward a full reconstruction of Xe history. This

search will either put stringent constraints on the standard Xe history, or open a window to

the beyond-standard physics relevant at high redshifts. Possible detection of fluctuations would

motivate the search for new techniques to discriminate between different possible cosmological

sources of the observed phenomenon.

With Planck, EBEX, Keck, Spider, QUIET, BiCEP, ABS, ACTPol, SPTPol, etc. CMB

research is going through a very thrilling period in anticipation of great discoveries, and who

knows, the future may bring new space-based experiments, such as LiteBIRD, PIXIE or COrE.
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Hivon, E., Górski, K. M., Netterfield, C. B., Crill, B. P., Prunet, S., & Hansen, F. 2002, ApJ,

567, 2

Hou, Z., Keisler, R., Knox, L., Millea, M., & Reichardt, C. 2011, ArXiv e-prints



BIBLIOGRAPHY 135

Hou, Z., Reichardt, C. L., Story, K. T., Follin, B., Keisler, R., Aird, K. A., Benson, B. A.,

Bleem, L. E., Carlstrom, J. E., Chang, C. L., Cho, H., Crawford, T. M., Crites, A. T., de

Haan, T., de Putter, R., Dobbs, M. A., Dodelson, S., Dudley, J., George, E. M., Halverson,

N. W., Holder, G. P., Holzapfel, W. L., Hoover, S., Hrubes, J. D., Joy, M., Knox, L., Lee,

A. T., Leitch, E. M., Lueker, M., Luong-Van, D., McMahon, J. J., Mehl, J., Meyer, S. S.,

Millea, M., Mohr, J. J., Montroy, T. E., Padin, S., Plagge, T., Pryke, C., Ruhl, J. E., Sayre,

J. T., Schaffer, K. K., Shaw, L., Shirokoff, E., Spieler, H. G., Staniszewski, Z., Stark, A. A.,

van Engelen, A., Vanderlinde, K., Vieira, J. D., Williamson, R., & Zahn, O. 2012, ArXiv

e-prints

Hu, W. & Holder, G. P. 2003, Phys. Rev. D, 68, 023001

Hu, W., Scott, D., Sugiyama, N., & White, M. 1995, Phys. Rev. D, 52, 5498

Hu, W. & White, M. 1997, ApJ, 479, 568
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D., Mandolesi, N., Maris, M., Mart́ınez-González, E., Meinhold, P. R., Morgante, G., Pearson,

D., Perrotta, F., Polenta, G., Poutanen, T., Sandri, M., Seiffert, M. D., Suur-Uski, A.-S.,

Tavagnacco, D., Terenzi, L., Tomasi, M., Valiviita, J., Villa, F., Watson, R., Wilkinson, A.,

Zacchei, A., Zonca, A., Aja, B., Artal, E., Baccigalupi, C., Banday, A. J., Barreiro, R. B.,

Bartlett, J. G., Bartolo, N., Battaglia, P., Bennett, K., Bonaldi, A., Bonavera, L., Borrill,

J., Bouchet, F. R., Burigana, C., Cabella, P., Cappellini, B., Chen, X., Colombo, L., Cruz,

M., Danese, L., D’Arcangelo, O., Davies, R. D., de Gasperis, G., de Rosa, A., de Zotti,

G., Dickinson, C., Diego, J. M., Donzelli, S., Efstathiou, G., Enßlin, T. A., Eriksen, H. K.,

Falvella, M. C., Finelli, F., Foley, S., Franceschet, C., Franceschi, E., Gaier, T. C., Génova-
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K. M., Gratton, S., Griffin, M., Guyot, G., Haissinski, J., Harrison, D., Helou, G., Henrot-
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E., Pons, R., Ponthieu, N., Prézeau, G., Prunet, S., Puget, J.-L., Reach, W. T., Renault,

C., Ristorcelli, I., Rocha, G., Rosset, C., Roudier, G., Rowan-Robinson, M., Rusholme, B.,

Santos, D., Savini, G., Schaefer, B. M., Shellard, P., Spencer, L., Starck, J.-L., Stassi, P.,

Stolyarov, V., Stompor, R., Sudiwala, R., Sunyaev, R., Sygnet, J.-F., Tauber, J. A., Thum,

C., Torre, J.-P., Touze, F., Tristram, M., van Leeuwen, F., Vibert, L., Vibert, D., Wade,

L. A., Wandelt, B. D., White, S. D. M., Wiesemeyer, H., Woodcraft, A., Yurchenko, V.,

Yvon, D., & Zacchei, A. 2011, A&A, 536, A4

QUIET Collaboration, Araujo, D., Bischoff, C., Brizius, A., Buder, I., Chinone, Y., Cleary,

K., Dumoulin, R. N., Kusaka, A., Monsalve, R., Næss, S. K., Newburgh, L. B., Reeves,

R., Wehus, I. K., Zwart, J. T. L., Bronfman, L., Bustos, R., Church, S. E., Dickinson, C.,

Eriksen, H. K., Gaier, T., Gundersen, J. O., Hasegawa, M., Hazumi, M., Huffenberger, K. M.,

Ishidoshiro, K., Jones, M. E., Kangaslahti, P., Kapner, D. J., Kubik, D., Lawrence, C. R.,

Limon, M., McMahon, J. J., Miller, A. D., Nagai, M., Nguyen, H., Nixon, G., Pearson, T. J.,

Piccirillo, L., Radford, S. J. E., Readhead, A. C. S., Richards, J. L., Samtleben, D., Seiffert,

M., Shepherd, M. C., Smith, K. M., Staggs, S. T., Tajima, O., Thompson, K. L., Vanderlinde,

K., & Williamson, R. 2012, ApJ, 760, 145

QUIET Collaboration, Bischoff, C., Brizius, A., Buder, I., Chinone, Y., Cleary, K., Dumoulin,

R. N., Kusaka, A., Monsalve, R., Næss, S. K., Newburgh, L. B., Reeves, R., Smith, K. M.,

Wehus, I. K., Zuntz, J. A., Zwart, J. T. L., Bronfman, L., Bustos, R., Church, S. E., Dickin-

son, C., Eriksen, H. K., Ferreira, P. G., Gaier, T., Gundersen, J. O., Hasegawa, M., Hazumi,

M., Huffenberger, K. M., Jones, M. E., Kangaslahti, P., Kapner, D. J., Lawrence, C. R.,

Limon, M., May, J., McMahon, J. J., Miller, A. D., Nguyen, H., Nixon, G. W., Pearson,

T. J., Piccirillo, L., Radford, S. J. E., Readhead, A. C. S., Richards, J. L., Samtleben, D.,



BIBLIOGRAPHY 141

Seiffert, M., Shepherd, M. C., Staggs, S. T., Tajima, O., Thompson, K. L., Vanderlinde, K.,

Williamson, R., & Winstein, B. 2010, ArXiv e-prints

Reichardt, C. L., Ade, P. A. R., Bock, J. J., Bond, J. R., Brevik, J. A., Contaldi, C. R., Daub,

M. D., Dempsey, J. T., Goldstein, J. H., Holzapfel, W. L., Kuo, C. L., Lange, A. E., Lueker,

M., Newcomb, M., Peterson, J. B., Ruhl, J., Runyan, M. C., & Staniszewski, Z. 2009a, ApJ,

694, 1200

—. 2009b, ApJ, 694, 1200

Reichborn-Kjennerud, B., Aboobaker, A. M., Ade, P., Aubin, F., Baccigalupi, C., Bao, C.,

Borrill, J., Cantalupo, C., Chapman, D., Didier, J., Dobbs, M., Grain, J., Grainger, W.,

Hanany, S., Hillbrand, S., Hubmayr, J., Jaffe, A., Johnson, B., Jones, T., Kisner, T., Klein,

J., Korotkov, A., Leach, S., Lee, A., Levinson, L., Limon, M., MacDermid, K., Matsumura,

T., Meng, X., Miller, A., Milligan, M., Pascale, E., Polsgrove, D., Ponthieu, N., Raach,

K., Sagiv, I., Smecher, G., Stivoli, F., Stompor, R., Tran, H., Tristram, M., Tucker, G. S.,

Vinokurov, Y., Yadav, A., Zaldarriaga, M., & Zilic, K. 2010, in Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series, Vol. 7741, Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series

Rocha, G., Contaldi, C. R., Bond, J. R., & Górski, K. M. 2011, MNRAS, 414, 823
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