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2010

The topic of this thesis is about cosmic inflations, including the early-universe inflation

that seeds the initial inhomogeneities of our universe, and the late-time cosmic acceler-

ation triggered by dark energy. The two inflationary epochs have now become part of

the standard ΛCDM cosmological model. In the standard paradigm, dark energy is a

cosmological constant or vacuum energy, while the early-universe inflation is driven by

a slowly rolling scalar field. Currently the minimal ΛCDM model with six parameters

agrees well with cosmological observations.

If the greatest achievement of the last twenty golden years of cosmology is the ΛCDM

model, the theme of future precision cosmology will be to search for deviations from

the minimal ΛCDM paradigm. It is in fact expected that the upcoming breakthroughs

of cosmology will be achieved by observing the subdominant anomalies, such as non-

Gaussianities in the Cosmic Microwave Background map. The aim of this thesis is then

to make theoretical predictions from models beyond ΛCDM, and confront them with

cosmological observations. These models include: 1) a new dark energy parametrization

based on quintessence models; 2) reconstructing early-universe inflationary trajectories,

going beyond the slow-roll assumption; 3) non-Gaussian curvature fluctuations from pre-

heating after the early-universe inflation; 4) infra-red cascading produced by particle

production during inflation; 5) preheating after Modular inflation; 6) decaying cold dark

matter. We update the cosmological data sets – Cosmic Microwave Background, Type

ii



Ia supernova, weak gravitational lensing, galaxy power spectra, and Lyman-α forest – to

the most current catalog, and run Monte Carlo Markov Chain calculations to obtain the

likelihood of parameters. We also simulate mock data to forecast future observational

constraints.
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√
ε0 =

√
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√
εs −

√
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Chapter 1

Introduction

1.1 The Standard Model of Cosmology

The past two decades have witnessed a golden age of cosmology. The plethora of obser-

vational data has led to a remarkably consistent picture of our universe, often referred to

as the standard model of cosmology or the concordance model. The picture of a general-

relativity-governed universe composed of about 71% dark energy (DE), 25% dark matter

(DM) and 4% baryonic matter, with small inhomogeneities that originated from vac-

uum fluctuation during the inflation i, has been confronted with, and passed, a host of

observational tests – the measurement of abundances of light elements from Big Bang Nu-

cleosynthesis (BBN), the temperature and polarization anisotropy in Cosmic Microwave

Background (CMB) radiation [10, 11] (see Figure 1.1 for an example), the light curves

of Type Ia supernova (SN), the large scale structure (LSS) of galaxy clusters, the weak

gravitational lensing (WL), and the Lyman-α forest. More comprehensive reviews of the

standard cosmological model can be found in Refs. [12, 13, 14].

In spite of the impressive observational success, the concordance model is really a

iFollowing the literature convention, unless otherwise specified, we use the term inflation implicitly
for the early-universe inflation, while the term “inflations” in the title refers to both inflation and the
late-time cosmic acceleration.

1



Chapter 1. Introduction 2

phenomenological model: the dark sectors and the inflaton field that drives inflation are

not understood at the level of fundamental particle physics. And because the nature of

inflaton is unknown, we do not know the details of preheating or reheating process, i.e.,

how the universe becomes hot and radiation-dominated, whereas at the end of inflation

it is cold and inflaton-dominated.

For dark energy, a cosmological constant Λ, i.e. the vacuum energy is currently the

most popular interpretation. For most particle physicists the vacuum energy interpreta-

tion is a nightmare, because the value of measured cosmological constant is too small. It

is 120 orders of magnitude smaller than the naive estimation from dimensional analysis.

Another further embarrassing problem is that the cosmological constant is not only small,

but also is fine-tuned to be of the same order of magnitude as the present mass density

of the universe. This is the so-called “cosmological constant problem”. It is probably the

toughest theoretical problem in cosmology.

In contrast, dark matter is much less problematic for particle physicists. Indeed

many dark matter particle candidates have been proposed in extended models of parti-

cle physics, with the most popular ones being the weakly interacting massive particles

(WIMPs). Experimentally, the laboratory search of dark matter has not been success-

ful yet, but there is much additional evidence for dark matter from astrophysics. This

evidence includes: the rotation curves of galaxies [15]; strong gravitational lensing [16];

hot gas in clusters [17]; and the bullet cluster [18]. More information about dark matter

research can be found in a recent review article [19].

Cold dark matter (CDM) living in a spatially flat universe with positive cosmological

constant Λ, the ΛCDM model, is sometimes referred to as the standard cosmological

model in the narrow sense. In a broad sense, the standard cosmological model should also

include the pre-BBN history of the universe: the early-universe inflation and (p)reheating.

Thanks to the CMB, the early-universe inflation has become a testable physical model.

The major prediction from the simplest scenario, single-field slow-roll inflation, is that
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Figure 1.1: CMB temperature auto-correlation angular power spectrum. The solid black

data points are Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data [1, 2].

The dotted blue data is from balloon experiment BOOMERANG [3, 4, 5], shown as an

example of independent measurements. The solid red line is the theoretical prediction

from a best-fit minimal 6-parameter ΛCDM model.
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the primordial scalar metric perturbations are almost Gaussian and scale-invariant. This

robust prediction, which does not depend on specific models, has been confirmed by CMB

and many other cosmological observations. But the model-independence is a double-

edged sword. On the one hand, we can make predictions without knowing the details

of the inflaton field. On the other hand, the model-independence limits our ability to

observationally distinguish between different inflation models. The same situation applies

to (p)reheating after inflation, since the current observables are generally insensitive to

the details of how inflaton decays into the “primordial soup” of radiation. However, that

is not the end of observational early-universe cosmology. Primordial gravitational waves

(tensor metric perturbations), primordial non-Gaussianity, and non-trivial features in the

primordial scalar power spectrum (e.g. departure from power-law), if any are detected

in the future, will open a new window to the physics of inflation, because of the extra

information they carry.

Hence the minimal parametrization of cosmic inflations is a cosmological constant

Λ plus a slightly tilted primordial scalar power spectrum defined by its amplitude As

and power-law index ns. In the last two decades, these parameters are measured to

percent-level accuracy by a series of cosmological observations. But this does not tell us

much about which inflation/DE model is correct. The aim of the forthcoming precision

cosmology is to learn much more details or anomalies about our universe, which are

expected to help us pick out the right inflation/DE model. In this thesis we will make

novel predictions going beyond the “tilted ΛCDM” from a number of concrete models,

and compare them with current and forecast data. These models are listed in the last

section of this chapter. In Sections 1.2-1.7 I will give a brief introduction to ΛCDM

model, cosmic inflations, and the statistical/computational tools that will be used in

later chapters.
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1.2 Conventions and Notations

Before we proceed to the technical introduction of ΛCDM model and the topics beyond

ΛCDM, let us clarify the conventions and notations. Throughout the thesis, unless

otherwise specified, we adopt the (+,−,−,−) metric signature and natural units c =

~ = kB = 1. The reduced Planck mass is denoted as Mp = 1/
√

8πGN = 2.44× 1018GeV,

where GN = 1/m2
pl is Newton’s gravitational constant. We use Einstein summation

convention for repeated indices. The Greek alphabet indices α, β, ... would be implicitly

summed over temporal and spatial indices (0, 1, 2, 3); the Roman alphabet indices i, j,

k would be summed over spatial indices (1, 2, 3). Perturbed quantities are written with

prefix δ. When it does not cause confusion, we use the same notation for the unperturbed

quantities and the background quantities. For example, for a field ϕ, δϕ is the first

order perturbation of ϕ, and the notation ϕ depending on the context could be either

the unperturbed value ϕ(x, t) or the background value ϕ̄(t). For linear perturbations, in

most cases this will not cause confusion. And if it does, I will explicitly use notation ϕ̄ for

the background value. Unless specified, the constraints on parameters presented in this

paper are 68.3% confidence level (CL) bounds, and the inner and outer two-dimensional

(2D) contours shown in the figures correspond to 68.3% and 95.4% CL, respectively. The

notation p = α+σu
−σl states that the parameter p has the median value α (i.e. p > α and

p < α are equally probable), and the probability that α− σl < p < α+ σu is 0.683, with

σu + σl minimized under this constraint. In other words, the interval (α − σl, α + σu)

is the most compact interval that contains 68.3% probability. The notation p = α+σ1+σ2

means that p is always greater than α, and the probability that p < α+σ1 is 0.683, while

the probability that p < α+ σ2 is 0.954. And similarly p = α−σ1−σ2 states a distribution

with a strict upperbound α, a 68.3% CL lower bound α − σ1, and a 95.4% CL lower

bound α − σ2. The Kronecker delta δij is unit for i = j and zero otherwise. Finally, I

list the abbreviations in Table 1.1.
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Table 1.1: ABBREVIATIONS

1D one-dimensional

2D two-dimensional

BAO Baryon Acoustic Oscillations

BBN Big Bang Nucleosynthesis

CDM Cold Dark Matter

CMB Cosmic Microwave Background

CL confidence level

const. constant

DE dark energy

DM dark matter

EOM equation of motion

EOS equation of state

GR general relativity

L.H.S. left hand side

LSS large scale structure

Lyα Lyman-α forest

r.m.s. root mean square

QFT quantum field theory

R.H.S. right hand side

SN supernova

SUGRA supergravity

SUSY supersymetry

WL weak lensing

w.r.t. with respect to

yr year
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1.3 Basics of FRW Universe

The cosmological principle, a pure hypothesis when it was proposed, and now an obser-

vational fact, states that the universe is homogeneous and isotropic on large scales. This

leads to the Friedmann-Robertson-Walker (FRW) metric [12, 13, 14]

ds2 = dt2 − a2(t)

[

1

1 − kr2
dr2 + r2(dθ2 + sin2 θdφ2)

]

, (1.1)

where the constant k is the spatial curvature, t the cosmological time, and r, θ, φ the

three spatial comoving coordinates. A universe with positive, zero , or negative k is

called (spatially) closed, flat, or open universe, respectively. The coordinate r is also

called the comoving angular diameter distance, which we will discuss in more details

later. A universe on large scales described by FRW metric is called FRW universe.

The wavelength of a photon emitted at time t and received now is stretched by a factor

of a0/a(t), where the subscript 0 denotes quantities at current time. The definition of

redshift in astronomy is the fractional increment of wavelength. The cosmological redshift

is hence

z =
a0

a(t)
− 1 . (1.2)

The choice of normalization of a0 is completely arbitrary. An oft-used choice is a0 = 1,

and hence redshift and the scale factor are related through a simple formula z = 1/a−1.

The dynamics of the homogeneous background is described by the Friedmann equa-

tions derived from General Relativity [12, 13, 14]:

(

ȧ

a

)2

=
8πGN

3
ρtot −

k

a2
, (1.3)

ä

a
= −4πGN

3
(ρtot + 3ptot) , (1.4)

where ρtot and ptot are the total energy density and total pressure due to all the com-

ponents in the universe including all forms of matter, relativistic or non-relativistic, and

vacuum if applicable.
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The quantity ȧ/a is called Hubble parameter or Hubble expansion rate, often de-

noted as H . Its present value H0 , the Hubble constant, is often written as H0 ≡

100h km s-1Mpc-1, with a dimensionless number h of order unity. A measurement of the

Hubble constant with the Hubble Space Telescope (HST) from a differential distance

ladder gives h = 0.742±0.036 [20]. This result is independent of the cosmological model.

In the context of ΛCDM cosmology, a combination of CMB, SN, LSS, WL, Lyαgives

h = 0.692 ± 0.010 (see Chapter 2).

The critical density of the universe is defined as

ρcrit(t) =
3H2(t)

8πGN
. (1.5)

If we regard the spatial curvature term k/a2 as an “effective energy density” that

scales as a−2 , we can define the energy-fraction Ω’s as follows:

Ωi ≡
ρi
ρcrit

, (1.6)

where ρi is the energy density of the i-th component (baryons, dark matter, dark energy

etc.); and

Ωk ≡ − k

a2H2
. (1.7)

Some caution needs to be taken here. Even at the homogeneous level, the curvature

component is not exactly an effective energy form that scales as a−2. The curvature k

also changes the geometry of the universe. We will explicitly show this when we calculate

the angular diameter distance.

The first Friedmann equation now can be written as

ΩΛ + Ωc + Ωb + Ωr + Ων + Ωk = 1, (1.8)

where the subscripts “Λ”, “c”, “b”, “r”, “ν” stand for dark energy, cold dark matter,

baryonic matter, radiation, and neutrinosii, respectively. We are often interested in the

present values of these Ω’s, denoted as ΩΛ0, Ωc0, Ωb0, etc.

iiHere and in what follows the word “neutrinos” generally refers to neutrinos and anti-neutrinos.
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In a simple case where different components only interact through gravity, the scaling

of each component as a function of a can be simply derived from energy conservation:

ρ̇i = −3
ȧ

a
(ρi + pi) , (1.9)

where i = 1, 2, 3, ... labels the components. The pressure pi is related to the energy

density ρi through equation of state, defined as

wi ≡
pi
ρi
. (1.10)

In the standard ΛCDM model, at the energy below BBN temperature (∼ MeV) and

to sufficiently good accuracy, we have wΛ = −1, wc = wb = 0, and wr = 1/3. The

neutrinos are a bit special. They are relativistic in early universe, but at z . 1000 they

might become non-relativistic, depending on their mass. Neutrinos decouple from other

components before the annihilation of electrons and positrons, which dumps entropy into

radiation. A trivial calculation using entropy conservation and the current CMB tem-

perature (TCMB = 2.72548± 0.00057 K [21]) gives the number density of relic neutrinos,

which is about a hundred per cubic centimeter per flavor. Therefore the neutrino mass

density is

Ων0h
2 ≈

∑

imνi

100eV
, (1.11)

where mνi is the mass of neutrino of i-th flavor. The current laboratory experimental

upper bound on neutrino mass is about 2.3eV [22], which is not sufficient to tell whether

neutrinos are relativistic today. Using CMB, LSS and HST data and assuming ΛCDM

model, Komatsu et. al. [1] improved the constraint to
∑

imνi < 0.44eV. However, in this

thesis we will not use this constraint, as we are studying models beyond ΛCDM. Learning

about neutrinos in extended models is also an interesting subject, but will not be covered

here. In what follows, unless otherwise specified, we will assume three generation of light

neutrinos (
∑

imνi ≪ eV), which means we can safely use wν = 1/3 at redshift above a

few hundreds where cosmic neutrinos are relevant for the expansion history.
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dark matter

baryons
photons

neutrinos

dark energy

(a) Cosmic abundance at recombination

dark energy

dark matter

baryons

radiation

(b) Cosmic abundance now

Figure 1.2: Cosmic abundance varies with time. This is assuming a ΛCDM model with

three species of light neutrinos.

The parameter Ωk0 is predicted to be tiny in almost all inflationary theories. This

prediction agrees well with CMB observations [1]. The standard 6-parameter ΛCDM

model hence takes Ωk0 = 0 as a theoretical prior.

Given all of these, the Hubble parameter and cosmic abundance can be calculated

to arbitrary redshift z < zBBN ∼ 109. Figure 1.2 shows two examples. One is at the

“recombination time” when photons decouple from Hydrogen in the universe at redshift

about 1100 (this is when CMB forms), and another at present time (redshift zero).

The comoving distance from us to an object at redshift z is obtained by integrating

the comoving line element dχ = dt/a(t) [12, 13, 14]:

χ(z) =

∫ z

0

dz′

H(z′)
, (1.12)

which is independent of the nature of dark energy and dark matter, and whether the

universe is spatially flat or not.

The comoving angular diameter distance, however depends on the spatial curvature
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[12, 13, 14]

r(z) =



























sin (
√
kχ(z))√
k

, if k > 0;

χ(z) , if k = 0;

sinh (
√
−kχ(z))√
−k , if k < 0.

(1.13)

The luminosity distance dL and physical angular diameter distance dA are given by

[12, 13, 14]

dL(z) = (1 + z)r(z) , (1.14)

dA(z) =
1

1 + z
r(z) . (1.15)

These formulas will be used in Chapter 2 where we consider observational constraints

on dark energy. The supernova luminosity distances can be connected to their apparent

brightness using the inverse square law. The angular diameter distances are related to

BAO and weak lensing observables. In addition to those, the mass density fluctuations

in the matter content (CDM and baryons) are important cosmological observables. For

baryons and CDM, the sound speed is many orders of magnitude smaller than the speed

of light. We can safely ignore the Jeans’ length on cosmological scales. That means on

these scales they are gravitational unstable. But on large scales we have to consider the

Hubble expansion that slows down the gravitational collapse. The equation for mass

density fluctuation of matter in an expanding universe is [12, 13, 14]

δ̈k + 2Hδ̇k −
3H2Ωm(z)

2
δk = 0 , (1.16)

where δk(t) is the Fourier mode of the fractional mass density fluctuations to the linear

order, with k being a comoving wavenumber, and

Ωm(z) ≡ Ωc(z) + Ωb(z) (1.17)

is the total mass abundance of matter component. I have explicitly used Ωm(z) to avoid

possible confusion between Ωm and Ωm0 ≡ Ωm |z=0.
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Given Eq. (1.16), one needs to specify the initial conditions in order to evolve the

mass density fluctuations. The “linear growth factor” D(z) is introduced to eliminate

the dependency on initial conditions. It is defined as

D(z) ≡ δk(z)

δk0
, (1.18)

where δk0 is δk at redshift zero. In terms of D(z) we can rewrite Eq. (1.16) as

d2D

dz2
+
ǫ− 1

1 + z

dD

dz
− 3Ωm(z)

2(1 + z)2
D = 0. (1.19)

Here we have used a very important ǫ parameter, which is defined as

ǫ ≡ − Ḣ

H2
. (1.20)

It is not only useful for the late-universe cosmology. In next section we will see that ǫ is

one of the key parameters that describe early-universe inflation.

Let us round up this section with a few useful formulas for ΛCDM model.

In the standard ΛCDM model, the low-redshift (z . 10) universe is dominated by

non-relativistic matter and dark energy, ignoring the tiny contribution from radiation

and light neutrinos, we have

ΩΛ = 1 − Ωm . (1.21)

To very good accuracy, the low-redshift expansion history can be described by only two

dimensionless parameters: h and Ωm0. More explicitly, the Hubble expansion rate is

given by

H(z) = 100h km s-1Mpc-1
√

1 − Ωm0 + Ωm0(1 + z)3 . (1.22)

The comoving angular diameter distance and linear growth factor are elliptic integrals

that can not be written as elementary functions. But handy fitting formulas can be found

for a particularly useful case covering the range 0.2 < Ωm0 < 1:

r(z) =
6243.4h−1

Ωm0
0.395 Mpc (1.23)

×
{

1

(1 + 0.47Ωm0)0.105
− 1

(1 + z)0.185 [1 − Ωm0 + 1.47Ωm0(1 + z)3]0.105

}

,

(1.24)
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0.1 1

35

40

45

z

m
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 M
LowZ + SNLS + SDSS + ESSENCE + HST
light curve fitting method: SALT-II

Ωm  = 0.3, ΩΛ  = 0.7
Ωm  = 1.0, ΩΛ  = 0.0
Ωm  = 0.2, ΩΛ  = 0.0

Figure 1.3: The updated Hubble diagram. Here m is the apparent magnitude, and M the

absolute magnitude determined by χ2 fitting, which cancels the dependency of m −M

on Hubble constant. See Chapter 2 for more details about the supernova data sets.

and

D(z) =

√

Ωm0(1 + z)3 + 1 − Ωm0

(1 + z)1/4

[

10 + Ωm0

11Ωm0(1 + z)3 + 10(1 − Ωm0)

]3/4

. (1.25)

For both formulas the fitting error for a typical value Ωm0 ∼ 0.3 is about 0.1%.

The current observations of cosmic acceleration are consistent with a constant vac-

uum energy [1, 23, 24, 25, 26, 27]. At present the strongest evidence is from supernova

observations. See Figure 1.3 for the updated Hubble diagram with 288 supernova samples

[27].
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1.4 Dark Energy: Beyond Λ

Because of the cosmological constant problem, many alternative dark energy models

beyond Λ have been proposed (see [28] for a review). Observers often use the simplest

phenomenological dark energy parametrization, namely a constant equation of state w0.

Dark energy equation of state will be one of the major topics of this thesis. For readability

I will omit the subscript Λ (or “DE”) for w when it does not cause confusion.

For constant w = w0, the low-redshift expansion history is now determined by three

parameters: h, Ωm0 and w0. The Hubble expansion rate in a flat FRW universe is now

H(z) = 100h km s-1Mpc-1
√

(1 − Ωm0)(1 + z)3(1+w0) + Ωm0(1 + z)3. (1.26)

The comoving angular diameter distance and linear growth factor can be calculated using

the general formulas given in the last section. Here I give the fitting formulas for another

often useful case, with |1 + w0| < 0.2 and Ωm0 > 0.2:

r(z) =
5995.8h−1

Ωm0
0.255−0.19w0−0.05w2

0

Mpc (1.27)

×











1
[

Ωm0 + 1−Ωm0

2(1−6w0)(0.245+0.19w0+0.05w2
0)

]0.245+0.19w0+0.05w2
0

− 1
√

1 + z
[

Ωm0 + (1−Ωm0)(1+z)3w0

2(1−6w0)(0.245+0.19w0+0.05w2
0)

]0.245+0.19w0+0.05w2
0











,

and

D(z) =

√

Ωm0 + (1 − Ωm0)(1 + z)3w0

(1 + z)
(1.28)

×
[

2(1 − 2w0)(2 − 3w0)(1 − Ωm0) − w0(5 − 6w0)(4 + w0)Ωm0

2(1 − 2w0)(2 − 3w0)(1 − Ωm0)(1 + z)3w0 − w0(5 − 6w0)(4 + w0)Ωm0

]1+
w0
4

.

An extension of the constant w dark energy model is the following popular linear

expansion for dark energy EOS:

w = w0 + wa(1 − a) . (1.29)
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It is a model-independent parametrization that should work well at very low redshift

z ≪ 1. At higher redshift, it is not likely to be accurate, as no physical model has

predicted such a linear w(a) formula. In contrast, even at present we already have plenty

of data at z ∼ 1, where the linear formula of w is not an ideal model to be compared

with.

Without a physical model, there is no “best parametrization”. A linear function of a is

as good as a linear function of a2, etc. Our approach laid out in Chapter 2 is then to start

from a physical model of dark energy, and parameterize w with physical parameters. We

will focus on one of the most popular dark energy models – the quintessence model, where

a scalar field φ minimally couples to gravity. The Lagrangian density of a quintessence

field is

L =
1

2
∂µφ∂

µφ− V (φ) . (1.30)

The potential V (φ), which depends on the underlying physics of the quintessence field,

is an unknown function. The subhorizon perturbation of φ obeys

δ̈φk + (k2 +
d2V

dφ2
)δφk = 0. (1.31)

For a light field with |d2V/dφ2| . H2, the subhorizon dark energy perturbations do not

grow. Assuming no significant primordial quintessence perturbations, we can approxi-

mately treat quintessential dark energy as a homogeneous fluid with equation of state

wφ =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (1.32)

To explicitly write wφ as a function of redshift z or scale factor a, one needs to know the

potential V (φ) and initial field momentum φ̇ini. In fact, the specific form of the potential

is not important. We will use a few physical properties of the potential – the slope of lnV

at some pivot, the curvature (second derivative) of lnV , and the field momentum – to

characterize the dynamics of the quintessence field. Using this quintessential dark energy

parametrization and the observational data, we are able to study the generic properties

of quintessence potentials. The technical details will be presented in Chapter 2.
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1.5 Early-universe Inflation

In the previous section we briefly reviewed the late-universe cosmic acceleration. We now

tune the clock back to 14 billions years ago, where early-universe inflation took place. In

this section we discuss the dynamics of inflaton and the associated metric perturbations.

This is the background for the material in Chapters 3-6.

The first model of inflation, which is called “old inflation”, was proposed by Starobin-

sky [29], Guth [30] and Sato [31]. In the “old inflationary” model, the true-vacuum bub-

bles appear via quantum tunneling in a false-vacuum-dominated exponentially expanding

universe. The problem with this model, soon recognized by Guth himself and others, is

that the nucleation rate of true vacuum bubbles cannot be too large, otherwise the total

number of expansion e-folds (defined as the increment of ln a) will be insufficient to solve

the horizon problem [12, 13, 14], and cannot be too small, otherwise the bubbles do not

coalesce to generate radiation.

Soon after the unsuccessful attempt, the second generation of inflation models were

proposed by Linde et. al. [32] and Albrecht et. al. [33]. The idea of a slow-rolling scalar

field on a flat potential was proposed. To obtain the flat potential in the so-called “new

inflation” model, Linde first assumed the scalar field was in thermal equilibrium, and

the flatness arose from the thermal correction of the effective potential. He soon realized

that the hypothesis of thermal equilibrium was unnecessary. Inflation can be realized

“chaotically” with very simple potentials like V = 1
2
m2φ2. The idea of chaotic inflation is

that although classically a displaced field will roll downhill toward the potential minimum,

the quantum fluctuations can occasionally bring the field uphill. The small probability of

such uphill quantum diffusion is compensated by the much faster exponential expansion

of the physical volume. Here we have made an implicit assumption that equal statistical

probabilities should be applied on equal physical volumes (not comoving volumes). These

probabilities are estimated in Linde’s article “eternally existing self-reproducing chaotic

inflationary universe” [34]. The two popular names “eternal inflation” and “chaotic
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inflation” are still being used today. The chaotic inflation models belong to a class called

large field models, where the field needs to take values larger than the Planck Mass. It

remains one of the most popular inflation models, and is the observational target of many

CMB experiments.

In the late 90s and early 00s, the CMB observations confirmed the predictions of

inflation [35, 36, 37, 38]. And the supernova observations revealed that our universe is

now again inflating [23, 24]. The observational evidence for inflation stimulated a further

round of theorizing adding to the already exotic ideas in the zoo of inflation models:

natural inflation [39, 40], brane inflation [41], moduli inflation [42, 43, 44], and more. See

recent reviews [45, 46, 47] for the zoology of existing inflation models.

In the rest part of this section I will briefly summarize how the primordial metric

perturbations from inflation are calculated.

The FRW metric (1.1) with k = 0 (predicted by inflation, assuming no fine-tuning)

will be used. Since we are studying the origin of inhomogeneities, we also have to perturb

the FRW metric. Let us first consider scalar metric perturbations. The perturbed metric

in the longitudinal gauge [12, 13, 14] is

ds2 = a(τ)2
[

(1 + 2Φ) dτ 2 − (1 − 2Ψ) δijdx
idxj

]

, (1.33)

where we have introduced the conformal time

τ ≡
∫

dt

a(t)
. (1.34)

The conformal Hubble parameter is defined as

H ≡ a′

a
= ȧ . (1.35)

Here and in what follows I use a prime to denote the derivative with respect to conformal

time.

The scalar metric perturbations Φ and Ψ are called Bardeen potentials. Physically

Φ corresponds to the Newtonian gravitational potential. If the early universe is domi-

nated by one or more scalar fields, the first order perturbed energy momentum tensor is
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diagonal, and we can conclude that the two Bardeen potentials are equal. This can be

verified by writing down the perturbed Einstein equations to the first order. I will skip

this standard exercise, which can be found in Refs. [12, 13, 14].

Now let us assume that inflation is driven by only one scalar field φ. In the single-field

case, the field perturbation δφ and metric perturbation Φ are related through Einstein

equations. There is only one physical scalar perturbation. This can be explicitly shown

using the Sasaki-Mukhanov variable [13, 14]

R ≡ H
φ′ δφ+ Φ . (1.36)

The evolution equation for a Fourier mode of R, derived from the perturbed Einstein

equations and the field EOM, can be written as [13, 14]

R′′
k +

2z′

z
R′
k + k2Rk = 0 , (1.37)

where k is the comoving wavenumber, and z is defined as

z ≡ aφ′

H . (1.38)

When the physical mode is well inside the horizon (k/a ≫ H), the vacuum mode

function for δφ has the standard Minkowski-spacetime form:

δφk |k≫aH =
1√
a3

1
√

2k/a
exp

(

−i
∫

k

a
dt

)

. (1.39)

During inflation where H/φ′ does not change sign, the mapping from δφ to R is straight-

forward:

k3/2Rk

∣

∣

k≫aH
=

k/a

2
√
ǫMp

exp

(

−i
∫

k

a
dt

)

. (1.40)

I have explicitly written everything in physical units. During inflation the ǫ parameter

defined in (1.20) satisfies

0 < ǫ < 1 . (1.41)

Note that k3/2Rk is physically normalized (independent of the normalization of scale

factor a), but Rk is not. One should use Eq. (1.40) as the initial condition, and evolve
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k3/2Rk with Eq. (1.37). If z ∝ √
ǫa monotonically increases, k3/2Rk converges to a

constant after the mode exits the horizon (k/a < H). One can numerically evolve

k3/2Rk until it converges. The primordial scalar power spectrum then can be calculated

through

PS =
1

2π2

∣

∣k3/2Rk

∣

∣

2
∣

∣

∣

∣

k≪aH

, (1.42)

which is also physically normalized.

For tensor perturbations the analysis is similar. Here we directly give the results.

The equation of motion for the amplitude of free gravitational waves is [13, 14]

h′′k + 2Hh′k + k2hk = 0 . (1.43)

The initial condition is

k3/2hk
∣

∣

k≫aH
=

√
2k/a

Mp

exp

(

−i
∫

k

a
dt

)

. (1.44)

And the primordial tensor power spectrum

PT =
1

π2

∣

∣k3/2hk
∣

∣

2
∣

∣

∣

∣

k≪aH

, (1.45)

Eqs (1.37-1.42) and Eqs (1.43-1.45) provide a complete scheme to calculate the pri-

mordial scalar and tensor perturbations in arbitrary single field inflation models.

For slow-roll inflation, approximate solutions of PS and PT can be found [12, 13, 14]:

PS ≈ H2

8π2Mp
2ǫ

∣

∣

∣

∣

k=aH

, (1.46)

PT ≈ 2H2

π2Mp
2

∣

∣

∣

∣

k=aH

. (1.47)

These are zeroth order approximations. In what follows I will derive more accurate

formulas with the first order corrections included.

As the universe exponentially expands, the integral
∫ +∞

dt/a converges. We can

choose the conformal time τ to be τ(t) =
∫ t

+∞ dt̃/a(t̃), which implies −∞ < τ < 0. A

special but also very useful case is when
√
ǫa is a power-law function of τ .

√
ǫa = C(−τ)−1−δ , (1.48)



Chapter 1. Introduction 20

where C and δ are constants. Given Eq. (1.48), the differential equation (1.37) becomes

R′′
k −

2(1 + δ)

τ
R′
k + k2Rk = 0 . (1.49)

The generic solution for this Bessel-type differential equation is

Rk = C1(−kτ)3/2+δH
(1)
3/2+δ(−kτ) + C2(−kτ)3/2+δH

(2)
3/2+δ(−kτ) , (1.50)

where H(1,2) are the first kind and second kind Hankel functions. Matching the initial

condition (1.40) we find

C1 = 0 , (1.51)

C2 =

√

π

8

k−δ

MpC
. (1.52)

The primordial scalar power spectrum is then

PS =
k−2δ

8π2Mp
2C2

(

2δ(1 + 2δ)Γ(1
2
)

cos (δπ)Γ(1
2
− δ)

)2

, (1.53)

or written in another form

PS =
H2

8π2Mp
2ǫ

(kτ)−2δ

(Hτ)2

(

2δ(1 + 2δ)Γ(1
2
)

cos (δπ)Γ(1
2
− δ)

)2

. (1.54)

So far no approximation has been made, given that the assumption (1.48) holds.

For slow-roll inflation where

0 < ǫ≪ 1 , (1.55)

and
∣

∣

∣

∣

d ln ǫ

d ln a

∣

∣

∣

∣

≪ 1, (1.56)

it is easy to verify that

δ ≈ ǫ+
1

2

d ln ǫ

d ln a
. (1.57)

The spectral index can be directly read from the solution (1.53):

ns − 1 ≡ d lnPS
d ln k

= −2δ ≈ −2ǫ− d ln ǫ

d ln a
, (1.58)
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the standard textbook result. If d ln ǫ/d ln a varies too much within one e-fold, the as-

sumption (1.48) may not hold. But considerable d ln ǫ/d ln a variation over a few e-folds

is compatible with the assumption (1.48). That leads to the running of spectral index

nrun ≡ d2 lnPS
(d ln k)2

≈ −2ǫ
d ln ǫ

d ln a
− d2 ln ǫ

(d ln a)2
. (1.59)

In slow-roll scenario we have Hτ ≈ 1/(1 − ǫ). The first order approximation of

solution (1.54) is

PS ≈ H2

8π2Mp
2ǫ

[1 − 2ǫ+ 2 (2 − γ − ln 2) δ]

∣

∣

∣

∣

k=aH

, (1.60)

where γ = 0.5772... is the Euler-Mascheroni Constant. Here we have used Γ′(1/2)
Γ(1/2)

=

−γ − 2 ln 2.

The procedure to find the approximate solution for tensor spectrum is exactly the

same. Here we directly give the result:

PT ≈ 2H2

π2Mp
2 [1 − 2(ln 2 + γ − 1)ǫ]

∣

∣

∣

∣

k=aH

, (1.61)

and the spectral index

nt ≡
d lnPT
d ln k

≈ −2ǫ . (1.62)

The first-order slow-roll formulas (1.60) and (1.61) were first derived by Stewart and

Lyth [48] in 1993 with a slightly different method.

In Figure 1.4 we compare the slow-roll approximations (1.60) and (1.61) with the full

numerical solutions. We find the scalar power spectrum has large responses to the scale-

dependence of ǫ. This is due to the denominator ǫ in Eq. (1.60). In contrast the tensor

power spectrum can be well fit by a power-law function. We will consider this generic

feature when we parameterize PS and PT in Chapter 3. Another more extreme example

is shown in Figure 3.1 in Chapter 3, where slow-roll condition is temporarily broken. The

glitch in the inflaton potential could be caused by a phase transition in a non-inflaton

field, although in Chapter 5 we point out that phase transition during inflation in some

cases should be treated more carefully.
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Figure 1.4: When ǫ(k) ≡ ǫ |k=aH trajectory has complicated structures, the slow-roll

solution (1.60) for scalar power spectrum deviate from the full numerical solution, while

the slow-roll approximation (1.61) for tensor power spectrum remains a good fit.
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The tensor to scalar ratio at some kpivot is defined as

r ≡ PS
PT

∣

∣

∣

∣

k=kpivot

≈ 16ǫ ≈ −8nt . (1.63)

The relation r ≈ −8nt is the consistency relation for single-field slow-roll models.

Motivated by the slow-roll single-field inflation models, observers often use the fol-

lowing parametrizations for primordial power spectra

PS = AS

(

k

kpivot

)ns−1+ 1
2
nrun ln(k/kpivot)

, (1.64)

PT = rAS

(

k

kpivot

)nt

. (1.65)

Oft-chosen pivots are comoving wavenumber 0.05Mpc-1 and 0.002Mpc-1. In many works,

including ours in Chapter 3, the pivot for the scalar and that for the tensor are chosen both

to be 0.002Mpc-1 for simplicity, although it might be more reasonable to use 0.05Mpc-1

for the scalar and 0.002Mpc-1 for the tensor. The priors nrun = 0, nt = 0 or nt = −r/8 are

often applied to exclude the poorly measured parameters, or, in the language of Bayesian

statistics, to discard bad models. In the standard six-parameter ΛCDM parametrization,

the tensor spectrum is also ignored. The remaining six parameters and the current

observational constraints on them are listed in Table 1.2. These constraints are derived

in Chapter 2 using CMB + SN + LSS + WL + Lyα.

The parameter θ defined in Table 1.2 should not be confused with the comoving

coordinate in the metric form (1.1). It is often measured with percent. So θ = 1.04

corresponds to an angle 0.0104 radian. We will stick to this convention throughout this

thesis.

In addition to the six standard parameters, a few derived parameters are widely used

in the literature. They are listed in Table 1.3.

Other slow-roll parameters directly related to the potential V (φ) are defined by

ǫV ≡ Mp
2

2

(

dV/dφ

V

)2

, (1.66)

ηV ≡ Mp
2d

2V/dφ2

V
. (1.67)
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Table 1.2: Six-parameter ΛCDM model; The current constraints (68.3% CL) are obtained

using CMB + SN + LSS + WL + Lyα. See Chapter 2 for more details about the data

sets and how these constraints are derived. The cold dark matter and baryonic matter

density are normalized to ρcrit/h
2 ≈ 11.2 proton mass per cubic meter. The primordial

scalar power spectrum is given by Eq. (1.64) with kpivot = 0.002Mpc-1 and nrun = 0. The

primordial tensor spectrum is assumed to be negligible (r = 0).

parameter definition constraints

Ωc0h
2 current physical density of cold dark matter 0.02246+0.00042

−0.00043

Ωb0h
2 current physical density of baryonic matter 0.1173+0.0020

−0.0019

θ the angle subtended by sound horizon on CMB sky 0.01042+0.00002
−0.00002

τre the reionization optical depth 0.089+0.014
−0.013

ln (1010As) logarithm of the amplitude of primordial scalar perturbations 3.237+0.031
−0.032

ns the index of primordial scalar power spectrum 0.959+0.010
−0.011

Table 1.3: Definition of derived parameters.

parameter definition

H0 the Hubble constant (in unit km s-1Mpc-1)

Ωm0 current energy-fraction of non-relativistic matter

ΩΛ0 current energy-fraction of dark energy

zre the redshift where reionization happens

σ8 current r.m.s. mass fluctuation on 8h−1 Mpc scale
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Table 1.4: Inflation Models

class definition typical example

small-field ηV < 0 V = V0

(

1 − e−|φ|)

large-field 0 < ηV < 2ǫV V = 1
2
m2φ2; V = 1

4
λφ4

hybrid ηV > 2ǫV V = V0 + 1
2
m2φ2

Assuming the higher order derivatives can be ignored, the potential parameters ǫV and

ηV can be connected to the geometrical acceleration parameter ǫ through

ǫ ≈ ǫV , (1.68)

d ln ǫ

d ln a
≈ 4ǫV − 2ηV . (1.69)

The slow-roll single-field inflation models can be classified into “large field”, “small

field” and “hybrid” ones [49, 50, 51]. The large field models are represented by the most

popular chaotic inflation models, where the inflaton starts from a large initial value and

rolls down toward the potential minimum at small φ. Typically in this class of models,

the ǫ parameter is of order 0.01. The variation of field value during the last 50-60 e-folds

of inflation is a number of Planck masses. Hybrid inflation models are usually constructed

by introducing a second scalar field. The auxiliary field serves as a cosmological constant

during inflation. As the inflaton rolls down, phase transition in the second field occurs

and inflation ends. The small field models are mostly string theory inspired, such as

Kähler moduli inflation [52]. The quantitative description of this classification scheme is

summarized in Table 1.4.

The slow-roll assumptions lead to predictions that agree well with current data. How-

ever, forthcoming data should allow us to measure the primordial scalar and tensor power

spectra much more accurately. In order to address possible deviations from slow-roll

single-field inflation models, we would like to have more generic parametrization beyond

the (1.64 - 1.65) ansatz. This is the topic discussed in Chapter 3, where the basic ap-
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Figure 1.5: The gray contours are the current 68.3% and 95.4% constraints on inflations

models. The red contours are constraints using simulated Planck satellite CMB data and

EUCLID weak lensing data, for a fiducial r = 0 model. See Chapter 2 for the details

about the current and forecast data sets.
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proach is to use Eqs (1.37-1.42) and Eqs (1.43-1.45) to numerically solve PS and PT
from more generic ǫ trajectories. Numerically calculated power spectra are then used to

confront the current and forecast data.

1.6 Parametric Resonance, Preheating, and Particle

Production

Another interesting problem associated with scalar field inflation is particle production,

either perturbatively or non-perturbatively. The nonperturbative decay of the inflaton

into other fields, if it happens at the end of inflation, is called preheating. Preheating is

one of the crucial processes that connect the cold, inflaton-dominated universe after infla-

tion to the hot, thermalized universe before BBN. Because preheating typically happens

on comoving scales about a centimeter, it was believed that preheating does not produce

observable signatures on cosmological scales. We study a classical preheating model in

Chapter 4 with a new accurate lattice code, and find that adiabatic comoving curvature

perturbations on cosmological scales can be produced, at least in the particular model

we have studied. The initial conditions are prepared by inflation, and then amplified by

parametric resonance. This is similar to modulated reheating models, but realized in a

nonlinear process that had not been studied before.

A few other topics related to parametric resonance are studied in this thesis. In

Chapter 6 we study a new preheating model in the context of Roulette Inflation, a string

theory motivated inflation model. We find the self-coupling of the inflaton leads to

violent preheating. In Chapter 5 we study particle production during inflation through

a similar mechanism. The usual belief is that any observable signature produced by a

burst of particles production, which typically happens at scales much smaller than the

Hubble horizon scale, will be damped by exponential expansion. We find that this is

not the case. The rescattering of short-wavelength modes allows an energy cascade to



Chapter 1. Introduction 28

long-wavelength modes, and this process continues until all the relevant modes exit the

horizon. The consequence is that large non-Gaussianity will be produced. And if the

coupling is strong enough, a big bump in the primordial scalar power spectrum will be

produced.

At the end of inflation, the inflaton oscillates around its potential minimum. The

scale factor grows as a ∝ t1/〈ǫ〉, where 〈ǫ〉 is defined as

〈ǫ〉 = lim
T→+∞

1

T

∫ T

0

− Ḣ

H2
dt . (1.70)

For a potential V ∝ φn, and when the oscillating period is much shorter than the Hubble

time, 〈ǫ〉 can be trivially calculated

〈ǫ〉 =
3
∫ φmax

0

[

1 −
(

φ
φmax

)n]1/2

dφ

∫ φmax

0

[

1 −
(

φ
φmax

)n]−1/2

dφ

=
3n

n+ 2
. (1.71)

It follows that the effective equation of state 〈w〉 ≡ 2
3
〈ǫ〉 − 1 = n−2

n+2
.

For a quadratic potential V = 1
2
m2φ2, the dynamics of expansion is the same as that

for a dust-dominated universe. However, if we consider structure formation, the coher-

ent oscillating inflaton condensate behaves differently from dust. In a dust dominated

universe, structure grows on all subhorizon scales. But if the universe is dominated by a

coherent oscillating inflaton, the density perturbations do not grow on most scales. iii

For a quartic potential V = λ
4
φ4, the effective EOS is 1/3. The dynamics of back-

ground is like that in a radiation-dominated universe, a result that will be used in Chap-

ter 4.

If the inflaton couples to a light field χ, the effective mass mχ will be modulated by

the coherent oscillations of the inflaton. The dynamics of perturbation in the χ field will

be described by the theory of parametric resonance, a theory that studies Hill’s equation.

An introduction to the Hill’s equation can be found in [54] and references therein. Here

I would like to give a brief summary.

iiiIt has recently been claimed that non-linear structure will form on very small scales for a m2φ2

model without any coupling to other field [53].
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Consider an oscillator χ whose massM(t) is modulated by an external periodic source.

The equation of motion of χ is

dχ2

dt2
+M2(t)χ = 0 , (1.72)

with

M2(t) = ω2
+∞
∑

n=−∞
cne

inωt . (1.73)

where c∗−n = cn. Thus, M2(t) is a periodic real function with period 2π/ω: this is Hill’s

equation.

A generic solution is

χ(t) = eiνωt
+∞
∑

n=−∞
χne

inωt , (1.74)

where iν is a constant called the Floquet exponent. For our purpose, the exact full

solution (1.74) is not important. We are interested in the Floquet exponent that is

related to exponential burst of particles in early universe. In the rest part of this section

I will introduce two methods to calculate the Floquet exponent. They will be used in

Chapter 6 and Chapter 4, respectively.

Plugging (1.74) and (1.73) into (1.72), we obtain

+∞
∑

k=−∞
Bnkχk = 0, (1.75)

where

Bnk(ν) =
cn−k − δnk(ν + n)2

c0 − (ν + n)2
. (1.76)

The existence of a solution for (1.75) requires

∆(ν) ≡ det |Bnk(ν)| = 0 . (1.77)

By comparing the poles, and using the theorem that a bounded analytic function on the

complex plane must be a constant, one can find

∆(ν) = 1 +
1 − ∆(0)

2 cot (π
√
c0)

[cot (π(ν −√
c0)) − cot (π(ν +

√
c0))] . (1.78)
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Eq. (1.77) is then equivalent to

sin2(νπ) = ∆(0) sin2 (
√
c0π) . (1.79)

Given arbitrary M2(t), we can in principle calculate ∆(0), and solve for ν. The imaginary

part of ν, if nonzero, leads to exponential growth of χ, which often corresponds to particle

production or instability of some structure.

From numerical aspect, the calculation of the determinant of a large matrix is not

very efficient. If the structure of M2(t) is complicated, it is usually easier to numerically

solve the original differential equation (1.72), and extract the imaginary part of ν by

taking t → ∞. The brute-force integration method is used in Chapter 6, where M2(t)

with a sharp feature can not be approximated by the sum of a few harmonic oscillators.

For a simple inflaton potentials such as V = 1
2
m2φ2 or V = λ

4
φ4, the modulated mass

M2(t) often contains very few numbers of harmonic oscillators. In the case of a single

harmonic driver, the Hill’s equation becomes Mathieu equation, which is often written

as

d2χ

dt2
+ (λ− 2q cos 2t)χ = 0. (1.80)

An iterative algorithm can be used to calculate the Floquet exponent for the Mathieu

equation [54]. But it is difficult to extend this algorithm to multiple-frequency case. Here

I propose a new algorithm, which is neater, more computer-friendly and can be easily

extended to multiple-frequency cases. For readability, here I only discuss its application

to the Mathieu equation. In Chapter 4 I will use this method for a multiple-frequency

case – the V = λ
4
φ4 + 1

2
g2φ2χ2 preheating model.

The Mathieu equation is equivalent to Hill’s equation with c2 = c3 = ... = 0, for

which I define a (2n+ 1) × (2n + 1) matrix

Q
(n)
ij (x) =











x , if i = j = ±n

Bij(0) , else

(1.81)
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Here −n ≤ i, j ≤ n. By definition we have

∆(0) = lim
n→+∞

det
∣

∣Q(n)(1)
∣

∣ . (1.82)

For n > 1, the determinant of Q
(n)
ij (x) satisfies

det
∣

∣Q(n)(x)
∣

∣ = x2 det

∣

∣

∣

∣

Q(n−1)

(

1 − c21
(c0 − n2) (c0 − (n− 1)2)x

)∣

∣

∣

∣

, (1.83)

Using the above formulas and

det
∣

∣Q(1)(x)
∣

∣ = x2

[

1 − 2c21
c0(c0 − 1)x

]

, (1.84)

we can iteratively calculate the Floquet exponent for arbitrary c0, c1 without solving any

differential equations. Figure 1.6 shows the Floquet exponent for the Mathieu equation

calculated with this efficient algorithm. The Floquet exponents for about 106 points on

the λ-q plane are calculated on a desktop computer within a second. For the parameter

space shown in Figure 1.6 the Floquet exponent well converge (accuracy ∼ 0.01) after 20

interations.

1.7 Markov Chain Monte Carlo Simulations

In cosmology, the minimal ΛCDM model contains six parameters, and the number of

parameters increases as one adds complexity to the model. Markov Chain Monte Carlo

(MCMC) simulations, which are proven as a method to do statistics in high-dimensional

parameter spaces, have been widely used in cosmology (see Chapters 2, 3, 5, and 7).

Suppose we are given n parameters q1, q2, ..., qn, and the likelihood (probability den-

sity) function L(p), where p is a vector in the n dimensional parameter space ℜn. The

idea of MCMC is to draw many “representative random samples” of p, and use the

samples to do low-dimensional statistics. As an example, I will introduce the simplest

MCMC method – the Metropolis-Hasting algorithm.
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Figure 1.6: The real part of the Floquet exponent for the Mathieu equation χ̈ + (λ −

2q cos 2t)χ = 0. In the white region the solutions are stable. In the colored region the

solutions exponentially grow: χ ∼ eµt.
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For simplicity let us assume there are N possible values of p (One can always divide

the parameter space into small chunks such that the accurate position in the chunk is

not relevant.) Suppose the probability that p = pi is Li, i = 1, 2, 3, ..., N . The total

probability should be normalized
N
∑

i=1

Li = 1. (1.85)

The Metropolis-Hasting sampling algorithm is as follows.

1. Choose a irreducible and symmetric matrix Qi,j such that

N
∑

j=1

Qi,j = 1 (1.86)

holds for i = 1, 2, 3, ..., N , and Qij > 0 for all 1 ≤ i, j ≤ N . The choice of Qi,j is arbitrary.

But once it is chosen, it should not be changed. We may refer to Qij as the random-walk

probability matrix, since it defines the probability of walking from pi to pj .

2. Choose an arbitrary starting point pi. The sample pi is the first element of the

Markov Chain.

3. Draw a random number x from a uniform distribution in the interval (0, 1]. Find

j such that
j−1
∑

k=1

Qi,k < x ≤
j
∑

k=1

Qi,k . (1.87)

In this step, a new sample pj is proposed via a random walk.

4. Draw a random number y from a uniform distribution in the interval (0, 1]. If

Lj/Li ≥ y, add pj into the Markov Chain as the next sample, and let i = j (the

proposed sample pj is accepted). Otherwise add pi into the Markov Chain as the next

sample (the proposed sample pj is discarded).

5. Go to step 3.

Next I will explain why the Markov chain converges, if it does, to the distribution

function Li (i = 1, 2, 3, ..., N). Let us assume the distribution of collected samples in

the Markov chain converges, and the probability that pi appears in the chain is L̃i (for

i = 1, 2, ..., N). There are two possible ways to get pi in the chain, one is that the previous
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sample in the chain is also pi, and the proposed sample is rejected. The probability for

such a thing to happen is

Pcase 1 = L̃i
∑

j|Lj<Li

Qij

(

1 − Lj
Li

)

. (1.88)

The second possible case will be that the previous sample is pj, the proposed sample is

pi, and it is accepted. The probability for that is

Pcase 2 =
∑

j|Lj<Li

L̃jQji +
∑

j|Lj≥Li
L̃jQji

(Li
Lj

)

. (1.89)

The convergence requires Pcase 1 + Pcase 2 = L̃i, which is equivalent to

N
∑

j=1

Qij

(

L̃j
Lj

− L̃i
Li

)

min (Li,Lj) = 0 . (1.90)

The above equality should hold for i = 1, 2, ..., N . Apparently L̃i = Li (for i = 1, 2, ..., N)

is a solution. Again I will skip the proof of uniqueness of the solution. More rigorous

discussions and more MCMC algorithms can be found in Ref. [55] and the references

therein.

1.8 Outline of the Thesis

In Chapter 2 the quintessence and phantom dark energy models are parameterized, and

then confronted with the most current and forecast data. This project is in collaboration

with my advisors – Professor Bond and Professor Kofman.

In Chapter 3 the early-universe inflationary expansion history is studied with two

approaches: one is the bottom-up approach using blind band-power analyses; another

is the top-down approach using numerically calculated primordial power spectra, going

beyond the slow-roll assumption. In this project I collaborate with Professor Bond,

Professor Kofman, Professor C. Contaldi, and Dr. P. Vaudrevange.

In Chapter 4 the large scale curvature fluctuations from preheating are studied. This

work has been published in Phys. Rev. Lett. [56].
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Chapter 5 summarizes the published works [6, 7], where we show the rich observable

features of particle production during inflation.

In Chapter 6, the work that is published in Ref. [57] studying preheating in Roulette

inflation models is discussed.

Chapter 7 is related to published work [58], where we present the cosmological con-

straints on the lifetime of decaying dark matter.

In Chapter 8 we conclude.



Chapter 2

Parameterizing and Measuring Dark

Energy Trajectories from

Late-Inflatons

2.1 Introduction

In this chapter we study the quintessence and phantom dark energy models, based on

our work [59]. For completeness I include most of the derivations and contents from [59].

Please cite our original paper if these contents are being used.

2.1.1 Running Dark Energy and its Equation of State

One of the greatest mysteries in physics is the nature of dark energy (DE) which drives

the present-day cosmic acceleration, inferred to exist from supernovae data [23, 24], and

from a combination of cosmic microwave background and large scale structure data [25].

Although there have been voluminous outpourings on possible theoretical explanations

of dark energy, recently reviewed in Refs. [28, 60, 61, 62, 63], we are far from consensus.

An observational target is to determine if there are temporal (and spatial) variations

36
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beyond the simple constant Λ. Limits from the evolving data continue to roughly center

on the cosmological constant case Λ, which could be significantly strengthened in near-

future experiments – or ruled out. We explore the class of effective scalar field models for

dark energy evolution in this chapter, develop a 3-parameter expression which accurately

approximates the dynamical histories in most of those models, and determine current

constraints and forecast future ones on these parameters.

The mean dark energy density is a fraction Ωde of the mean total energy density,

ρde(ln a) ≡ ρtotΩde , 3Mp
2H2(a) = ρtot(a) , (2.1)

which is itself related to the Hubble parameter H through the energy constraint equation

of gravity theory as indicated. Ωde(a) rises from a small fraction relative to the matter

at high redshift to its current ∼ 0.7 value.

Much observational effort is being unleashed to determine as much as we can about

the change of the trajectory ρde with expansion factor a, expressed through a logarithmic

running with respect to ln a:

−1

2

d ln ρde

d ln a
≡ ǫde(ln a) ≡

3

2
(1 + wde) ≡

3

2

(ρde + pde)

ρde
. (2.2)

This ρde-run is interpreted as defining a phenomenological average pressure-to-density

ratio, the dark energy equation of state (EOS). The total “acceleration factor”, ǫ ≡ 1+q,

where the conventional “deceleration parameter” is q ≡ −aä/ȧ2 = −d ln(Ha)/d ln a, is

similarly related to the running of the total energy density:

−1

2

d ln ρtot

d ln a
≡ ǫ = ǫmΩm + ǫdeΩde , Ωm + Ωde = 1 . (2.3)

Eq. (2.3) shows ǫ is the density-weighted sum of the acceleration factors for matter

and DE. Matter here is everything but the dark energy. Its EOS has ǫm = 3/2 in the

non-relativistic-matter-dominated phase (dark matter and baryons) and ǫm = 2 in the

radiation-dominated phase.
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2.1.2 The Semi-Blind Trajectory Approach

We would like to use the data to constrain ρde(ln a) with as few prior assumptions on the

nature of the trajectories as is feasible. However, such blind analyses are actually never

truly blind, since ρde or wde is expanded in a truncated basis of mode functions of one

sort or another: necessarily there will be assumptions made on the smoothness associated

with the order of the mode expansion and on the measure, i.e., prior probability, of

the unknown coefficients multiplying the modes. The most relevant current data for

constraining wde, SNIa compilations, extends back only about one e-folding in a, and

probes a double integral of wde, smoothing over irregularities. The consequence is that

unless wde was very wildly varying, only a few parameters are likely to be extractable no

matter what expansion is made.

Low order expansions include the oft-used cases of constant w0 6= −1 and the 2-

parameter linear expansion in a [64, 65, 66, 67, 68, 69, 70],

w(a) = w0 + wa(1 − a) , (2.4)

adopted by the Dark Energy Task Force (DETF) [71]. The current observational data we

use in this chapter to constrain our more physically-motivated parameterized trajectories

are applied in Figure 2.1 to w0 and wa, assuming uniform uncorrelated priors on each.

The area of the nearly-elliptical 1-sigma error contour has been used to compare how

current and proposed dark energy probes do relative to each other; its inverse defines the

DETF “figure of merit” (FOM).

Constant wde and Eq. (2.4) can be considered to be the zeroth and first order poly-

nomial expansion in the variable 1− a. Why not redshift z [67, 72] or the scale factor to

some power [72] or ln a? Why pivot about a = 1.

Why only linear in a? Why not expand to higher order? Why not use localized

spline mode functions, the simplest of which is a set of contiguous top hats (unity in a

redshift band, zero outside)? These cases too have been much explored in the literature,
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Figure 2.1: The marginalized 68.3% CL (inner contour) and 95.4% CL (outer contour)

constraints on w0 and wa for the conventional DETF parametrization w = w0+wa(1−a),

using the current data sets described in § 2.4. The white point is the cosmological constant

model. The solid red line is a slow-roll consistency relation, Eq. (2.52) derived in § 2.6.2

(for a fixed Ωm0 = 0.29, as inferred by all of the current data). The tilted dashed gray

line shows wa = −1 − w0. Pure quintessence models restrict the parameter space to

1+w0 > 0 and wa above the line, whereas in the pure phantom regime, 1+w0 < −0 and

wa would have to lie below the line. Allowing for equal a priori probabilities to populate

the other regions is quite problematical theoretically, and indeed the most reasonable

theory prior would allow only the pure quintessence domain.
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both for current and forecast data. The method of principal component (parameter

eigenmode) analysis takes orthogonal linear combinations of the mode functions and of

their coefficients, rank-ordered by the error matrix eigenmodes [73, 74]. As expected only

a few linear combinations of mode function coefficients are reasonably determined. Thus

another few-parameter approach expands wde in many modes localized in redshift but

uses only the lowest error linear combinations. At least at the linearized level, the few

new parameters so introduced are uncorrelated. However, the eigenmodes are sensitive to

the data chosen and the prior probabilities of the mode parameters. An alternative to the

wde expansion is a direct mode expansion in ǫ, considered at low order by Ref. [75]; since

the ǫm part is known, this is an expansion in (ǫde − ǫm)Ωde, in which case wde becomes a

derived trajectory; for wde parameterizations it is ǫ(a) that is the derived trajectory.

The partially blind expansions of 1 + wde are similar to the early universe inflation

expansions of the scalar power spectrum Ps(ln k) [76], except in that case one is “running”

in “resolution”, ln k. However there is an approximate relation between the comoving

wavenumber k and the time when that specific k-wave went out of causal contact by

crossing the instantaneous comoving “horizon” parameterized by Ha. This allows one to

translate the power spectra ln k-trajectories into dynamical lnHa-trajectories, Ps(lnHa).

Lowest order is a uniform slope ns−1 = d lnPs/ ln k; next order is a running of that slope,

rather like the DETF linear wde expansion. Beyond that, one can go to higher order, e.g.,

by expanding in Chebyshev polynomials in ln k, or by using localized modes to determine

the power spectrum in k-bands. Generally there may be tensor and isocurvature power

spectra contributing to the signals, and these would have their own expansions.

In inflation theory, the tensor and scalar spectra are related to each other by an

approximate consistency condition: both are derivable from parameterized acceleration

factor trajectories defining the inflaton equation of state, 1 + wφ(a) = 2ǫ/3 (with zero

Ωm in early universe inflation). Thus there is a very close analogy between phenomeno-

logical treatments of early and late universe inflation. However, there is a big difference:
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power spectra can be determined by over ∼10 e-foldings in k from CMB and Large Scale

Structure data on clustering, hence over ∼10 e-foldings in a, whereas dark energy data

probe little more than an e-folding of a. This means that higher order partially blind

mode expansions are less likely to bear fruit in the late-inflaton case.

2.1.3 Physically-motivated Late-inflaton Trajectories

This arbitrariness in semi-blind expansions motivates our quest to find a theoretically-

motivated prior probability on general dark energy trajectories characterized by a few

parameters, with the smoothness that is imposed following from physical models of their

origin rather than from arbitrary restrictions on blind paths. Such a prior has not been

much emphasized in dark energy physics, except on an individual-model basis. The

theory space of models whose trajectories we might wish to range over include:

(1) quintessence, with the acceleration driven by a scalar field minimally coupled to

gravity with an effective potential with small effective mass and a canonical kinetic energy

[77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87];

(2) k-essence, late inflation with a non-canonical scalar field kinetic energy as well as a

potential [88, 89, 90, 91];

(3) F (R, φ) models, with Lagrangians involving a function of the curvature scalar R or

a generalized dilaton φ, that can be transformed through a conformal mapping into a

theory with an effective scalar field, albeit with interesting fifth force couplings to the

matter sector popping out in the transform [92, 93, 94, 95, 96, 97];

(4) phantom energy with wde < −1, and negative effective kinetic energy, also with a

potential [28, 98, 99, 100] .

In this chapter, we concentrate on the quintessence class of models, but allow tra-

jectories that would arise from a huge range of potentials, with our fitting formula only

deviating significantly when |1 +wde| > 0.5. A class of models that are not included due

to the limit of our method are ones with dark energy having damped oscillations before
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settling into a minimum Λ [101, 102].

We also extend our paths to include ones with wde < −1, the phantom regime where

the null energy condition [98] is violated. This can be done by making the kinetic energy

negative, at least over some range, but such models are ill-defined. There have been

models proposed utilizing extra UV physics, such as with a Lorentz-violating cut-off [103]

or with extra fields [104]. Regions with wde < −1 are consistent with current observations,

so a semi-blind phenomenology should embrace that possibility. It is straightforward to

extend our quintessence fitting formula to the phantom region, so we do, but show results

with and without imposing the theoretical prior that these are highly unlikely.

The evolution of wde for a quintessence field φ depends on its potential V (φ) and its

initial conditions. For a flat Friedmann-Robertson-Walker (FRW) universe with given

present matter density ρm0 and dark energy density ρde0, any function wde(a) satisfying

0 ≤ 1 + wde ≤ 2 can be reverse-engineered into a potential V (φ) and an initial field

momentum, Πφ,ini ≡ φ̇ini. (The initial field value φini can be eliminated by a translation

in V (φ), and the sign of Πφ,ini by a reflection in V (φ).) Given this one-to-one mapping

between {V (φ), |φ̇ini|; ρm0} and {w(a), ρde0; ρm0}, we may think we should allow for all

wde trajectories. Generally, these will lead to very baroque potentials indeed, and unre-

alistic initial momenta. The quintessence models with specific potentials that have been

proposed in the literature are characterized by a few parameters, and have a long period

in which trajectories relax to attractor ones, leading to smooth trajectories in the observ-

able range at low redshift. These are the simple class of potentials we are interested in

here: our philosophy is to consider “simple potentials” rather than simple mathematical

forms of wde(a). The potentials which we quantitatively discuss in later sections include:

power-laws [77, 105]; exponentials [77]; double exponentials [81, 106, 107, 108, 109];

cosines from pseudo-Nambu Goldstone bosons (pnGB) [79, 101]; supergravity (SUGRA)

motivated models [82]. Our general method applies to a much broader class than these

though: we find the specific global form of the potential is not relevant because the rela-
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tively small motions on its surface in the observable range allow only minimal local shape

characteristics to be determined, and these we can encode with the three key physical

variables parameterizing our wde. Even with the forecasts data to come, we can refine our

determinations but not gain significantly more information – unless the entire framework

is shown to be at variance with the data.

2.1.4 Tracking and Thawing Models

Quintessence models are often classified into tracking and thawing models [110, 85, 87,

86, 111, 112]. Tracking models were first proposed to solve the coincidence problem, i.e.,

why the dark energy starts to dominate not very long after the epoch of matter-radiation

equality (∼ 7.5 e-folds). However, a simple negative power-law tracking model that

solves the coincidence problem predicts wde & −0.5 today, which is strongly disfavoured

by current observational data. In order to achieve the observationally favoured wde ≈ −1

today, one has to assume the potential changes at an energy scale close to the energy

density at matter-radiation equality. The coincidence problem is hence converted to a

fine-tuning problem. In this chapter we take the tracking models as the high-redshift

limit, and parameterize it with a “tracking parameter” εφ∞ that characterizes the at-

tractor solution. The thawing models, where the scalar field is frozen at high redshift

due to large Hubble friction, can be regarded as a special case of tracking models where

the tracking parameter is zero. Because of the nature of tracking behaviour, where all

solutions regardless of initial conditions approach an attractor, we do not need an extra

parameter to parameterize the initial field momentum.

In either tracking models or thawing models the scalar field has to be slowly-rolling or

moderately-rolling at low redshift, so that the late-universe acceleration can be achieved.

The main physical quantity that affects the dynamics of quintessence in the late-universe

accelerating epoch is the slope of the potential. The field momentum is “damped” by

Hubble friction, and the slope of the potential will determine how fast the field will be
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rolling down; actually, as we show here, it is the φ-gradient of lnV that matters, and this

defines our second “slope parameter” εs.

It turns out that a two-parameter formula utilizing just εφ∞ and εs works very well,

because the field rolls slowly at low redshift, indeed is almost frozen, so the trajectory

does not explore changes in the slope of lnV . However, we want to extend our formula

to cover the space of moderate-roll as well as slow-roll paths. Moreover, in cases in which

lnV changes significantly, even slow-roll paths may explore the curvature of lnV as

well as its φ-gradient. Accordingly, we expanded our formula to encompass such cases,

introducing a third parameter ζs, which is related to the second φ-derivative of lnV ,

explicitly so in thawing models.

2.1.5 Parameter Priors for Tracking and Thawing Models

Of course, there is one more important fourth parameter, characterizing the late-inflaton

energy scale, such as the current dark energy density ρde,0 at redshift 0. This is related

to the current Hubble parameter H0 ≡ 100h km s−1Mpc−1, the present-day fractional

matter density Ωm0, and the current fractional dark energy density ΩΛ ≡ Ωde,0 = 1 −

Ωm0h
2/h2: ρde,0 = 3Mp

2H2
0ΩΛ. With CMB data, the sound-crossing angular scale at

recombination is actually used, as is the physical density parameter of the matter, Ωm0h
2,

which is typically derived from separately determined dark matter and baryonic physical

density parameters, Ωdm0h
2 and Ωb0h

2. With any nontrivial wde EOS, this depends upon

the parameters of wde as well as on one of h or the inter-related zero redshift density

parameters. The important point here is that the prior measure is uniform in the sound-

crossing angular scale at recombination and in Ωdm0h
2 and Ωb0h

2, not in h or the energy

scale of late-inflation. If the quantities are well-measured, as they are, the specific prior

does not matter very much.

What to use for the prior probability of the parameters of wde, in which most are

not well-determined? The prior chosen does matter, and has to be understood when
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assessing the meaning of the derived constraints. Usually a uniform prior in w0 and wa

is used for the DETF form, Eq. (2.4). The analogue for our parameterization is to be

uniform in the relatively well-determined εs, but we show what variations in the measure

on it do, e.g., using
√

|εs| or disallowing phantom trajectories, εs > 0. The measure

for each of the other two parameters is also taken to be uniform. (Our physics-based

parameterization leads to an approximate “consistency relation” between w0 and wa, a

strong prior relative to the usual uniform one.)

In § 2.2, we manipulate the dynamic equations for quintessence and phantom fields to

derive our approximate solution, wde(a|εs, εφ∞, ζs,Ωm0). We show how well this formula

works in reproducing full trajectories computed for a variety of potentials. In § 2.4 we

describe our extension of the CosmoMC program package [113] to treat our parameter-

ized DE and the following updated cosmological data sets: Type Ia Supernova (SN),

galaxy power spectra that probe large scale structure (LSS), weak lensing (WL), Cosmic

Microwave Background (CMB), and Lyman-α forest (Lyα). The present-day data are

used to constrain our dynamical wde(a). In § 2.5, we investigate how future observational

cosmology surveys can sharpen the constraints on wde(a|εs, εφ∞, ζs,Ωm0). We restrict our

attention to flat universes. We discuss our results in § 2.6.

2.2 Late-inflation Trajectories and Their Parameter-

ization

2.2.1 The Field Equations in Terms of Equations of State

We assume the dark energy is the energy density of a quintessence (or phantom) field,

with a canonical kinetic energy and an effective potential energy V (φ). This is derived

from a Lagrangian density

L = ±1

2
∂µφ∂

µφ− V (φ) , (2.5)
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where + is for quintessence (− for phantom). In what follows for readability we implicitly

assume a quintessence field, unless otherwise stated. For homogeneous fields the energy

density, pressure and equation of state are

ρφ =
1

2
Π2
φ + V (φ), pφ =

1

2
Π2
φ − V (φ), (2.6)

1 + wφ ≡
ρφ + pφ
ρφ

=
Π2
φ

ρφ
, Πφ ≡ dφ

dt
. (2.7)

Since we identify the dark energy with an inflaton, we hereafter use φ as the subscript

rather than “de”. The field φ does not have to be a fundamental scalar, it could be an

effective field, an order parameter associated with some collective combination of fields.

A simple way to include the phantom field case is to change the kinetic energy sign to

minus, although thereby making it a ghost field with unpalatable properties even if it is

the most straightforward way to get 1 + wde < 0.

The two scalar field equations, for the evolution of the field, φ̇ = Πφ, and of the field

momentum, Π̇φ = −3HΠφ − ∂V/∂φ, transform to

φ̇/H :
√

ǫφΩφ = ±dψ/d ln a , ψ ≡ φ/(
√

2Mp) , (2.8)

Π̇φ/H :
d2ψ

(d ln a)2
+ 3

(

1 − ǫ

3

) dψ

d ln a

= ±3
√

ǫV Ωφ

√

Ωφ

(

1 − ǫφ
3

)

. (2.9)

The sign is arbitrary, depending upon whether the field rolls down the potential to larger

ψ (+) or smaller ψ (−) as the universe expands. For definiteness we take it to be positive.

The second equation can be recast into a first order equation for d ln
√

ǫφΩφ/d ln a which

is implicitly used in what follows, we prefer to work instead with a first integral, the

energy conservation equation (2.2).

As long as Πφ is strictly positive, ψ is as viable a time variable as ln a, although it only

changes by
√

ǫφΩφ in an e-folding of a. Thus, along with trajectories in ln a, we could

reconstruct the late-inflaton potential V (φ) as a function of φ and the energy density as
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a function of the field:

√
ǫV ≡ −1

2

d lnV

dψ
=

√
ǫφ

√

Ωφ

(

1 +
d ln ǫφ/d ln a

6(1 − ǫφ/3)

)

, (2.10)

√
ǫE ≡ −1

2

d ln ρφ
dψ

=

√
ǫφ

√

Ωφ

. (2.11)

(2.12)

These “constraint” equations require knowledge of both ǫφ and Ωφ, but the latter runs

according to

1

2

d ln[Ω−1
φ − 1]

d ln a
= ǫφ − ǫm , (2.13)

hence is functionally determined. Eq. (2.13) is obtained by taking the difference of

Eqs. (2.2) and (2.3) and grouping all Ωφ terms on the left hand side.

For early universe inflation with a single inflaton, Ωφ = 1, and ǫφ = ǫE = ǫ. The

field momentum therefore obeys the relation Πφ = −2Mp
2∂H/∂φ, which is derived more

generally from the momentum constraint equation of general relativity [114].

2.2.2 A Re-expressed Equation Hierarchy Conducive to Ap-

proximation

The field equations form a complete system if V (ψ) is known, but what we wish to do is

to learn about V . So we follow the running of a different grouping of variables, namely

the differential equations for the set of parameters
√
ǫφ and

√

ǫV Ωφ, with a third equation

for the running of Ωφ, Eq. (2.13):

d
√
ǫφ

d ln a
= 3(

√

ǫV Ωφ −
√
ǫφ)(1 − ǫφ/3) , (2.14)

d ln
√

ǫV Ωφ

d ln a
= (ǫφ − ǫm)(1 − Ωφ) + 2γ

√
ǫφ
√

ǫV Ωφ. (2.15)

The reason for choosing Eq. (2.15) for
√

ǫV Ωφ rather than the simpler running equation

in
√
ǫV

1

2
d ln

√
ǫV /d ln a = γ

√
ǫφ
√

ǫV Ωφ , (2.16)
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is because we must allow for the possibility that the potential could be steep in the early

universe, so ǫV may be large, even though the allowed steepness now is constrained. For

tracking models where a high redshift attractor with constant wφ exists, ǫV Ωφ tends to

a constant, and is nicely bounded, allowing better approximations.

(The φ → −φ symmetry allows us to fix the ±√
ǫφ and ±

√

ǫV Ωφ ambiguity to the

positive sign. For phantom energy, we use the negative sign, in Eqs. (2.14 -2.16). In these

equations, we have restricted ourselves to fields that always roll down for quintessence,

or up for phantom. The interesting class of oscillating quintessence models [101, 102] are

thus not considered.)

These equations are not closed, but depend upon a potential shape parameter γ,

defined by

γ ≡ ∂2 lnV/∂ψ2

(∂ lnV/∂ψ)2
. (2.17)

It is related to the effective mass-squared in H2 units through

m2
φ,eff/H

2 = 6(1 + γ)ǫV Ωφ(1 − ǫφ/3) , (2.18)

Determining how γ evolves involves yet higher derivatives of lnV , ultimately an infi-

nite hierarchy unless the hierarchy is closed by specific forms of V . However, although

not closed in
√

ǫV Ωφ, the equations are conducive for finding an accurate approximate

solution, which we express in terms of a new time variable,

y ≡
√

Ωφapp , Ωφapp ≡ ρφeq

ρm(a) + ρφeq
=

(a/aeq)
3

1 + (a/aeq)3
, (2.19)

where the subscript “eq” defines variables at the redshift of matter-DE equality:

aeq ≡ (ρm0/ρm,eq)
1/3, ρm,eq = ρφeq, Ωφeq = Ωm,eq = 1/2 . (2.20)

Thus y is an approximation to
√

Ωφ, pivoting about the expansion factor aeq in the small

ǫφ limit. By definition yeq ≡ y|a=aeq = 1/
√

2.
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2.2.3 The Parameterized Linear and Quadratic Approximations

We now show how working with these running variables leads to a 1-parameter fitting

formula, expressed in terms of

εs ≡ ±ǫV |a=aeq . (2.21)

The 2-parameter fitting formula adds the asymptotic EOS factor

εφ∞ ≡ ±ǫV Ωφ|∞ . (2.22)

The minus sign in Eq. (2.21) and (2.22) is a convenient way to extend the parameteri-

zation to cover the phantom case. Here ∞ refers to the a ≪ 1 limit i. The asymptotic

equality of our 2 key variables is derived, not imposed, a consequence of the attractor.

In addition, if the initial field momentum is far from the attractor, it would add another

variable, but the damping to the attractor goes like a−6 in ǫφ, hence should be well

established before we get to the observable regime for trajectories.

The 3-parameter form involves, in addition to these two, a parameter which is a

curious relative finite difference of d
√

ǫV Ωφ/dy about yeq/2:

ζs ≡
d
√

ǫV Ωφ/dy|eq − d
√

ǫV Ωφ/dy|∞
d
√

ǫV Ωφ/dy|eq + d
√

ǫV Ωφ/dy|∞
. (2.23)

The physical content of the “running parameter” ζs is more complicated than that of

εs and εφ∞. It is related not only to the second derivative of lnV , through γ, thus

extending the slope parameter εs to another order, but also to the field momentum.

As we mentioned in the introduction, the small stretch of the potential surface over

which the late-inflaton moves in the observable range make it difficult to determine the

second derivative of lnV from the data (§ 2.6. In thawing models, for which the field

momentum locally traces the slope of lnV , the dependence of ζs on the field momentum

iFor tracking models ǫV Ωφ ∝ ǫm at high redshift varies by a factor of 3/4 from the radiation-
dominated era to the matter-dominated era. In practice we actually use |εφ∞|/ǫm as a parameter, and

replace εφ∞ with
|εφ∞|

ǫm
ǫmsgn (εs) in our wφ parametrization.
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can be eliminated. However, if the field momentum is sufficiently small, wφ does not

respond to d2 lnV/dφ2. We discuss these cases in § 2.6.

What we demonstrate is that a relation linear in y,

√

ǫV Ωφ ≈ √
εφ∞ + (

√
εs −

√

2εφ∞)y , (2.24)

is a suitable approximation. It yields the 2-parameter formula for ǫφ, which maintains

the basic form linear in parameters,

√
ǫφ ≈ √

εφ∞ +
(√

εs −
√

2εφ∞
)

F

(

a

aeq

)

, (2.25)

with

F (x) ≡
√

1 + x3

x3/2
− ln

[

x3/2 +
√

1 + x3
]

x3
. (2.26)

The 1-parameter case has
√
εφ∞ set to zero, hence the simple

√

ǫV Ωφ ≈
√

εsΩφapp

and ǫφ = εsF
2(a/aeq), which we regard as the logical physically-motivated improvement

to the conventional single-w0 parameterization, 1 + w = (1 + w0)F
2(a/aeq)/F

2(1/aeq).

The approximation for the 3-parameter formula adds a quadratic correction in y:

√

ǫV Ωφ ≈ √
εφ∞ + (

√
εs −

√

2εφ∞)y

[

1 − ζs

(

1 − y

yeq

)]

, (2.27)

and a more complex form for the DE trajectories,

√
ǫφ =

√
εφ∞ + (

√
εs −

√

2εφ∞)

[

F

(

a

aeq

)

+ ζsF2

(

a

aeq

)]

, (2.28)

with

F2(x) ≡
√

2

[

1 − ln (1 + x3)

x3

]

− F (x) . (2.29)

To cover the phantom case, we put absolute values everywhere that εs and εφ∞ appears,

and multiply 1 + wde by the sign, sgn (εs) = sgn (εφ∞).

2.2.4 Asymptotic Properties of V (φ) &
√
εφ∞

The class of quintessence/phantom models where the field is slow-rolling in the late-

universe accelerating phase is of primary interest. Qualitatively this implies ǫφ ≪ 1 at
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low redshift, but we would like to have a parametrization covering a larger prior space

allowing for higher ǫφ and |dψ/d lna|, and let observations determine the allowed speed of

the roll. Therefore we also include moderate-roll models in our parametrization, making

sure our approximate formula covers well trajectories with values of |1+wφ| which extend

up to 0.5 and ǫφ to 0.75 at low redshift.

At high redshift the properties of the potential are poorly constrained by observations,

and we have a very large set of possibilities to contend with. Since the useful data for

constraining DE is at the lower redshifts, what we really need is just a reasonable shutoff

at high redshift. One way we tried in early versions of this work was just to cap ǫφ at some

ǫφ∞ at a redshift well beyond the probe regime. Here we still utilize a cap as a parameter,

but let physics be the guide to how it is implemented so that the ǫφ trajectories smoothly

join higher to lower redshifts.

The way we choose to do this here is to restrict our attention to tracking and thawing

models for which the asymptotic forms are easily parameterized. Tracking models have an

early universe attractor which implies ǫφ indeed becomes a constant ǫφ∞, which is smaller

than ǫm. If we apply this attractor to equation (2.14), we obtain
√

ǫV Ωφ is constant at

high redshift, equaling our
√
εφ∞. By definition, thawing models have ǫφ∞ = 0.

Consider the two high redshift possibilities exist for the tracking models. One has ǫφ =

ǫm, which, when combined with equation (2.15), implies the potential structure parameter

γ vanishes, hence one gets an an exponential potential as an asymptotic solution for V , as

discussed in Refs. [115, 116, 28]. Another possibility has ǫφ < ǫm, hence from Eq. (2.15)

we obtain γ = (ǫm− ǫφ)/(2ǫφ) is a positive constant. Solving this equation for γ yields a

negative power-law potential, V ∝ ψ−1/γ . For both cases, we must have an asymptotically

constant γ ≥ 0 to give a constant

εφ∞ → ǫm/(1 + 2γ∞) , (2.30)

where γ∞ is the high redshift limit of the shape parameter Eq. (2.17). This also shows

why εφ∞/ǫm is actually a better parameter choice than εφ∞, since the ratio is conserved
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as the matter EOS changes.

The difference between tracking and thawing models is not only quantitative, but is

also qualitative. For tracking models, the asymptotic limit
√
εφ∞ has a dual interpreta-

tion. One is that the shape of potential has to be properly chosen to have the asymptotic

limit of the right hand side of

√
εφ∞ →

√

ǫV Ωφ|∞ = −1

2

d lnV

dψ
|∞
√

Ωφ∞, (2.31)

existing. We already know how to choose the potential – it has to be asymptotically

either an exponential or a negative power-law. Another interpretation directly relates

√
εφ∞ to the property of the potential through Eq. (2.30). In the thawing scenario,

Eq. (2.15) is trivial, and the shape parameter γ is no longer tied to the vanishing εφ∞,

though Eq. (2.31) still holds.

For phantom models the motivation for tracking solutions is questionable. We nev-

ertheless allow for reciprocal ǫφ-trajectories as for quintessence, just flipping the sign to

extend the phenomenology to 1 + wφ < 0, as has become conventional in DE papers.

What we do not do, however, is try to parameterize trajectories that cross ǫφ = 0, as is

done in the DETF w0-wa phenomenology (see Fig. 2.1).

2.2.5 The Two-Parameter wφ(a|εs, εφ∞)-Trajectories

In the slow-roll limit, εV does not vary much. As mentioned above, we use εs ≡ ±ǫV,eq
evaluated at the equality of matter and dark energy to characterize the (average) slope

of lnV at low redshift, and Ωm0 or h as a way to encode the actual value of the potential

V0 at zero redshift. To model V (φ) at high redshift for both tracking models and thawing

models, we use the interpretation (2.31) characterized by the “tracking parameter” εφ∞ =

(ǫV Ωφ)|∞, which is bounded by the tracking condition 0 ≤ εφ∞/ǫm ≤ 1.

Eq. (2.14) shows that to solve for ǫφ(a) one only needs to know
√

ǫV Ωφ plus an initial

condition,
√
εφ∞, but that too is just

√

ǫV Ωφ in the a→ 0 limit. We know as well
√

ǫV Ωφ
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at aeq, namely
√

εs/2. If the rolling is quite slow, ǫV will be nearly εs, and Ωφ will be

nearly Ωφapp = y2, hence

√

ǫV Ωφ ≈
√

εsΩφapp =
√
εsy , (2.32)

the 1-parameter approximation. But we are also assuming we know the y = 0 boundary

condition,
√

ǫV Ωφ|∞ as well as this yeq value. If we make the simplest linear-y relation

through the two points, we get our first order approximation, Eq. (2.24), for
√

ǫV Ωφ.

To get the DE EOS wφ, we need to integrate Eq. (2.14), with our
√

ǫV Ωφ approxi-

mation. In facilitate this, we make another approximation,

(
√

ǫV Ωφ −
√
ǫφ)(1 − ǫφ/3) ≈ (

√

ǫV Ωφ −
√
ǫφ) , (2.33)

which is always a good one: at high redshift the tracking behaviour enforces
√

ǫV Ωφ −
√
ǫφ → 0; and at low redshift ǫφ/3 ≪ 1. The analytic solution for

√
ǫφ retains the form

linear in the two parameters, yielding Eq. (2.25), and hence the wφ approximation

1 + wφ(a) ≈
2

3
[
√
εφ∞ +

(√
εs −

√

2εφ∞
)

F (
a

aeq

)]2, (2.34)

where F is defined in (2.26).

The three DE parameters aeq, εφ∞, and εs are related to Ωm0 through the constraint

equation
[

1 + exp

(

2

∫ 1

aeq

(ǫφ − ǫm)
da

a

)]−1

= 1 − Ωm0 (2.35)

obtained by integrating Eq. (2.13) from a = aeq, where by definition Ωφ,eq = 1/2, to

today, a = 1, hence Ωm0 is actually quite a complex parameter, involving the entire

wφ(a; aeq, εs, εφ∞)/a history, as of course is aeq(Ωm0, εs, εφ∞), which we treat as a derived

parameter from the trajectories. The zeroth order solution for aeq(Ωm0, εs, εφ∞) only

depends upon Ωm0:

aeq ≈
(

Ωm0

1 − Ωm0

)1/3

, (2.36)

In conjunction with the approximate 2-parameter wφ, (2.34), this aeq completes our first

approximation for DE dynamics.
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2.2.6 The Three-parameter Formula

The linear approximation of
√

ǫV Ωφ(y) and the zeroth order approximation for aeq rely on

the slow-roll assumption. For moderate-roll models (|1 + wφ| & 0.2), the two-parameter

approximation is often not sufficiently accurate, with errors sometimes larger than 0.01.

We now turn to the improved 3-parameter fit to wφ; we need to considerably refine aeq

as well to obtain the desired high accuracy.

The quadratic expansion Eq. (2.27) of
√

ǫV Ωφ in y leads to Eq. (2.28) for
√
ǫφ, in terms

of the two functions F and F2 of a/aeq. Since ζs term is a “correction term”, we impose a

measure restriction on its uniform prior by requiring |ζs| . 1. Thus wφ(a; aeq, εs, εφ∞, ζs)

follows, with the phantom paths covered by

ǫφ,phantom(a; εs, εφ∞, ζs) = sgn (εs)ǫφ,quintessence(a; |εs|, |εφ∞|, ζs) . (2.37)

We also need to improve aeq, using the constraint Eq. (2.35). We do not actually need

the exact solution, but just a good approximation that works for Ωm0 ∼ 0.3. For example,

the following fitting formula is sufficiently good (error . 0.01) for 0.1 < Ωm0 < 0.5:

ln aeq(Ωm0, εs, εφ∞, ζs) =
ln [Ωm0/(1 − Ωm0)]

3 − sgn (εs)δ
, (2.38)

where the correction to the index is

δ ≡
{

√

|εφ∞| + [0.91 − 0.78Ωm0 + (0.24 − 0.76Ωm0)ζs]

(

√

|εs| −
√

2|εφ∞|
)}2

+

[

√

|εφ∞| + (0.53 − 0.09ζs)

(

√

|εs| −
√

2|εφ∞|
)]2

. (2.39)

2.3 Exact DE Paths for Various Potentials Compared

with our Approximate Paths

Equations (2.28) and (2.38-2.39) define a three-parameter ansatz for wφ = −1 + 2/3ǫφ

(with an implicit fourth parameter for the energy scale, Ωm0). We numerically solve wφ(a)
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for a wide variety of quintessence and phantom models, and show our wφ(a) formula

follows the exact trajectories very well. This means we can compress this large class of

theories into these few parameters.

The dark energy parameters εs, εφ∞ and ζs are calculated using definitions (2.21),

(2.22) and (2.23). We choose z = 50 to calculate the high-redshift quantities such

as εV |a≪1. Unless otherwise specified, the initial condition is always chosen to be at

ln a = −20, roughly at the time of BBN, at which point the initial field momentum is

set to be zero (although it quickly relaxes). The figures express φ in units of the reduced

Planck Mass Mp, hence are
√

2ψ. The initial field value is denoted as φini.

In the upper panel of Figure 2.2 we show that once the memory of the initial input

field momentum is lost, our parameterization fits the numerical solution for a negative

power-law potential quite well over a vast number of e-foldings, even if 1+w is not small

at low-redshift.

We know that in order to achieve both wφ ∼ wm at high redshift, which can alleviate

the dark energy coincidence problem, and also slow-roll at low redshift, the negative

power-law potential (or exponential potential) needs modification to fit the low redshift.

One of the best known examples of a potential that does this is motivated by supergravity

[82]:

V (φ) = V0

(

Mp

φ

)α

exp

(

φ2

2Mp
2

)

, (2.40)

where α ≥ 11. An example for a SUGRA model is shown in the middle panel of Figure 2.2:

it fits quite well for the redshifts over which we have data, with some deviation once ǫφ

exceeds unity at high redshift.

Another popular tracking model is the double exponential model, an example of which

is given in the lower panel of Figure 2.2.

In Figures 2.3 we show how robust our parametrization is for slow-roll and moderate-

roll cases, taking examples from a variety of examples of popular thawing models. The

horizontal axis is now chosen to be linear in a, since there is no interesting early universe
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wφ

V = V0φ - 2

Ωm  = 0.25

−1
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1

wφ

V = V0φ - 11eφ2/2

Ωm  = 0.3

−20 −10 0

−1
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1

ln a

wφ

V = V0(e - 5φ + e - 0.5φ)

Ωm  = 0.27

Figure 2.2: Examples of tracking models. The solid red lines and dot-dashed green lines

are numerical solutions of wφ with different φini. Upper panel: φini;red = 10−7Mp, and

φini;green = 10−6Mp. Middle panel: φini;red = 0.01Mp, and φini;green = 0.03Mp. Lower

panel: φini;red = −12.5Mp, and φini;green = −10.5Mp. The dashed blue lines are w(a)

trajectories calculated with the three-parameter w(a) ansatz (2.28). The rapid rise at

the beginning is the a−6 race of ǫφ from our start of zero initial momentum towards the

attractor.
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dynamics in thawing models. The different realizations of the wφ trajectories are pro-

duced by choosing different values for the potential parameters – λ for the upper panel,

and V0 for the middle and lower panels. The initial values of φ are chosen to ensure

Ωφ(a = 1) = 1 − Ωm0 is satisfied. We see that in general our wφ(a) parametrization

works well up to |1 + w| ∼ 0.5. The case shown in the bottom panel is the potential

of a pseudo Nambu Goldstone boson, which has been much discussed for early universe

inflation due to φ being an angular variable with a 2π shift symmetry that is easier to

protect from acquiring large mass terms, and has been invoked for late universe inflation

as well [101].

In Figure 2.4 we demonstrate how the parameter ζs improves our parametrization to

sub-percent level. In the slow-roll regime, the ζs correction is small, and both the two-

and three-parameter formulas can fit the numerical solution well. But the ζs correction

becomes important in the moderate-roll regime.

The last example, shown in Figure 2.5, is a phantom model.

2.4 Observational Constraints

In this section we compile the updated cosmological data sets and use them to constrain

the quintessence and phantom models.

2.4.1 Current Data Sets Used

For each of the data sets used in this chapter we either wrote a new module to calculate

the likelihood or modified the CosmoMC likelihood code to include dynamic w models.

Cosmic Microwave Background (CMB)

Our complete CMB data sets include WMAP-7yr [1, 2], ACT [117], BICEP [118],

QUaD [119], ACBAR [120, 121, 122, 123], CBI [124, 125, 126, 127], BOOMERANG

[3, 4, 5], VSA [128], and MAXIMA [129].
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V = V0e - λφ
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wφ

V = V0φ2
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−1
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wφ

V = V0  [ 1 + cos(φ/0.6) ] 
Ωm  = 0.27

Figure 2.3: Examples of thawing models. The solid red lines are numerical solutions of

wφ. The dashed blue lines are calculated using the three-parameter w(a) formula (2.28).

See the text for more details.
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wφ

V = V0φ - 1

Ωm  = 0.26

Figure 2.4: An example showing how the ζs parameter improves our parametrization in

the moderate-roll case. The solid red lines are numerical solutions of wφ. The dashed

blue lines are w(a) trajectories calculated with the three-parameter ansatz (2.28). The

dotted green lines are two-parameter approximations obtained by forcing ζs = 0.

0 0.5 1
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−1.5

−1
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wφ

phantom model

V = V0e - φ2/2

Ωm  = 0.3

Figure 2.5: An example of phantom model. The solid red lines are numerical solutions

of wφ. The dashed blue lines are w(a) trajectories calculated with the three-parameter

w(a) formula (2.28).
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For high resolution CMB experiments we need to take account of other sources of

power beyond the primary CMB. We always include the CMB lensing contribution

even though with current data its influence is not yet strongly detected [120]. For

most high resolution data sets, radio sources have been subtracted and residual con-

tributions have been marginalized over [117]. However, other frequency-dependent

sources will be lurking in the data, and they too should be marginalized over. We

follow a well-worn path for treating the thermal Sunyaev-Zeldovich (SZ) secondary

anisotropy [130, 131]: we use a power template from a gasdynamical cosmological

simulation (with heating only due to shocks) described in [132, 133] with an overall

amplitude multiplier ASZ, as was used in the CBI and ACBAR papers. This tem-

plate does not differ by much from the more sophisticated ones obtained by [134]

that include cooling and feedback. Other SZ template choices with different shapes

and amplitudes [135, 136] have been made by WMAP and ACT and SPT, and as a

robustness alternative by CBI. A key result is that as long as the “nuisance param-

eter” ASZ is marginalized, other cosmological parameters do not vary much as the

SZ template changes. We make no other use of ASZ here, although it can encode

the tension between the cosmology derived from the CMB primary anisotropy and

the predictions for the SZ signal in that cosmology.

In addition to thermal SZ, there are a number of other sources: kinetic SZ with

a power spectrum whose shape roughly looks like the thermal SZ one [134]; sub-

mm dusty galaxy sources, which have clustering contributions in addition to Poisson

fluctuations. Thermal SZ is a small effect at WMAP and Boomerang resolution. At

CBI’s 30 GHz, kinetic SZ is small compared with thermal SZ, but it is competitive

at ACBAR, QUaD’s and ACT’s 150 GHz and of course dominates at the ∼220

GHz thermal-SZ null, but the data is such that little would be added by separately

modelling the frequency dependence and shape difference of it, so de facto it is

bundled into the generic ASZ of the frequency-scaled thermal-SZ template. We
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chose not to include the SPT data in our treatment because the influence of the

sub-mm dusty galaxy sources should be simultaneously modelled, and where its

band-powers lie (beyond ℓ ∼ 2000), the primary SZ power is small.

Type Ia Supernova (SN)

We use the Kessler et al [27] data set, which combines the SDSS-II SN samples

with the data from the ESSENCE project [137, 138], the Supernova Legacy Survey

(SNLS) [26], the Hubble Space Telescope (HST) [139, 140, 141, 142], and a compila-

tion of nearby SN measurements. Two light curve fitting methods, MLCS2K2 and

SALT-II, are employed in [27]. The different assumptions about the nature of the

SN color variation lead to a significant apparent discrepancy in w. For definiteness,

we choose the SALT-II-fit results in this chapter, but caution that if we had tried

to assign a systematic error to account for the differences in the two methods the

error bars we obtain would open up, and the mean values for 1+w may not centre

as much around zero as we find.

Large Scale Structure (LSS)

The LSS data are for the power spectrum of the Sloan Digital Sky Survey Data

Release 7 (SDSS-DR7) Luminous Red Galaxy (LRG) samples [143]. We have mod-

ified the original LSS likelihood module to make it compatible with time-varying

w models.

Weak Lensing (WL)

Five WL data sets are used in this chapter. The effective survey area Aeff and

galaxy number density neff of each survey are listed in Table 2.1.

For the COSMOS data, we use the CosmoMC plug-in written by Julien Lesgourgues

[145] with our modifications for dynamic dark energy models.

For the other four weak lensing data sets we use the covariance matrices given by
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Table 2.1: Weak Lensing Data Sets

Data sets Aeff (deg2) neff (arcmin−2)

COSMOS[144, 145] 1.6 40

CFHTLS-wide[146, 147] 22 12

GaBODS[148, 149] 13 12.5

RCS[148, 149] 53 8

VIRMOS-DESCART[150, 147] 8.5 15

[151]. To calculate the likelihood we wrote a CosmoMC plug-in code. We take the

best fit parameters α, β, z0 for n(z) ∝ (z/z0)
α exp

[

−(z/z0)
β
]

, and marginalize over

z0, assuming a Gaussian prior with a width such that the mean redshift zm has an

uncertainty of 0.03(1+ zm). We have checked that further marginalizing over other

n(z) parameters (α and β) has no significant impact [58].

Lyman-α Forest (Lyα)

Two Lyα data sets are applied: i) the set from [152] consisting of the LUQAS

sample [153] and the data given in [154]; ii) the SDSS Lyα data presented in

[155] and [156]. To calculate the likelihood we interpolate the χ2 table in a three

dimensional parameter space, where the three parameters are amplitude, index,

and the running of linear CDM power spectrum at pivot k = 0.9h Mpc−1.

Other Constraints

We have also used in CosmoMC the following observational constraints: i) the

distance-ladder constraint on Hubble parameter, obtained by the Hubble Space

Telescope (HST) Key Project [20]; ii) constraints from the Big Bang Nucleosyn-

thesis (BBN): Ωb0h
2 = 0.022 ± 0.002 (Gaussian prior) and ΩΛ(z = 1010) < 0.2

[157, 158, 159, 160, 28]; iii) an isotopic constraint on the age of universe 10Gyr <
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Age < 20Gyr [161]. For the combined data sets, none of these add much. They

are useful if we are looking at the impact of the various data sets in isolation on

constraining our parameters.

2.4.2 CosmoMC Results for Current Data

Using our modified CosmoMC, we ran Markov Chain Monte Carlo (MCMC) calculations

to determine the likelihood of cosmological parameters, which include the standard six,

ASZ and our DE parameters, w0-wa for Fig. 2.1 and the new ones εs, |εφ∞|/ǫm and ζs

for most of the rest. Here we use |εφ∞|/ǫm as a fundamental parameter to eliminate the

dependence of εφ∞ on ǫm and the sign of εs, whereas εφ∞ adjusts as one evolves from

a relativistic to non-relativistic matter EOS. The main results are summarized in Ta-

ble 2.2. The basic six are: Ωb0h
2, proportional to the current physical density of baryons;

Ωc0h
2, the physical cold dark matter density; θ, the angle subtended by sound horizon at

“last scattering” of the CMB, at z ∼ 1100; lnAs, with As the primordial scalar metric

perturbation power evaluated at pivot wavenumber k = 0.002Mpc−1; ns, the spectral

index of primordial scalar metric perturbation; τ , the reionization Compton depth. The

measures on each of these variables is taken to be uniform. Derived parameters include

zre, the reionization redshift; Age/Gyr, the age of universe in units of gigayears; σ8, to-

day’s amplitude of the linear-extrapolated matter density perturbations over an top-hat

spherical window with radius 8h−1Mpc. And, of great importance for DE, Ωm0; and H0

in unit of km s-1Mpc-1, which set the overall energy scale of late-inflatons.

We begin with our versions of the familiar contour plots that show how the various

data sets combine to limit the size of the allowed parameter regions. Figures 2.6 and 2.7

shows the best-fit cosmological parameters do depend on the specific subset of the data

that is used. We find most cosmological parameters are stable when we vary the choice of

data sets, The data making the largest differences are: the SDSS-DR7-LRG data driving

Ωm up, and the Lyα data driving σ8 up. We take SN+CMB as a “basis”, for which
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Figure 2.6: The marginalized 68.3% CL and 95.4% CL constraints on σ8 and Ωm0 for the

ΛCDM model vary with different choices of data sets. For each data set a HST constraint

on H0 and BBN constraint on Ωb0h
2 have been used.

Ωm0 = 0.267+0.019
−0.018 and σ8 = 0.817+0.023

−0.021. Adding LSS pushes Ωm0 to 0.292+0.011
−0.010; whether

or not WL and Lyα are added or not is not that relevant, as Figure 2.6 shows. Lyα

pushes σ8 to 0.844+0.015
−0.016. These drifts of best-fit values are at the ∼ 2σ, level in terms of

the σ’s derived from using all of the data sets, as is evident visually in Figure 2.6.

Figure 2.7 shows how the combination of complementary data sets constrains εs and

Ωm0, the two key parameters that determine low-redshift observables. The label “All”

refers to all the data sets described in this section, and “CMB” refers to all CMB data

sets, and so forth. In Figure 2.9, marginalized 2D likelihood contours are shown for all our

DE parameters. The left panel shows that the slope parameter εs and tracking parameter

εφ∞ are both constrained. The constraint on εs limits how steep the potential could be

at low redshift. The upper bound of εφ∞ indicates that the field can not be rolling too

fast at intermediate redshift z ∼ 1. The right panel shows that ζs is not constrained,

and is almost uncorrelated with εs. This is because the current observational data favors
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Table 2.2: Cosmic Parameter Constraints: ΛCDM, w0-CDM, w0-wa-CDM, εs-εφ∞-ζs-

CDM

ΛCDM w = w0 w=w0+wa(1 − a) track+thaw thaw

Current Data: CMB+LSS+WL+SN1a+Lyα

Ωb0h
2 0.0225+0.0004

−0.0004 0.0225+0.0004
−0.0004 0.0225+0.0004

−0.0004 0.0225+0.0004
−0.0004 0.0225+0.0004

−0.0004

Ωc0h2 0.1173+0.0020
−0.0019 0.1172+0.0024

−0.0024 0.1177+0.0025
−0.0023 0.1174+0.0029

−0.0029 0.1175+0.0023
−0.0022

θ 1.042+0.002
−0.002 1.042+0.002

−0.002 1.042+0.003
−0.002 1.042+0.003

−0.002 1.0417+0.0021
−0.0021

τ 0.089+0.014
−0.013 0.090+0.015

−0.014 0.088+0.014
−0.013 0.090+0.015

−0.014 0.088+0.015
−0.014

ns 0.96+0.01
−0.01 0.96+0.01

−0.01 0.96+0.01
−0.01 0.96+0.01

−0.01 0.958+0.011
−0.011

ln(1010As) 3.24+0.03
−0.03 3.24+0.03

−0.03 3.24+0.03
−0.03 3.24+0.03

−0.03 3.239+0.033
−0.033

ASZ 0.56+0.11
−0.15 0.56+0.11

−0.14 0.57+0.11
−0.14 0.56+0.11

−0.14 0.56+0.11
−0.14

Ωm 0.292+0.011
−0.010 0.294+0.012

−0.012 0.293+0.012
−0.012 0.293+0.015

−0.014 0.293+0.013
−0.011

σ8 0.844+0.015
−0.016 0.841+0.026

−0.026 0.847+0.026
−0.026 0.844+0.035

−0.036 0.844+0.024
−0.023

zre 10.8+1.2
−1.1 10.9+1.2

−1.2 10.7+1.1
−1.1 10.9+1.2

−1.2 10.8+1.2
−1.2

H0 69.2+1.0
−1.0 69.0+1.4

−1.4 69.2+1.4
−1.4 69.0+1.9

−1.8 69.1+1.4
−1.4

w0 ... −0.99+0.05
−0.06 −0.98+0.14

−0.11 ... ...

wa ... ... −0.05+0.35
−0.58 ... ...

εs ... ... ... 0.00+0.18
−0.17 −0.00+0.27

−0.29

|εφ∞|/ǫm ... ... ... 0.00+0.21+0.58 ...

ζs ... ... ... n.c.

Forecasted Data Planck2.5yr + low-z-BOSS + CHIME + Euclid-WL + JDEM-SN

Ωb0h
2 0.02200+0.00007

−0.00007 0.02200+0.00007
−0.00007 0.02200+0.00007

−0.00008 0.02200+0.00007
−0.00008 0.02200+0.0007

−0.0007

Ωc0h2 0.11282+0.00024
−0.00023 0.11280+0.00027

−0.00027 0.11282+0.00026
−0.00029 0.1128+0.0003

−0.0003 0.1128+0.0003
−0.003

θ 1.0463+0.0002
−0.0002 1.0463+0.0002

−0.0002 1.0463+0.0003
−0.0002 1.0463+0.0002

−0.0002 1.0463+0.0002
−0.0002

τ 0.090+0.003
−0.003 0.090+0.004

−0.004 0.090+0.004
−0.004 0.090+0.005

−0.005 0.090+0.004
−0.004

ns 0.970+0.002
−0.002 0.970+0.002

−0.002 0.970+0.002
−0.002 0.970+0.002

−0.002 0.970+0.002
−0.002

ln(1010As) 3.115+0.008
−0.008 3.115+0.009

−0.009 3.115+0.009
−0.009 3.115+0.010

−0.010 3.115+0.009
−0.009

Ωm 0.260+0.001
−0.001 0.261+0.002

−0.002 0.260+0.003
−0.003 0.2609+0.0022

−0.0022 0.2605+0.0027
−0.0024

σ8 0.7999+0.0016
−0.0017 0.7994+0.0023

−0.0025 0.800+0.003
−0.003 0.7992+0.0027

−0.0027 0.7996+0.0026
−0.0029

zre 10.9+0.3
−0.3 10.9+0.3

−0.3 10.9+0.3
−0.3 10.9+0.4

−0.4 10.9+0.3
−0.3

H0 72.0+0.1
−0.1 71.9+0.3

−0.3 72.0+0.4
−0.4 71.85+0.37

−0.29 71.94+0.34
−0.36

w0 ... −1.00+0.01
−0.01 −1.00+0.03

−0.03 ... ...

wa ... ... 0.01+0.08
−0.08 ... ...

εs ... ... ... 0.005+0.031
−0.025 0.008+0.056

−0.054

|εφ∞|/ǫm ... ... ... 0.000+0.034+0.093 ...

ζs ... ... ... n.c. n.c.

Tracking + thawing models use wde(a|εs, εφ∞, ζs) of Eq. (2.28). Thawing enforces εφ∞ = 0. n.c. stands

for “not constrained”. H0 has unit km s-1Mpc-1. θ is in unit rad/100.
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Table 2.3: The marginalized 68.3%, 95.4%, and 99.7% CL constraints on εs under differ-

ent prior assumptions.

Prior Constraint

flat prior on εs εs = 0.00+0.18+0.39+0.72
−0.17−0.44−0.82

flat prior on
√

|εs| εs = 0.00+0.09+0.27+0.46
−0.07−0.28−0.52

thawing prior εφ∞ = 0 εs = 0.00+0.27+0.53+0.80
−0.29−0.61−0.98

slow-roll thawing εφ∞ = ζs = 0 εs = −0.01+0.26+0.50+0.70
−0.28−0.59−0.86

quintessence εs > 0 εs = 0.00+0.18+0.39+0.76

0.2 0.25 0.3 0.35

−1

0

1

Ωm

εs

SNCMB

SN + CMB All

Figure 2.7: The marginalized 68.3% CL and 95.4% CL constraints on εs and Ωm0, using

different (combinations) of data sets. This is the key DE plot for late-inflaton models of

energy scale, encoded by 1−Ωm0 and potential gradient defining the roll-down rate,
√
εs.
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slow-roll (|1+wφ| ≪ 1), in which case the ζs correction in wφ is very small. Another way

to interpret this is that a slowly rolling field does not “feel” the curvature of potential.

In Section 2.6 we will discuss the meaning and measurement of ζs in more detail.

Because of the correlation between εs and εφ∞, the marginalized likelihood of εs

depends on the prior of εφ∞. On the other hand, the constraint on εs will also depend

on the prior on εs itself. For example, we can apply a flat prior on d lnV/dφ|a=aeq,

rather than a flat prior on the squared slope εs. Other priors we have tried are the

“thawing prior” εφ∞ = 0, the “quintessence prior” εs > 0, and “slow-roll thawing prior”

εφ∞ = ζs = 0. The results are summarized in Table 2.3.

In Figure 2.8 we show the reconstructed trajectories of the dark energy EOS, Hubble

parameter, distance moduli, and the growth factor D of linear perturbations. The wφ

information has also been compressed into a few bands with errors, although that is only

to guide the eye. The off-diagonal correlation matrix elements between bands is large,

encoding the coherent nature of the trajectories. As well, the likelihood surface in all

wφ-bands is decidedly non-Gaussian, and should be characterized for this information

to be statistically useful in constraining models by itself. The other variables shown

involve integrals of wφ, and thus are not as sensitive to detailed rapid change aspects

of wφ, which, in any case, our late-inflaton models do not give. The bottom panels

show how impressive the constraints on trajectory bundles should become with planned

experiments, a subject to which we now turn.

2.5 Future Data Forecasts

In this section ,we discuss the prospects for further constraining the parameters of the

new w(a) parameterization using a series of forthcoming or proposed cosmological ob-

servations: from the Planck satellite CMB mission [162, 163, 51]; from a JDEM (Joint

Dark Energy Mission, [71]) for Type Ia supernova observations; from a weak lensing sur-
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Figure 2.8: The best-fit trajectory (heavy curve) and a sample of trajectories that are

within one-sigma (68.3% CL). In the upper panels the current data sets are used, and

lower panels the forecast mock data. From left to right the trajectories are the dark

energy equation of state, the Hubble parameter rescaled with H−1
0 (1+z)3/2, the distance

moduli with a reference ΛCDM model subtracted, and the growth factor of linear per-

turbation rescaled with a factor (1 + z) (normalized to be unit in the matter dominated

regime). The current supernova data is plotted agianst the reconstructed trajectories of

distance moduli. The error bars shown in the upper-left and lower-left panels are one-σ

uncertainties of 1 + w in bands 0 < a ≤ 0.25, 0.25 < a ≤ 0.5, 0.5 < a ≤ 0.75 and

0.75 < a ≤ 1.
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Figure 2.9: Marginalized 2D likelihood contours for our three DE parameters derived

using “ALL” current observational data. The inner and outer contours are 68.3% CL

and 95.4% CL contours. (We actually show |εφ∞|/ǫm since that is the attractor whether

one is in the relativistic ǫm = 2 or non-relativistic ǫm = 3/2 regime.)

Table 2.4: Fiducial model used in future data forecasts

Ωb0h
2 Ωc0h

2 h σ8 ns τ

0.022 0.1128 0.72 0.8 0.97 0.09

vey by the Euclid satellite [164]; and from future BAO data that could be obtained by

combining low-redshift galaxy surveys with a redshifted-21-cm survey of moderate z ∼ 2.

The low-redshift galaxy surveys for BAO information can be achieved by combining a

series of ground-based galaxy observations, such as BOSS [165]. For the 21-cm survey, we

assume a 200m×200m ground-based cylinder radio telescope [166, 167, 168], which is the

prototype of the proposed experiment CHIME (Canadian Hydrogen Intensity Mapping

Experiment).



Chapter 2. Parameterizing and Measureing DE Trajectories 70

Table 2.5: Plank Instrument Characteristics

Channel Frequency (GHz) 70 100 143

Resolutiona (arcmin) 14 10 7.1

Sensitivity b - intensity (µK) 8.8 4.7 4.1

Sensitivity - polarization (µK) 12.5 7.5 7.8

a. Full width at half maximum (FWHM) assuming Gaussian beams.

b. This is for 30 months of integration.

2.5.1 The mock data sets

Planck CMB simulation

Planck 2.5 years (5 sky surveys) of multiple (CMB) channel data are used in the forecast,

with the instrument characteristics for the channels used listed in Table 2.5 using Planck

“Blue Book” detector sensitivities and the values given for the full width half maxima.

For a nearly full-sky (we use fsky = 0.75) CMB experiment, the likelihood L can be

approximated with the following formula [169]:

−2 lnL =
lmax
∑

l=lmin

(2l + 1)fsky

[

−3 +
ĈBB
l

CBB
l

+ ln

(

CBB
l

ĈBB
l

)

+ ln

(

CTT
l CEE

l − (CTE
l )2

ĈTT
l ĈEE

l − (ĈTE
l )2

)

+
ĈTT
l CEE

l + ĈEE
l CTT

l − 2ĈTE
l CTE

l

CTT
l CEE

l − (CTE
l )2

]

, (2.41)

where lmin = 3 and lmax = 2500 have been used in our calculation. Here, Ĉl is the

observed (or simulated input) angular power spectrum, and Cl is the theoretical power

spectrum plus noise.

We use the model described in [170] and [169] to propagate the effect of polarization

foreground residuals into the estimated uncertainties on the cosmological parameters.

For simplicity, only the dominating components in the frequency bands we are using,

i.e., the synchrotron and dust signals, are considered in our simulation. The fraction of
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the residual power spectra are all assumed to be 5%.

JDEM SN simulation

For the JDEM SN simulation, we use the model given by the Dark Energy Task Force

(DETF) forecast [71], with roughly 2500 spectroscopic supernova at 0.03 < z < 1.7 and

500 nearby samples. The apparent magnitude of SN is modelled as

m = M + 5 log10

(

dL
Mpc

)

+ 25

−µLz − µQz2 − µSδnear , (2.42)

where δnear is unity for the nearby samples and zero otherwise.

There are four nuisance parameters in this model. The supernova absolute magnitude

is expanded as a quadratic function M − µLz− µQz2 to account for the possible redshift

dependence of the SN peak luminosity, where M is a free parameter with a flat prior

over −∞ < M < +∞; and for µL and µQ, Gaussian priors µL,Q = 0.00 ± 0.03/
√

2 (the

“pessimistic” case in the DETF forecast) are applied. Finally, given that the near by

samples are obtained from different projects, an offset µS is added to the nearby samples

only. For µS we apply a Gaussian prior µS = 0.00 ± 0.01.

The intrinsic uncertainty in the supernova absolute magnitude is assumed to be 0.1,

to which an uncertainty due to a peculiar velocity 400 km/s is quadratically added.

BAO simulation

The “Baryon Acoustic Oscillations” (BAO) information can be obtained by combining a

series of ground-based low-redshift galaxy surveys with a high-redshift 21-cm survey. We

assume a fiducial galaxy survey with comoving galaxy number density 0.003h3Mpc−3 and

sky coverage 20,000 deg2, which is slightly beyond, but not qualitatively different from

the specification of SDSS-III BOSS (Baryon Oscillation Spectroscopic Survey) project.

The 21-cm BAO survey using a ground-based cylinder radio telescope has been studied

by [166, 167] and [171]. The specifications we have used are listed in Table 2.6.



Chapter 2. Parameterizing and Measureing DE Trajectories 72

Table 2.6: 21-cm BAO Survey Specifications

Parameter Specification

shot noise 0.01h3Mpc−3

survey area 15,000 deg2

number of receivers 4000

integration time 4 years

cylinder telescope 200 m ×200 m

antenna temperature 50K

bias 1

For more details about the BAO forecast technique, the reader is referred to [172]

and [171].

EUCLID Weak Lensing Simulation

We assume a weak lensing survey with the following “Yellow Book” EUCLID specifica-

tions [164]:

fsky = 0.5 , 〈γ2
int〉1/2 = 0.35 , n̄ = 40 galaxies/arcmin2 , (2.43)

where 〈γ2
int〉1/2 is the intrinsic galaxy ellipticity, and n̄ is the average galaxy number

density being observed. At high ℓ, the non-Gaussianity of the dark matter density field

becomes important [173]. For simplicity we use a ℓ-cutoff ℓmax = 2500 to avoid modelling

the high-ℓ non-Gaussianity, which will provide more cosmic information, hence the weak

lensing constraints shown in this chapter are conservative.

We use a fiducial galaxy distribution,

n(z) ∝ (
z

z0
)2 exp

[

−
(

z

z0

)1.5
]

, with z0 = 0.6. (2.44)
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The galaxies are divided into four tomography bins, with the same number of galaxies in

each redshift bin. The uncertainty in the median redshift in each redshift bin is assumed

to be 0.004(1 + zm), where zm is the median redshift in that bin.

In the ideal case in which the galaxy redshift distribution function is perfectly known,

the formula for calculating weak lensing tomography observables and covariance matrices

can be found in e.g. [174]. In order to propagate the uncertainties of photo-z parameters

onto the uncertainties of the cosmological parameters, we ran Monte Carlo simulations

to obtain the covariance matrices due to redshift uncertainties, which are then added to

the ideal covariance matrices.

2.5.2 Results of the Forecasts

The constraints on cosmological parameters from future experiments are shown in Ta-

ble 2.2 below those for current data. The future observations should improve the measure-

ment of εs significantly – about five times better than the current best constraint. There

is also a significant improvement on the upper bound of εφ∞, which together with the

constraint on εs can be used to rule out many tracking models. The running parameter

ζs remains unconstrained.

To compare different dark energy probes, in Figure 2.10 we plot the marginalized

constraints on Ωm0 and εs for different data sets. To break the degeneracy between dark

energy parameters and other cosmological parameters, we apply the Planck-only CMB

constraints as a prior on each of the non-CMB data sets.

The forecasted BAO, WL, and SN results, when combined with the Planck prior, are

all comparable. We note in particular that the ground-based BAO surveys deliver similar

measurements at a fraction of the cost of the space experiments, although of course much

useful collatoral information will come from all of the probes.

The shrinkage in the allowed parameter space is visualized in Figure 2.8 through the

decrease in area of the trajectory bundles from current to future data, showing trajectories
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Figure 2.10: Marginalized 2D likelihood contours; Using mock data and assuming thaw-

ing prior (εφ∞ = 0); The inner and outer contours of each color correspond to 68.3% CL

and 95.4% CL, respectively. See the text for more details.

of 1 + wφ sampled down to the one-sigma level. We also show the mean and standard

deviation of 1 + w at the center of four uniform bands in a. As mentioned above, the

bands are highly correlated because of the coherence of the trajectories, a consequence

of their physical origin. We apply such band analyses to early (as well as late) universe

inflation that encodes such smoothing theory priors in future papers.

Figure 2.8 also plots (1 + z)−3/2(H/H0) =
√

ρtota3/ρtot,0 trajectories, which are flat

in the high redshift matter-dominated regime. They are less spread out than the w

bundle because H depends upon an integral of w. One of the observable quantities

measured with supernovae is the luminosity distance. What we plot is something more

akin to relative magnitudes of standard candles, 5 log10 (dL/dL;ref), in terms of dL;ref , the

luminosity distance of a reference ΛCDM model. For luminosity distance trajectories

reconstructed with the current data we choose a reference model with Ωm0 = 0.29, which

the SDSS LSS data drove us to; for forecasts, we chose Ωm0 = 0.26, what the other



Chapter 2. Parameterizing and Measureing DE Trajectories 75

current data is more compatible with, for the reference. Because the supernova data

only measure the ratio of luminosity distances, for each trajectory we normalize dL/dL;ref

to be unit in the low-redshift limit by varying H0 in the reference model. The error bars

shown are for the current supernova data [27], showing compatibility with ΛCDM, and,

based upon the coherence of the quintessence-based prior and the large error bars, little

flexibility in trying to fit the rise and fall of the data means.

The rightmost panels of Figure 2.8 shows the linear growth factor for dark matter

fluctuations relative to the expansion factor, (1+z)D(z). The normalization is such that

it is unity in the matter-dominated regime. It should be determined quite precisely for

the quintessence prior with future data.

2.6 Discussion and Conclusions

2.6.1 Slow-roll Thawing Models, Their One-parameter Approx-

imation and the Burn-in to It

In slow-roll thawing models, to first order w(z) only depends on two physical quantities:

one determining “when to roll down”, quantified mostly by 1−Ωm0, and one determining

“how fast to roll down”, quantified by the slope of the potential, i.e., εs, since εφ∞ = 0,

and ζs ≈ 0:

1 + wφ|slowroll,thawing ≈
2εs
3
F 2(

a

aeq

) , (2.45)

where F is an analytical function given by Eq. (2.26), and

aeq|slowroll,thawing ≈
(

Ωm0

1 − Ωm0

)1/[3−1.08(1−Ωm0)εs]

, (2.46)

to sufficient accuracy. We plot F 2(x) in the left panel of Figure 2.11. It is zero in the small

a regime and unity in the large a regime, and at aeq is F 2(1) =
[√

2 − ln(1 +
√

2)
]2 ≈

0.284. The right panel of Figure 2.11 plots the derivative dF 2/dx showing |dw/da|
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maximizes around a = aeq (at redshift ∼ 0.4). Three stages are evident in the signifi-

cant time-dependence of dw/da: the Hubble-frozen stage at a ≪ aeq, where w has the

asymptotic value −1; the thawing stage when the dark energy density is comparable to

the matter component; and the future inflationary stage where dark energy dominates

(a ≫ aeq) and a future attractor with 1 + w → 2εs/3 is approached, agreeing with the

well-known early-inflation solution 1 + w = 2ǫV /3.

Even with such models, there is in principle another parameter: the initial field

momentum is unlikely to be exactly on the εφ∞ = 0 attractor. In that case, φ̇ falls

like a−3 until the attractor is reached, a “burn-in” phase. (Such burn-in phases are

evident in Fig. 2.2 for tracking models.) In early work on parameterizing late-inflatons

we added a parameter as to characterize when this drop towards the attractor occurred,

and found it could be (marginally) constrained by the data to be small relative to the

a-region over which the trajectories feel the DE-probing data. However, we decided to

drop this extra parameter for this chapter since the expectation of late-inflaton models

is that the attractor would have been established long before the redshift range relevant

for DE-probes.

The 3-parameter, 2-parameter and 1-parameter fits all give about the same result

for the statistics of εs derived from current data. Figure 2.12 illustrates why we find

εs ≈ 0.0±0.28. It shows the confrontation of banded supernova data on distance moduli

defined by

µ ≡ 25 + 5 log10

(

dL
Mpc

)

, (2.47)

where dL is the physical luminosity distance, with trajectories in µ with differing values

of εs (for the h (or Ωm0) values as described.) The current DE constraints are largely

determined by SN, in conjunction with the Ωmh
2-fixing CMB.



Chapter 2. Parameterizing and Measureing DE Trajectories 77

0 1 2 3
0

0.5

1

x

F
2  (

x)

0 1 2 3
0

0.5

1

x

d 
F

2
 / 

d 
x

Figure 2.11: Left panel: the function F 2(x) with x = a/aeq defined by Eq. (2.26). Right

Panel: the derivative dF 2/dx, showing where wφ changes most quickly in thawing models,

namely near aeq.
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Figure 2.12: The dependence of distance moduli µ(z) on the slope parameter εs for

slow-roll thawing models. The prediction of µ(z) from a reference ΛCDM model with

Ωm0 = 0.29 is substracted from each line. The supernova samples are binned into redshift

bins with bin width ∆z = 0.3.
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2.6.2 A w0-wa Degeneracy for the Slow-roll Thawing Model

Prior

The parameterization (2.45) can be simply related to the phenomenological w0-wa pa-

rameterization by a first order Taylor series expansion about a redshift zero pivot:

1 + w0 ≡
2

3
εsF

2(
1

aeq

), (2.48)

and

wa ≡ −2

3
(εs/aeq)

dF 2(x)

dx

∣

∣

∣

∣

x=1/aeq

. (2.49)

From formula (2.45), it follows that w0 and wa should satisfy the linear relation

1 + w0 + wa(1 − a∗) = 0 , (2.50)

where

a∗ = 1 −

√

1 + a3
eq − a3

eq ln

(

1+
√

1+a3eq

a
3/2
eq

)

6a3
eq

[

ln

(

1+
√

1+a3eq

a
3/2
eq

)

− 1√
1+a3eq

] (2.51)

is roughly the scale factor where the field is unfrozen. Over the range of 0.17 < Ωm < 0.5,

this constraint equation (2.50) can be well-approximated by the formula

1 + w0 + wa

(

0.264 +
0.132

Ωm0

)

= 0 . (2.52)

Such a degeneracy line is plotted in Figure 2.1. Rather than a single w0 parameter,

constraining to this line based on a more realistic theoretical prior obviously makes for a

more precise measurement of w. On the other hand, once the measurements of w0 and wa

are both sufficiently accurate, the slow-roll thawing models could be falsified if they do not

encompass part of the line. Obviously though it would be better to test deviations relative

to true thawing trajectories rather than the ones fit by this perturbation expansion about

redshift zero. One way to do this is to demonstrate that 1 + w∞ is not compatible with

zero, as we now discuss.
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2.6.3 Transforming w0-wa and εs-εφ∞ Contours into w0-w∞ Con-

tours

The DETF w0-wa parameterization which is linear in a can be thought of as a param-

eterization in terms of w0 and w∞ = wa + w0 (or ǫde,0 and ǫde,∞ in the DE acceleration

factor language). The upper panel w0-wa contour map in Fig. 2.13 shows that it is only a

minor adjustment of the w0-wa of Fig. 2.1. If we said there is a strict dichotomy between

trajectories that are quintessence and trajectories that are phantom, as has been the case

in our treatment in this chapter, only the two of the four quadrants of Fig. 2.13 would

be allowed. (In the w0-wa figures, the prior looks quite curious visually, in that the line

wa = −(1+w0) through the origin has only the region above it allowed in the 1+w0 > 0

regime, and only the region below it allowed in the 1 + w0 < 0 regime.)

To make this issue more concrete, we show in the lower panel of Fig. 2.13 what

happens for our physics-motivated 2-parameter linear model, Eq. 2.34, except it is linear

for ±
√

|1 + wde|, and in the “time variable” F not in a. In terms of wφ0 and wφ∞, we

have
√
ǫφ =

√
ǫφ0+(

√
ǫφ∞−√

ǫφ0) [1 − F (a/aeq)/F (1/aeq)]. The prior measure on 1+wφ0

and wφ∞ are uniform as in the linear-a case. Once the prior that only 2 quadrants are

allowed is imposed upon the linear-a case, it looks reasonably similar to the lower panel.

To illustrate that the determination of our various parameters actually depends upon

an extended redshift regime, one can construct window functions, that is redshift-filters,

for the parameters. These determine how an error in a parameter is built up by a sum of

deviations of the observational data from the observable constructed using the model for

wde, using the maximum likelihood formula. This shows that the window functions are

quite extended, not concentrated around zero redshift for w0, not concentrated at high

redshift for w∞ or εφ∞ and not concentrated at aeq for εs. An illustration of the redshift

reach of the εs parameter is Fig. 2.12 for the Supernova observable, namely a magnitude

difference. The specific window functions are very data-dependent of course.
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Figure 2.13: The upper panel shows the marginalized 68.3% (inner contour) and 95.4%

(outer contour) constraints on w0 and w∞ for the conventional linear DETF parametriza-

tion, recast as w = w∞ +(w0 −w∞)a, using the current data sets described in § 2.4. It is

a slightly tilted version of the w0-wa version in Fig. 2.1. The demarcation lines transform

to just the two axes, with the upper right quadrant the pure quintessence regime, and

the lower right quadrant the pure phantom regime. If the cross-over of partly phantom

and partly quintessence are excluded, as they are for our late-inflaton treatment in this

chapter, the result looks similar to the lower panel, in which the 2-parameter εs-εφ∞ for-

mula has been recast into 2ε0/3 and 2ε∞/3, via
√
ε0 =

√
εφ∞ +(

√
εs−

√

2εφ∞)F (1/aeq).

However, as well the prior measure has also been transformed, from our standard uni-

form dεsdεφ∞ one to a uniform dε0dεφ∞ one. The quadrant exclusions are automatically

included in our re-parameterization.
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2.6.4 ζs, the Potential Curvature and the Difficulty of Recon-

structing V (φ)

For slow-roll thawing quintessence models, the running parameter ζs can be related to

the second derivative of lnV . Using the single-parameter approximation we can approx-

imately calculate dφ/d lna at a = aeq. The result is:

dφ

d ln a

∣

∣

∣

∣

a=aeq

=
√

2Mp

√

ǫφΩφ

∣

∣

∣

a=aeq
≈ 0.533

√
εsMp . (2.53)

An immediate consequence is that the amount that φ rolls, at least at late time, is small

compared with the Planck mass. In the slow-roll limit, to the zeroth order, Eq. (2.27)

can be reformulated as

d
√

2εV
dN

|a=aeq ≈ 3

2
√

2
ζs
√
εs . (2.54)

Combining Eqs. (2.53-2.54), and that Mp
2d2 lnV/dφ2 = −d√2εs/dφ, we obtain

ζs ≈ −CMp
2

2

d2 lnV

dφ2
= −C

4

d2 lnV

dψ2
, (2.55)

where

C ≡ 8

3

(

1 − ln (1 +
√

2)√
2

)

≈ 1.005 . (2.56)

For phantom models C is negative.

We have shown in § 2.5 that, for the fiducial ΛCDM model (with εs = εφ∞ = 0),

the running parameter ζs cannot be measured. For a nearly-flat potential, the field

momentum is constrained to be very small, hence so is the change δφ, so the second

order derivative of lnV is not probed. To demonstrate what it takes to probe ζs, we

ran simulations of fiducial models with varying εs (0, 0.25, 0.5, and 0.75). The resulting

forecasts for the constraints on εs and ζs, are shown in Figure 2.14. We conclude that

unless the true model has a large εs & 0.5, which is disfavored by current observations

at nearly the 2σ level, we will not be able to measure ζs. Thus if the second derivative

of lnV is of order unity or less over the observable range, as it has been engineered
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Figure 2.14: The 68.3% CL (inner contours) and 95.4% (outer contours) CL constraints

on εs and ζs, using forecasted CMB, WL, BAO and SN data. The thawing prior (εφ∞ = 0)

has been used to break the degeneracy between εs and εφ∞. The four input fiducial

models labeled with red points have ζs = 0 and, from bottom to top, εs = 0, 0.25, 0.5,

and 0.75, respectively. Only for large gradients can ζs be measured and a reasonable stab

at potential reconstruction be made

to be in most quintessence models, its actual value will not be measurable. However,

if |Mp
2d2 lnV/dφ2| ≫ 1, the field would be oscillating. Though in their own right,

oscillatory quintessence models are not considered in this work.

2.6.5 Field Momentum and the Tracking Parameter εφ∞

The late universe acceleration requires the field to be in a slow-roll or at most a moderate-

roll at low redshift. In tracking models, the high redshift ǫφ constancy implies the kinetic

energy density follows the potential energy density of the scalar field: Π2
φ/2V → εφ∞/(3−
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Figure 2.15: The dependence of wφ(z) on εφ∞ and ζs. We have fixed Ωm0 = 0.27 and

εs = 0.5. The red solid lines correspond to ζs = 0, green dashed lines ζs = −0.5, and

blue dotted lines ζs = 0.5. For each fixed ζs, the lines from bottom to top correspond to

εφ∞ = 0, 0.3, 0.6, and 0.9.

εφ∞). The field could be fast-rolling in the early universe, with large εφ∞ and a steep

potential, and indeed is the case for many tracking models. If the potential is very

flat, field momenta fall as a−3, The rate of Hubble damping in the flat potential limit

is φ̇ ∝ a−3. However, as proposed in most tracking models, the potential is steep at

high redshift, and gradually turns flat at low redshift. The actual damping rate itself

is related to the field momentum, which again relies on how steep potential is at high

redshift. The complicated self-regulated damping behavior of field momentum is encoded

in the tracking parameter εφ∞ in Eq. (2.28) (see Figure 2.15 where the damping of field

momentum is visualized in w(z) space). At high redshift the approximation φ̇ ∼ a−3

completely fails, but at low redshift the damping rate asymptotically approaches φ̇ ∼ a−3.

Since dark energy is subdominant at high redshift, the observational probes there

are not very constraining. In the 3-parameter approximation, instead of an asymptotic

ǫφ∞, we could use a moderate redshift (z ∼ 1) pivot zpivot, with variables εφpivot, εs,
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and the curvature parameter ζs, and the asymptotic regime a controlled extrapolation.

Indeed, using the method of § 2.6.3, we could define everything in terms of pivots of ǫφ,

for example at a = 1 as we used in § 2.6.3, and a third about half way in between, for

example at aeq, which is about 0.7, so zeq ∼ 0.4. The formula would remain the same,

but the measure (prior on the parameters) would be different. At very high redshift

where dark energy is negligible, there is essentially no observational constraint. The

reconstructed w(z) trajectories in Figure 2.8 should really be regarded as low-redshift

observational constraints extrapolated to high-redshift. The tracking assumption that we

have used throughout this chapter provides one, but not a unique extrapolation method

that extrapolates w(z) to high redshift. The extrapolation method defines the prior of

φ̇pivot and the details how the damping rate of φ̇ approaches a−3. These may affect the

marginalized posterior likelihood of εs. An example is that a flat prior 0 ≤ εφ∞ < 1

gives 0.00+0.18
−0.17, while the “thawing prior” (εφ∞ = 0 or equivalently φ̇pivot ≈ 0) gives

εs = −0.00+0.27
−0.29. However, the high-redshift observables, such as the Hubble parameter

H(z), the luminosity distance dL(z), and the linear perturbation growth rate D(z), as

shown in Figure 2.8, are not sensitive to the high-redshift extrapolation of w(z). For a

model that has time-varying attractor, such as the SUGRA model shown in the middle

panel of Figure 2.2, the high redshift extrapolation will be inaccurate. But the lack of

data at very high redshift allows us to apply our parametrization to these models.

2.6.6 Using Our wφ Parametrization

We believe the FOM of future DE experiments should not be evaluated using only ad

hoc parametrizations, when we do have physical models to follow. The physics-based

dark energy EOS parametrization wφ(a|εs, εφ∞, ζs,Ωm0) provides an alternative to the

widely used phenomenological wde parametrizations, e.g., Eq. (2.4), although using it

generally requires more sophisticated calculations. To facilitate general-purpose use of

our parametrization, we wrote a fortran90 module that calculates wφ(a|εs, εφ∞, ζs,Ωm0)
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(http://www.cita.utoronto.ca/∼zqhuang/work/wphi.f90).

Suppose that one has in mind a specific quintessence potential V (φ). How can our

constraints, in particular on ǫs, be used to test viability? The first thing is to see what

ǫV looks like at a function of φ. One does not know φeq of course, but it had better lie

in the range for ǫs allowed by the data. The model would be ruled out if no φ has ǫV

penetrating the allowed region. Otherwise, the field equation of motion has to be solved

to get φeq, and hence ǫs from its definition. Such a calculation is inevitable because

quintessence models do not solve the fine-tuning problem. For tracking models, the low-

redshift dynamics is usually designed (i.e., are fine-tuned) to deviate from an attractor.

For thawing models, the initial value of φ∞ (to which φ is frozen at high redshift) needs

to be fine-tuned as well.

2.7 Appendix: Comparison with Other Parameteri-

zations

The constant w model and the linear w models, w = w0 +wa(1−a) or w = w0 +w1z with

a cutoff [67, 72], are the simplest wde parameterizations widely used in the literature. An

advantage is that they can fit many dark energy models, including those beyond scalar

field models, at low redshifts. A disadvantage is that they fail at z & 1 for most physical

models, and in this high-precision cosmology era we cannot ignore adequate inclusion

of the z ∼ 1 information. For this reason there are various three-parameter or four-

parameter approximations proposed to improve w at higher redshifts. Some examples

are simple extensions of w0-wa:

An expansion quadratic in (1−a) with a wb parameter added to w0, wa [175, 67, 72],

w(a) = w0 + wa(1 − a) + wb(1 − a)2 . (2.57)
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Replacement of (1 − a) by (1 − ab), with b a parameter added to w0, wa [72],

w(a) = w0 + wa(1 − ab) . (2.58)

Four parameter models include:

w(a) = w0w1
ap + aps

w1ap + w0a
p
s
, (2.59)

where w0, w1, as, p are the parameters [176];

w(a) = w0 + (wm − w0)
1 + eac/∆

1 + e(ac−a)/∆
1 − e(1−a)/∆

1 − e1/∆
, (2.60)

where w0, wm, ac,∆ are constants [177];

w(a) = wf +
∆w

1 + (a/at)1/τ
, (2.61)

where wf ,∆w, at, τ are the parameters [72].

Many of these four-parameter models describe a wφ-transition characterized by an

initial w, today’s w, a transition redshift, and a duration of transition. For the tracking

models they are meant to describe, such a phenomenology introduces three parame-

ters to describe essentially one degree of freedom (the tracking attractor). Instead our

parametrization consistently solves the tracking wφ(a).

[178] has done similar work for the negative power-law tracking models, though did

not model the low-redshift slow-roll regime, making his parameterization much less useful

than ours for comparing with data.

Slow-roll quintessence models have been studied by, e.g., [179, 112, 180], but our

work makes significant improvements. Firstly, we have chosen a more optimal pivot

a = aeq to expand lnV (φ), whereas the other works expand V (φ) at either a ≪ 1 or
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a = 1. As a result, we approximate wφ at the sub-percent level in the slow-roll regime

|1+w| < 0.2 compared with the other approximations failing at |1+wφ| > 0.1. Secondly,

with the field momentum from the tracking regime incorporated, our three-parameter

wφ(a) ansatz can also fit the more extreme moderate-roll and tracking models with an

accuracy of a few percent. Since current data allow a relatively large region of parameter

space (|1 + wφ| . 0.2 at 99.7% CL), a slow-roll prior with |1 + wφ| ≪ 1 should not be

imposed as other papers have done. Thirdly, we have extended the parameterization to

cover phantom models, though that is arguably not a virtue.

2.7.1 ρde(z) and H(z) reconstruction

One has to integrate wφ(z) once to get the the dark energy density ρφ(z) and the Hubble

parameter H(z). Observational data are often directly related to either H(z) or ρde(z),

and not sensitive to wde(z) variations. Thus one may prefer to directly parameterize

ρde(z) [66, 181] or H(z) [182, 181, 183] on phenomenological grounds. A semi-blind

expansion of H(z) or ρde(z), e.g., in polynomials or in bands, differs from one in wde(z),

since the prior measures on the coefficients are radically altered. By contrast, a model

such as ours for wde(z; εs, εφ∞, ζs) characterized by physical parameters is also a model

for H(z; εs, εφ∞, ζs) or ρde(z; εs, εφ∞, ζs), obtained by integration.

Where the freedom does lie is in the prior measures imposed on the parameters, a

few examples of which were discussed in Section 2.4.

2.7.2 V (φ) reconstruction

For thawing models, our parameters εs and ζs are based on a local expansion of lnV (φ)

at low redshift. One should obtain similar results by directly reconstructing the local

V (φ). An attempt at local V (φ) reconstruction was done in [184], where a polynomial

expansion was used,

V (φ) = V0 + V1φ+ V2φ
2 + ... , (2.62)
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with φ chosen to be zero at present. A result highlighted in that paper is that there is

a strong degeneracy between V1 and φ̇0. We shall see that this degeneracy is actually a

result of the prior, and not something that observational data is telling us, as we now

show.

For simplicity we assume that Ωm0 and h are known, hence the parameter V0 is hence

fixed. Although V1 is defined at the pivot a = 1, it is approximately proportional to
√
εs

since ǫV varies slowly. Because φ̇0 is a function of 1 + w|z=0, the degeneracy between V1

and φ̇0 is roughly the degeneracy between εs and ǫφ0, an expression of the low-redshift

dynamics being mainly dependent upon the slope of lnV . This is explicitly shown in

Figure 2.15.

Huterer et al [86] tried to do V (φ) reconstruction using what was then recent obser-

vational data. They used RG flow parameters ǫV , ηV , etc. expanded about the initial

redshift zstart = 3. The constraint they found on the parameter ǫV |z=3 is very weak. From

our work, this is understandable because the high-redshift dynamics are determined by

the tracking parameter rather than by εV . They also calculated the posterior probability

of εV at redshift zero, which is much better constrained. Their result is consistent with

what we have obtained for εs. Also the large uncertainty in ηV |z=0 they found is similar

to our result for ζs.

Recently [185] have proposed Chebyshev expansions of V (z) or wφ(z), a method

we have applied to treat early universe inflation [76], but as we have discussed in the

introduction there is de facto much less information in the ∼ one e-folding in a that DE

probes cover than the ∼ 10 e-foldings in a that CMB+LSS power spectrum analyses

cover.
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Scanning Inflationary Trajectories

3.1 Introduction

In previous chapter we studied the accelerated expansion in late universe, for which we

are mostly interested in the homogeneous expansion history ǫ(t) defined in Eq. (1.20).

In addition to the obvious fact that the accelerated expansion changes the geometrical

distances, it can also change the CMB power spectra via Integrated Sachs-Wolf effect

[186] and the growth factor D(z) via Hubble friction. Very similarly the expansion his-

tory during early-universe inflation is imprinted on the superhorizon comoving curvature

perturbations, which later enter the horizon and become observable. In this chapter we

will discuss the parametrization of the primordial power spectra from inflation.

The expansion history of early-universe inflation is fully defined through the ǫ trajec-

tory. By definition of accelerated inflation the ǫ trajectory satisfies 0 < ǫ(t) < 1. The

endpoint ǫ = 1 formally ends the inflation.

Traditionally the inflationary dynamics are described via the slow-roll approximation

through expansion in orders of variables ǫ and d ln ǫ/d ln a, defining a restricted set of

spectral parameters such as scalar power law index ns, running nrun ≡ dns/d ln k and

tensor index nt ≡ d lnPT (k)/d ln k. In addition, the amplitude is usually parametrized

89
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by a scalar power As and a tensor-to-scalar ratio r. These parameters are defined at a

given pivot point, a wavenumber kpivot. A typical pivot point is kpivot = 0.05Mpc-1 or

kpivot = 0.002Mpc-1. At low order r ≈ −8nt defines the consistency relation for single-

field inflation. These are used to parametrize the form of the scalar (curvature) PS and

tensor (gravity wave) PT power spectra which determine cosmic observables such as CMB

, WL and LSS.

Major efforts are currently under way to detect the tensor modes in the CMB polariza-

tion. This is a challenging signal to observe given the potential foreground contamination

of the B-type polarization where a pure tensor contribution is found. A detection of r

however is crucial for inflationary model building as it fixes the energy scale of inflation

and breaks the degeneracy in the determination of the shape of the underlying potential.

So far, the only theoretical limits on the energy scale of inflation come from arguments

from reheating, while the scalar power spectrum does not provide any information about

the energy scale of inflation.

Here, we advocate a different approach to reconstruct the primordial power spectra.

Instead of starting off with (a family) of scalar field potentials, we aim at reconstructing

the shape of the primordial tensor and scalar power spectra independent of theoretical

priors (in the sense of expecting certain shapes of the scalar field potential). Instead,

we let observational data almost freely decide the shapes of the power spectra, using

two different paradigms. The goal is to reconstruct – in a model-independent way –

nontrivial features in the primordial power spectra, if there are any, without imposing

strong theoretical priors. On the other hand, if no interesting features are found with our

method, the slow-roll assumption will be robustly supported, rather than being defined

as a prior.

To this end, we consider spectra features produced by some non-standard processes.

Examples of such models are particle production during inflation [6, 7] that we will dis-

cuss in Chapter 5, cosmological fluctuations from preheating [56] that will be discussed
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in Chapter 4, and “curvaton” models [187, 188]. In these models the consistency rela-

tion between tensor and scalar spectra breaks down. We hence let the scalar and tensor

spectrum vary independently. In order to generate spectra with a finite number of param-

eters, we have to impose certain smoothing conditions (priors), implicitly defined by the

interpolation method. We vary the interpolation method to show that the dependence

on the smoothness prior is weak, provided that proper number of knots are used i.

Secondly, we consider spectra produced by single-field inflation with exotic features in

the potential that can break down the slow roll approximation. Some extreme examples

are discussed in e.g. Ref. [189], and we show one of these in Figure 3.1. For these

kinds of models we will impose the single field consistency condition, in effect forcing

all observables to be derivable from a single real scalar field potential. Once again, we

will strive to be agnostic about the shape of the potential. All that we require is an

inflationary period.

This chapter is structured as follows. In Section 3.2 we introduce the current and

forecast data sets used in this chapter, and update the constraints on the traditional

parametrization of primordial power spectra. Section 3.3 briefly introduce different sta-

tistical methods to study trajectories. Section 3.4 introduces the different possible param-

eterizations of background trajectories for the scalar and tensor power spectra without

assuming a consistency condition between them. Section 3.5 discusses the trajectories in

the case of inflation driven by a single real scalar field. We summarize our results and

conclude in Section 3.6.

iThe criterion is that the reduced χ2 is not significantly smaller than 1, or expressed in the Bayesian
language, the Bayesian evidence is not too low.
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Figure 3.1: Top panel: the “Starobinsky potential”. The two linear pieces of potential

V (φ) are connected by a quadratic piece with width 0.04Mp. Bottom panel: the power

spectra generated in this inflation model. The solid black line and dashed blue line are

numerically calculated PS and PT , respectively. The dotted green lines are the slow-roll

approximations (1.60) and (1.61). The dotted red line at the bottom is the ǫ trajectory.
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3.2 Updating the Traditional Parametrization

3.2.1 Data Sets

We run MCMC simulations to determine the likelihood of cosmological parameters, using

the publicly available parallel code CosmoMC [113] with our modifications for arbitrary

input of primordial power spectra.

The current data sets we have used are described in Section 2.4 (see also [59]), al-

though for weak lensing and Lyα we use different treatment to allow more general pri-

mordial power spectra. For weak lensing data we use the Halofit formula [190] to map

the linear matter power spectrum to nonlinear power spectrum. Because we are consid-

ering non-standard forms of primordial spectra, the Halofit formula can be inaccurate ,

potentially washing out bump features by non-linear dynamics. To model this additional

uncertainty, we introduce two nuisance parameters αh and βh

lnPnl = e−k
2r2nl lnPhalofit +

(

1 − e−k
2r2nl

)

× (lnPsmooth + αh + βhkrnl) , (3.1)

where Phalofit is calculated using the original halofit formula code, with the nonlinear

scale rnl as a byproduct. Here lnPsmooth is obtained by fitting lnPhalofit as a quadratic

function of ln k in the range where ln(krnl) > −1 and k < Mpc−1. We used priors

−0.2 < αh < 0.2 and −0.2 < βh < 0.2, allowing about 20% uncertainty of Pnl on

scales ∼ 1/rnl, and even larger uncertainties on smaller scales. By doing this we are

effectively discarding most of the information on non-linear scales, with only a rough

amplitude of the matter power spectrum being used. For α data we only use the likelihood

given in [155] and [156]. This likelihood code does not assume a strictly power-law

primordial power spectrum. It can be used as long as the cosmology models we are

considering are close to WMAP favored ΛCDM model, and the linear matter power

spectrum around k ∼ 0.9Mpc−1 can be approximated by a quadratic expansion. To
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calculate the likelihood, we interpolate the χ2 table in a three dimensional parameter

space, where the three parameters are amplitude, index, and the running of linear matter

power spectrum at pivot point klya = 0.9hMpc−1. To extract these parameters from more

general power spectra that are allowed in our parametrization, we perform a quadratic

fitting of lnPmatter for ln klya − 1/2 < ln k < ln klya + 1/2, and marginalize over 2%

uncertainty of the amplitude and 5% uncertainty of the spectral index.

The future data forecasts used in this chapter are described in Section 2.5. For weak

lensing forecasts we do not do further marginalization on Halofit mapping, assuming

the future N-body simulations can precisely predict nonlinear matter power spectra for

general primordial power spectra.

3.2.2 Constraints on the Conventional Parameters

Let us start with the traditional parametrizations (1.64-1.65), and update the observa-

tional constraints on the primordial power spectra using the latest available data. It is

unrealistic to measure the small deviation of scale invariance in the tensor power spec-

trum. We therefore use a prior nt = 0 as an approximation. We also tried turning off the

running parameter (by imposing a prior nrun = 0). The results with and without running

are shown in Table 3.1. The marginalized posterior likelihoods are shown in Figure 3.2.

In the left panel of Figure 3.3 we show that the spectral index of tensor is so poorly

measured that the single-field consistency relation (r ≈ −8nt, red line) is not tested. We

also have tried using the simulated forecast data, this conclusion does not change.

The weak degeneracy between ns and r are shown in the right panel of Figure 3.3.

When tested with the simulated forecast data, we find the degeneracy vanishes, as shown

in Figure 3.4. We also simulate the SPIDER CMB data to show the further improve-

ment of constraint on r. SPIDER is a proposed balloon experiment targeting at CMB

polarizations at large scales [191]. We have assumed 580 hours integration time and 9%

coverage of the sky. We use the same foreground model that we have adopted for Planck.
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Table 3.1: The 68.3% CL constraints on cosmological parameters (for r the 68.3%CL

and 95.4% CL upperbounds are shown). A ΛCDM model with nt = 0 has been assumed.

The scalar power spectrum is expanded at kpivot = 0.002Mpc-1 .

with nrun without nrun

Ωb0h
2 0.02262+0.00043

−0.00044 0.02260+0.00044
−0.00044

Ωc0h
2 0.1179+0.0020

−0.0020 0.1171+0.0019
−0.0019

θ 1.0425+0.0019
−0.0020 1.0420+0.0019

−0.0019

τre 0.094+0.015
−0.014 0.090+0.014

−0.014

ns 1.006+0.029
−0.029 0.962+0.011

−0.011

nrun −0.017+0.010
−0.010 ...

ln(1010As) 3.184+0.043
−0.047 3.226+0.033

−0.034

r 0.00+0.14+0.27 0.00+0.08+0.17

Ωm0 0.293+0.012
−0.011 0.290+0.011

−0.010

σ8 0.844+0.014
−0.014 0.843+0.014

−0.016

zre 11.2+1.2
−1.2 10.8+1.2

−1.2

H0 69.3+1.0
−1.0 69.4+1.0

−1.0
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Figure 3.2: The marginalized posterior likelihood of cosmological parameters. They are

normalized such that the maximum likelihood is 1. A ΛCDM model with nt = 0 has

been assumed. The scalar power spectrum is expanded at kpivot = 0.002Mpc-1 . The

solid red line in the left panel shows the single-field inflation consistency.
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Figure 3.3: Left panel: the single-field consistency relation (red line) is not tested by the

data. Right panel: the degeneracy between ns and r. A ΛCDM model with −0.1 < nt < 0

and nrun = 0 has been assumed. The spectra are expanded at kpivot = 0.002Mpc-1 . The

three contours are 68.3% CL, 95.4% CL and 99.7% CL, respectively.

See subsection 2.5.1 for the details.

3.3 Statistics of Trajectories

Let us consider the case when the likelihood is a functional of a trajectory (function)

f(x) defined on x ∈ [a, b].

Unlike usual Bayesian parameters that can be imposed a flat prior, the trajectories

does not have a natural “flat” prior. It can be defined only if we have a natural measure

in the infinite-dimension functional space. We do not search for such a natural measure,

since doing statistics on infinite number of parameters is not meaningful. Bayesian evi-

dence will always exclude a model with too many parameters. Moreover, given so many

degrees of freedom, the posterior likelihood will strongly depends on the prior, making

the result meaningless.

The practical solution is to use a few parameters to generate trajectories. The gener-
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Figure 3.4: The marginalized 68.3% CL and 95.4% CL constraints on ns and r using

simulated Planck and SPIDER CMB data.

ated trajectories do not exhaust the original infinite-dimensional trajectory space. The

hope is that the subset of trajectories is representative enough. That means

1). Any physically meaningful trajectory can be approximated by a trajectory in the

subset;

2). Most trajectories in the subset are physically meaningful.

Condition (2) is as important as (1), because we do not want the reconstructed

posterior trajectories to be dominated by the nonphysical trajectories strongly favored

by the prior.

The most widely used series expansion approach generates trajectories through basis

functions

f(x) =
n
∑

i=0

ckbk(x) , (3.2)

where bk(x) (k = 1, 2, ..., n) are pre-chosen independent basis functions. The samples of

trajectories are obtained by varying the coefficients ck’s, on which usually flat priors are

applied. Oft-used basis functions are power series xk, Fourier mode cos kx, Chebyshev
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polynomial Tk(x) (i = 1, 2, ..., n), etc.

Often in a physics problem the physically meaningful trajectories are bounded: A <

f(x) < B, with certain smoothness constraint. The series expansion has a disadvantage

that it is difficult to choose the prior bounds for c1, c2, ..., cn, such that most generated

trajectories are physically meaningful. This problem can be fixed by pre-excluding the

trajectories that do not fall in the band between A and B. However, this leads to

complicated priors on c1, c2 ,..., cn, making it difficult to understand and interpret the

posteriors.

A better method is to sample f(x) on a few knots, and generate the trajectories

via interpolations between the knots. With this approach, the parameters all have clear

physical meanings, the smoothness constraint can be tuned by choosing proper interpola-

tion methods, and the bounds A < f(x) < B can be directly applied on the parameters.

Often with certain smoothness constraint most of the interpolated f(x)’s fall in the band

A < f(x) < B. Finally, the proper number of knots can be determined by examining

the reduced χ2. This approach, namely the “scanning method”, is therefore ideal for

statistics on a general bounded function.

The scanning method has its disadvantage, too. The generated trajectories have the

feature that most of them are oscillatory. The mean of the “scanning parameters” (f(x)

values at the knots) is driven towards (A + B)/2 by a very strong prior (if n is large).

A false-detection can occur if we are interested in the mean amplitude of f(x), when the

data does not constrain f(x) piecewisely (i.e. too many knots have been used). In some

cases we want to explicitly avoid these disadvantages. One example is that the primordial

tensor power spectrum PT (k) should be a monotonically decreasing function of k, and

we want to avoid false detection of PT . We will not be using the scanning approach

directly on PT . As the current and near-future data do not constrain PT piecewisely.

A subtle case is when we scan ǫ trajectory and apply the single-field inflation prior. A

false-detection of gravitational waves tends to occur because the well measured scalar
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power spectrum only constrains ns − 1 ≈ −2ǫ − d ln ǫ/d ln k, but not ǫ. The average

amplitude of ǫ can be easily driven by the prior imposed by scanning method. We can

avoid this problem by scanning d ln ǫ/d ln k or 2ǫ+ d ln ǫ/d ln k ≈ 1 − ns, which are less

prior-dependent.

3.4 The Bottom-Up Approach: Phenomenological

Expansion of PS and PT

3.4.1 Method

The current observational data explore about ten e-folds of comoving wave-length, roughly

corresponding to the interval −9 < ln (k/Mpc-1) < 1. Let us define this interval as “ob-

servable interval”. The spectra on scales outside the observable interval do not have

essential impact on the cosmic observables. Any reasonable extrapolation will do as

good. We simply use constant PS for these extra-large and extra-small scales. Natural

cubic spline interpolation is our default option to interpolate lnPS within the observable

interval. Alternative interpolation methods are Chebyshev interpolation and monotonic

cubic Hermite interpolation. The Chebyshev interpolation defines a unique n− 1-th or-

der polynomial passing the n given points at the ln k knots. Both natural cubic spline

interpolation and monotonic cubic Hermite interpolation assume third order polynomial

between two neighbor knots. Natural cubic spline defines a unique interpolated curve by

matching the second order derivatives across the knots, with an additional assumption

that the second order derivative vanishes at the two boundaries. The cubic Hermite

interpolation only requires the first order derivative to be continuous across the knots.

The extra n degrees of freedom is fixed by choosing the first order derivative at the i-th

knot. For generic cubic Hermite interpolation where the piecewise monotonicity is not
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required, the derivatives can be chosen as

∆i ≡



























[f(x2) − f(x1)] /(x2 − x1) , if i = 1

[f(xn) − f(xn−1)] /(xn − xn−1) , if i = n

[f(xi+1) − f(xi−1)] /(xi+1 − xi−1) , else

(3.3)

where xi is the i-th knot. For monotonic cubic Hermite interpolation, the piecewise

monotonicity of f(x) between two neighbor knots is achieved by further adjusting ∆i.

First, for i = 1, 2, ..., n − 1, if f(xi) = f(xi+1), set ∆i = ∆i+1 = 0. Second, for i =

1, 2, ..., n − 1 where f(xi) 6= f(xi+1), define αi = ∆i(xi+1 − xi)/ [f(xi+1) − f(xi)] and

βi = ∆i+1(xi+1 − xi)/ [f(xi+1) − f(xi)]; If α2
i + β2

i > 9, update ∆i and ∆i+1 to be

3αi∆i/
√

α2
i + β2

i and 3βi∆i+1/
√

α2
i + β2

i , respectively.

To summarize, the parametrization is

lnPS(ln k) = lnPS |ln(k/Mpc-1)=−9 , if ln
(

k/Mpc-1
)

< −9 ;

lnPS(ln k) = lnPS |ln(k/Mpc-1)=1 , if ln
(

k/Mpc-1
)

> 1 ;

flat prior 1 < ln
[

1010PS
]

< 5 , if ln k is a knot;

interpolate lnPS(ln k) , if ln k is not a knot, and − 9 < ln
(

k/Mpc-1
)

< 1 .

Uniformly distributed knots from ln(k/Mpc-1) = −9 to ln(k/Mpc-1) = 1 are used for nat-

ural cubic spline interpolation and monotonic cubic Hermite interpolation. For Cheby-

shev interpolation we choose the nodal points of Chebyshev polynomials, i.e., the n

roots of n-th order Chebyshev polynomial Tn(x), with x ≡ ln(k/Mpc-1)+4
5

. The Chebyshev

polynomials along with the particular pattern of knots are used for better fitting and

numerical stability [192].

For the tensor power spectrum we use PT = AT (k/kpivot)
nt with prior −0.1 < nt < 0

and AT ≥ 0.
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3.4.2 Reconstructed Power Spectra

The reconstructed primordial power spectra are shown in the left panel of Figure 3.5.

We also have shown as contrasts the theoretical prediction from a quadratic potential

(V = 1/2m2φ2) chaotic inflation model, which lies well inside the 1-σ band. Another

notable result is that once we allow more degrees of freedom in PS, the tensor spectrum

PT is no longer tightly constrained to be less than 20% of the PS. We calculate the

posterior probability of r at kpivot = 0.002Mpc-1 . The 95.4% CL upper bound is r < 0.68.

The interesting question is of course whether the large tensor spectra are consistent with

single-field inflation models. We will address this issue in Section 3.5.

The reconstructed trajectories can be mapped into CMB angular power spectra, as

shown in the left panels of Figure 3.6.

For the forecast data, the reconstructed PS and PT trajectories are shown in Fig-

ure 3.7. We also have tried Chebyshev interpolation and Monotonic Cubic Hermite

interpolation to test the dependency of result on the interpolation method. The con-

straints on r(0.002Mpc-1) using different interpolation methods are listed in Table 3.2.

For the future data, the constraints on scalar power spectrum are very stringent. If the

number of knots is about ten or less, the choice of interpolation method (prior) is not

important. But the measurement of index of tensor power spectrum is still challenging.

No constraint is found for a fiducial model r = 0 or r = 0.13. This is true even when we

assume a simple power-law scalar power spectrum to avoid possible degeneracy.

3.4.3 Searching for nontrivial features in the power spectra

Although any specific choice of algorithm to generate “random” trajectories may be

challenged by prior issues as discussed above, we are interested in methods that can

practically detect nontrivial features in the primordial power spectra. To show that the

method we are advocating in this paper is a viable candidate, we produce mock data
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Figure 3.5: The reconstructed primordial spectra with current data. In the left panel

we have used the bottom-up approach with natural cubic spline interpolation. See Sec-

tion 3.4 for the details of the parametrization. In the right panel the top-down approach

with single-field inflation prior is applied. See Section 3.5 for the details about the

parametrization. The 1-σ error bars are uncertainties of the band powers. The band

powers are defined as the convolutions of the power spectrum and top-hat window func-

tions in seven uniform bins.
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Figure 3.6: This CMB angular power spectra mapped from reconstructed trajectories

(see Figure 3.5). The upper-left and lower-left panels are TT and BB power spectra

reconstructed with bottom-up approach, and the upper-right and lower-right panels are

using top-down approach. See the text for more details.
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Figure 3.7: The reconstructed primordial spectra with mock data. The fiducial model

has PT = 0 and a power-law PS with ns = 0.97. The left panel uses natural cubic

spline interpolation on lnPS, while the right panel uses Chebyshev interpolation. The

1-σ error bars are uncertainties of the band powers. The band powers are defined as the

convolutions of the power spectrum and top-hat window functions in seven uniform bins.

Table 3.2: The constraints on r using different parametrizations. Here “consistency”

stands for the single-field inflation prior (see Section 3.5).

knots interpolation method consistency fiducial model constraint

7 natural cubic spline no r = 0 0.000+0.017+0.035

7 Chebyshev no r = 0 0.000+0.014+0.027

7 monotonic cubic Hermite no r = 0 0.000+0.018+0.036

11 natural cubic spline no r = 0 0.000+0.018+0.037

7 natural cubic spline no r = 0.126 0.130+0.023
−0.021

7 monotonic cubic Hermite yes r = 0.126 0.129+0.020
−0.018



Chapter 3. Scanning Inflationary Trajectories 106

with PS having an “IR-cascading” bump [6, 7], approximated by

Pbump = A

(

k

k∗

)3

e−
π
2
(k/k∗)2 . (3.4)

The shape of such a bump can be calculated in the theory, and should be parameter-

ized accordingly in power spectrum reconstruction attempts if we consider this particular

model. Here we examine whether such a bump is detectable without knowing the theo-

retical priori.

The reconstructed power spectra using monotonic cubic Hermite interpolation be-

tween 11 knots are shown in Figure 3.8. The bump in the scalar spectrum has no effect

on the reconstructed tensor spectra, we hence only show scalar trajectories in the plot

for a clear view of the details of the reconstructed bump. We notice that the bump is

successfully reconstructed. However, the spectrum close to the bump is slightly twisted

by the smoothness assumption (prior) we have chosen. We have also tried natural cubic

spline interpolation and varying the number of the knots. We find that the twisting

varies with different choices of interpolation method and number of knots, confirming

our conjecture that it is a prior-driven effect. Despite these prior issues that persist in

any trajectory reconstruction methods, we are able to find the main feature in the power

spectrum without knowing the theoretical priori.

3.5 The Top-down Approach: Scanning the Expan-

sion History

3.5.1 Method

To numerically calculate the primordial power spectra, it is more convenient to write

everything as a function of comoving wavenumber k, by defining

f(k) = f |aH=k , (3.5)
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Figure 3.8: The reconstructed primordial power spectra, using mock data with a feature

in the scalar power spectrum. A fiducial r = 0 and ns = 0.97 model has been used,

on top of which an IR-cascading bump [6, 7] with amplitude about 10% of the total PS
and with position k∗ = 0.05Mpc-1 is added to the scalar power spectrum, as shown in

dot-dashed black color. Monotonic cubic Hermite interpolation is used to interpolate

lnPS between 11 knots.
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where f represent arbitrary inflationary variables such as ǫ, H , etc.

We generate the expansion history with a similar technique. Random values of

d ln ǫ/d ln k are drawn at a few knots in the observable interval. A trajectory of d ln ǫ/d ln k

obtained via interpolation is then integrated into an ǫ(k) trajectory, with a constant of

integration ǫ(kpivot) being an additional parameter. One more integral is performed to ob-

tain theH trajectory, requiring again a new parameter. Instead ofH(kpivot) that is poorly

determined by the observations, we use the the logarithm of zero-th order approximation

of the well determined amplitude of scalar power spectrum, i.e. ln(H2/ǫ) |aH=kpivot
, as

another parameter.

The scalar and tensor power spectra are then calculated using Eqs (1.37-1.42) and

Eqs (1.43-1.45). Using the variable

Ñ ≡ ln(aH) , (3.6)

we can write the evolution equations of Rk and hk as

d2Rk

dÑ2
+ µ(Ñ)

dRk

dÑ
+

k2

(1 − ǫ)2e2Ñ
Rk = 0 , (3.7)

d2hk

dÑ2
+ ν(Ñ)

dhk

dÑ
+

k2

(1 − ǫ)2e2Ñ
hk = 0 , (3.8)

where the friction coefficients µ(Ñ) and ν(Ñ) are defined as

µ(Ñ) ≡ 3 +
2ǫ

1 − ǫ
+

1 − 2ǫ

1 − ǫ

d ln ǫ

dÑ
, (3.9)

ν(Ñ) ≡ 3 +
2ǫ

1 − ǫ
− ǫ

1 − ǫ

d ln ǫ

dÑ
. (3.10)

There formulas can be directly used for numerical calculations, since we have already

generated the trajectories of d ln ǫ(Ñ)/dÑ , ǫ(Ñ), and H(Ñ).

We reconstruct PS and PT trajectories using the current observational data. The

results are shown in the right panel of Figure 3.5. The earlier question whether a large

tensor spectrum is allowed in the context of single-field inflation thus has an positive

answer. The implication is that the quartic potential (V = λ
4
φ4) chaotic inflation model,
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which “over predicts” r in the traditional parametrization for single-field inflation, is

consistent with the data in the extended parameter space. This conclusion addressed in

a more precise way is: λφ4 model is ruled out by current data only if we restrict ourselves

to a power-law scalar power spectrum.

Of great interest is the ability of present and future CMB experiments to detect

primordial gravitational waves. We produce mock data with a single-field inflation model

- the V = 1
2
m2φ2 model, which has r about 0.13 and ns about 0.97. This value of r is

promised to be detected by Planck, assuming a power-law PS. The reconstructed spectra

with both bottom-up approach and top-down approach are shown in Figure 3.9. We find

that this tensor power spectrum can be detected even we allow almost arbitrary shapes

of scalar power spectrum. For the top-down apporach we have also tried varying the

interpolation methods, the number of knots, and scanning 2ǫ + d ln ǫ/d ln k ≈ 1 − ns

trajectories. The similar results we find show the robustness of our method.

3.6 Discussion and Conclusions

The reconstruction of primordial power spectra is a conceptually simple problem. We are

aware that the choice of statistical tools should not be unique; or otherwise the results

will not be robust and convincing. However, this does not mean that we can ignore

this problem and choose arbitrary statistical tools. Many statistical treatments of the

trajectories implicitly impose strong priors that might mimic the physics of interest. One

example is the false detection of gravitational waves if we assume flat priors on PT on a few

knots, and impose the monotonicity condition dPT/d ln k < 0. The statistical methods

we proposed in this work are better choices than many others. We have shown that the

robust results do not depend on the choice of interpolation method and the number of

knots, provided that we keep the reduced χ2 or Bayesian evidence at a reasonable level.

Also, successful reconstructions are shown with mock data.
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Figure 3.9: The reconstructed primordial spectra with mock data. The fiducial model

that has been used to generate the mock data is the quadratic potential (V = 1
2
m2φ2)

model. The left panel shows the reconstructed power spectra using the bottom-up ap-

proach described in Section 3.4, with natural cubic spline interpolation method applied.

The right panel shows the reconstructed power spectra using the top-down approach

scanning d ln ǫ/d ln k, as described in Section 3.5. The 1-σ error bars are uncertainties of

the band powers. The band powers are defined as the convolutions of the power spectrum

and top-hat window functions in seven uniform bins.
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Previous attempts on this problem can be put into three categories:

1. Top-down approach using basis expansion [36, 193, 194, 195, 196, 197].

2. Bottom-up approach using basis expansion [198, 199, 200, 201, 202, 203, 204, 205,

206, 207, 208].

3. Bottom-up approach using interpolation [209, 210, 211, 212, 38, 213, 214, 215, 216].

Our work differs from these works from the following aspects: i) We have shown

that the obviously missing method – top-down approach using interpolation is a viable

method; ii) For the bottom-up approach we have shown the independency of the results

on the choice of interpolation method, with three concrete examples – natural cubic spline

interpolation, monotonic cubic Hermite interpolation, and Chebyshev interpolation; iii)

We have used the most current data sets including weak lensing and Lyα that have not

been included in earlier works.

Also we have explictly shown, via a concrete example, that nontrivial features in the

primordial power spectra can be practically detected using our method. This has not

been studied before in the aforementioned works.

Another also very interesting method that is not covered here is the principal compo-

nents analysis (PCA) method [217]. We leave this topic, and many others, in our future

work.



Chapter 4

Non-Gaussian Curvature

Fluctuations from Preheating

4.1 Introduction

In chaotic inflation models, the inflaton field φ starts from a large initial value, a number

of Planck masses, and rolls toward the potential minimum. Inflation ends when φ is

close to the potential minimum, and soon after that the inflaton field starts to oscillate.

The oscillating inflaton field decays into other particles, either perturbatively (reheating)

or non-perturbatively (preheating), via some form of couplings. An oft-studied model

is the 1
2
g2φ2χ2 coupling, where χ is a light scalar field, and g a dimensionless coupling

constant. In the last chapter, we studied the metric perturbations derived from the

inflaton fluctuations δφ. Fluctuations in χ, generated via the same mechanism, were not

thought to be responsible for the metric perturbations, since during inflation the energy

contribution from χ is negligible. During preheating, the fluctuations in the χ field

are magnified through parametric resonance. It is difficult to track such full non-linear

process, in which all the modes χk in the broad resonance band are magnified and come

to interact with each other. Metric perturbations from this process can be generated

112
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only if the local expansion rate or the local equation of state is modulated by the χ

field. Before our work, which I will discuss in this chapter, it was widely believed that

in such a complicated non-linear system the initial condition (the local χ value) will not

be remembered, but this had not been proved, either theoretically or numerically. Early

in 2007’s, I used LATTICEEASY [218] to simulate preheating for such a model. With

a brute-force calculation, I found spiky patterns in the expanding e-folds as a function

of χ. But the signal was weak, and no tests were done to show that the spikes are

not numerical glitches. In 2008 Professor Frolov and Professor Bond participated in the

project. With Frolov’s new code DEFROST [219] similar spiky patterns were found. By

that time we (Professor Bond, Professor Kofman, Professor Frolov and I) all started to

take this seriously, as it might be the first hint that preheating can produce large scale

metric fluctuations. Progress was made in parallel. I was not satisfied by these brute-

force calculations. The conversations with Professor Frolov stimulated me to write a

new lattice simulation code with superb high accuracy of energy conservation (improved

our previous code by about 8 orders of magnitude). This code again verified the spiky

patterns we found before. We came up with a full theory of the physical origin of this

phenomenon, and how to visualize it. This “billiard model” was soon verified in details

by Frolov’s DEFROST code and my new code “HLattice”.

This Chapter is based on the work published in the journal physics review letter.

Hence it is very terse. A longer paper expanding on this material is in development. For

completeness we will include here most of the contents that has already been published

[56]. Please cite our original paper for the use of these contents.

4.2 The Preheating Model

During inflation, vacuum fluctuations in the light field χ are transformed on super-

horizon scales into homogeneous and isotropic Gaussian random fields. These are fully
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defined by their power spectra
dσ2
χ(k)

d ln k
≡
〈

|χk|2
〉

k3

2π2 , whose magnitude, ∼ [H/(2π)]2, is

related to the Hubble parameter H at expansion factor a when Ha first equals the

wavenumber k in question. Here and in what follows, we use the notation 〈·〉 for ensemble

avrage and σx for r.m.s. of random variable x. In standard scenarios, metric curvature

fluctuations ζφ, defined as Hδρ/ρ̇ in spatial flat gauge [220] i, are derived from the

inflaton φ and are nearly Gaussian and often nearly scale invariant, with power dσ2
ζ (k) ≈

dσ2
φ(k)/(2Mp

2ǫ), in terms of the acceleration parameter ǫ defined in Eq (1.20) [10, 12, 13,

14]. Observationally ǫ is below 0.03 at the 95.4% confidence limit from the large angle

CMB, hence ζ is considerably amplified over δφ/Mp. Alternative mechanisms utilizing

light “non-inflatons” χ must overcome this ǫ effect. Examples are “curvatons” which

temporarily dominate the energy density after inflation [187, 188], and fields which induce

spatial variations of couplings which modulate the timing of the now-inhomogeneous

post-inflation (p)reheating [221], but are not gravitationally dominant.

The ζ -source first proposed in [222] and studied here is nonlinear resonant preheating

inducing expansion factor variations from the end of inflation at ǫ = 1 to when the

equation of state settles to w = 1/3. A sample framework [223] for this has a potential

V (φ, χ) =
1

4
λφ4 +

1

2
g2φ2χ2 , (4.1)

with inflation driven by the first and particle creation by the second term. Here λ ∼ 10−13

gives the right amplitude of CMB fluctuations.

If g2/λ is of order unity, the non-inflaton χ(x) is light during inflation and accumulates

quantum fluctuations varying on scales much greater than the Hubble scale at the end

of inflation

He ≡ H |ǫ=1 ∼ 10−7Mp . (4.2)

Figure 4.1 shows the amplitude of mode functions χk in the spatial flat gauge at the

end of inflation, for k/ae covering the range from He to scales much bigger than today’s

iIn the large scale limit, it coincides with the comoving curvature fluctuations R.
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cosmological scales (k/ae ∼ e−60He), where ae is the scale factor at the end of inflation.

We note for g2/λ = 2 that corresponds to a SUSY model, the amplitude of χ fluctuation

on scales much larger than H−1
e but within the current observable universe is about He ∼

10−7Mp. On scales shorter thanH−1
e , this χ(x) is nearly homogeneous, defining “separate

universes” with specified background χi as initial conditions for lattice simulations of the

fully coupled fields to determine the nonlinear evolution of the EOS, which imprints

itself on ln a(χi). The resulting curvature perturbations ζpreh(x) are different in the

number of e-folds on uniform Hubble (i.e.uniform energy density) time hypersurfaces,

ζ ≡ δ ln a|H = δN(χi) [224, 114, 225]. If such variations exist, they would be in addition

to the standard ones.

Preheating in the model begins with parametric resonance amplifying the fluctuations

in the mode function χk(t)e
ik·x describing vacuum excitations of the χ-particles. The

problem can be reduced to a flat space-time model by conformal transformations:

φ̃ ≡
√
λaφ , (4.3)

χ̃ ≡ aχ . (4.4)

τ ≡
∫

dt

a
. (4.5)

The inflaton EOM is

φ̃′′ + (
a′′

a
+ φ̃2)φ̃ = 0 , (4.6)

where a prime denotes the derivative w.r.t. the conformal time τ .

Recall that during coherent oscillations the effective EOS for λφ4 model is 1/3 (see

Section 1.6). We can ignore the a′′/a term, as this term is decaying as a−2 and has zero

average. The solution of Eq. (4.6) with the a′′/a term ignored is

φ̃ = φ̃maxCn

(

φmaxτ ;
1√
2

)

, (4.7)

where φ̃max is the amplitude of the φ̃ oscillation. If we define a = 1 at the end of inflation,
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Figure 4.1: The amplitude of mode functions of χ in the spatial flat gauge at the end of

inflation, for the inflation model V = λ
4
φ4 + 1

2
g2φ2χ2 with λ = 10−13 and various values of

g2/λ. The rising tails around k ∼ (aH)end are the vacuum mode functions that have not

passed the quantum-decoherence phase. These tails should be renormalized away when

calculating the classical r.m.s. of the χ field.
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Figure 4.2: In left panel the solid black line is Cn(x; 1/
√

2), the dotted red line shows the

first (n = 1) term on the R.H.S. of Eq. (4.8). In the right panel we show the residuals

δfn(x) ≡ Cn(x; 1/
√

2) − fn(x), where fn(x) is the sum of the first n terms in the R.H.S.

of Eq (4.8). The dotted red line, the dashed blue line, and the dot-dashed green line are

δf1(x), δf2(x) and δf3(x), respectively.

φ̃max is about 0.1
√
λMp. The elliptical cosine Cn is given by

Cn

(

x;
1√
2

)

=
8π

√
2

T

+∞
∑

n=1

e−π(n−
1
2)

1 + e−π(2n−1)
cos

2π(2n− 1)x

T
, (4.8)

where the period T = Γ2(1/4)√
π

≈ 7.4163 [223] (The Fourier expansion of Cn(x; 1/
√

2)

given in Ref. [223] has a typo and should be corrected as above.) In Figure 4.2 the

approximations using the first one, first two and first three terms are shown.

The conformal mode function χ̃k ≡ aχk obeys an oscillator equation with a periodic

frequency controlled by the background inflaton oscillations:

d2χ̃k
dτ 2

+

(

k2 +
g2

λ
φ̃2

)

χ̃k = 0 , (4.9)

where again we have ignored the tiny a′′/a term.

In the resonant bands, χ̃k ∼ eµkτ is unstable, with the real part of the Floquet

exponent µk being a function of g2/λφ̃2
max and k2. It is more convenient to use φ̃max

as a mass unit, and write µ̃k ≡ µk/φ̃max as a function of g2/λ and k̃ ≡ k/φ̃max. Note
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that µ̃k and k̃ are both physical, i.e., they do not depend on the normalization of a.

Using the technique described in Section 1.6, I calculate the Floquet chart and show the

result in Figure 4.3. The growth of superhorizon modes on φ = const . hypersurfaces does

not violate causality. It is generated by coherent inflaton oscillations prepared during

inflation.

4.3 The Comoving Curvature Fluctuations

If g2/λ ∼ 2, the maximum of µk in the first resonant band is located close to k = 0

(see Figure 4.3). Hence a nearly homogeneous χi will be exponentially unstable in each

separate universe, and soon becomes entangled in the complicated mode-mode dynam-

ics of preheating driven by the back-reaction effects of copiously produced χ and δφ

particles. To determine δN(χ) at the part per million level, we need non-linear lattice

simulations with energy conservation accuracy (ECA) well below this. The early attempt

by [222] used an energy-leaking algorithm and got a wrong result with δN ∼ 10−3, with

a dominantly-quadratic form δN ≈ fχχ
2
i characterized by a constant fχ similar to fNL

used in non-Gaussianity (nG) studies of the CMB sky [226, 227]. We do not confirm

the large quadratic nG of [222], but do find a nontrivial δN(χi) with a regular sharp-

spiked pattern at the observationally interesting ∼ 10−5 level, as shown in Fig. 4.4, with

a radically different impact on the sky than the fNL story. Although our discovery of the

spiked δN(χi) function was a truly numerical one, a posteriori we can explain it by a

combination of chaotic zero-mode dynamics after te and the abrupt onset of inhomoge-

neous nonlinearity at a preheating time tpreh, allowing us to conjecture for which models

it works.

To accurately compute the very low levels of δN(χi), especially since we are in finding

and validation mode for such tiny effects, we needed to go well beyond the ECA practi-

cally achievable in second-order preheating codes (typically ∼ 10−3 for LATTICEEASY
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Figure 4.3: The Floquet chart for V = 1
4
λφ4 + 1

2
g2φ2χ2 preheating model. The white

regions give the stable bands where the mode function χk does not grow. The coloured

regions are the instability bands. Here k̃ is defined as k/(a
√
λφmax), where φmax ∝ a−1 is

the amplitude of the φ oscillation. In the instability bands the growth of mode function

χk is described by aχk ∼ eµ̃k
√
λ

R

φmaxdt, where t is the physical time.
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[218] and ∼ 10−5 for DEFROST [219]). We developed a new high-order symplectic PDE

solver with adaptive time steps, which can reach machine precision levels (ECA ∼ 10−13!)

to address this problem. In retrospect, we find that ECA of 10−7 would suffice, which is

achievable with shorter timesteps in DEFROST. The lattice simulations begin at expan-

sion factor ae when ǫ = 1; we have shown that variations of the start do not affect results.

The calculations are stopped at a uniform Hubble value Hf when the EOS w = p/ρ is

nearly 1/3, the radiation-dominated value. Although the average w is asymptotically

approaching 1/3, it has small oscillations during preheating, leading to a fluctuations to

average over to determine N(χi) for use in the curvature formula. To deal with this, we

used an accurate extrapolation template for the averaged a(τ) or, for superb accuracy,

a Kaiser window filter to suppress high frequency oscillations in a(τ) by a factor 10−8.

With either, we showed that provided we calculate for 5-6 e-folds after ae, the specific

Hf is not important. An accuracy test was to show δN is effectively zero (≪ 10−6) and

not modulated by χi for g2/λ out of the resonant band, e.g. at g2/λ = 1 and 3, for which

the real part of the Floquet exponent for k = 0 is zero (µ0 = 0). With the symplectic

code, we ran a lattice simulation in a box of size 64/He with resolution 2563 to check that

our conclusions derived using a very large number of lower resolution simulations using

DEFROST to build up statistics in χi are accurate. The essential effects can indeed be

captured with lower resolution and box size. Fig. 4.4 showing a spiky pattern in δN(χi)

for g2/λ = 2 was produced with 11563 simulations with box size 20/He and resolution

323. The amplitude of the spikes increases as χi increases. The spikiest pattern is at

g2/λ ≈ 1.88 corresponding to the maximum of the real part of the Floquet exponent for

k = 0 in the band 1 < g2/λ < 3 (see Figure 4.3), with the spikes broadening away from

that, finally disappearing at the g2/λ = 1 and 3 borders.

For Fig. 4.4, we explored a large range in input χi/MP , from 10−8 up to 2 × 10−5.

χi(x) = χ<h + χ>h has a sub-horizon contribution χ<h from eigenmodes with wavenum-

bers between ke ∼ Heae to the current horizon scale, kh ∼ Hhah, and a super-horizon
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contribution χ>h with waves from kh to a kmin whose value will depend upon the inflation

model. The corresponding variances are σ2
<h =

∫ ke
kh
dσ2

χ and σ2
>h =

∫ kh
kmin

dσ2
χ. As shown

in Figure 4.1, dσ2
χ/d ln k is nearly constant over ∼ 100 e-folds for 1.5 < g2/λ < 2.5, drops

substantially as a → ae for g2/λ = 0, and actually rises for g2/λ = 3. The numerical

result agrees well with a simple analytical estimation k3|χk|2 ∝ k(g2/λ−2)/N (valid only for

k ≪ aeHe and g2/λ . O(1)), where N ∼ ln [(aeHe)/k] is the number of efoldings from the

horizon-crossing of mode k to the end of inflation. The least number of e-folds ln ah/ae

must exceed ∼ 50 − 60, and since H > He during inflation, σ2
<h & ln ke/kh [He/(2π)]2

gives a χ<h enhanced over He by ∼
√

55. The super-horizon power, σ2
>h & ln kh/kmin

[He/(2π)]2 is also log-enhanced, and considerably so in our illustrative λφ4 example.

Thus, the log factors give larger χi, including a χ>h random number which is nearly

constant within our Hubble patch, but has a ∼ ±σ>h patch-to-patch “cosmic variance”.

4.4 Analog to Chaotic Billiard Motions

We now show how the features of δN(χi) can be understood qualitatively from trajec-

tories in the two-dimensional space of homogeneous modes (φ(τ), χ(τ)). The excited

inhomogeneous degrees of freedom do back-react on these k ≈ 0 modes, but only later in

the evolution, e.g. at t ∼ 10T for g2/λ = 2. The (φ(τ), χ(τ)) space is effectively bounded

by potential energy barriers 1
4
λφ4 + 1

2
g2φ2χ2 = const, as shown in Fig. 4.5. Initially the

trajectories oscillate mostly in the φ direction, with only very small initial amplitudes in

χ, as illustrated in the insets in Fig. 4.5.

These oscillations are akin to billiard motions between the potential walls. Precession

of the initial oscillations causes the χ amplitude to grow exponentially in a chaotic man-

ner: χ(τ) = χi e
Λt, where Λ is the Lyapunov exponent. This gives us new insight on the

parametric resonant k = 0 solution in terms of the Lyapunov instability. For g2/λ = 2,

we find Λ = µ0 = 0.235. This conjecture also works for the cases in which k = 0 is
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Figure 4.4: The structure of δN(χi) on uniform Hubble hypersurfaces probed with ∼ 104

lattice simulations from the end-of-inflation through the end-of-preheating for varying

homogeneous χi initial conditions, for g2/λ = 2. The periods nµ0T in lnχi are marked

by the large green circles, and the higher harmonics (revealed by the Fourier analysis) by

smaller green circles. These locate the spikes in δN(χi). The effective field 〈FNL|χb + χ>h〉

marginalized over high spatial frequencies with σHF=7 × 10−7MP (vertical line) yields

the solid curve. Here χb etc. are defined in Section 4.5. A quadratic fit, fχ(χb +χ>h)
2, is

also shown. An issue for our Hubble patch is whether the ultra-large scale χ>h is large

enough that the large scale structure fluctuations about it, ±σb<h, encompass smoothed

peaks in field space, or not. A typical value for σb<h is ∼ 3 × 10−7Mp.
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not in the resonant band; e.g. for g2/λ = 3 we have µ0 = 0 and do indeed find periodic

trajectories so Λ = 0.

As χ grows beyond the linear regime, the bouncing billiard experiences the negative

curvature of the potential walls and a bifurcation of the trajectories occurs, with a few

entering the arms in between walls, and most do not. If there were only homogeneous

modes the impact of this would be temporary because eventually all trajectories would

be chaotically mixed. However, the excitation of the inhomogeneous modes results in

exponential growth of 〈χ2〉 and 〈δφ2〉, as e2µ∗t and e4µ∗t respectively, where µ∗ is an

effective resonant exponent [223]. These induce enhanced effective masses in the fields,

abruptly changing the potential, with the arms in between walls closing exponentially

quickly, as shown in Fig. 4.5.

The trajectories which happen to get into the arms before arm-closure evolve very

different from those which never get into the arms. The billiard picture breaks down

when the gradient terms in χ and δφ occur, at arm-closure time, but the bifurcation

determined by the initial conditions at the linear stage has already happened. The two

pre-closure classes of in-arm and not-in-arm trajectories result in different equations of

state, and hence a χi-dependent δN(χi). In-arm trajectories experience kinetic energy

kicks from the closing arms, which translates into a transient decrease in w, inducing

a jump in δN . The no-spike trajectories of the upper panel of Fig. 4.5 are much more

numerous than the rarer sort in the lower panel corresponds that give spikes. The billiard

picture predicts the spike pattern as one periodic in lnχ which works extremely well: the

same “spiky” trajectory labelled by χi is repeated for initial values χi e
nµ0T for integer n.

The origin of the higher harmonics is more complex. Our spike pattern formula works

very well for other values of g2/λ, with the requisite µ0(g
2/λ).
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Figure 4.5: Billiard trajectories of the k = 0 modes φ(τ) and χ(τ) within the λφ4/4 +

g2χ2φ2/2 potential well. Upper panel has a “no-spike” initial value χi = 3.6 × 10−7MP ,

and the bottom panel has a “spike” χi = 3.9× 10−7MP . The solid curves are the (fuzzy)

potential walls without the inclusion of mass terms induced by field nonlinearities; the

pale green and brighter green border areas include the induced masses at the instances

t = 10.8T and asymptotically. Thin and thick parts of the trajectories denote before

after t = 9.7T , and up to 11.8T , with the circle on it at t = 10.8T . The inserts in the

left upper corners of the panels show the first several periods of linear oscillations.
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4.5 Non-Gaussianity

Let us denote ζpreh by FNL(χi(x)), where the capital F is used to distinguish it from

the usual constant fNL parameter. These are added to the conventional inflaton cur-

vature fluctuations ζφ: ζtot(x) ≈ ζφ(x) + FNL(χ(x)) − 〈FNL〉 (The ensemble average

〈FNL〉 over all values of χ, is subtracted so ζtot fluctuates about zero.) Structure in

χi and hence in FNL, exists on a vast range of resolution scales, from kmin through

kh to ke. Observed large scale structure (LSS), as probed by the CMB, redshift sur-

veys, weak lensing, and rare event abundances such as of clusters probe ∼10 e-folds in

ln k below k−1
h , and about the same number of e-folds just below this can be probed

with the more uncertain astrophysical observables involving earlier stages in the nonlin-

ear hierarchy, galaxies, dwarves, and the “first stars” within them. The superhorizon

scales beyond k−1
h have no impact on ζφ-structure, but do have a large impact on FNL

through the specific value χ>h built from waves kmin < k < kh. To explore the as-

trophysical consequences of FNL, we marginalize over high frequency components χHF

of χ ≡ χHF + χLF to form the conditional non-Gaussian “effective field”, 〈FNL|χLF〉,

with about 40-50 e-folds of “short distance” substructure in FNL filtered out. The

mean-field, 〈FNL|χLF〉 =
∫

FNL(χ)P (χ|χLF)dχ, is a Gaussian-smoothing of FNL in field-

space, via P (χ|χLF) = 1√
2πσHF

exp [−(χ− χLF)2/(2σ2
HF)], with variance σ2

HF = 〈χ2
HF〉.

Using it will give reliable LSS inferences, if the Fourier transform of the deviation

∆FNL ≡ FNL−〈FNL|χLF〉 is small for k−1 ≫ k−1
LF, the χLF filter scale. Since χLF = χb+χ>h

contains a spatially varying part χb built from waves with kh < k < kLF and a constant

superhorizon part χ>h. Which aspects of the spiky patterns of Fig. 4.4 that would be

realized in our Hubble patch is quite dependent on the luck of our χ>h-draw from a

Gaussian distribution with variance σ2
>h = 〈χ2

>h〉, in particular whether χ>h is near a

smoothed-peak, or small (. σHF).

The analytic model, FNL =
∑

p Fp exp[−(χ− χp)
2/(2γ2

p)], approximates each spike of

Fig. 4.4 with a Gaussian “line profile” of width γp centred on χp, with peak amplitude
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FP and integrated line strength up = Fp
√

2πγp. The χ → −χ symmetry means that for

each peak at χp there is a mirror peak at −χp of the same strength. The conditional

n-point moments of FNL, 〈∏n
i=1 FNL(xi)|χLF〉 are then easily computable Gaussians, with

quadratic terms in χi-χp linked through the HF 2-point function of χHF. The mean field

has n = 1:

〈FNL|χLF〉 =
∑

p

Upe
− χ2

b (x)

2σ2
pHF cosh

{χp>h

σ2
pHF

χb(x)
}

. (4.10)

Here σ2
pHF ≡ γ2

p + σ2
HF can be approximated by σ2

HF for the typical γp we find, and

Up=
2upγp
σpHF

exp{− χ2
p>h

2σ2
pHF

}, with χp>h=χp-χ>h. The χHF correlation function dependence of

the fluctuation variance 〈∆FNL(x1)∆FNL(x2)|χLF〉 precludes an analytic harmonic analy-

sis, but we have investigated this numerically: e.g. for a 1-spike version, this FNL variance

is 1% of 〈FNL|χLF〉2 if it is smoothed on ∼ k−1
LF, and ∼ 0.1% with ∼ 10k−1

LF smoothing.

(We have checked the effective field works even better for FNL quadratic and exponential

in χ.) The HF structure is very relevant to first-object formation, but what actually

happens will be model-dependent. However, HF will not impinge upon LSS observ-

ables, since they are convolved with experimentally-determined or theoretically-imposed

windows ≫ k−1
e in scale.

A fundamental character of the resonant mechanism is the delay of in-arm preheating

completion, translating into positive large excursions in δ ln a|H . The associated per-

turbed Newtonian gravitational potential ΦN is negative. The CMB sky temperature

T (q̂), an angular function of the CMB photon direction q̂ towards us, is a projected im-

age of various sources whose 3D Fourier transforms involve various form factors F(|k|)

times ΦN(k, t0)/3. The dominant F terms are from two CMB decoupling effects, and one

late-time effect: the combined “naive Sachs-Wolfe (NSW) effect plus photon compression-

rarefaction”; the Doppler effect from flowing electrons; and the integrated Sachs-Wolfe

(ISW) effect with F a k-dependent time-integral of 6Φ̇N/ΦN [10, 12, 13, 14]. The upper

panels in Fig. 4.6 correspond to F = 1 and the lower panels are convolved with a CMB

transfer function and smoothing on 1◦, appropriate if the CMB sky is a direct map of
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Figure 4.6: Realizations of the nG map 〈FNL|χb〉 on the CMB sky. Top left shows a scale-

invariant Gaussian random field realization χb(dγdecq̂) in direction q̂ on a sphere at the

comoving distance to photon decoupling, dγdec Top right shows the action of 〈FNL|χb〉

on it, using our Gaussian-line-profile approximation with 2 peaks at χp = ±νpσb, for

νp = 3.5. Middle left shows the map convolved with a CMB transfer function, and

smoothed on a 1◦ scale, right with νp = 4.5; both show “cold spot” intermittency.
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the photon decoupling surface, ignoring its fuzziness (valid for the 1◦ smoothing) and a

correct implementation of the ISW effect, which will affect the largest scales. However,

the essential intermittent cold spot nature following from negative ΦN will persist. Such

cold spots will be polarized just as those deriving from ζφ are, and have a CMB spectrum,

a prediction for the ∼ 6◦ COBE/WMAP cold spot [226, 227] if it is a smoothed remnant

of resonant preheating.

Another non-intermittent nG regime is that of extreme “line blending”: Fig. 4.4 shows

fχχ
2
LF/M

2
P with fχ= 2 × 106 is a good fit to 〈FNL|χLF〉 below ∼ σHF. (Such a quadratic

form also follows from Eq. (4.10).) For χ>h . σHF, we will ge a power law in χb,

βχχb/MP + fχχ
2
b/M

2
P , with βχ=2fχχ>h/MP . The conventional WMAP −9 < FNL < 111

constraints [226, 227] use ∼ ζφ + fNLζ
2
φ. In our case, fχχ

2 is uncorrelated with ζ2
φ so

the constraint on fχ will be considerably relaxed, as long as the linear βχχb term is

subdominant to ζφ, as is expected.

4.6 Discussion

Further exploration is needed of how spiked FNL from resonant preheating may arise in

more general inflation models and on the rich nG impact and observable constraints of

such FNL on short and long cosmic scales. For now, we note SUSY models provide light

non-inflaton fields of the sort we need, and future CMB experiments could test whether

nG cold spots are polarized, as predicted with this mechanism for their productions.



Chapter 5

Infra-red Cascading During Inflation

5.1 Introduction

In this chapter we will discuss another mechanism that could produce large scale metric

perturbations via particle production. This time we consider a model where the particle

production occurs during inflation. For completeness we will include here most of the

contents that has already been published in [6, 7]. Please cite our original papers for the

use of these contents.

Physical processes during inflation may leave their imprint as features in the cos-

mological fluctuations. These can in principle be observed if they fall in the range of

the wavelengths between 104 Mpc and 100 kpc, which corresponds to about ten e-folds

during inflation. Relevant dynamical models were studied in the early days of the infla-

tionary theory, e.g. the model with phase transitions during inflation yielding associated

features in the cosmological fluctuations [228, 229, 230] (see also [231, 232]). There the

time-dependent dynamics of the inflaton field φ can trigger a phase transition in the

iso-inflaton χ field. The growth of χ inhomogeneities induces curvature fluctuations on

scales leaving the horizon at the moment of the phase transition.

Recently, several studies [228, 233, 234, 8, 235] considered features in the cosmological

129
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fluctuations from the effect of particle creation during inflation, which can be modelled

by the simple interaction

Lint = −g
2

2
(φ− φ0)

2χ2 (5.1)

with some value of the scalar field φ0 which the rolling φ(t) crosses during inflation that

must be tuned to give a signal in the observable range of e-folds. There are different mo-

tivations for the model (5.1). The early study introduced the possibility of slowing down

the fast rolling inflaton using particle creation via the interaction (5.1). Imagine there are

a number of field points φ0i, i = 1, 2, · · · , n, where the iso-inflaton field becomes massless

and χ particles are created. The produced χ particles are diluted by the expansion of

the universe, however, the back-reaction effect from multiple bursts of particle creation

may slow down the motion of φ sufficiently to allow for slow-roll inflation. This is called

trapped inflation. A more concrete string theory realization of trapped inflation, based

on a sequence of D3 brane interactions, was discussed in [234]. The work [235], which is

complimentary to this study, provides a detailed realization of trapped inflation in the

context of the string theory model [236].

The instant of χ-particle creation and the slow-down of the rolling inflaton generates

a feature in the power spectrum Pζ(k) of scalar curvature fluctuations from inflation.

This was noticed in [233], where the features in the power spectrum were estimated from

the simple-approximate formula Pζ(k) ∼
(

H2

φ̇

)2

. The inflaton slow-down was described

by the mean-field equation

φ̈+ 3Hφ̇+ V ,φ + g2(φ− φ0)〈χ2〉 = 0. (5.2)

The vacuum average 〈χ2〉 can be calculated with the analytic machinery of particle cre-

ation with the coupling (5.1), which was developed in the theory of preheating after

inflation [237, 238]. The QFT of χ particles interacting with the time-depended conden-

sate φ(t) deals with the eigenmodes χk(t)e
ik·x, where the time-dependent mode function
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obeys an oscillator-like equation in an expanding universe

χ̈k + 3Hχ̇k +

[

k2

a2
+ g2(φ(t) − φ0)

2

]

χk = 0 , (5.3)

with time-dependent frequency ωk(t). When φ(t) crosses the value φ0, the χk mode

becomes massless and ωk(t) varies non-adiabatically. Around this point (φ(t) − φ0) ≈

φ̇0(t − t0), where t = t0 is corresponding time instant. With this very accurate [238]

approximation, one can solve the equation (5.3) analytically to obtain the occupation

number of created χ particles

nk = exp

(

−πk
2

k2
⋆

)

, k2
⋆ = g|φ̇0| , (5.4)

presuming that k⋆ > H . The latter condition requires coupling constant g > H2/|φ̇0| ∼

10−4. It is useful to note that, independent of the details of V (φ) and φ(t), the scale

k⋆ can be related to the naively estimated amplitude of vacuum fluctuations as k⋆/H =
√

g/(2πP
1/2
ζ ). Thus k⋆/H ∼ 20 if P

1/2
ζ = 5 × 10−5 as suggested by the CMB and the

coupling is g2 ∼ 0.1.i

The VeV 〈χ2〉, which controls the back-reaction on the homogeneous field φ(t), can

be calculated from (5.4) and estimated as 〈χ2〉 =
∫

d3k
(2π)3

|χk|2 ≈
∫

d3k
(2π)3

nk
ωk

≈ nχa−3

g|φ−φ0| for

φ > φ0. Substitution of this result back into (5.2) gives the expected velocity dip of φ(t)

and, correspondingly, a bump in the power spectrum Pζ(k). In Fig. 5.1 we illustrate this

velocity dip for the model (5.1) with g2 = 0.1.

The calculation of curvature fluctuations was re-considered in [8], where the linearized

equations of motion for the quantum fluctuations δφ coupled with the metric fluctuations

were treated again in the mean-field approximation, using 〈χ2〉 to quantify the back-

reaction. This study shows that the bump in the curvature power spectrum is the most

prominent part of an otherwise wiggling pattern. Similar to us, the work [235] further

refined the calculation of the curvature perturbation in this model, going beyond the

iWe are assuming that supersymmetry protects the inflaton potential from radiative corrections at
t = t0.
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Figure 5.1: |φ̇|/(Mpm) plotted against mt for g2 = 0.1 (where m = V,φφ is the effective

inflaton mass). Time t = 0 corresponds to the moment when φ = φ0 and χ-particles are

produced copiously. The solid red line is the lattice field theory result taking into account

the full dynamics of re-scattering and IR cascading while the dashed blue line is the result

of a mean field theory treatment which ignores re-scattering [8]. The dot-dashed black

line is the inflationary trajectory in the absence of particle creation.
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mean-field treatment of φ.ii

In a parallel development, scalar field interactions of the type (5.1) are the subject

of studies in non-equilibrium QFT and its application to the theory of preheating after

inflation, as we mentioned above. In this context χ particles are usually created with

large occupation numbers (For example, in the case of parametric resonant preheating

due to the oscillating inflaton background φ(t), χ particles are created in successive

bursts whenever φ(t) crosses zero.) The full dynamics of interacting scalars also includes

re-scattering effects where δφ fluctuations (particles) are created very quickly due to

the interaction of χ particles with the condensate φ(t) [238, 239, 240, 241, 242, 243].

The diagram for this process is illustrated in Fig. 5.7. The δφ particles produced by

re-scattering are far from equilibrium and evolve towards an intermediate regime which

is well described by the scaling “turbulent” solution. To understand the dynamics, one

needs to use lattice numerical simulations of the time-evolution of the classical scalar fields

based on the LATTICEASY [218] or DEFROST [219] codes, designed for this purpose.

The turbulent regime of interacting scalars was investigated in several recent works. The

papers [244, 245] used numerical simulations to demonstrate the scaling regime in the

model of a self-interacting classical scalar λφ4. The papers [246, 247] show numerically

the scaling solution for the fully QFT treatment of the same model, and advocate a new

regime, the non-thermal fixed point, which may be asymptotically long – and before the

system evolves, if ever, to another fixed point, namely thermal equilibrium.

In this chapter we will study in detail the back-reaction of created χ particles on the

inflaton field resulting in bremsstrahlung radiation and IR cascading of δφ fluctuations.

iiBelow we use QFT methods to study correlators of inhomogeneous fluctuations δφ induced by χ2

inhomogeneities. Ref. [235] considers the effect induced by quantum mechanical fluctuations of the total
particle number nχ. Owing to the relationship between χ2 and nχ, our calculations below capture this
effect.



Chapter 5. Infra-red Cascading During Inflation 134

5.2 Re-scattering, numerics

To study the creation of δφ fluctuations by re-scattering of produced χ particles off the

condensate φ(t) in the model (5.1) we have adapted the numerical DEFROST code for the

problem of a single burst of instantaneous particle creation during inflation.iii To run the

classical scalar field simulation, we must first choose the appropriate initial conditions.

The field χ on the lattice is modelled by the random Gaussian field realized as the

superposition of planar waves χk(t)e
ikx with random phases. The initial conditions for

the models χk(t) are chosen to emulate the exact quantum mode functions corresponding

to the physical occupation number (5.4) (see appendix A for more details) while ensuring

that the source term for the δφ fluctuations turns on smoothly at t = 0. The box size

of our 5123 simulations corresponds to a comoving scale which initially is 20
2π

∼ 3 times

the horizon size 1/H , while k⋆ ∼= 60
√
gH . We run our simulations for roughly 3 e-

folding from the initial moment t0 when χ-particles are produced, although a single

e-folding would have been sufficient to capture the effect. We are interested in the power

spectrum of inflaton fluctuations Pφ = k3|δφ|2/(2π2), and also the number density of

inflaton fluctuations nφ(k) = Ωk
2

(

|δφ̇k|2
Ω2
k

+ |δφk|2
)

(where we introduce the notation Ωk =
√

V,φφ + k2 for the inflaton frequency). For the sake of illustration we have chosen the

standard chaotic inflationary potential V = m2φ2/2 with m = 10−6mpl and φ0 = 3.2mpl,

however, our qualitative results will be independent of the choice of background inflation

model and, in particular, are applicable to trapped inflation. We have considered three

different values of the coupling constant, g2 = 0.01, 0.1, 1, although we focus most of

our attention on the case g2 = 0.1. Fig. 5.2 shows time evolution of the re-scattered

inflaton power spectrum Pφ(k) for three different time steps, while Fig. 5.3 shows the

iiiSince the production of long wavelength δφ modes is so energetically inexpensive, a major require-
ment for successfully capturing this effect on the lattice is respecting energy conservation to very high
accuracy. In our modified version of DEFROST energy conservation is respected with an accuracy of
order 10−8, compared to 10−3 − 10−5 obtained using previous codes. A minimum accuracy of roughly
10−4 is required for this problem.
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corresponding evolution of the particle number density nφ(k). In Fig. 5.4 we illustrate

the dependence of our results on the coupling constant g2.

In Fig. 5.2 we see clearly how multiple re-scatterings lead to a cascading of power

into the IR. These re-scattered inflaton perturbations are complimentary to the usual

long-wavelength inflaton modes produced by quantum fluctuations. As long as g2 > 0.06

the re-scattered power spectrum outside the horizon comes to dominate over the usual

vacuum fluctuations within a single e-folding. At much later times the IR portion of

the power spectrum remains frozen while the UV portion is damped out by the Hubble

expansion. The effect of IR cascading on the power spectrum is much more significant

than features which are produced by the momentary slowing-down of the background

φ(t).iv

Fig. 5.1 illustrates the impact of re-scattering on the dynamics of the velocity of the

background field. The evolution of φ̇(t) including re-scattering is not changed significantly

(as compared to the mean field theory result), which show the energetic cheapness of IR

cascading.

The long-wavelength inflaton fluctuations produced by IR cascading are non-Gaussian.

This is illustrated in Fig. 5.5 where we study the probability density function and compare

to a Gaussian fit.

5.3 Re-scattering, analytics

We now develop an analytical theory of this effect. Here we provide only a cursory

discussion, the reader is referred to Appendices A and B for a detailed exposition and

technical details of the calculation.

ivTo avoid confusion: here we use “cascading” to refer to the dynamical process of building up
δφ fluctuations in the IR. If the universe were not expanding, a scaling turbulent regime would be
established. Here we see this scaling regime only in an embryonic form, see the envelope in Fig. 5.3.
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Figure 5.2: The power spectrum of inflaton modes induced by re-scattering (normalized to

the usual vacuum fluctuations) as a function of ln(k/k⋆), plotted for three representative

time steps in the evolution, showing the cascading of power into the IR. For each time

step we plot the analytical result (the solid line) and the data points obtained using lattice

field theory simulations (diamonds). The time steps correspond to the following values

of the scale factor: a = 1.03, 1.04, 2.20 (where a = 1 at the moment when φ = φ0). By

this time the amplitude of fluctuations is saturated due to the expansion of the universe.

The vertical lines show the range of scales from our lattice simulation.
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Figure 5.3: Physical occupation number nk as a function of ln(k/k⋆) for g2 = 0.1. The

three curves correspond to the same series of time steps used in Fig. 5.2, and demonstrate

the growing number of long wavelength inflaton modes which are produced as a result

of IR cascading. Because the same χ-particle can undergo many re-scatterings off the

background condensate φ(t), the δφ occupation number is larger than the initial χ particle

number (for g2 = 0.1 one can achieve nφ(k) ∼ 30 even though initially nχ(k) ≤ 1). When

g2 = 0.06 the IR δφ occupation number exceeds unity within a single e-folding. The

yellow envelope line shows the onset of scaling behaviour associated with the scaling

turbulent regime.
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Figure 5.4: The dependence of the power spectrum Pφ on the coupling g2. The three

curves correspond to Pφ for g2 = 0.01, 0.1, 1, evaluated at a fixed value of the scale

factor, a = 2.20. We see that even for small values of g2 the inflaton modes induced by

re-scattering constitute a significant fraction of the usual vacuum fluctuations after only

a single e-folding.
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Figure 5.5: Probability density function of δφ for g2 = 0.1 at a series of different values

of the scale factor, a. The dotted curve shows a Gaussian fit at late time a = 6.9.

At leading order the physics of re-scattering (see Fig. 5.7) is described by the equation

δφ̈+ 3Hδφ̇− 1

a2
∇2δφ+m2δφ ∼= −g2 [φ(t) − φ0]χ

2 , (5.5)

where we introduce the notation m2 = V,φφ for the effective inflaton mass. The solution

of (5.5) consists of two components: the solution of the homogeneous equation which

simply corresponds to the usual vacuum fluctuations produced during inflation and the

particular solution which is due to the source term. We will focus our attention on

this latter solution which, physically, corresponds to re-scattered inflaton perturbations.

Since the process of IR cascading takes less than a single e-folding, we can safely neglect

the expansion of the universe when studying analytically the particular solution of (5.5).

(In all of our lattice simulations the inflationary expansion of the universe is taken into

account consistently.) Solving for the particular solution δφk of (5.5) and defining the

re-scattered power spectrum Pφ in terms of the QFT correlation function in the usual

manner we arrive at an expression for Pφ in terms of the c-number mode functions χk
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which obey equation (5.3).v The result is

Pφ =
g4φ̇2

0

8π5

k3

Ω2
k

∫

dt′dt′′t′t′′ sin [Ωk(t− t′)] sin [Ωk(t− t′′)]

×
∫

d3k′χk−k′(t
′)χ⋆k−k′(t

′′)χk′(t
′)χ⋆k′(t

′′) (5.6)

where again we have Ωk =
√
k2 +m2 for the δφ-particle frequency.

To evaluate this power spectrum we need an expression for the solutions of (5.3) in

the regime of interest. Let us choose the origin of time so that t = 0 corresponds to

the moment when φ = φ0. At the moment t = 0 the parameter |ω̇k|/ω2
k is order unity

or larger and ωk varies non-adiabatically. At this point χk modes are produced in the

momentum band k . k⋆. However, within a time ∆t ∼ k−1
⋆ (which is tiny compared to

the Hubble time H−1) the χ particles become extremely heavy and their frequency again

varies adiabatically. At times t & k−1
⋆ we can safely approximate ωk =

√

k2 + k4
⋆t

2 ∼= k2
⋆t

for the modes of interest and χk takes the simple form

χk(t) ∼=
√

1 + nk
e−i(k⋆t)

2/2

k⋆
√

2t
− i

√
nk

e+i(k⋆t)
2/2

k⋆
√

2t
, (5.7)

where the occupation number was defined in (5.4). The factors
√

1 + nk, −i√nk are

the Bogoliubov coefficients while the factors proportional to e±i(k⋆t)
2/2 come from the

positive and negative frequency adiabatic mode solutions [238]. As we see, very quickly

after t = 0 the χ particles become very massive and their multiple re-scatterings off the

condensate φ(t) generates bremsstrahlung radiation of IR δφ particles.

We have computed the full renormalized power spectrum analytically in closed form

and the result is presented in equation (5.46). This formula is used for all of our figures.

Since the exact analytical result is quite cumbersome, it is useful to consider the following

representative contribution to (5.6):

Pφ ≃ g2 k3k3
⋆

32
√

2π5

[

1 − cos(Ωkt)

Ω2
k

]2

e−πk
2/(2k2

⋆) , (5.8)

vWe are only interested in connected contributions to the correlation functions, which is equivalent to
subtracting the expectation value from the source term in (5.5): χ2 → χ2 −〈χ2〉. Thus, our re-scattered
inflaton modes are only sourced by the variation of χ2 from the mean 〈χ2〉.
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which captures the properties of the full analytical solution. In particular, the simple

expression (5.8) nicely describes the IR cascade. The spectrum has a peak which initially

(near t ∼ k−1
⋆ ) is close to k⋆. As time evolves the peak moves to smaller-and-smaller k

as power builds up in the IR. From (5.8) we see that modes with Ωkt < 1 gain power

as Pφ(k) ∼ t4. For a given k-mode the growth of the power spectrum saturates when

Ωkt ∼ 1, however, the cascade still continues at some lower k. If we had m = 0 then the

cascade would continue forever, otherwise formula (5.8) predicts that the growth of the

spectrum saturates at t ∼ m−1 when the peak has reached k ∼ m. After this point the

character of the IR cascade is expected to change, however, our analytic calculation is

no longer reliable because m≪ H and we have neglected the expansion of the universe.

5.4 Discussion of Curvature Fluctuations from IR

Cascading

Any inflaton fluctuations δφ, independently on their origin, evolve qualitatively simi-

larly during inflation. When their physical wavelength is smaller than the Hubble radius

1/H , δφ is oscillating while their amplitude is diluted as 1/a. As far as the wavelength

exceeds the Hubble radius, the amplitude of δφ freezes out. Fluctuations of δφ induce

the curvature metric fluctuations. Inflationary expansion of the universe further stretch

the wavelengths of the fluctuations frozen outside the horizon, making them potentially

of the cosmological scales, depending on the wavelength. The inflaton fluctuations pro-

duced by the IR cascading, therefore, are the potential sources for observable curvature

fluctuations. To calculate curvature fluctuations generated by the IR cascading, we have

to solve self-consistent system of linearized Einstein equations for metric and the fields

fluctuations.
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Figure 5.6: The left panel shows a comparison of curvature fluctuations from different

effects. We see the dominance of fluctuations produced by IR cascading over the wiggles

induced by the momentary slowing-down of the inflaton. For illustration we have taken

g2 = 0.1, but the dominance is generic for all values of the coupling. The red solid line is

the IR cascading curvature power spectrum, while the blue dashed line is the result of a

mean field treatment. (The vertical lines show aH at the beginning of particle production

and after ∼ 3 e-foldings.) The right panel shows the curvature power spectrum resulting

from multiple bursts of particle production and IR cascading. Superposing a large number

of these bumps produces a broad-band spectrum.
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For example, the (0, 0) linearized Einstein equation for our model reads

δG0
0 =

8π

M2
p

(

δT 0
0 (φ) + δT 0

0 (χ)
)

. (5.9)

where δG0
0 is the perturbed Einstein tensor and in the R.H.S. δT 0

0 (φ) corresponds to the

fluctuations of the inflaton energy density, containing familiar terms linear with respect

to δφ, like φ̇δφ̇ etc. Second term corresponds to the contribution from χ particles

δT 0
0 (χ) =

1

2
χ̇2 +

1

2
(∇χ)2 +

1

2
g2(φ− φ0)

2χ2− < T 0
0 (χ) > . (5.10)

Although this expression is bi-linear w.r.t. χ, it turns out taking δT 0
0 (χ) into account

is important. To begin the investigation the equation (5.9), it is convenient to use its

Fourier transformation. While the Fourier components of δT 0
0 (φ) contains linear terms

of δφk, the Fourier transform of δT 0
0 (χ) contains convolutions like ∼

∫

d3k′χ̇k′χ̇∗
k−k′ . etc.

As a result, despite the fact that χ particles amplitude is peaked at k ∼ k⋆, this type of

convolution gives significant contribution at small k, which are of interest for the theory of

generation of cosmological fluctuations. Preliminary estimations based on the analytical

formulas for χk involved in the convolution, show that contribution of δT 0
0 (χ) is at least

the same order of magnitude as δT 0
0 (φ). Rigorous treatment of the curvature fluctuations

in our model is therefore rather complicated, and will be leave it for separated project.

Since both terms in R.H.S. in (5.9) are the same order of magnitude, here for the

crude estimations we will use the simple-minded formula Pζ ∼
(

H2

φ̇

)2

. The curvature

fluctuations generated by the IR cascading, are illustrated in the left panel of Fig. 5.6.

The curvature fluctuations from the instance of the IR cascading has the bump-like shape

within the interval of the wavelength, roughly corresponding to one e-folding. They are

significantly, by orders of magnitude, dominated over the fluctuations generated by the

momentary slowing down of φ(t). If we pick up the background inflationary model to

be chaotic inflation with the standard quadratic potential, the ratio of the power spectra

from IR cascading and the standard fluctuations is estimates as PIR/Ps ∼ 700 × g4.5.
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Thus, depending on the coupling g2, the IR bump can dominate (for g2 > 0.06) over the

standard fluctuations, or just contribute to them for smaller g2.

Suppose that we have a sequence of the particles creation events at different moments

t0i, i = 1, 2, 3, .... Each of those events generate, through IR cascading, corresponding

bumps in the spectrum, as illustrated in the right panel of Fig. 5.6. Depending on the

density of t0i moments, superposition of such IR bumps results in broad band contribution

to the curvature power spectrum.

We also estimated non-Gaussianity of δφ fluctuations from IR cascading. They are

quite significant, we estimate the non-Gaussianity parameter fNL ∼ 2× 104 g2.25. There-

fore the non-Gaussian signal from individual bump can be strongly non-Gaussian. In the

model with multiple instances of particle creations, the broad-band IR cascading fluc-

tuations dominated over the standard fluctuations, apparently, are ruled out because of

the strong non-Gaussianity. However, the broad-band IR cascading fluctuations can be

considered as additional subdominant component to the standard fluctuations. In this

case the non-Gaussianity of the net curvature fluctuations can be acceptable but different

from that of the standard fluctuations alone.

Another important parameter of the IR cascading fluctuations is the wavelength of

the bump, which depend on the value of φ0. there are interesting possibilities to consider

them at small CMB angular scales (small-scale non-Gaussianity?), at scales of galaxies,

at near the horizon scales (CMB anomalies at large scales?). We leave all of these

possibilities for further discussion.

5.5 Summary of Theoretical Part

We find the following new results for interacting scalars during inflation in the model

(5.1).

i) In the early stages of re-scattering, when the back-reaction can be treated linearly, the
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spectrum of inflaton fluctuations δφ and the corresponding particle number density nφ(k)

can be rigorously calculated with QFT with the diagram in Fig. 5.7. We perform such

QFT calculations and compare with lattice simulations of the classical field dynamics.

The results are highly compatible with each other, even well into the late time nonlinear

regime. This signals the dominance of Fig. 5.7 in the dynamics of re-scattering, while

the analytic estimate gives a handy fitting formula.

ii) While the stationary scaling turbulent solution for the scalar fields was established

previously, the way this regime appears dynamically was not traced out in detail. For

our example we show how the scaling regime emerges, what is the timing of IR cascade

propagation and what is the profile of the spectra resulting from the IR cascading.

iii) The most unexpected result, which is of interest outside of the inflationary theory, is

that even an insignificant amount of out-of-equilibrium particles with nχ(k) ≤ 1, being

re-scattered off the scalar field condensate, can generate IR cascade of the inhomogeneous

condensate fluctuations with large occupation number nφ(k) in the IR region. This is

explained by fact that multiple production of the IR modes is energetically cheap.

iv) IR fluctuations of the light fields have special significance in the context of infla-

tionary theory. These fluctuations evolve in time similar to the evolution of the usual

inflationary fluctuations. Their amplitude is oscillating while their wavelengths is inside

the Hubble radius and is frozen out once their wavelengths exceed the Hubble radius

H−1. However, the amplitude of IR cascading fluctuations is different from that of the

usual quantum fluctuations. Frozen fluctuations δφ, regardless of their origin, will induce

cosmological curvature fluctuations. Thus, we get a new mechanism for generating frozen

long wavelength δφ fluctuations from IR cascading. Therefore, IR cascading will lead to

observable features in the CMB power spectrum. For generic choices of parameters, these

re-scattered fluctuations are much more significant than the features induced by the mo-

mentary slowing-down of the background φ(t), see the left panel of Fig. 5.6.

v) Since the solution δφ of (5.5) depends nonlinearly on the Gaussian field χ, the curva-
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ture fluctuations induced by IR cascading will be non-Gaussian. This non-Gaussianity

is illustrated in Fig. 5.5. We estimate this non-Gaussianity to be significant. However,

this non-Gaussian signal is related to the IR cascading bump of the spectrum and peaks

on the range of scales corresponding to roughly one e-folding after t = t0. This type of

non-Gaussianity, which is large only over a small range of scales, is not well constrained

by observation.

vi) The strength and location of our effect is model-dependent (through g2 and φ0), how-

ever, the very fact that subtle QFT effects of interaction during inflation may lead to an

observable effect is intriguing.

vii) In our analysis we have focused on a single burst of instantaneous particle production

during inflation. This scenario is interesting in its own right, however, our results could

also be extended in a straightforward manner to study trapped inflation models where

there are numerous bursts of particle production; see [235] for more detailed discussion.

viii) Suppose we have a sequence of points φ0i (i = 1, · · · , N) where particles χi become

massless. In this case the curvature fluctuation profiles generated from individual bursts

of IR cascading can superpose to form a smooth spectrum of cosmological fluctuations,

see the right panel of Fig. 5.6. This provides us with a new mechanism for generating

long wavelength curvature fluctuations during inflation from IR cascading. The ampli-

tude and non-Gaussianity of these curvature fluctuations will depend on the coupling, g2.

These fluctuations are interesting on their own, although they may generate too much

non-Gaussianity. They also can be considered as an extra component of the standard

vacuum fluctuations, introducing an interesting non-Gaussian signal to the net fluctua-

tions.

ix) The transfer of energy into fluctuations via successive bursts of particle production

can lead to trapped inflation. Our new mechanism of generating cosmological fluctua-

tions from IR cascading can, but need not, be associated with trapped inflation.

x) Varying the location, strength and non-Gaussianity of the IR cascading bump, it will
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be interesting to consider other potential implication to the cosmological fluctuations, e.g.

their impact on the horizon scale fluctuations or on small scale fluctuations where they

might effect primordial Black Hole formation or the generation of gravitational waves.

Finally, let us return to the old story of how cosmological fluctuations are affected by

phase transition during inflation, which we discussed at the beginning of this paper. We

project that our results concerning re-scattering and IR cascading will radically change

the conventional picture.

5.6 Introduction for the Observational Part

Recently, there has been considerable interest in inflationary models where the motion

of the inflaton triggers the production of some non-inflation (iso-curvature) particles

during inflation [233, 248, 249, 8, 6, 250, 228, 229, 230, 231, 232, 251, 252, 253, 254,

234, 235, 255, 256]. Examples have been studied where this particle production occurs

via parametric resonance [233, 248, 249, 8, 6, 250], as a result of a phase transition

[228, 229, 230, 231, 232, 251, 252, 253, 254], or otherwise. In some scenarios, back-reaction

effects from particle production can slow the motion of the inflaton on a steep potential

[234, 235, 255], providing a new inflationary mechanism. Moreover, inflationary particle

production arises naturally in a number of realistic microscopic models from string theory

[234, 235, 255, 236, 257, 258] and also supersymmetry (SUSY) [259].

In previous sections of this chapter it was shown that the production of massive iso-

curvature particles during inflation (and their subsequent interactions with the slow roll

condensate) provides a qualitatively new mechanism for generating cosmological pertur-

bations. This new mechanism leads to a variety of novel observable signatures. Here we

study in detail the observational constraints on such distortions of the primordial power

spectrum for a variety of scenarios.

One motivation for this study is to determine whether features generated by particle
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production during inflation can explain some of the anomalies in the observed primordial

power spectrum, P (k). A number of different studies have hinted at the possible presence

of some localized features in the power spectrum [248, 254, 210, 204, 205, 260, 261,

198, 207, 201, 202, 262, 263, 203], which are not compatible with the simplest power

law P (k) ∼ kns−1 model. Although such glitches may simply be statistical anomalies,

there is also the tantalizing possibility that they represent a signature of primordial

physics beyond the simplest slow roll inflation scenario. Forthcoming polarization data

may play a crucial role in distinguishing between these possibilities [254]. However, in

the meantime, it is interesting to determine the extent to which such features may be

explained by microscopically realistic inflation models.

We consider a very simple model where the inflaton, φ, and iso-inflaton, χ, fields

interact via the coupling given in Eq. (5.1). We focus on this simple prototype model

in order to illustrate the basic phenomenology of particle production during inflation,

however, we expect our results to generalize in a straightforward way to more complicated

scenarios. Models of the type (5.1) have been considered as a probe of Planck-scale effects

[233] and offer a novel example of the non-decoupling of high energy physics during

inflation.vi

At the moment when φ = φ0 (which we assume occurs during the observable range of

e-foldings of inflation) the χ particles become instantaneously massless and are produced

by quantum effects. This burst of particle production drains energy from the condensate

φ(t), temporarily slowing the motion of the inflaton background and violating slow roll.

Shortly after this moment the χ particles become extremely non-relativistic, so that their

number density dilutes as a−3, and eventually the inflaton settles back onto the slow roll

attractor.

viFor reasonable values of g2 the χ particles are extremely massive for almost the entire duration of
inflation excepting a tiny interval, much less than an e-folding, about the point φ = φ0. However, the
χ field cannot be integrated out due to the non-adiabatic time dependence of the mode functions, see
[264] for further discussion.
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Several previous papers [233, 248, 249, 8] have studied the temporary slowing-down of

the inflaton background using the mean-field equation (5.2), where the vacuum average

〈χ2〉 is computed following [237, 238]. Using this approach one finds that the transient

violation of slow roll leads to a “ringing pattern” (damped oscillations) in the spectrum

of cosmological fluctuations leaving the horizon near the moment when φ = φ0 [8]. In

[248, 249] observational constraints on particle production during inflation were discussed

in the context of this mean field treatment.

However, in previous part of this chapter we re-considered cosmological fluctuations

for this model, going beyond the mean-field treatment of φ.vii It was pointed out that the

massive χ particles can rescatter off the condensate to generate bremsstrahlung radiation

of long-wavelength δφ fluctuations via diagrams such as Fig. 5.7. Multiple rescattering

processes lead to a rapid cascade of power into the infra-red (IR) - IR cascading. The

inflaton modes generated by IR cascading freeze once their wavelength crosses the hori-

zon and lead to a bump-like feature in the cosmological perturbations that is illustrated

in Fig. 5.8. This feature is complimentary to the usual (nearly) scale-invariant quan-

tum vacuum fluctuations from inflation. The bump dominates over the ringing pattern

discussed above by many orders of magnitude, independently of the value of g2.

In light of the results of [6] it is clear that the observational constraints on the model

(5.1) need to be reconsidered. Since previous studies have suggested marginal evidence for

localized power excesses in the CMB using both parametric [248, 263] and non-parametric

[202, 201] techniques, it is interesting to determine if a simple and well-motivated model

such as (5.1) can explain these anomalies. To answer this question we provide a simple

semi-analytic fitting function that accurately captures the shape of the feature gener-

ated by particle production and IR cascading during inflation. Next, we confront this

modified power spectrum with a variety of observational data sets. We find no evidence

for a detection, however, we note that observations are consistent with relatively large

viiSee also [235] for a complimentary analysis and for a detailed analytical treatment of the dynamics.
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Figure 5.7: Rescattering diagram.

spectral distortions of the type predicted by the model (5.1). If the feature is located

on scales relevant for Cosmic Microwave Background (CMB) experiments then its ampli-

tude may be as large as O(10%) of the usual scale-invariant fluctuations, corresponding

to g2 ∼ 0.01. Our results translate into a φ0-dependent bound on the coupling g2 which

is crucial in order to determine whether the non-Gaussian signal associated with particle

production and IR cascading is detectable in future missions.

We also consider the more complicated features which result from multiple bursts

of particle production and IR cascading. Such features are a prediction of a number of

string theory inflation models, including brane/axion monodromy [236, 257, 258]. For

appropriate choice of the spacing between the features, we find that the constraint on g2

in this scenario is even weaker than the single-bump case.

Although we focus on the interaction (5.1), our findings may have some bearing also

on models with phase transitions during inflation. A simple prototype model for the
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Figure 5.8: The bump-like features generated by IR cascading. We plot the feature

power spectrum obtained from fully nonlinear lattice field theory simulations (the red

points) and also the result of an analytical calculation (the dashed blue curve). We also

superpose the fitting function ∼ k3e−πk
2/(2k2

⋆) (the solid black curve) to illustrate the

accuracy of this simple formula
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latter scenario is

V (φ, χ) =
λ

4
(χ2 − v2)2 +

g2

2
χ2φ2 + Vinf(φ)

At the moment when φ =
√
λv/g massive iso-inflaton χ particles are produced copiously

by tachyonic (spinodal) instability [265, 266]. These produced particles will subsequently

interact with the condensate via rescattering diagrams similar to Fig. 5.7. Hence, we

expect the features produced by inflationary phase transitions to be qualitatively similar

to the bumps considered in this work. (This intuition is consistent with a second order

computation of the cosmological perturbations in a closely related model [231, 232]. See

[263] for a discussion of the observational consequences.)

In the literature it is sometimes argued that inflationary phase transitions can be

studied using a toy model with a sharp step-like feature in the inflaton potential. This

potential-step model predicts a ringing pattern in the power spectrum, very much anal-

ogous to the mean field treatment of resonant particle production during inflation, dis-

cussed above. This treatment does not take into account the violent growth of inho-

mogeneities of the fields that occurs during realistic phase transitions [265, 266] and, in

particular, does not capture rescattering effects and IR cascading. In the case of reso-

nant particle production, these nonlinear effects have a huge impact on the cosmological

fluctuations [6]. Hence, it is far from clear if the potential-step model provides a good

effective description of inflationary phase transitions.viii

Of course, inflation models with steps in V (φ) (or its derivatives) may be consid-

ered on phenomenological grounds, irrespective of the motivation from inflationary phase

transitions. In [268] cosmological perturbations from models with step-like features and

discontinuities in higher derivatives were considered, as were the microscopic motivations

for such constructions. See [269, 270] for a study of the non-Gaussianities induced in a

variety of single-field models with steps or oscillations in the inflaton potential.

The outline of this chapter is as follows. In section 5.7 we provide a simple parametriza-

viiiSee also [267] for a related discussion.
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tion of the features that are imprinted on the primordial power spectrum by one or more

bursts of particle production during inflation. In section 5.8 we describe our method and

discuss the observational data sets employed to derive constraints on this modified power

spectrum. In section 5.9 we present observational constraints on various scenarios. In

section 5.10 we present some microscopic realizations of our scenario and discuss the im-

plications of our findings for popular string theory/SUSY inflation models with a special

emphasis on brane monodromy. Finally, in section 5.11 we conclude.

5.7 A Simple Parametrization of the Power Spec-

trum

In [6] it was shown that particle production and IR cascading during inflation in the

model (5.1) generates a bump-like contribution to the primordial power spectrum. As

shown in Fig. 5.8, this feature can be fit with a very simple function Pbump ∼ k3e−πk
2/(2k2

⋆).

The bump-like contribution from IR cascading is complimentary to the usual (nearly)

scale-invariant contribution to the primordial power spectrum Pvac ∼ kns−1 coming from

the quantum vacuum fluctuations of the inflaton. The total, observable, power spectrum

in the model (5.1) is simply the superposition of these two contributions: P (k) ∼ kns−1 +

k3e−πk
2/(2k2

⋆). This simple formula can be motivated from analytical considerations [6]

and provides a good fit to lattice field theory simulations near the peak of the feature

and also in the IR tail.ix

It is straightforward to generalize this discussion to allow for multiple bursts of particle

production during inflation. Suppose there are multiple points φ = φi (i = 1, · · · , n) along

ixThis fitting formula does not capture the small oscillatory structure in the UV tail of the feature
(see Fig. 5.8) which does not concern us since that region is not phenomenologically interesting.
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the inflationary trajectory where new degrees of freedom χi become massless:

Lint = −
n
∑

i=0

g2
i

2
(φ− φi)χ

2
i (5.11)

For each instant ti when φ = φi there will be an associated burst of particle production

and subsequent rescattering of the produced massive χi off the condensate φ(t). Each of

these events proceeds as described above and leads to a new bump-like contribution to

the power spectrum. These features simply superpose owing to that fact that each field

χi is statistically independent (so that the cross terms involving χiχj with i 6= j in the

computation of the two-point function must vanish). Thus, we arrive at the following

parametrization of the primordial power spectrum in models with particle production

during inflation:

P (k) = As

(

k

k0

)ns−1

+

n
∑

i=1

Ai

(πe

3

)3/2
(

k

ki

)3

e
−π

2

“

k
ki

”2

(5.12)

where As is the amplitude of the usual nearly scale invariant vacuum fluctuations from

inflation and k0 is the pivot, which we choose to be k0 = 0.002 Mpc−1 following [271].

The constants Ai depend on the couplings g2
i and measure the size of the features from

particle production. We have normalized these amplitudes so that the power in the i-th

bump, measured at the peak of the feature, is given by Ai. The location of each feature,

ki, is related to the number of e-foldings N from the end of inflation to the time when

the i-th burst of particle production occurs: roughly ln(ki/H) ∼ Ni where N = Ni at

the moment when φ = φi. From a purely phenomenological perspective the locations ki

are completely arbitrary.

We compare (5.12) to lattice field theory simulations in order to determine the am-

plitude Ai in terms of model parameters. We find

Ai ∼= 1.01 × 10−6 g
15/4
i (5.13)
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Assuming standard chaotic inflation V = m2φ2/2 we have tested this formula for g2 = 1,

0.1, 0.01, taking both φ0 = 2mpl and φ0 = 3.2mpl. We found agreement up to factors

order unity in all cases.

Theoretical consistency of our calculation of the shape of the feature bounds the cou-

pling as 10−7 . g2
i . 1 (For smaller g2 the theoretical calculation ignoring the expansion

of universe is invalid.) Hence, the power spectrum (5.12) can be obtained from sensible

microphysics only when 10−20 . Ai . 10−6. x This constraint still allows for a huge

range of observational possibilities: near the upper bound the feature is considerably

larger than the vacuum fluctuations while near the lower bound the feature is completely

undetectable.

Note that for each bump in (5.12) the IR tail Pbump → k3 as k → 0 is similar to the

feature considered by Hoi, Cline & Holder in [263], consistent with causality arguments

about the generation of curvature perturbations by local physics.

5.8 Data Sets and Analysis

The primordial power spectrum for our model is parametrized as (5.12). Our aim is to

derive observational constraints on the various model parameters As, ns, ki and Ai using

CMB, galaxy power spectrum and weak lensing data. To this end we use the CosmoMC

package [113] to run Markov Chain Monte Carlo (MCMC) calculations to determine the

likelihood of the cosmological parameters, including our new parameters Ai and ki. We

employ the following data sets.

Cosmic Microwave Background (CMB)

Our complete CMB data sets include WMAP-5yr [226, 271], BOOMERANG [3, 4,

xFor 10−7 < g2 . 10−4 the feature in power spectrum will be too small to be observed. For
g2 < 10−7 our theoretical calculation is not reliable, and it is difficult to track such a tiny effect with
lattice simulations. We expect for g2 < 10−7 the power spectrum is also negligible, and leave this
conjecture to be verified in our future work.
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5], ACBAR [122, 123, 121, 120], CBI [127, 125, 126, 124], VSA [128], DASI [272,

273], and MAXIMA [129]. We have included the Sunyaev-Zeldovic (SZ) secondary

anisotropy [130, 131] for WMAP-5yr, ACBAR and CBI data sets. The SZ template

is obtained from hydrodynamical simulation [133]. Also included for theoretical

calculation of CMB power spectra is the CMB lensing contribution.

Type Ia Supernova (SN)

We employ the Union Supernova Ia data (307 SN Ia samples) from The Supernova

Cosmology Project [274].

Large Scale Structure (LSS)

The 2dF Galaxy Redshift Survey (2dFGRS) data [275] and Sloan Digital Sky Sur-

vey (SDSS) Luminous Red Galaxy (LRG) data release 4 [276] are utilized.

Note that we have used the likelihood code based on the non-linear modelling by

Tegmark et al. [276] (marginalizing the bias b and the Q parameter). However

with a large bump in the linear power spectrum, this naive treatment may be not

sufficient to characterize the non-linear response to the feature on small scales.

Ideally, this should be obtained from N-body simulations, however, such a study is

beyond the scope of the current work.

There are several other caveats on our results in the high-k regime. First, we

assume linear bias for the galaxies, which may not be entirely safe at sufficiently

small scales. Moreover, sharp features in the matter power spectrum can cause

sharp features in the bias as a function of k.

Keeping in mind these caveats our constraints on small scales k & 0.1 Mpc−1 should

be taken with a grain of salt and considered as accurate only up to factors order

unity.

Weak Lensing (WL)
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See Section 2.4 for five WL data sets used here.

As for the LSS data, for small scales k & 0.1 Mpc−1 there is the caveat that the

nonlinear evolution of the power spectrum in the presence of bump-like distortions

may not be treated accurately.

5.9 Observational Constraints

We now present our results for the observational constraints on particle production during

inflation, assuming two different scenarios.

5.9.1 A Single Burst of Particle Production

The minimal scenario to consider is a single burst of particle production during inflation,

which corresponds to taking n = 1 in (5.11). The power spectrum is given by (5.12) with

n = 1 and, with some abuse of notation, we denote k1 ≡ kIR and A1 ≡ AIR. The prior we

have used for AIR is 0 ≤ AIR ≤ 25 × 10−10, and for kIR is −9.5 ≤ ln[k/Mpc−1] ≤ 1. The

former condition ensures that the bump-like feature from IR cascading does not dominate

over the observed scale invariant fluctuations while the latter is necessary in order to

have the feature in the observable range of scales. In Fig. 5.9 we plot the marginalized

posterior likelihood for the new parameters AIR and kIR describing the magnitude and

location of the bump while in Table 5.1 we give the best fit values for the remaining

(vanilla) cosmological parameters.

For very large scales . Gpc−1, the data do not contain much information (due to

cosmic variance) and hence the constraint on any modification of the power spectrum

is weak. In this region the spectral distortion may be larger than 100% of the usual

scale invariant fluctuations and couplings g2 order unity are allowed. For smaller scales

k & Gpc−1 the constraints are stronger and we have, very roughly, AIR/As . 0.1 corre-

sponding to g2 . 0.01. For very small scales, k & 0.1 Mpc−1 our constraints should be
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Figure 5.9: Marginalized posterior likelihood contours for the parameters AIR and kIR

(the magnitude and position of the feature, respectively) in the single-bump model. Black

and grey regions correspond to parameter values allowed at 95.4% and 99.7% confidence

levels, respectively. At small scales, to the right of the dashed vertical line, our results

should be taken with a grain of salt since the nonlinear evolution of the power spectrum

may not be modelled correctly in the presence of bump-like distortions.
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Table 5.1: Constraints on the standard (“vanilla”) cosmological parameters for the single-

bump model. For comparison we also show the standard ΛCDM constraints using the

same data sets. All errors are 95.4% confidence level. (Note we are showing 2-σ con-

straints here.)

single bump ΛCDM (no bump)

Ωb0h
2 0.0227+0.0010

−0.0010 0.02270+0.0009
−0.0009

Ωc0h
2 0.1122+0.0050

−0.0044 0.1120+0.0045
−0.0048

θ 1.0424+0.0042
−0.0043 1.0421+0.0043

−0.0036

τre 0.08+0.03
−0.03 0.089+0.026

−0.025

ns 0.956+0.024
−0.024 0.957+0.026

−0.023

ln[1010As] 3.21+0.08
−0.07 3.23+0.07

−0.07

Ωm0 0.264+0.026
−0.022 0.264+0.021

−0.025

σ8 0.81+0.04
−0.03 0.81+0.04

−0.03

zre 10.5+2.5
−2.7 11.4+2.1

−2.4

H0 71.6+2.3
−2.4 71.5+2.8

−2.1
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taken with a grain of salt since the nonlinear evolution of the power spectrum may not

be modelled correctly in the presence of bump-like distortions. At small scales nonlinear

effects tend to wipe out features of this type (see, for example, [277]) and hence observa-

tional constraints for k & 0.1 Mpc−1 may be weaker than what is presented in Fig. 5.9.

Note that in most of this nonlinear regime we find essentially no constraint on AIR, which

is consistent with what would be expected in a more comprehensive treatment.

The IR cascading bump in the primordial power spectrum will be accompanied by

a corresponding non-Gaussian feature in the bispectrum [6]. From the perspective of

potentially observing this signal it is most interesting if this feature is located on scales

probed by CMB experiments. (There is also the fascinating possibility that the non-

Gaussianity from IR cascading could show up in the large scale structure as in [278,

279, 280, 281]. We leave a detailed discussion to future studies.) To get some intuition

into what kinds of features in the CMB scales are still allowed by the data we focus

on an example with AIR = 2.5 × 10−10 which, using (5.13), corresponds to a reasonable

coupling value g2 ∼ 0.01. We take the bump to be located at kIR = 0.01 Mpc−1 and fix

the remaining model parameters to As = 2.44 × 10−9, ns = 0.97 (which are compatible

with the usual values). This sample bump in the power spectrum is illustrated in the left

panel of Fig. 5.10 and is consistent with the data at 2σ. In the right panel of Fig. 5.10 we

plot the associated angular CMB TT spectrum. This example represents a surprisingly

large spectral distortion: the total power in the feature as compared to the scale invariant

vacuum fluctuations is Pbump/Pvac ∼ 0.1, evaluated at the peak of the bump. We will

discuss the non-Gaussianity associated with this feature.

5.9.2 Multiple Bursts of Particle Production

Next, we consider a slightly more complicated scenario: multiple bursts of particle pro-

duction leading many localized features in the power spectrum. For simplicity we assume

that all bumps have the same magnitude Ai ≡ AIR and we further suppose a fixed num-
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Figure 5.10: The left panel shows a sample bump in the power spectrum with amplitude

AIR = 2.5 × 10−10 which corresponds to a coupling g2 ∼ 0.01. The feature is located at

kIR = 0.01 Mpc−1. This example represents a distortion of O(10%) as compared to the

usual vacuum fluctuations and is consistent with the data at 2σ. The right panel shows

the CMB angular TT power spectrum for this example, illustrating that the distortion

shows up mostly in the first peak.
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ber of e-foldings δN between each burst of particle production. This implies that the

location of the i-th bump will be given by ki = e(i−1)∆k1 where ∆ is a model parameter

controlling the density of features. We take the number of bursts, n, to be sufficiently

large that the series of features extends over the whole observable range. In the next sec-

tion we will see that these assumptions are not restrictive and that many well-motivated

models are consistent with this simple set-up.

Our multi-bump model, then, has three parameters: AIR, k1 and ∆. We take the

prior on the amplitude to be AIR ≤ 25 × 10−10 as in section 5.9.1. If the features are

very widely spaced, ∆ & 1, then the constraint on each bump will obviously be identical

to the results for the single-bump case presented in the section 5.9.1. Hence the most

interesting case to consider is ∆ . 1 so that the bumps are partially overlapping. Our

prior for the density of features is therefore 0 ≤ ∆ ≤ 1. Finally, the location of the

first bump will be a historical accident in realistic models, hence we marginalize over all

possible values of k1 and present our constraints and 2-d likelihood plots in the space of

AIR and ∆. This marginalized likelihood plot is presented in Fig. 5.11. In table 5.2 we

present the best-fit values for the vanilla cosmological parameters.

From the likelihood plot, Fig. 5.11, there is evidently a preferred value of the feature

spacing, roughly ∆ ∼ 0.75, for which the constraints are weakest. This can be understood

as follows. For very high density ∆ → 0 the localized features from IR cascading smear

together and the total power spectrum (5.12) is P (k) ∼ As(k/k0)
ns−1 + C where the

size of the constant deformation scales linearly with the density of features: C ∝ ∆−1.

Therefore, the upper bound on the amplitude AIR should scale linearly with ∆. Indeed,

this linear trend is very evident from Fig. 5.11 in the small-∆ regime. This linear be-

haviour must break down at some point since for ∆ & 1 the peaks no longer overlap,

generating a non-flat spectrum that is strongly disfavored by the data. The upperbound

on AIR will again be stringent. This explains the bump in the likelihood plot, Fig. 5.11,

near ∆ ∼ 0.75.
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Figure 5.11: Marginalized posterior likelihood contours for the parameters AIR and ∆

(the feature amplitude and spacing, respectively) of the multiple-bump model. Black

and grey regions correspond to values allowed at 95.4% and 99.7% confidence levels,

respectively.
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Table 5.2: constraints on the standard (“vanilla”) cosmological parameters for the

multiple-bump model. All error bars are 95.4% confidence level.

Ωb0h
2 0.0227+0.0009

−0.0009

Ωc0h
2 0.1126+0.0049

−0.0044

θ 1.0424+0.0039
−0.0043

τre 0.078+0.031
−0.026

ns 0.93+0.04
−0.17

ln[1010As] 2.8+0.4
−0.9

Ωm0 0.265+0.026
−0.021

σ8 0.807+0.034
−0.030

H0 71.4+2.2
−2.4

In passing, notice that the behaviour P (k) ∼ As(k/k0)
ns−1 + C for ∆ ≪ 1 also

explains why the best-fit As in table 5.2 is somewhat lower than the standard value and

why the spectral tilt ns − 1 is somewhat more red.

To get some intuition for the kinds of multi-bump distortions that are allowed by

the data, we consider an example with AIR = 1 × 10−9, ∆ = 0.75 and fix the vanilla

parameters to As = 1.04 × 10−9, ns = 0.93. This choice of parameters is consistent with

the data at 2σ and corresponds to a reasonable coupling g2 ∼ 0.02. In Fig. 5.12 we plot

the primordial power spectrum P (k) and also the CMB TT angular power spectrum for

this example.

5.10 Particle Physics Models

From the low energy perspective one expects interactions of the type (5.1) to be rather

generic, hence particle production during inflation may be expected in a wide variety of
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Figure 5.12: The top panel shows a sample multiple-bump distortion with amplitude

AIR = 1 × 10−9 which corresponds to g2 ∼ 0.02. The feature spacing is ∆ = 0.75. We

take the vanilla parameters to be As = 1.04×10−9, ns = 0.93 so that the scale of inflation

is slightly lower than in the standard scenario and the spectral tilt is slightly redder. The

bottom panel shows the CMB angular TT power spectrum for this example.
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models. In this section we consider some explicit examples in string theory and SUSY in

order to show how such models may be obtained microscopically and also to provide the

proof of concept that realistic models do exist where φi are in the observable range.

5.10.1 Open String Inflation Models

String theory inflation models may be divided into two classes depending on the origin

of the inflaton: closed string models and open string models. In the former case the

inflaton is typically a geometrical modulus associated with the compactification manifold

(examples include racetrack inflation [282], Kähler modulus inflation [52] and Roulette

inflation [44]). In the latter case the inflaton is typically the position modulus of some

mobile D-branexi living in the compactification manifold (examples include brane inflation

[41] such as the warped KKLMMT model [288], D3/D7 inflation [289] and DBI inflation

[290]). In open string inflation models there may be, in addition to the mobile inflationary

brane, some additional “spectator” branes. If the mobile brane collides with any spectator

brane during inflation then some of the stretched string states between these branes will

become massless at the moment when the branes are coincident [234, 235], precisely

mimicking the interaction (5.1). Thus, we expect particle production, IR cascading and

the bump-like features described above to be a reasonably generic prediction of open

string inflation.

5.10.2 String Monodromy Models

A concrete example of the heuristic scenario discussed in the last subsection is provided

by the brane monodromy and axion monodromy string theory inflation models proposed

in [236, 257, 258]. In the original brane monodromy model [236] one considers type IIA

string theory compactified on a nil manifold that is the product of two twisted tori. The

xiOne notable exception is inflation driven by the open string tachyon, for example nonlocal string
field theory models [283, 284, 285, 286, 287].
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metric on each of these twisted tori has the form

ds2

α′ = L2
u1
du2

1 + L2
u2
du2

2 + L2
x(dx

′ +Mu1du2)
2 (5.14)

where x′ = x − M
2
u1u2 and M is an integer flux number. The dimensionless constants

Lu1 , Lu2 and Lx determine the size of the compactification.

Inflation is realized by the motion of a D4-brane along the direction u1 of the internal

manifold. The D4 spans our large 3-dimensions and wraps a 1-cycle along the direction

u2 of the internal space. The size of this 1-cycle, in string units, is given by

L =
√

L2
u2

+ L2
xM

2u2
1 (5.15)

Hence, the brane prefers to minimize its world-volume by moving to the location u1 = 0

where this 1-cycle has minimal size. This preference gives a potential to the D4-brane

position which goes like V ∼ u1 in the large u1 regime that is relevant for large field

inflation.

In [235] it was shown that this scenario allows for the inclusion of a number of spec-

tator branes stabilized at positions u1 = i/M (with i integer) along the inflationary

trajectory. As the mobile inflationary D4 rolls through these points particles (strings)

will be produced and the resulting distribution of features will look nearly identical to

the simple multi-bump scenario studied in section 5.9.2. To see this, let us now deter-

mine the distribution of features that is predicted from brane monodromy inflation. The

canonical inflaton φ can be related to the position of the mobile D4 as

φ = B u
1/p
1 (5.16)

where B is a constant with dimensions of mass that depends on model parameters. Hence,

the effective potential during inflation has the power-law form

V (φ) = µ4−pφp (5.17)

For the simplest scenario described above one has p = 2/3. However, the formulas

(5.16,5.17) still hold for the variant considered in [236] with p = 2/5 as long as one
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replaces u1 by a more complicated linear combination of coordinates. These relations

also hold for axion monodromy models [257] with p = 1 and u1 replaced by the axion, c,

arising from a 2-form RR potential C(2) integrated over a 2-cycle Σ2. For all models of

the form (5.17) the number of e-foldings N from φ = φ(N) to the end of inflation (which

occurs at φ = p/
√

2 when the slow roll parameter ǫ(φ) = 1) is given by

N =
1

2p

φ2(N)

M2
p

− p

4

=
1

2p

B2

M2
p

u
2/p
1 − p

4
(5.18)

Since the spectator branes are located at u1 = i/M the bursts of particle production

must occur at times N = Ni where

Ni =
1

2p

B2

M2
p

(

i

M

)2/p

− p

4
(5.19)

The location k = ki of the i-th feature is defined, roughly, by the scale leaving the horizon

at the moment N = Ni. Hence, the distribution of features for brane/axion monodromy

models is given by

ln

[

ki
H

]

∼= B̃2i2/p − p

4
(5.20)

with p = 2/3 or p = 2/5 for brane monodromy and p = 1 for axion monodromy. In (5.20)

the dimensionless number B̃ depends on model parameters.

Although the distribution of features (5.20) is not exactly the same as the evenly

space distribution considered subsection 5.9.2, the two are essentially indistinguishable

over the range of scales which are probed observationally (corresponding to roughly 10

e-foldings of inflation). The reason for this is simple: the inflaton is nearly constant

during the first 10 e-foldings of inflation and hence δN ∼ δφ ∼ δu1 within the observable

region. It follows that ki ∼= e(i−1)∆k1 to very good approximation for a huge class of

models. To see this more concretely in the case at hand, let us compute dN/du1 from

(5.18). It is straightforward to show that

dN

du1
=

1

pp
1

[2ǫ(φ)]1−p/2

(

B

Mp

)p

(5.21)
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where

ǫ(φ) ≡ M2
p

2

(

V ′

V

)2

=
p2

2

(

Mp

φ

)2

(5.22)

is the usual slow roll parameter. Observational constraints on the running of the spectral

index imply that ǫ(φ) cannot change much over the observable 10 e-foldings of inflation.

Since dN/du1
∼= const to very high accuracy it follows trivially that N = N(u1) is very

close to linear and ki ∼= e(i−1)∆k1 as desired.

In the context of axion monodromy inflation models [257] the multiple bump features

discussed here will be complimentary to the oscillatory features described in [258] which

result from the sinusoidal modulation of the inflaton potential by instanton effects. If

the bursts of particle production are sufficiently densely spaced, then signal from IR

cascading may appear oscillatory, however, it differs from the effect discussed in [258] in

both physical origin and also in functional form.

Let us now estimate the effective value of the couplings g2
i appearing in the prototype

interaction (5.11) that are predicted from the simplest brane monodromy model. A

complete calculation would involve dimensionally reducing the DBI action describing the

brane motion and requires knowledge of the full 10-dimensional geometry with the various

embedded branes. For our purposes, however, a simple heuristic estimate for the collision

of two D4-branes will suffice. When N D-branes become coincident the symmetry is

enhanced from U(1)N to a U(N) Yang Mill gauge theory. The gauge coupling for this

Yang Mills theory is given by

g2
YM =

gs(2π)2

L
(5.23)

where L is the volume of the 1-cycle that the D4 branes wrap and is given by (5.15). If

the inflationary brane is at position u1 and the i-th spectator brane is at u1,i then the

distance between the two branes is given by

d2 = α′ L2
u1

(u1 − u1,i)
2 (5.24)
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The mass of the gauge bosons corresponding to the enhanced symmetry is

M2
i = g2

YM

d2

(2π)2(α′)2
=

gsL
2
u1

(u1 − u1,i)
2

α′
√

L2
u2

+ L2
xM

2u2
1

(5.25)

To put this in the prototype form M2
i = g2

i (φ−φi)2 we must first convert to the canonical

variable φ using the formula (5.16) with p = 2/3 and

B =
M1/2

6π2

Lu1L
1/2
x√

gsα′ (5.26)

Next, we must Taylor expand the resulting equation about the minimum φ = φi. We

find

M2
i

∼= g2
i (φ− φi)

2 + · · · (5.27)

g2
i =

16g2
sπ

4

MLxu1,i

1
√

L2
u2

+ L2
xM

2u2
1,i

=
16g2

sπ
4

Lxi

1
√

L2
u2

+ L2
xi

2
(5.28)

where on the second line of (5.28) we have used the fact that u1,i = i/M (with i integer)

in the simplest models. We see that the effective couplings g2
i become larger as the D4

unwinds during inflation. (The apparent divergence for u1,i = 0 in the formula (5.28) is

an artifact of the fact that the relation (5.16) is not valid at small values of u1. This will

not concern us here since inflation has already terminated at the point that our formulas

break down.)

To compute the amplitude of the bump-like feature produced by brane monodromy

inflation we should take into account also combinatorial factors. When two branes become

coincident the symmetry is enhanced from U(1)2 to U(2) so there are 22−2 = 2 additional

massless spin-1 fields appearing at the brane collision. Thus, using equation (5.13), the

amplitude of the feature that will be imprinted in the CMB is

Ai,eff = 2 × (22 − 2) ×
[

1.01 · 10−6 · g15/4
i

]

(5.29)
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where the extra factor of 2 counts the polarizations of the massless spin-1 fields. This

combinatorial enhancement can be much larger if the inflationary brane collides with a

stack of spectators.

The above discussion is predicated on the assumption that the original brane mon-

odromy set-up [236] is supplemented by additional spectator branes. This may seem like

an unnecessary contrivance, however, in order for this model to reheat successfully it may

be necessary to include spectator branes. For example, with the reheating mechanism

proposed in [291] semi-realistic particle phenomenology can be obtained by confining the

standard model (SM) to a D6 brane which wraps the compact space. In order to reheat

into SM degrees of freedom we orient this brane so that its world-volume is parallel to the

mobile (inflationary) D4. In this case the end of inflation involves multiple oscillations

of the D4 about the minimum of its potential. At each oscillation the D4 collides with

the D6 and SM particles are produced by parametric resonance preheating [237, 238].

However, due to the periodic structure of the compactification, D4/D6 collisions will

necessarily occur also during inflation, leading to IR cascading features in the CMB.

The timing of these D4/D6 collisions was computed in [291] for the minimal p = 2/3

brane monodromy model, assuming the same choices of parameters used in [236]. For

this particular case there is only one collision (and hence one feature) during the first 10

e-foldings of inflation and the phenomenology is essentially the same as that considered in

subsection 5.9.1. What is the amplitude of this feature? Assuming, again, the parameters

employed in [236] and noting that the first collision takes place at i = 13 [291] equation

(5.28) gives g2
1
∼= 0.001. From (5.29) we find the effective amplitude of the feature to be

A1,eff/As ∼= 0.01. This value is well within the observational bounds derived in subsection

5.9.1

We stress that the conclusions in the previous paragraph apply only for the particular

choice of model parameters employed in [236]. There exist other consistent parameter

choices for which the simplest brane monodromy model predicts a much higher density
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of features with much larger amplitude.

Note that both brane and axion monodromy models may be used to realize trapped

inflation [235]. Here we are restricting ourselves to the large-field regime where the

potential V = µ4−pφp is flat enough to drive inflation without the need for trapping

effects. For a given choice of parameters one should verify that this classical potential

dominates over the quantum corrections from particle production.

5.10.3 A Supersymmetric Model

Another microscopic realization of multiple bursts of particle production and IR cascading

during inflation which does not rely on string theory can be obtained from the so-called

“distributed mass” model derived in [259] with warm inflation [256] in mind, however,

the theory works equally well for our scenario. This model is based on N = 1 global

SUSY and allows for the inclusion of multiple points along the inflationary trajectory

where both scalar degrees of freedom and also their associated fermion superparteners

become massless. The distribution of features in this set-up is essentially arbitrary.

5.11 Conclusions for the Observational Part

We have studied the observational constraints on models with particle production during

inflation. We have focused on the simple prototype model (5.1) for each burst of parti-

cle production, however, we expect that our qualitative results will apply also to more

complicated models (for example with gauged interactions or fermion iso-inflaton fields)

and perhaps also to the case of inflationary phase transitions. We find no evidence for a

detection of the features associated with particle production and IR cascading, however,

it is interesting to note that rather large localized features are still compatible with the

data. Our results differ significantly from previous studies as a result of a more realistic

treatment of the cosmological perturbations in models with particle production. The
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bounds we have derived on g2 will play a crucial role in assessing the detectability of the

non-Gaussianity produced by particle production and IR cascading.

We have also discussed the implications of our results for popular brane/axion mon-

odromy string theory inflation models. Successful reheating in these constructions may

require the inclusion of spectator branes which collide with the mobile D4-brane during

inflation and hence we expect CMB features to be a fairly generic prediction. We have

shown that brane/axion monodromy models predict a distribution of bump-like features

which are evenly spaced in ln k over the observable range of scales. In the case of axion

monodromy this multiple-bump spectral distortion is complimentary to the oscillatory

features discussed in [258]. We have also estimated the magnitude of these bump-like

features in terms of model parameters.

One motivation for the present study was to determine the extent to which microscop-

ically realistic models such as (5.1) can reproduce the localized “glitches” in the power

spectrum that have been detected (albeit with marginal significance) by several previous

studies. These anomalies can be classified as follows:

1. Localized power excesses :

In both [248] and [263] power spectra with localized spikes were studied and in

both cases marginal evidence was found for a detection of such features. In [202] a

non-parametric reconstruction of the power spectrum was performed and the result

is marginally consistent with a power law everywhere, however, several localized

spikes are evident in the reconstruction.

Localized excesses are naturally obtained in our model (5.1). Sadly, however,

we did not find that our model fits the data significantly better than the simplest

slow roll inflation scenario. This does not necessarily imply a disagreement with

[248, 263] since we use a different shaped feature and different data sets. Indeed,

when the authors of [263] repeat their analysis using the WMAP 5-year data they

do not obtain a detection, consistent with our findings.
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2. Localized power deficits :

In [204] the Richardson-Lucy deconvolution algorithm was used to perform a

non-parametric reconstruction of the primordial power spectrum which displayed

a prominent IR cut-off near the horizon. In [203] a similar analysis was performed

and the reconstructed power spectrum displays a localized dip in power near k ∼

0.002 Mpc−1.

Localized deficits can be produced by our model (5.11) but only in a rather

contrived way. Hence, we have not focused on such features in section 5.9.

3. Damped oscillations :

In [251, 205, 260, 254] power spectra with superimposed ringing patterns were

studied. Such features provide a marginally improved fit over the simplest power-

law model.

As we have discussed in the introduction, damped oscillatory “ringing” features

are not predicted by inflationary particle production. Nor is it clear if such features

are predicted by models with phase transitions. (Of course damped oscillations can

be obtained from a toy model with a step in V (φ). However, it may be difficult to

obtain such a potential from realistic micro-physics; generically one expects that

any sharp features in V (φ) will be smoothed out by quantum corrections.)

Finally, let us note that features of the type studied here will lead to other observables

beyond the distortion of the primordial power spectrum. In particular, bumps in P (k) will

lead to features in the tensor spectrum (resulting from the sourcing of gravitational waves

by scalar fluctuations at second order in perturbation theory) and also, possibly, black

hole production. In [292, 293] these effects were estimated assuming a power spectrum

which is qualitatively similar to ours. As discussed in [6], inflationary particle production

will also lead to potentially large localized non-Gaussian features in the bispectrum (and
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higher order statistics) of the cosmological fluctuations. These non-Gaussianities will be

discussed in detail in an upcoming work.

5.12 APPENDIX A: Analytical Theory of Re-scattering

In this appendix we develop an analytical theory of re-scattering which is in good agree-

ment with the result of fully nonlinear lattice field theory simulations. As usual we

split the inflaton field into a classical homogeneous component and quantum inhomo-

geneities as φ(t,x) = φ(t) + δφ(t,x) such that 〈φ(t,x)〉 = φ(t) and we further suppose

that 〈χ(t,x)〉 = 0. Since IR cascading occurs within a single e-folding we can safely

neglect the expansion of the universe. However, there is no obstruction to consistently

including this effect.

At leading order the physics of re-scattering is described by equation (5.5), which

corresponds to the diagram in Fig. 5.7. There is a correction to (5.5) corresponding to

a diagram where two δφ particles interact with two χ particles, however, this effect is

sub-leading [238]. It is understood that one must subtract from (5.5) the expectation

value of the right-hand-side in order to consistently define the quantum operators δφ

such that 〈δφ〉 = 〈χ〉 = 0. Subtracting off this expectation value is equivalent to only

considering connected diagrams when we compute correlation functions.

5.12.1 Production of χ-Particles

To solve equation (5.5) we first require explicit expressions for the background field φ(t)

and the wavefunction χ(t,x). Let us choose the origin of time so that φ = φ0 at t = 0.

Near the moment of particle production we can expand φ(t)− φ0
∼= φ̇0t. The interaction

term in (5.1) induces induces a mass for the χ-field

m2
χ = g2 [φ(t) − φ0]

2 ∼= g2φ̇2t2 ≡ k4
⋆t

2 (5.30)
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which vanishes at t = 0. At this moment particles will be copiously produced by quantum

effects.

The mode functions χk(t) obey the following equation

χ̈k(t) + ω2
k(t)χk(t) = 0 (5.31)

where the time-dependent frequency is

ωk(t) =
√

k2 +m2
χ =

√

k2 + k2
⋆(k⋆t)

2 (5.32)

The theory of equation (5.31) is well-studied in the literature [238, 234]. As long as the

frequency (5.32) varies adiabatically |ω̇k|/ω2
k ≪ 1 the modes of χ will not be excited and

are well described by the adiabatic solution χk(t) = fk(t) where we have defined

fk(t) ≡
1

√

2ωk(t)
exp

[

−i
∫ t

dt′ωk(t
′)

]

(5.33)

However, very close to t = 0, roughly within the interval −k−1
⋆ < t < +k−1

⋆ , the parameter

|ω̇k|/ω2
k can become order unity or larger for low momenta k . k⋆ and χk modes within

this band will be produced. The general solution of (5.31) can be written in terms of the

adiabatic modes (5.33) and the time-dependent Bogoliubov coefficients as

χk(t) = αk(t)fk(t) + βk(t)fk(t)
⋆ (5.34)

where the Bogoliubov coefficients obey a set of coupled ordinary differential equations

with initial conditions |αk(0−)| = 1, βk(0
−) = 0. Near t = 0 the adiabaticity condition

is violated and βk grows rapidly away from zero as a step-like function. Very shortly

after this burst of particle production the frequency again varies adiabatically and αk,

βk become constant, taking the following values [238]:

αk(t > 0) =
√

1 + nk (5.35)

βk(t > 0) =
√
nk e

iδk (5.36)

where the physical occupation number is defined by (5.4). The phase δk has been com-

puted analytically in [237] and depends nontrivially on k. However, since most of the
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particle production occurs for momenta k . k⋆ it is an excellent approximation to use

the simple result eiδk ∼= −i. (We have verified that changing the relative phase will at

most alter factors order unity in the final results.)

We are now in a position to write out the solution for the χk modes in the outgoing

adiabatic regime t & k−1
⋆ . Since most of our interest is in IR modes with k . k⋆ it

is a good approximation to expand the frequency (5.32) as ωk(t) ∼= k⋆(k⋆t). Using the

equations (5.35) and (5.36) we can write the solution (5.34) in the region of interest as

χk(t) ∼=
√

1 + nk
e−i(k⋆t)

2/2

k⋆
√

2t
− i

√
nk

e+i(k⋆t)
2/2

k⋆
√

2t
(5.37)

5.12.2 Equations for Re-scattering

Having reviewed the solutions for φ(t) and χk(t) we now turn our attention to solv-

ing (5.5). Let us first briefly discuss our conventions for fourier transforms and mode

functions. We write the q-number valued fourier transform of χ as

χ(t,x) =

∫

d3k′

(2π)3/2
eik·xξχk(t) (5.38)

Because χ is Gaussian we can expand ξχk into c-number mode functions χk (discussed

above) and annihilation/creation operators ak, a
†
k as

ξχk(t) = ak χk(t) + a†−k χ
⋆
k(t) (5.39)

In the theory of preheating/moduli trapping without re-scattering the distinction between

q-number fourier transform and c-number mode functions is not important because both

obey the same equation of motion (equation (5.31) in the case at hand). However, once

re-scattering is taken into account this distinction is crucial. To see why, note that the

solution δφ of equation (5.5) will not be Gaussian and hence will not admit an expansion

of the form (5.39).

Finally, we return to the equation for re-scattering, eqn. (5.5). We can solve for the q-

number fourier transform of δφ (defined analogously to (5.38)) using the retarded Green



Chapter 5. Infra-red Cascading During Inflation 178

function

ξφk(t) =
g2φ̇

(2π)3/2

1

Ωk

∫ t

0

dt′t′ sin [Ωk(t− t′)]

×
∫

d3k′ξχk−k′(t
′)ξχk′(t

′) (5.40)

where we have introduced the notations Ωk =
√
k2 +m2 for the δφ-particle frequency

and m2 = V,φφ for the effective δφ mass. Carefully carrying out the Wick contractions

yields

〈ξφk1(t)ξ
φ
k2

(t)〉 =
2g4φ̇2

(2π)3

1

Ω2
k1

δ(3)(k1 + k2)

×
∫

dt′dt′′t′t′′ sin [Ωk1(t− t′)] sin [Ωk1(t− t′′)]

×
∫

d3k′χk1−k′(t
′)χ⋆k1−k′(t

′′)χk′(t
′)χ⋆k′(t

′′) (5.41)

where the χ-particle mode functions χk are defined by (5.39). Defining the power spec-

trum in terms of the two-point function in the usual manner

〈0|ξφk(t)ξφk′(t)|0〉 ≡ δ(3)(k + k′)
2π2

k3
Pφ (5.42)

we can extract the power in re-scattered φ modes.

Alternatively one could compute the power spectrum of re-scattered inflaton modes

using the Schwinger’s “in-in” formalism which was implemented to compute cosmological

perturbations by Weinberg in [294]. We have verified that the tree level contribution to

Pφ obtained using this formalism reproduces our result (5.41). Our approach is analogous

to computing the cosmological perturbation from the field equations using the Seery et

al. approach [295]. The consistency of this method with the in-in approach at tree level

is in accordance with the general theorem of [296].

5.12.3 Renormalization

To compute the spectrum of re-scattered δφ-particles we simply need to insert the solution

(5.37) into (5.41) and evaluate the integrals. However, there is one subtlety. The resulting
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power spectrum is formally infinite, moreover, it contains the effect of both particle

production as well as vacuum fluctuations of the χ field. We are only interested in the

re-scattered δφ which are due to particle production, thus, we need to subtract off the

contribution due to nonlinear δφ production by χ vacuum fluctuations.

To properly define the two-point function of δφ we need to renormalize the four-point

function of the Gaussian field χ. As a warm-up, let us first consider how to renormalize

the two point function of the Gaussian field χ. We use the following scheme

〈ξχk1(t1)ξ
χ
k2

(t2)〉ren = 〈ξχk1(t1)ξ
χ
k2

(t2)〉 − 〈ξχk1(t1)ξ
χ
k2

(t2)〉in (5.43)

where 〈ξχk1(t1)ξ
χ
k2

(t2)〉in is the contribution in the absence of particle production, computed

by simply taking the solution (5.34) with αk = 1, βk = 0. More explicitly, for the case

at hand, we have

〈χ2(t,x)〉ren =

∫

d3k

(2π)3

[

|χ2
k(t)| −

1

2ωk(t)

]

≡ 〈χ2(t,x)〉 − δM (5.44)

where δM is the contribution from the Coleman-Weinberg potential. This proves that

our prescription reproduces the one used in [234].

Having established a scheme for remormalizing the two-point function of the Gaussian

field χ it is straightforward to consider higher order correlation functions. We simply re-

write the four point function as a product of two-point functions using Wick’s theorem.

Then each Wick contraction is renormalized as above. Applying this prescription to

(5.41) amounts to

〈ξφk1(t)ξ
φ
k2

(t)〉ren =
2g4φ̇2

(2π)3

1

Ω2
k1

δ(3)(k1 + k2)

×
∫

dt′dt′′t′t′′ sin [Ωk1(t− t′)] sin [Ωk1(t− t′′)]

×
∫

d3k′
[

χk1−k′(t
′)χ⋆k1−k′(t

′′) − fk1−k′(t
′)f ⋆k1−k′(t

′′)
]

× [χk′(t
′)χ⋆k′(t

′′) − fk′(t
′)f ⋆k′(t

′′)] , (5.45)

where fk(t) are the adiabatic modes defined in (5.33).
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5.12.4 Spectrum of Re-scattered Modes

Let us now proceed to compute analytically the renormalized spectrum Pφ of re-scattered

inflaton modes by inserting the solutions (5.37) and (5.33) into (5.45) and carrying out

the integrations. The computation is tedious but straightforward since the time and

phase space integrals factorize. We have relegated the technical details to appendix B

and here we simply state the final result:

Pφ =
g2

16π5

k3 k⋆
k2 +m2

{

e−πk
2/(2k2

⋆)

2
√

2

(

π

4
|F |2 +

k2
⋆

Ω2
k

[1 − cos(Ωkt)]
2

)

+

(

e−πk
2/(4k2

⋆) +
1

2
√

2
e−3πk2/(8k2

⋆)

)[

−π
4

Re
(

e2iΩkt−iΩ
2
k/(2k

2
⋆)−iπ/2F

)

+
k2
⋆

Ω2
k

[1 − cos(Ωkt)]
2

]

+

[

4
√

2

3
√

3
e
−πk2

3k2⋆ +
2
√

2

5
√

5
e
− 3πk2

5k2⋆

] √
π k⋆
Ωk

[1 − cos(Ωkt)] Im
[

eiΩkt−iΩ
2
k/(4k

2
⋆)−iπ/4F

]

}

(5.46)

Equation (5.46) is the main result of this appendix. The “form factor” F (k, t) is given

explicitly in appendix B.

5.13 APPENDIX B: Detailed Computation of Pφ

In this appendix we discuss in some detail the technical details associated with the

computation of Pφ. Inserting the solutions (5.37) and (5.33) into (5.45) we find the

result

Pφ =
g2

8π5

k3

k2 +m2

{∫

d3k′nk−k′nk′

∫

dt′dt′′ sin [Ωk(t− t′)] sin [Ωk(t− t′′)] cos2
[

(k⋆t
′)2

2
− (k⋆t

′′)2

2

]

+

∫

d3k′
√
nk−k′nk′

√

1 + nk−k′

√
1 + nk′

×
∫

dt′dt′′ sin [Ωk(t− t′)] sin [Ωk(t− t′′)] sin2

[

(k⋆t
′)2

2
+

(k⋆t
′′)2

2

]

+

∫

d3k′
[

nk−k′

√
nk′

√
1 + nk′ + nk′

√
nk−k′

√

1 + nk−k′

]

×
∫

dt′dt′′ sin [Ωk(t− t′)] sin [Ωk(t− t′′)] sin

[

(k⋆t
′)2

2
+

(k⋆t
′′)2

2

]

cos

[

(k⋆t
′)2

2
− (k⋆t

′′)2

2

]}

(5.47)
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We consider the time and phase space integrations separately.

5.13.1 Time Integrals

All the time integrals appearing in (5.47) can be written in terms of two functions which

we call I1, I2. These involves are defined as

I1(k, t) =

∫ t

0

dt′ sin [Ωk(t− t′)] ei(k⋆t
′)2 (5.48)

I2(k, t) =

∫ t

0

dt′ sin [Ωk(t− t′)] (5.49)

First consider I1. It is useful to factorize the answer into the product of the stationary

phase result (valid for k⋆t≫ Ωk/(2k⋆) ≫ 1) and a “form factor” F (k, t) as follows:

I1(k, t) =

√
π

2k⋆
eiΩkt−iΩ

2
k/(4k

2
⋆)−iπ/4F (k, t) (5.50)

F (k, t) =
1

2

[

(

1 + e−2iΩkt
)

erf

(

e−iπ/4

2

Ωk

k⋆

)

(5.51)

−erf

(

e−iπ/4

2

(

Ωk

k⋆
− 2k⋆t

))

−e−2iΩkt erf

(

e−iπ/4

2

(

Ωk

k⋆
+ 2k⋆t

))]

The form factor F (k, t) has a complicated structure. We have illustrated the qualitative

behaviour of this function in Fig. 5.13 taking Ωk/k⋆ = 5 for illustration.

Next, consider the characteristic integral I2, eqn. (5.52). This integration is trivial:

I2(k, t) =
1

Ωk
[1 − cos(Ωkt)] (5.52)

Now we will show that all the time integrals appearing in (5.47) can be reduced to

combinations of the characteristic functions I1 and I2. First, consider the first line of
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Figure 5.13: The behaviour of the function F (k, t) as a function of t. For illustration we

have set Ωk = 5k⋆.
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(5.47) where the following integral appears:

∫

dt′dt′′ sin [Ωk(t− t′)] sin [Ωk(t− t′′)]

× cos2

[

(k⋆t
′)2

2
− (k⋆t

′′)2

2

]

=
|I1(k, t)|2

2
+
I2(k, t)

2

2

=
π

8k2
⋆

|F (k, t)|2 +
1

2Ω2
k

[1 − cos(Ωkt)]
2 (5.53)

Next, consider the time integration on the second line of (5.47):

∫

dt′dt′′ sin [Ωk(t− t′)] sin [Ωk(t− t′′)]

× sin2

[

(k⋆t
′)2

2
+

(k⋆t
′′)2

2

]

= −Re [I1(k, t)
2]

2
+
I2(k, t)

2

2

= − π

8k2
⋆

Re
[

e2iΩkt−iΩ
2
k/(2k

2
⋆)−iπ/2 F (k, t)2

]

+
1

2Ω2
k

[1 − cos(Ωkt)]
2 (5.54)

Finally, we consider the time integration on the third line of (5.47):

∫

dt′dt′′ sin [Ωk(t− t′)] sin [Ωk(t− t′′)] (5.55)

× sin

[

(k⋆t
′)2

2
+

(k⋆t
′′)2

2

]

cos

[

(k⋆t
′)2

2
− (k⋆t

′′)2

2

]

= Im [I1(k, t)I2(k, t)]

=

√
π

2k⋆Ωk
[1 − cos(Ωkt)] Im

[

eiΩkt−iΩ
2
k/(4k

2
⋆)−iπ/4 F (k, t)

]

5.13.2 Phase Space Integrals

Throughout the calculation integrals of the following form appears frequently:

∫

d3k′nak−k′n
b
k′

=

∫

d3k′ exp
[

−aπ|k − k′|2/k2
⋆

]

exp
[

−bπ|k′|2/k2
⋆

]

=
k3
⋆

(a+ b)3/2
exp

[

− ab

a + b

πk2

k2
⋆

]

(5.56)
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This formula is valid when a, b are positive real numbers. Notice that this expression is

symmetric under interchange of a and b.

The phase space integral in the first line of (5.47) is computed by a trivial application

of the identity (5.56):
∫

d3k′nk−k′nk′ =
k3
⋆

2
√

2
e−πk

2/(2k2
⋆) (5.57)

The remaining integrals cannot be obtained exactly in closed form because they con-

tain terms like
√

1 + nk′ where the Gaussian factors appear under the square root.

However, because nk ≤ 1 it turns out to be a very good approximation to replace

√
1 + nk′ ∼= 1 + nk′/2. (We have checked numerically that the error induced is less

than a few percent.) Let us now proceed in this manner. The phase space integral on

the second line of (5.47) is:

∫

d3k′
√
nk−k′nk′

√

1 + nk−k′
√

1 + nk′
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∫
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)
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√
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(

−3πk2
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(5.58)

Finally, consider the phase space integral on the third line of (5.47):

∫

d3k′
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2

3
√

3
exp

(

−πk
2
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⋆

)

+
2
√

2

5
√
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(

−3πk2
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⋆

)

]

(5.59)

Assembling the various results presented in this appendix one arrives straightfor-

wardly at the result (5.46).



Chapter 6

Preheating after Modular Inflation

6.1 Introduction

This chapter presents another topic in preheating. We study the preheating in a spe-

cific early-universe scenario – the Roulette inflation model [44]. This work was done in

collaboration with my advisors and Dr. Neil Barnaby. My main contribution is that I

calculated the Floquet exponent for this preheating model, and modified my “HLattice”

code so that it can run lattice simulations for non-canonical scalar fields. The algorithms

used in the publicly available codes DEFROST and LATTICEEASY are not stable for

non-canonical scalar fields. In fact, most popular numerical algorithms are not stable

for a non-canonical system. My code uses a symplectic-Runge-Kutta blended algorithm,

i.e., it uses a 4-th order Runge-Kutta algorithm for the non-canonical operator in the

Hamiltonian, and uses a symplectic algorithm for the global evolution. Unlike a pure

high-order Runge-Kutta method that costs tremendous memory, which could slow down

the simulation by orders of magnitude, my algorithm performs the Runge-Kutta integra-

tion locally (with no spatial gradient operator involved), hence does not cost additional

memory.

Reheating at the endpoint of inflation is a crucial requirement for any successful

185



Chapter 6. Preheating after Modular Inflation 186

model. Depending on how inflation ends and how the inflaton interacts, the process of

reheating – the creation of particles from the decaying inflaton and subsequent thermal-

ization – can proceed differently. Examples are known of perturbative inflaton reheating

[297], non-perturbative preheating [237, 238] (leading to excitations of both bosons and

fermions [298, 299, 300]), and also reheating via string theory mechanisms such as inter-

mediate Kaluza-Klein (KK) modes [301, 302], etc.

In the last several years there has been significant progress in string theory related

to the realization of realistic compactifications with stabilized moduli [303, 304, 305,

306]. This progress has stimulated the development of a new generation of inflationary

models based on such stabilized string theory constructions; see Refs. [46, 307, 308] for

reviews. Among the various possible string theory models of inflation, one can distinguish

different classes depending on the origin of the inflaton. Modular inflation deals with the

inflaton living in the closed string sector. On the other hand, brane inflation [41, 309]

deals with that in the open string sector. In the first case it is sufficient to identify

one or more moduli fields which are already present in the stabilized compactification

scheme and which are displaced from the minimum of the potential. In the second

case, on the top of the setting required by the stabilized compactification, the inflaton

field must be engineered by including also probe D-branes. The multitude of possible

inflationary scenarios in string theory may, at first glance, seem confused and far from

unique. However, this multitude may all in fact be realized if the paradigm of the string

theory landscape is adopted [310], leading to a picture where different types of inflation

may proceed in different regions of the landscape. Indeed, even simple field theory models

may admit a similar landscape of inflationary possibilities.

String theory inflation models offer a unique opportunity to study (p)reheating in

an ultra-violet (UV) complete setting where it is conceivable to determine all couplings

between the inflaton and the standard model (SM) sector from first principles, rather than

simply assuming some ad hoc couplings on a phenomenological basis. Moreover, because
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post-inflationary dynamics are extremely sensitive to the details of these couplings, it

follows that any observables generated during preheating (such as non-Gaussianities [231,

56] or gravitational waves [311, 312]) have the potential to provide a rare observational

window into stringy physics.

Reheating in brane inflation was studied in detail in a number of papers [301, 302,

313, 314, 315, 316]. One of the most interesting realizations of brane inflation is the

“warped” KKLMMT model [288], constructed in the context of the KKLT stabilized

vacuum [303]. The endpoint of inflation in this scenario is the annihilation of a brane-

antibrane pair. (The inhomogeneous dynamics of this annihilation have been discussed

in Refs. [317, 318].) The details of reheating in this model are very complicated and

involve several stages of energy cascading, first from the D − D̄ pair annihilation into

closed string modes, next the closed string loops decay to excitations of Kaluza-Klein

(KK) modes which finally decay to excitations of open string modes on the standard

model (SM) brane(s). An adequate description of this process requires input from string

theory.

Reheating after closed string inflation, on the other hand, is usually assumed to

occur in the regime where ordinary quantum field theory (QFT) is applicable. Here we

investigate in detail the theory of reheating after closed string modular inflation [52, 44]

models. We will focus our attention in particular on the scenario of Kähler moduli [52]

or Roulette [44] inflation models based on the Large Volume Compactification scheme

of [304, 305, 306]. In this model the role of the inflaton is played by a Kähler modulus,

τ , (corresponding to the volume of a 4-cycle of the internal Calabi Yau manifold) and

also by its axionic partner, θ. However, some of our results may be applicable also in

other modular inflation models, such as racetrack inflation [282, 319] based on the KKLT

compactification [303].

We find that reheating after modular inflation can be quite multifarious and may

proceed through a variety of different channels (including both perturbative and nonper-
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turbative effects and also intrinsically stringy physics). The precise identification of these

decay channels may depend on model building details, such as the location of the SM in

the Calabi Yau (CY) compactification manifold. In all cases, however, the initial stages

of the decay of the inflaton in modular inflation proceed via very strong nonperturbative

preheating decay channels. This is due to the specific shape of the effective inflaton

potential V (τ), which is very nonlinear and which has a sharp minimum. Preheating

proceeds through a combination of both tachyonic (spinodal) instability and broad-band

parametric resonance and leads to the copious production of δτ inhomogeneities (par-

ticles). Within 2-3 oscillations of the background field, nonlinear backreaction effects

become important and the homogeneous condensate is completely destroyed. In fact,

this is perhaps the most violent known example of preheating after inflation!

In order to understand the full dynamics of reheating in modular inflation we must

also identify the decay channels of the inflaton into the visible SM sector. In the case

where the SM is incorporated on a D7 brane wrapped on the inflationary 4-cycle, the

Kähler modulus τ decays via a direct coupling to brane-bound SM gauge bosons. The

initial stages of this decay are nonperturbative and involve parametric resonance of the

gauge fields while the later stages involve perturbative decays. We also consider interac-

tions between the inflaton τ and brane-bound MSSM fermions such as the Higgsino and

gaugino.

On the other hand, the D7 brane construction described above may result in dan-

gerous gs-corrections to the inflaton potential which violate the smallness of the slow

roll parameters and spoil inflation [320]. Therefore, it may be desirable to exclude such

a wrapping. In this case the SM can still be localized on a D7 wrapping some non-

inflationary 4-cycle of the CY compactification. Such a configuration forbids any direct

coupling between the inflationary sector and the SM sector, thus complicating the pro-

cess of reheating. In this case the inflaton may still decay to SM states via a nontrivial

mixing between the inflaton fluctuations and the fluctuations of the moduli associated
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with the 4-cycle that the SM D7 wraps. The latter may couple directly to brane-bound

SM states. Since the intermediate stages of the inflaton decay involve bulk states, the

mixing proceeds via Planck suppressed operators.

Finally, we have identified another reheating mechanism which involves distinctly

stringy physics and which does not require a D7 brane to wrap the inflationary 4-cycle.

An important model parameter is the value of the inflationary 4-cycles volume, τ , at

the stable minimum of the effective potential, τm. If τm > ls then the supergravity

description remains valid during both inflation and reheating [52]. In this case, reheating

treatment is purely field-theoretical and involves calculating the couplings between the

inflaton and standard model degrees of freedom, as described above. However, as was

noted in [44], although the choice of τm does not alter the field-theoretical treatment

of inflation, it does crucially impact the dynamics of reheating.i If τmin ≤ ls then the

supergravity approximation is valid only during the slow roll (large τ) regime. At the

small values of τ relevant for (p)reheating stringy degrees of freedom, in addition to

the supergravity ones, will be excited. In this case the physics of reheating will change

drastically from the naive picture. One expects, along the lines of [301, 302], that when τ

becomes of order the string scale, light winding modes are created, and these subsequently

decay into free closed strings which cascade into KK excitations. These intermediate KK

modes can, finally, decay into SM states on the brane as in [301, 302]. One can also

think about the shrinking 4-cycle as an enhanced symmetry point, associated with the

quantum production of light degrees of freedom [234].

This chapter is organized as follows. In section 6.2 we review the large volume com-

pactification of type IIB string theory and also discuss Kähler Moduli/Roulette inflation

models embedded within that setting. In section 6.3 we discuss the decay of the inflaton

iA simple field theoretic analogue of this scenario is a toy model where the inflaton potential is
extremely flat (to provide sufficient inflation) with an extremely steep minimum. For this toy example
ordinary QFT is valid during the inflationary stage. However, in the limit that the mass at the minimum
approaches ms the field theoretical treatment of reheating breaks down and one must instead turn to a
stringy description.
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in modular inflation via self interactions, showing that fluctuations of the Kähler mod-

ulus τ are produced copiously at the end of inflation via strong preheating effects. We

study this explosive particle production first by solving the linearized equations of mo-

tion for the τ , θ fluctuations and next by performing fully nonlinear lattice field theory

simulations. In section 6.4 we discuss the decay of the inflaton into SM particles (both

perturbative and nonperturbative) for the scenario where the SM lives on a D7 wrap-

ping the inflationary 4-cycle. In section 6.5 we discuss the decay of the inflaton in SM

particles for the case where the SM D7 instead wraps some non-inflationary 4-cycle of

the CY. In section 6.6 we propose another mechanism for reheating in modular inflation

which involves distinctly stringy excitations. Finally, in section 6.7, we summarize our

results and conclude. For completeness we will include here most of the contents that

has already been published in [57]. Please cite our original paper for the use of these

contents.

6.2 Kähler Moduli/Roulette Inflation in the Large

Volume Compactification

In this section we briefly review recent progress in constructing stabilized “large volume”

compactifications in type IIB string theory [304, 305, 306] and also describe recent efforts

to embed inflation into such constructions [52, 44] with the role of the inflaton played by

the Kähler modulus of the internal CY manifold and its axionic partner.

6.2.1 Large Volume Compactification

Let us first discuss the “large-volume” moduli stabilization mechanism of [304, 305, 306].

In this scenario the Kähler moduli of the CY manifold are stabilized by both perturba-

tive and non-perturbative effects. As argued in [304, 305, 306], a minimum of the moduli
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potential in the corresponding effective 4d theory exists for a large class of models.ii An

effective 4d N = 1 supergravity is completely specified by a Kähler potential, super-

potential and gauge kinetic function. In the scalar field sector of the theory the action

is

SN=1 =

∫

d4x
√−g

[

M2
P

2
R−K,ij̄Dµφ

iDµφ̄j − V (φ, φ̄)

]

, (6.1)

where

V (φ, φ̄) = eK/M
2
P

(

Kij̄DiŴDj̄
¯̂
W − 3

M2
P

Ŵ
¯̂
W

)

+ D-terms. (6.2)

Here K and Ŵ are the Kähler potential and the superpotential respectively, R is the

Ricci scalar and φi represent all scalar moduli.

The α′ 3-corrected Kähler potential [321], after stabilization of the complex structure

and dilaton, is

K
M2

P

= −2 ln

(

V +
ξ

2

)

+ ln(gs) + Kcs , (6.3)

Here Kcs is some constant, V is the volume of the CY manifold M in units of the string

length ls = 2π
√
α′ and gs is the string coupling. The second term ξ in the logarithm

represents the α′-corrections with ξ = − ζ(3)χ(M)
2(2π)3

proportional to the Euler characteristic

χ(M) of the manifold M . The Kähler metric appearing in (6.1) was computed explicitly

in [44].

The superpotential depends explicitly upon the Kähler moduli Ti when non-perturbative

corrections are included

Ŵ =
g

3
2
sM3

P√
4π

(

W0 +

h1,1
∑

i=1

Aie
−aiTi

)

. (6.4)

Here W0 is the tree level flux-induced superpotential. The exponential terms Aie
−aiTi

arise due to non-perturbative (instanton) effects such as a gaugino condensate on the

world-volume of a D7 brane, or Euclidean D3 brane instanton (see e.g. [303, 304, 305,

iiThe only restrictions being the existence of at least one blow-up mode resolving a point-like sin-
gularity and also the requirement that h1,2 > h1,1 > 1, where h1,2, h1,1 are the Hodge numbers of the
CY.
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306]). The Kähler moduli are complex,

Ti = τi + iθi , (6.5)

with τi the volume of the i-th 4-cycle and θi is associated axionic partner, arising from

the Ramond-Ramond 4-form C4. In (6.4) the constants Ai, ai depend upon the specific

nature of the dominant non-perturbative mechanism. For example, ai = 2π
gs

for Euclidean

D3-brane instantons.

In the simplest cases (such as P
4
[1,1,1,6,9]) the volume V can be written in terms of the

τi as follows:

V = α

(

τ
3/2
1 −

n
∑

i=2

λiτ
3/2
i

)

. (6.6)

Here α and λi are positive constants depending on the particular model. For example,

the two-Kähler model with the orientifold of P
4
[1,1,1,6,9] studied in [305, 306, 322] has n = 2,

α = 1/9
√

2 and λ2 = 1.

The formula (6.6) suggests a “Swiss-cheese” picture of a CY, in which τ1 describes

the 4-cycle of maximal size and controls the overall size of the CY. This modulus may

be arbitrarily large. On the other hand, τ2, . . . , τn, are the blow-up cycles which control

the size of the holes in the CY. These moduli cannot be larger than the overall size of

the compactification manifold. This CY manifold is schematically illustrated in Fig. 6.1.

Including both leading perturbative and non-perturbative corrections one obtains a

potential for the Kähler moduli which, in general, has two types of minima. The first

type is the KKLT minima [303]. Relevant for the present study are the “large-volume”

AdS minima studied in [304, 305, 306]. These minima exist in a broad class of models and

at arbitrary values of parameters. An important characteristic feature of these models is

that the stabilized volume of the internal manifold is exponentially large, Vm ∼ exp (aτm)

(here Vm, τm denote the values of V and τ2 at the minimum of the potential), and can be

O(105 − 1020) in string units. The relation between the Planck scale and string scale is

M2
P =

4πVm
g2
s

m2
s (6.7)
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T1: large 4−cycle

T3: stabilized (non−inflationary) blow−up cycle

Wrapped D7 (scenario #1)

Wrapped D7 (scenario #2)

T2: moving (inflationary) blow−up cycle

Figure 6.1: A cartoon of the large volume compactification manifold illustrating the

ingredients relevant for Kähler moduli inflation and (p)reheating. The modulus τ1 =

Re(T1) controls the overall size of the compactification while the moduli τi = Re(Ti)

(i ≥ 2) control the size of the blow-up 4-cycles (hole sizes). We have labelled τ2 as the

last 4-cycle to stabilize, and hence this modulus is associated with the final observable

phase of inflation. The total volume τ1 and other cycles (for example τ3) are assumed to

already be stabilized. In the text we consider two possible scenarios for the location of the

SM: (i) a D7-brane wrapping the inflationary 4-cycle, τ2, and, (ii) a D7-brane wrapping

the non-inflationary 4-cycle, τ3. We have illustrated these wrappings schematically.
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Thus, these models can have ms in the range between the GUT and TeV scale.

As argued in [305, 306], for generic values of the parameters W0, Ai, ai one finds that

τ1 ≫ τi (i ≥ 2) and V ≫ 1 at the minimum of the effective potential. In other words,

the sizes of the holes are generically much smaller than the overall size of the CY.

An important consistency condition for the supergravity approximation to be valid

is that the value of each τi at the minimum of the potential should be larger than a

few. This criterion ensures that the geometrical sizes of the 4-cycles of the CY are all

larger than the string scale. One expects any violation of this condition to be associated

with the production of stringy (as opposed to field theoretic) degrees of freedom, such as

winding modes. More on this later.

6.2.2 Roulette Inflation

Let us now consider inflation in the context of the large volume compactification described

above [52, 44]. The scenario we have in mind is the following. Suppose all the moduli Ti

are initially displaced from their minima. The dynamics will then drive the various fields

Ti to roll towards their respective minima. For inflation, we focus on the last modulus

T2 ≡ τ+iθ to reach its minimum so that τ, θ are still dynamical while all other moduli (in

particular the total volume V) are stabilized.iii See Fig. 6.1 for a cartoon of this scenario.

Note that in the Roulette inflation model both fields τ and θ play an important role in

driving inflation. After having fixed all moduli Ti (i 6= 2) we find an effective potential

for the inflaton fields τ , θ of the form

V (τ, θ) =
g4
s

8π

[

8(a2A2)
2
√
τe−2a2τ

3αλ2Vm
+

4W0a2A2τe
−a2τ cos (a2θ)

V2
m

+ ∆V

]

, (6.8)

where we have expanded to order 1/V3
m in the (exponentially) small parameter 1/Vm. In

(6.8) the uplifting ∆V is some model-dependent constant which should be tuned so that

V = 0 at the minimum.

iiiThe consistency of this approach was discussed in [44], see [323] for more general types of inflationary
trajectories.
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Figure 6.2: The T2 potential V (τ, θ) surface for a representative choice of parameters,

using polar coordinates to illustrate the periodic structure of the potential in the axion

direction, θ. Superimposed on the potential surface are three different inflationary trajec-

tories, showing the rich set of possibilities in Roulette inflation. Inflation proceeds in the

large τ region where the potential is exponentially flat. On the other hand, preheating

after inflation takes place during the phase of oscillations the extremely steep minimum

near τ = O(1) and cos(a2θ) = −1.
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The potential surface V (τ, θ) has a rich structure, illustrated in Fig. 6.2. The po-

tential is periodic in the axion direction and is exponentially flat (but slightly rippled)

at large values of the radial coordinate τ in field space. The minimum (near τ = O(1)

and cos(a2θ) = −1) is extremely steep. At τ → 0 there is a sharp potential barrier,

which we have cut-off in Fig. 6.2 in order to make the salient features of the potential

more transparent. The shape of the potential near the edge of the minimum is locally

reminiscent of the the racetrack inflation potential [282, 319], as well as the “natural

inflation” potential involving a pseudo-Goldstone boson [39, 40] (except that in our case

both θ and τ must be simultaneously considered).

The potential (6.8) allows for a rich ensemble of inflationary trajectories in the Kähler

moduli space [44], depending on the choice of initial conditions and model parameters.

We have superposed several of these trajectories on the potential surface in Fig. 6.2 for

illustration. Inflationary trajectories may undergo many revolutions at roughly constant

τ , spiralling along the angular direction, θ, like a ball on a roulette wheel. At some point,

the inflaton eventually gets caught in the trough along θ = π(2l+1)
a2

(where l is an integer)

and rolls down to small τ . Generically the last few e-foldings of inflation occur along this

trough, which is stable against δθ perturbations and along which V (τ, θ) takes the form

considered in [52]. Inflation ends when the inflaton rolls into the sharp minimum, like

the ball on a roulette wheel falling into the pocket.

Models of this type necessarily introduce a statistical (“gambling”) aspect to the

constraints that observational data imposes on inflationary model building. In [44] it was

advocated to view this theory prior as a probability distribution on an energy landscape

with a huge number of potential minima. In [324] the spectrum and non-Gaussianity of

the curvature fluctuations for the variety of Roulette inflation trajectories was discussed.

In [325] cosmological fluctuations were studied more generally in multi-field models with

non-standard kinetic terms and the Roulette model was considered as a special case.

As discussed previously, consistency of the supergravity approximation requires ad-
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justing the parameters so that τm & a few. We note, however, that even if the SUGRA

description in terms of the scalar potential is not valid at the minimum, it still can be

valid at large τ , exactly where we wish to realize inflation. Hence a small value of τm

does not constrain the Kähler Moduli/Roulette inflation. Rather, the only consequence

of small τm is that the endpoint of inflation, reheating, would have to be described by

string theory degrees of freedom (rather than simple field theoretic objects). In this work,

we will propose one of the possible scenarios of this type.

Finally, we note that there are several types of perturbative corrections that could

modify the classical potential (6.8) on Kähler moduli space: those related to higher string

modes, or α′-corrections (coming from the higher derivative terms in both bulk and brane

effective actions) and also string loop, or gs-corrections (coming from closed and open

string loop diagrams). The most dangerous corrections that could spoil exponential

flatness of the potential at large τ , are the latter category: those coming from open

string diagrams. This type of corrections are relevant for the models where the SM lives

on a D7 brane wrapped on the 4-cycle associated with the inflationary modulus,iv τ2,

and are expected to spoil the flatness of the inflaton potential; see [320] for an estimate

of this effect. One can evade this problem simply by excluding such a wrapping and

assuming that the SM lives on a D7 wrapping some other (non-inflationary) hole in

the compactification.v This scenario has the disadvantage of complicating the reheating

process, since it forbids a direct coupling between the inflaton and the visible sector. In

this work, we proceed phenomenologically and consider models both with and without

a D7 brane wrapped on the inflationary cycle. In both cases we identify the dominant

decay channels of the inflaton into SM particles.

It will be handy for the discussion below to have estimates of the masses of the fields

playing a role in inflation and reheating. Recall that from equation (6.7) the string scale

ivThis possibility is illustrated schematically as “scenario 1” in Fig. 6.1.
vThis possibility is illustrated schematically as “scenario 2” in Fig. 6.1.
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and Planck scale are related as ms/Mp ∼ V−1/2. The gravitino mass is m3/2/Mp ∼ V−1

and the masses associated with the deformations of the total volume and hole size(s) are,

respectively, given by mτ1/Mp ∼ V−3/2(lnV)−1/2, mτi/Mp ∼ lnV/V (for i ≥ 2). See [326]

for more detailed discussion.

6.3 Preheating via Self-interactions in the Inflaton

Sector

In this section we study the energy transfer from the homogeneous inflaton condensate

into fluctuations. We proceed by first considering the dynamics of linear perturbations

about the homogeneous inflaton background and next by studying the fully nonlinear

dynamics of the system using lattice field theory simulations. In the next section we

study the subsequent transfer of energy from these fluctuations into excitations of the

SM particles.

6.3.1 Equations for Linear Fluctuations

We consider the endpoint of inflation in the Roulette inflation model reviewed in the last

section. To this end we study the action

S =

∫

d4x
√−g

[

1

2
R− 1

2
K22̄ (∂µτ∂

µτ + ∂µθ∂
µθ) − V (τ, θ)

]

(6.9)

where the (2, 2̄) component of the Kähler metric depends only on the 4-cycle volume

K22̄ =
3αλ2

[

2Vm + ξ + 6αλ2τ
3/2
]

2(2Vm + ξ)2
√
τ

∼= 3αλ2

4Vm
1√
τ

+ · · · (6.10)

The potential V (τ, θ) is given explicitly by (6.8) and in the second equality of (6.10)

we have expanded to leading order in V−1
m . Throughout the rest of this chapter we use

Planck units, MP ≡ 1, although we occasionally write out the factors of Mp explicitly.

For simplicity we restrict ourselves to “parameter set 1” (as defined in [44]) corresponding
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to the choice W0 = 300, a2 = 2π/3, A2 = 0.1, λ2 = 1, α = 1/(9
√

2), ξ = 0.5, gs = 0.1

and V = 106. We have considered also different parameter choices and found the results

to be qualitatively similar in all cases.

To understand preheating in the model (6.9), let us first consider the linearized equa-

tions for the fluctuations. In order to make the analysis tractable we introduce the

canonical inflaton field φ defined by dφ = ±√K22̄ dτ so that φ ∼=
√

4
3
αλ2

Vm τ 3/4 in the large

volume limit and with some arbitrary convention for the origin of field space. Now the

action (6.9) takes the form

S = −
∫

d4x
√−g

[

1

2
(∂φ)2 +

1

2
e2b(φ)(∂θ)2 + U(φ, θ)

]

(6.11)

where

b(φ) =
1

2
ln [K22̄ (τ(φ))] (6.12)

U(φ, θ) = V [τ(φ), θ] (6.13)

Our choice of notation follows [325].

For generic inflationary trajectories, the final few e-foldings of inflation take place

along the trough θ = π(2l+ 1)/a2 (with l integer) [44]. Thus, to study the linear regime

of particle production during preheating after inflation we expand the fields as

φ(t,x) = φ0(t) + δφ(t,x) (6.14)

θ(t,x) =
(2l + 1)π

a2
+ δθ(t,x) (6.15)

In the left panel of Fig. 6.3 we plot the effective potential for the homogeneous motion

of the canonical inflaton φ along the θ = (2l+ 1)π/a2 trough, that is U [φ, (2l + 1)π/a2].

This potential displays a long flat region at large φ which is relevant for inflation and

a very steep minimum at φ = φm. Preheating during inflation takes place during the

phase of oscillations about this minimum. In the right panel of Fig. 6.3 we plot the time

dependence of the inflaton condensate φ0(t) during this oscillatory phase. Due to the
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extreme sharpness of the potential minimum the inflaton passes very quickly through the

region close to φm while the extreme flatness at larger φ means that the inflaton spends

a long time near the right-hand side of the valley. We denote the period of oscillations

about the minimum by T and note that for typical parameters T ∼ 10−3H−1.

Let us now consider the linear fluctuations δφ, δθ in the inflaton and axion fields.

The equations of motion for the Fourier modes δφk and δθk take the form

δφ̈k + 3Hδφ̇k +

[

k2

a2
+ U,φφ

]

δφk = 0 (6.16)

δθ̈k + [3H + 2b,φ] δθ̇k +

[

k2

a2
+ e−2bU,θθ

]

δθk = 0 (6.17)

where the quantities U(φ, θ) and b(φ) (and their derivatives) are understood to be eval-

uated on the unperturbed values φ = φ0(t) and θ = θ0(t) ≡ (2l+ 1)π/a2. Neglecting the

expansion of the universevi and defining the canonical axion fluctuation δψ as

δψk ≡ ebδθk (6.18)

we obtain oscillator-like equations for the mode functions

δφ̈k + ω2
φ,kδφk = 0 (6.19)

δψ̈k + ω2
χ,kδψk = 0 (6.20)

In (6.19,6.20) the effective frequencies are

ω2
φ,k = k2 + U,φφ

≡ k2 +M2
φ,eff(t) (6.21)

ω2
ψ,k = k2 − b,φφ̈0 − (b2,φ + b,φφ)φ̇

2
0 + e−2bU,θθ

≡ k2 +M2
ψ,eff(t) (6.22)

and we have introduced the notationM2
eff(t) for the time-dependent effective masses of the

fields. We solve equations (6.19,6.20) numerically. As usual [238] we initialize the modes

viThis neglect is justified since typically the total time for preheating to complete is of order 10−3H−1.



Chapter 6. Preheating after Modular Inflation 201

Figure 6.3: The left panel shows the effective potential for the canonical Kähler modulus

φ along the axion trough, U(φ, (2l + 1)π/a2) showing the long exponentially flat region

relevant for inflation and also the steep minimum relevant for the preheating phase of

post-inflationary oscillations. We have labelled the point where inflation ends (where

the ǫ slow roll parameter is unity) and also the point where the effective mass-squared

V ′′(φ) flips sign, corresponding to the cross-over between the tachyonic and non-tachyonic

regions. The right panel shows the oscillatory time evolution of the homogeneous inflaton

φ0(t) at the end of inflation.
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as δφk = 1/
√

2ωφ,k, δφ̇k = −i
√

ωφ,k/2 at t = 0 (and similarly for δψk) which, physically,

corresponds to starting with pure quantum vacuum fluctuations with occupation number

nk = 0. Violations of the adiabaticity condition |ω̇k|/ω2
k ≪ 1 are associated with particle

production and lead to the generation of nonzero occupation number, nk 6= 0. As is

typical in the theory of preheating [238] we define the occupation number for the inflaton

fluctuations as

nφk =
ωφ,k
2

[

|δφ̇k|2
ω2
φ,k

+ |δφk|2
]

− 1

2
(6.23)

and similarly for the occupation number nψk associated with the axion.

6.3.2 Instability of Kähler Modulus Fluctuations

Let us first consider the equation (6.19) for the fluctuations δφk of the (canonical) inflaton.

This equation can be viewed as an effective Schrodinger-like oscillator equation with

“potential” determined by the effective mass term, M2
φ,eff(t). In Fig. 6.4 we plot the

behaviour of this effective mass (the dashed blue curve) as a function of time. We see

that M2
φ,eff has a very particular time dependence: the fluctuations δφ are nearly massless

during the inflaton oscillations except for periodic “spiky” features uniformly spaced at

intervals ∆t = T . As long as the adiabatic invariant |ω̇k|/ω2
k remains small, |ω̇k|/ω2

k ≪ 1,

particles are not produced and the occupation number nk will be close to a constant.

For modes with wave-number k2 sufficiently small, the spike structure in M2
φ,eff leads to

extreme violations of adiabaticity: |ω̇k|/ω2
k ≫ 1. In Fig. 6.5 we plot the adiabaticity

parameter taking k = 0 for illustration (the dashed blue curve). Notice that each spike

in M2
φ,eff is also accompanied by a tachyonic phase where M2

φ,eff < 0.

The periodic time-dependent behaviour of the effective mass M2
φ,eff leads to unstable

momentum bands where the modes δφk grow exponentially as

δφk(t) ∼ eµkt/T fk(t/T ) (6.24)

with fk(t/T ) some periodic oscillatory function. We computed the Floquet exponent
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Figure 6.4: The effective mass-squared of both the Kähler modulus φ (the dashed blue

curve) and axion ψ (the solid red curve) as a function of time. We plot the effective mass

in units of mφ, the mass at the minimum of the potential. Note that Meff(t) actually

exceeds mφ during the inflaton oscillations. This corresponds to the steep curvature on

the left-hand-side of the potential minimum in Fig. 6.3.
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Figure 6.5: The quantity |dMeff/dt|/|M2
eff | for both the Kähler modulus φ (the dashed

blue curve) and axion ψ (the solid red curve) as a function of time. This quantity provides

a measure of the violation of adiabaticity and coincides with the adiabatic invariant ω̇k/ω
2
k

in the IR. The Spike structure of the Kähler modulus effective mass leads to extremely

strong violations of adiabaticity and particle production. On the other hand, the axion

effective frequency varies slowly during the inflaton oscillations and axion particles are

not produced.
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µk appearing in (6.24) numerically and the result is displayed in Fig. 6.6. The broad

unstable region at low k corresponds to tachyonic growth of IR modes coming from the

M2
φ,eff < 0 regions in Fig. 6.4. On the other hand, the UV region of Fig. 6.6 featuring a

band structure is a result of broad-band parametric resonance. The modes δφk belonging

to these two regions of phase space display very different behaviour and both tachyonic

and resonance effects play a crucial role in the dynamics of preheating. In Fig. 6.7 we plot

the time evolution of the Kähler modulus mode functions for k = 0.01mφ (corresponding

to the IR tachyonic regime), k = 0.5mφ (corresponding to the UV regime of broad-band

parametric resonance) and k = 0.08mφ (corresponding to the intermediate regime where

these two effects cannot be disentangled). Here mφ denotes the mass of the canonical

inflaton at the minimum of the potential. Note that these different kinds of preheating

can only be separated in the linear theory; at the nonperturbative level such a distinction

is impossible.

To illustrate how violent the process of preheating in modular inflation is, we consider

the energy density ρk in a given wave-number k, which coincides with ∼ k4nk if we

evaluate ρk at the point in the inflation oscillations where Mφ,eff = 0 (this point is

illustrated on the potential in the left panel of Fig. 6.3). This quantity is plotted as

a function of k in Fig. 6.8 for three different time steps in the (linear) evolution. We

see that within only three oscillations of the background field (that is, at t = 3T ) the

fluctuations contain many orders of magnitude more energy than the condensate. At this

point backreaction becomes critical and the linearized treatment breaks down. Therefore,

in order to study the dynamics after the first 2-3 oscillations one must turn to nonlinear

lattice simulations, which we consider in the next subsection.

We have also studied the dynamics of the linear fluctuations of the axion, equation

(6.20). The effective mass M2
ψ,eff(t) for the fluctuations δψk of the (canonical) axion.

is plotted in Fig. 6.4 (the solid red curve). The behaviour is qualitatively similar to

the inflaton effective mass, however, the spikes are less sharp and the tachyonic regions
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Figure 6.6: The dimensionless characteristic exponent µk (Floquet exponent) for the ex-

ponential instability of the (canonical) Kähler modulus fluctuations δφk, defined in (6.24).

The broad unstable region in the IR comes from the tachyonic regions where M2
φ,eff < 0

whereas the UV region displays the band structure that is characteristic of parametric

resonance. The behaviour of the modes δφk in these two regions is qualitatively different.
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Figure 6.7: The behaviour of linear Kähler fluctuations during preheating after modular

inflation illustrating the combination of tachyonic instability and parametric resonance.

The left panel shows the mode behaviour for k = 0.01mφ (corresponding to the IR

tachyonic regime) while the right panel shows the mode behaviour for k = 0.5mφ (corre-

sponding to the UV regime of parametric resonance). The middle panel is k = 0.08mφ,

corresponding to the intermediate regime where both effects are active.

are absent. Thus, we expect the production of axion fluctuations to be less efficient.

This intuition is confirmed in Fig. 6.5 where we show that adiabaticity is never violated

for these modes (see the solid red curve). Therefore the endpoint of modular inflation is

dominated by the extremely nonperturbative production of Kähler modulus fluctuations,

rather than their axionic partner. During later stages of reheating, however, axions may

be produced by rescattering effects.

6.3.3 Lattice Simulations of Preheating in Roulette Inflation

In the last subsection we studied the dynamics of the linear fluctuations δτ , δθ at the

endpoint of inflation. We found that the particular shape of the inflaton potential (which

is highly nonlinear and has a very steep minimum) imparts an extremely non-adiabatic

time dependence to the 4-cycle modulus τ and leads to explosive production of δτ parti-

cles. Hence the linearized analysis of this dynamics breaks down very rapidly, within just
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Figure 6.8: The energy spectrum ∼ k4nk for δτ , calculated with linear theory, showing the

rapid and violent production of particles after modular inflation. Within three oscillations

of the background field (by t = 3T ) the energy density is significantly larger than the

energy in the homogeneous condensate and at this point nonlinear feedback must be

taken into account.
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2-3 oscillations of the background field, and a full treatment requires fully nonlinear lat-

tice field theory simulations. Hence we now study the evolution of the fields τ , θ in a fully

nonlinear way, taking into account also the expansion of the universe self-consistently.

Our numerical simulations are done using a new lattice code which contains (modified)

elements of both LatticeEasy [218] and DEFROST [219]. The first version of this code

was employed in the paper [6, 7] to study infra-red cascading during inflation. Here we

have further generalized the code to allow for scalar fields with non-canonical kinetic

terms. With the MPI-parallelized code we have used 64 processors on the CITA cluster

to evolve the fields τ and θ in a cubic box with 5123 grids. Vacuum mode functions are

put in as initial conditions. The very first stage of the evolution, when inhomogeneity

can be treated linearlyvii, is performed in momentum space. From this initial stage of

momentum-space evolution we can determine which Fourier modes τk, θk experience

unstable growth during preheating and ensure that the relevant dynamical scales are

captured by our simulations (that is, the k-modes which dominate the unstable growth are

well between the IR cut-off kIR = L−1 defined by the box size L and the UV cut-off kUV =

∆x−1 defined by the lattice spacing ∆x). Once the particle occupation numbers become

large we switch over to configuration-space evolution (at the switching time the gradient

energy is roughly 10−4 as compared to the energy in the homogeneous condensate). We

subsequently run our configuration-space evolution for a total time ∆t = O(3 − 4)T

(where T is the period of oscillations of the homogeneous background). This time scale

is more than sufficient to see the homogeneous inflaton condensate completely decohered

into inhomogeneous fluctuations.

To illustrate the rapid and violent development of inhomogeneities during modular

preheating we study the energy density in gradients of the Kähler modulus τ , given by

ρgrad = K,ττ
1

a2
∂iτ∂

iτ =

∫

d ln k

2π2

k5

a2
K,ττ |δτk|2 (6.25)

viiIn the case of Roulette inflation this occurs only during inflation and the first oscillation of preheating.
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In Fig. 6.9 we plot the power in gradient energy, given by k5K,ττ |δτk|2/(2π2a2), for three

time steps in the evolution.

After the first oscillation, at t ∼ T , we see the band structure of growing modes in the

UV is characteristic of parametric resonance. However, by the time t ∼ 2T the evolution

has become completely nonlinear leading to the destruction of the band structure and

the cascading of power into both the IR and UV. By the time t ∼ 3T the energy density

in gradients is comparable to the homogeneous background energy density, illustrating

the decay of the condensate. By this time, however, our numerical evolution has become

unreliable since the power in inhomogeneous fluctuations has cascaded down to the UV

cut-off, kUV = ∆x−1; beyond this point we are bleeding energy into the grid. In any case,

at later times decays into fields which were not included, such as brane-bound gauge

fields and fermions, start to become important. We consider these decays for a variety

of scenarios in the remainder of this chapter.

We have also considered the dynamics of the expansion of the universe during pre-

heating. The effective equation of state during preheating is ω = P/ρ ∼= 0.1, which is

very close to a matter dominated expansion. This is consistent with Fig. 6.8 where we

see that, in the linear theory, the δτ particles which dominate the energy density of the

universe have momentum in the band k/mφ ∼ O(0.01 − 0.1) and hence we expect these

to be non-relativistic near the minimum: ωk =
√

k2 +m2
φ
∼= mφ + k2

2mφ
+ · · · . (Note also

that the Floquet exponent µk in Fig. 6.6 peaks over roughly the same range of scales.)

The violent production of inhomogeneities leads to significant backreaction effects

which alter the form of the effective potential, in particular the location of the minimum

and the effective mass at that minimum, mτ . The late-time perturbative decays of

the produced inflaton fluctuations δτ into SM fields (which we study in detail in the

remainder of this chapter) depend sensitively on the value of mτ at the minimum, hence

it is important to determine whether this differs significantly from the value one obtains

neglecting backreaction effects.
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Figure 6.9: The power in Kähler modulus gradient energy, which is given by

k5K,ττ |δτk|2/(2π2a2), from our lattice simulations, normalized this to the total back-

ground energy density, ρ̄. The spectrum is shown for four time steps in the evolution:

t = T , t = 2T , t = 2.25T and t = 3T , illustrating the rapid decay of the homogeneous

inflaton condensate into inhomogeneous fluctuations. See the text for further discussion.
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To illustrate how backreaction effects modify the effective potential, consider a simple

scalar field with equation of motion �φ = V ′(φ). Writing φ = 〈φ〉 + δφ and taking the

average of the Klein-Gordon equation we find an equation for the mean field

�〈φ〉 = 〈V ′ [〈φ〉 + δφ]〉

≡ V ′
eff [〈φ〉] (6.26)

In general the effective potential Veff will differ from V (φ). This can be illustrated ex-

plicitly by defining the averaging procedure as 〈V ′(φ)〉 ≡ 1√
2π σφ

∫

d[δφ] e
− δφ2

2σ2
φ V ′(φ) with

σφ the variance of φ. In general this averaged force differs from V ′(φ). Note that in our

case both inhomogeneous fluctuations and nonlinear effects are large, thus a Gaussian

distribution for δτ = τ − 〈τ〉 may not be appropriate. However, this does not alter the

qualitative argument that we are making.

We have estimated the effective mass for the τ fluctuations at the minimum, mτ ,

including backreaction effects, by extracting the rate of oscillation of the (spatially)

averaged field 〈τ〉 from our lattice simulations. We find that

mnew
τ = β mold

τ (6.27)

with β ∼ 2.5 for our choice of parameters. Hence, the true mass including backreaction

effects differs from the mass without backreaction by a factor order unity. However, since

the decay of δτ into brane-bound gauge fields depends on the effective mass as Γ ∝ m3
τ

the value of the factor β may be important.

We have also investigated the production of gravitational waves from the rapid devel-

opment of inhomogeneities associated with the violent decay of the inflaton after modular

inflation. We have quantified the production of gravitational waves numerically, follow-

ing the approach adopted in [311, 312]. We did not find any significant production of

gravitational waves for the model parameters considered.
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6.4 Transfer of Energy into the SM Sector: D7 Wrap-

ping the Inflationary 4-Cycle

We have seen that the initial stages of preheating in Roulette inflation proceed non-

perturbatively by a very strong instability and lead to explosive production of δτ fluctu-

ations (particles) which destroy the homogeneous inflaton within just a few oscillations.

However, this violent particle production is not sufficient to make contact with the usual

hot big bang picture. We must also ensure that the energy in δτ fluctuations can be

efficiently transferred into excitations of the visible (SM) sector. Determining the details

of this energy transfer requires a complete understanding of how the inflaton fields τ , θ

couple to SM degrees of freedom and hence this is is necessarily a model dependent issue.

Below we will proceed phenomenologically and consider a variety of possible scenarios,

identifying the dominant decay channel of the inflaton in each case. Throughout this

section (and the next) we assume that the value of τ at the minimum, τm, is sufficiently

large to validate the effective supergravity treatment and hence the details of reheating

can be studied using only QFT methods. In a subsequent section we will relax this

assumption.

First let us consider the case where the SM lives on a D7 brane wrapping the in-

flationary 4-cycle, T2 = τ + iθ. This wrapping is illustrated schematically in Fig. 6.1

as “scenario 1”. From the computational point of view this is the simplest imaginable

scenario since it allows for a direct coupling between the inflationary τ and the fields of

the SM. However, as discussed previously, such couplings lead to loop corrections to the

inflaton potential which are expected to spoil slow roll [320]. Until a robust calculation

of such loop effects is available we will proceed phenomenologically and suppose that the

offending contributions to the slow roll parameters can be cancelled by some fine tuning

(or otherwise).
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6.4.1 Inflaton Coupling to Photons

Since the inflaton, τ , is the volume of the 4-cycle wrapped by the SM D7 we expect

that τ couples to visible states as an overall prefactor to the SM Lagrangian. Thus, an

effective Lagrangian for the inflaton-photon interaction takes the form [326]

Lγ = −λ
4
τF µνFµν (6.28)

where Fµν = ∂µAν − ∂νAµ is the field strength associated with the gauge field Aµ and

λ = τ−1
m once we have normalized Aµ so that it has canonical kinetic term when τ is

stabilized at the minimum.

6.4.2 Photon Preheating

The strong nonperturbative production of δτ fluctuations observed in section 6.3 provides

a motivation to look for preheating also in other bosonic fields, such as the photon, Aµ.

Therefore we study the stability of the quantum fluctuations of Aµ in the background of

the oscillating homogeneous inflaton τ0(t). To this end we choose the transverse gauge:

A0 = 0, ∂iA
i = 0. The equation of motion for the Fourier transform of the spatial

components of the gauge field Ai(t,x) in the homogeneous inflaton background takes the

form

Äk +

[

H +
τ̇0
τ0

]

Ȧk +
k2

a2
Ak = 0 (6.29)

where we suppress the vector index i on the modes Aik(t) for ease of presentation. Equa-

tion (6.29) can be put into oscillator-like form by introducing the field Ãk ≡ (aτ0)
1/2Ak.

We find
[

d2

dt2
+ ω2

γ,k

]

Ãk = 0 (6.30)

where the time-varying frequency is

ω2
γ,k =

k2

a2
+

1

4

(

τ̇0
τ0

)2

− 1

2

τ̈0
τ0

− 1

2
H
τ̇0
τ0

− 1

4
H2 − 1

2
Ḣ

≡ k2

a2
+M2

γ,eff(t) (6.31)
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The time dependence of the effective photon mass M2
γ,eff(t) (neglecting the expansion of

the universe) is plotted in the left panel of Fig. 6.10. The behaviour is qualitatively similar

to the effective mass for the δτ fluctuations (up to an overall sign flip). The oscillatory

behaviour of the photon effective mass leads to parametric resonance of the photon modes

Ãk with stability/instability bands in which the photon fluctuations grow exponentially

as Ãk(t) ∼ eµkt/T . We have computed the Floquet exponent, µk, numerically and this

result is plotted in the right panel of Fig. 6.10 where we see the characteristic features of

narrow band parametric resonance.

We have seen that very early stages of oscillations of the inflaton condensate τ0(t) leads

to copious production of photons living on the SM D7-brane via parametric resonance

preheating. This phase of violent, nonperturbative photon production is very short-lived

since the production of δτ inhomogeneities completely destroys the condensate within

2-3 oscillations. The later stages of the production of SM photons will instead involving

perturbative decays τ → γγ, to which we now turn our attention.

6.4.3 Perturbative Decays to Photons

After the phase of violent nonperturbative particle production discussed above the ho-

mogeneous inflaton τ will settle down to the minimum of the potential and reheating

will be dominated by the perturbative decays of produced inflaton fluctuations into SM

photons. To study such processes let us consider the Lagrangian for the total volume

modulus τ1 ≡ τb (where the subscript b stands for “big”) and the hole-size τ2 ≡ τ ≡ τs

(where the subscript s stands for “small”). Writing τi = 〈τi〉+δτi (with i = b, s) we have,

near the vicinity of the minimum

L = −Kij̄∂µ(δτi)∂
µ(δτj) − V0 − (M2)ij(δτi)(δτj) −

λ

4
τs F

µνFµν + · · · (6.32)

The mass matrix (K−1M2)ij is not diagonal, nor are the fields δτi canonically normalized.

Following [326] we can put this action into a more conventional form by introducing the
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Figure 6.10: The left panel shows the time dependence of the effective photon mass,

M2
γ,eff(t). The right panel shows the Floquet exponent µk for the mode functions Ak(t) ∼

eµkt/T .
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physical modulus fields Φ, χ defined by







δτb

δτs






=







RbΦ Rbχ

RsΦ Rsχ













Φ

χ






(6.33)

The elements of the rotation matrix Rij are computed explicitly in [326], however, para-

metrically we have RbΦ ∼ V1/6, Rbχ ∼ V2/3, RsΦ ∼ V1/2 and Rsχ ∼ V0. Thus the

canonical field Φ is mostly the small 4-cycle δτs, while the field χ is mostly the big

4-cycle δτb. In terms of the canonical basis χ,Φ the Lagrangian (6.32) takes the form

L = −1

2
(∂Φ)2 − 1

2
(∂χ)2 − V0 −

m2
Φ

2
Φ2 − m2

χ

2
χ2 − 1

4
F µνFµν

+
λχγγ

4
χF µνFµν +

λΦγγ

4
ΦF µνFµν

+ λχΦΦχΦ2 + λΦχχΦχ
2 + λχχχχ

3 + λΦΦΦΦ3 + · · · (6.34)

The masses of the canonical moduli are

mχ ∼ 1

V3/2(lnV)1/2
Mp (6.35)

mΦ ∼ lnV
V Mp (6.36)

so that Φ is significantly more massive than χ, consistent with the intuition that since

τb ≫ τs the volume modulus should be lighter than the modulus associated with the

hole size (at the minimum). The light χ particles have Planck suppressed couplings to

brane-bound gauge fields

λχγγ ∼
1

Mp lnV (6.37)

since the fluctuations of the total volume are bulk modes. On the other hand, the coupling

of massive Φ particles to gauge fields are only string suppressed

λΦγγ ∼
1

ms
∼

√
V

Mp
(6.38)

The violent production of δτs fluctuations at the end of inflation leads to a huge

number of canonical Φ particles near the minimum, in addition to a small admixture
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of χ which arise due to the nontrivial mixing of δτs and δτb, see equation (6.33). The

massive Φ particles subsequently decay to photons via perturbative processes such as

Φ → γγ mediated by the couplings in (6.34). The decay width was computed in [326]

ΓΦ→γγ =
λ2

Φγγm
3
Φ

64π
(6.39)

Using the estimates (6.36) and (6.38) we find

ΓΦ→γγ ∼
(lnV)3

V2
Mp (6.40)

Also notice that, due to the δτb − δτs mixing, a certain amount of χ particles will

be produced from the oscillating inflaton field. This does not lead to a cosmological

moduli problem because the χ particles are extremely massive for the value of V which

we consider. For example, taking V ∼ 106 − 109 we have mχ ∼ 104 − 108 GeV which is

sufficiently massive that the residual χ moduli will decay well before Big Bang Nucle-

osynthesis (BBN) [327].viii

6.4.4 Inflaton Coupling to Fermions

The inflaton τs will couple not only to photons but also to fermion fields living on the

world-volume of the D7 brane wrapping the inflationary 4-cycle. The effective action

describing these interactions generically takes the form [328]:

Lint = hΦΨΨΦ Ψ̄Ψ (6.41)

where hΦΨΨ is the dimensionless coupling and Ψ schematically denotes any MSSM

fermion. The decay rate for this type of interaction is

ΓΦ→ΨΨ
∼= h2

8π
mΦ (6.42)

viiiFor very large values of the compactification volume, V ∼ 109, the χ modulus may decay very close
to the onset on BBN. For such parameters a more careful treatment of the decay of χ, taking into account
factors of order unity, may be necessary.
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(in the limit mΦ ≫ mΨ).

Prior to electro-weak symmetry breaking a direct coupling to SM fields (such as the

electron) is absent and the decay of Φ into fermions is dominated by the production of

Higgsinos Φ → H̃H̃ and gauginos Φ → λλ. The relevant couplings were computed in

[328]

hΦH̃H̃ ∼ 1

V1/2 lnV (6.43)

hΦλλ ∼ 1

V3/2 lnV (6.44)

We therefore have the following estimates for the decay rates

ΓΦ→H̃H̃ ∼ 1

V2 lnVMp (6.45)

ΓΦ→λλ ∼ 1

V4 lnVMp (6.46)

We see that the decays of Φ into Higgsinos dominate over the decays into gauginos.

6.4.5 Reheating Temperature

Let us now estimate the reheating temperature for the scenario where the SM lives on

a D7 wrapping the inflationary cycle T2. Note that ΓΦ→γγ/ΓΦ→H̃H̃ ∼ (lnV)4 ∼ 104

for a compactification volume of order V ∼ 106 − 109, which is of interest for Roulette

inflation. Thus, comparing equations (6.40) and (6.45) we see that the lifetime of the

inflaton is dominated by its decay into photons. Using the standard result from the

theory of reheating [238] the reheat temperature is given by

Tr ∼ 0.1
√

ΓMp ∼ 0.1
(lnV)3/2

V Mp (6.47)

Using V ∼ 106 we obtain Tr ∼ 1013 GeV and using V ∼ 109 we have Tr ∼ 1010 GeV.

Normally such a high reheat temperature would lead to a gravitino problem (specifically

the late decays of the gravitino interfere with the successful predictions of Big Bang

Nucleosynthesis). However, in our case the gravitino mass is extremely high [326]:

m3/2 ∼
Mp

V (6.48)
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For V ∼ 106 − 109 we have m3/2 ∼ 109 − 1012 GeV, hence the gravitino is so massive that

it decays well before nucleosynthesis [327]. The disadvantage of such a high gravitino

mass temperature is that SUSY is broken at too high a scale to explain the electro-weak

hierarchy of the SM. An alternative scenario to explain the fine-tuning of the Higgs mass

is through vacuum selection effects on the string landscape [329, 330]. On the other

hand, see [331] for a scenario where this gravitino mass is compatible with TeV scale soft

terms.

There is, however, another cause for concern. At sufficiently high temperatures ther-

mal corrections to the effective potential tend to destabilize the moduli and drive them to

infinity, leading to decompactification [328]. The decompactification temperature, Tmax,

can be accurately approximated by Tmax
∼= V

1/4
b where Vb ∼= m3

3/2Mp is the height of the

potential barrier separating the large volume AdS minimum from the supersymmetric

minimum at infinity in moduli space. The maximum allowed reheat temperature (above

which the internal space decompactifies) is therefore

Tmax
∼= Mp

V3/4
(6.49)

Comparing (6.47) to (6.49) one sees that, keeping track only of factors of the total

volume V, we have Tr is marginally below the decompactification temperature. However,

this conclusion could easily be altered by factors of order unity which we have not taken

into account. Such factors depend sensitively on the details of the compactification and

we leave a careful determination to future studies. Indeed, the requirement Tr < Tmax

may significantly constraint the parameter space of the model [328].
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6.5 Transfer of Energy into the SM Sector: D7 Wrap-

ping a Non-Inflationary 4-Cycle

As discussed previously, the wrapped D7 scenario of the previous section may lead to

dangerous gs-corrections to the inflaton potential. Thus, it may be desirable to exclude

such a wrapping. Doing so, of course, also forbids a direct coupling between the inflaton

and the SM fields. In this case the inflaton may still decay to SM particles via some

intermediate bulk states. Such decays which involve bulk modes must necessarily be

suppressed by the compactification volume, which is exponentially large. Here we discuss

one possible scenario of this type.

We could imagine the SM living on a D7 which wraps the big cycle T1, however,

this leads to unnaturally small gauge couplings [326] and hence is phenomenologically

disfavoured. Instead, let us suppose the SM lives on a D7 wrapping some stabilized

non-inflationary cycle, T3, which is stabilized to a value 〈τ3〉 = O(1). This wrapping is

illustrated schematically in Fig. 6.1 as “scenario 2”.

At this point we must extend the discussion from section 6.4.3 to the case with more

than two moduli fields, namely, instead of 2 fields τb (= τ1) and τs (= τ2) (corresponding

to canonical moduli χ and Φ) we consider 3 fields τ1, τ2 and τ3 (corresponding to canonical

moduli χ, Φ2 and Φ3).

As we have seen, the endpoint of inflation is marked by the violent production of

fluctuations δτ2 of the inflationary 4-cycle, T2. Near the minimum of the potential these

τ2 fluctuations mix with the total volume τ1 and the non-inflationary hole τ3 through an

off-diagonal mass matrix similar to (6.33), except now there are three relevant moduli

rather than two. Diagonalizing the mass matrix one finds three canonical fields χ and Φi
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(i = 2, 3) which are schematically related to the 4-cycle volumes as

δτ1 ∼ O(V2/3)χ+
∑

i

O(V1/6) Φi (6.50)

δτi ∼ O(V1/2) Φi + O(1)χ+
∑

j 6=i
O(V−1/2)Φj where i = 2, 3 (6.51)

so that χ is mostly the total volume δτ1 while Φ2, Φ3 are mostly the blow-up modes δτ2

and δτ3 respectively. The modulus χ is light, having mass

mχ ∼ 1

V3/2(lnV)1/2
Mp (6.52)

while the moduli Φ2, Φ3 are heavier

mΦ2 ∼ mΦ3 ∼
lnV
V Mp (6.53)

These moduli couple to gauge fields living on the D7 wrapping T3 via the interaction

τ3FµνF
µν , which gives us

Lint =
λχγγ

4
χF µνFµν +

∑

i=2,3

λΦiγγ

4
Φi F

µνFµν (6.54)

using equations (6.32) and (6.51). Physically, these couplings originate from the mixing

between τ2 and τ1, τ3. From equation (6.51) we can estimate the magnitude of the moduli

couplings. The largest coupling is, obviously, the one involving Φ3 since the SM D7 wraps

the cycle T3. This coupling is set by the string scale

λΦ3γγ ∼
1

ms
∼ V1/2

Mp
(6.55)

On the other hand, the coupling to the large cycle is

λχγγ ∼
1

Mp lnV (6.56)

where the factor M−1
p comes from that fact that χ is a bulk mode and the factor of

(lnV)−1 is nontrivial [326]. The coupling between the inflationary 4-cycle T2 and brane-

bound SM gauge fields is

λΦ2γγ ∼
1

Mp

1

V1/2
(6.57)
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This is even more than Planck suppressed.

Thus, the picture of reheating in this scenario is the following. Preheating produces

copious amounts of δτ2 fluctuations which lead to a large number of canonical Φ2 moduli

near the minimum, plus a small admixture of light χ and heavy Φ3 moduli. The Φ3

particles are the first to decay, they produce brane-bound SM photons via the process

Φ3 → γγ with a rate identical to (6.40):

ΓΦ3→γγ ∼
(lnV)3

V2
Mp (6.58)

This decay, however, does not correspond to true reheating since at this point the energy

density of the universe is dominated by the almost nonrelativisticix Φ2 particles with

matter dominated equation of state, rather than SM radiation. Thus, the SM radiation

which is produced at by the decay of Φ3 is rapidly diluted, ρradn ∼ a−4, relative to the

nonrelativistic Φ2 particles whose energy density dilutes as: ρΦ2 ∼ a−3.

True reheating occurs when the Φ2 particles subsequently decay into SM states via

the suppressed coupling (6.57). This decay proceeds with rate:

ΓΦ2→γγ ∼
m3

Φ2

M2
pV

∼ (lnV)3

V4
Mp (6.59)

It is the decay rate (6.59) which determines the reheat temperature of the universe:

Tr ∼ 0.1
√

ΓMp ∼ 0.1
(lnV)3/2

V2
Mp (6.60)

This is smaller than the result of the previous section, equation (6.47), by a factor of

V−1 corresponding to the fact that the Φ2 is a bulk mode in this set-up with suppressed

coupling to brane-bound states (6.57). This suppression is actually favorable since it

keeps the reheat temperature (6.60) well below the decompactification scale Tmax, given

by (6.49). Taking V ∼ 106 we have Tr ∼ 107 GeV and taking V ∼ 109 we have Tr ∼

10 GeV. Hence, for extremely large values of the compactification volume, V ∼ 109, the

ixSee subsection 6.3.3 for a discussion of the fact that the bulk of the inflation fluctuations produced
by preheating are nonrelativistic near the minimum.
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reheating temperature is so low that it may be difficult to realize baryogenesis at the

electroweak phase transition. We leave this issue to future investigations.

In this scenario the gravitino decays too early in the history of the universe to interfere

with BBN: for V ∼ 106 −109 we have m3/2 ∼ 109 −1012 GeV. As previously, the residual

volume modulus χ particles decay after reheating but before BBN.

The results of this section may also have some relevance for the scenario where the SM

cycle is much smaller than the string scale, see [331]. We leave a detailed investigation

to future studies.

6.6 Stringy Reheating via Kähler Moduli Shrinking

In this section, we propose yet another reheating mechanism in Kähler moduli inflation

models. This mechanism can operate even in the absence of a D7 wrapping the inflation-

ary 4-cycle. Hence, in the ensuing text we suppose (as in section 6.5) that the SM lives

on a D7 wrapping T3.

The inflationary dynamics of τ(t) corresponds to the shrinking of the 4-cycle associ-

ated with T2. If this inflationary cycle of the internal CY shrinks to a minimal size τm

comparable with the string scale, supergravity description breaks down and new, stringy

degrees of freedom must kick in. A natural candidate for such degrees of freedom is

winding modes: closed strings with a nonzero winding number with respect to the infla-

tionary 4-cycle. Because of winding number conservation winding string are created in

pairs with winding numbers of equal absolute value but having opposite signs. Two such

closed strings can merge into a one with zero winding number, i.e. a string that can move

away from the inflationary 4-cycle and into the bulk region of the CY. In other words,

the energy of the shrinking inflationary cycle (i.e. inflaton kinetic energy) is transferred

into closed string excitations living in the bulk. This is somewhat similar to the energy

transfer from annihilating branes into closed string excitations that occurs at the end of
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stringy warped throat brane inflation [301, 302]. The excited closed strings decay via

many cascades into closed strings with the lowest level of excitation, i.e., KK gravitons.

The produced KK gravitons interact with the SM brane scalar moduli Yi (corresponding

to the transverse fluctuations of the brane) and also SM particles. Consider, for example,

the interaction between KK gravitons and brane moduli Yi. This interaction is gravita-

tional and can be described by a vertex 1
M2
P
hKKµν T µν(Y ), the corresponding decay width

is

ΓKK→Y ∼ m3
KK

M2
P

. (6.61)

As discussed in [302], this coupling is sufficiently generic to work for any low-lying degrees

of freedom on the SM brane world. (In particular, world-volume fermions.) For the

purposes of making a rough estimate of the reheat temperature we can safely assume

that ΓKK→Y ∼ ΓKK→SM .

Let us now estimate (6.61). The KK modes have typical mass mKK ∼ 1/RCY , where

the overall size of the internal CY is RCY ∼ V1/6
√
α′. In the models under consideration

we have
√
α′ ∼ 1

ms
∼

√
V

MP
, (6.62)

so that RCY ∼ V2/3

MP
, mKK ∼ MP

V2/3 , and from (6.61) we have

ΓKK→SM ∼ MP

V2
. (6.63)

The decay rate (6.63) is suppressed as compared to the case with the wrapped D7,

equation (6.40) by a logarithm which gives a numerical factor of about 10−3.

The decay rate (6.63) allows us to estimate the reheat temperature as

Tr ∼ 0.1
1

VMp (6.64)

Taking, for illustration, V ∼ 106 we have Tr ∼ 1011 GeV and taking V ∼ 109 we have

Tr ∼ 108 GeV. As in the scenarios discussed in sections 6.4 and 6.5, such a high reheat

temperature is phenomenologically sensible because the gravitino is extremely massive.
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As in the scenario discussed in section 6.5 (but unlike the scenario is section 6.4) this

reheat temperature is well below the decompactification scale, Tr/Tmax < V−1/4 ≪ 1.

6.7 Summary and Discussion

Modular inflation, and other string theory inflation models, provide a natural playground

for studying reheating in a context where (at least in theory) one can actually determine

all decay channels of the inflaton to the visible (SM) sector from first principles. Here

we investigated in detail reheating after modular/Roulette string theory inflation models

in the context of large volume compactifications. Our results show that in realistic

microscopic models the details of reheating can be rather complicated and may proceed

through a variety of channels, including perturbative decays, nonperturbative preheating

and also inherently stringy processes.

We found that modular inflation models (such as Kähler modulus or Roulette infla-

tion) in particular display very rich post-inflationary dynamics.

• The initial stages of the decay of the inflaton proceed via extremely efficient non-

perturbative particle production involving a combination of tachyonic instability

and parametric resonance. This combination may lead to the most violent example

of preheating known in the literature.

The subsequent stages of reheating involve the transfer of energy from the inflaton into

excitations of the visible sector. This phase is more model dependent since we must

identify the location of the standard model of particle physics in the compactification

volume. We have considered three separate scenarios for transferring the energy from

the inflaton fluctuations δτ into SM degrees of freedom. These are as follows:

• D7 wrapping T2 (assuming a SUGRA description of reheating is valid, i.e., the

minimum hole size is larger than the string length): In this case the SM fields live
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on a D7 wrapping the inflationary 4-cycle, T2, so that there is a direct coupling

between the SM fields and the inflaton τ . Photon production (both perturbative

and non-perturbative) dominates the decay of the inflaton. The resulting reheat

temperature is given by (6.47). Using V ∼ 106 we obtain Tr ∼ 1013 GeV and using

V ∼ 109 we have Tr ∼ 1010 GeV. Although such reheat temperatures are extremely

high, there is no problem with BBN because m3/2 ∼ 109 − 1012 GeV is so large

that the gravitinos decay before the onset of nucleosynthesis. However, such a high

reheat temperature may lead to decompactification. This scenario also has the

disadvantage that gs-corrections may spoil the flatness of the inflaton potential.

• D7 wrapping T3 (assuming a SUGRA description of reheating is valid, i.e., the

minimum hole size is larger than the string length): In this case the SM fields

live on at D7 wrapping some non-inflationary 4-cycle, T3 (we exclude the big cycle

T1 since this would give unacceptably small gauge couplings). Near the minimum

of the potential the produced inflaton fluctuations δτ2 mix with the fluctuations

of the big 4-cycle δτ1 and also of the small non-inflationary 4-cycle δτ3 through

a non-diagonal mass matrix. The decay of the δτ2 fluctuations into brane-bound

SM states via Planck suppressed operators leads to reheating. This scenario evades

any dangerous gs-corrections to the inflaton potential and the fact that reheating

proceeds through Planck suppressed operators suppresses the reheat temperature

to well below the decompactification scale. Taking V ∼ 106 we have Tr ∼ 107 GeV

and taking V ∼ 109 we have Tr ∼ 10 GeV. As above, there is no gravitino problem

because m3/2 ∼ 109 − 1012 GeV.

• Stringy reheating : In this case closed strings are produced when the inflationary 4-

cycle size becomes of order the string length. These closed strings cascade into KK

gravitons which can subsequently interact with brane-bound SM fields (wrapping

some non-inflationary 4-cycle) via Planck-suppressed operators. Taking, for illus-
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tration, V ∼ 106 we have Tr ∼ 1011 GeV and taking V ∼ 109 we have Tr ∼ 108 GeV.

There is, again, no gravitino problem because m3/2 is so large. Decompactification

is evaded due to the Planck suppression of the interactions between bulk and brane

modes. This scenario also evades potentially dangerous gs-corrections to the infla-

ton potential.

For convenience we summarize the rates for the dominant decay channel of the inflaton

in the various scenarios in the following table:

Summary of Dominant Decay Rates

Γ/Mp Scenario

∼ (lnV)3

V2 D7 wrapping T2

∼ (lnV)3

V4 D7 wrapping T3

∼ 1
V2 stringy reheating from shrinking hole

In all cases considered there is the disadvantage that SUSY is broken at too high

a scale to explain the small value of the Higgs mass. This happens because the typical

compactification volumes which are favorable for inflation V ∼ 106−109 are much smaller

than the value V ∼ 1015 that is favored for particle phenomenology [326].x See, however,

[331] for a scenario where V ∼ 106 − 107 may be compatible with TeV soft terms.

Our first scenario, the SM D7 wrapping T2, is afflicted by two potential complications:

gs-corrections may destroy the flatness of the inflaton potential and the reheat tempera-

xThis tension is similar to what happens in KKLMMT brane inflation where the value of the warping
that would be required to solve the hierarchy problem à la Randall and Sundrum is much larger than the
warping that is favorable for inflation. In the case of KKLMMT this can be evaded by adding additional
throats to the compactification [301] at the expense of complicating the reheating process.
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ture is so high that it may lead to decompactification. Both of these issues will require

further study, however, at first glance this scenario seems disfavoured. On the other hand,

the scenario with the SM D7 wrapping T3 evades both of these potential difficulties and

therefore seem most promising. For such models there are again a number of directions

open for further study. Also, it would be interesting to perform a more detailed study

the topology-changing transition in the case where the inflationary hole size shrinks to

the string length at the end of inflation. We leave these, and other, interesting issues to

future investigations.



Chapter 7

Cosmological Constraints on

Decaying Dark Matter

7.1 Introduction

The last chapter of the thesis is about decaying dark matter, based on my published work

[58]. The observational signatures of dark matter decay or dark matter annihilation can

be put into two categories – the astrophysical signals and the cosmological signals. The

advantage of considering cosmological signals, which will be discussed here, is that it is

independent of the dark matter halo models and other astrophysical sources that may

mimic the dark matter decay or annihilation. My main contribution in this project was

to modify the publicly available package CAMB to include the dynamic equations for the

decaying dark matter cosmology. Using this modified code I calculated the cosmological

constraints on the lifetime of decaying dark matter with MCMC method. For complete-

ness we will include here most of the content that has already been published in [58].

Please cite our original paper for the use of these contents.

The identity of dark matter is hypothesized to be one of the new particles in the-

ories that extend the Standard Model of particle physics. This confluence and cross-

230
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fertilization of ideas from two major fields of scientific endeavor promises to herald an

exciting new era in understanding of the universe. With the resumption of operation of

the Large Hadron Collider at CERN, we are possibly months away from collider detection,

albeit indirectly through missing energy signatures, of dark matter particles.

Yet this avenue too is plagued with troubling questions that need to be addressed if

we are to take the idea seriously that some particle from an extension of the Standard

Model is indeed the elusive yet ubiquitous dark matter of the universe. Most worryingly,

to ensure the presence of a dark matter candidate in a number of beyond the Standard

Model theories of particle physics, it is often necessary to impose global symmetries.

For instance, we have the T-parity in Little Higgs [332] and R-parity in supersymmetry

[333]. In the limit where the global symmetries are exact, the lightest particle carrying

such a global charge would be stable from decay to lighter particles that do not possess

such a charge. It is this point that could potentially destroy this promising marriage of

ideas from cosmology and particle physics, for it is well known that global symmetries

are never exact.

The presence of anomalies, as in the case of T-parity [334], or R-parity violating

terms in supersymmetry [335] would often mean that the dark matter candidates arising

from these theories are neither stable nor long-lived in the cosmological sense. Even if

this had not been the case, the presence of gravity might induce the violation of global

symmetries as was first revealed in studies of black holes [336, 337, 338, 339]. So the

lightest particle charged under a particular global symmetry would have, at best, a very

long lifetime. Indeed, it has even been conjectured that discrete global symmetries are

violated maximally by gravity [340, 341].

Additional motivation can be found in numerical simulations of the universe (based

on the conventional ΛCDM cosmology) which predict an overabundance of substructures

as compared to actual observations. Models with decaying dark matter [342, 343] provide

an extremely compelling and natural mechanism for suppressing the power spectrum at
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small scales thus resolving the discrepancy.

Continuing on the line of thought leading from particle physics to cosmology, the

question that then naturally springs to mind is “What can cosmology say about decaying

dark matter and the particle physics theories that contain them?” It is this intriguing

prospect that we explore in this work.

There have been a few papers [9, 344, 345] in recent years analyzing DM decay into

electromagnetically non-interacting particles using just the cosmic microwave background

data (Ref. [344] also includes supernova data). In this work, we revisit this scenario using

a Markov Chain Monte Carlo (MCMC) analysis employing all available data sets from the

cosmic microwave background (CMB), Type Ia supernova (SN), Lyman-α forest (Lyα),

large scale structure (LSS) and weak lensing (WL) observations. We find that the lifetime

of decaying DM is constrained predominantly by the late time Integrated Sachs Wolfe

(ISW) effect to be Γ−1 & 100 Gyr. In the main body of this chapter, we will comment

on the discrepancies between the results of Refs.[9, 344, 345].

The studies in the preceding paragraph considered only the case where there was

negligible reionization of the universe due to DM decay. In an attempt to address this,

Ref. [346] analyzed the scenario of DM decaying into only electromagnetically interacting

products, that get partially absorbed by the baryonic gas, using a subset of the available

CMB data sets. Our work extends their analysis by using all the available CMB data

sets, and also the SN, Lyα, LSS and WL data sets. Besides the smaller selection of data

sets, their analysis also ignores the impact of DM decay on cosmological perturbations

which renders it ineffectual in the parameter space where there is negligible reionization.

Our treatment allows the decay products to not only reionize the universe but also takes

into account the effect of DM decay on cosmological perturbation. This allows us to

generate many other observables, particularly, the late time ISW effect that is crucial to

constrain the lifetimes at low reionization. Another key difference between the analyses

is that we use a combined reionization parameter for both DM reionization and phe-
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nomenological star formation reionization, rather than just treating them separately as

was done in Ref. [346], because current observations cannot distinguish which contribu-

tion to reionization is the dominant one. Doing the MCMC analysis, we find that the

lifetime of decaying DM in this scenario constrained to be (fΓ)−1 & 5.3×108 Gyr, where

f is a phenomenological parameter introduced by Ref. [346] and related to the degree of

reionization.

Astrophysical constraints together with additional assumptions have also been used

[347, 348] to give even tighter bounds than ours on the lifetime of the decaying DM.

While interesting and complementary, these lie outside the scope of this work.

Having obtained the bounds on the lifetime of decaying dark matter, we will then

explore the implications of our cosmological analysis on particle physics models beyond

the Standard Model. We will present a complete list of cross-sections for spin-0, spin-1/2

and spin-1 dark matter to decay into Standard Model degrees of freedom via effective

operators. Obviously, this can be easily extended to other models with additional light

degrees of freedom (for instance, hidden valley models [349]) by appropriate substitution

of the parameters. Applying the bound on the lifetime of the decaying DM, we can then

place limits on the size of the parameters of theories. For generic theories with a decaying

dark matter of ∼ 100 GeV mass, the coupling constant in the effective dimension-4

operators responsible for dark matter decay will be shown to be . 10−22. We will also

look at specific representative cases of theories beyond the Standard Model physics and

investigate the possibility of viable dark matter candidates: the spin-0 messenger DM

in the context of gauge mediation messenger number violation, the spin-1/2 bino DM in

the scenario with R-parity violation and the spin-1 “massive photon partner”DM in the

framework of T-parity violation.

The rest of this chapter is organized as follows. In Section 2, we discuss the physics

of decaying dark matter cosmology as well as introduce the data sets that we will be

using. Section 3 contains our Markov Chain Monte Carlo results and discussions of the
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cosmological implications. In Section 4, we explore the consequences of these results for

particle physics theories by enumerating the decay channels and partial widths. Rep-

resentative models from theories of gauge-mediated supersymmetry breaking, minimal

supergravity and little Higgs were also investigated using the results of our analysis. We

conclude and briefly comment on future prospects in Section 5.

7.2 Decaying Cold Dark Matter Cosmology

We will assume the standard picture of ΛCDM cosmology, i.e. a Friedman-Robertson-

Walker universe that is principally composed of dark energy and cold dark matter, with

one crucial modification; that is, we have a cold dark matter that is very long-lived but

ultimately decays. As we are considering lifetimes of gigayears (Gyr), the fraction of DM

decays happening during or soon after big bang nucleosynthesis (BBN) is negligible and

hence would not alter the predictions of BBN. To perform a model-independent analysis,

we allowed decays to all possible SM particles. However, we will assume that the long

term decay products are relativistic. While we include branching ratios to intermediate

non-relativistic states, they are assumed to be short-lived and will rapidly decay into

light relativistic degrees of freedom.

The evolution of background and first order perturbation in decaying cold dark matter

model was first formulated in longitudinal gauge [9], which means the decay rate has to

be treated with care as the CDM is not at rest in the longitudinal gauge. We, on the

other hand, will work in CDM rest frame using synchronous gauge with the line element

written as

ds2 = a2(τ)
[

−dτ 2 + (δij + hij)dx
idxj

]

. (7.1)

where τ is conformal time, and t the cosmological time (dt = a(τ)dτ). In this chapter

we follow the convention a0 = 1 today.
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The decay equation

dρcdm

dt
= −Γρcdm, (7.2)

can be reformulated in a covariant form

T µν;µ(CDM) = Gν , (7.3)

where the force density vector Gν can be calculated from its value in CDM rest frame

Gν |CDM rest = (−Γρcdm, 0, 0, 0). (7.4)

The conservation of total energy momentum tensor requires

T µν;µ(dr) = −Gν , (7.5)

where the daughter radiation (dr) is composed of the CDM decay products i.

The equations describing the evolution of background are

ρ̇cdm = −3Hρcdm − aΓρcdm, (7.6)

ρ̇dr = −4Hρdr + aΓρcdm, (7.7)

where dot denotes the derivative with respect to conformal time τ . We have defined the

conformal expansion rate to be H ≡ ȧ
a
.

We will only consider scalar metric perturbations, which in Fourier space can be

expanded as following [350].

hij(x, τ) =

∫

d3keik·x
[

ninjh(k, τ) + 6(ninj − 1
3
δij)η(k, τ)

]

, (7.8)

where n ≡ k/|k|.

Our choice of gauge and coordinates lead to the following simple density perturbation

equation for CDM,

δ̇cdm = −1

2
ḣ. (7.9)

iHere “daughter radiation” stands for any relativistic decay products, not just literally for radiation
(photons).
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The terms containing Γ all cancel out, because the background density and overdensity

are decaying with the same rate.

Instead of using simple hydrodynamic approximation for the decay product [351],

which might give correct order of magnitude but less accurate results, we use the full

Boltzmann equations to describe the decay product, which were first given by Ref. [11],

and recently updated by [345] for decaying DM cosmology,

δ̇dr = −2
3
ḣ− 4

3
kvdr + aΓ

ρcdm

ρdr
(δcdm − δdr), (7.10)

v̇dr = k(1
4
δdr − 1

2
Πdr) − aΓρcdm

ρdr
vdr, (7.11)

Π̇dr = k( 8
15
vdr − 3

5
F3) + 4

15
ḣ+ 8

5
η̇ − aΓ

ρcdm

ρdr
Πdr, (7.12)

Ḟl =
k

2l + 1
[lFl−1 − (l + 1)Fl+1] − aΓ

ρcdm

ρdr
Fl, (7.13)

where l = 3, 4, 5, ...,, F2 = Π and for the rest, we have used the conventions of Ref. [350].

Because CDM particles are heavy and non-relativistic, we have treated the CDM as a

perfect fluid.

For the case where the DM candidate also decays into electromagnetically interacting

particles (e.g. photons or electron/positrons), we have to be more careful. This is

because the decays may deposit significant energy into baryonic gas and contribute to

the reionization of universe. Following [352, 346, 353], we introduced a phenomenological

factor f as the fraction of the decay energy deposited in the baryonic gas. For long-

lifetime dark matter models, the reionization due to dark matter decay only depends

on the combination ζ = f Γ/H0. We use ζ as an additional parameter in our MCMC

analysis. Without a prior on f , the constraint on ζ does not directly give any information

on Γ. However, for given dark matter models, one should in principle be able to calculate

the decay branches, and therefore give a rough estimate for f under certain additional

assumptions. Following Ref. [346, 353], we modify RECFAST [354, 355] to calculate the

reionization due to DM decay. In this scenario, the reionization is dominated by DM

decay at redshift z > 20, and is competing with the contribution from star formation (or
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other sources) at some redshift between z = 6 and z = 20. Without knowing the details

of star formation or other reionization sources, we use the following phenomenological

model, which can be regarded as a combination of CosmoMC phenomenological formula

and DM decay reionization formula,

xe = max

{

xe
RECFAST,

1 + fHe

2

[

1 + tanh

(

(1 + z)1.5 − (1 + zre)
1.5

1.5
√

∆z

)]}

, (7.14)

where xe, the ionized fraction, is defined as the ratio of free electron number density to

hydrogen number density; fHe is the ratio of helium number density to hydrogen number

density; xe
RECFAST is the modified RECFAST output ionized fraction (i.e., the ionized

fraction assuming DM decay is the only source of reionization; ∆z is the redshift width of

reionization (due to other sources), for which we have taken the CosmoMC [113] default

value 0.5; the last free parameter, reionization redshift zre, is determined by the total

optical depth τre.

With all the above equations, we modified CosmoMC to analyze the decaying CDM

model. In addition, we also incorporated weak lensing data into the Markov Chain Monte

Carlo (MCMC) analysis. The data sets used in this chapter are listed below. For each

dataset, we either wrote a new module to calculate the likelihood or modified the default

CosmoMC likelihood codes to include the features of the decaying CDM model.

Cosmic Microwave Background (CMB)

We employ the CMB data sets from WMAP-5yr [271, 226], BOOMERANG [3,

4, 5], ACBAR [120, 121, 122, 123], CBI [127, 125, 126, 124], VSA [128], DASI

[272, 273], and MAXIMA [129]. Also included are the Sunyaev-Zeldovich (SZ)

effect for WMAP-5yr, ACBAR and CBI data sets. The SZ template is obtained

from hydrodynamical simulation [133]. When calculating the theoretical CMB

power spectrum, we have also turned on CMB lensing in CosmoMC.

Type Ia Supernova (SN)
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The Union Supernova Ia data (307 SN Ia samples) from The Supernova Cosmology

Project [274] was utilized. For parameter estimation, systematic errors were always

included.

Large Scale Structure (LSS)

For large scale structure we will use the combination of 2dFGRS dataset [275] and

SDSS Luminous Red Galaxy Samples from SDSS data release 4 [276]. It should be

noted that the power spectrum likelihood already contains the information about

BAO (Baryon Acoustic Oscillation [356, 357]).

Weak Lensing (WL)

Five weak lensing data sets were employed. See Section 2.4

The weak lensing data only measure matter power spectrum at angular scales less

than a few degrees, which corresponds to scales less than a few hundred Mpc. This

is much less than the Jean’s length of the daughter radiation and therefore we can

ignore the daughter radiation when calculating the power spectrum of projected

density field.

Pl(κ) = (
4πG

c4
)2

∫ χH

0

ρ2
ma

4P3D(
l

dcA(χ)
;χ)

×
[

∫ χH

χ

dχ′n(χ′)
dcA(χ′ − χ)

dcA(χ′)

]2
. (7.15)

We should stress that this is specific to the decaying CDM model and differs from

the conventional CDM model [358, 359].

Lyman-α Forest

The following Lyα forest data sets were applied.

1. The dataset from Viel et. al. [152] consist of LUQAS sample [153] and the

Croft et. al.data [154].
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2. The SDSS Lyα data presented in McDonald et. al. [155, 156]. To calculate the

likelihood, we interpolated the χ2 table in the three-dimensional amplitude-

index-running space.

We explore the likelihood in nine-dimensional parameter space, i.e., the Hubble pa-

rameter h, the baryon density Ωb0h
2, the amplitude and index of primordial power spec-

trum ( As and ns), the DM decay reionization parameter ζ , the total reionization optical

depth τre, the SZ amplitude ASZ , the decay rate normalized by Hubble parameter Γ
H0

,

and the CDM density in early universe Ωcdm,eh
2. The parameter Ωcdm,e is defined to be

Ωcdm,e ≡
(ρcdma

3)|a≪1

ρcrit0

, (7.16)

where ρcrit0 ≡ 3H2
0

8πG
is today’s critical density. As the CDM in our case decays, we made a

distinction between Ωcdm,e and Ωcdm,0 where the latter is defined to be the usual fractional

CDM density today (ρcdm0/ρcrit0).

7.3 Markov Chain Monte Carlo Results and Discus-

sion

For the case with negligible reionization, we generated 8 MCMC chains, each of which

contains about 3000 samples. The posterior probability density function of CDM decay

rate can be directly calculated from the Markov Chains, as shown in Fig. 7.1. The

corresponding 68.3% and 95.4% confidence level lower bounds on lifetime are Γ−1 &

230Gyr and Γ−1 & 100Gyr, respectively. If we take the lifetime of universe to be 14Gyr,

the 95.4% confidence level limit (i.e. lifetime 100Gyr) corresponds to a scenario that

roughly 15% of CDM has decayed into relativistic particles by today.

In our analysis, all the early universe physics before recombination remains un-

changed. The CMB power spectrum is however significantly modified due to two effects.
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Figure 7.1: Posterior probability density function of the decay rate Γ. Solid line: using

all the data sets. Dashed line: CMB + SN + LSS + Lyα. Dotted line: CMB only. The

probability density function is normalized as
∫

P (Γ)dΓ = 1.
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Figure 7.2: Constraints on the early universe CDM density parameter Ωcdm,e (defined

in Eq. 7.16) and decay rate Γ, using all the data sets, is plotted on the left panel. For

comparison, the present day CDM density parameter Ωc0 and decay rate Γ is plotted on

the right panel. The inner and outer contours correspond to 68.3% and 95.4% confidence

levels, respectively.
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One is that the decay of CDM modifies the evolution of background, which results in a

different distance to last scattering surface compared to the conventional case. The sec-

ond one is that the decay of CDM affects the cosmological perturbations in late universe,

resulting in an enhancement of the integrated Sachs-Wolfe (ISW) effect beyond that due

to the cosmological constant. And it is this effect, anticipated by Kofman et. al. [351],

that gives us the most restrictive bound on the lifetime of decaying dark matter for the

scenario with negligible reionization.

Let us review the inconsistency between past papers on this issue. We start with

Ref. [344]. Now, CMB and SN observations today can measure the fractional CDM

density to a roughly 15% level [226] (within 95% confidence level). We will expect

the constraints on CDM decay ratio to be the same order of magnitude. This simple

estimation does not take into account the fact that the decayed product still forms part

of the matter component (the equation of state is changed to 1
3
), and that the DM decay

happens mostly at low redshift. Therefore if we do not take the cosmological perturbation

into account, the data should allow about 15% dark matter to have decayed by today,

i.e., we should not get a bound better than 100 Gyr. This simple analysis implies that

the recent lower bound of lifetime (Γ−1 > 700Gyr at 95.4% confidence level) obtained by

Ref. [344], which does not take into consideration the impact of DM decay on cosmological

perturbation (the location of first CMB peak is affected only through the change of

background evolution), may not be credible. If indeed the CDM lifetime is 700Gyr, only

about 2% of CDM has decayed into relativistic particles by today, and by the time of

recombination, less than 10−6 of CDM has decayed. The change in background evolution

is so tiny that it should not be detectable by current cosmological data.

To compare with Ichiki et. al. [9], we re-did the analysis using just the CMB data

sets, and found the CDM lifetime Γ−1 & 70 Gyr at 95.4% CL, which is consistent with

their results. The reason we obtained a more constrained value than their Γ−1 & 52 Gyr

at 95.4% C.L. is probably because we used WMAP-5yr compared with their WMAP-1yr
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Figure 7.3: CMB power spectrum for different dark matter decay rate, assuming the de-

cayed particles are relativistic and weakly interacting. For the CDM density parameter,

we choose Ωcdm,eh
2 to be the same as WMAP-5yr median Ωc0h

2. For the other cosmolog-

ical parameters we use WMAP-5yr median values. By doing this, we have fixed the CDM

to baryon ratio at recombination. In a similar plot in Ichiki et. al. [9] Ωc0h
2 is instead

fixed. Therefore the height of first peak, which has dependence on CDM to baryon ratio

at recombination, will significantly change as one varies the decay rate. In this plot the

red line corresponds to a stable dark matter . The blue dotted line corresponds to dark

matter with a lifetime 100 Gyr, and the blue dashed line 27 Gyr. The data points are

WMAP-5yr temperature auto-correlation measurements.).
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Figure 7.4: The marginalized posterior likelihood of the total optical depth and that of

the DM decay reionization parameter.

dataset. We expect the WMAP-9yr dataset, when published and analyzed, to exhibit

only a modest improvement because the information from the late time ISW effect is

limited by cosmic variance. Recently, Lattanzi et. al. [345] obtained a bound of Γ−1 & 250

Gyr at 95.4% C.L. with just the WMAP-3yr data, which is not consistent with both Ichiki

et. al. and our results. We notice that in the Fig. 3 of their paper, the proximity between

68.3% and 95.4% confidence level bounds on Γ indicates a sudden drop of marginalized

likelihood L(Γ). In our result, as shown in Fig. 7.1, this sudden drop feature is not seen.

Let us move on to the scenario where there is significant reionization due to the

decaying dark matter. We generated another 8 MCMC chains, each of which contains

about 6000 samples. The results of our analysis can be seen in Fig. 7.4 and 7.5, where we

show the constraints on DM decay reionization parameter. A few things should be noted.

Firstly, the sharp boundary (reflected in the closeness of the three contours) on the rising

edge in Fig. 7.5 is due to the fact that for a given τre, DM decay has an upper limit

because the optical depth due to DM decay should not extend beyond τre. Secondly, the

plateau of likelihood around f Γ = 0 in Fig. 7.4 indicates that current CMB polarization

data can only constrain the total optical depth, but cannot distinguish between DM

decay reionization and star formation reionization. In other words, the data does not

favor or disfavor DM decay reionization, as long as its contribution to total optical depth

is not larger than the preferred τre.
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Figure 7.5: The marginalized 2D likelihood contours. The contours correspond to 68.3%

, 95.4% and 99.7% confidence levels, respectively.

The constraint we have obtained is f Γ . 0.59 × 10−25s−1 at 95.4% confidence level.

This result is about a factor of 3 better than Ref. [346]. In the limit where reionization

is negligible, Ref. [346] cannot give a strong bound on Γ because they have ignored

the impact of DM decay on cosmological perturbations. Hence, their constraint on DM

decay is essentially only from CMB polarization data. Our analysis, which combines

many different cosmological data sets and includes the calculation of the impact of DM

decay on all the observables, gives a stringent constraint on Γ even in the f = 0 limit. As

for the limit of significant reionization, our bounds are, as mentioned earlier, a significant

improvement over Ref. [346]. The difference may be due to the fact that we have used

more data sets. However, the priors of the parameters may also alter the result. A

notable difference between the models is due to the fact that one of the parameters they

have adopted, the optical depth without DM decay, is ill-defined in our model. Also in

their model, the cutoff of DM decay reionization at z = 7 was explicitly chosen. These

differences might have led to Fig. 1 in their paper which shows a preference for a zero

dark matter decay rate, which is absent in our analysis.
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7.4 Implications for Particle Physics Models with

Decaying Cold Dark Matter

Our results most certainly impose constraints on extensions of the Standard Model of

particle physics (SM) with DM candidates. Making the assumption that DM decays

into SM fields, we will investigate all the probable decay channels unless forbidden by

either symmetry or kinematics, or highly suppressed by phase space considerations. We

then sum up their partial decay widths to obtain the functional form for the lifetime

of each of the decaying DM candidates. One might be worried about including even

the decays to non-relativistic particles as that might invalidate our earlier assumption

that cosmologically, the dark matter decay products are relativistic. While it is true

that the DM particle can and will decay (provided it is not kinematically forbidden) into

non-relativistic massive gauge bosons or heavy quarks, these heavy particles themselves

will be assumed to subsequently decay very rapidly into much lighter particles of the SM

that will be relativistic. Obviously in specific models, certain channels could be expressly

forbidden by symmetries and this can also be handled by our analysis.

To obtain the functional form for the lifetime of the decaying DM, we will approach

it from the point of view of effective field theory. We will do a model independent

analysis by considering generic Lagrangian terms for these decays with the corresponding

coupling constants acting as Wilson coefficients. Since the DM is electrically neutral,

the total charge of decay products should also be zero. Moreover, the decay rates for

different channels are dependent on the intrinsic spin of the DM because of possible

spin-dependent couplings. Below we discuss the decays of DM with spin 0, 1/2 and

1. We will only consider decay processes of the lowest order, as higher-order processes

involve more vertex insertions and so are assumed to be suppressed. Additionally in

our approach, we will work in the framework where all the gauge symmetries (including

those of Grand Unified Theories if present) except for SU(3)c×U(1)em are broken and the
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effects encoded in the coupling constants of the effective operators. This can potentially

give rise to naturally very small coupling constants as they could contain loop factors

or powers of very small dimensionless ratios. This is a more cost-effective and model-

independent way of taking into account the myriad possibilities of UV-completing the

Standard Model of particle physics.

Having obtained the functional form of the lifetime in terms of the fundamental

parameters of the underlying particle physics models, we can then compare it with the

numerical value obtained from the cosmological analysis of the previous section. This

would allow us to place definitive bounds on the fundamental parameters of candidate

models for the particle physics theory beyond the Standard Model. It should be noted

that we will be using the most conservative 95.4% confidence level bound on the lifetime

of the decaying dark matter, i.e. without significant reionization. To assume otherwise

would require a more complete knowledge of the ionization history of the universe than

is currently understood.

Let us now proceed to the case of a generic scalar DM candidate and see how the

above ideas are implemented.

7.4.1 Spin-0 Dark Matter

We first consider a spin-zero DM candidate, S. Decays into right-handed neutrinos and

left-handed anti-neutrinos are not considered as the former may be more massive than

S. Even if they are light enough for S to decay into, we expect the decay into SM (anti-)

neutrinos to be dominant. For this decay channel, we can proceed in the same way as in

the case of neutral pion decay. In the SM, (anti-) neutrinos couple to other matter in the

form of the chiral current ν̄Lγ
µνL since S carries no Lorentz index. The lowest dimension

operator responsible for this decay will be of the form g0f̄γ
µ(1 + raγ5)f∂µS/Λ, where we

parameterize g0 as the coupling constant of dimension zero, and Λ is some cutoff scale.

The presence or absence of γ5 in the operator depends on whether S couples to the SM
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neutrinos in a vectorial or axial-vectorial way. The corresponding decay rate is given by

Γ =
g2
0r

2
a

2π

m2
fmS

Λ2

√

1 − 4
m2
f

m2
S

, (7.17)

where mf is the mass of the decay product. Here we have assumed that (anti-) neutrinos

have Dirac mass.

We focus our attention on DM with mass mS ≫ mf . Then for decay products such

as (anti-) neutrinos (or other light SM particles), it is safe to make the approximation

1 − 4m2
f/m

2
S ≃ 1. Since the neutrino is left handed, we take ra = −1 . If S decays

dominantly into νeν̄e, our lower bound on Γ then constrains the following parameter,

g2
0m

2
fmS

Λ2
. 1.3 × 10−42GeV (95.4% confidence level), (7.18)

where we have used 1Gyr−1 = 2.087 × 10−41GeV.

Here we can see that helicity suppression at work. When the mass of the decaying

particles is very small, the decay of the spin-zero DM candidate will be suppressed as

expected. The presence of helicity suppression gives us a value of g0 that is larger than

in most other cases, as we will see. For example, if the mass of the DM candidate is

mS ∼ 100GeV, the neutrino mass around mf ∼ 2eV, and the cutoff is Λ ∼ 10TeV, then

the coupling constant g0 has to be ∼ 10−11. If on the other hand the coupling constant

g0 is O(1) and we take the same values of the neutrino masses and of the DM candidate,

then we have that Λ ∼ 1013GeV.

Table 7.1 in the Appendix lists out possible Lagrangian terms for the decay of S into

SM particles, and the corresponding decay rates, summing over final state spins. Apart

from focusing solely on the S → νν̄ channel, we can consider scenarios in which all the

interaction terms in Table 7.1 are present to contribute to the decay rate of S, with all

coupling constants of the same order of magnitude, g0. For simplicity, we will also assume

mdecay product/mS is negligible compared to 1. This would immediately imply that the

helicity-suppressed term, g0f̄γ
µ(1 + raγ5)f∂µS/Λ, gives rise to insignificant decay rate
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when compared to other terms. So the most relevant terms are the ones that come from

the operator g0Sf̄(1 + irpγ5)f . Then we have

∑

f∈ SM

Γ(S → f f̄) ≈ g2
0mS

8π
(1 + r2

p)
∑

f∈ SM

Nf

=
21g2

0mS

8π
(1 + r2

p). (7.19)

Here the decay to tt̄ is not included as this channel may not be kinematically feasible for

a DM particle of ∼ 100GeV. The parameter rp is also assumed to be the same for all f .

In a similar way, rates for the other decays into SM gauge bosons can be worked out:

Γ(S → γγ) + Γ(S → gg) + Γ(S → ZZ) + Γ(S →W+W−) + Γ(S → Zγ)

≈ g2
0mS

64π
(80 + 640 + 82 + 81 + 10) . (7.20)

Our result imposes an upper bound on the sum of decay rates via all the channels. Taking

rp = 0 as an example, our result would give us the constraint

g2
0mS . 3.9 × 10−44GeV (95.4% confidence level). (7.21)

Messenger number violation in gauge-mediated supersymmetry breaking the-

ories

Let us now investigate the messenger parity in gauge-mediated supersymmetry breaking

theories. In these models, there could potentially be a dark matter candidate coming

from the electromagnetically-neutral scalar field that is formed from the SU(2) doublets

of the 5 and 5̄ of the messenger sector [360]. However, it is usually not easy to realize

this because the lightest odd-messenger parity particle (LOMPP) often turns out not to

be the electromagnetically-neutral field that we require. It has been claimed in the same

paper that certain F-terms would lift the degeneracy. If we further assume that it does

not significantly modify the effective low energy theory, the analysis becomes very much

model-independent as there are only certain couplings that lead to decay of the LOMPP.



Chapter 7. Cosmological Constraints on Decaying Dark Matter 249

Following [360], the Kahler potential is given by

K =

∫

d4θ
(

5
†
M5M + 5†M5M + 5

†
F5F + 10†F10F

)

+
g0

Mp

(

5
†
M102

F + 5†M5F10F + h.c.
)

,

(7.22)

where 5M and 5M are the messengers and 5F and 10F are the ordinary superfields. The

terms that are Planck suppressed are the ones that violate messenger number by one

unit.

As for the superpotential, we have

W =

∫

d2θ ρ 5M5M +
g′0
Mp

5M103
F , (7.23)

where ρ is the supersymmetry breaking spurion field and once again the terms that

are Planck suppressed are dimension-5 messenger number violating terms. Without full

knowledge of the UV-sensitive physics (F-terms that lift the other fields while retaining

a viable LOMPP), we can still give an estimate of the order of magnitude of the decay

rate of the LOMPP,

Γ ∼ N
g2
0m

3
mess

M2
pπ

Fk, (7.24)

where N are the different degrees of freedom that the LOMPP can decay into. Fk is

a function that contains the kinematic information and we will assume that is close to

one. We can then put a constraint on the coupling constant and on the messenger mass.

Since the lifetime is 100Gyr, then for Fk ∼ 1 and N ∼ 100, we have

g2
0

(

m3
mess

M2
p

)

. 6 × 10−45GeV, (7.25)

where we have assumed one universal coupling constant g0. For the sake of discussion,

if we consider a coupling constant of order one, we get a small messenger mass mmess ∼

0.02GeV. This can be improved if we go to dimension six operators which gives a generic

decay rate of the form

Γ ∼ Ng2
0m

5
mess

M4
pπ

F, (7.26)
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Note that instead of a m3
mess/M

2
p suppression, we now have m5

mess/M
4
p . This gives a

viable scenario since the messenger mass now needed is mmess ∼ 4000 TeV, for a coupling

constant of order one.

7.4.2 Spin-1/2 Dark Matter

We now consider a massive DM of spin-1/2 (let us call it ψ) that decays into SM particles.

Without a specific model, we assume ψ decays dominantly via two-body decays and focus

our attention to this phenomenon. This means ψ must decay into one SM fermion f and

one SM gauge boson G. Since the DM candidate must be neutral, the posibilities for

a two body decay of spin 1/2 DM into SM particles are (f,G) = (ν, Z), (l±,W∓). For

the case that ψ is a Dirac fermion, the two-body decays are mediated by the effective

operator gDGµf̄γ
µ(1 + rγ5)ψ+ g∗DG

∗
µψ̄γ

µ(1 + rγ5)f . The first term gives rise to ψ decay

while the second one is responsible for the decay of ψ̄. Again summing over the final

state spins and averaging over the spin of the decaying ψ, we find the decay rate to be

Γ(ψ → fG) = Γ(ψ̄ → f̄ Ḡ) =
|gD|2m3

ψ

16πm2
G

√

λ

(

mG

mψ
,
mf

mψ

)[

ω

(

mG

mψ
,
mf

mψ

)

+ r2ω

(

mG

mψ
,−mf

mψ

)]

,

(7.27)

where λ(a, b) = (1 + a− b)(1− a− b)(1− a+ b)(1 + a+ b) and ω(a, b) = (1 + a− b)(1 −

a− b)[2a2 + (1 + b)2], and mA denotes respectively the mass of particle A.

Now consider the case where the decay of the fermionic DM candidate comes from

an operator gDψ̄H(1 + irpγ5)f + g∗Df̄H(1 + irpγ5)ψ, where H is the Higgs bosonii of the

SM. In this case the decay rate of ψ → H + ν is given by

Γ(ψ → Hν) = Γ(ψ̄ → Hν̄) =
|gD|2mψ

16π

√

λ

(

mH

mψ

,
mf

mψ

)[

z

(

mf

mψ

,
mH

mψ

)

+ r2
pz

(

−mf

mψ

,
mH

mψ

)]

,

(7.28)

iiWe consider the Higgs in this particular case because this interaction would arise at the same or
lower order than the other one we considered. With decaying DM of other spins, there would be an
additional suppression from the ratio of electroweak scale over the cut-off scale.
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where z(a, b) = 1 + a2 − b2 + 2a.

We can now consider a simple scenario in which r = rp = 0 for all the decay channels

and they all have the same coupling constant gD. Then the total decay rate of ψ is given

by summing over all the possible channels:

Γ(ψ → 2 body) = 3 Γ(ψ → Zν) + Γ(ψ →W+e−) + Γ(ψ →W+µ−)

+Γ(ψ → W+τ−) + 3 Γ(ψ → Hν) (7.29)

= 126.5 |gD|2

where we have picked mψ ∼ 200GeV, H ∼ 100GeV and assumed all three generations of

neutrinos have masses ∼ 1eV. The factor 3 in Equation (7.29) is for three generations of

neutrinos. Our cosmological bound then gives us the constraint

Dirac fermion : |gD| . 4.0 × 10−23 (95.4% confidence level). (7.30)

For the case that ψ is a Majorana fermion, the above analysis follows through. Given

the same interaction terms as those shown above, the partial decay rates of a Majorana ψ

are exactly the same as Equations (7.27) and (7.28). There are, however, no distinction

between ψ and ψ̄ in this case any more. In a four-component spinor notation, ψ and

ψ̄ relate to each other via the charge conjugation matrix. This means the total decay

rate of a Majorana ψ has contributions from decays into ‘particles’ and decays into ‘anti-

particles’.

In the same simple scenario we considered above, the total decay rate of a Majorana

ψ will be increased by a factor of 2 compared to Equation (7.29). The constraint on the

coupling constant will correspondingly be tightened by a factor of
√

2:

Majorana fermion : |gM | . 2.8 × 10−23 (95.4% confidence level). (7.31)

R-parity violation in minimal supergravity models

Undoubtedly, the most thoroughly investigated models in the supersymmetric menagerie

are the minimal supergravity (mSUGRA) models [361, 362, 363, 364, 365]. While the
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theoretical motivation for universality of scalar masses, gaugino masses and trilinear

terms is questionable (since these values depend on the mechanism by which super-

symmetry breaking is transmitted to our sector), it has nevertheless remained a useful

benchmark. For our purposes, it is sufficient for us to use the fact that in a variety of

these mSUGRA models, the lightest supersymmetric particle (LSP) is a neutral particle

that is overwhelmingly composed of the spin-1/2 supersymmetric partner of the B-gauge

boson called the bino, B̃. There are of course technically natural classes of models

[366, 367, 368] very similar to mSUGRA theories that will give bino as the LSP, and the

analysis below would similarly apply to them.

In the presence of R-parity violation, the bino LSP would of course decay. Tradi-

tionally, theories with R-parity violation were often assumed to be unable to provide a

dark matter candidate. Here, we can turn this around and ask what the couplings of

the theory have to be so that the theory can still furnish us with viable dark matter

candidate. To do that, we need to first explore the possible decays.

While the two-body decay might seem to have a more favorable phase space, these

decays however would arise from Feynman diagrams [369] only if we have the R-parity

violating terms together with the introduction of an additional loop and further suppres-

sion by dimensionless ratios of electroweak scale over the cut-off scale. We will therefore

assume that the bino will dominantly decay into three SM particles via the trilinear R-

parity violating terms. If for some particular models, one needs to add in some of the

two-body decay terms, one can look up the Appendix or the previous subsection for the

relevant cross-sections and include them in the overall analysis.

Neglecting all final state masses, the decay rate for a three-body bino decay is given

by

Γ =
1

64π3mB̃

∫ 1
2
mB̃

0

dE1

∫ 1
2
mB̃

1
2
mB̃−E1

dE2

∑

spins

|M|2 (7.32)

where Ei is the energy of the final particle iiii, and the summation symbol means averaging

iiiOf course the identification of a final particle as particle i is arbitrary. This arbitrariness does not
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over initial spins and summing over final spins. The amplitudes squared for three-body

decays of neutralino due to trilinear R-parity violating terms have been evaluated and

shown in [370, 371, 335], with the appropriate spin summing/averaging. Strictly speaking

a neutralino is a superposition of the bino and three other fermionic supersymmetric

particles but for our purposes, it is sufficient to consider the bino to the lightest neutralino

and the LSP. The results in [371] can be easily applied to LSP decay by demanding the

neutralino has a 100% bino component, i.e. by setting Nχ1 = 1 and Nχn = 0, n = 2, 3, 4

in the notation of [371]. For simplicity, all final state masses are neglected in the analysis

below. We have also ignored the mixings and the widths of the sfermions, which mediate

the decay as internal lines in the Feynman diagrams.

Given the R-parity violating superpotential term

WLLE = ǫσρλijkLiσLjρE
c
k (7.33)

(where i, j and k, each of which runs from 1 to 3, are generation indices, σ and ρ are

SU(2)L indices, and the superscript c indicates charge conjugation), the decay channel

B̃ → e+i ν̄je
−
k is possible. Using the generic expression for amplitude squared in [371] and

putting in our simplifications, we get the decay rate

Γ(B̃ → e+i ν̄je
−
k ) =

8

128π3
|λijk|2g′2mB̃

[

2Y 2
LK

(

mẽi

mB̃

)

+ 2Y 2
LK

(

mν̃j

mB̃

)

+ 2Y 2
EK

(

mẽk

mB̃

)

− 2Y 2
LP

(

mν̃j

mB̃

,
mẽi

mB̃

)

+ 2YLYEP

(

mẽk

mB̃

,
mẽi

mB̃

)

+ 2YLYEP

(

mẽk

mB̃

,
mν̃j

mB̃

)]

(7.34)

where g′ is the gauge coupling of U(1)Y , mf̃n
is the mass of the scalar superpartner of

particle f̃n and YS denotes the hypercharge of a superfield S (for example, YE = −1).

K(x) and P (x, y) are functions defined in the Appendix.

Another trilinear R-parity violating superpotential term is

WLQD = ǫσρλ′ijkLiσQjραD
c
kα (7.35)

change the final expression for Γ.
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with the SU(3)c index α. This term gives rise to the decays B̃ → e+i ūjdk and B̃ → ν̄id̄jdk.

The decay rates for these channels are similar to the one above, with the appropriate

substitution of superpartner masses and prefactors:

Γ(B̃ → e+i ūjdk) =
6

128π3
|λ′ijk|2g′2mB̃

[

2Y 2
LK

(

mẽi

mB̃

)

+ 2Y 2
QK

(

mũj

mB̃

)

+ 2Y 2
DK

(

md̃k

mB̃

)

− 2YLYQP

(

mũj

mB̃

,
mẽi

mB̃

)

+ 2YLYDP

(

md̃k

mB̃

,
mẽi

mB̃

)

+ 2YQYDP

(

md̃k

mB̃

,
mũj

mB̃

)]

(7.36)

and

Γ(B̃ → ν̄id̄jdk) =
6

128π3
|λ′ijk|2g′2mB̃

[

2Y 2
LK

(

mν̃i

mB̃

)

+ 2Y 2
QK

(

md̃j

mB̃

)

+ 2Y 2
DK

(

md̃k

mB̃

)

− 2YLYQP

(

md̃j

mB̃

,
mν̃i

mB̃

)

+ 2YLYDP

(

md̃k

mB̃

,
mν̃i

mB̃

)

+ 2YQYDP

(

md̃k

mB̃

,
md̃j

mB̃

)]

. (7.37)

Note that the numerical value of an SU(3)c colour factor has been included in the pref-

actors of Equations (7.36) and (7.37).

In a similar way, the decay channel B̃ → ūid̄jd̄k is allowed by the superpotential term

WUDD = ǫαβγλ′′ijkU
c
iαD

c
jβD

c
kγ, (7.38)

where α, β and γ are all SU(3)c indices. The corresponding decay rate is

Γ(B̃ → ūid̄jd̄k) =
48

128π3
|λ′′ijk|2g′2mB̃

[

2Y 2
UK

(

mũi

mB̃

)

+ 2Y 2
DK

(

md̃j

mB̃

)

+ 2Y 2
DK

(

md̃k

mB̃

)

− 2YUYDP

(

md̃j

mB̃

,
mũi

mB̃

)

− 2YUYDP

(

md̃k

mB̃

,
mũi

mB̃

)

− 2Y 2
DP

(

md̃k

mB̃

,
md̃j

mB̃

)]

. (7.39)

Here a different SU(3)c colour factor has been included in the prefactor.

It should be pointed out that the bino is a Majorana fermion. This means what we

shown above is only half of its possible decay channels: the other decay channels are
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obtained by applying charge conjugation to all the final particles in any of the above

channels. The decay rates, however, are invariant under charge conjugation.

Because the LLE term contains two copies of L’s and they contract with the Levi-

Civita tensor, λijk is anti-symmetric in i and j. Thus it only represents nine couplings.

Similarly, λ′′ijk is anti-symmetric in j and k. This argument is not applicable to λ′ijk, so

it does indeed contain 27 couplings (see, for example, [370, 371, 335]).

As a simple application of our cosmological constraint on the DM decay rate, we

assume mB̃ ∼ 100GeV and all the sfermions have masses ∼ 300GeV. We also assume all

the non-zero R-parity violating couplings attain the same value λ, i.e.

λi1j1k1 = λ′i2j2k2 = λ′′i3j3k3 = λ, i1 6= j1, j3 6= k3. (7.40)

Summing over all the possible 3-body decay channels of bino, the total decay rate is given

by

Γ(B̃ → 3 body) = 2 [ 9 Γ(B̃ → e+i ν̄je
−
k ) + 27 Γ(B̃ → e+i ūjdk)

+27 Γ(B̃ → ν̄id̄jdk) + 9 Γ(B̃ → ūid̄jd̄k) ] (7.41)

= 0.00144|λ|2

where we have used g′ = 0.36. Our cosmological bound then constrain the coupling

constant to be

|λ| . 1.2 × 10−20 (95.4% confidence level). (7.42)

In comparison, one of the strongest constraint on R-parity violation comes from the

consequent baryon number violation that arises due to the former. Ref. [372] gives a value

of λ′′ . 10−9 for the most constrained of all the λ’s. So if indeed the assumption that we

have bino-like DM holds true, then the most stringent limits on R-parity violation would

come from our analysis.
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7.4.3 Spin-1 Dark Matter

We now consider a massive DM of spin-1 (let us call it χ) that decays into SM particles.

Since the χµ field carries one Lorentz index, it contracts with other SM fields differently

from the spin-0 DM, thus giving rise to different interaction terms and decay rates.

In contrast to the decay of spin-0 DM, helicity suppression is not observed in the

decay of χ → νν̄. χµ can directly coupled to the neutrino current ν̄LγµνL, without

any insertion of ∂µ. On the other hand, every spin-1 particle has to obey the Landau-

Yang theorem [373, 374] which states that because of rotational invariance, it cannot

decay into two massless spin-1 particles. Hence, the decays χ → γγ and χ → gg are

not allowed. The possible partial decay widths (with summing over final state spins

and averaging over the initial state spin) for a spin-1 DM are rather numerous and not

that illuminating to list them all here. So we have relegated them to Table 7.4 in the

Appendix. In the case where the DM is indeed an additional U(1) gauge field that is

massive, the possibility of kinetic mixing with the photon [375] must be considered. Such

a term could be radiatively generated via exchange of a field that is charged under both

U(1)’s. Following Refs.[376, 377], we can manipulate the Lagrangian into a form where

the mixing manifests itself in the coefficients of the following terms, g1χµf̄γ
µ(1 + rγ5)f .

But this is a term that has already been considered in Table 7.4.

To get a feel for the numbers involved, let us now consider a simple model where all

the interaction terms in Table 7.4 exist, with all the coupling constants real and of the

same order of magnitude. Again, we will also assume mdecay product/mχ ≪ 1. Then

Γ(χ→ Zγ) + Γ(χ→ ZZ) + Γ(χ→W+W−) ≈ g2
1m

3
χ

96π

(

5

m2
Z

+
2

m2
Z

+
4

m2
W

)

. (7.43)

Because mf/mχ is small for the value of mχ we are considering,

∑

f∈ SM

Γ(χ→ f f̄) ≈ g2
1mχ

12π
(1 + r2)

∑

f∈ SM

Nf

=
7g2

1mχ

4π
(1 + r2). (7.44)
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Similar to the case of spin-0 DM, the decay to tt̄ is not included here, and the parameter r

is also assumed to be the same for all f . Note also that we have different mχ dependence

for the decays into fermion-antifermion and massive gauge bosons, unlike in the spin-0

case.

Our result then gives an upper bound on the sum of all the decay rates into SM

particles. For illustration, we consider mχ ∼ 100GeV and r = 0. Our bound on Γ can

then be translated into a constraint on the coupling constant:

g1 . 5.8 × 10−23 (95.4% confidence level), (7.45)

where we have substituted mW = 80GeV and mZ = 91GeV.

T-Parity violation in little Higgs models

Little Higgs models with T-parity violation is another possible scenario in which the dark

matter candidate decays. Analogous to R-parity in SUSY models, all non-SM particles

in Little Higgs model are assigned to be T-odd, while all SM ones T-even. The T-parity

then requires all coupling terms to have an even number of non-SM fields. This forbids

the contribution of the non-SM particles to the oblique electroweak parameters, and

consequently, the symmetry breaking scale f can be lowered to about 1TeV [378]. The

Lightest T-odd Particle (LTOP), moreover, is stable and has often been nominated as a

dark matter candidate.

However, Ref. [334] has pointed out that anomalies in general give rise to a Wess-

Zumino-Witten (WZW) term, which breaks the T-parity (Refs.[379, 380] have con-

structed Little Higgs models free of the usual WZW term). This means the LTOP

is not exactly stable. Indeed, phenomenological consequences of the WZW term in the

Littlest Higgs model have been studied in Ref. [381, 382]. In their model, the LTOP

is the massive partner of photons (denoted by AH) and the WZW term contains direct

couplings of AH to the Standard Model W bosons, Z bosons and photons. Ref. [382],
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moreover, pointed out that such couplings can generate two-body decay of AH to SM

fermions, AH → f f̄ , via triangular loop diagrams.

In an attempt to be as model-independent as possible, we parameterize the couplings

of AH to the SM gauge bosons as

L ⊃ − g′

f 2
ǫµνρσA

µ
H [NZm

2
ZZ

ν∂ρZσ+NWm
2
W (W+ν∂ρW−σ+W−ν∂ρW+σ)+NAZm

2
ZZ

νF ρσ],

(7.46)

where f is the symmetry breaking scale, g′ the U(1) gauge coupling, NZ , NW and NAZ

are numbers whose values depend on the exact realization and the UV completion.

Generically, the mass of AH is proportional to f . If we take f to be the natural

symmetry breaking scale (i.e. ∼ 1TeV ) in Little Higgs models, then mAH & 2mZ . As an

example, in [381, 382], we have

mAH =
g′f√

5

[

1 − 5v2

8f 2
+ O

(

v4

f 4

)]

, (7.47)

where v = 246GeV is the Higgs vev. The condition for mAH & 2mZ is satisfied when

g′ ∼ 0.36 and f & 1165GeV.

In the case of mAH & 2mZ , the decay channels of AH → ZZ and AH → W+W−

are kinematically allowed, and, for simplicity, we assume these processes (together with

AH → Zγ) to be the dominant ones. With the interaction terms in equation (7.46), the

decay rates for these channels at the lowest order are given by

Γ(AH → ZZ) =
g′2N2

Zm
3
AH
m2
Z

96πf 4

(

1 − 4
m2
Z

m2
AH

)
5
2

, (7.48)

Γ(AH → W+W−) =
g′2N2

Wm
3
AH
m2
W

48πf 4

(

1 − m2
W

m2
AH

)
5
2

, (7.49)

Γ(AH → Zγ) =
g′2N2

AZm
3
AH
m2
Z

24πf 4

(

1 +
m2
Z

m2
AH

)(

1 − m2
Z

m2
AH

)3

. (7.50)

The sum of these decay rates is then constrained by our bound on the dark matter

lifetime. For the Littlest Higgs model, NAZ = 0 and NW = NZ . The sum of the above

decay rates is then reduced to

Γ =
g′5N2

Zm
2
Z

160
√

5πf
, (7.51)
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where we have used the approximations mW ≃ mZ , mAH ≃ g′f/
√

5 and have neglected

all the mass ratios. Our bound on Γ then gives us the constraint

N2
Z

f
< 4.7 × 10−42GeV (95.4% confidence level), (7.52)

which of course is not reasonable as we typically expect NZ ∼ 1 and f ∼ 1 TeV. But it

vividly illustrates the utility of our approach when it comes to ruling out particle physics

models that claim to have dark matter candidates.

7.4.4 General Dimensional Considerations

We can draw some generalizations from the above cases if we do a simple dimensional

analysis. The coupling of a spin-0, spin-1/2 or spin-1 dark matter candidate S to an

operator O can be parameterized, with suppression of indices and O(1) factors, as

L ⊃ g
S

Λn−4
O, (7.53)

where g is a dimensionless coupling constant, Λ is the scale where unknown new physics

is integrated out to give the operator O, and n is the sum of the dimensions of S and O.

The decay rate for such dark matter candidate is given in general by

Γ =
g2

Λ2n−8
m2n−7
S Fk, (7.54)

where Fk is a function that contains the kinematics of the decay, assumed to be of order

one for simplicity. For n = 5, mS = 100GeV and g ∼ O(1), the cutoff scale should be of

the order of Λ & 1024GeV, suggesting that we must go to operators of higher dimensions

and thus more Λ suppression. For n = 6, mS = 100GeV and g ∼ O(1), the cutoff scale

can be as low as Λ ∼ 1013GeV. On the other hand, for n = 5, if the cutoff is taken at the

Planck scale (Λ ∼ 1019GeV) and we keep the same value of mS, the coupling constant

can only be as large as g ∼ 10−5. Finally to recover the cases discussed above for spin-0,

spin-1/2 and spin-1 particles, we can take n = 4 and mS ∼ 100 GeV to give us a coupling

constant as large as g ∼ 10−22.
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A few words should be reiterated about the smallness of the coupling constant. We

had taken an extremely conservative value for our cutoffs, usually ∼ 10 TeV. In an

effective theory with a low cutoff arising from a high scale fundamental theory, say at

Planck scale, there will be a multitude of effective operators containing mass insertions

(leading to small dimensionless ratios such as m/MP ) or loops (giving factors of 1/16π2),

making these tiny coupling constants natural. The small dimensionless ratios could arise

from, say, the decay being mediated by some massive field much like what we have in

proton decay via exchange of heavy X bosons in the context of Grand Unified Theories.

The onus is then on the model builders to refine their models in a technically natural

way to satisfy the constraints we have derived above without having to compromise other

phenomenological constraints on their models.

7.5 Conclusions and Outlook

We have performed a full cosmological analysis using the available data sets from cosmic

microwave background, Type Ia supernova, Lyman-α forest, galaxy clustering and weak

lensing observations to determine the extent by which we can constrain decaying dark

matter models which are very typical in most extensions of the Standard Model of particle

physics.

In the scenario where there is negligible reionization of the baryonic gas by the decay-

ing dark matter, we have found that the late-time Integrated Sachs-Wolfe effect gives the

strongest constraint. The lifetime of a decaying dark matter has the bound Γ−1 & 100Gyr

(at 95.4% confidence level). Because of cosmic variance, the results are not likely to im-

prove significantly with the WMAP-9yr data.

When there is significant reionization of the baryonic gas due to the decaying dark

matter, the bounds become more restrictive as the CMB polarization is well measured.

In this scenario, the lifetime of a decaying dark matter is (f Γ)−1 & 5.3 × 108 Gyr (at
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95.4% confidence level) where f is a phenomenological factor related to the degree of

reionization. With even more CMB polarization data, one could conceivably distinguish

the reionization due to decaying dark matter from reionization due to star formation,

thereby giving us even better bounds on the lifetime of the dark matter. We expect that

the the 21cm cosmological observation in the future would give us even greater precision

as it is expected to probe the reionization history at redshifts 6 < z < 30.

Having obtained the cosmological constraints, we turned our attentions to the particle

physics aspects of it. For completeness and motivated by the utility of such an exercise,

we systematically tabulated the decay cross-sections for a spin-0, spin-1/2 and spin-1

dark matter candidate into the Standard Model degrees of freedom. This enabled us to

simply sum up all the relevant contributions for a particular model of particle physics and

arrive at the functional form of the lifetime of the decaying dark matter. We repeated

this process for a variety of representative models from the following classes of theories:

generic supersysmmetric scenario, gauge-mediated supersymmetry breaking models and

the little Higgs theories. Imposing the limits from our cosmological analysis, we find that

generically for most models we have looked at, the dimensionless coupling for a decaying

dark matter to Standard Model fields should be smaller than 10−22.

This restriction can be slightly relaxed if the dark matter decays solely into light

particles via helicity suppressed interaction terms, in which case, the small mass of the

decay products suppresses the decay rate. If, for instance, the dark matter decays purely

via helicity suppressed terms into νν̄ with Dirac mass of ∼ 2eV, then the dimensionless

coupling can be as large as 10−11. In addition to constraining the coupling, one can

assume it to be of O(1) and estimate the scale of new physics which suppresses the decay

rate. In all cases, either the coupling attains a small value or the new physics come

from a huge scale, both of which would need interesting and exotic physics to realize if

indeed the dark matter does decay via dimension-4 or dimension-5 terms. In the case of

exclusive helicity suppressed decays, moreover, one has to explain why other interaction
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terms are absent in the model. A more promising avenue, which we briefly mentioned in

the previous section, is to look at models where the dark matter decays via dimension-

6 operators. The Large Hadron Collider might provide us with the identity for dark

matter in the very near future, but on the basis of our analysis, there will still be much

to understand about physics of the dark matter sector and how it interacts with the

Standard Model.

In a future work, we hope to address some of the astrophysical issues of decaying dark

matter. The recent spate of results from astrophysical experiments [383, 384, 385, 386]

has given us much to ponder. The immediate goal would of course be to combine all the

astrophysical data sets with the cosmological ones that we have considered in the present

work and arrive at a set of characteristics that a phenomenologically viable decaying dark

matter must possess. However, we expect considerable tension between the two classes

of constraints. The astrophysical ones require that the decays to be significant enough to

account for the as-yet-unexplained phenomena, while the cosmological ones need decays

to be small enough because of the late time ISW effect and the CMB polarization obser-

vations. To reconcile and resolve these two seemingly conflicting classes of observations

could be the defining challenge of dark matter physics in the next decade.

7.6 Appendix: Compendium of Decay Rates

This appendix summarizes the lowest order decay rates due to various generic interaction

terms in the Lagrangian, averaging over the spin of the DM and summing over the spins

of the decay products. Tables 7.1, 7.2 and 7.4 respectively tabulate the decay of a spin-0

DM particle S, a spin-1/2 DM particle ψ and a spin-1 DM particle χ, into SM particles.

In a model-independent way, we write down generic Lagrangian terms which describe

possible decay channels of DM particles to SM particles. The exact mechanisms which

mediate these decays are captured by the dimensionless coupling constants, g0, gD and
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g1. The reality of the interaction terms requires the coupling constants to be real, except

in the case of χ→ W+W− and the decay of ψ, in which a complex coupling constant is

possible.

We follow standard conventions in denoting our fields. Y µ represents a gauge field

while Y µν is the corresponding field strength tensor. For various decay channels, Nf and

Ng respectively denote the number of colours of a fermion species f and a gluon g. r, rp

and ra are parameters that describe the relative size of two interaction terms.

Table 7.1: Decay Rate of Spin-0 DM via Different Interaction Terms

Interaction Term Decay Rate

g0Sf̄(1 + irpγ5)f Γ(S → f f̄) =
g20mSNf

4π

√

1 − 4
m2
f

m2
S
×
(

1+r2p
2

− 2
m2
f

m2
S

)

g0
Λ
f̄γµ(1 + raγ5)f∂µS Γ(S → f f̄) =

g20r
2
aNf

2π
mf

mfmS
Λ2

√

1 − 4
m2
f

m2
S

g0s
Λ
SFµνF

µν Γ(S → γγ) =
g20sm

3
S

4πΛ2

g0p
Λ
SǫµνσλF

µνF σλ Γ(S → γγ) =
g20p
πΛ2m

3
S

g0s
Λ
SGa

µνG
a,µν Γ(S → gg) =

g20sm
3
SNg

4πΛ2

g0p
Λ
SǫµνσλG

a,µνGa,σλ Γ(S → gg) =
g20p
πΛ2Ngm

3
S

g0m2
Z

Λ
SZµZ

µ Γ(S → ZZ) =
g20m

3
S

32πΛ2

√

1 − 4
m2
Z

m2
S
×
(

1 − 4
m2
Z

m2
S

+ 12
m4
Z

m4
S

)

g0s
Λ
SZµνZ

µν Γ(S → ZZ) =
g20sm

3
S

4πΛ2

√

1 − 4
m2
Z

m2
S
×
(

1 − 4
m2
Z

m2
S

+ 6
m4
Z

m4
S

)

g0p
Λ
SǫµνσλZ

µνZσλ Γ(S → ZZ) =
g20pm

3
S

πΛ2

(

1 − 4
m2
Z

m2
S

)
3
2

g0m2
W

Λ
SW+

µ W
−µ Γ(S →W+W−) =

g20mS
64πΛ2

√

1 − 4
m2
W

m2
S
×
(

1 − 4
m2
W

m2
S

+ 12
m4
W

m4
S

)

g0s
Λ
SW+

µνW
−µν Γ(S →W+W−) =

g20sm
3
S

4πΛ2

√

1 − 4
m2
W

m2
S
×
(

1 − 4
m2
W

m2
S

+ 6
m4
W

m4
S

)

g0p
Λ
SǫµνσλW

+µνW−σλ Γ(S →W+W−) =
g20pm

3
S

πΛ2

(

1 − 4
m2
W

m2
S

)
3
2

g0s
Λ
F µνZµ∂νS Γ(S → Zγ) =

g20sm
3
S

32πΛ2

(

1 − m2
Z

m2
S

)3

g0p
Λ
ǫµνσλF

µνZσ∂λS Γ(S → Zγ) =
g20pm

3
S

8πΛ2

(

1 − m2
Z

m2
S

)3
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Table 7.2: Two-Body Decay Rate of Spin-1/2 DM via Generic Interaction Terms

Interaction Term Decay Rate

gDGµf̄γ
µ(1 + rγ5)ψ Γ(ψ → fG) = Γ(ψ̄ → f̄ Ḡ)

+g∗DG
∗
µψ̄γ

µ(1 + rγ5)f =
|gD|2m3

ψ

16πm2
G

√

λ
(

mG
mψ

,
mf
mψ

) [

ω
(

mG
mψ

,
mf
mψ

)

+ r2ω
(

mG
mψ

,−mf
mψ

)]

gDψ̄H(1 + irpγ5)f Γ(ψ → Hf) = Γ(ψ̄ → Hf̄)

+gDf̄H(1 + irpγ5)ψ =
g2Dmψ
16π

√

λ
(

mH
mψ

,
mf
mψ

) [

z
(

mf
mψ

, mHmψ

)

+ r2pz
(

−mf
mψ

, mHmψ

)]

Table 7.3: Functions used for the Analysis of Bino Decay

K(x) 1
16

[

−5 + 6x2 + 2(1 − 4x2 + 3x4) ln
(

1 − 1
x2

)]

P (x, y) 1
24

[

3
2 +

(

π2y2

2 − 6
)

x2
]

+ x2y2

4 ln
(

x2 + y2 − 1
) [

−1
2 ln

(

x2 + y2 − 1
)

+ ln
(

x2 − 1
)]

+x2

4

(

x2 − 1
)

ln
(

x2

x2−1

)

+ x2y2

4 ln
(

y2
)

ln
(

x
x2−1

)

− x2y2

4 Li2

(

x2−1
x2+y2−1

)

+ x↔ y
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Table 7.4: Decay Rate of Spin-1 DM via Different Interaction Terms

Interaction Term Decay Rate

g1χµf̄γ
µ(1 + rγ5)f Γ(χ→ f f̄) =

g2

1
Nf

12π
mχ

√

1 − 4
m2

f

m2
χ
×
[

1 + 2
m2

f

m2
χ

+ r2
(

1 − 4
m2

f

m2
χ

)]

g1

Λ
χµf̄∂µf Γ(χ→ f f̄) =

g2

1
m3

χ

64πΛ2

(

1 − 4
m2

f

m2
χ

)

3

2

Γ(χ→ γγ or gg) = 0

forbidden by the Landau-Yang theorem

g1ZµZ
ν∂νχ

µ Γ(χ→ ZZ) =
g2

1
m3

χ

96πm2

Z

(

1 − 4
m2

Z

m2
χ

)
3

2

g1ǫµνρσχ
µZν∂σZρ Γ(χ→ ZZ) =

g2

1
m3

χ

96πm2
z

(

1 − 4
m2

Z

m2
χ

)
5

2

g1W
+
µ W

−ν∂νχ
µ Γ(χ→W+W−) =

m5

χ

192πm4

W

(

1 − 4
m2

W

m2
χ

)
3

2

+g∗1W
−
µ W

+ν∂νχ
µ ×

{

4[Re(g1)]
2 m2

W

m2
χ

+ [Im(g1)]
2

(

1 + 4
m2

W

m2
χ

)}

g1ǫµνρσχ
µW+ν∂σW−ρ Γ(χ→W+W−) =

m3

χ

48πm2

W

√

1 − 4
m2

W

m2
χ

+g∗1ǫµνρσχ
µW−ν∂σW+ρ ×

{

[Re(g1)]
2

(

1 − 4
m2

W

m2
χ

)2

+ [Im(g1)]
2

(

1 + 2
m2

W

m2
χ

)

}

g1χµZνF
µν Γ(χ → Zγ) =

g2

1
m3

χ

96πm2

Z

(

1 +
m2

Z

m2
χ

)(

1 − m2

Z

m2
χ

)3

g1ǫµνρσχ
µZνF σρ Γ(χ → Zγ) =

g2

1
m3

χ

24πm2

Z

(

1 +
m2

Z

m2
χ

)(

1 − m2

Z

m2
χ

)3



Chapter 8

Conclusions and Outlook

In the first part of this thesis (Chapters 2-3), we extended the minimal parametrizations

for cosmic inflations.

For the late-universe acceleration we considered a popular alternative interpretation of

dark energy – the quintessence model. We explicitly answered which physical parameters

(related to the quintessence potential and the field velocity) can – and which cannot – be

measured with current and future cosmological observations. For the simplest slow-roll

thawing model, we showed how to break the degeneracy between phenomenological dark

energy parameters , e.g. w0 and wa. In the future we will extend this project to more

dynamic dark energy models: the f(R) gravity; the k-essence; the Tachyon field; and

more. Open or closed universe with dynamic dark energy will also be considered.

For early-universe inflation we studied generic primordial power spectra of metric

perturbations from inflation, going beyond the slow-roll assumption. Two complemen-

tary reconstruction strategies were offered. We examined the bottom-up reconstruction

method by testing a variety of interpolation methods and number of knots, and con-

cluded that this is a robust statistical tool to study primordial power spectra. Using the

top-down approach, we showed that the slow-roll assumption, which at present is usually

taken as a prior, can be tested with the upcoming cosmological observational data. One

266
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future aspect of this project will be applying it to the real Planck data that is expected

in 2012. Another future aspect will be to explore whether the single-field inflation model

can be robustly tested with the power spectra only.

In the second part of this thesis (Chapters 4-6), we studied a series of models related

to particle production after or during inflation. New predictions on the primordial power

spectra and non-Gaussianity were made. A new lattice simulation code was developed to

simulate dynamics of scalar fields, which can be canonical (Chapters 4-5) or non-canonical

(Chapter 6). A future improvement for this code will be including feedback of metric

perturbations on the scalar field dynamics. We will study the curvature fluctuations from

preheating beyond the specific model discussed in Chapter 4.

In the last chapter we studied the cosmological constraint on the lifetime of decaying

dark matter. We showed that CMB ISW effect will be the strongest probe, assuming

DM decays into relativistic particles or radiation. Further constraints were obtained by

assuming that the decayed product contributes part of its energy to reionization of the

universe. However, we have assumed instant energy injection for reionization, which is

likely to be over-simplifying the physics in question. This will be improved in the future

work.
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[227] M. Cruz, E. Mart́ınez-González, and P. Vielva, The WMAP Cold Spot, in

Highlights of Spanish Astrophysics V, edited by J. M. Diego, L. J. Goicoechea,
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