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Many known extra-solar giant planets lie close to their host stars. Around 60 have

their semi-major axes smaller than 0.05 AU. In contrast to planets further out, the vast

majority of these close-in planets have low eccentricity orbits. This suggests that their

orbits have been circularized likely due to tidal dissipation inside the planets.

These exoplanets share with our own Jupiter at least one trait in common: when they

are subject to periodic tidal forcing, they behave like a lossy spring, with a tidal “quality

factor”, Q, of order 105. This parameter is the ratio between the energy in the tide and

the energy dissipated per period. To explain this, a possible solution is resonantly forced

internal oscillation. If the frequency of the tidal forcing happens to land on that of an

internal eigenmode, this mode can be resonantly excited to a very large amplitude. The

damping of such a mode inside the planet may explain the observed Q value.

The only normal modes that fall in the frequency range of the tidal forcing (∼ few

days) are inertial modes, modes restored by the Coriolis force.

We present a new numerical technique to solve for inertial modes in a convective,

rotating sphere. This technique combines the use of an ellipsoidal coordinate system

with a pseudo-spectral method to solve the partial differential equation that governs

the inertial oscillations. We show that, this technique produces highly accurate solutions

when the density profile is smooth. In particular, the lines of nodes are roughly parallel to

the ellipsoidal coordinate axes. In particular, using these accurate solutions, we estimate
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the resultant tidal dissipation for giant planets, and find that turbulent dissipation of

inertial modes in planets with smooth density profiles do not give rise to dissipation as

strong as the one observed. We also study inertial modes in density profiles that exhibit

discontinuities, as some recent models of Jupiter show. We found that, in this case, our

method could not produce convergent solutions for the inertial modes.

Additionally, we propose a way to observe inertial modes inside Saturn indirectly, by

observing waves in its rings that may be excited by inertial modes inside Saturn.
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Chapter 1

Introduction

1.1 Observations of Tidal Dissipation

The effects of tidal interaction in the solar system were first studied in the seminal paper

by Goldreich and Soter (1966). The presence of friction in the distorted body makes the

high tide lead (lag) the disturbing object if the orbital period is longer (shorter) than the

rotation period. The departure of perfect elasticity of the distorted body is measured by

the tidal dissipation quality factor Q:

Q−1 =
1

2πE0

∮
(

−dE

dt

)

dt, (1.1.1)

where E0 is the maximum energy stored in the tide, and dE/dt the rate of dissipation1.

The integral is evaluated over a tidal period.

The relationship between Q and the angle Θ between the high tide and the orbiting

body is:

Q−1 = tan (2Θ), (1.1.2)

and since Q >> 1, Q−1 ∼ 2Θ. For example, observations of the Earth-Moon tidal angle

have shown that the Earth’s tide is ΘEarth−Moon = 2◦.16 (MacDonald 1964) ahead of

1Therefore Q is inversely proportional to the tidal dissipation efficiency.
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Moon, which leads2 to Q = 13.

1.1.1 Inside the Solar System

The orbital and rotational evolution of the bodies is controlled by the asymmetrical

position of the tidal bulge with respect of the line that passes through their centers.

In the orbiting plane, if the bulge leads the perturbing body (Θ > 0 ), the near side

of the bulge exerts a stronger force on the disturbing object. This creates a torque,

which acts to transfer angular momentum and energy from the planet’s rotation to the

disturbing object’s orbit. This effect is observed in our own Earth-Moon system (Mignard

1981), where the lunar semi-major axis increases at the expense of the Earth’s rotation.

The arrival times of laser beams sent to reflectors on the Moon surface3 have measured

that the Earth-Moon distance increases about 3.8 cm/year (Lambeck 1988). The Earth

raises tides in the Moon too, and that is what has caused the Moon’s spin to become

synchronized with the orbital period.

If the orbit is eccentric, the tidal torque on the planet mentioned above is larger at

the pericenter than the apocenter. Impulses at the pericenter increase the apocenter

distance without altering the pericenter distance (Goldstein et al. 2002). Because the

greater impulse is exerted near pericenter, the net effect of the tidal torque is to increase

the eccentricity, as well as the semi-major axis of the satellite’s orbit. Besides torques,

radial forces (parallel to the line that connect the centers of both objects) can also

change the eccentricity (Goldreich and Soter 1966). If the Earth were synchronized to

the orbital period of the Moon, but the orbit were not circular, the larger tide on the

Earth would happen at the pericenter. Since there is no torque, there is no change in

angular momentum, but the periodic distortion of the Earth due the eccentric orbit has

2For short-time scale studies, like the one in MacDonald (1964), Q can be assumed constant. However
one have to notice that Q is probably dependent on the internal dynamical structure and also the tidal
frequency.

3The reflectors, of about 48 cm2 of surface area, were left on the Moon surface by the Apollo missions.
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to dissipate energy, and therefore the eccentricity must decrease. A decreasing of the

eccentricity is also expected when we calculate the radial distortion of the Moon due to

the gravitational effect of an eccentric Earth, this mechanism is expected to be dominant

also in the circularization of hot-Jupiters.

Mercury and Venus are the closest planets to the Sun and have no satellites orbiting

them. Therefore we can consider the systems Sun-Mercury and Sun-Venus as the only

cause of tidal effects on the planets. Mercury currently rotates with a period of 58 days,

and in order to slow it down to that period, tidal spindown needs to be taking into

account. However its current orbital period (88 days) shows a mayor deviation from

synchronism. Instead it was discovered that the system is in a 3:2 spin-orbit resonance

(Colombo 1965). Simulations indicate that the orbital eccentricity of Mercury changes in

the range of 0 < e < 0.45 in a timescale of millions of years due perturbations from other

planets (Correia and Laskar 2009), which may explain the current state of resonance as

it is likely to happen in a period of high eccentricity (Correia and Laskar 2004). In the

case of Venus, the evidence of tidal dissipation does not confirm the expected effect of the

Sun on its rotation: Venus has a retrograde rotation with a period of −243 days (orbital

period being 224 days) attributed to its early evolutionary stage of initial rotation and

obliquity (Correia et al. 2003).

Mars is outside the tidal influence from the Sun4, but it has two satellites, Phobos and

Deimos. The inertia of these objects are so small that they barely affect the spin of the

planet, but Mars does affect the orbital evolution of the satellites. In the case of Phobos,

the satellite has an orbital period shorter than the spin of the planet, the reverse of the

system Earth-Moon. The high tide of Mars lags behind Phobos, and therefore orbital

angular momentum is transferred from the satellite to the planet (Goldreich and Soter

1966), making Phobos spiral in towards Mars (Rainey and Aharonson 2006).

The outer gaseous planets are massive with respect to their moons and tend to have

4The Sun raises a tide in Mars of height h ∼ 3 cm.
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many of them. Therefore it is possible to study the evolution of the orbital elements of

the satellites in order to study the tidal effects.

Since gaseous planets like Jupiter rotate very fast (PJ ∼ 10 hrs), the transfer of

angular momentum is therefore from the planet’s rotation to the satellite orbit. At the

same time, the rotational angular momentum of the satellites is so small that one can

expect synchronization in all the satellites, and the vast majority of the Solar System

satellites for which rotational periods have been measured show synchronization. Lainey

et al. (2009) has studied almost a century of astrometric data for the Galilean moons,

finding that QJ ≈ 4×104, the net effect of the angular momentum transfer from Jupiter’s

rotation to the Galilean moons motion, is that the semi-major axis increases with time.

Since Kepler’s law establish that n2r3 = GM an increase in the satellites distance implies

deceleration of their orbits, a measurable quantity.

For the next set of outer planets, there are no accurate measurements of tidal dissipa-

tion on the planets. It is logical to think that tides raised on Saturn, Uranus and Neptune

affect the orbital elements of their satellites. Constraints on Q can be obtained -assuming

that it is constant- as the satellites are permanently pushed away from the planets. One

can argue (Goldreich and Soter 1966) that there is a minimum Q (proportional to the

time scale of the orbital expansion) for which a satellite released from the planet’s surface

reaches its actual location during the age of the Solar System. A smaller Q (meaning a

more efficient dissipation) would imply that the actual location of the satellite would be

further away.

1.1.2 Outside the Solar System

In stars, tidal effects can be seen on short and long time scales. For binary stars with

orbital periods of a few days we can observe the direct effects of the tidal deformation

through photometry and spectroscopy. The projected surface area and thus flux from one

or both components becomes a function of time. Kopal (1959) calculates this ellipsoidal
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effect while assuming that the components are synchronized and the orbits circularized

Zahn (1977a). For main sequence stars orbiting with periods of a few days the fractional

variation of the flux of one component is of the order of few percent.

Long term tidal effects can be extrapolated from solar type binaries. These effects

change the orbital elements of the system and rotation of the components in timescales of

millions or billions of years (Zahn 1975). Figure 1 in Mayor and Mermilliod (1984) shows

the distribution of 33 solar-type main-sequence spectroscopic binaries in a eccentricity

vs period plot. The eccentricities of the binaries suffer a marked change at around

a period of 5.7 days. All the binaries with periods shorter than this critical period

have circular orbits (e << 0.05), while binaries with longer periods show a scattered

distribution of eccentricities. Similar behavior but with different transition periods have

been presented in works by Duquennoy and Mayor (1991) and Meibom and Mathieu

(2005). The behavior suggest that the efficiency of the circularization is a function of

the period, or, semi-mayor axis (Zahn 1975), i.e., the larger the separation the longer

the time scale for circularization. It is still a matter of debate how to understand the

fact that the transition period seems to change with different samples of main-sequence

binary stars (Mazeh 2008).

Early-type binaries also show a similar behavior as the main sequence sample of Mayor

and Mermilliod (1984). The theory of Zahn (1975) predicts that the circularization time-

scale of stars with radiative envelopes is larger compared to tidal dissipation in stars with

convective envelopes, due to other dissipation mechanisms. Turbulent viscosity in the

convective envelopes is more efficient than radiative damping in the radiative envelopes

(Zahn 1977b). However Giuricin et al. (1984) have acquired a sample of around 200

spectroscopic and eclipsing binaries that have an early-type star as a primary. They

have found out that most of the binaries with periods shorter than 2 days are circular,

and that there is an upper envelope ‘in eccentricity’ that goes up to an eccentricity of 0.6.

This ‘envelope’ is also present in late-type binaries and can be given the interpretation
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that the binaries formed above the envelope have been pushed down inside the envelope

by the circularization process (Mazeh 2008).

Tidal forces also tend to synchronize the rotation of the binary components with the

orbital period. Witte and Savonije (2002) predict that the synchronization timescale

will be two or three orders of magnitude shorter than circularization timescale. The fact

that the angular momentum associated with the orbital motion is larger than the one

associated with the rotation allows the system to synchronize more quickly. Observing

this effect is difficult as stellar rotation is not well defined yet, and observational mea-

surements of rotation show large uncertainties. Mazeh (2008) in Figure 4 shows a sample

of 6 young stars that have been synchronized.

Extrasolar hot-Jupiters and Jupiter are thought to be very similar in composition.

However their evolution has been significantly different, as it is thought that hot-Jupiters

reach their current orbits (a ≤ 0.05 AU) either after tidal interactions with the protostel-

lar disk (Moorhead and Adams 2007), or by interactions with other undetected planets

(Zhou et al. 2007). Once they are close to the host-star the tidal interaction starts to

take control and at the same time the planet can develop a radiative envelope (see §1.3).

As in the case of stars, one can also produce an eccentricity vs period (or semi-major

axis) plot from the spectroscopic signal of the host-star, like the one in Figure 1.1 (Data

taken from the Extrasolar Planets Encyclopedia5), and find signs of orbital circulariza-

tion. Most of the planets with periods shorter than 2.5 days (hot-Jupiters) have circular

orbits while planets with longer periods show a scatter with an envelope that raises to an

eccentricity of 0.8. Signs of synchronization can be also be traced as a planet that shows

its ‘same face’ to the host-star should have the correspondent hemisphere exposed to the

intense radiation field of the host, causing a significant difference between day and night

temperatures. This effect can be either seen as a phase modulation if the IR photom-

etry in non-transiting planets (Seager et al. 2005) or as IR emission of the day-side of

5http://www.obspm.fr/encycl/encycl.html.
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the eclipsing planets HD 209458b (Deming et al. 2007) and TrES-1 (Charbonneau et al.

2005).

1.2 Tidal Dissipation Theory: General

1.2.1 Timescales for orbital synchronization and circularization

In section 1.1 we introduced the tidal quality factor, and show that observations of stars,

planets, and natural satellites, in some cases show signs of tidal dissipation. We use

order of magnitude theory to derive the tidal synchronization time-scale and the tidal

circularization time-scale.

In order to understand the tidal synchronization of an object like the Moon, one can

derive the synchronization time scale using the fact that the change in the spin is related

to the torque on the Moon by the Earth as Γ = IdΩrot/dt, where I is the moment of

inertia of the Moon (assumed constant).

In the absence of synchronization, a tide raised on the Moon by the Earth exerts a

torque that can be thought of as the torque along a rod that has its rotation axis at

the center of the planet, and at each end the rod has masses of the order of the tidal

bulge δM . There is an lag angle between the rod and the line that connects the centers

of rotation of the two bodies. The bulge that is closer to the Earth feels a stronger

torque than the bulge at exactly the opposite side. An estimation of the differential force

between both bulges is:

∆F ≈ −δMGM⊕RMoon

d3
Earth−Moon

. (1.2.1)

The net torque is therefore:

Γ ≈ ∆FRMoon sin Θ. (1.2.2)

Assuming that the density of the Moon is constant the mass in the bulge is simply

δM ≈ MMoon(h/RMoon), where h is the height of the tide. The height can be estimated
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when the surface gravity of the bulge balances the differential acceleration of the bulge.

This implies:

ρGh ≈ GM⊕RMoon

d3
Earth−Moon

, (1.2.3)

and since ρ ≈MMoon/R
3
Moon the height is:

h ≈ M⊕

MMoon

(

RMoon

dEarth−Moon

)3

RMoon. (1.2.4)

Therefore the net torque is:

Γ ≈ − GM2
⊕

RMoon

(

RMoon

dEarth−Moon

)6

sin Θ. (1.2.5)

The moment of inertia is I ≈ αMoonMMoonR
2
Moon, where αMoon is a constant. The

deceleration of the Moon dΩrot/dt is:

dΩrot

dt
= − G

αMoonMMoonR
2
Moon

(

M2
⊕

RMoon

)(

RMoon

dEarth−Moon

)6

sin Θ. (1.2.6)

As we mentioned in section 1.1, the tidal dissipation quality factor is related to the lag

angle as Q−1 ≈ tan (2Θ) ≈ 2 sin (Θ). We can estimate the characteristic synchronization

time scale as:

1

Ωrot

dΩrot

dt
=

1

τsync
. (1.2.7)

Dividing equation (1.2.6) by Ωrot we finally obtain the synchronization timescale:

1

τsync

=
G

αMoonΩrotR
3
Moon

(

M2
⊕

MMoon

)(

RMoon

dEarth−Moon

)6
1

QMoon

. (1.2.8)

The actual derivation gives (Murray and Dermott 2000):

1

τsync

=
3Gk2Moon

2αMoonΩrotR3
Moon

(

M2
⊕

MMoon

)(

RMoon

dEarth−Moon

)6
1

QMoon

, (1.2.9)

where k2Moon is the tidal Love number. For the Moon (Yoder 1995) k2Moon = 0.030,

Q = 13, αMoon ≈ 2/5 and therefore τsync = 7 × 107 years. Therefore, the torques

over the tides raised on the Moon by the Earth are strong enough to explain the lunar

synchronization.
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For tidal circularization of the orbiting body (eg, the Moon, an exoplanet), we refer to

the work of Hut (1981). To estimate the tidal circularization time scale, we assume some

eccentricity in the system and perfect synchronization of the Moon. When synchronized

there is no net torque due to a tide raised by the Earth. However, tidal dissipation

exists, as the differential radial force between the center and the surface of the Moon

changes during the orbit, being this effect larger at the pericenter. The orbital angular

momentum6 L is:

L2 = G
M2

⊕M
2
Moon

M⊕ +MMoon

a(1 − e2). (1.2.10)

If L is constant:

1

a

da

dt
=

2e

(1 − e2)

de

dt
. (1.2.11)

The energy dissipated by the lunar tide is extracted from the orbit, Eorb = −GM⊕MMoon/2a,

and therefore:

dEorb

dt
=
GM⊕MMoon

2a

1

a

da

dt
, (1.2.12)

and since Ėorb < 0, ȧ < 0 and so ė < 0. Therefore tides raised on a satellite (less massive

companion), when dissipated, circularize the orbit.

In order to estimate the energy dissipated we can estimate the work done by the

satellite (of orbital frequency ω) on the tide. Dissipation introduces a delay in the

amplitude and direction of the tide, the time-dependent part being of the order of cos(ωt+

ǫ), where ǫ accounts for the phase difference between the fluid response and the force (∝

sin (ωt)), this phase is analogous to Θ the lag angle where the satellite is not synchronized.

The work is given by:

∆Eorb =

∮

orbit

Fr · dr =

∮

orbit

Fr
dr

dt
dt, (1.2.13)

where Fr is the tidal radial force. Since the radial velocity of the fluid on the Moon is of

the order ṙ = eRMoonω sin (ωt) and Fr ≈ eGM⊕δMMoonRMoona
−3 cos (ωt+ ǫ) the work

6Much larger than the rotational angular momentum.
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is:

∆Eorb ≈ e2
GM⊕δMMoon

a2

RMoon

a
RMoonω

∮

orbit

sin (ωt) cos (ωt+ ǫ)dt, (1.2.14)

here we have introduced a factor e in both the force and the velocity to account for the

part that actually varies when e is non-zero (there is always a constant part that does

not change with time).

The integral results in a factor of sin ǫ/(2ω). The tide raises a bulge of height h on

the Moon and mass:

δMMoon =

(

h

RMoon

)

MMoon, (1.2.15)

and therefore:

∆Eorb = e2
G

2

M⊕MMoon

a2

h

a
RMoon sin ǫ (1.2.16)

Since the height of the tidal bulge is:

h = RMoon
M⊕

MMoon

(

RMoon

a

)3

. (1.2.17)

the work done is:

∆Eorb = e2
GM2

⊕

2

R5
Moon

a6

1

Q
, (1.2.18)

where we have adopted sin ǫ = Q−1
Moon.

The average rate of energy loss, is the work (eq. 1.2.18) divided by the orbital period

(∼ ω−1) so that:

dEorb

dt
= −e2GM

2
⊕

2

R5
Moon

a6

ω

Q
. (1.2.19)

Replacing eq. (1.2.19) and (1.2.12) in eq. (1.2.11) we finally obtain (for e << 1):

1

e

de

dt
= −1

2

(

M⊕

MMoon

)(

RMoon

a

)5
ω

QMoon
. (1.2.20)

The actual derivation of ė, for small eccentricities is (Hut 1981):

1

e

de

dt
= −27k2Moon

QMoon

(

M⊕

MMoon

)(

RMoon

a

)5

ω, (1.2.21)

The circularization time-scale is just the inverse of equation (1.2.21) and therefore,

τcirc = 2 × 1010 years. The values of k2Moon and QMoon are from Yoder (1995).
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1.2.2 The equilibrium tide vs dynamical tide

The equilibrium tide (Goldreich and Soter 1966) is based on a model in which a spherical

body continually adjusts to maintain a state of quasi-hydrostatic equilibrium in the

varying gravitational potential of its orbital companion. Internal friction within the body

induces dissipation of energy and a phase lag, which gives raise to a net tidal torque that

transports angular momentum between the spin of the body and its companion and their

orbits.

In the case of gas giant planets (Goldreich and Nicholson 1977), turbulent dissipation

of equilibrium tides dissipates energy. The kinetic energy of large scale flows cascades

down to smaller and smaller scales until it is dissipated into heat. When turbulence

exists, the time scale for the dissipation is of the order τconv = R2/νt, where νt is the

effective turbulent viscosity. In Jupiter, convection is the cause of turbulence. Goldreich

and Nicholson (1977) proposed that only the eddies which have a turnover lifetime of less

than the tidal period 2π/ωtide exchange momentum with the mean flow on that timescale.

They conclude that, over the bulk of the planet, the mass average turbulent viscosity is

of the order < νt >∼ 103 cm2s−1, and therefore the viscous time scale exceeds the age of

the Universe. Hubbard (1974) estimated Q in the equilibrium tide of Jupiter:

QJ =
GM

2ωR

1

< νt >
, (1.2.22)

which predictsQJ ∼ 1013, eight orders of magnitude larger than the observed QJ ∼ 4×104

(Lainey et al. 2009).

The dynamical tide is present when the varying tidal potential of the companion

resonantly excites radial and non-radial oscillations in the body. Inside gravitating ro-

tating fluids, there are mainly three modes of oscillations. Pressure-restored (acoustic)

‘p-modes’, whose characteristic frequency (of the lowest order mode) is cs/R, where cs is

the characteristic sound speed and R the radius of the body. Buoyancy restored modes

or ‘g-modes’, are those whose characteristic frequency is the Brunt− V äisälä frequency
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(Unno et al. 1989):

N =

[

g

(

1

Γ1

d ln p

dr
− d ln ρ

dr

)]1/2

, (1.2.23)

where Γ1 is the adiabatic index, g acceleration due to gravity, p the pressure, ρ the density

and r the distance from the center. The last type are Coriolis-restored modes or ‘inertial-

modes’, whose frequencies are in the range of [0, 2Ωrot], where Ωrot is the frequency of

rotation.

In the Sun the p-modes have a characteristic period of Pp−mode ∼ 5 minutes near the

surface, g-modes have Pg−mode ∼ 1 hour, and inertial-modes Pinertial−mode ∼ 25 days.

We are interested in the dissipation by the dynamical tide in Jupiter and hot-Jupiters.

Tides are raised in Jupiters by its moons, the main tidally disturbing bodies being the

Galilean moons (due their large masses compared to any other Jovian moons). In the

rotating frame of Jupiter (not synchronized with the moons), the tide has a frequency of

ωtide = Ωrot−ωorb ∼ Ωrot, and therefore normal modes in the frequency range (periods) of

the order Ωrot (10 hours) are candidates to be excited near resonance. Jupiter is mainly

convective, meaning N ≈ 0, and so g-modes are not possible. The lower order p-modes

have periods of 30 minutes (with high order p-modes having shorter periods), whis is far

too short to be excited. However the frequencies of inertial modes are in the range of

the rotational frequency, and so they are a strong candidate for tidal dissipation in the

dynamical tide. The oscillations are dissipated by the means of turbulent convection.

Even if the estimated turbulent viscosity (Goldreich and Nicholson 1977) is very small,

resonant excitation of inertial modes can dissipate enough energy over the age of the

system, as the energies of the oscillations scale as the square of the amplitude. The

inertial mode spectrum is dense in the frequency range of [0, 2Ωrot]. In the case of hot-

Jupiters, it is likely that they are synchronized with their orbits7 , i.e., Ωrot ≈ ωorb.

However, as we mentioned earlier, when the orbit is not circular, there exist a radial tide

7Jupiter and hot-Jupiters are likely to be similar, except for a radiative envelope and a larger radius
due to both irradiation and tidal heating (Guillot 2005). Therefore, from the observations we can
conclude that Qhot−J ∼ QJ , small enough for them to become synchronized.
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with a frequency comparable to ωorb, and therefore inertial modes are also candidates for

eccentricity damping.

In the case of the existence of a radiative layer, more likely to be present in exoplanets

orbiting their host stars at distances of a . 0.05 AU, a tidal perturbation of a period

of days can also induce resonant g-mode oscillations of high order (N ∼ g/cs ∼ 0.03

s−1), which can carry both energy and angular momentum (Cowling 1941). The g-mode

oscillations can be dissipated by radiative damping, i.e., they travel adiabatically to the

stellar surface where both the wave and angular momentum carried by it are dissipated

and transferred respectively.

Since extrasolar planets with a < 0.07AU (P < 6 days) have e ≈ 0, and in outer

regions they exhibit a scatter in their eccentricities (Figure 1.1), we can assume that the

circularization timescale is similar as the age of the host star (roughly few Gyrs. for the

planet-host’s stars). And since the mass-radius relation around Jupiter’s mass is almost

a constant (R ∝ M0), exoplanetary radius does not change that much with mass (Guillot

2005). Therefore radial velocity measurements and an estimation of the stellar mass can

lead us to infer Qp. Moreover, observing the shaded regions of Figure 1 in Wu (2003) one

can see that the observed upper envelope of planet eccentricity as a function of a can be

explained by a tidal quality factor Qp ≈ 3 × 105 if these are gaseous planets similar to

Jupiter in their ages and sizes. The circularization timescale is:

1

τ
=

1

e

de

dt
= −27k2

2Qp

(

M∗

Mp

)(

Rp

a

)5

ω,

where k2, Qp, and Rp are the tidal Love number, tidal Q− value and radius of a planet,

orbiting a star of mass M∗ with semi-major axis a and orbital frequency ω.
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Figure 1.1 Eccentricity vs semi-major axis for all known extrasolar planets

(up-to-date). Source of data taken from the extrasolar planets encyclopedia

(http://www.obspm.fr/encycl/encycl.html).

1.2.3 Recent estimations of Q due to dissipation in the dynam-

ical tide

As we have shown, dissipation on the equilibrium tide can not account for the obser-

vational constraint to Qp, therefore most of the research of the last 3 decades has been

focused on the dynamical tide. Here we mention two “recent” attempts to estimate Q in

Jupiter.

Ogilvie and Lin (2004) studied, using a numerical code, the forced excitation of inertial

and g free waves inside rotating planets whose interiors include a solid core, a convection

zone and a radiative atmosphere. Their results are reasonable for the case of Jupiter and

Saturn, with Qp ≈ 105 when using a polytrope of index n = 1, a solid core of about 10% of



Chapter 1. Introduction 15

the planet, and a convective and small radiative regions that accounts for the remaining

90 %. In that model the dissipation is due to turbulent viscosity in the convective region,

and via the emission of Hough (1897) waves at the convective-radiative boundary. The

viscosity has been greatly enlarged (roughly 10 orders of magnitude greater) because the

lack of numerical resolution at realistic microscopic viscosities (Guillot et al. 2004). Qp

values in their models seem to be independent of viscosity, questionable to the physical

sense We can also speculate that different equations of state may produce different tidal

responses (which depends on the density and its fluctuations), since the radial parts of

the outward propagating waves may be reflected depending on their frequencies and the

latitude at which they arrive at the outer interface between the inertial modes in the

convective zone and g-modes in the atmosphere (similar to Snell’s internal reflection in

optics).

In a different approach Wu (2005a) and Wu (2005b) studied tidal dissipation of iner-

tial modes (standing waves) resonantly excited by the harmonic tidal potential. Wu

(2005a) performed a semi-analytical analysis of inertial modes in rotating neutrally-

buoyant spheres, where the only restoring force is Coriolis. For a general density profile

approximate solutions to the inertial modes, “accurate to second order in wave vector”,

are obtained. Later Wu (2005b) couple the inertial modes to the disturbing tidal poten-

tial of an external body (i.e., a satellite or a star), using mixing length theory to study

the dissipation of these modes by turbulent dissipation (since the results were analytical,

handling of low turbulent viscosity was possible). Because these studies involved only

inertial modes, the results are applicable to bodies that are fully convective like Jupiter

(as long as the core is very small compared to the wavelength of the modes). Depend-

ing on the actual (and somewhat unknown) equation of state, Wu (2005b) obtained8

QJ ≈ 107 − 109, a factor 102 − 104 above the actual QJ . In this model, QJ depends on

8Oscillatory g-modes are not possible in convective spheres, although they may be important for tidal
dissipation in the convective-radiative boundary.
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viscosity and tidal frequency, as one may expect. It seems improvement to this theory is

needed to confirm that inertial modes are the dominant tidal dissipation mechanism.

Regardless of the approach, these are hints that the dynamical tide may be responsible

for the observed Qp in solar and extrasolar planets. Therefore, it is important to develop a

theory that involves as much realistic planetary physics as possible, in order to understand

how exoplanets evolve dynamically, and perhaps how tidal dissipation of this kind in stars

contribute to circularization and braking mechanism for inward planetary migration.

1.3 Structure of a Giant Planet

In order to build an interior model of a giant planet, it is imperative to know the equation

of state (EOS) of matter at high pressures and low temperatures.

Jupiter is made of mostly of hydrogen and helium, reaching pressures above 1 Mbar

and temperatures that range from hundreds of K in the surface to 30,000 K in the

center. The equation of state has been investigated by many different authors. The EOS

of Saumon et al. (1995) (usually known as SCVH) deals with plasmas of hydrogen and

helium separately at high densities. The technique used was ‘free-energy minimization’

where the interaction among atoms and molecules is made through a pair potential,

keeping the identities of the particles involved. Any mixtures of hydrogen and helium

were treated as additive and weighted contributions to the free-energy, neglecting the

interaction potential that otherwise would complicate the calculations.

Saumon et al. (1995) also show that above certain densities, the mean distance be-

tween atoms becomes comparable to the Bohr radius, and therefore the electrons are

forced to unbound states making the fluid a pressure-ionized plasma. Their calculations

showed that this pressure-ionization of hydrogen (also known as ’metallic hydrogen’)

may happen sharply, through a discontinuous first-order phase transition9, also called

9Meaning that all thermodynamic quantities are discontinuous except for the pressure, the tempera-
ture and chemical potentials.
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“plasma phase transition” or PPT. There is no current experimental evidence for or

against this transition, and therefore (Saumon et al. 1995) also produce models that

consider continuous phase transitions through interpolation (smoothing-out) of all the

previously discontinuous variables.

Guillot (1999) produced a ‘3-layer’ Jupiter and Saturn model. In this model the in-

teriors of the planets were divided into an inner solid core region, an inner-intermediate

metallic hydrogen region and an outer molecular hydrogen region. Guillot (1999) im-

proved Saumon et al. (1995) EOS by adding ‘ices’ (CH4, NH3 and H2O) and ‘rocks’ (Fe,

Ni, MgO and SiO2) to the region of the EOS that considers the core.

Although in many other EOS (Saumon et al. 1995; Stevenson and Salpeter 1977) giant

planet interiors are convectively unstable10, uncertainties in hydrogen, helium, methane,

water and ammonia Rosseland opacities may allow for the existence of outer radiative

layers (Guillot et al. 1994).

In order to test the interior models of Jupiter and Saturn, they had to match accu-

rately known values, e.g.; the equatorial radius Req, at the known rotational frequency Ωp

and mass Mp, and the quadrupolar moment of inertia J2. Less accurately known values

of J2 and the average helium mass fraction Ȳ can also be used to constrain the structure

of these planets.

In the case of hot-Jupiters (a ≤ 0.1 AU), irradiation from the host star is 104 times

larger than their intrinsic cooling energy flux, and therefore a radiative zone is likely to be

present controlling the cooling of the planet (Guillot et al. 1996). This radiative region can

extend as far as 5% in radius and 0.3% in mass (Guillot and Showman 2002). Guillot et al.

(1996) calculate the effect of cooling through a radiative atmosphere. In order to do that

the (molecular) opacity setups for exoplanets were built in a similar way as “AMES-cond”

and “AMES-dusty” models atmospheres of Allard et al. (2001). These opacities refers

10Using the Schwarzschild criterion for convection, which is equivalent to a Brunt−V äisälä frequency
N < 0.
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to two limiting cases, when dust forms in the atmosphere, at locations determined by

the chemical equilibrium equations, but has been entirely removed from the atmosphere

by efficient gravitational settling11, and when settling is ignored altogether leaving dust

present on the atmosphere and therefore contributing to the opacity.

1.4 Inertial Modes

Inertial modes are oscillations where the Coriolis force is the main restoring force, and

therefore they only occur in rotating fluids. In the Earth we observe them in the atmo-

sphere as Rossby waves (Greenspan 1980) and geostrophic winds (jets), and in the oceans

as geostrophic currents. In that context these modes are usually confined to spherical

shells. They have not being confirmed in the astrophysical context.

Work on inertial modes in rotating spheres (or spheroids) can be traced back to

Poincaré (1885), who obtained the differential equations for the oscillations of a rotating

and gravitating inviscid fluid, and later Bryan (1889), who studied Pioncaré’s oscilla-

tions in a uniform-density spheroid of finite ellipticity (an ellipsoid). Bryan (1889) used

a coordinate transformation under which the differential equation that governs the oscil-

lations becomes separable. The eigensolutions were exactly described by the associated

Legendre polynomials, and the eigenfrequencies in the rotating frame were constrained

between zero and twice the angular frequency of the spheroid.

In the astrophysical context, Papaloizou and Pringle (1978) studied g- and r-modes

(pure toroidal, odd-parity, retrograde inertial modes) in a rotating spherical star and

their applicability to the short period oscillations of cataclysmic variables. They used

the variational method and the expansion of the eigenfunction in a well chosen basis in

an equipotential coordinate system.

Lockitch and Friedman (1999) studied r-modes in isentropic stars in the absence of

11Therefore not contributing to the overall opacity
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viscosity and without a solid core for arbitrary polytropic density profile. Their aim was

to study the spin evolution of rapidly rotating neutron stars. They used spectral meth-

ods to find the eigenfunctions. In spherical isentropic stars, the gravitational restoring

forces that give rise to g-modes vanish. The Coriolis force term then produces the pure

axial r-modes studied by Papaloizou and Pringle (1978), and mixed axial-polar modes

(generalized r-modes), known as inertial modes. They used inertial mode solutions in the

sphere where the angular part is an expansion in a basis of spherical harmonics. Stars

of Solar mass (or lighter), and giant planets are likely to be convective except for the

external atmosphere. Inertial modes, must be always present in these type of objects.

Lee et al. (1992a) investigated inertial modes in Jupiter using different interior models,

in particular models that include the molecular-metallic hydrogen phase transition. Using

the spherical coordinate system they expanded the angular part of the solutions in terms

of the spherical harmonics Y m
l (θ, φ). Whereas the treatment of the boundary conditions

around the phase transition was novel, their approach was limited by lack of resolution,

since they have used no more than three spherical harmonics.

Later Dintrans and Ouyed (2001), using modern numerical tools, demonstrate the

limitations of Lee et al. (1992a) after the inclusion of as many spherical harmonics as

needed before spectral convergence is achieved. However they only tested a simple poly-

tropic interior model of index n = 1. The inclusion of a phase transition remains as a

puzzle.

Ogilvie and Lin (2004) studied tidal dissipation in rotating giant planets that include

a solid core, a large convective region harboring inertial modes, and a radiative zone,

where Hough modes (Coriolis modified g-modes) are possible. They modeled inertio-

gravity waves forced by the harmonic tidal potential. Their aim was to explain the

observed circularization of the orbits of short-period extrasolar planets and the current

state of the Galilean satellites. The numerical solutions for the 2-D problem were obtain

by two independent methods. A Chebyshev pseudo spectral approach (similar to the
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one we implement later in this Thesis), that provides highly accurate eigenfunctions, and

direct integration of the differential equations, using a fifth-order Runge-Kutta method.

In all of the previous works finding the periods and solutions for the eigenfunctions

has been a very difficult task, since the partial differential equation governing them is

non-linear, and therefore it is very difficult to use separation of variables. The traditional

spherical description of the solution (a linear combination of spherical harmonics) is no

longer helpful as the solution is composed of many (maybe infinite) spherical harmonics

(Schenk et al. 2002). In general, for the traditional 3-D axisymmetric problem, we can

assume that the solution has terms proportional to eimφ; however, the set of eigenvectors

generally couple a considerable number of them.

Wu (2005a) solved the same problem as Ogilvie and Lin (2004), although the author

studied pure inertial modes without the inclusion of a solid core and a radiative layer.

Wu’s approach is based on the same coordinate transformation that Bryan (1889) used

for constant density ellipsoids. However, the author found that by using a power law

density structure of the form ρ = (1− r2)β, the differential equation is separable. Direct

integration of the inviscid ODEs produced eigenfunctions and frequencies.

1.5 Goal of This Thesis

In chapter 2 we present the derivation of the partial differential equation that have,

in combination with the boundary conditions, inertial mode solutions. In order to do

that, we follow Wu (2005a) description, highlighting some of the assumptions that sim-

plify the equations, and explain why we make them. Also crucial for the derivations is

the assumption of an ellipsoidal coordinate system, which, combined with constant and

power-law density profiles allows to use separation of variables, and therefore transform

the numerically complicated 2-D PDE into an ODE.

In chapter 3 we present the spectral and pseudo-spectral methods that will be used to
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solve PDEs numerically, and also show how they are related. After using an ellipsoidal

coordinate system and expanding the unknown solution in terms of Chebyshev poly-

nomials, we re-calculate numerically the inertial modes obtained by Wu (2005a). We

conclude that, using the pseudo-spectral method simplifies the calculations, and saves

great amount of computing time.

Next, in chapter 4, we explore the possibility that inertial modes inside Saturn may be

detected indirectly using its rings as a seismograph. We follow Marley and Porco (1993)

idea of detecting f-modes in the same way. The key element is that any normal mode

inside Saturn produces torques harmonically at different locations on the rings. Inertial

modes perturb the external gravitational potential, and can resonantly excite density and

bending waves that can and have been observed by satellite missions to the outer planet.

These type of waves on Saturn rings are associated to Lindblad and vertical resonances

of the particles respectively. As mentioned in the introduction, inertial modes have not

been detected outside the Earth, and since their eigenfunctions depend on the density

gradient of the planet, they can be use to prove Saturn’s interior.

In chapter 5 we go back to our original task of calculating Q for general density

profiles inside fully convective rotating planets. We start by using the pseudo-spectral

method to calculate the inertial modes when a power-law density profile is used. We

obtain the same results as Wu (2005a) did, and also, the same results as the spectral

method produced after a time-consuming analytic calculation. After this “test” phase

produced encouraging results, we proceed to calculate inertial modes in general density

profiles. We use polytropes and find that, as Wu (2005a) estimated, the eigenfunction of a

polytrope of similar index as a power-law, does not variates considerable, and therefore,

produces similar tidal overlap integrals, and hence similar tidal quality factors Q. At

least for smooth-density profiles the combination of the ellipsoidal coordinate system,

and the expansion of the eigenfunction in terms of Chebyshev polynomials, produced

highly accurate eigenfunctions, whose spectral coefficients converge very fast.
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Things get blurry when the density profile have discontinuities or jumps, for example

when a hard inner core may exist or when a phase transition, like the one that sepa-

rates molecular hydrogen from metallic hydrogen. In chapter 6 we attempt to calculate

eigenfunctions when a jump in density of either 1st or 2nd order occurs inside Jupiter at

about 80 % of its radius. As Wu (2005b) estimated, it is expected that, when a density

jump is present, the inertial mode couples more efficiently to the tidal potential, making

possible to reduce Q three to four order of magnitudes from results of smooth density

models. Our preliminary results showed lack of convergence, when we adopted densities

from internal structure tables from Guillot (1999). Since it was not clear if the lack of

convergence was due to a physical non-standing wave-like response of the mode to the

jump, or to lack of spectral resolution, or numerical problems raised from the inaccuracies

of the density tables, we used a toy model in which an analytical density profile included

a parametrized hyperbolic tangent function that can be used to study the effect of the

with and height of the jump in the actual convergence of the spectral coefficients. Even

in that case the results were not that clear. We turned to a 1-d toy model, in which

we explored how sound waves are sensitive to discontinuities of the same kind, using the

same techniques we used in the 2-d inertial mode problem. Then we realized that it was

spectral resolution the main problem, implying that, the full width at half maximum

(FWHM) of the jump was inversely proportional to the truncation of the Chebyshev

series used.

Finally in chapter 7 we address a criticism of Goodman and Lackner (2009) respect

to the calculations made by Wu (2005a) in which the anelaistic approximation was used.

This approximation discards the terms in the inertial mode equation, proportional to

the sound speed, since it gives rise to pressure waves, higher than inertial modes in

terms of frequency, and also unimportant for resonant excitation due tidal potentials

that variates from 5 hours to days. Goodman and Lackner (2009) points out that by

discarding the sound speed term, the tidal overlap integral has been overestimated, and
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that its introduction would produce perfect cancellation. They also mentioned that

the long-wavelength nature of the tidal perturbation can only produce long-wavelength

responses from the rotating the fluid. We produce numerical results that confirms the

validity of the approximation, and explain why short-wavelength responses are possible.



Chapter 2

Equation of Motion that Govern

Inertial Modes

We study inertial modes in a neutrally buoyant, uniformly rotating sphere. Much of the

notation and derivations are similar to those in (Wu 2005a), but we include them here

for completeness.

2.1 Equation of Motion in Vector form

Let the angular velocity Ω point in the z direction. When we introduce tidal pertur-

bations later in this thesis, they will be assumed to be symmetric with respect to the

z-axis.

We define the following variables for the background: pressure p, density ρ and gravi-

tational potential Φ0. The adiabatic index Γ1 = ∂ ln p/∂ ln ρ|s (s being entropy) is related

to the speed of sound by Γ1 = c2s ρ/p.

We also define the following perturbation quantities: the displacement vector ξ, Eu-

lerian perturbations to pressure, density and gravitational potential, p′, ρ′ and Φ′ respec-

tively, and then Lagrangian counterparts, δp, δρ, δΦ.

24
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Euler’s equation for inviscid fluid motion reads,

du

dt
= −∇P

ρ
−∇Φ, (2.1.1)

where du/dt = ∂u

∂t
+ u · ∇u is the time derivative in the inertial frame. To rewrite the

left-hand-side in the rotating frame, we recognize that velocities in the two frames are

related by

u = v + Ω × r, (2.1.2)

The velocity in the rotating frame is related to the displacement ξ by v = ∂ξ/∂t = ξ̇.

Furthermore, any vector in the rotating frame is advected by rotation so that

d

dt rotate
=

d

dt inertial
+ Ω × . (2.1.3)

Combining these equations we obtain the equation of motion in the rotating frame

dv

dt
+ 2Ω × v − Ω × (Ω × r) = −∇P

ρ
−∇Φ. (2.1.4)

This form contains two inertial forces: the second term in the left hand side is the Coriolis

force, while the third term is the centrifugal force.

The centrifugal force contributes to the hydrostatic equilibrium of giant planets. How-

ever, we consistently ignore it in our treatment, both for the sake of simplicity and because

we believe it causes a negligible perturbation. Jupiter has a break-up spin period (upper

limit) of

Ωbreakup =

√

GMJ

R3
J

= 2.8hrs, (2.1.5)

so with a spin period of 9.8 hours, effect of the centrifugal force is ∼ (Ω/Ωbreakup)
2 ∼ 8%.

For extra-solar giant planets, it is reasonable to assume that they have been tidally

synchronized by their host stars and are spinning with a period of ∼ 3 days. As a

result, the magnitude of effect of the centrifugal force is ∼ 10−3. Similarly, we also ignore

perturbations to the centrifugal force due to displacement.
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In addition to the Euler equation, we also have the equation of mass conservation and

Poisson’s equation:

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1.6)

∇2Φ = 4πGρ. (2.1.7)

Since the planet is fully convective and therefore largely neutrally stratified, its back-

ground density and pressure profiles are related through

dρ

dr
=

ρ

Γ1p

dp

dr
. (2.1.8)

We linearly perturb the above equations to obtain the equations of motion that govern

inertial modes,

ρξ̈ + 2ρΩ × ξ̇ = −∇p′ +
∇p

ρ
ρ′ − ρ∇Φ′, (2.1.9)

ρ′ + ∇ · (ρξ) = 0, (2.1.10)

∇2Φ′ = 4πGρ′. (2.1.11)

We proceed to simplify this set of equations. First, we adopt the Cowling approxi-

mation, Φ′ = 0. We also ignore any external potential forcing such as the tidal potential

as we are interested first in free oscillations. Second, we adopt the assumption that the

perturbation is adiabatic,

δp

p
= Γ1

δρ

ρ
(2.1.12)

This is valid for regions inside in which the planet that has thermal diffusion time is

much longer than the characteristics timescale for the perturbation (i.e., mode period).

Since Lagrangian and Eulerian perturbations are related as

δX = X ′ + ξ · ∇X, (2.1.13)

combining this with equations 2.1.12 and 2.1.8 one obtains

p′

p
= Γ1

ρ′

ρ
. (2.1.14)
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This allows us to introduce a new scalar

ψ =
1

ω2

(

p′

ρ
+ Φ′

)

=
1

ω2

(

c2s
ρ′

ρ
+ Φ′

)

=
c2s
ω2

ρ′

ρ
, (2.1.15)

and simplify equation 2.1.9 into

ρξ̈ + 2ρΩ × ξ̇ = −∇

(

p′

ρ

)

− ∇Φ′ = −∇ω2ψ. (2.1.16)

Here, ω is the mode frequency in the rotating frame. Following Wu (2005a), we adopt

for all variables the following dependence on time (t) and on the azimuthal angle (φ):

X ∝ exp [i(mφ − ωt)]. Modes with denotation (m,ω) and (−m,−ω) are physically the

same mode, so we restrict ourselves to ω ≥ 0, with m > 0 representing a prograde mode,

and m < 0 a retrograde one. We define the following dimensionless variables

µ =
ω

2Ω
, q =

1

µ
. (2.1.17)

From the dispersion relation (e.g. Unno et al. 1989) one can show that 0 < µ ≤ 1 for

inertial modes.

Following Wu (2005b), we manipulate equation 2.1.16 to obtain the following rela-

tionship between ξ and ψ,

ξ =
1

1 − q2
(1 − iq ez× − q2ez ez·) ∇ψ. (2.1.18)

In the meantime, equation (2.1.10) can be manipulated to yield

∇ · ξ +
ω2

c2s
ψ =

er · ξ
H

=
g

c2s
(er · ξ). (2.1.19)

Combining these above two equations yields a second-order partial differential equa-

tion for ψ

∇2ψ − q2∂
2ψ

∂z2
=

1

H

(

∂ψ

∂r
− q2 cos θ

∂ψ

∂z
− mq

r
ψ

)

− (1 − q2)
ω2

c2s
ψ. (2.1.20)

Here, H ≡ −dr/d lnρ is the density scale height and H = c2s/g (eq. 2.1.8), with g being

the local gravitational acceleration. θ is the zenith angle and cos θ = z/r with z being the
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height along the rotational axis. Let ̟ be the cylindrical radius. The partial derivatives

here are to be understood as ∂/∂r = ∂/∂r|θ, ∂/∂θ = ∂/∂θ|r, ∂/∂z = ∂/∂z|̟, and

∂/∂̟ = ∂/∂̟|z.

The last term in equation (2.1.20) is the compressional term. It represents the main

restoring force for pressure waves. In comparison to the Coriolis force term, it is negligible

for inertial waves as these waves are much lower in frequency than pressure waves. We re-

tain this term in most of the numerical analysis (as it does not cause extra complications)

but show in §7 that it does not indeed matter much for the results.

2.2 Equation of Motion in Ellipsoidal Coordinates

In general, the above partial differential equation is not separable in any coordinates and

only fully numerical solutions could be sought. However, Bryan (1889) showed that, for

the case of a constant density sphere (H = ∞, c2s = ∞, so that the right-hand side of eq.

2.1.20 vanishes), the left-hand side of equation (2.1.20) is separable.

His procedure involves adopting the ellipsoidal coordinates (x1, x2, φ), a hybrid be-

tween cylindrical and spherical coordinates, which are related to the Cartesian coordi-

nates as

x =

[

(1 − x2
1)(1 − x2

2)

1 − µ2

]
1

2

cosφ,

y =

[

(1 − x2
1)(1 − x2

2)

1 − µ2

]
1

2

sinφ,

z =
x1x2

µ
, (2.2.1)

with x1 ∈ [µ, 1], x2 ∈ [−µ, µ], and φ is the usual azimuthal angle with φ ∈ [0, 2π]. From

now on, we normalize all lengths by the planetary radius R unless otherwise noted. The
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cylindrical and spherical radii are given by, respectively,

̟2 = x2 + y2 =
(1 − x2

1)(1 − x2
2)

(1 − µ2)
,

r2 = x2 + y2 + z2 = 1 − (x2
1 − µ2)(µ2 − x2

2)

(1 − µ2)µ2
. (2.2.2)

Partial differentiation with respect to ̟, z and r can be expressed in the new coor-

dinates as,

∂

∂̟

∣

∣

∣

∣

z

=
∂x1

∂̟

∣

∣

∣

∣

z

∂

∂x1

∣

∣

∣

∣

x2

+
∂x2

∂̟

∣

∣

∣

∣

z

∂

∂x2

∣

∣

∣

∣

x1

= −(1 − µ2)̟

x2
1 − x2

2

(

x1
∂

∂x1
− x2

∂

∂x2

)

(2.2.3)

∂

∂z

∣

∣

∣

∣

̟

=
∂x1

∂z

∣

∣

∣

∣

̟

∂

∂x1

∣

∣

∣

∣

x2

+
∂x2

∂z

∣

∣

∣

∣

̟

∂

∂x2

∣

∣

∣

∣

x1

=
µ

x2
1 − x2

2

[

x2(x
2
1 − 1)

∂

∂x1
− x1(x

2
2 − 1)

∂

∂x2

]

,

(2.2.4)

∂

∂r

∣

∣

∣

∣

θ

=
∂r

∂z

∣

∣

∣

∣

θ

∂

∂z

∣

∣

∣

∣

̟

+
∂r

∂̟

∣

∣

∣

∣

θ

∂

∂̟

∣

∣

∣

∣

z

= −(1 − x2
1)x1

(x2
1 − x2

2)r

∂

∂x1

+
(1 − x2

2)x2

(x2
1 − x2

2)r

∂

∂x2

. (2.2.5)

Fig. 2.1 shows graphically how the ellipsoidal coordinates and the spherical coordinates

are related to each other.

In this set of coordinates, the partial differential equation (eq. (2.1.20)) is turned into

two ordinary differential equations, or

(

∇2 − q2 ∂
2

∂z2

)

ψ =
1 − µ2

x2
1 − x2

2

{[

(1 − x2
1)
∂2

∂x2
1

− 2x1
∂

∂x1
− m2

1 − x2
1

]

−
[

(1 − x2
2)
∂2

∂x2
2

− 2x2
∂

∂x2

− m2

1 − x2
2

]}

ψ = 0. (2.2.6)

The corresponding solution is

ψ = ψ1(x1)ψ2(x2), (2.2.7)

with ψi being the Legendre polynomial.

Realistic planets do not have uniform density profiles. In this respect, an interesting

advance is reported in Wu (2005b) where it is shown that even for a density profile of

the following power-law form

ρ ∝ (1 − r2)β, (2.2.8)
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Figure 2.1 This figure is adopted from Wu (2005a) and shows how the ellipsoidal coordi-

nates are mapped onto a meridional plane (left panel), as well as how a meridional plane

is mapped onto the ellipsoidal coordinates (right panel) when µ = 0.75. The ellipsoidal

coordinates are a hybrid between cylindrical and spherical coordinates and are natu-

rally suited for studying motion affected by the Coriolis force. On the spherical surface

(r = 1), either x1 or |x2| (or both) equals µ. This makes it particularly simple to write

down boundary conditions at the surface. The region near the surface where cos θ ∼ ±µ

(and x1 ∼ µ, x2 ∼ ±µ) experiences a more densely packed equidistant x1, x2 curves. We

call this region the ‘singularity belt’. Inertial modes acquire the largest amplitudes and

the largest gradients in this region. Adoption of ellipsoidal coordinates naturally affords

us the resolution to study this region in more detail.
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where β is any dimensionless real number, if one could ignore the compressional term,

equation (2.1.20) is still separable in the ellipsoidal coordinates. The resulting equation

is

(E1 − E2)ψ = 0, (2.2.9)

where the differential operator Ei is defined as

Ei =

[

Di +
2βxi(1 − x2

i )

x2
i − µ2

∂

∂xi
+

2µβm

x2
i − µ2

]

, (2.2.10)

which contains also a differential operator Di where

Di =
∂

∂xi

[

(1 − x2
i )

∂

∂xi

]

− m2

1 − x2
i

. (2.2.11)

This latter operator appears in the equation of motion in the case when density is uniform,

(D1 −D2)ψ = 0 (Bryan 1889).

The solution to equation (2.2.9) is

ψ = ψ1(x1)ψ2(x2), (2.2.12)

with ψi being a polynomial in xi. The power-law density profile is much closer to that

in realistic planets. Solutions thus obtained provide useful insights into the real case.

For arbitrary density laws, equation (2.1.20) can be organized into the following useful

form (Wu 2005a),

(E1 − E2)ψ − 2
d lnX

d ln t

[

(1 − x2
1)x1

(x2
1 − µ2)

∂

∂x1

+
(1 − x2

2)x2

(µ2 − x2
2)

∂

∂x2
+
mµ(x2

1 − x2
2)

t

]

ψ − 4Ω2R2

c2s
(x2

1 − x2
2)ψ = 0. (2.2.13)

Where, X = ρsurf/ρ, ρsurf is the power-law density profile, ρ is the density profile of the

planet, and t = (x2
1−µ2)(µ2−x2

2) = µ2(1−µ2)(1−r2). In this equation, the second term

(with coefficient d lnX/d ln t) takes care of density departure from the power-law form,

and the compressional term is of order (Ω/Ωbreakup)
2 ≪ 1 except very near the surface.

These two terms couple the dependency in the x1 direction with that in the x2 direction.

They are the origin of algebraic difficulties.
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For a density profile that deviates slightly from a power law (as that inside Jupiter),

Wu (2005a) found that equation (2.2.13) can be manipulated into a new form that min-

imizes the role of the non-separable part. For instance, introducing a fiducial density

ρsurf = (1 − r2)β, with the power-law index taken that to be that for the true density ρ

near the surface, and defining

X =
ρsurf

ρ
, (2.2.14)

as well as a new variable ψ0 where

ψ =

√

ρsurf

ρ
ψ0, (2.2.15)

we can recast equation (2.1.20) into one for the variable ψ0,

(E1 − E2)ψ0 + (d1 − d2)ψ0 = 0, (2.2.16)

where the terms with the operator Ei represent the separable part, and the terms con-

taining di represent the non-separable part,

di =
1√
X

{

∂

∂xi

[

(1 − x2
i )
∂
√
X

∂xi

]

+

(

2β − 2
d lnX

d ln t

)

×

xi(1 − x2
i )

x2
i − µ2

∂
√
X

∂xi
− 2mµ

x2
i − µ2

d lnX

d ln t

}

. (2.2.17)

Here, the dimensionless variable t = (x2
1 −µ2)(µ2 −x2

2) = µ2(1−µ2)(1− r2). For density

profiles that vary slowly compared with wavelengths of inertial modes, the non-separable

part is much smaller and is roughly O(kH)−2 ≪ 1 when compared to the separable part.

Here k is the wavevector.

Wu (2005b) ignored the non-separable part and went ahead and used the resulting

inertial-mode eigenfunctions to obtain estimates for the tidal Q value. She found that

for Jupiter, the rate of tidal dissipation due to these inertial modes well exceeds that

due to equilibrium tide (Q ∼ 1013) but still falls a couple order of magnitudes below the

observed value of Q ∼ 4 × 104 (Lainey et al. 2009).
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Realistic planets have density profiles that resemble a power-law near the surface,

and depart gently from the power-law in the interior. So X is constant in the outer layer

(where scale-height is small) and a gently varying function in the deep interior (where

scale-height is of order r), d lnX/d ln t ∼ R/H ∼ 1. In comparison, the Ei operator

gives rise to a term of order O(kR)2 ≫ 1. This is the reason that in obtaining equation

(2.2.13), we scale the density by a power-law one that is akin to the surface density profile.

This minimizes the effect of density variations on the inertial-mode eigenfunctions. As a

result, it minimizes the cross-talk between spectral terms of different spatial degrees (see

later).

Since inertial-modes have WKB envelopes that scale as ψ ∝ 1/
√
ρ, it may be useful

to further remove this envelope from the differential equation (Wu 2005a) by defining a

new variable ψ0 = ψ/(1/
√
ρ). However, in our spectral and pseudo-spectral codes, this

introduces derivatives of density profile which have numerical (formal) singularities both

near the centre and near the surface. These could be removed with further algebra but

we simply adopt equation (2.2.13) as our starting point.

Even though the equation of motion is not separable in the ellipsoidal coordinates,

we choose this coordinate set over the usual spherical coordinates. This choice afforded

us great advantages.

Inertial-modes are highly spatially inhomogeneous. In the case of a power-law density

profile, we know that a given inertial-mode can be labeled by three quantum numbers,

n1, n2 and m. Here, n1 and n2 are the number of nodal lines in the x1 and x2 directions,

respectively. In the (x1, x2) coordinates, the nodal lines are roughly evenly spaced. How-

ever, in the spherical coordinates, the nodal lines are not – they concentrate toward the

surface and especially near the critical latitude | cos θ| ∼ µ.

When the density deviates slightly from the power-law case, we still expect the above

description to apply. So when solving for inertial-modes in the ellipsoidal coordinates, we

spread out the surface fine ripples into more uniform ripples. When a spectral method is
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used, this approach has the advantage that we need fewer spectral terms. So our solution

can be more accurate and can be obtained at a lower cost.

Lastly, adopting the ellipsoidal coordinates makes mode typing trivial. We find that

even for arbitrary density profiles, mode nodal lines are still largely parallel to constant

x1 or x2 lines, and it is possible to associate a set of quantum numbers to each mode.

This is not possible when using, e.g., spherical coordinates.

We outline the detailed numerical approach in the next chapter.

2.3 Boundary Conditions

Inertial-modes are standing waves inside the cavity of a planet. While in the φ direction,

they are running waves with exp(imφ − iωt) dependence, in the meridional plane, they

are reflected from the center, the surface, the pole and the equator.

In the ellipsoidal coordinates, the center is situated at x1 = 1, x2 = 0; the surface is

x1 = µ and/or |x2| = µ. The rotation axis has x1 = 1, and equator x2 = 0. The center

boundary condition is also exemplified in the one for the polar axis.

2.3.1 Surface

At the planetary surface (r = 1), the Lagrangian pressure perturbation has to approach

zero. In fact, δp has to approach zero faster than ρ does (Unno et al. 1989). One can

simply show this by the following expression for pressure near the surface

δp =

∫ ∞

z+ξz

(g + δg)(ρ+ δρ)dz −
∫ ∞

z

gρdz

≈ δg

g
p+

δρ

ρ
p+

ξz
z
p. (2.3.1)

Here z is depth and increases downward from the surface. As a result

δp

ρ
≈ δg

g

p

ρ
+
δρ

ρ

p

ρ
+
ξz
z

p

ρ
∝
(

δg +
δρ

ρ
g +

ξz
z

p

ρ

)

z → 0, (2.3.2)
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if all perturbations behave regularly (do not diverge) near the surface.

The equation of mass conservation (eq. 2.1.10), the adiabatic assumption (eq. 2.1.12)

and eq. (2.1.19) are used to relate ξr to δp/ρ,

δp

ρ
= Γ1

δρ

ρ

p

ρ
= −Γ1(∇ · ξ)

p

ρ
= ω2ψ − gξr, (2.3.3)

where the first term rises from compression and is sub-dominant. In the end, the condition

that δp/ρ = 0 at the surface is equivalent to

ξr|r=R =
ω2

g
ψ|r=R, (2.3.4)

or a dimensionless form where all lengths are scaled by radius R,

ξr|r=1 =
ω2

g/R
ψr=R = 4µ2

(

Ω

Ωbreakup

)2

ψ|r=R. (2.3.5)

In Wu (2005a), a condition that ξr = 0 at the surface is adopted. Questions arise

(Goodman and Lackner 2009) whether her simplified boundary condition may account

for the magnitudes of tidal coupling she obtained. This is addressed in §7.

The radial displacement is related to ψ as1

ξr =
(1 − x2

1)(1 − x2
2)

(1 − µ2)(x2
1 − x2

2)r

×
[

x1
∂ψ

∂x1

µ2 − x2
2

1 − x2
2

− x2
∂ψ

∂x2

µ2 − x2
1

1 − x2
1

+mµ
x2

1 − x2
2

(1 − x2
1)(1 − x2

2)
ψ

]

, (2.3.6)

when the condition ξr = 0 is adopted, we have the following condition for ψ at the

surface,

∂ψ

∂x1

∣

∣

∣

∣

x1=µ

= − m

1 − µ2
ψ|x1=µ ,

∂ψ

∂x2

∣

∣

∣

∣

|x2|=µ

= −SIGN[x2]
m

1 − µ2
ψ||x2|=µ . (2.3.7)

1Note that the original equation (28) in Wu (2005a) is incorrect. The correct form is reproduced
here.
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2.3.2 Equator

At the equator (x2 = 0), even-parity modes 2 satisfy

∂ψ

∂x2

∣

∣

∣

∣

x2=0

= 0, (2.3.8)

while odd-parity modes satisfy

ψ|x2=0 = 0. (2.3.9)

2.3.3 Polar Axis

The boundary condition at the polar axis (x1 = 1) and the center (x1 = 1, x2 = 0)

are obtained by studying the asymptotic behaviour of the equation of motion near each

axis. In order to implement these two boundary conditions, it is more accurate to solve

equation (2.2.13) for ψ(x1, x2) = (1− x2
1)

|m|/2(1− x2
2)

|m|/2g(x1, x2), and therefore we get:

(F1 − F2)g − 2
d lnX

d ln t

[

(1 − x2
1)x1

(x2
1 − µ2)

∂

∂x1

+
(1 − x2

2)x2

(µ2 − x2
2)

∂

∂x2

+
mµ(x2

1 − x2
2)

t

]

g − 4Ω2R2

c2s
(x2

1 − x2
2)g = 0, (2.3.10)

where the differential operator Fi is defined as

Fi = (1−x2
i )
∂2

∂x2
i

−2xi(|m|+1)
∂

∂xi

+
2βxi(1 − x2

i )

x2
i − µ2

∂

∂xi

+

[

−2β|m|x2
i

x2
i − µ2

+
2βmµ

x2
i − µ2

]

. (2.3.11)

In reality, we often do not implement this boundary condition explicitly. Instead,

the polynomial expansion we adopted (Chebyshev polynomial of the first kind) naturally

excludes the presence of singularities at the polar axis.

2It is straightforward to show that the displacement vector ξ has the same equatorial symmetry as
ψ.



Chapter 3

Spectral and Pseudo-spectral

Methods

In this chapter, we describe in detail the mathematical approach we adopt in solving

equation (2.2.13).

3.1 Rational

We describe briefly the rationale behind our adoption of the pseudo-spectral method.

3.1.1 Which Solver for the Partial Differential Equation?

There are three common methods to find the numerical solutions of partial differen-

tial equations: the finite element method, the finite difference method and the spectral

method.

Early on in the project, we have decided against methods from the first class. The

finite element method consists of chopping the planet (actually the meridional plane)

into little triangles and using a low-order polynomials to approximate the eigenfunction

in each corner of these triangles. The coefficients of the polynomials are then solved

37
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for in a very sparse matrix which encodes the equations of motion and the boundary

conditions. Compared to the spectral method, this method is more suitable for problems

in complex domains (like crashing cars) and has in general lower accuracy for the same

computation time.

In the finite difference method, derivatives of a function are replaced by its Taylor

expansion to a certain degree. Only points lying sufficiently close by can be causally

connected.

In contrast, in the spectral method one expands the unknown function into a series of

basis functions. This is a global expansion. The derivatives of the function are evaluated

analytically using the basis functions. They are accurate to Nth degree where N is the

order of series expansion. As a result, the spectral method is more accurate for a much

smaller computational cost.

3.1.2 Which Basis Function?

While eigenfunctions for power-law density profile can be exactly solved for, those for

different density profiles are more difficult. In equation (2.2.17), it is possible to see

that the latter eigenfunction should deviate from the power-law set (properly scaled)

by O(kR)−2 ≪ 1. The deviations can be considered as perturbations. So we investi-

gated initially whether one can use a sum of un-perturbed (power-law) eigenfunctions to

approximate the actual eigenfunctions, i.e.,

ψ(x1, x2) =
∑

n1,n2

αn1,n2
ψn1

(x1)ψn2
(x2), (3.1.1)

where ψni
(xi) is the solution to the ordinary differential equation obtained from equation

(2.2.9). This idea does not work. Firstly, each ψni
(xi) solution has a different frequency

which also determines the shape of the coordinate basis. The new mode may well also

have a different eigenfrequency. The choice of our coordinate basis preempts this expan-

sion from being meaningful. Secondly, the operator in equation (2.2.13) is not Hermitian,
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meaning that its eigenfunctions do not form a complete basis set. So even if all eigen-

functions have the same frequency, we can not use this expansion to adequately represent

any new function.

In usual calculations of stellar oscillations, when non-separability is encountered, it

is most common to expand the eigenfunction in the angular direction using the spherical

harmonics function (Unno et al. 1989), and in the radial direction using, e.g., the Cheby-

shev polynomials. However, for inertial modes, it is highly advantageous to remain in the

ellipsoidal coordinates (as described in §2.2). Therefore we consider a different type of

expansion, namely, expand in both (x1, x2) directions using the Chebyshev polynomials.

Our experience in the power-law case shows that it is better to deal with the following

g(x1, x2) function,

ψ(x1, x2) = (1 − x2
1)

|m|/2(1 − x2
2)

|m|/2g(x1, x2), (3.1.2)

than with ψ(x1, x2) directly. This removes the apparently divergent term m2/(1 − x2
i )

from the differential operator in equation (2.2.11). Compared to ψ, g is more smoothly

varying near the polar axis (x1 → 1). Numerically, anything that varies quickly is harder

to resolve and requires a greater computational power.

We then expand this function in the basis of Chebyshev polynomials. In this pro-

cedure, since the Chebyshev polynomials are orthogonal in the range (−1, 1), while our

(x1, x2) coordinates do not occupy the same range, we have to perform the following

transformation of variables,

x1 =
(1 + µ) + (1 − µ)t1

2
, t1 ∈ [−1, 1],

x2 = µt2, t2 ∈ [−1, 1]. (3.1.3)

And the actual expansion is (instead of eq. 3.1.1),

g(x1, x2) = g(t1, t2) =
∑

N,M

αNMTN (t1)TM (t2). (3.1.4)

where Ti is the Chebyshev polynomials of the first kind (Abramowitz and Stegun 1972).
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Why do we choose Chebyshev polynomials? As discussed in Boyd (2001), all basis

functions used in spectral methods are one or the other variants of the Fourier series.

In our case, our boundary conditions are non-periodic, and our domain of operation is

finite. This argues for either Chebyshev or Legendre polynomials. In order to reach rapid

convergence with ease of computation, we choose the Chebyshev polynomials, whose

spectral coefficients tend to converge exponentially in those PDE where an unknown

smooth eigenfunction is expected, much faster than any other eigenfunction expansion

based in other known orthogonal functions (Boyd 2001). Boyd (2001) set in stone the

following amusing “moral principle”:

• “ When in doubt, use Chebyshev polynomials unless the solution is spatially periodic,

in which case an ordinary Fourier series is better.”

• “Unless you’re sure another set of basis functions is better, use Chebyshev polyno-

mials.”

• “Unless you’re really, really sure that another set of basis functions is better, use

Chebyshev polynomials.”

One trick in applying the spectral method is to choose the correct set of basis functions

that automatically satisfy part (or all) of the boundary conditions. If all conditions

are satisfied, the algebraic equations only come from minimizing the residuals of the

differential equation and the computational cost is reduced.

Chebyshev of the first kind and the second kind satisfy (Boyd 2001; Abramowitz and

Stegun 1972) , respectively,

Tn(cos θ) = cos(nθ), Un(cos θ) =
sin((n+ 1)θ)

sin θ
. (3.1.5)

Our boundary condition at the polar axis (§2.3.3, x1 → 1, t1 → 1) is that the

eigenfunction is regular. This may be achieved by taking either Tn or Un. Usually Tn is
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chosen. Alternatively speaking, choosing Tn already automatically guarantees that our

boundary condition at the polar axis can be satisfied.

In addition, modes that are symmetric with respect to the equator (even parity in x2

or t2) can only contain Chebyshev polynomials Tn(t2) of even order; and ones that are

anti-symmetric can only contain Tn(t2) of odd orders.

Following the expansion in equation (3.1.4), there are two approaches to solve for

αNM . One is called the spectral method, which we describe below. And the second

method, the pseudo-spectral method, is described in §3.4.

3.2 Preparatory Derivations

The equation of motion is (see §2.2):

(E1 − E2)ψ + C = 0, (3.2.1)

and the differential operators are

Ei =

[

Di +
2βxi(1 − x2

i )

x2
i − µ2

∂

∂xi
+

2µβm

x2
i − µ2

]

, (3.2.2)

Di =
∂

∂xi

[

(1 − x2
i )

∂

∂xi

]

− m2

1 − x2
i

. (3.2.3)

The symbol C in equation (3.2.1) is exactly zero for the separable case, or represents the

non-separable piece in equation 2.2.13 when it is present. Even if it is zero, we keep it

to illuminate the operations we perform on this equation.

Converting from ψ to g removes the algebraic singularity at xi = 1 and transforms

the differential equation to

(F1 − F2)g +
C

(1 − x2
1)

|m|/2(1 − x2
2)

|m|/2
= 0 (3.2.4)

where

Fi = (1 − x2
i )
∂2

∂x2
i

− 2xi(|m| + 1)
∂

∂xi
+

2βxi(1 − x2
i )

x2
i − µ2

∂

∂xi

+

[

−|m|(|m| + 1) − 2β|m|x2
i

x2
i − µ2

+
2βmµ

x2
i − µ2

]

. (3.2.5)
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One can ignore the term that scales as −|m|(|m|+ 1) as both Fi contain them and they

cancel each other.

We multiply equation (3.2.4) by (x2
1 − µ2)(x2

2 − µ2) to remove the denominator in

equation 3.2.5, change variables from x1, x2 to t1, t2 and obtain

(F̃1 − F̃2)g +
C(x2

1 − µ2)(x2
2 − µ2)

(1 − x2
1)

|m|/2(1 − x2
2)

|m|/2
= 0, (3.2.6)

where the operators are no longer symmetric,

F̃1 = 1
4
[(1 + µ)2 − 4µ2 + 2(1 − µ2)t1 + (1 − µ)2t21]µ

2(t22 − 1) ×
{

[4−(1+µ)2−2(1−µ2)t1−(1−µ)2t2
1]

(1−µ)2
∂2

∂t2
1

−2 (|m|+1)
(1−µ)

[(1 + µ) + (1 − µ)t1]
∂

∂t1

}

+2βµ2(t22 − 1)
{

1
4

[(1+µ)+(1−µ)t1 ]
(1−µ)

[4 − (1 + µ)2

−2(1 − µ2)t1 − (1 − µ)2t21]
∂

∂t1

− |m|
4

[(1 + µ)2 + 2(1 − µ2)t1 + (1 − µ)2t21] + µm
}

(3.2.7)

and

F̃2 = 1
4
[(1 + µ)2 − 4µ2 + 2(1 − µ2)t1 + (1 − µ)2t21] ×

{

−(1 − µ2t22)(1 − t22)
∂2

∂t2
2

+ 2µ2(|m| + 1)t2(1 − t22)
∂

∂t2

+2β
[

(1 − µ2t22)t2
∂

∂t2
− |m|µ2t22 + µm

]}

. (3.2.8)

It is straight-forward to convert the non-separable piece in equation (2.2.13) from

(ψ, x1, x2) variables to (g, t1, t2) variables. We omit this operation here.

The boundary condition at the surface can also be written in (g, t1, t2) variables.1

Equation (2.3.7) becomes,

∂g

∂t1

∣

∣

∣

∣

t1=−1

= −(m− |m|µ)µ

2(1 + µ)
g|t1=−1, (3.2.9)

∂g

∂t2

∣

∣

∣

∣

|t2|=1

= −SIGN[t2]
(m− |m|µ)µ

1 − µ2
g||t2|=1. (3.2.10)

1Parity conditions at the equator and the polar axis are automatically satisfied when taking the
appropriate set of Chebyshev polynomials for expansion.
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3.3 Spectral Method

The spectral method (aka, the Galerkin’s method, the non-interpolating method) relies

on the orthogonality relation between Chebyshev polynomials of different degrees. It

turns a partial (or ordinary, though seldom useful) differential equation into a series of

linear algebraic equations.

We first describe this for a 1-D problem. Any arbitrary function ψ(x) can be approx-

imated by a polynomial expansion within a certain interval,

ψ(x) ≈ ψN(x) =

N
∑

n=0

αnφn(x), (3.3.1)

where φn(x) constructs a complete set of orthogonal functions. The spectral coefficients

αn are found by:

αn =
< φn, ψ >

< φn, φn >
(3.3.2)

with the inner product defined as

< φn, ψ >≡
∫ b

a

ψ(x)φn(x)ρ(x) dx, (3.3.3)

and ρ(x) is the associated weighting function for φn.

Now consider an ordinary differential equation

Hψ(x) = f(x), (3.3.4)

where H is a differential operator and f(x) is the forcing function. Expand as in equation

(3.3.1) for ψ(x). The spectral method transforms equation (3.3.4) into the following set

of linear algebra equations,

H · α = f , (3.3.5)

where α = (α0, α1, α2, ..., αN), and

Hij = < φi,Hφj > i, j = 0, 2, ..., N

fi = < φi, f > i = 0, 1, 2, ..., N. (3.3.6)
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If the basis functions do not individually satisfy the boundary conditions, it is necessary

to replace some of the rows of equation (3.3.5) by equations that express the boundary

conditions. In general, H is a band-diagonal matrix and spectral coefficients αn of the

neighbor degrees are coupled.

This technique can be trivially extended to expansion in N-dimensions.

3.3.1 The Non-separable Case

For our problem at hand, we adopt the following expansion2 (eq. 3.1.4)

g(t1, t2) =

Nmax
∑

N=0

Mmax
∑

M=0

αNMTN (t1)TM (t2). (3.3.7)

We insert this into 3.2.6. Multiply both sides of that equation by
√

1 − t21UN ′(t1)
√

1 − t22UM ′(t2), and integrate over the range of ti ∈ [−1, 1].

The Chebyshev polynomials are orthogonal to each other,

∫ 1

−1

Ti(x)Tj(x)√
1 − x2

dx =
π

2
δij ,

∫ 1

−1

√
1 − x2Ui(x)Uj(x)dx =

π

2
δij , (3.3.8)

where δij is the Kronecker delta. An exception to the above expression occurs at i = j = 0

where the integral of TiTj produces π. The one concerning Ui is the more useful one.

The integration over t1, t2 then allows one to transform equation (3.2.6) into a linear

algebraic equations that relate αNM to (potentially) every other αN ′M ′ . The correspond-

ing matrix has (Nmax + 1)× (Mmax + 1) rows and equal number of columns. It is sparse

and largely band-diagonal. Inverting this matrix yields the coveted coefficients αNM .

For completeness, we report here the linear algebra equation for N ′ ≥ 3 and M ′ ≥ 3

(the lower order elements satisfy slightly different equations from the general algorithm),

αN ′−2,M ′−2

{

1

64

〈

[−(2|m| + 1)(N ′ − 2) − (N ′ − 2)2] − [−(2|m| + 2)(M ′ − 2)

2Our later discussions indicates that the expansion in t2 can be reduced to expanding using only even
(or only odd) TM ’s. But we disregard this simplification for the moment.
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−(M ′ − 2)2]
〉

+
2β

64
〈[−((N ′ − 2) + |m|)] − [−((M ′ − 2) + |m|)]〉

}

+αN ′−2,M ′

{

1

8

〈

[−(2|m| + 1)(N ′ − 2) − (N ′ − 2)2]

(

1

8
− µ2

2

)

−1

8

(

[−3(2|m| + 1)M ′ −M ′2] + 4µ2[(2|m| + 1)M ′ +M ′2]
)

〉

+
2β

8

〈

[−((N ′ − 2) + |m|)]
(

1

8
− µ2

2

)

− 1

8
([(M ′ − |m|) + 4mµ])

〉}

+αN ′−2,M ′+2

{

−1

8

〈

[−(2|m| + 1)(N ′ − 2) − (N ′ − 2)2]

(

1

8
− µ2

2

)

+
1

8

(

[−3(2|m| + 1)(M ′ + 2) + (M ′ + 2)2] + 4µ2 [(2|m| + 1)(M ′ + 2)

−(M ′ + 2)2
])〉

− 2β

8

〈

[−((N ′ − 2) + |m|)
(

1

8
− µ2

2

)

+
1

8
([(M ′ + 2) + |m|] − 4mµ)]

〉}

+αN ′−2,M ′+4

{

− 1

64

〈

[−(2|m| + 1)(N ′ − 2) − (N ′ − 2)2] + [−(2|m| + 1)(M ′ + 4)

+(M ′ + 4)2]
〉

− 2β

64
〈[−((N ′ − 2) + |m|)] + [|m| − (M ′ + 4)]〉

}

+αN ′,M ′−2

{

1

8

〈

1

8

(

[−3(2|m| + 1)N ′ −N ′2] + 4µ2[(2|m| + 1)N ′ +N ′2]
)

−[−(2|m| + 1)(M ′ − 2) − (M ′ − 2)2]

(

1

8
− µ2

2

)〉

+
2β

8

〈

1

8
([N ′ − |m|] + 4mµ) −

(

1

8
− µ2

2

)

[−((M ′ − 2) + |m|)]
〉}

+αN ′,M ′

{

1

8

(

1

8
− µ2

2

)

〈(

[−3(2|m| + 1)N ′ −N ′2] + 4µ2[(2|m| + 1)N ′ +N ′2]
)

−
(

[−3(2|m| + 1)M ′ −M ′2] + 4µ2[(2|m| + 1)M ′ +M ′2]
)〉

+
2β

8

(

1

8
− µ2

2

)

〈([N ′ − |m|] + 4mµ) − ([M ′ − |m|] + 4mµ)〉
}

+αN ′,M ′+2

{

−1

8

(

1

8
− µ2

2

)

〈(

[−3(2|m| + 1)N ′ −N ′2] + 4µ2[(2|m| + 1)N ′ +N ′2]
)

+
(

[−3(2|m| + 1)(M ′ + 2) + (M ′ + 2)2] + 4µ2[(2|m| + 1)(M ′ + 2)

−(M ′ + 2)2]
)〉

− 2β

8

(

1

8
− µ2

2

)

〈([N ′ − |m|] + 4mµ) + ([(M ′ + 2) + |m|]

−4mµ)〉
}
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+αN ′,M ′+4

{

−1

8

〈

1

8
([−3(2|m| + 1)N ′ −N ′2] + 4µ2[(2|m| + 1)N ′ +N ′2])

+

(

1

8
− µ2

2

)

[−(2|m| + 1)(M ′ + 4) + (M ′ + 4)2]

〉

−2β

8

〈

1

8
([N ′ − |m|] + 4mµ) +

(

1

8
− µ2

2

)

[|m| − (M ′ + 4)]

〉}

+αN ′+2,M ′−2

{

1

8

〈

1

8
([−3(2|m| + 1)(N ′ + 2) + (N ′ + 2)2] + 4µ2[(2|m| + 1)(N ′ + 2)

−(N ′ + 2)2]) +

(

1

8
− µ2

2

)

[−(2|m| + 1)(M ′ − 2) − (M ′ − 2)2]

〉

+
2β

8

〈

1

8
([(N ′ + 2) + |m|] − 4mµ) +

(

1

8
− µ2

2

)

[−((M ′ − 2) + |m|)]
〉}

+αN ′+2,M ′

{

1

8

(

1

8
− µ2

2

)

〈

([−3(2|m| + 1)(N ′ + 2) + (N ′ + 2)2]

+4µ2[(2|m| + 1)(N ′ + 2) − (N ′ + 2)2]) +
(

[−3(2|m| + 1)M ′ +M ′2]

+4µ2[(2|m| + 1)M ′ −M ′2]
)〉

+
2β

8

(

1

8
− µ2

2

)

〈([(N ′ + 2) + |m|]

−4mµ) + ([M ′ − |m|] + 4mµ)〉
}

+αN ′+2,M ′+2

{

−1

8

(

1

8
− µ2

2

)

〈

([−3(2|m| + 1)(N ′ + 2) + (N ′ + 2)2]

+4µ2[(2|m| + 1)(N ′ + 2) − (N ′ + 2)2]) − ([−3(2|m| + 1)(M ′ + 2)

+(M ′ + 2)2] + 4µ2[(2|m| + 1)(M ′ + 2) − (M ′ + 2)2]
)〉

−2β

8

(

1

8
− µ2

2

)

〈([(N ′ + 2) + |m|] − 4mµ) − ([(M ′ + 2) + |m|] − 4mµ)〉
}

+αN ′+2,M ′+4

{

−1

8

〈

1

8
([−3(2|m| + 1)(N ′ + 2) + (N ′ + 2)2] + 4µ2[(2|m| + 1)(N ′ + 2)

−(N ′ + 2)2]) −
(

1

8
− µ2

2

)

[−(2|m| + 1)(M ′ + 4) + (M ′ + 42)]

〉

−2β

8

〈

1

8
([(N ′ + 2) + |m|] − 4mµ) −

(

1

8
− µ2

2

)

[|m| − (M ′ + 4)]

〉}

+αN ′+4,M ′−2

{

1

64

〈

[−(2|m| + 1)(N ′ + 4) + (N ′ + 4)2] + [−(2|m| + 1)(M ′ − 2)

−(M ′ − 2)2]
〉

+
2β

64
〈[|m| − (N ′ + 4)] + [−((M ′ − 2) + |m|)]〉

}

+αN ′+4,M ′

{

1

8

〈

[−(2|m| + 1)(N ′ + 4) + (N ′ + 4)2]

(

1

8
− µ2

2

)
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+
1

8
([−3(2|m| + 1)M ′ −M ′2] + 4µ2[(2|m| + 1)M ′ +M ′2])

〉

+
2β

8

〈

[|m| − (N ′ + 4)]]

(

1

8
− µ2

2

)

+
1

8
([M ′ − |m|] + 4mµ)

〉}

+αN ′+4,M ′+2

{

−1

8

〈

[−(2|m| + 1)(N ′ + 4) + (N ′ + 4)2]

(

1

8
− µ2

2

)

−1

8

(

[−3(2|m| + 1)(M ′ + 2) + (M ′ + 2)2] + 4µ2[(2|m| + 1)(M ′ + 2)

−(M ′ + 2)2]
)

〉

− 2β

8

〈

[|m| − (N ′ + 4)]]

(

1

8
− µ2

2

)

−1

8
([(M ′ + 2) + |m|] − 4mµ)

〉}

+αN ′+4,M ′+4

{

− 1

64

〈

[−(2|m| + 1)(N ′ + 4) + (N ′ + 4)2] − [−(2|m| + 1)(M ′ + 4)

+(M ′ + 4)2]
〉

− 2β

64
〈[|m| − (N ′ + 4)]] − [|m| − (M ′ + 4)]]〉

}

.

The right-hand side of the same equation is exactly 0 if the density is constant or

power-law. When it deviates from these profiles, one decomposes the right-hand side of

equation (3.2.6) into different Chebyshev components. The final right-hand side is not

analytical and requires numerical integration.

3.3.2 The Separable Case

In the following we attain the relevant algebraic equations, but only for the separable part

of equation (2.2.13). This is because in the end we adopted the pseudo-spectral method

to solve the full problem. We still solve the separable part using the spectral method,

even though it would have been trivial to solve even without the spectral method, as a

test of power.

In the separable case, we can decompose the 2-D expansion into the product of two

1-D expansion,

g(t1, t2) =

(

Nmax
∑

N=0

ζNTN (t1)

) (

Mmax
∑

M=0

γMTM(t2)

)

. (3.3.9)
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This greatly reduces the number of unknowns in the solution: while expansion 3.3.7

contains (Nmax+1)×(Mmax+1) unknown coefficients, there are only (1+Nmax)+(Mmax+1)

unknowns in this expansion.

With the following Chebyshev identity transformations (Abramowitz and Stegun

1972),

(1 − t2i )T
′′
n (ti) = tiT

′
n(ti) − n2Tn(ti),

(1 − t2i )T
′
n(ti) = −ntiTn(ti) + nTn−1(ti),

2tiTn(ti) = Tn−1(ti) + Tn+1(ti),

2tiUn(ti) = Un−1(ti) + Un+1(ti),

T ′
n(ti) = nUn−1(ti),

2Tn(ti) = Un(ti) − Un−2(ti),

U−1(ti) = 0, (3.3.10)

we have,

F̃1g(t1, t2) =
1

32

[

Nmax
∑

N=0

UN+2(t1) (ζNAN + ζN+1BN + ζN+2CN + ζN+3DN

+ζN+4EN + ζN+5FN + ζN+6GN) + low − degree terms

]

×

µ2

8

[

Mmax
∑

M=0

UM+2(t2) (γM − 3γM+2 + 3γM+4 − γM+6) + U2(t2)γ0

+ U1(t2) (−2γ1 + 3γ3 − γ5) + U0(t2) (−6γ0 + 4γ2 − γ4)

]

(3.3.11)

where the functions in capital letters are:

AN = (1 − µ)2 [−N(1 + 2β +N) − 2(β +N)|m|]

BN = 4(1 − µ2) [−(N + 1)(3β + 2(N + 1) + 1) − (2β + 3(N + 1))|m|]

CN = µ2(N + 2) [−13(N + 2) − 30β + 17] + µ(N + 2) [−38(N + 2) − 36β − 2]
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+(N + 2) [−13(N + 2) + 2β − 15] + 32βmµ

−2|m|
[

β(5µ2 + 6µ+ 5) + (−µ2 + 18µ+ 15)(N + 2)
]

DN = 8(1 + µ)(N + 3) [(β − 1)(3 + 5µ) − (5 + 3µ)|m|]

−2
[

β(5µ2 + 6µ+ 5) + (−µ2 + 18µ+ 15)(N + 3)
]

|m|

EN = (N + 4)
[

−(15 + 17µ)(1 − µ) + (N + 4)(13µ2 + 38µ+ 13)
]

−2β
[

16mµ+ (15µ2 + 18µ− 1)(N + 4)
]

+2|m|
[

β(5µ2 + 6µ+ 5) + (µ2 − 18µ− 15)(N + 4)
]

FN = −4(1 − µ2) [(N + 5)(3β − 2(N + 5) + 1) + (−2β + 3(N + 5))|m|]

GN = −(1 − µ)2 [(N + 6)(1 + 2β − (N + 6)) − 2(β − (N + 6))|m|] , (3.3.12)

and the low-degree terms are

U0(t1)
{

4β
[

16mµ− (5µ2 + 6µ+ 5)|m|
]

ζ0

+4(1 + µ) {β [9 + 7µ− 2|m|(1 − µ)] − (1 + |m|)(7 + 9µ)} ζ1

+4
[

(1 + 7µ)(5 + 3µ) − 2β(7µ2 + 4mµ+ 10µ− 1)

+2|m|(µ2 − 10µ− 7 + β(1 + µ)2)
]

ζ2

+4(1 − µ2) [−9β + (2β − 9)|m| + 15] ζ3

+(1 − µ)2 [−8β + 2|m|(β − 4) + 12] ζ4
}

+U1(t1)
{

−16β|m|(1 − µ2)ζ0

+2
{

2
[

µ2 − 10µ− 7 + β(−7µ2 − 10µ+ 1 + 8mµ)

−(−µ2 + 10µ+ 7 + β(3µ2 + 2µ+ 3))|m|
]}

ζ1

+16(1 + µ) [(β − 1)(3 + 5µ) − (5 + 3µ)|m|] ζ2

+
[

24(7µ2 + 14µ+ 3) − 2β(45µ2 + 54µ− 3 + 16mµ)

+6|m|(µ2 − 18µ− 15) + 2|m|β(5µ2 + 6µ+ 5)
]

ζ3

+4(1 − µ2) [−12β + 2|m|(β − 6) + 28] ζ4

+(1 − µ)2 [2|m|(β − 5) − 10(β − 2)] ζ5
}
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+U2(t1)
[

−2β|m|(1 − µ)2ζ0
]

. (3.3.13)

In a similar way, we have

F̃2g(t1, t2) =
(1 − µ2)

32

[

Nmax
∑

N=0

UN+2(t1) {ζN(1 − µ) + ζN+14(1 + µ) + ζN+2(5 + 11µ)

+ ζN+4(−5 − 11µ) + ζN+5(−4(1 + µ))

+ζN+6(−1(1 − µ))}

+ U2(t1)α0(1 − µ) + U1(t1) {ζ08(1 + µ) + ζ1(6 + 10µ)

+ζ3(−5 − 11µ) + ζ4(−4(1 + µ))

+ζ5(−(1 − µ))}

+ U0(t1) {ζ0(10 + 22µ) + ζ14(1 + µ) + ζ2(−4(1 + 3µ))

+ζ3(−4(1 + µ)) + ζ4(−(1 − µ))}
]

×

1

8

[

Mmax
∑

M=0

UM+2(t2) {γMHM + γM+2IM + γM+4JM

+γM+6KM} + U2(t2)
{

γ0

[

−2βµ2|m|
]}

+ U1(t2)
{

γ1

[

µ2(4|m| + 4) + 2β(4 − µ2(2 + 2|m|) + 4µm)
]

+ γ3

[

−48 + µ2(24 + 6|m|) + 2β(12 − µ2(9 − |m|) − 4µm)
]

+γ5

[

µ2(20 − 10|m|) + 2β
(

µ2(|m| − 5)
)]}

+ U0(t2)
{

γ0

[

2β(−2|m|µ2 + 8µm)
]

+ γ2

[

−24 + µ2(12 + 8|m|) + 2β(8 − 4µ2 − 4µm)
]

+γ4

[

µ2(12 − 8|m|) + 2β
(

−µ2(4 − |m|)
)]}

]

(3.3.14)
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where the functions in capital letters are:

HM =
[

µ2
(

M(1 −M) − 2(|m| + 1)M + λ2
)

+ 2β
(

−µ2(M + |m|)
)]

IM =
[

4(M + 2)(M + 1) + µ2
(

(M + 2)(1 −M) + 2(|m| + 1)(M + 2) − 3λ2
)

+2β
(

4(M + 2) − µ2 (3(M + 2) + |m|) + 4µm
)]

JM =
[

−4(M + 4)(M + 5) + µ2
(

(M + 4)(7 +M) + 2(|m| + 1)(M + 4) + 3λ2
)

+2β
(

4(M + 4) − µ2 (3(M + 4) − |m|) − 4µm
)]

KM =
[

µ2
(

(M + 6)(7 +M) − 2(|m| + 1)(M + 6) − λ2
)

+2β
(

−µ2 ((M + 6) − |m|)
)]

(3.3.15)

Since both the F̃1g and the F̃2g terms have the form G1(t1, ζN) × G2(t2, γM), one

can equate the parts that contain t1 and t2 respectively. Obviously the coefficients ζN

and γM are not coupled. This separation produces two equations, one concerning t1, the

other t2.

We multiply both sides of these resultant equations by
√

1 − t21UN ′(t1) (or
√

1 − t22UM ′(t2) where suitable). Integrate over the domains of interest (ti ∈ [−1, 1])

keeping in mind equation (3.3.8), we arrive at two sets of linear algebra equations that

dictate how ζN (or γM) is related to other ζN ′ (or γM ′). Each set corresponds to a band-

diagonal matrix which is to be inverted to obtain solutions for the expansion coefficients.

We set to zero all coefficients that correspond to polynomial degrees higher than our

truncation, i.e.g, ζN(N > Nmax) = 0 and γM(M > Mmax) = 0. The total number of

linear equations is (Nmax + 1) + (Mmax + 1).

A few notes are in order.

The coupling among the spectral coefficients γ in equations 3.3.11 & 3.3.14 is such

that, coefficient γM is only coupled to γM+2, γM+4, γM+6..., i.e., other coefficients of the

same parity. The same is not true for ζN . This parity loyalty also appears in the boundary

condition at the equator (eqs. 3.2.9 or 3.2.10). Only TM(t2) functions that are either

even (M is even) or odd (M) can be included in the expansion for a given inertial-mode.
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Therefore for two 1-D expansions each up to the degree Nmax and Mmax, there are in

total of (Nmax + 1) + (Mmax/2 + 1) unknown coefficients. Similarly for the number of

equations.

Given that the original equation is homogeneous, we are allowed to set one of the

coefficients for each summation series to be unity to fix the normalization. We let this be

ζ0 = γ0 = 1. However, there is one more unknown, µ, which is to be determined in relation

to all the polynomial coefficients. The total number of unknowns is Nmax +Mmax/2 + 1.

To solve for these variables, we need an equal number of linear algebraic equations.

The two boundary conditions at the surface (eqs. 3.2.9 -3.2.10) can be split into

g1(t1)g2(t2), with spectral coefficients for g1 and g2 satisfying:

−
Nmax
∑

N=0

ζN(−1)NN2
Mmax
∑

M=0

γMTM(t2) =

− (m− |m|µ)µ

2(1 + µ)

Nmax
∑

N=0

ζN(−1)N

Mmax
∑

M=0

γMTM(t2), (3.3.16)

Nmax
∑

N=0

ζNTN (t1)
Mmax
∑

M=0

γMM
2 = −(m− |m|µ)µ

1 − µ2

Nmax
∑

N=0

ζNTN (t1)
Mmax
∑

M=0

γM , (3.3.17)

where we have picked the boundary condition t2 = 1 in eq. (3.2.10). These yield two

independent equations for the spectral coefficients.

The remaining equations that are required, of number Nmax +Mmax/2−1 would have

to come from the equation of motion. This is fewer than the number we could possibly

use, (Nmax + 1) + (Mmax/2 + 1). One therefore has to pick a more pertinent subset from

the full set. Our procedure is to discard the ones that concerns the highest degree ones.

In the case of separable PDE, the solution for g1 and g2 are pure polynomials. This

means that when using the Chebyshev expansion, all Chebyshev higher than a certain

degree (ℓmax) should be identically zero. This maximum degree is

ℓmax = 2(n1 + n2) + |m|. (3.3.18)
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This is confirmed in our results (Fig. 3.1) and gives us valuable insights when computing

eigenfunctions in the non-separable case.

Figure 3.1 The 1-D spectral coefficients (eq. 3.3.9)ζN and γM for the mode n1 = 7, n2 = 2, m = 2,

µ = 0.3434800519 in a power-law model with β = 1.5, plotted here against the degrees of the Chebyshev

polynomials. This mode has even-parity. All spectral coefficients with degrees greater than ℓmax =

2(n1 +n2)+ |m| approaches numerical zero. So the Chebyshev expansion is exact if one truncates above

a certain degree.

As a show of capability, we use the above results to obtain eigenfunctions in power-law

density spheres (see Fig. 3.1). As said before, this is a total over-kill as the eigenfunction

can be (semi-)analytically obtained from the associated ordinary equations, using, e.g.,

shooting method (see §4.2). However, we show that the spectral method gives identical

results as ODE solver and the algebra is reliable.
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3.3.3 A Test Run

When the density has a profile ρ = (1 − r2)β, inertial-modes satisfy equations that can

be separated into the two ellipsoidal coordinates. We apply our spectral code to this case

and compare results against the semi-analytical ones in Wu (2005a).

In order to find µ we need two boundary conditions, both extracted from surface

conditions3.

3.4 Pseudo-spectral Method

The section above shows that, even for the simplest case of separable equation, the

algebra is time-consuming. For the non-separable case where the 2-D expansion can not

be simplified to a product of two 1-D expansions, the algebra is prohibitively complicated.

This is exacerbated by the non-separable part in the mode equation – their inner products

with the Chebyshev polynomials have to be obtained numerically, for every frequency µ.

The computational cost is prohibitively expensive.

This can be circumvented by using the pseudo-spectral method. Instead of keeping

count of how the Chebyshev coefficients affect each other, one simply evaluates the left-

hand side and the right-hand side of the PDE (eq. 3.2.6) at specific grid points inside the

planet and requires that they equal each other. This procedure is also performed for the

relevant boundary conditions. In the end, one obtains a new set of linear algebra equa-

tions that relate the expansion coefficients to each other. Inverting this set of equations

yields αNM .

3.4.1 Principles of the pseudo-spectral method

We first introduce the concepts of Lagrange interpolation and Gaussian quadrature.

3Parity at the equator is automatically satisfied when setting M and M ′ values as either even or odd.
And the expansion on ψ automatically satisfies being finite at the polar axis.
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Table 3.1. Eigenfrequenciesa of |m| = 2 inertial-modes for two different power-law

density profiles, showing excellent agreement with that listed in Wu (2005a).

(ℓ− |m|) parity β = 1.0 β = 1.0(Wu) β = 2.0 β = 2.0(Wu)

1b o -0.6667 -0.6667 -0.6667 -0.6667

2 e -1.1224 -1.1224 -1.0825 -0.8628c

e 0.4860 0.4860 0.6158 0.6159

3 o -1.3822 -1.3822 -1.3317 -1.3317

o -0.5082 -0.5082 -0.5270 -0.5270

o 0.9761 0.9761 1.0801 1.0798

4 e -1.5415 -1.5415 -1.4910 -1.4909

e -0.8671 -0.8671 -0.8628 -0.8628

e 0.2364 0.2364 0.3199 0.3199

e 1.2408 1.2408 1.3150 1.3150

5 o -1.6460 -1.6460 -1.5988 -1.5988

o -1.1133 -1.1133 -1.0954 -1.0954

o -0.4108 -0.4108 -0.4367 -0.4367

o 0.6673 0.6673 0.7554 0.7554

o 1.4122 1.4122 1.4654 1.4654

aEigenfrequencies are presented as 2µm/|m| = SIGN[m]ω/Ω. with positive values

denoting pro-grade modes, and negative ones retrograde modes. The integer ℓ (defined

in Wu 2005a) indicates the total number of nodal lines in a mode.

bThis row shows pure r-modes. Both the frequency and the eigenfunction of these

modes do not depend on the equation of state, to the lowest order in Ω.

cThis is likely a typographical error in Wu (2005a).
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Table 3.2. Eigenfrequenciesa of |m| = 2 inertial-modes for two different power-law

density profiles and comparisons with polytropes.

(ℓ− |m|) parity β = 1.0 β = 2.0 p = kρ2b (L&F99)c

1 o -0.6667 -0.6667 -0.6667 -0.6667

2 e -1.1224 -1.0825 -1.1000 -1.1000

e 0.4860 0.6158 0.5566 0.5566

3 o -1.3822 -1.3317 -1.3578 -1.3578

o -0.5082 -0.5270 -0.5173 -0.5173

o 0.9761 1.0798 1.0258 1.0259

4 e -1.5415 -1.4909 -1.5196 -1.5196

e -0.8671 -0.8628 -0.8629 -0.8629

e 0.2364 0.3199 0.2753 0.2753

e 1.2408 1.3150 1.2729 1.2729

5 o -1.6460 -1.5964 -1.6272 -1.6272

o -1.1133 -1.0954 -1.1044 -1.1044

o -0.4108 -0.4367 -0.4218 -0.4217

o 0.6673 0.7554 0.7039 0.7039

o 1.4122 1.4654 1.4338 1.4339

aEigenfrquencies for selected power-law density structure, presented as

2µm/|m| = sign(m)ω/Ω w here positive values denote pro-grade modes

and negative denote retrograde ones. A spectral method is used to compute

the mode s. As Wu (2005a) defined, l = 2(n1+n2)+ |m|−δ, where δ = 0 for

even parity modes (even l− |m|) and 1 for o dd parity. Here n1 and n2 are

the number of nodes in the range µ < x1 < 1 and 0 < x2 < µ respectively.

bWe also present results for a polytrope of index n = 1.0 using a pseu-

dospectral method presented in §5.

cPolytrope n = 1.0 frequencies calculated by Lockitch and Friedman

(1999).
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If we know the values of a function ψ(x) on a list of grid points xi, we can obtain

the value for ψ everywhere else by an N-order interpolation. The so-called Lagrange

interpolation formula provides a formal way to proceed:

ψ(x) ≈ ψN (x) =

N
∑

i=0

ψ(xi)Ci(x), (3.4.1)

where the ‘Cardinal’ function Ci(x) is

Ci(x) =

N
∏

j=0,j 6=i

x− xj

xi − xj
. (3.4.2)

Obviously Ci(xj) = δij . This expansion is exact if ψ(x) is a polynomial with no more

than degree N .

Such an interpolation routine provides a natural way to integrate the function ψ(x),

∫ b

a

ψ(x)dx ≈
N
∑

0

wiψ(xi), (3.4.3)

where the weight function

wi =

∫ b

a

Ci(x)dx, (3.4.4)

and x ∈ [a, b]. The weight function can be easily tabulated in advance if the grid points

are known.

The above is still rather formal but here comes the interesting development. If we

have a family of orthogonal functions on x ∈ [a, b] and with weight function ρ(x) (see,

e.g., eq. 3.3.8), and we choose the grid xi to be a special set of collocation points (see

below), one can show that

∫ b

a

ψ(x)ρ(x)dx =
N
∑

0

wiψ(xi), (3.4.5)

is exact for all ψ(x) that are polynomials with degree ≤ 2N + 1 (Davis 1975). This

method of integration is called the Gaussian quadrature (Boyd 2001).

Since wi can be pre-tabulated, the integration only entails evaluating the function

ψ at a few pre-determined points. For the same computation cost, Gauss quadrature
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reaches higher degree of accuracy than the simple-minded integration where the grid

points are equally spaced. Some of the more commonly encountered examples of Gaussian

quadrature include the trapezoidal rule and the mid-point rule for integration.

For instance, the inner product < φn, ψ > can be obtained using Gaussian quadra-

tures,

< φn, ψ >≡
∫ b

a

φn(x)ρ(x)ψ(x) dx ≈
N
∑

0

wiφn(xi)ψ(xi), (3.4.6)

as long as xi are the properly selected collocation points.

To ensure the accuracy of the Gauss quadrature, as well as that of the pseudo-spectral

method, choosing the optimum collocation points is of utmost importance. We repeat

here some results from Boyd (2001).

There are two equivalently effective sets of collocation points. One is called the

‘Gauss-Jacobi’ grid (or the ‘Chebyshev-root’ grid), the other is called the Gauss-Lobatto

grid (or the ‘Chebyshev-extrema’ grid). The former consists in taking the collocation

points to be the zeros in the N + 1 degree polynomial, TN+1(x). For Chebyshev, the

N + 1 roots are,

xi = − cos

[

2(i− 1)π

2(N + 1)

]

i = 1, 2, ...N + 1. (3.4.7)

These grid points are roughly spaced by 1/N in the interior, and much more closely

spaced (by O(1/N2)) near the border (x = ±1). Such a spacing overcomes the tendency

for the interpolation routine to be wildly inaccurate near the boundary of interpolation.

The Gauss-Lobatto branch places the collocation points to be at the zeros of the

derivative of TN(x), as well as the two endpoints (x = ±1). The extrema of dTN/dx

coincide with the roots of UN−1(x). Combining N − 1 extrema and 2 endpoints, still

gives a total of N + 1 collocation points:

xi = − cos

[

iπ

N

]

i = 0, 1, ....N. (3.4.8)

Such grids are preferable to the Gauss-Jacobi grids when the boundary conditions at the

endpoints are not singular, since then one can furnish the boundary condition instantly
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using the boundaries as grid points.

Consider the same ODE as in equation (3.3.4). We again expand ψ using a set of

orthogonal polynomials, ψ =
∑N

n=0 αiφn(x). Similar to the spectral method, the pseudo-

spectral method consists in recasting the ODE into a set of linear equations,

H · α = f . (3.4.9)

The differences, lie in the definitions of the matrix H and vector f ,

Hij = [Hφj(x)]|x=xi
,

fi = f(x)|x=xi
. (3.4.10)

We make a couple of comments here.

In applying the spectral method, if one obtains the inner product not by numerical

integration, or orthogonality relations, but using Gaussian quadrature, it is proved (and

intuitively deduced) (§4.4 Boyd 2001) that such a spectral method produces identical

results to the pseudo-spectral method. This is the reason behind the name ‘pseudo-

’spectral method.

To further illustrate this point, multiply equation (3.4.9) by wiφn(xi) and sum over

i, we find
N
∑

i=0

N
∑

j=0

wiφn(xi)[Hφj]x=xi
αj =

N
∑

i=0

wiφn(xi)f |x=xi
. (3.4.11)

This should evoke in one’s memory equation (3.3.5).

The error in the solution when using the pseudo-spectral method (§4.5 Boyd 2001)

is bounded by “twice the sum of the absolute values of all the neglected coefficients”.

So to reach an accuracy of 10−6 in the eigenfunction, one needs to expand the solution

to a degree Nmax such that coefficients for Nmax + 1 and above are 10−6 smaller than

the leading terms. A similar result holds in other cases, such as the truncated Taylor

expansion.
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3.4.2 Implementation

In solving the 2-D PDE (eq. 3.2.6), we adopt the Gauss-Lobatto collocation grids. These

involve the extrema of the highest order Chebyshev polynomials in the expansion (Nmax

and Mmax), as well as the spherical surface (t1 = −1 and t2 = 1). Specifically, we have a

set of interior and surface grids. The interior grids are:

t1i = − cos

(

iπ

Nmax

)

, i = 1, 2, ..., Nmax,

t2j = cos

(

jπ

Mmax

)

, j = 1, 2, ...,Mmax/2, (3.4.12)

while the endpoint grids are,

t2j = cos

(

jπ

Mmax

)

, j = 0, 1, ...,Mmax/2 (3.4.13)

for t1 = −1, and

t1i = − cos

(

iπ

Nmax

)

, i = 1, 2, ..., Nmax, (3.4.14)

for t2 = 1.

Whenever the grid points step on the surface, we create matrix rows using the bound-

ary conditions (eqs. 3.2.9-3.2.10), while whenever the grid points are in the interior, we

obtain matrix elements using equation (3.2.6).

We have to solve for a total of (Nmax + 1) × (Mmax/2 + 1) coefficients, as well as

the eigenfrequency of the mode. One variable, however, is trivial and sets the overall

normalization, which we take to be α00 = 1. Counting the total number of matrix rows

(same as the total number of grid points) produces (Nmax + 1) × (Mmax/2 + 1). The

system is closed.

The pseudo-spectral method is very versatile. It does not pay attention to whether

the PDE is seperable or not. It is trivial to incorporate, e.g., the compressional term, an

external tidal forcing term, into the equation.

In §5 & §7 , we present our results using the pseudo-spectral method. More details

concerning the actual numerics are also presented there.
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Figure 3.2 An example of the Gauss-Lobatto grid. Here, Nmax = Mmax = 10. The left-panel shows

the equivalent of a quarter meridional plane in the (t1, t2) coordinates. Parity of the modes with respect

to the equator, as well as our assumed azimuthal dependence, removes the need to show the entire

meridional plane. The equator is located at t2 = 0, the rotation axis at t1 = 1, and the surface at

t1 = −1 and t2 = 1. Crosses mark interior grid points at which the inertial mode equation (3.2.1) is

evaluated, solid squares the location at which the boundary condition at t1 = −1 (eq. 3.2.9) is evaluated,

and empty circles locations at which the boundary condition at t2 = 1 (eq. 3.2.10) is evaluated. Right

panel: same set of points now portrayed in the meridional cut of a quarter sphere. Here w/R is the

normalized polar radius, while z/R is the normalized vertical height.



Chapter 4

Applications: Seismology using

Saturn’s Rings

4.1 Introduction

The giant planets Jupiter and Saturn are exciting goals for seismic analysis, not just

to study what their inner structures are made of, but also in order to reconcile their

formation history with the main planetary formation theories: gravitational instability

(Boss 1997) and core accretion (Bodenheimer and Pollack 1986). However, despite various

observational efforts in the past few decades (Schmider et al. 1991; Deming et al. 1989;

Mosser et al. 1993, 1996), no confirmed detection of seismic signals are reported. The hope

of using seismic signals to constrain interior models of these planets remains unfulfilled

(Mosser 1997).

Voyager I & II (Smith et al. 1981, 1982) have detected a large number of features

in Saturn’s rings: there are edges (one-side of a gap), gaps (an opening), density waves

and bending waves. Some of these have been associated with perturbations by Saturn’s

many moons (see, e.g. Cuzzi et al. 1981; Holberg et al. 1982), but a large subset remains

mysterious (Rosen et al. 1991).

62
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For example, Franklin et al. (1982) pointed out that in the Voyager I data, there are

at least two large gaps that do not appear associated with moderate-to-strong satellite

resonances. One 200 km gap at 1.434Rs (C-ring, 86, 700 ± 700 km),1 has an orbital

frequency 3/2 that of Saturn’s rotation rate (assumed to have a period of 10h 39.4min).

Another 30 km gap at 2.258RS (A-ring, 136, 100 ± 700km) is tentatively identified to

have 3/4 of the planet’s rotation rate. The authors surmised that these are related to

the ℓ = m = 3 harmonic component of Saturn’s gravitational field and suspected the

interface modes inside Saturn may be responsible for its non-zero value.2 The second

gap has later on disappeared in higher resolution Voyager II data (Holberg et al. 1982),

while the 3 : 2 resonance location coincides with the outer edge (as opposed the centre)

of the 230 km gap3 and has non-zero optical depth within. Several other similar looking

gaps exist in the C-ring.

Hedman et al. (2007) reported structures between 1.178RS −1.211RS (D-ring, 71,000

to 73,000 km) that have m = 2 rotational symmetry, and an azimuthally periodic pattern

at 2.281RS (A-ring, 137,500 km). They identified the former to be a 2:1 Inner Lindblad

resonance while the latter a 3:4 Outer Lindblad resonance. This indicates a perturbing

period that is comparable to Saturn’s rotation period. This could either be caused

by internal structure of Saturn, or due to Saturn’s magnetic field. The latter may be

responsible for many of the features in Jupiter’s ring at the so-called ‘Lorentz resonances’

(Burns et al. 1985). For Saturn, however, the magnetic field is more axisymmetric, and

the ring particles are larger (which reduces the charge-to-mass ratio of these grains).

Both facts act to suppress the importance of the Lorentz resonances.

Following the first proposal in Marley et al. (1987), Marley and Porco (1993) inves-

1From now on we measure all distances from Saturn’s center and scale all distances by Saturn’s radius
RS = 60, 268 km.

2Permanent non-hydrostatic deformation of Saturn seems unlikely since Saturn is a largely fluid
sphere and can not support ‘mountains’.

3This, however, may require revisit since the Saturn’s rotation period has since been refined. See
below.
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tigated an intriguing idea. They argued that internal oscillations in Saturn, which is

surrounded by a massive, dynamically cold particle disk, could be detected by studying

this very ring. They attempted to link the density wave signals in the rings to internal

acoustic oscillations. Since the interior of giant planets are convectively unstable, i.e,

neutrally buoyant, gravity-modes do not exist. They conclude that the acoustic modes,

given enough amplitudes, may produce some of the observed signals both in the D- and

the C-rings.

Even earlier, Stevenson (1982) has proposed the hypothesis that Saturn’s rings may

act as a most sensitive seismograph to detect internal oscillations inside the planet. In

particular, he believed that inertial oscillations are more relevant for a fully convective

planet like Saturn. However, there has been little progress since largely due to the

difficulty in computing inertial mode eigenfrequencies for a given planet structure. This

is now becoming possible (Lockitch and Friedman 1999; Lee et al. 1992b,a; Yoshida and

Lee 2000; Wu 2005a). We remark that highly accurate eigenfunctions are required in

order to calculate reliably the gravitational perturbation associated with an undulating,

largely incompressible perturbation (inertial oscillations).

If we can securely associate density wave features with inertial modes, there are a

few potential applications. Firstly, inertial modes frequencies are largely independent of

sound speed inside the planet, but dependent on the run of density. A successful mode

identification therefore reveals the density profile. Secondly, some special inertial modes

(r-modes) have frequencies that are largely independent of the density profiles (which

only enters to order (Ω/Ωbreakup)
2). Identifying them in the ring would directly measure

the internal spin frequency of Saturn. Thirdly, the amplitudes of inertial modes thus

inferred results in understanding in turbulent excitation in the convective bulk of the

planet.

Inertial modes tend to displace much less mass than acoustic modes of similar radial

orders, and their motion is nearly anelastic, implying that they are weakly coupled to
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the tidal potential. However, their frequencies (in the rotating frame of the planet) are

in the range 0 < ω < 2Ωp, i.e., they are in the range of Keplerian frequencies of particles

on the ring. Therefore we can first explore the locations of the resonances on Saturn’s

rings and then analyze the strength of their torques versus the available data.

Section 4.2 introduces some basic concepts of wave excitation in disks. In section

4.3 we describe briefly how we obtain solutions for inertial modes and present results on

the location and strengths of the resonances. We conclude in §4.4. The calculations of

inertial modes in this paper follow closely the approach in Wu (2005a).

Before proceeding, we make two remarks.

The rotation period of Saturn has, surprisingly, been under much debate. Early Voy-

ager measurements of Saturn’s long-wavelength (kilo-metric) radio emission suggested a

period of 10 hr 39.4 min (Desch and Kaiser 1981), while similar experiment on Cassini

produces a period of 10 hr 47.1 min (Giampieri et al. 2006). Using Cassini gravitational

data, the rotation period was revised to 10 hr 32.3 min (Anderson and Schubert 2007).

The slower radio period obtained earlier is possibly related to magnetosphere slippage

relative to the deep interior. An analysis of Saturn’s surface jet stream apparently sup-

ports the shorter period (Read et al. 2009). At a distance of 100, 000 km from Saturn’s

center, A 7 minutes (∼ 1.5%) uncertainty translates to a distance uncertainty of 1500 km

(or 1.5%RS) in the ring (assuming 1 : 1 relation), greater than the ∼ 700 km uncer-

tainty from Voyager I data, and much greater than the few hundred meters accuracy in

the occultation data from Cassini. We should bear this in mind when later comparing

observations against predictions.

In principle, when one calculates resonance locations, one should include corrections

due to the non-zero quadrupole moment of Saturn (J2). However, Saturn’s J2 ∼ 10−2 and

the effect of the quadrupole moment decays outward rapidly. At the surface of Saturn,

the value of J2 is comparable to the fractional uncertainty in Saturn’s spin period. So

Saturn’s J2 is usually negligible except when one considers apsidal or nodal resonances
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(see below).

4.2 Exciting Waves in Disks by inertial Oscillations

4.2.1 Resonances and Waves

We focus here on a perturbation to Saturn’s external gravitational potential due to

internal oscillations. We follow the formalism initially proposed to study perturbations

due external satellites.

In a rotating frame the perturbation can be expressed as:

Φ′(r, θ, φ, t) = Φ′(r, θ) exp[i(mφ− ωt)], (4.2.1)

where (r, θ, φ) are spherical coordinates. We adopt the convention that ω ≥ 0, while

m can be positive, negative or zero4. If m > 0, the oscillation is a running wave that

propagates in the pro-grade direction in the rotating frame, whereas m < 0 corresponds

to retrograde wave, and m = 0 is stationary in the rotating frame. We further define a

dimensionless frequency µ = ω/2ΩS with ΩS being the spin rate of Saturn. For inertial

modes, µ ∈ [0, 1].

The pattern speed of this potential perturbation, defined as the angular speed of the

frame in which the potential is stationary, is

Ωpat =
ω

m
+ ΩS =

(

1 +
2µ

m

)

ΩS . (4.2.2)

The pattern speed is such that pro-grade and retrograde modes in the rotating frame

all become pro-grade in the inertial frame, except for some m = −1 modes which can

remain retrograde in the inertial frame. Moreover when m = 0, the pattern speeds in

the two frames coincide,

Ωpat = ω = 2µΩS. (4.2.3)

4For satellite perturbations, the value m is restricted to m > 0.
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We now consider the motion of a particle under the time-independent, axisymmetric

gravitational field of Saturn, (Murray and Dermott 2000),

ΦS = −GMS

r

[

1 −
∞
∑

n=2

Jn

(

RS

r

)n

Pn(cos θ)

]

, (4.2.4)

where Pn is the Legendre polynomials of degree n. Here, we consider only contributions

due to the rotational bulge5. The n = 1 component corresponds to a change in the

centre of mass position and can therefore be eliminated from the above expression. The

dimensionless multiple moments are expressed as

Jn =
1

MSRn
S

∫ RS

0

∫ +1

−1

rnPn(cos θ)ρ(r, θ)2πr2d cos θdr, (4.2.5)

with ρ(r, θ) being the mass density distribution inside Saturn. Assuming that Saturn is

symmetric with respect to its equator, J2n+1 = 0 with n = 1, 2, .... Saturn’s J2 moment

is measured to be J2 ∼ 1.7 × 10−2 (Null et al. 1981).

Let the particle orbit at a distance r from the centre of Saturn. Moving under the

axisymmetric potential (equation 4.2.4), it exhibits three frequencies (c.f. Binney and

Tremaine 1987), mean motion Ω which is defined as,

Ω2 ≡ 1

r

(

∂ΦS

∂r

)

cos θ=0

=
GMS

r3

[

1 +
3

2
J2

(

RS

r

)2

− ...

]

, (4.2.6)

the radial epicyclic frequency κ which is defined as

κ2 ≡
(

r
dΩ2

dr
+ 4Ω2

)

=
GMS

r3

[

1 − 3

2
J2

(

RS

r

)2

− ...

]

, (4.2.7)

and the vertical epicyclic frequency which is defined as

ν2 ≡
(

∂2ΦS

∂z2

)

cos θ=0

=
GMS

r3

[

1 +
9

2
J2

(

RS

r

)2

− ....

]

. (4.2.8)

These frequencies are such that for a pure Keplerian potential (Jn = 0), we obtain

Ω = κ = ν. When adopting the epicyclic approximation as is done here, one often

5Tidal bulge on Saturn raised by various satellites should produce time-dependent potential pertur-
bations on this ring. However, this should have the same pattern speed in the inertial frame as the
potential of the satellites and do not contribute any new perturbing frequencies.
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expresses κ as Ω − ˙̟ , and ν as Ω − ˙Ωasc, where ˙̟ and ˙Ωasc are the precession rates

for the longitude of the pericentre and the longitude of the ascending node, respectively

(Murray and Dermott 2000).

If one linearly expands the motion of the above particle around its circular orbit,

under a forcing as in equation (4.2.1), one finds that the response diverges whenever6

Ω = Ωpat, (4.2.9)

or

m(Ω − Ωpat) = ±κ. (4.2.10)

The former is called the co-rotation resonance (CR). If m > 0, the latter resonance is

usually called the inner (inward of CR) or the outer (outward of CR) Lindblad resonances

(ILR and OLR) when the right-hand side takes + or − signs respectively (see, e.g.

Goldreich and Tremaine 1982). However, unlike the satellite case where m > 0, our m

can take any integer values. To fix convention, we rewrite the above expression as

|m|(Ω − Ωpat) = ±κ, (4.2.11)

this again leads to + sign for ILR and − sign for OLR. For m = 0 perturbations, only

co-rotation resonances exist.

An analogous definition of the vertical resonances applies if one substitutes κ in the

above discussion by ν,

|m|(Ω − Ωpat) = ±ν. (4.2.12)

The corresponding resonances are called the IVR and OVR respectively, for the inner

and outer vertical resonances.

To obtain a simple expression for the locations of LR and VRs, we note that except

when |m| = 1, the small difference between κ (or ν) and Ω only shifts the exact resonance

6We ignore weaker resonances such as m(Ω − Ωpat) = ±2κ...
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position slightly without affecting resonance dynamics. We ignore this difference and

obtain the mean motion at resonances with an inertial mode,

Ω = Ωpat

(

1

1 ± 1/|m|

)

=
1 + 2µ/m

1 ± 1/|m| ΩS, (4.2.13)

where ‘+’ sign now stands for OLR/OVR and ‘-’ sign for ILR/IVR.

When |m| = 1, the difference between κ and is important: we have an ILR occurring

at Ωpat = ± ˙̟ if m = +1 and an OLR at the same location for m = −1. This resonance

is also called the apsidal resonance. We find the location of this resonance to be within

1.1− 1.9RS only when m = −1 and µ ∼ 1/2− ǫ. When taking these values, Ωpat is very

small and can match ˙̟ which is much smaller than Ωs.

Vertical resonances for m = −1 perturbations can also include a nodal resonance by

which ωpat = ±Ω̇. These, keeping only J2 term, occur at identical locations as the apsidal

resonances. One example of a nodal bending wave is the Titan (−1 : 0) bending wave at

1.286RS which is a prominent feature in C-ring (Rosen and Lissauer 1988).

We have an ILR occurring at Ωpat = ˙̟ if m = +1 and an OLR at the same location

for m = −1. This resonance is also called the apsidal resonance (or nodal resonance in

the case of VRs). We find the location of this resonance to be within 1.1 − 1.9RS only

when m = −1 and µ ∼ 1/2 − ǫ. When taking these values, Ωpat is very small and can

match ˙̟ which is much smaller than Ωs.

Fig. 4.1 shows the resonance location in the disk for an given inertial mode frequency.

The above diverging response at resonances is the source of resonantly excited waves.

These waves propagate away from the resonance center in the cases of LR and VR, but

remain locally confined in the case of CR.

To establish the direction of wave propagation, we look at the dispersion relation

for density waves in the tight-winding (WKB) limit (Lin and Shu 1971; Goldreich and

Tremaine 1979; Binney and Tremaine 1987). Let the wave have an azimuthal number

m, frequency ω, and wavevector k, e.g., the surface density perturbation ∝ exp[i(mφ −

ωt)] exp[i
∫ r
kdr]. The pattern speed of the wave is Ωpat = ω/m. Its wavevector and
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frequency are related as

(mΩ − ω)2 = κ2 − 2πGΣ|k| + k2c2s. (4.2.14)

Here, Σ is the surface density, G is Newton’s constant and cs is the local sound speed.

Strictly speaking this is an expression for fluid disks but we use it here to describe

particle disk which has a somewhat more complicated expression. Define a variable

s = m(Ω−Ωpat)/κ so that s = 0 at CR and s = ±1 at LRs, we can solve for wavevector

in equation (4.2.14),

|k| =
[

1 ±
√

1 −Q2(1 − s2)
] κ

csQ
, (4.2.15)

where the Toomre Q = κcs/(πGΣ) measures stability of the disk to self-gravity (Toomre

1964). For Saturn’s ring, one is usually interested in the long wavelength wave as they

are easier to resolve in spacecraft observations. This corresponds to taking the ‘-’ sign

in the above equation. Density waves have k = 0 at |s| = 1 (LRs), and they are

evanescent (k complex) within a certain distance |s|2 > 1 − 1/Q2 away from the co-

rotation resonance (turning point, or ‘Q barrier’). Dense regions in Saturn’s rings has

Q ∼ 1 so the evanescent zone is practically non-existent. Waves which are primarily

pressure supported can propagate outside of |s| = 1 but no such wave exists in particle

disks. Self-gravity is pivotal for propagation of density waves in this case.

Within the propagating cavity of density waves, there are either leading waves (k < 0)

or trailing waves (k > 0). Excitation at LR will pick out waves with the right sign that

propagates toward the other end of the cavity. If these waves can reach the turning point

without being dissipated, they will be reflected backward. Viscosity in Saturn’s rings is

likely high enough that reflection is not important. To obtain the sign of k, we note that

the group velocity is (Binney and Tremaine 1987)

vg ≡ ∂ω

∂k
= SIGN[k]

|k|c2s − πGΣ

m(Ωpat − Ω)
= SIGN[k]

κcs

(

±
√

1 −Q2(1 − s2)
)

m(Ωpat − Ω)Q
, (4.2.16)

For long-wavelength solution (the ‘-’ branch), vg ∝ k.
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Similar formulation exists for spiral bending waves (Shu et al. 1983). The difference

is that bending waves propagate inward from IVR and outward from OVR, opposite of

what spiral density waves do.

So in summary, waves excited at ILR propagate away from the planet (the source of

the perturbation in our problem), those excited at OLR propagate toward the planets.

Waves excited at IVR propagate towards the planet and at OVR away from the planet.

At CRs, s = m(Ω − Ωpat)/κ = 0. Equation (4.2.15) yields

|k| =
[

1 ±
√

1 −Q2
] κ

csQ
. (4.2.17)

So unless Q < 1, |k| is complex and there is no propagating waves radiating from CR.

The role of CR typically lies in confining materials into azimuthal islands as opposed to

launching waves.

Axisymmetric (m = 0) waves are somewhat special. Dispersion relations for waves

excited at the m = 0 CRs (where ω = Ω) satisfy 7

ω2 = κ2 − 2πGΣ|k| + k2c2s. (4.2.18)

Solving for the wavevector gives

|k| =

[

1 ±
√

1 − 1

Q2

(

1 − ω2

κ2

)

]

κ

Qcs
. (4.2.19)

Requiring that the wavevector for the long wavelength branch to be positive, we obtain

1 −Q2 ≤ ω2

κ2
≤ 1. (4.2.20)

So this wave is evanescent outside its CR (ω = Ω ≈ κ) but propagates inward of it for

Q > 1 disks, or, the group velocity

vg ≡ ∂ω

∂k
= SIGN[k]

[

1 −
√

1 − 1

Q2

(

1 − ω2

κ2

)

− κ

ω

]

< 0. (4.2.21)

7If Q < 1, we obtain gravitational instability and ω2 < 0.
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So the wave is a trailing wave (k > 0). What is the effect of such a kind of wave is

uninvestigated but interesting. There is no torque exerted on the density waves but it

can carry energy flux away from the resonant location. Excitation of such a wave was

the subject of study in Bate et al. (2002).

Marley and Porco (1993) do not include the m = 0 f-modes (with angular dependence

Yℓ0(θ, φ) and frequencies of order ω ∼ ℓ
√
Gρ) in their excitation calculation presumably

because the CR for this mode should fall near the surface or even inward of Saturn, inside

of the inner-most ring particles. m = 0 inertial modes can have much lower frequencies

than f-modes and we should take account of their CRs.

We summarize these discussions in Fig. 4.1 where we plot the resonant location in

the rings for an inertial mode with frequency µ and azimuthal number m. Inertial modes

are dense inside 0 ≤ µ ≤ 1, this means that we can always find an inertial mode for a

given m and µ. However, only the very low order inertial modes can exert appreciable

torque on the rings. We proceed to identify these modes.

4.2.2 Resonant Torques

Ring response at resonance determines observability. This response is quantified by a

torque that acts on the resonantly excited waves.

For Lindblad type resonances, Goldreich and Tremaine (1979) derived the following

expression for the torque under the assumption of linear hydrodynamic response8

TL

Σ
= −

∫ ∫

d2r(r ×∇Φm) = −mπ
2

DL

[

r
dΦm

dr
+

2mΩ

(mΩ − ω)
Φm

]2

(4.2.22)

where Φm is the resonant potential. Here, all quantities are to be evaluated at the location

of LR: (mΩ−ω) = ±κ, since most of the torque is exerted there. Using equations (4.2.6)-

8Many studies have shown that this formula is independent of the actual ring forces so long as there
is some collective or dissipative effects. See Meyer-Vernet and Sicardy (1987) for an elegant explanation.
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Figure 4.1 We plot here the resonance locations in Saturn’s ring, in units of dimensionless distance

r/RS (lower axis) or of distance itself r (in km, upper axis), for inertial modes with frequency µ = ω/2ΩS

in the rotating frame, and an azimuthal number m. The solid line indicates the co-rotation resonance

locations for m = 0 modes; the the dotted line the apsidal resonance and nodal resonance locations

for |m| = 1 modes, they only occur when mode frequencies µ ∼ 1/2. The open circles and open star

symbols are LRs and VRs for higher |m| modes, where we use open circles to stand for inner LR or

VR, and open star symbols for outer LR or VR. At a distance of r/RS ∼ 1.85, the Keplerian motion is

synchronous with Saturn’s spin. We also demarcate the confines of Saturn’s D,C and B rings in the top

of the graph. Inertial modes satisfy 0 ≤ µ ≤ 1 and they are dense inside this frequency range. For each

value of m, one is destined to find an inertial mode infinitely close to a given frequency µ. However, only

the few lowest order inertial modes can exert appreciable torque on the rings. Even so, there are plenty

of resonances in the rings, especially in the D and C rings since they are closer to the planet. Here we

take Saturn’s spin period to be 10 hr 32 min.

(4.2.7), we obtain an expression for DL as

DL ≡ r
d

dr

[

κ2 − (mΩ − ω)2
]

= −3(1 ∓m)Ω2 +

[

33

2
+

9

4
m2 ± 3

4
m

]

J2Ω
2. (4.2.23)
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In deriving this we have kept only terms of order O(J2) or lower. The results differ

slightly from that given in eq. (19) of Marley and Porco (1993) but the difference only

shows up when (1∓m) = 0. We try to be careful and preserve the difference between Ω

and κ because it is important for |m| = 1 resonance. We have divided the torque TL by

the surface density of the disk, Σ. This makes the right-hand side independent of disk

quantities. This is also convenient when one wants to study the effects on the disk, for

instance, compare the resonant torque against the viscous torque. Both scale linearly with

Σ. The angular momentum corresponding to the resonant torque is deposited wherever

the wave is dissipated.

For bending waves, Shu et al. (1983) obtained the following torque expression,

T V

Σ
= −

∫ ∫

d2r(r ×∇Φm) =
mπ2

DV

(

dΦm

dθ

)2

(4.2.24)

where the right-hand side is evaluated at VR and on the mid-plane. We have

DV ≡ r
d

dr

[

ν2 − (mΩ − ω)2
]

= −3(1 ∓m)Ω2 +

[

−63

2
+

9

4
m2 ± 39

4
m

]

J2Ω
2. (4.2.25)

Again, this differs slightly from Marley and Porco (1993) and the second term on the

right-hand side is only important for apsidal or nodal resonances (1 ∓m = 0).

We do not have expressions for waves driven at CR. This was not considered previously

since the m = 0 perturbation from satellites are time-independent and therefore ignored.

This is not so for internal oscillations. While the torque for an m = 0 perturbation

is exactly zero, the energy it imparts to the rings can be non-zero. We estimate it by

multiplying the torque formula (eq. 4.2.22) by the pattern speed (ω/m) and take formally

the limit of m− > 0 (G. Ogilvie, private communication). The rate of energy deposit is

thus,

dE/dt

Σ
= −ωπ

2

DL

[

r
dΦ0

dr

]2

(4.2.26)

By studying various satellite resonances in the C-ring, Rosen et al. (1991) concluded

that, empirically, resonances that receive a torque per unit surface density greater than
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TL/Σ ∼ 1016 cm4 s−2 appear to be associated with gaps with embedded ringlets. This

is likely because such a strong torque, when locally deposited, tend to remove material

from near the resonance region faster than viscosity can diffuse material back.9 They

also put a limit of TL/Σ ≥ 1013 cm4/ s−2 as the limit for exciting observable wave trains.

So a resonant torque value of 1013 ≤ TL/Σ ≤ 1016 cm4 s−2 can launch observable density

or bending waves.

4.2.3 Unexplained Features in Voyager I data

Table VIII in Rosen et al. (1991) listed a number of unexplained density wave features

in Saturn’s C ring, while Marley and Porco (1993) listed a few other features in C & D

rings which remain mysterious.

4.3 Inertial Modes as Candidates

Saturn is likely fully convective all the way down to the core. In such a fluid body,

buoyancy modes (gravity-modes) have zero frequencies and only10 pressure modes and

inertial modes exist. Here, we explore the role inertial modes may play in exciting density

waves in Saturn’s rings.

4.3.1 Solutions for Inertial modes

Developing from Bryan (1889), Wu (2005a) showed that equations governing inertial

modes in power-law density models can be separated in the ellipsoidal coordinates (x1, x2).

One can then obtain semi-analytical solutions without much computational cost. We fol-

low her solution method here.

9Cuzzi et al. (1981) also discussed that a stronger perturbation causes more nonlinear waves closer to
the resonance and hence a stronger local dissipation, as opposed to gradual dissipation many wavelengths
away from the resonance.

10With the exemption of f-modes, as known as surface gravity waves.
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We assume Saturn’s density profile to be

ρ ∝ (1 − r2)β, (4.3.1)

where r is the dimensionless radius normalized by the radius of Saturn. Here we take

β = 1.5 as a good approximation to the realistic models. Fig. 4.2 compares this simple

model with the full model which includes a solid core and more realistic equation of

state (Saumon and Guillot 2004). It is likely that inertial modes can undergo drastic

alterations when the realistic model is used (Ogilvie and Lin 2004). We hope, however,

that our simplified study may provide motivations for more sophisticated investigations.

Figure 4.2 Density profile of Saturn as modeled by Guillot (1999). The density is plotted as a function

of the dimensionless radius in logarithmic values, normalized by the central density. There are multiple

jumps in the density profile associated with various compositional and equation of state variations. In

particular, the discontinuity around 0.55 Saturn radius coincides the hydrogen metallic phase transition

and helium rain-out. We also show the adopted power-law density profile of index β = 1.5

.

The oscillation can be described by a single scalar ψ which is related to the Eulerian
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density perturbation as

ρ′ =
ω2ρ

c2s
ψ ei(mφ−ωt). (4.3.2)

It is also related to the displacement vector as (eq. 2.1.18)

ξ =
1

1 − q2
(1 − iq ez× − q2ez ez·) ∇ψ. (4.3.3)

The scalar eigenfunction ψ satisfies (eq. 2.2.9)

(E1 − E2)ψ = 0, (4.3.4)

where the differential operator Ei is

Ei =

{

∂

∂xi

[

(1 − x2
i )

∂

∂xi

]

− m2

1 − x2
i

+
2βxi(1 − x2

i )

x2
i − µ2

∂

∂xi
+

2µβm

x2
i − µ2

}

. (4.3.5)

The boundary conditions are as in equation (2.3.7) at the surface, and the mode we are

interested in can be either even or odd with respect to the equator.

The above equation and boundary conditions are separable in (x1, x2) coordinates.

For numerical convenience, We transform the variable from ψ = ψ1(x1)ψ2(x2) to

g1(x1)g2(x2) where

ψi(xi) = (1 − x2
i )

|m|/2 gi(xi). (4.3.6)

The solution for gi can be sought for easily using the shooting method. Fig. 4.3 shows

the meridional cut of one such mode we obtain.

4.3.2 Torques by Inertial Modes

The f-modes (Marley and Porco 1993) considered have simple angular dependencies.

Each mode is described by a unique Legendre polynomial Yℓm(θ, φ). This is not so for

inertial modes. Each inertial mode, even or odd with respect to the equator, can contain

multiple Yℓm components. So we must deviate from the formalism in Marley and Porco

(1993) when calculating their gravitational perturbations as well as their torques on the

disk.
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Figure 4.3 A meridional look at an inertial-mode. This mode is symmetric with respect to the equator,

retrograde (m = −2), and with number of nodes in the x1, x2 directions to be n1 = 5, n2 = 3, respectively.

The planet model has a density profile β = 1.5. The left panel shows the Eulerian density perturbation

(ρ′), using both gray-scale and equidistant contours. Lighter regions (and dashed contours) stand for

ρ′ < 0, while darker regions (solid contours) represent ρ′ > 0. The dotted curves indicate the (x1, x2)

coordinates. Counting the number of nodes along each coordinate, one recovers n1 and n2. The right

panel shows the fluid velocity (vr & vθ components only) in the rotating frame as arrows, with the

size of the arrows proportional to
√
v. Both the mode amplitude and the wave-vector remain relatively

constant over much of the planet, but rise sharply toward the surface. This rise is most striking near

the special angle | cos θ| = µ = 0.4881, marked here by straight lines.

Gravitational potential due to inertial mode oscillations (Φm) is solved from the Pois-
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son equation,

∇2Φm = 4πGρ′, (4.3.7)

where ρ′ is the Eulerian density perturbation due to an inertial mode. It varies as

expi(mφ−ωt) and returns to zero outside the planet. However, Φm is not zero (or constant)

outside the planet as it has to satisfy boundary condition imposed at the surface of

the planet. A general solution to equation (4.3.7) is to use the Green’s function G =

−1/(4π |r − r1|) and write

Φm(r) = −
∫

Gρ′(r1)

|r− r1|
d3r1. (4.3.8)

The integration here is over the volume of the planet. Since the Green’s function can be

written as a summation of Yℓm functions, Marley and Porco (1993) need only to look at,

for a given f-mode, one component of the Green function. Such a convenience does not

exist for inertial modes.

Let the spherical coordinates of point r be (r, θ, φ) and that for point r1 be (r1, θ1, φ1).

We always have r > r1. Green’s function satisfy the following expansion into Legendre

polynomials,

1

|r − r1|
=

∞
∑

ℓ=0

rℓ
1

rℓ+1
Pℓ(cos γ), (4.3.9)

where Pℓ is the Legendre polynomial and γ is the angle between r and r1, and it can be

expressed as

cos γ = cos θ cos θ1 + sin θ sin θ1 cos(φ− φ1). (4.3.10)

We resort to the following addition theorem for Legendre polynomials,

Pl(cosψ) =
4π

2l + 1

m=l
∑

m=−l

(−1)mY −m
l (θ1, φ1)Y

m
l (θ, φ), (4.3.11)

with the spherical harmonics function related to the associated Legendre polynomials

Pm
ℓ as

Y m
l (θ, φ) =

√

2l + 1

4π

(l −m)!

(l +m)!
Pm

l (cos θ)eimφ. (4.3.12)
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Substituting the above relations into equation (4.3.8) and integrate over φ1, it becomes

obvious that Φm has the same azimuthal dependence as ρ′ and11

Φm = −
∞
∑

ℓ=|m|

(−1)m2πG

rℓ+1
Pm

ℓ (cos θ)eimφ

∫

ρ′(r1, θ1)r
ℓ
1P

−m
ℓ (cos θ1)r

2
1 sin θ1dr1dθ1

=
∞
∑

ℓ=|m|

2πGR2
S

rℓ+1

(ℓ−m)!

(ℓ+m)!
Pm

ℓ (cos θ)eimφ

∫

ρ′(r1, θ1)r
ℓ
1P

m
ℓ (cos θ1)r

2
1 sin θ1dr1dθ1.

(4.3.13)

where in the last line we have normalized the lengths r, r1 by the radius of Saturn, RS,

and we have used the identity rule for the associated Legendre polynomial,

P−m
ℓ = (−1)m (ℓ−m)!

(ℓ+m)!
Pm

ℓ . (4.3.14)

Marley and Porco (1993) deal with f-modes, each of which is described by a single spher-

ical harmonics, there is no summation over ℓ for them.

As we adopt the ellipsoidal coordinates to solve for inertial modes, we change variables

of integration in equation (4.3.13) to the set (x1, x2), where in particular

r2
1 = 1 − (x2

1 − µ2)(µ2 − x2
2)

(1 − µ2)µ2
, (4.3.15)

and the Jacobian of the transformation is derived in Wu (2005a) as

r2
1dr1 sin θ1dθ1 =

x2
1 − x2

2

(1 − µ2)µ2
dx1dx2. (4.3.16)

We also need the following spatial derivatives:

r
dΦm

dr
= −

∞
∑

ℓ=|m|

−(ℓ + 1)πGR2
S

rℓ+1

(ℓ−m)!

(ℓ+m)!
Pm

ℓ (cos θ)eimφ ×
∫

ρ′(r1, θ1)r
ℓ
1P

m
ℓ (cos θ1)r

2
1 sin θ1dr1dθ1.

dPm
ℓ (cos θ)

dθ
=

ℓ cos θPm
ℓ (cos θ) − (ℓ+m)Pm

ℓ−1(cos θ)√
sin2 θ

. (4.3.17)

11The factor 2π comes from φ integration, though one should use π in real calculations as we should
have used the real part of all quantities.
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For our problem, we need to evaluate the potential at the mid-plane (cos θ = 0).

Since the LR torque scales quadratically with Pm
ℓ (cos θ), while the VR torque scales

quadratically with dPm
ℓ (cos θ)/dθ, it is obvious that only ℓ+m = even terms contribute

to the LR torque, while ℓ + m = odd terms contribute only to the VR torque. This

further reduces the number of terms one need to calculate.

4.3.3 Results

To correspond to Fig. 4.1 (which is only schematic), we show in Fig. 4.4 resonance

locations associated with individual inertial modes that we obtain. These resonances

pop up everywhere in the B,C and D rings.

The biggest assumption we have to make concerns the amplitudes of the modes. We

follow Marley and Porco (1993) in fixing the mode energy to be

Emode =
ω2

2

∫

d3rρξ · ξ = 1026 ergs. (4.3.18)

For f-modes considered in Marley and Porco (1993), this corresponds roughly to a dis-

placement amplitude at the surface of ξmax = 100 cm. Inertial modes have ξr = 0 at the

surface, and ξh reaching maximum values at the critical co-latitude cos θ = µ. With the

above mode energy, the lowest order inertial mode has maximum ξh = 750 cm, while a

medium order inertial mode (n1 = n2 = 5) has maximum12 ξh = 13, 000 cm. How inertial

modes can be excited and reach energy equipartition with convective eddies is yet to be

studied.

With this highly uncertain assumption, we obtain gravitational torques associated

with individual inertial modes (Fig. 4.4) as well as with f-modes (Fig. 4.5). The latter

agree in large with results from Marley and Porco (1993). In particular, we report the

quantity T/Σ, torque divided by the local disk surface density. This representation of the

torque is independent of the properties of the disk. The tabular form for the same data

12High order modes need large amplitudes in order to produce similar energies as low-order modes.



Chapter 4. Applications: Seismology using Saturn’s Rings 82

Figure 4.4 Resonant locations of various inertial modes, obtained in a β = 1.5 power-law model.

Squares represent |m| = 2 modes, circles |m| = 3, triangles |m| = 4, upside-down triangles |m| = 5,

diamonds |m| = 6, pentagons |m| = 7 and lastly, axes m = |8| modes. Resonance triggered by a

retrograde mode is always located farther away from Saturn than that by a pro grade mode of the same

|m| value. Filled points represent outer resonances while empty points represent inner resonances. For a

given m value, the spectrum of inertial modes is dense within the range µ ∈ [0, 1]. Only some low order

modes are plotted here. The special point at r/RS = 1.825 (110, 000 km) corresponds to µ = 1/2, and

is the location at which inner resonances with m < 0 coincide with outer resonances with m > 0.

plotted in Fig. 4.6 is presented in Table 4.1, where we include all resonances that have

T/Σ > 1010 cm4/ s2. Comparing inertial modes with f-modes, it seems that the lowest

order inertial modes, at the same mode energy, exert torques on the disk that are either

comparable or weaker by a couple magnitudes.

R-modes (with ℓ− |m| = 0) are not included in Table 4.1. They are largely toroidal

modes with small compressibility.

[!htb]
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Figure 4.5 Our attempt at reproducing the results of Marley and Porco (1993). Here, torques (mea-

sured as T/Σ) by individual f-modes are plotted against their respective resonant locations in the rings.

Different symbols stand for modes with different ℓ −m values and we adopt a model by Saumon and

Guillot (2004). Magnitudes of the torques are compatible with those found by Marley and Porco (1993),

but the resonant positions have shifted slightly. Arrows pointing towards Saturn are OLRs and point-

ing away from Saturn are OVRs. Vertical lines indicate locations where unexplained features exist as

observed by Voyager (Rosen et al. 1991), with waves traveling toward Saturn as solid lines, and those

away from Saturn as dashed lines.

Table 4.1: Inertial modes that have torque density, T ∗ = TL,V /Σ > 1010 cm4/ s2, in

the region between B to D rings. Each mode is labeled by (m,n1, n2), a normalized

frequency in Saturn’s rotating frame of µ = ω/2ΩS and a mode index ( ℓ−|m|, last

column). Even ℓ− |m| modes are symmetric with respect to the equator, while odd

ℓ − |m| modes are antisymmetric. The column ‘type’ indicates type of resonances,

the column r location of the resonance. Column Ppat records the pattern period,

and the column T ∗ that of the torque density. Here we have included the strongest

modes with T ∗ ≥ 1010 cm4/ s2. Each mode is assumed to have equal kinetic energy

of Emode = 1026 ergs. Form = 0 modes, we have calculated the energy flux, multiply

it by mode frequency to obtain the torque value here. The physical torque should

be identically zero as the pattern speed is zero.
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m n1 n2 µ type r(km) r/RSaturn Ppat(min) T ∗(1015 dyne cm) l− |m|

-6 0 1 0.2943 ILR 106,474 1.77 708.9 0.00001 2

-5 0 1 0.1667 IVR 101,277 1.68 685.0 0.00003 1

-5 0 1 0.3324 ILR 106,375 1.77 737.4 0.00005 2

-4 0 1 0.2000 IVR 99,393 1.65 710.4 0.00017 1

-4 0 1 0.3822 ILR 106,722 1.77 790.4 0.00022 2

-4 1 1 0.1723 IVR 98,386 1.63 699.6 0.00002 3

-3 0 1 0.2500 IVR 96,724 1.6 767.2 0.00123 1

-3 0 1 0.4503 ILR 108,667 1.8 913.6 0.00087 2

-3 1 1 0.2073 IVR 94,581 1.57 741.9 0.00013 3

-3 1 1 0.3674 ILR 103,298 1.71 846.8 0.00004 4

-3 2 1 0.1768 IVR 93,124 1.55 724.8 0.00001 5

-2 0 1 0.3333 IVR 92,651 1.54 959.0 0.01211 1

-2 1 1 0.2595 IVR 86,389 1.43 863.5 0.00178 3

-2 1 1 0.4322 ILR 103,110 1.71 1125.9 0.00019 4

-2 2 1 0.2128 IVR 82,931 1.38 812.2 0.00026 5

-2 2 1 0.3561 ILR 94,825 1.57 993.0 0.00002 6

0 1 1 0.6794 LCR 91,493 1.52 470.6 0.00196 4

0 1 2 0.7709 VCR 84,098 1.4 414.7 0.00031 5

0 2 1 0.5095 LCR 110,840 1.84 627.5 0.00002 6

0 1 2 0.8276 LCR 80,215 1.33 386.3 0.00027 6

1 1 1 0.6584 OLR 101,757 1.69 276.0 0.00004 4

1 1 2 0.7435 OVR 97,061 1.61 257.1 0.00001 5

2 1 1 0.5178 OVR 111,359 1.85 421.2 0.00010 3

2 3 0 0.0864 ILR 66,907 1.11 588.5 0.00183 6

3 1 0 0.3230 ILR 75,211 1.25 526.1 0.02161 2

3 1 1 0.5163 IVR 70,324 1.17 475.6 0.00329 3

3 1 1 0.5163 OVR 111,633 1.85 475.6 0.00002 3

3 2 0 0.1731 ILR 79,639 1.32 573.2 0.00061 4

3 1 1 0.6276 ILR 67,849 1.13 450.8 0.00684 4

3 2 1 0.3587 IVR 74,245 1.23 516.0 0.00031 5

3 3 0 0.1097 ILR 81,717 1.36 595.8 0.00003 6

Continued on Next Page. . .
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m n1 n2 µ type r(km) r/RSaturn Ppat(min) T ∗(1015 dyne cm) l− |m|

3 2 1 0.4742 ILR 71,321 1.18 485.8 0.00064 6

4 1 0 0.3489 ILR 83,234 1.38 544.4 0.00312 2

4 1 1 0.5139 IVR 79,549 1.32 508.7 0.00028 3

4 2 0 0.1946 ILR 87,090 1.45 582.7 0.00006 4

4 1 1 0.6157 ILR 77,472 1.29 488.9 0.00056 4

4 2 1 0.3583 IVR 83,012 1.38 542.2 0.00002 5

4 1 2 0.6868 IVR 76,100 1.26 475.9 0.00008 5

4 2 1 0.4655 ILR 80,588 1.34 518.7 0.00003 6

4 1 2 0.7392 ILR 75,126 1.25 466.8 0.00013 6

5 1 0 0.3658 ILR 88,308 1.47 557.8 0.00053 2

5 1 1 0.5112 IVR 85,442 1.42 530.8 0.00003 3

5 1 1 0.6053 ILR 83,707 1.39 514.7 0.00007 4

5 1 2 0.7239 ILR 81,641 1.35 495.8 0.00001 6

6 1 0 0.3776 ILR 91,840 1.52 567.9 0.00010 2

6 1 1 0.5962 ILR 88,080 1.46 533.4 0.00001 4

7 1 0 0.3862 ILR 94,451 1.57 575.8 0.00002 2

We note here that in order to trigger waves, the resonant torques have to be small

(but not much smaller) in strength compared to the viscous torque Tv = 3πΣνΩr2. If

the resonant torque is much greater, the rings can not transport away the excess angular

momentum and a gap opens. Rosen et al. (1991) found that the minimum torque for

detectable feature corresponds to T/Σ ≥ 1013 cm4/ s2, while resonances with torques

T/Σ ≥ 1016 cm4/ s2 open gaps.

4.4 Conclusions

We demonstrate here that given comparable mode energies, inertial modes can be as

relevant for exciting waves in the rings as f-modes are. Inertial modes also have the

advantage of being populous within the D, C and B rings. Even taking only the lowest
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Figure 4.6 Lindblad and vertical torques, normalized by the disk surface density, T ∗

L,V = TL,V /Σ, are

shown here as a function of ring distance from Saturn. Inertial modes are calculated for a β = 1.5

density profile, and only those modes that can rise above T/Σ ≥ 1010 cm4/ s2 (an arbitrarily chosen

threshold) are included here. Meaning of the myriad set of symbols are: leftward dashed arrows mark

the locations of OLR or IVR, while rightward solid arrows those of OVR or ILR; empty circles indicate

inner resonances, while filled circles outer resonances. The vertical lines have the same designation as

in Fig. 4.5. m = 0 modes, exerting zero torque, are not included in this plot. In principle there are

many modes that show correspondence in location with the observable features, however if the empirical

estimations of (Rosen et al. 1991) rosen are considered, then only one mode, the one around r ∼ 75, 000

can be related to the observations, both in the location and in the nature of the mode (the observations

used by (Rosen et al. 1991) could not distinguish between OVRs or ILRs, however our model predicts

an ILR at that location).

order inertial modes into account, there are plenty locations where one expect to see

features.

This paper also serves to highlight the suitability of Saturn’s rings as a sensitive

seismometer. With a torque sensitivity of T/Σ = 1013 cm4/ s2, one can observe the effect



Chapter 4. Applications: Seismology using Saturn’s Rings 87

of a mountain with mass 1013 g, or, 10−17 that of Saturn’s mass.

Saturn’s rings also have high frequency resolution. Assuming a radial resolution of

100 meters, compared this to the ring span of ∼ 100, 000 km, one obtains a frequency

resolution of one part in 106.



Chapter 5

Inertial Modes in a Polytrope Model

The pseudo-spectral technique we establish in §3 can in principle be applied to calculate

inertial modes in any planetary model. In this section, we test the pseudo-spectral

code in two environments, a power-law density planet where the PDE is separable and

exact semi-analytical solutions are known (Wu 2005a), and a polytrope density planet

where the PDE is not separable. This latter choice is motivated by a few previous studies

(Ipser and Lindblom 1990; Lindblom and Ipser 1999; Yoshida and Lee 2000; Lockitch and

Friedman 1999; Lee et al. 1992b; Dintrans and Ouyed 2001; Lee et al. 1992a; Papaloizou

and Ivanov 2005; Ivanov and Papaloizou 2007; Ipser and Lindblom 1991) where many

authors have calculated inertial mode frequencies for polytrope models, using largely the

spectral method in spherical coordinates. We will compare our results directly against

theirs.

5.1 Solving for the Eigenvalue Problem

Here, we briefly recap the pseudo-spectral method (details see §3.4) and describe in detail

our mode finding algorithm.

88
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5.1.1 Finding Eigenvalues and Eigenvectors

The central PDE to be solved (eq. 2.2.13) is converted to the following form (eq. (5.1.1))

after a few changes of variable,

(F̃1 − F̃2)g +
C(x2

1 − µ2)(x2
2 − µ2)

(1 − x2
1)

|m|/2(1 − x2
2)

|m|/2
= 0 (5.1.1)

where g is related to ψ as in equation (3.1.2), and two new coordinates (t1, t2) are related

to the ellipsoidal coordinates (x1, x2) linearly as in equation (3.1.3). The expressions for

F̃i are given in equations (3.2.7)-(3.2.8). We give here the explicit1 expression for C, the

part that represents the non-separability of the PDE (eq. 2.2.13),

C = (1 − x2
1)

|m|/2(1 − x2
2)

|m|/2 ×
{

−2
d lnX

d ln t

[

(1 − x2
1)x1

(x2
1 − µ2)

∂

∂x1
+

(1 − x2
2)x2

(µ2 − x2
2)

∂

∂x2

+
mµ(x2

1 − x2
2)

t
− |m|x1

(1 − x2
1)

− |m|x2

(1 − x2
2)

]

g − 4Ω2R2

c2s
(x2

1 − x2
2)g

}

. (5.1.2)

Again, X = ρsurf/ρ = (1 − r2)β/ρ and t = (x2
1 − µ2)(µ2 − x2

2) = µ2(1 − µ2)(1 − r2).

Boundary conditions for g (eq. 3.2.9-3.2.10) are

∂g

∂t1

∣

∣

∣

∣

t1=−1

= −(m− |m|µ)µ

2(1 + µ)
g|t1=−1, (5.1.3)

∂g

∂t2

∣

∣

∣

∣

|t2|=1

= −SIGN[t2]
(m− |m|µ)µ

1 − µ2
g||t2|=1. (5.1.4)

We expand the solution for g as (eq. 3.3.7)

g(t1, t2) =

Nmax
∑

N=0

Mmax
∑

M=0

αNMTN (t1)TM (t2). (5.1.5)

where M is chosen to be either even or odd, but not mixed. We adopt square truncation

Nmax = Mmax.

The equation of motion (eq. 5.1.1) is evaluated at the Gauss-Lobatto collocation

grids in the interior (eq. 3.4.12), while the boundary conditions (eqs. 5.1.3-5.1.4) are

1We present this expression in terms of variables x1 and x2, as the algebraic expression becomes
clumsy in the coordinates t1 and t2. Since we will use the pseudo-spectral method, we do not need the
direct algebraic expression in the Chebyshve space, as we can always evaluate t1 and t2 at the gridpoints
using eq. (3.1.3).
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evaluated at the endpoints (eqs. 3.4.13-3.4.14). The spatial derivatives are evaluated

analytically using the Chebyshev transformation rules (eq. 3.3.10). This then gives us a

linear matrix with (Nmax + 1)× (Mmax/2 + 1) rows and equal number of columns, which

we invert to solve for equal number of unknowns (one of which is the mode frequency).

The matrix form of the homogeneous equation is (eq. 3.3.5)

H(µ) · α = 0, (5.1.6)

where one is free to set a normalization of α00 = 1 (or α01 = 1 for odd modes).

If the eigenvalue problem can be phrased in the following form

H · α = µJ · α, (5.1.7)

where H and J are two matrices, and µ is the eigenvalue we are seeking, one can use

QR/QZ algorithm which, in one go, produces all possible eigenvalues of the problem.

However, our matrix (eq. 5.1.6) can not in general be written in such a form. One is

then limited to more local method of finding one eigenvalue at a time.

In our case, the condition for a non-trivial solution of equation 5.1.6,

Det[H(µ)] = 0 (5.1.8)

constrains the eigenfrequencies. Note that inertial modes have frequencies µ ∈ [0, 1]. To

calculate the above determinant, we use LU decomposition to factorize the matrix into an

upper triangular and a lower triangular matrix. The determinant of H is the product of

the determinants for the two triangular matrices, which in turn are simply the products

of their diagonal entries, respectively.

However, even if each matrix element contains only orders of µ, this determinant

would be a polynomial of degree I = (Nmax + 1) × (Mmax/2 + 1). Finding the zeroes

of such a large polynomial is tricky, if not conceptually difficult. One issue is round-off

error. If evaluation of each matrix element contains a round-off error of O(ǫ)2 as the

2We use double precision for all calculations, so the fractional round-off error is ∼ 10−16.
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determinant intrinsically involves computations of I2 terms, the collective uncertainty

scales as I2ǫ. Alternatively, the accuracies of the eigenvalue is limited to of the same

order, or ∼ 10−10 if Nmax ∼Mmax ∼ 20.

Moreover, due to the differential operator Fi, each matrix element in the matrix H

goes as N2 (or M2). The resultant determinant goes as (I!)2. This, if not properly taken

care of, causes computer overflow. In practice, when we take the determinant of the LU

matrices, we are actually adding up the logarithms of the absolute value of the diagonal

terms. This gives us a much larger dynamic range than afforded by a double precision

calculation.

Despite this, it is difficult to find true zeroes of the determinant. Due to the truncation

error, the eigenvalue can only be pinpointed to 10−10. At this precision, the determinant

still hangs around large values, though much smaller than surrounding values. Instead, we

use minimization routine to find the eigenvalue. We calculate the determinant scanning

through the whole range of µ. This presents a number of minima (see Fig. 5.1). We

locate the minima to within a precision range of 10−3. Then we use the Newton Raphson

method (Press et al. 1992) to chase after the deepest point. We call the procedure

convergent when a precision of 10−10 is reached (see above).

For a given converging eigenvalue, we use Gaussian elimination (Press et al. 1992) to

invert the matrix and obtain the spectral coefficients.

5.1.2 Spurious Eigenmodes

Results of the pseudo-spectral code needs to be watched carefully. There are two reasons.

First, the minima one finds in the determinant may be real but the inverted spectral

coefficients may be off. To protect against this, the most reliable way is to evaluate the

residual to the original equations by an independent algorithm (Boyd 2001). A quicker

(but less reliable) way is to look at the rate of decrease in the spectral coefficients. If the

last coefficient calculated is some 10−6 of the largest coefficient, that we have reached
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Figure 5.1 A scan of possible eigenmodes in a rotating polytrope of n = 1.5. The minimums (spikes)

of the plot log det{A(µ)} vs µ are possible eigenmodes, the magnitude of the determinant at a given µ

increases as the size of the matrix A (higher truncation of the Chebyshev expansion) increases. Boyd

(2001) argues that at most half of them are real eigenmodes. (Left) We show here how the determinant of

A variates along µ for a series of fixed truncations (they are even because the tidal overlapping problem

require even modes, therefore we look for even modes). At a some fixed µ it is easy to see that the

minima matches the location of previous ones at different truncations. It is highly likely then that they

are real eigenmodes. This is a first criteria to find eigenmodes. It is still required to study the behavior of

the spectral coefficients and their convergence. (Right) A zoom-in of the region around 0.34 ≤ µ ≤ 0.38,

here we see the lowest order mode, m = 2, n1 = 1, n2 = 0, µ ∼ 0.348, and mode m = 2, n1 = 4,

n2 = 1, µ ∼ 0.344. All the other minima are either fake modes or high order spurious modes that begin

to appear as we add higher degree Chebyshev functions.

convergence of 10−6.

The second reason is the eigenvalue may be spurious. As inherent in any spectral

methods with finite expansion terms, one is destined to obtain eigenvalues that are both

real and spurious. The spurious ones are typically higher order (say, n1 ≥ Nmax/2,

n2 ≥ Mmax/2) modes that have their eigenfrequencies misplaced due to the finite trun-

cation and would jump around as the resolution changes. There are also some ‘physical’

spurious modes due to incompatibility between the equation of motion and the boundary

conditions. To guard against this, the usual practice is to compare eigenvalues at two

different truncations (resolutions). Even this procedure may sometimes fail as inertial

modes are everywhere dense inside µ ∈ [0, 1].
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Figure 5.2 A zoom-in of Figure 5.1 around a confirmed mode. Here we normalize the value of log det{A}

in order to show that, for a real eigenmode, the eigenfrequency matches with high precision for different

truncations. The mode we show here is the lowest order m = 2, n1 = 1, n2 = 0, µ ∼ 0.348.

The following is our mode finding algorithm in which we carry out all the requisite

safety check:

• we first choose a truncation of Nmax = Mmax (square truncation). This introduces

(Nmax + 1)× (Mmax/2 + 1) coefficients. To obtain a mode with (n1, n2) nodal lines

in the ellipsoidal coordinates, our starting truncation is typically Nmax = Mmax ≥

(n1 + n2), since this is when the power-law solution cut-off exactly.

• We calculate the determinant by scanning through the µ range, typically with a µ

resolution of 10−3. We then use the Newton-Raphson method to zoom in around the

valleys to obtain the very minimum in the determinant. We call the minimization

procedure convergent when the resolution in µ ≤ 10−10.

• Using a standard normalization of α00 = 1, we compute the spectral coefficients at

each minimum. We can label the eigenfunction that are constructed using these
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coefficients according to the number of nodes along the t1 and t2 coordinates, re-

spectively. The fact that in a wide range of planet models, the nodal lines always

trace the ellipsoidal coordinates closely, speaks volume for the adoption of these

coordinates. It is trivial to label the modes and trace them through difference

truncations.

• We raise the truncation by, usually, 2 to N ′
max and repeat the above steps. Results

from two subsequent truncations ought to be compared before we proclaim that

we have found a real mode:

– when convergence is achieved, the highest degree spectral coefficients should

fall below a tolerance threshold. We usually set this to be 10−6.

– for a given eigenfrequency solution that we find at the lower truncation, their

counterparts (closest minima in frequency) at the higher truncations need to

agree in frequency to within 10−8, the frequency convergence criterion is met.

When there is not enough truncation to resolve the mode properly, we typically

find that the eigenfrequency (even for a real mode) keeps fluctuating.

– after checking the above criterion, we evaluate the fractional differences be-

tween spectral coefficients of the same degree but different truncations. We

require that

|αNM(Nmax) − αNM (N
′

max)|
αNM(Nmax)

≤ ǫ, (5.1.9)

where ǫ is a user defined tolerance, we set it to be 10−2. Numerically we

find that errors in high degree spectral coefficients are greater than those in

low degree ones. Fractional errors in these coefficients are also larger because

they are themselves smaller. It would be very computational expensive to

impose the above criterion on all coefficients. In practice, we require that only

coefficients that have values above 10−2 to satisfy the above criterion. This

is based on two arguments: first, magnitudes of very high degree coefficients,
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small as they are, should affect very little mode frequency and structure;

second, as shown in Fig. 5.9, even if these high degree spectral coefficients are

large and uncertain, as long as the low degree ones are accurate, we should be

able to obtain reliable results on the coupling between tide and inertial modes.

• sometimes even after all of the above stringent convergence criteria have been met,

we raise the truncation by another 2 to boost confidence level.

Using a 2.3GHz Pentium, we could usually reach truncation as high as 30 in a matter

of 30 min for a small root-finding µ range of 10−3.

As an example we present an eigenmode in Figs. 5.3 and 5.4 where we show results

from two consecutive truncations.

Figure 5.3 Convergence of the Chebyshev spectral coefficients for a mode m = 2, n1 = 7, n2 = 2

and µ = 0.351436598 between two subsequent truncations: left-panel, Nmax = Mmax = 20, right-panel,

Nmax = Mmax = 22. We plot here the magnitudes of the spectral coefficients as functions of their

degree M (the horizontal axis), with the degree N indicated by the different types of symbols. This

mode is even with respect to the equator so only even M coefficients are non-zero. The highest degree

coefficients approach numerical zero, while all coefficients that fall above the dotted line agree between

different truncations to better than 1 percent (eq. 5.1.9).

Fig. 5.5 shows a meridional cut for the same eigenmode. In our polytrope density

model, the equation for the inertial modes is not separable in the ellipsoidal coordinates.

However, the nodal lines run very closely parallel to the coordinate axis. We know this
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Figure 5.4 Same as in Fig. 5.3 but with the horizontal axis being the degree N and different symbols

stand for difference in degree M . Compared to that figure, one notices that the spectral coefficients fall

off with degree M more rapidly than with degree N . This is expected as the number of nodes (and

therefore richness of spatial structure) in this mode (n1 = 7, n2 = 2) is higher in the x1 coordinate. In

principle a square truncation (Nmax = Mmax) is not ideal and should be improved upon (see §5.4). Such

an insight, incidentally, is not obvious if one insists on solving for inertial modes in spherical coordinates

as then the mode typing is ambiguous.

feature occurs for uniform density models (Bryan 1889), power-law density models (Wu

2005a), and now polytrope models. It is then reasonable to expect that it persists for a

wide range of density models. As such, we suspect that the quantum numbers one obtains

by counting nodal lines along the (x1, x2) coordinates are more useful for labeling the

modes than counting in any other way (see §5.2).

5.2 Comparison with Previous Studies

We compare our results against those obtained in earlier studies.

We first compare our polytrope results with those using power-law models. There

is an exact one-to-one correspondence between modes in two different models (Table

5.2), and the fact that nodal lines always run largely parallel to the (x1, x2) coordinates

provides accurate mode identification in both models. The difference in eigenfunctions

lie in that while for the power-law model, spectral coefficients for inertial modes are zero
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Table 5.1. Eigenfrequenciesa of |m| = 2 inertial-modes for various density profiles:

comparison between power-law and polytrope.

(ℓ− |m|) parity β = 1.0 p = kρ2 β = 2.0 p = kρ3/2

1b o -0.6667 -0.6667 -0.6667 -0.6667

2 e -1.1224 -1.1000 -1.0825 -1.0344

e 0.4860 0.5566 0.6158 0.8277

3 o -1.3822 -1.3578 -1.3317 -1.2705

o -0.5082 -0.5173 -0.5270 -0.5516

o 0.9761 1.0258 1.0801 1.2171

4 e -1.5415 -1.5196 -1.4910 -1.4307

e -0.8671 -0.8629 -0.8628 -0.8569

e 0.2364 0.2753 0.3199 0.4569

e 1.2408 1.2729 1.3150 1.4013

aEigenfrequencies are listed as 2µm/|m| = SIGN[m]ω/Ω.

Therefore positive values denote pro-grade modes, and nega-

tive ones retrograde modes. This is opposite to that done in

Lockitch and Friedman (1999). Following Wu (2005a) we define

ℓ = 2(n1 + n2) + |m| − δ, where δ = 0 for even-parity and 1 for

odd-parity, and n1, n2 are the numbers of nodes in the x1 and x2

ranges, respectively.

bThis row represents R-modes. They are mostly toroidal and

insensitive to density variations.
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Table 5.2. Eigenfrequencies for |m| = 2 inertial modes in different polytropes.

p = kρ2 p = kρ5/3 p = kρ3/2

(ℓ− |m|) YL00a this work YL00 this work YL00 this work

1 -0.6667 -0.6667 -0.6667 -0.6667 -0.6667 -0.6667

2 -1.1000 -1.1000 -1.0626 -1.0626 -1.0344 -1.0344

0.5566 0.5566 0.5566 0.6965 0.8277 0.8277

3 -1.3578 -1.3578 -1.3100 -1.3100 -1.2705 -1.2705

-0.5173 -0.5173 -0.5356 -0.5356 -0.5516 -0.5516

1.0259 1.0258 1.1278 1.1278 1.2171 1.2171

4 -1.5196 -1.5196 -1.4722 -1.4721 -1.4307 -1.4307

-0.8630 -0.8629 -0.8586 -0.8586 -0.8569 -0.8569

0.2753 0.2753 0.3642 0.3642 0.4569 0.4569

1.2729 1.2729 1.3419 1.3419 1.4013 1.4013

aThis and other columns that are marked as YL00 are taken from Table

2 of Yoshida and Lee (2000). Their results agree with those of Lockitch and

Friedman (1999) where they overlap.
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Figure 5.5 A meridional cut for an eigenfunction with quantum numbers m = 2, n1 = 7, n2 = 2,

and eigenfrequency µ = 0.351 in a polytrope model with n = 1.5. Left panel: amplitudes for Eulerian

density fluctuation plotted in spherical coordinates, with dark patches (light grey dots) being positive

values and lighter patches (solid black dots) negative values. Right Panel: the same quantity now

projected in ellipsoidal coordinates. The (t1, t2) coordinates are linearly morphed from the original

(x1, x2) coordinates (eq. 3.1.3). Pay attention to the feature that all nodal lines run largely parallel

to constant coordinate lines. Moreover, nodes are roughly equally spaced in the ellipsoidal coordinates,

while they are more unevenly distributed in spherical coordinates. So to reach the same accuracy,

expansion in spherical coordinates will require more number of polynomials.

above certain degrees, they go on to infinity for polytropes. The m = 2, n1 = 7, n2 = 2

mode shown in Fig. 5.3 has µ = 0.350 for npoly = 1.5 (or p = kρ5/3 ) while it has a

frequency of µ = 0.343 in the β = 1.5 model (shown in Fig. 5.6).

Many previous studies have also computed (low order) inertial modes in polytrope

models. We compare with the most relevant ones, Lockitch and Friedman (1999) for

p = kρ2 polytropes and Yoshida and Lee (2000) for a number of different polytropes, in

5.2 & 5.2. Our frequencies show good agreement with these studies.

We comment on earlier efforts at solving inertial modes. Almost all studies have been
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Figure 5.6 Chebyshev spectral coefficients for the mode m = 2, n1 = 7 and n2 = 2 in a power-law

model with β = 1.5. This is to be compared to Figs. 5.3-5.4 of the same mode but in a polytrope

model (p = kρ5/3). Frequency of the mode in this case is µ = 0.343. Left panel: horizontal axis is

degree M and different symbols stand for different N degrees. Right panel: N and M are swapped. The

spectral coefficients appear to drop to zero beyond certain Chebyshev degrees. The expansion to a finite

truncation is complete. This is related to the fact that solutions to the ordinary differential equations

for inertial modes in power-law profile in a polynomial (with finite degrees). Such a clean behaviour is

not expected in the polytrope case where coupling between different Chebyshev degrees continues the

spectrum to infinity (though the coefficients fall off with spectral degree).

expanding the wavefunction as a sum of spherical harmonics in the spherical angles,

and then expand the radial direction as Chebyshev polynomials (Dintrans and Ouyed

2001), as power-laws (Lockitch and Friedman 1999), or directly integrated in the resulting

ODEs (Yoshida and Lee 2000; Lee et al. 1992b). While Dintrans and Ouyed (2001); Ipser

and Lindblom (1990) have used an iterative spectral solver which allows them to go to

spherical harmonics as high in degree as 20 or 40, most other codes can only accommodate

low ℓ expansions and thus is suitable only for finding inertial modes of the lowest orders.

For instance, while Yoshida and Lee (2000) included the centrifugal force as perturbation

to the background state, they expanded the eigenfunction in spherical harmonics only

up to degree 6, where they agree in the eigenfrequency results. When using such an

expansion in higher order inertial modes, one would find that spherical harmonics series
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expansion do not converge well with the limited truncation (Lee et al. 1992b).

Since most previous studies are motivated by finding low order inertial modes that

are either subject to gravitational radiation instability or can be directly detected on the

surface of giant planets, their approaches are reasonable. However, for our tidal problem

at hand, we need to find modes to as high order as possible, and (as shown in the next

section), as accurately as possible. These goals call for a different PDE solver. We believe

our adoption of Chebyshev expansion in ellipsoidal coordinates furnish us with just the

requisite tool. We find convergence with a lower truncation than those using spherical

harmonics.

We produce two comments here.

For non-rotating spheres, internal oscillation modes are trivially labeled by three

quantum numbers, (n, ℓ,m), where n is the number of radial nodes and ℓ,m are as-

sociated with the particular spherical harmonics used to describe the mode. Such an

easy typing has proved convenient for studying eigenfrequency dependence on models,

inter-comparison between codes, and asteroseismology. However, such a labeling scheme

for inertial modes has been lacking. For example, lack of a good alternative, (Dintrans

and Ouyed 2001) introduced viscosity to the momentum equation to separate the few

lowest modes from a dense spectrum of inertial modes. We propose to solve this problem

by adopting the ellipsoidal coordinates. Labeling of the mode in any density profile is

simply (m,n1, n2), where ni is the number of nodes in the xi coordinates, and m the

usual azimuthal number.

We also compare our results against those obtained by Papaloizou and Ivanov (2005)

using an expansion in the spherical coordinates. They showed the same inertial mode as

that in our Fig. 5.5, their figure is reproduced in Fig. 5.7. The advantage of the ellip-

soidal coordinates becomes obvious as one compares the two figures. A clean, converged

eigenfunction is essential for computing accurately the interaction between inertial modes

and the tidal potential (next section).
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Figure 5.7 An identical eigenmode as that in Figure 5.5, but obtained by Papaloizou and Ivanov (2005)

using a polynomial expansion in the spherical coordinates. Convergence of the series is poorer and the

resultant eigenfunction much noisier.

5.3 Tidal Overlap Integrals and Implications on Tidal

Damping

Now that we have obtained satisfactory inertial mode eigenfunctions for polytrope mod-

els, we proceed to calculate the tidal overlap integral. The tidal overlap would have been

trivial to calculate if not for the many reversals of the inertial modes inside the planet,

which causes severe cancellation (Wu 2005b). In fact, Goodman and Lackner (2009)

argued that inertial modes do not couple to the smoothly varying tidal potential at all,

lacking an evanescent region in which coupling occurs (as in the case of gravity-modes).

We contest against their assertion in chapter 7.

So as is shown in Wu (2005b), the useful parameter that quantifies the tidal coupling

is the following normalized tidal overlap integral, Cn,

Cn =

∣
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∣
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ω2ρ
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d3r

, (5.3.1)

which measures how severely the cancellation effect is. The subscript n = (n1 + n2)
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indicates that we are studying the dependence on n at a fixed µ.

Taking the ℓ = m = 2 tidal potential, δΦtide ∝ r2P 2
2 (θ, φ), transforming the above

integral into the ellipsoidal coordinates, and integrating away analytically the azimuthal

angle φ, we obtain,

Cn =

∣
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. (5.3.2)

Since only the modes that are symmetric with respect to the equator have non-zero tidal

overlap, the range of integration for x2 can be reduced to (0, µ).

The results for Cn are shown in Figure 5.8. The oscillating integrand can be tricky

to integrate, especially in 2-D. Large cancellations between different patches inside the

planet can lead to non-convergent results. Numerically, we integrate first along the

x1 direction using the Romberg (Press et al. 1992) approximation (a variation of the

trapezoidal rule), then integrate along the x2 direction with 1000 grid points.

The polytrope model yields comparable values for Cn as those from a similarly valued

power-law model (Wu 2005b). This is perhaps not un-expected. Equation (2.2.16) shows

that, for an arbitrary but smooth density profile that deviates slightly from a power-law

one, the eigenfunction (transformed in eq. 2.2.15) satisfies roughly the same differential

equation, barring some (non-separable) terms that are second order in wavevector. So

there should be strong similarity between eigenfunctions in npoly = 1.5 and β = 1.5 cases,

as is demonstrated by comparing spectral coefficients in Fig. 5.3 (npoly = 1.5) and Fig.

5.6 (β = 1.5).

We study the roles of individual Chebyshev spectral components by substituting

ψ = TN (t1)TM(t2) into equation (5.3.2),

CNM =

∣
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. (5.3.3)

The results for CNM are presented in Fig. 5.9.
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Figure 5.8 The relative tidal overlap integral Cn for a polytrope of p = kρ5/3 (npoly = 1.5, solid circles),

plotted here as a function of n = n1 + n2. For comparisson we also show Cn for a power-law density

structure of index β = 1.5 (open circles).
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Figure 5.9 Tidal overlap integral for each 2-D Chebyshev spectral component, TN(t1)TM (t2) for the

polytrope model p = kρ5/3. Left panel shows the dependence on degree N with different M degree

values represented by different symbols; right panel plots degree M as the horizontal axis.

As expected, CNM falls off with degrees N and M , roughly as power-laws. Higher

degree terms have more oscillations and suffer stronger cancellations. As a result, for
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a given inertial mode, higher degree terms contribute negligibly in comparison to lower

degree terms to the overlap integral. As a result, if we want an accuracy in Cn of order

10−6, we would need a comparable accuracy in, say, α1,0, but much lower accuracies in

the higher degree coefficients, e.g., 10% in α20,0 and of order unity in α20,2.

This result also justifies the convergence criterion we enforce when looking for inertial

modes: we only ask eq. 5.1.9 to be satisfied for large, low degree coefficients.

A 2-D numerical integrator is more prone to numerical errors than a 1-D one. This

is also demonstrated in Figure 5.9. Though one expects that the higher the Chebyshev

degree the smaller CNM is, it reaches a floor value of 10−5 for M → 20 and N = 0, 2, 4.

In summary, similarity in Cn between the polytrope and the power-law models lead

us to conclude that the tidal Q value for the polytropic case is also of the same order of

magnitude as that calculated using the power-law model (Wu 2005b). At Q ∼ 109, this

is some 2-3 orders of magnitude below the inferred value for Jupiter and hot jupiters.

5.4 Possible Improvements

Here we propose some possibilities for improvement in our inertial mode finding algo-

rithm.

Dintrans and Ouyed (2001) exerted an artificial damping in the equation of motion in

order to separate the low order modes from the high order modes. While their purpose

is to identify modes and we have no such needs here, the same strategy may be used to

remove spurious modes in the pseudo-spectral method. For instance, in Fig. 5.1, at high

enough truncations, one observe a lot of minima in the determinant. If one is aiming

at looking for some low to intermediate order modes, one can avoid the distraction by

spurious high order modes (which are not properly resolved at the given truncation) by

damping them away.

When one is interested in looking for high order modes, however, perhaps a strategy
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of using the following sideband truncation (Boyd 2001) may prove useful,

g(t1, t2) =

Nmax
∑

N=Nmin

Mmax
∑

M=Mmin

αNMTN (t1)TM (t2). (5.4.1)

Truncated at both high end and at the low end, this may remove low order modes from

polluting the spectrum of higher order modes.

In our truncation of Chebyshev series, we use the ‘square truncation’, namely, truncate

whenever N > Nmax or M ≥ Mmax with Nmax = Mmax. This, according to Boyd

(2001) (page 119) is not fair. For example, the term T10(x1)T10(x2) varies more rapidly

than the term T11(x1)T0(x2) and should be discarded when one is looking for a low

order mode. Moreover, when we have eigenmodes with n1 ≫ n2 or vice versa, a square

truncation is not reasonable. One could experiment with a ‘ellipse’ truncation, where
√

(N/n1)2 + (M/n2)2 ≤ Imax.

Where there are discontinuities in density or its gradient (as in the core/envelope

border, or the putative plasma phase transition point), or discontinuities in equation of

motion (as in the radiative-convective boundary), one can expand the wavefunction in

different domains by different set of basis functions. Insisting on continuity across the

domain boundary provides the needed constraints to close the system of equations (see

p. 479 Boyd 2001). This so-called ‘spectral element method’ may be used to advantage

in models where there is, e.g., a radiative envelope on top of a convection zone (hot

jupiters), or vice versa (solar-type stars).

Ipser and Lindblom (1990) described an iterative scheme to reach convergence of

eigenfunction and eigenfrequency. This involves guessing initially a simple form for the

eigenfunction (ψ(r, θ)), then solve for its eigenfrequency using the variational principle,

resubstitute the new eigenfrequency into the equation to obtain a more refined expression

for the eigenfunction, and so on and so forth. They use this strategy to successfully

obtain solutions of ‘ℓ = m’ f-modes in fast rotating stellar models, by using non-rotating

solutions as initial guesses. An accuracy of 10−3 is reached after 5 − 10 iterations. This
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is a worthy venue of improvement. We could look for the desired inertial mode taking

the corresponding eigenfunctions in, say, the power-law density profile as an initial guess.

The convergence should be rapid and more computationally economic.



Chapter 6

Density discontinuity inside Jupiter

Wu (2005b) suggested that a density discontinuity inside Jupiter may generate a greater

tidal response. At the same time she did not expect that the solutions for the inertial

mode eigenfunction would change significantly when a discontinuity is introduced as in-

ertial modes are insensitive to the density structure, therefore the only quantity sensitive

to the structure was the tidal overlap integral itself (explicitly dependent of the sound

speed and the density).

Our current knowledge for the equation of state in giant planets is incomplete. Both

ab initio calculations and high pressure lab experiments suggest that under high pressure,

molecular hydrogen transitions into metallic hydrogen (Saumon et al. 1995). This occurs

at ∼ 80% radius for Jupiter. The nature of the phase transition is uncertain and it could

be first order in which case density undergoes a finite jump.

Guillot (1999) produced two models that we planned to study. Model D has a first

order phase transition, and it is of the order of 10% in density, and model B has a second

order phase transition with a density gradient varying about 50%.

Enlighting for our studies is the work of Ivanov and Papaloizou (2007), who studied

how the inertial mode eigenfunctions were modified by a density jump. In their model

they expanded the solutions as a summation of radial functions times associated Legendre

108



Chapter 6. Density discontinuity inside Jupiter 109

polynomials. Then they forced this solution to run across the discontinuity and found

that convergence was very poor. Their aim was the problem of tidal capture of highly

eccentric objects, were the interaction was only reduced to a fly by of the planet near the

periastron. Highly accurate eigenfunctions were not needed, and at the same time only

few low-order ‘global’ modes were important when the tidal interaction is reduced to the

interaction at that location.

In the case of a permanent tidal forcing, we looked for a similar solution, using what

we call a ‘brute-force’ method, where we propose and expand the eigenfunction exactly

in the same way we did for the polytropic case. As the reader can seen in section 5, the

only term that is sensitive to the density structure is X = (1 − r2)β/ρ throughout its

derivative d lnX/d ln t.

6.1 Technical problems

Soon after we tried this approach, we experienced problems finding convergence in the

coefficients at consecutive truncations, even for the low order modes. One would expect

that, since the wavelength of low order modes are much larger than the actual disconti-

nuity thickness or λ >> ∆r/R = 10−6 for Jupiter D model, and ∆r/R = 10−3 for the

FWHM of the B model where the density jump is of second order.

We can understand the lack of convergence as non-negligible contribution of high

degree Chebyshev polynomials while trying to map the density jump. This is a common

problem when one tries, for example, to expand a step-function wave (square wave) in

terms of Fourier series. The more degrees one adds, the worst the sampling near the

discontinuity. This effect is known as the ‘Gibbs phenomenon’ (Arfken and Weber 2005).

The net effect is then the existence of non-negligible high-degree spectral coefficients,

and therefore a failure to satisfy the criteria, yielding different non-convergent values of

overlap integrals, especially when cancellation is expected to be large.
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A technical problem related to the above is the inaccuracy in the Jupiter numerical

models, that may present themselves as small, but finite, density jumps and may also

contribute to inaccurate determination of Cn for large n (Wu 2005b), when the cancel-

lation effects become strong. We do not expect to find numerically exact eigenmodes

(coefficients) and Cn at large n, as for those cases high truncation in the expansion

would contribute to many sources of pollution in our frequency root-finding algorithm1.

However the order of magnitude of Cn is important in order to define a scaling of Cn

as a function of n. This scaling is important, as Wu (2005b) found that modes around

n = n1+n2 ∼ 30 are the most relevant for tidal dissipation: these resulted from a balance

between cancellation in the overlap integral, damping and likelihood of resonance driven

by the tidal disturbing object (host star). As Wu (2005b) showed, the energy dissipated

per orbit is proportional to C2
n and therefore Q is inversely proportional to it (e.g. see

equation 1.1.1).

In order to avoid numerical inaccuracies of realistic Jupiter models, we studied a toy

model. We used a density profile that is a disturbance to the analytical power-law density

profile. This disturbance is included in order to generate a parametrized and controlled

density jump. We also allocated the density jump along one of the ellipsoidal coordinate

axis as we wanted to understand how the geometry may affect the way in which high

order modes are transmitted and reflected.

The test density profile is defined in the ellipsoidal coordinate system x1 ∈ [µ, 1],

x2 ∈ [−µ, µ] as:

ρ = [1 + Λ{− tanh((x1 − x1c)/∆) + 1}] × (1 − r2)β, (6.1.1)

where x1c is the center of the jump, ∆ is proportional to the with of the jump, and Λ is

the amplitude of the jump.

Figure 6.1 shows how the jump looks like in the ellipsoidal and meridional planes.

1We also expect that, for high order modes, the computing times become quite demanding, as the
size of the pseudo-spectral matrix increases.
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Figure 6.1 Test density profile in the Chebyshev space for the mode m = 2, n1 = 7, n2 = 2, and

µ ∼ 0.343. The jump is located at t1(x1 = 0.9) ∼ 0.7, has a width of ∆ = 10−3, and an amplitude of

Λ = 10−1.

We expect that when Λ = 0 (and ∆ is finite) we should recover the eigenmodes for

the power-law density profile (Figure 5.6) of index β. We then study the convergence of

the Chebyshev coefficients when different values of ∆ and Λ are used, specifically, values

that closely resemble realistic density profiles that include a phase transition.

Here we present results based on the same medium-order mode n1 = 7, n2 = 2, m = 2

that we have been using to illustrate convergence in the coefficients for smooth density

profiles.
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For values of Λ < 10−1 and Λ < 10−3 convergence above the threshold is achieved at

the usual truncation found using the spectral method Nmax = l − |m| = 2(n1 + n2), but

the coefficients below the threshold become larger in magnitude compared to the power

law case. Convergence in the eigenfrequency is also achieved, and the value remains the

same as in the power law case. Figures 6.2 and 6.3 reflect these results.

Figure 6.2 A mode scan similar to Figure 5.2, this time for a different mode in a ‘test’ density profile of

width of ∆ = 10−3, and an amplitude of Λ = 10−3. Here we normalize the value of log det{A} in order

to show that, for a specific eigenmode, the eigenfrequency of the minima stays at the same location,

showing convergence. The mode we show here, highlighted by thick sections is m = 2, n1 = 7, n2 = 2

and µ = 0.3434800519.

However for a test density profile that has a width of ∆ = 10−1, and an amplitude of

Λ = 10−2, as shown in figure 6.1 we start finding convergence problems, this is evident

when we look at how the spectral coefficients change as the truncation changes.
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Figure 6.3 Mode n1 = 7, n2 = 2, m = 2, and µ = 0.3434800519 when a test density profile is used.

The test density profile has a width of ∆ = 10−3, and an amplitude of Λ = 10−3. Compare these

coefficients with the ones calculated for the power-law case in Figure 5.6. Above the threshold line, all

the coefficients converge for consecutive truncations, and have fractional error of ǫ = 0.01 with previous

truncation, and with the mode when the power-law density profile remains undisturbed. The difference

in frequency µ of this mode with the power-law mode is negligible (fractional error smaller than 10−8).

The truncation at which this mode starts to converge is two Chebyshev degrees higher (Nmax = 20)

than in the power-law case (Nmax = 18).

This effect can also be seen when we search for this mode in a plot |A(µ)| vs µ for

consecutive truncations. The minima oscillates and does not remains steady near the

power-law value of µ = 0.3434800519.

The spectral coefficients show poor convergence, higher degrees begin to dominate.

As the previous tests show, the ‘brute-force’ approach may not adequate in order to

find convergent inertial modes when there is a density jump in the planet. And since we

can not rely on the eigenmode we can not rely on Cn.

We may speculate that the lack of a solution for inertial modes when a density discon-

tinuity is included, may be a sign of partial internal reflection, that needs to be addressed

as it could alter the tidal response in a significant way.
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Figure 6.4 A mode scan similar to Figure 6.2 for the he test density profile of width of ∆ = 10−1,

and an amplitude of Λ = 10−2. Here we normalize the value of log det{A} in order to show that, for a

specific eigenmode, the eigenfrequency of the minima oscillates for different truncations. The mode we

show here, highlighted by thick sections is m = 2, n1 = 7, n2 = 2. Outside the thick sections, our node

counter finds different modes with larger or smaller values of n1 and n2.

6.1.1 1-d confined sound waves

Because of the possibility that a large set of Chebyshev polynomials may be needed in

order to map the discontinuity, we can not conclude that the lack of convergence of the

spectral coefficients under the presence of density jumps has the physical explanation of

partial reflection (or perhaps ergodic waves).

In order to numerically simplify the problem and understand the technicalities of the

pseudo-spectral method, we studied a 1-d sound wave problem, where the wave equation
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Figure 6.5 Mode n1 = 7, n2 = 2, m = 2, and µ = 0.3410845798 when a test density profile is used.

The test density profile has a width of ∆ = 10−1, and an amplitude of Λ = 10−2. Compare these

coefficients with the ones calculated for the power-law case in Figure 5.6. Above the threshold line,

all the coefficients will not converge for consecutive truncations, since they have fractional errors above

ǫ = 0.01. The truncation used for this mode is Nmax = 22 whereas in the power-law case is Nmax = 18.

resembles the full2 inertial mode equation (2.1.20).

The equation to solve is:

c2s
d2ψk

dx2
= ω2ψk, (6.1.2)

where ψ is the eigenfunction, ω the eigenfrequency, and cs is the sound speed. The

boundary conditions satisfy ψ(x = 0) = ψ(x = 1) = 0. For exploratory reasons we use a

sound speed that is a constant plus a small Gaussian function:

cs = cs0

(

1 +
Λ

δx
√
π
e−(x−x0

δx )
2

)

. (6.1.3)

Where cs0 is a constant (set to be 1), Λ sets the amplitude in the same way it did in

equation (6.1.1), δx is the spread of the Gaussian function which is proportional to the

FWHM, and x0 is the center of the Gaussian.

This function behaves like a constant in most of the interval x ∈ [0, 1], however,

near x0 it behaves as a Gaussian peak3. This function resembles the equation for the

2As we mentioned in section 2.1 we neglect the sound speed term.
3In fact, in the limit δx → ∞, the sound speed, as defined, is exactly a constant plus a Dirac delta

at x0.



Chapter 6. Density discontinuity inside Jupiter 116

Figure 6.6 A meridional cut for an even eigenfunction with quantum numbers m = 2, n1 = 7, n2 = 2,

and eigenfrequency µ = 0.351 in the test model with β = 1.5, Λ = 10−1 and ∆ = 10−2. Left panel:

amplitudes for Eulerian density fluctuation plotted in spherical coordinates, with dark patches (light

gray dots) being positive values and lighter patches (solid black dots) negative values. Right Panel: the

same quantity now projected in ellipsoidal coordinates. The (t1, t2) coordinates are linearly morphed

from the original (x1, x2) coordinates (eq. 3.1.3). Pay attention to the feature that now the nodal lines

do not run parallel to constant coordinate lines.

density jump (6.1.1), since the logarithm of the density gradient appears explicitly on the

inertial mode equation (2.1.20) as H . In the case of an inertial mode where the density

is a power-law plus a jump (equation 6.1.1), H−1 behaves just like c2s does in this toy

model.

In order to solve equation (6.1.1), we use the same Chebyshev pseudo-spectral tech-

nique that we have been using to solve the inertial mode equation. This means that we

have to map the interval x ∈ [0, 1] to the Chebyshev interval t ∈ [−1, 1], and then, expand

the eigenfunction as ψk =
∑Ntrunc

n=0 αNTN(t). Also, in order simplify this experiment, we

fix Λ = δx.

As a first attempt to study this problem, we aim to find eigenfunctions for the lowest
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order sound wave, n = 0. We test two different FWHMs: δx = 0.1 and δx = 0.01.

Figure 6.7 shows that the eigenfunction of this mode is barely affected by the jump, since

its wavelength is large compared to the size of the jump. In Figure 6.8 we show fast

convergence of the spectral coefficients; for the case of δx = 0.1 it seems that Chebyshev

degrees of index larger than N = 100 do not contribute significantly to the eigenfunction.

For δx = 0.01 it seems that only degrees of N < 1000 are important. This illustrate the

slow convergence of the pseudo-spectral coefficients when density jumps are present, at

the same time the physics of the problem becomes clear, the mode exists, it is not affected

by the jump and the solutions are convergent. The frequency is affected when comparing

different FWHM, but also converge when comparing different truncations.

Figure 6.7 The eigenfunctions of the mode n = 0 (zero nodes inside the region 0 < x < 1) for FWHMs

δx = 0.1 and δx = 0.01. The differences are almost negligible.

Secondly we study the effect of the jump on a higher-order mode, n = 48 for two

different FWHMs: δx = 0.1 and δx = 0.01. As in the previous case, we found that
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Figure 6.8 The spectral coefficients of the mode n = 0 for FWHMs δx = 0.1 and δx = 0.01. Here we

can clearly see the effect of the jump. While the eigenfunctions and eigenfrequencies are not significantly

affected, the convergence of the coefficients becomes slower when we reduce the size of the FWHM of

the jump, in this case is by almost an order of magnitude.

convergence of the spectral coefficients depends on the FWHMs, roughly at the same

truncations as in the previous case. The convergence implies that the mode exists, and

its accuracy only depends on the truncation of the series. This mode in particular, crosses

the jump modifying its local amplitude and wavelength. Effect that is expected as the

mode wavelength is comparable to the FWHM of the jump. Figure 6.7 shows the different

shape of mode n = 48 for the two different FWHMs.

The 1-d sound wave problem allowed us to understand the 2-d inertial mode so-

lutions. We expect spectral convergence, i.e., inertial mode existence, once we allow

enough Chebyshev degrees to describe the eigenfunction, or, in other words, increase the

truncation.

The pseudospectral method seems to work quite well for smooth density profiles, but
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Figure 6.9 The eigenfunctions of the mode n = 48 (48 nodes inside the region 0 < x < 1) for FWHMs

δx = 0.1 and δx = 0.01. This time, the difference is significant across the jump.

it presents many problems when there are density discontinuities. One way to avoid the

effect of the density jump, is to define a functional form in the region that surrounds and

includes the density jump. One can figure out boundary conditions for the functional

form of the solution at every side of the density jump.

Lee et al. (1992a) also investigated how inertial modes are affected by core-envelope

boundary, as well as the presence of a phase transition that involves a density discontinu-

ity. They found that three inertial cavities are produced, and there are modes trapped in

each of the cavity as well as interface modes (modes that are concentrated in the density

jumps).

They have calculated low order inertial modes inside Jupiter.

‘Free-slip’ boundary conditions are applied at the corresponding interfaces. This imply:

δp|+− = 0, ξr|+− = 0, (6.1.4)
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Figure 6.10 The spectral coefficients of the mode n = 48 for FWHMs δx = 0.1 and δx = 0.01. Here we

also can see the effect of the jump. The convergence of the coefficients becomes slower when we reduce

the size of the FWHM of the jump, in this case is by almost an order of magnitude.

where the ‘±’ symbols denote evaluations at the low and upper boundaries. Significantly

differences were found for Jupiter models with and without PPT (Plasma phase tran-

sition). Therefore an obvious next step for our work, is to include the region around

the jump in a explicit form in the equation of motion, or by introducing a new set of

boundary conditions surrounding the jump.

6.2 The presence of a solid core

In the entire thesis work we have assumed that there is no solid core inside Jupiter and

hot-Jupiters, and that these objects are entirely convective. Current planetary models

(Saumon et al. 1995; Saumon and Guillot 2004) predict a rocky core in Jupiter of less

than 8 M⊕, but more recent calculations have shown that the core size could eventually
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be larger, with masses around 14-18 M⊕ (Militzer et al. 2008).

As we have seen, a density discontinuity is not straightforwardly treated by our

pseudo-spectral method. Not only does it become difficult to find convergence in the

spectral coefficients, but the ellipsoidal coordinate system also fails to describe internal

boundaries, as they can no longer be defined along constant ellipsoidal coordinate curves.

Therefore the inclusion of a solid boundary could suppress the existence of inertial modes

at all.

Ogilvie and Lin (2004) have found that, when the core is larger than rcore/Rplanet >

0.01, free global inertial modes no longer exist, and the disturbances tend to be concen-

trated along wave attractors, i.e., regions inside the planet where the characteristic rays

tend to be concentrated. They have argued that the tidal quality factor Q, does not

depends on the viscosity, and that inertial modes can provide an efficient mechanism for

tidal dissipation.

It remains a challenge to include a core in our formalism, low-order global inertial

modes can still exist if the core is small. The study of the effect of the density discontinuity

when a PPT exist can lead us to find a way to include a core in our formalism.

6.3 Future work

The 1-D sound wave model shows that increasing the spectral resolution produce con-

vergence in the spectral coefficients and therefore improve the reliability of the eigen-

functions, crucial for the calculation of the overlap integrals. For the 2-D inertial mode

problem, a discontinuity located parallel to one of the ellipsoidal coordinates axes, may

allow convergence in the spectral coefficients if a large (time-consuming) spectral resolu-

tion is used.

However, more research is needed in the case of a discontinuity located at a fixed

spherical radius, it is not obvious that a very high spectral resolution may produce highly
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accurate inertial modes. It is possible that this is the case in which standing waves are

not possible and only ergodic waves are allowed, as studies of free inertial waves, by

Ogilvie and Lin (2004) suggest.



Chapter 7

The Effect of The Compressional

Term – Response to Goodman and

Lackner (2009)

Goodman and Lackner (2009) is a good read in the subject area of dynamical tides for

rotating bodies. They first discussed uniform density models under a tidal forcing which

is a polynomial of degree 2 in the Cartesian coordinates. The solution to the wavefunction

ψ is also a polynomial of the same degree and there is no wave-like response. The lack

of short wavelength dynamical tide in this model indicates that tidal dissipation must be

highly ineffective1.

After discussing in detail the response of a uniform density model with a central

high density core, and showing that the response can be rather complicated and ray-like,

Goodman and Lackner (2009) went on to calculate the tidal response of a power-law

density model but keeping the compressional term in the boundary condition where it

can be important. For a particular toy model they chose, they concluded that the wave-

like tidal response is again absent. As a result, they concluded that tidal dissipation

1While agreeing with the final conclusion, Wu (2005b) obtained it by showing that short-wavelength
free oscillations do exist in the planet, however they do not couple to the tidal potential.
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in a coreless isentropic body is very weak. And they suggested that the non-zero tidal

response results in Wu (2005b) may be contaminated by the neglect of the sound speed

term near the surface.

Here we follow their approach but instead conclude that inclusion of the compressional

term does not alter conclusions made in Wu (2005b) that tidal response of a core less

isentropic body is weak but non-zero.

We carry out this task in two steps. We first examine the particular toy model used

in Goodman and Lackner (2009). We then go on to include the compressional term into

our pseudo-spectral code and calculate the exact tidal response at the presence of finite

compressibility.

7.1 Toy model of Goodman and Lackner (2009)

The approach taken by Wu (2005b) is the anelastic approximation where sound waves

are filtered out as the oscillations are slow compared to the sound travel. Here, we retain

the compressional term as is done in the toy model of Goodman and Lackner (2009). To

solve for the tidal response analytically, we take a density ρ ∝ W n, pressure p ∝ W n+1,

and c2s = W/n, where W is the enthalpy and satisfies

W = (n + 1)
P

ρ
= W0

(

1 − r2
)

= W0

[

1 − (x2 + y2 + z2)
]

with r being the dimensionless planetary radius and n the polytropic index. In particular,

W0 is related to the sound speed at r = 0 as W0 = nc2s(r = 0) = nc2s0.

With such a setup, the density profile is identical to the power-law case with β = n.

The pressure profile is not consistent with the mass distribution, but as has been argued

(Wu 2005b; Goodman and Lackner 2009), this has little influence on the overall tidal

overlap.
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The Eulerian enthalpy perturbation is related to those of density and pressure as

W ′ = (n+ 1)

(

P

ρ

)′

= (n+ 1)

(

p′

ρ
− ρ′

ρ

p

ρ

)

. (7.1.1)

We write p′/p = (1 + 1/n)ρ′/ρ as the background state and the perturbations are both

adiabatic. This yields,

W ′

W
=
ρ′

ρ
. (7.1.2)

This allows us to rewrite the equations that govern the tidal response of the fluid as

(Goodman and Lackner 2009)

−iωv + 2Ω × v + ∇W ′ = −∇Φtide,

−iωW ′ + v · ∇W +
1

n
W∇ · v = 0. (7.1.3)

Goodman and Lackner (2009) proceeded to argue that as Φtide of concern is a polynomial

of the form, say, Φtide ∝ (x + iy)2, and similarly for the enthalpy, W ∝ [1 − (x2 + y2 +

z2)], there is a simple long-wavelength solution to the above equations as well as the

boundary conditions. Goodman and Lackner (2009) drew the conclusion that if the

sound speed term is properly included in the boundary condition, there should be no

wave-like response excited by the smoothly varying tidal potential.

7.1.1 Tidal Overlap of Waves in the Toy Model

Here, we first compute the homogeneous solution to equations (7.1.3), having in mind

that, in our descriptionW ′ = ψ. This turns out fortuitously easy as both the PDE and the

boundary conditions are separable in the ellipsoidal coordinates. We argue that the tidal

response of the wave-like solution is comparable to that obtained ignoring compression.

We start from the full equation (7.1.4) describing adiabatic oscillations in isentropic,

rotating planets,

∇2ψ − q2∂
2ψ

∂z2
=

1

H

(

∂ψ

∂r
− q2 cos θ

∂ψ

∂z
− mq

r
ψ

)

− (1 − q2)
ω2

c2s
ψ. (7.1.4)
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All symbols are as defined in §2.1. In particular, H is the density scale height with

H ≡ −dr/d ln ρ.

When the density takes a power-law form, both the left-hand side and the first term in

the right-hand side are separable in the ellipsoidal coordinates Wu (2005a). Interestingly,

when one takes the toy model parameters of Goodman and Lackner (2009), the second

term in the right-hand side is also separable. The full equation is now,

(F1 − F2)ψ = 0, (7.1.5)

where the operator Fi is related to the operator Ei in equation (2.2.10) as

Fi = Ei +
4Ω2R2

c2s0

(1 − µ2)µ2

x2
i − µ2

=
∂

∂xi

[

(1 − x2
i )

∂

∂xi

]

− m2

1 − x2
i

+
2βxi(1 − x2

i )

x2
i − µ2

∂

∂xi

+
2µβm

x2
i − µ2

+
4Ω2R2

c2s0

(1 − µ2)µ2

x2
i − µ2

. (7.1.6)

Compared to the case where sound speed is taken to be infinity (Wu 2005a), this operator

has an extra term – the last term.

It is straightforward to compare the last two terms in the above expression and show

that the compressional term (the last term) is smaller by Ω2R2/c2s0 ≪ 1 as long as the

planet is not spinning close to break-up.2 This is a constant factor independent of location

inside the planet. We can safely ignore this term in our calculation.

Goodman and Lackner (2009) argued that ignoring the compressional term in the

boundary condition, however, can cause inaccuracies in the tidal overlap integral and in

fact, cause one to overestimate the tidal integral.

We retain the form of the full boundary condition (eq. 2.3.5) at the surface. As such,

the boundary condition in equation (2.3.7) in the presence of the compressional term

2Exception occurs when m = 0 but these are modes we are not concerned with.
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becomes

∂ψ

∂x1

∣

∣

∣

∣

x1=µ

=

[

− m

1 − µ2
+ µ

4Ω2R

g

]

ψ|x1=µ ,

∂ψ

∂x2

∣

∣

∣

∣

|x2|=µ

= SIGN[x2]

[

− m

1 − µ2
+ µ

4Ω2R

g

]

ψ||x2|=µ , (7.1.7)

where the compressional effects show up as the last terms in the right-hand side. They

are of order O(Ω/Ωbreakup)
2 smaller than the first terms in the right-hand side, except

where m = 0. The compressional term does not introduce unduly influence even close to

the surface, because while it increases towards the surface, so do other terms.

So in conclusion, at least for the toy model of Goodman and Lackner (2009), the

compressional term introduces negligible difference to both the equation of motion and

the boundary condition for inertial modes. Their coupling to the tidal potential should

behave similarly to the results presented in Wu (2005b).

7.1.2 Tidal Excitation as an Initial Value Problem

While agreeing that there are wave-like homogeneous solution, Goodman and Lackner

(2009) argued that they were not present before the tidal potential is slowly ’turned on’

and therefore should always remain zero. These wave-like response, for instance, do not

satisfy W = ∇× v = 0. Their presence before the ’turned-on’ is incompatible with the

planet having no extra vorticity other than its own spin-related vorticity, 2Ω, initially.

We examine this argument here.

The initial value problem can be specialized to the following question: can a potential

force (e.g., the tidal potential) create vorticity in a non-homogeneous, rotating medium?

Kelvin’s circulation theorem states that circulation around a fluid parcel (measured in

the inertial frame) is conserved

d

dt

∮

v · dl =
d

dt

∫

s

W · ds = 0, (7.1.8)

as long as the fluid is inviscid, is only under potential forces and its equation of state
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is barotropic. Or the vorticity is ’frozen-in’ with the fluid.3 The background state for

a uniformly rotating planet under its self gravity is necessarily barotropic (p = p(ρ))

because the hydrostatic equilibrium is (taking v = 0 in the rotating frame in eq. 2.1.4)

0 = −∇p
ρ

−∇Φ +
1

2
∇(Ω2r2 sin2 θ). (7.1.9)

Taking the curl of this yields ∇p×∇ρ = 0.

The circulation theorem still allows local vorticity to be modified through stretching

and tilting of the fluid elements. The time evolution of vorticity is obtained below by

rewriting the equation of motion into the following form

∂v

∂t
+ W × v = −1

ρ
∇P − 1

2
∇v2 −∇Φ, (7.1.10)

where we have used the vector identity 1/2∇(v · v) = v · ∇v + v ×W. We convert the

equation of motion from describing the acceleration to one that describes the vorticity

evolution, by taking the curl of both sides of equation 7.1.10

∂W

∂t
+ ∇× (W × v) = 0, (7.1.11)

where the right-hand side vanishes because we could express the Eulerian pressure per-

turbation as

P ′ = Γ1
P

ρ
ρ′. (7.1.12)

With a barotropic background profile, the Eulerian perturbation to ∇p×∇ρ also vanishes.

Defining a new variable Z = W/ρ, and using the mass conservation equation, we can

recast equation (7.1.11) into a neater form (Vallis 2006),

dZ

dt
=
∂Z

∂t
+ (v · ∇)Z = (Z · ∇)v. (7.1.13)

So local vorticity is not conserved and can be modified by motion of certain forms.

3Caution against taking the curl directly of the original equation of motion, as ∇× d/dt 6= d/dt∇,
the two operators do not commute.
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Also, the presence of viscosity can cause vorticity to be diffused across the boundary

between fluid elements. Heuristically, the viscosity term appear in the above equation

as,

dZ

dt
= (Z · ∇)v + ν∇2Z, (7.1.14)

where ν is the kinematic viscosity.

So while in the inviscid case, the circulation is exactly conserved and indeed an initially

uniformly rotating planet can not harbor inertial oscillations, the presence of viscosity in

realistic situations removes this constraint. Vorticity can be transferred between different

parts of the planet as necessary. We conjecture that this relaxes the initial condition

problem and allows inertial modes to be excited by a potential force.

7.2 Including Compressional Term for the Power-

law Density Models

We have also used our pseudo-spectral code to solve for the inertial modes when keeping

the compressional term in both the equation of motion and the boundary condition, for

a model of ρ ∝ (1− r2)β and self-consistent pressure and sound-speed profile. As Figure

(7.1) shows, the difference between keeping the compressional term or not, is negligible.

7.3 Summary

The neglect of the sound speed (pressure) term in equation (7.1.4) is a common practice

when calculating the inertial mode eigenfunction is the main intention. The frequency

range of both inertial and sound waves do not to overlap. In rotating objects that are

synchronized with the tidal potential, the sound speed term in the inertial wave equation

(eq. 7.1.4) is very small by a factor of Ω2R2/c2s0, making the anelastic approximation an

obvious choice.
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Figure 7.1 The relative tidal overlap integral Cn for inertial modes that are solutions of eq. (7.1.5) for

a power law density structure of β = 1.5. The difference with overlap integrals of similar modes when

we neglect the sound speed (see Figure 5.8) term is negligible.

However Goodman and Lackner (2009) commented that neglecting this term tend

to overestimate the tidal coupling, instead of obtaining perfect cancellation. We have

demonstrated both analytically and numerically that this is not correct, in particular we

show that the tidal overlap integrals difference between modes that include the sound

speed terms and those that do not is negligible.

The next comment of Goodman and Lackner (2009) to Wu (2005b) toy model, was

that the response of the rotating barytropic fluid to a tidal perturbation is entirely long-

wavelength. We argue that they have only considered a ‘particular4’ fluid response of

the rotating fluid to the tidal potential. We have also shown that inertial modes can

be excited by slowly varying tidal potential over a rotating fluid that does not harbor

modes. The existence of viscosity allows for the transfer of vorticity inside the planet,

4In the sense of solutions to the eigenfunction of forced harmonic oscillators, both particular and
homogeneous.
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with the consequent excitation of inertial waves, including short-wavelength modes.



Chapter 8

Conclusions and future work

In this Thesis we have study inertial modes in fully convective bodies. The inertial mode

equation depends explicitly on the density gradient. When general and smooth density

profile are used, we have found accurate solutions to this equation.

These solutions represent a substantial improvement in prior studies (Lockitch and

Friedman 1999; Lindblom and Ipser 1999; Yoshida and Lee 2000; Papaloizou and Ivanov

2005; Wu 2005a) on inertial modes inside isentropic bodies. Not only do we match the

eigenfrequencies and wave behavior of the inertial modes found in previous studies, but

also we improve dramatically the convergence of the eigenfunctions.

We believe that the ellipsoidal coordinate system deserves some exploration, as it

has been proven that it traces the nodal lines along constant coordinates, making mode

labeling an easy task. Labels can be assigned as simple as counting the number of nodes

along coordinates φ (‘m’), x1 (‘n1’) and x2 (‘n2’).

We have also confirmed numerically in section 7, that the usual practice of discarding

the compressional term in the inertial mode equation (2.1.20) is accurate (Lockitch and

Friedman 1999; Lee et al. 1992b,a; Dintrans and Ouyed 2001; Papaloizou and Ivanov

2005; Wu 2005a), even in the case of calculating the tidal response of the fluid to an

external potential. This term gives rise to sound waves, of much higher frequency than

132



Chapter 8. Conclusions and future work 133

inertial modes.

As a side (but very interesting) project, we have explored1 a way to observe indirectly

inertial modes, using Saturn’s rings as a seismograph that records the perturbations to

Saturn’s external potential due internal density oscillations. So far inertial waves have not

being observed outside the Earth, but experiments are underway to detect oscillations

in giant planets. Inertial modes are among the most interesting kind to observe as

they penetrate deep into the interior of the planet. In section 4.1 we have shown that

inertial waves may excite resonant oscillations on Saturn’s rings particles, and, given

some conditions, launch observable traveling waves.

Even though we have obtained significant insight about inertial modes, the main

purpose of the thesis, understanding tidal dissipation in extrasolar planets has not being

achieved. While the accuracy of the solutions for smooth density profiles was high, the

tidal quality factor remains a high Q ∼ 109, as predicted for power-law density profiles

(Wu 2005b). This result is smaller than the predicted value of the equilibrium tide

Qeq ∼ 1013 (Goldreich and Nicholson 1977), but several orders of magnitude larger than

the constrained value of Qobserved ∼ 4× 104 (Lainey et al. 2009). We used a ‘brute-force’

( §6) approach in order to obtain inertial eigenmodes when a density discontinuity (of

1st or 2nd order) is present. However the global and smooth nature of our proposed

solution could not produce reliable eigenmodes when the width of the discontinuity is

several times smaller than the wavelength of the modes. A couple of techniques remain

unexplored, and we plan to test them in next projects.

We have assumed that the convection zone extend all the way to the outer edge. This

may be reasonable for Jupiter but unrealistic for hot-Jupiters where strong irradiation

from the host star (Lubow et al. 1997) keeps the atmosphere isothermal (and radiative).

When a radiative layer exists, buoyancy becomes important, and this allows the existence

of inertial-gravity waves (or ‘Hough-waves’). The structure of the overall inertial mode

1Based on a similar study of Marley and Porco (1993) for f-modes.



Chapter 8. Conclusions and future work 134

may be considerably affected by this layer. We plan to develop a model that combine our

inertial modes in the convective zone with Hough modes in the radiative zone. Ogilvie

and Lin (2004) have indicated that the effective boundary condition on the interface

implies that the radial displacement there is zero (rigid boundary), while the azimuthal

components of the displacement remain continuous across the interface.

The application of this scheme concerns both irradiated exoplantes as well as solar-

type stars. Solar-type stars have convective outer envelope and radiative interior – they

are in structure, inverted planets. Tidal interaction (as mentioned in the introduction) in

solar-type stars is also a puzzle. We hope to use to extend our results in order to explore

how internal modes look alike in these rotating bodies.

One of my next research goals, that involves many of the techniques developed during

this PhD Thesis project, is to produce observables of non-adiabatic, non-radial pulsations

of isolated and rapidly rotating stars. Space observatory mission like COROT, MOST

and Kepler are starting to measure high precision asteroseismologic data. Fast rotation

adds a non-negligible correction to the pulsation spectrum, identifying and labeling these

modes is a task related to the inertial modes.

Rotation deforms the structure of the star, and therefore the structure of the modes.

The pseudo-spectral technique may be well suited to this problem, as it gives freedom to

chose a coordinate set that best suits the problem. One also is free to choose the set of

basis that produce the most accurate and faster results.
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