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Dark matter dominates the mass distribution of the universe, and dark energy deter-

mines its expansion. The two are the most mysterious and attractive subjects in modern

cosmology, because they provide an opportunity to discover new fundamental physics.

Cosmological weak gravitational lensing, which describes the deflection of photons by

the gravitational force from large-scale structure in the universe, has been an active area

of research in the past decade with many completed, ongoing, and upcoming surveys.

Because weak lensing is sensitive to the growth of structure and expansion history of the

universe, it is a great tool for improving our understanding of both dark matter and dark

energy problems.

Cosmic structures have become non-linear by gravitational clustering. The non-linear

structures are important to weak lensing, and cause non-Gaussianity in the lensing maps.

In this thesis, I study the influence of non-linearity and non-Gaussianity on the uncer-

tainty of lensing measurements. I develop a new method to robustly measure the co-

variance matrix of the lensing convergence power spectrum, from simulations. Because

21-cm intensity map may soon cover half sky at redshift 1-4, I build optimal estimators

for reconstructing lensing from the 21-cm sources. I develop Gaussian optimal estima-

tors which can be derived analytically, and non-Gaussian optimal estimators which can

be constructed numerically from simulation data. I then run a large number of N-body

simulations. For both lenses and 21-cm sources, I explore the statistical uncertainties in
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the simulation data.

We show that the non-Gaussianity nature of lensing decreases the dark energy figure

of merit by a factor of 1.3 to 1.6 for a few future surveys. We also find that the non-

Gaussianity nature of the 21-cm sources reduces the signal to noise ratio by several orders

of magnitude. The reconstruction noise saturates at mildly non-linear scales, where the

linear power spectrum of the source is ∆2 ∼ 0.2 − 0.5. For 21-cm sources at z ∼ 2 − 4,

the lensing reconstruction is limited by cosmic variance at ℓ . 100, which is in the linear

regime of gravitational growth, and robustly predicted by theory. This allows promising

constraints to various modified gravity and dark energy models.
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Chapter 1

Introduction

1.1 The non-Gaussianity problem in cosmological lens-

ing

Different measurements such as Cosmic Microwave Background (CMB) (Efstathiou et al.,

1992; Komatsu et al., 2008), Type-I supernovae (Riess et al., 2004; Astier et al., 2006),

galaxy clustering (Cole et al., 2005; Tegmark et al., 2006), and weak gravitational lensing

(Hoekstra et al., 2006; Massey et al., 2007b), all suggest that our universe is made of dark

energy (75%), cold dark matter (21%) and baryon (ordinary matter, 4%) components.

This is the standard model of cosmology. Today, at the golden era of precision cosmology,

the most important goal of cosmological research is to constrain the parameters for

the cosmological models through measuring astrophysical observables in cosmological

phenomena.

In the measurement of all these experiments and observations, one has to deal with

noises generated by systematics and statistical uncertainties. How to conduct the mea-

surement with maximum signal to noise ratio (S/N), and how to analyze the data without

losing information is crucial. Technically speaking, one needs to construct unbiased es-

timators of the cosmological parameters with minimum noise. For a Gaussian system,
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Chapter 1. Introduction 2

such optimization can usually be found analytically. But in most cases, one needs to find

the peak of the likelihood numerically, or to approximate it with an optimal quadratic

estimator, which we will introduce in section 1.3.

In the scenario of standard cosmology, the primordial density fluctuations from in-

flation are Gaussian random perturbations. Eventually, the cosmic structures become

non-linear because gravitational clustering plays an important role in the evolution.

Consequently, non-Gaussianity arises. The statistics of non-Gaussian fields can not be

calculated analytically.

Gravitational lensing is a very useful tool in cosmology, to map matter distribution

and constrain the evolution of dark energy. This is because lensing only relies on gravity

and is sensitive to the geometry of the universe. According to General Relativity, massive

objects and their gravitational fields curve the space-time continuum. Since photons

follow geodesic trajectories, they will be deflected in the presence of gravitational field.

Therefore images from distant sources are distorted after propagating through or close to

objects with large masses. Cosmological lensing is an integrated effect of the contribution

of the gravitational potential along the line-of-sight. Therefore, non-Gaussianities in the

density distribution will leave an imprint on lensing. The prediction of the lensing signal

and its noise in observations both involve non-Gaussianity (Hu & White, 2001; Semboloni

et al., 2007; Takada & Jain, 2008; Eifler et al., 2008). This thesis is aimed at addressing

such problems with the help of large numbers of numerical simulations.

As I will explain in section 1.3, non-Gaussianity usually means larger uncertainty in

measurement. We would like to know how much this enlargement is. A useful quantity

to compare the uncertainties is the Fisher information content, which is the reciprocal

of the variance for the parameter to be measured. Rimes & Hamilton (2005) found an

interesting phenomenon in the Fisher information content in the primordial amplitude

of the dark matter power spectrum: At trans-linear scales, the cumulative Fisher infor-

mation stops to increase as the resolution of structures is increased. They called such
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Fisher information “saturated”. This seems to be counter intuitive, however halo mod-

els can help to give an explanation (Neyrinck et al., 2006). Because of the strong tie

between dark matter and gravitational lensing, we will investigate the same phenomena

with the lensing convergence power spectrum. The influence of the non-Gaussianity on

the prediction of weak lensing constraints on the dark energy figure of merit will also be

discussed. This will be the main subject in chapter 2.

Current lensing measurements are mostly from the shape distortion of galaxies, which

is called cosmic shear. Another possible lensing source is the 21-cm hyperfine line tran-

sition of neutral hydrogen at the epoch of reionization (z ∼ 7 − 20), where the neutral

universe after recombination starts to be ionized by the formation of the first generation

of stars. The detection of the 21-cm emission at the epoch of reionization has recently

been a hot topic in astronomical research. With possible mapping of 21-cm emission,

scientists started to consider it as a new source for lensing (Pen, 2004; Cooray, 2004;

Zahn & Zaldarriaga, 2006; Mandel & Zaldarriaga, 2006; Metcalf & White, 2007; Hilbert

et al., 2007; Metcalf & White, 2008). Though the exact mechanism of reionization and

evolution is still a developing story, we know that the 21-cm sources, the neutral hydro-

gen region, are more or less tracing the total matter, therefore they are non-Gaussian

distributions. As we will show in chapter 3, the non-Gaussianity of the 21-cm sources

will be a dominant effect in the lensing reconstruction. Previous treatment of the 21-cm

lensing estimator all assumed the sources follow a Gaussian distribution. We also derive

“optimal” quadratic estimators of lensing under the Gaussian assumption. However, we

generate non-Gaussian sources from cosmological simulations and discuss the influence

of non-Gaussianity on the noise of the reconstructed lensing map using these estimators.

We report a saturation effect similar to that of the Fisher information content in dark

matter power spectrum.

A a few experiments have been proposed to map post-reionization (z ∼ 1− 6) 21-cm

gas with large sky coverage (Peterson et al., 2006; Chang et al., 2008; Wyithe et al., 2008;
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Tegmark & Zaldarriaga, 2008). In particular, Cosmological Hydrogen Intensity Mapping

initiative Experiment (CHIME) 1 (Chang et al., 2008) proposed to map the intensity of

21-cm sources at z ∼ 1 − 3 for half of the sky in a two year operation. By measuring

lensing from these 21-cm sources, cosmic structures at z ∼ 0.5− 1.5 can be investigated.

Although the dark energy in the standard model of cosmology has successfully explained

the observed accelerating expansion of the universe, the nature of dark energy is not clear.

We cannot distinguish the dark energy model with a smooth stress-energy component

from alternative models such as modified gravity (Schmidt, 2008). Cosmic structures

at z ∼ 1 are sensitive to dark energy in most of these models. In chapter 4, we will

extend the lensing reconstruction calculation to 21-cm sources at z = 1− 6. Because the

non-linearity at these redshifts are a more serious issue, the optimal estimator derived

from a Gaussian assumption is significantly non-optimal. We develop a real optimal

estimator for the non-Gaussian sources, constructed numerically from a large number

of N-body simulations. We find that the saturation effect appears at all redshifts, and

that the saturation scale depends on the shape of the power spectrum. Although the

non-Gaussianity of 21-cm sources increases the noise, the noise from sources at z ∼ 3 is

about a few percent of the lensing power spectrum at ℓ ∼ 100, which can be a powerful

tool to distinguish alternative and the smooth dark energy models at z ∼ 1.

We will first review the cosmology background necessary for all the works within the

thesis in section 1.2, and introduce the statistical and analysis methods in cosmology in

section 1.3. In section 1.4 we will review the theory of gravitational lensing and state

the problems we attempt to solve in the thesis. At last, we will talk about cosmological

simulations and the simulation codes we used in 1.5.

1http://pirsa.org/08100036
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1.2 Cosmology background

The thesis focuses on the discussion of weak lensing uncertainties in the frame of standard

cosmology. It is necessary to understand the basis of cosmological models. First I will

briefly introduce the cosmological background of the thesis, following the introduction

and notation in Bartelmann & Schneider (2001). More comprehensive introductions to

cosmology can be found in Peacock (1999) and Dodelson (2003).

1.2.1 The standard cosmology

The standard cosmology is sometimes called the big bang theory, which states that the

universe is created in a big bang about 13.7 billion years ago. Our current universe is

the relic of the big bang.

A very important fact in cosmology is that our universe is expanding, which was first

discovered by Hubble in 1929. Imagine the cosmic structure is scaled by factor a(t) at

a cosmic time t. If we define a(t0) = 1, where t0 is the cosmic time at present, a(t)

increases from a value close to zero to unity when t increases from zero to t0. Hereafter,

we will use [...]0 to represent a quantity at the present cosmic time. The speed of the

expansion is defined as the Hubble parameter H ≡ ȧ/a, where ȧ means the derivative

of a with respect to t. Because all parts of the universe expand with the same speed at

a certain cosmic time, H is also called Hubble constant. H0 = 100h km/s Mpc−1 is the

the Hubble constant at present. The recent five-year Wilkinson Microwave Anisotropy

Probe (WMAP5) experiment results provide h = 0.719 ± 0.026 (Dunkley et al., 2008).

In addition to the cosmological scale factor a, another important concept defined in

cosmology is the cosmological redshift z. It is the cosmological application of the Doppler

effect which states the frequency of light or sound will be shifted for a source moving

away or toward the observer.

1 + z =
νemit

νobs
=
a(t0)

a(t)
, (1.1)
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where νemit and νobs are frequency of light emitted at the cosmological distance denoted

by z and the frequency observed at present. Higher redshift represents the universe at

an earlier epoch, or farther away from us.

There are mainly four components in the universe: matter, radiation, vacuum, and

curvature, whose densities are normally described by dimensionless density parameters:

Ωm, Ωr, ΩΛ, ΩK respectively. ΩK ≡ 1 − Ωm − ΩΛ − Ωr, where Ωr is sometimes neglected

because it is much smaller than others except at the very beginning of the expansion.

The dimensionless density parameters are defined as Ω = ρ/ρc, where ρc = 3H2/8πG2

is the critical density of the universe, and G is the gravitational constant. The critical

density at present is ρc = 1.88h2 × 10−29g cm−3. The density evolutions of these four

components follow: ρm ∝ a−3, ρr ∝ a−4, ρK ∝ a−2, and ρΛ is constant. In this thesis, we

will use Ωr,Ωm and ΩΛ to represent the density parameters at present. The evolution of

the Hubble constant is given by :

H(z)2 = H2
0 [Ωra

−4 + Ωma
−3 + (1 − Ωm − Ωr − ΩΛ)a−2 + ΩΛ] . (1.2)

Einstein draw the physical picture of the universe and presented the famous cosmo-

logical principle about half a century ago: over large spatial volumes, the universe is

homogeneous and isotropic. This is the foundation of all current studies in the cosmolog-

ical field. Cosmologists solve physics problems at very large scales, where the language

of General Relativity needs to be used. Mathematically, the space-time of our universe

is described by the Friedmann-Robertson-Walker (FRW) metric:

ds2 = −c2dt2 + a2(t)(dχ2 + fK(χ)2(dθ2 + sin2 θdϕ2) , (1.3)

where ds is the Lorentzian line element, c is the speed of light, χ is the radial coordinate,

θ is the azimuthal angle, and ϕ is the polar angle. The comoving angular diameter
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distance fK(χ) can be expressed as:

fK(χ) = sinK χ ≡























K−1/2 sinK1/2χ, K > 0

χ, K = 0

(−K)−1/2 sinh(−K)1/2χ, K < 0 ,

(1.4)

where K = −ΩKH
2
0 is the curvature term. K = 0 indicates that the geometry of the

universe is flat. K < 0 stands for an open universe and K > 0 shows a closed one.

Current observations imply our universe is a flat one.

To understand the dynamics of the universe, we need to solve the evolution of the

scale factor a(t). This is described by the famous Einstein’s field equation of General

Relativity, which reveals the underlying relationship between the space-time geometry

and mass distribution.

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (1.5)

where Rµν and R are the Ricci tensor and Ricci scalar, Gµν is the Einstein tensor, and Tµν

is the energy-momentum tensor. Both the Ricci tensor and Ricci scalar can be calculated

from the metric gµν .

Assume the matter in the universe is a fluid with density ρ(t) and pressure p(t), by

inserting the FRW metric into the Einstein’s field equation, we obtain

ä

a
= −4πG

3
(ρ+ 3

p

c2
) +

Λ

3
, (1.6)

and

(
ȧ

a
)
2

=
8πG

3
ρ− K

a2
+

Λ

3
, (1.7)

where Λ = 3H2
0ΩΛ. Eq. (1.7) is called the Friedman equation, which is one of the most

important equations in the standard model of cosmology.

1.2.2 Large-scale structures in the universe

The main ingredients of matter in the universe are: photons, dark matter, baryons,

neutrinos. They are coupled to each other in a complicated way: dark matter does not
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interact with other species directly, but dominates the contribution to the gravitational

potential, which will influence photons and baryons; photons are affected by gravity

and by Compton scattering with free electrons; there is Coulomb scattering between the

electrons and protons components of baryons; baryons and neutrinos both contribute to

the gravitational potential and are also affected by it. Another component of universe

is dark energy (or vacuum energy), which contributes to about two thirds of the total

density of the universe, enough to make its geometry flat. Dark energy influences others

by a repulsive force but does not perturb.

It is often assumed that the universe is weakly perturbed from the homogeneous and

isotropic FRW space-time as shown in Eq. (1.3), therefore first-order perturbation theory

can be used to find the approximate solution to the Einstein’s equation. Density fluctu-

ations are an example of scalar perturbations, but there also exist vector perturbations

and tensor perturbations in some models of structure formation, the latter being caused

by primordial gravitational waves. Any perturbation can be decomposed into these three

independent classes, each of which evolves independently. In the context of this thesis,

we are mainly interested in the density perturbations.

To describe the behavior for an ensemble of particles, Boltzmann’s equation can be

applied (Peacock, 1999)

(pµ ∂

∂xµ
− Γµ

αβp
αpβ ∂

∂pµ
)f = C , (1.8)

where f(x,p) is the phase space distribution function of the ensemble, xµ and pµ are

position and momentum respectively, Γµ
αβ is the Christoffel symbol, and C is the collision

term which includes the interactions between all matter components. The perturbations

of the matter and radiation can thus be calculated by solving a set of second-order

partial differential equations, often done numerically by packages such as CMBFAST2

and CAMB3.

2http://www.cfa.harvard.edu/ mzaldarr/CMBFAST/cmbfast.html
3http://camb.info/
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Because we need to study the behavior of ensembles of particles, it is necessary to

use the tools and the language of statistics. We will introduce the relevant statistics

notations in section 1.3. Here I will simply mention the most important concept, power

spectrum P (k), which is the variance of the Fourier modes from an over-density field.

Higher power spectrum P (k) means more structures at certain scale k. In cosmology,

we normally use the fluctuation power per logarithmic interval to denote a dimensionless

power spectrum, i.e.,

∆2(k) ≡ k3

2π2
P (k) . (1.9)

If ∆2 ≪ 1, the fluctuation is in the linear regime, while when ∆2 is comparable to

or larger than 1, the fluctuation is said to be “non-linear”. A very useful quantity in

observational cosmology is the normalization factor σ8 = σ(R = 8h−1Mpc), which is the

variance of mass at a sphere of radius 8h−1Mpc with a top hat smoothing window W ,

σ2(R) = 〈δ2
R〉 =

∫

d3kP (k)W 2(kR) , (1.10)

where δR means the overdensity fluctuation of cosmic structures in the sphere, δ =

(ρ− ρ̄)/ρ̄, and ρ̄ is the mean density of the universe. Higher σ8 means more clustering.

From inflation theory, we know that the primordial power spectrum of matter is

a scale-invariant spectrum (also called the Harrison-Zeldovich-Peebles spectrum). The

actual linear power spectrum is modified by a transfer function T (k).

P (k, z) = Pp(k)G
2(z)T 2(k) . (1.11)

Pp(k) is the power spectrum of the primordial density fluctuation and G(z) is the growth

factor (Carroll et al., 1992; Van Waerbeke & Mellier, 2003):

G(z) =
5

2
ΩmH(z)

∫ a

0

da′

a′3H3(a′)
. (1.12)

The transfer function can be calculated by CAMB or CMBFAST, or fitting formulas such

as Bardeen et al. (1986); Eisenstein & Hu (1998, 1999).
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At later stages of the evolution, cosmic structures become non-linear on small scales.

The dynamics of the structure formation becomes complicated, and the calculation of

power spectrum can not be treated in a fully analytical way. Thus numerical simulations

are needed. From semi-analytical approaches, with the aid of N-body simulations, fitting

formulas of non-linear power spectrum were found (Peacock & Dodds, 1996; Smith et al.,

2003). However, these fitting formulas can only provide the expectation value of the

non-linear power spectrum. In this thesis, we use N-body simulations as a major tool to

calculate the higher order statistics such as the covariance matrix of power spectrum.

1.3 Primer of cosmological analysis

In this section, I will give a brief introduction to the analysis used in cosmological mea-

surements and calculations. I will follow the definitions and discussions in Dodelson

(2003), which has a very good introduction chapter to the analysis.

1.3.1 Statistical description

Gaussian random field

Gaussian random field is a very important concept in statistical analysis. Given a random

field δ(x), the Fourier transform of the field is

δ(k) =

∫

d3xδ(x)e−ik·x . (1.13)

If all the phases of different Fourier modes are random and uncorrelated with each other,

the field is a Gaussian random field (Peacock, 1999). For a Gaussian random field, all the

statistical properties can be described by two-point statistics, i.e., correlation function

〈δ(x)δ(x′)〉 = ξ(|x − x
′|) , (1.14)

and power spectrum

〈δ(k)δ(k′)〉 = (2π)3δ3D(k + k
′)P (k) , (1.15)
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where δ3D is the 3-D Dirac delta function (we will use δD and δ2D to represent the 1-D

and 2-D Dirac delta function). The power spectrum P and correlation function ξ can

be related by Fourier transforms. Therefore, all required features of a Gaussian random

field is described entirely by the power spectrum.

All the statistics of a Gaussian random field can be represented by the two-point

function because the density probability distribution of the field is a joint Gaussian

distribution (Peacock, 1999).

P [δ1, δ2, ..., δm] =
|C−1|1/2

(2π)m/2
exp(−1

2
VTC−1V) , (1.16)

where VT = (δ1, δ2, ..., δm) is a vector composed of density at m different positions. C

is the covariance matrix between all m points, i.e., Ci,j = 〈δiδj〉. All orders of the

correlation functions can be calculated by integrating with this Gaussian functional. In

calculations, Wick’s theorem is often applied (Bernardeau et al., 2002):

〈δ1...δ2p+1〉 = 0 , (1.17)

〈δ1...δ2p〉 =
∑ ∏

p pairs (i,j)

〈δiδj〉 , (1.18)

where p is an integer.

For non-Gaussian fields, higher order statistics cannot be fully expanded into two-

point functions, and some connected terms will remain. These remainders usually cannot

be calculated analytically.

1.3.2 Analysis

Likelihood function

The probability of obtaining some data given a theory is called the likelihood. For a

theory with parameter λ and its noise σλ, the probability of measuring data y in the

experiment is given as (Dodelson, 2003)

P [y|λ, σλ] ≡ L(y;λ, σλ) =
1

√

2πσ2
λ

exp
−(y − λ)2

2σ2
λ

. (1.19)
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At each measurement, y will be the contribution from both signal λ and noise, which has

a Gaussian distribution with variance σλ. If there is a set of data y = yi, the likelihood

becomes a multivariate Gaussian distribution, and the term inside the exponential will

be −ytC−1y/2. Here C = 〈yty〉 − 〈yt〉〈y〉. y could also be a complicated function of λ.

When making measurements, we need to estimate the parameters from the data set

in an optimal way. According to the Bayesian theorem, the posterior likelihood is

P [λ, σλ|y] =
P [y|λ, σλ]P [λ, σλ]

P [y]
. (1.20)

where P [λ, σλ] is the prior probability. Any knowledge of the prior distribution should be

used if possible. However, in the case where we have no information about the prior, a

flat distribution is normally chosen. In most cases, it is reasonable to assume that there

is no preferred particular value for the parameter of a model. It turns out that even if

the actual prior is far from flat, the likelihood function will be steeply peaked; therefore,

the choice of the prior should not greatly affect the results (Dodelson, 2003).

The best estimator of parameter λ, given the data set y, should maximize the likeli-

hood, i.e.,

∂L
∂λ

= 0 . (1.21)

This equation is usually non-linear, and needs to be solved numerically. If there are

multiple parameters λα, solutions to a set of equations must be found. In practice, the

derivative of lnL is normally calculated because the algebra is simpler.

Fisher information matrix and optimal quadratic estimator

Finding the root of several non-linear equations is usually slow, because the sampling

space has many dimensions. To accelerate the progress in finding the optimal estimator,

we can apply the Taylor expansion to the likelihood function near its peak, (Seljak, 1998b;

Dodelson, 2003).

lnL(λ+ δλ) = lnL(λ) +
∂lnL(λ)

∂λ
δλ+

1

2

∂2lnL(λ)

∂λ∂λ
(δλ)2 . (1.22)



Chapter 1. Introduction 13

The root of Eq. (1.21) can be found iteratively with the Newton-Raphson method. For

multiple parameters λα, the expansion is performed for all the parameters up to the

second order. If we take the initial estimate of the parameters to be zero, the roots

become

λ̂α =
1

2
F−1

αβ(yTC−1 ∂C

∂λβ
C−1y − Tr[C−1 ∂C

∂λβ
]) , (1.23)

which is called the optimal quadratic estimator (or the minimum variance estimator).

The maximum likelihood solution can be approximated by this quadratic estimator. The

estimator is unbiased, i.e., 〈λ̂α〉 = λα.

Fαβ represents the Fisher information matrix, which is defined as the expectation of

the curvature for the likelihood function,

Fαβ ≡ 〈−∂
2(lnL)

∂λα∂λβ
〉 (1.24)

=
1

2
Tr[

∂C

∂λα
C−1 ∂C

∂λβ
C−1] .

The error bar of the optimal quadratic estimator for each parameter is
√

(F−1)αα, which

is the minimum error bar for any parameter estimation method according to the Cramer-

Rao inequality.

The optimal quadratic estimator (or minimum variance estimator) is equivalent to

the maximum likelihood estimator for a Gaussian likelihood distribution. When the dis-

tribution is non-Gaussian, the optimal quadratic estimator is still an unbiased estimator

though the variance is no longer minimized. The optimal quadratic estimator will, how-

ever, still be a very good substitute for the estimator with the minimum noise (Seljak,

1998a,b). The expected variance of parameters will also be larger than that calculated

using the inverse of Fisher matrix. The latter still gives the lowest value of all possible

noises.
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Fisher information content of dark matter power spectrum

Part of my thesis work was motivated by recent investigations into the information con-

tent of the 3-D matter power spectrum as quantified by the projection of the Fisher

information on the amplitude of power spectrum (Rimes & Hamilton, 2005, 2006; Hamil-

ton et al., 2006; Neyrinck et al., 2006).

The results obtained in these papers are somewhat surprising. While a Gaussian-like

behavior was observed on linear (large) scales, the non-linear growth of structures entails

an information saturation at partially non-linear scales. A quasi-Gaussian behavior was

recovered once fully in the non-linear regime but at a substantially lower level. Thus,

when devising a survey, optimizing the survey to gain sensitivity and resolution in the

trans-linear regime (where the power spectrum is currently interpreted cosmologically)

would not entail much pay-off if one was only focusing on this statistic, i.e., the Fisher

information of the amplitude of the dark matter power spectrum. Despite the fact that

the effects of the non-linear growth of structures had been widely studied before these

works, formulating it in this way led to this surprising answer, heuristically well under-

stood within the context of the halo model (Neyrinck et al., 2006). Neyrinck & Szapudi

(2007) later showed that if we project the Fisher information into other parameters, anal-

ogous behaviors are then observed. This validates the insightful value of the amplitude

projection.

As we will introduce in section 1.4, the weak lensing effect is caused by dark matter

distribution along the line of sight of light rays from distant sources. The non-Gaussianity

in the dark matter distribution will thus affect the weak lensing results. We will discuss

how much this non-Gaussianity will affect the Fisher information content of lensing power

spectrum, and further consider the projected effects on the cosmological constraints.
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1.4 Weak gravitational lensing by the large-scale struc-

ture

Gravitational lensing happens when the trajectory of photons is deflected by a nearby

gravitational field. Here we mainly discuss the gravitational lensing effect caused by the

large-scale structure. Lensing can also be caused by local mass distributions such as

clusters with large masses and galaxies, but these are not in the scope of this thesis. On

cosmological scales, the deflection effect is small, so that the convergence κ, which I will

introduce in the following section, is much smaller than unity. In this case, the type of

lensing is called weak lensing.

Unlike other astronomical observations, such as the statistical distribution of galaxies

or cosmic velocity fields, weak gravitational lensing measures the gravitational potential

directly, and thus is not sensitive to the light-mass biasing or dynamics of a complicated

system.

The weak lensing signal is mainly determined by the source distribution, the matter

density Ωm, the slope of the power spectrum Γ, and the normalization σ8. As comple-

mentary measurements to the CMB, weak lensing observations could help to break the

degeneracy of cosmological parameters.

1.4.1 Formalism of cosmological lensing

Here we follow the notation in Schneider et al. (1998). We only consider the scalar

perturbations in the perturbed Robertson-Walker metric. In the conformal Newtonian

gauge,

ds2 = −(1 +
2Φ

c2
)c2dt2 + a2(t)(1 − 2Φ

c2
)(dχ2 + fK(χ)2(dθ2 + sin2 θdϕ2) , (1.25)

where Φ is the Newtonian gravitational potential.

If all light rays from a source are deflected by the same amount, the image of the
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object cannot be distinguished from the original. Therefore, the absolute deflection of

light rays has no physical meaning. We will therefore consider the deflection of rays

relative to a fiducial ray. For a bundle of rays that enclose a fiducial ray in the center

and intersect at the observer, we can denote each rays by its initial angular separation θ

from the fiducial ray. The comoving transverse separation of one ray will be x(θ, χ) when

the photons propagate along the fiducial ray for a comoving distance χ. The geodesic

equation is

d2
x

dχ2
+Kx = − 2

c2
[

∇⊥Φ (x (θ, χ) , χ) −∇⊥Φ0(χ)
]

, (1.26)

where Φ(x(θ, χ), χ) is the potential on a deflected ray, while Φ0(χ) is the potential on

the fiducial ray, and ∇⊥ is the gradient component on the transverse plane. Note the

factor of two difference between Newtonian gravity and Einstein’s theory in the weak

field approximation (Φ ≪ c2) for massless particles. Based on this simple relation, we

can straightforwardly calculate the trajectory of photons. The integrated deflection can

be calculated using the following formula:

x(θ, χ) = fK(χ)θ − 2

c2

∫ χ

0

dχ′fK(χ− χ′)
[

∇⊥Φ (x (θ, χ′) , χ′) − ∇⊥Φ(0)(χ′)
]

. (1.27)

The Jacobian matrix, which describes the mapping between the source plane and the

image plane, is given by

Jij(θ, χ) = δij −
2

c2

∫ χ

0

dχ′ fK(χ− χ′)fK(χ′)

fK(χ)
Φ,ik (x (θ, χ′) , χ′)Jkj(θ, χ

′) . (1.28)

Here i and j refer to the two perpendicular components on the transverse plan, and Φ,ik

is the second-order derivative of the potential with respect to the transverse coordinates.

Note that the integral is along the actual perturbed path of each photon. Since it is a

weak gravitational field, J can be expanded into powers of the potential Φ. Normally

only the lowest order is considered:

Jij(θ, χ) = δij −
2

c2

∫ χ

0

dχ′fK(χ− χ′)fK(χ′)

fK(χ)
Φ,ij (fK(χ′)θ, χ′) . (1.29)
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Furthermore, the deflection is integrated along the unperturbed path, and this is called

the Born approximation. Those two approximations can greatly simplify the calculation.

The physical quantity frequently used to describe a lensing field is the convergence κ

and the shear γ, which are defined by

J(θ, χ) =







1 − κ− γ1 −γ2

−γ2 1 − κ + γ1






.

κ describes the isotropic magnification, while γ1 and γ2 describe the anisotropic distortion.

The convergence and shear can be defined as κ = (Φ,11 + Φ,22)/2, γ1 = (Φ,11 − Φ,22)/2

and γ2 = Φ,12.

Limber’s equation

In the small angle approximation (Limber, 1954), ∇2
⊥ can be replaced by ∇2 in the

integral. It is a very important simplification, when combined with the Poisson equation,

∇2Φ =
3H2

0

2
Ωm

δ

a
. (1.30)

This leads to Limber’s equation:

κ(θ) =
3

2

(

H0

c

)2

Ωm

∫ χH

0

g(χ)
δ(fK(χ)θ, χ)

a(χ)
dχ, (1.31)

where

g(χ) =

∫ χH

χ

dχnχ(χ′)
fK(χ′ − χ)fK(χ)

fK(χ′)
, (1.32)

nχ(χ) is the distribution function of sources, and χH is the comoving distance to the

horizon. The convergence of the mapping is then related to the matter distribution in

the universe: it is the line of sight integrals from the source to redshift zero. Therefore,

we can probe the large-scale structures through measurements of the weak lensing effect.

Kaiser (1996) derived the Fourier-space version of Limber’s equation:

ℓ2Cκ
ℓ

2π
=

9

4

(

H0

c

)4

Ω2
m

∫ χH

0

dχ
g2(χ)

a2(χ)
P

(

ℓ

fK(χ)
, χ

)

, (1.33)
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where ℓ2Cκ
ℓ /2π is the two-dimensional power spectrum of the κ field, 〈κ(ℓ)κ⋆(ℓ′)〉 =

(2π)2δ2D(ℓ−ℓ
′)Cκ

ℓ . The equation is valid when the power spectrum P evolves slowly over

time corresponding to the scales of fluctuation of interest, and these fluctuation scales

are smaller than the curvature scale. It also requires the small angle approximation.

Limber’s equation can also be written as the integral over all redshifts, as shown in Eq.

(2.9). For convenience, in this thesis, comoving distances are used instead of χ:

D(z) = fK(χ(z)) . (1.34)

A source with size L at redshift z will correspond to an angle L/a(z)D(z).

E-B mode decomposition

Because shear is a spin-2 field, similar to the polarization of light, γ1 and γ2 are equivalent

to Stokes quantities Q and U . We can define an E-mode component (analogous to

an electric field) and a B-mode component (analogous to a magnetic field) from these

quantities:

E(ℓ) = γ1 cos 2φℓ + γ2 sin 2φℓ , B(ℓ) = −γ1 sin 2φℓ + γ2 cos 2φℓ , (1.35)

where φℓ is the angle between ℓ and the coordinate. Therefore, any lensing field can be

decomposed into an E-mode field, and a B-mode field.

On the other hand, a more general treatment of a distortion matrix should also include

the rotation ω.

J =







1 − κ− γ1 −γ2 + ω

−γ2 − ω 1 − κ + γ1






.

An important but elusive fact is that the E-mode is actually equal to κ, and the

B-mode is equal to the rotation ω (Hirata & Seljak, 2003). κ can also be calculated from

γ using the equation: κ2(ℓ) = γ1(ℓ)
2 +γ2(ℓ)

2. Gravity can only generate the E-mode, the

B-mode (or rotation) measured from lensing experiment comes from other sources and

can be used as a good estimation of the systematic noise.
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1.4.2 Cosmic shear

The weak gravitational lensing effect was first studied with distant galaxies. The light

from the galaxies is disturbed by the gravitational field, and therefore the apparent images

of the galaxies are distorted. When the distortion is small, the effect of lensing field can be

measured from the statistical change in the ellipticity of galaxies, which is called cosmic

shear. Lensing can also be measured by the magnification effect (Jain, 2002; Zhang &

Pen, 2005), however it is difficult to measure with data from current observations.

With various observations successfully completed in about a decade, such as VIRMOS-

DESCART (Van Waerbeke et al., 2000, 2002), RCS (Hoekstra et al., 2002), CFHTLS

(Hoekstra et al., 2006; Semboloni et al., 2006), COSMOS (Massey et al., 2007a,b), cosmic

shear has become an important tool to constrain cosmological models. The consistency

of different observations on different telescopes, self consistency of different statistics in

single surveys, and the agreement of cosmic shear measurements with other cosmological

observation methods, have all shown that cosmic shear signals are from cosmic structures

(Van Waerbeke & Mellier, 2003).

To compare observations with theory, two-point statistics of κ or γ are calculated

from the shear measurement. In practice, shear correlation functions 〈γtγt〉 and 〈γrγr〉

are calculated, where γt and γr are the tangential and 45 degree rotated components

of shear, respectively. These shear correlation functions can then be separated into E-

mode and B-mode components. Because lensing only generates E-mode, the B-mode

component can provide a measurement of systematics. Another frequently used two-

point statistics is aperture mass variance, which is the variance of the convergence map

smoothed with an aperture window. The aperture mass variance can also be calculated

from the measured shear correlation function through a finite integral.

Although computationally more complicated, the power spectrum, widely used in

other cosmological observations such as CMB and galaxies surveys, is a more convenient

choice of two-point statistics for the cosmological interpretation of lensing. Lensing power
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spectra were also measured from cosmic shear data (Pen et al., 2002; Padmanabhan et al.,

2002). Because cosmic shear is an integrated effect of the dark matter distribution along

the line of sight, one could reconstruct the dark matter distribution by inverting Limber’s

equation (Pen et al., 2003), similar to the extraction of the 3-D galaxy power spectrum

from the galaxy angular power spectrum (Maddox et al., 1990; Baugh & Efstathiou,

1993; Dodelson & Gaztañaga, 2000; Eisenstein & Zaldarriaga, 2001; Dodelson et al.,

2002). Pen et al. (2003) presented the results for the minimum variance inversion using

a singular decomposition (SVD) technique with the data from the VIRMOS-DESCART

survey. The evolution of the dark matter power spectrum was assumed to be linear, and

the power spectra were evolved back to z = 0. The inverted 3-D power spectrum agrees

well with the CMB and the RCS lens survey.

Higher order statistics, such skewness, have a different dependence on the cosmological

parameters (Bernardeau et al., 1997; Van Waerbeke & Mellier, 2003), and can be used

to break the degeneracy between Ωm and σ8 (Zhang et al., 2003; Vafaei et al., 2008):

σκ = 〈κ2〉1/2 ∝ σ8Ωm
0.8 ,

S3(κ) =
〈κ3〉
〈κ2〉2 ∝ Ωm

−0.8 . (1.36)

The three-point correlation in Fourier space (bispectrum) was also measured (Pen et al.,

2003). The predictions on the three-point or even higher order statistics can be calculated

from hierarchical perturbation theory or measured from ray-tracing simulations of lensing

(Schneider et al., 1998; Dodelson & Zhang, 2005).

The estimation of the cosmological parameters can be performed by maximizing the

likelihood function. Hoekstra et al. (2006) found that σ8 = 0.85 ± 0.06 with a fiducial

matter density Ωm = 0.3, which agrees well with previous works.

Cosmic shear, or weak lensing in general, is not only useful for the mapping of dark

matter, but also helpful for exploring dark energy. Dark energy enters the calculation

in two ways. First, the growth of structure depends on G(z), and second, the comoving
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distances D(z) between the source, lens, and observer are very sensitive to dark energy.

Both G(z) and D(z) are sensitive functions of redshift. Hoekstra et al. (2006); Semboloni

et al. (2006) tried to investigate the dark energy constraint from CFHTLS deep and wide

surveys data assuming a constant equation of state w. They both found w < −0.8

at 68% confidence level. In the report of Dark Energy Task Force (DETF)4 (Albrecht

et al., 2006), four methods, including Baryon acoustic oscillations (BAO), galaxy cluster

counting, supernova, and weak lensing, were compared using their capacity to constrain

dark energy. They reported that weak lensing is the method with the greatest potential,

though it is likely to be limited by unknown systematics.

There are a few practical factors which limit the precision of weak lensing measure-

ments, even though the underlying physics of weak lensing is very clean. First of all,

because cosmic shear produces only a small percentage of change on the ellipticities of

galaxies, measuring it from images of galaxies is a challenging problem (Heymans et al.,

2006; Massey et al., 2007c). The images are convolved with the Point Spread Function

(PSF) of the atmosphere, telescope, and camera. This is the main concern for ground

based surveys, though the images from space based surveys are less affected. Secondly,

the lensing effect depends on the geometry between the source, lens, and observer. Mea-

suring the redshift of more than thousands of galaxies accurately is a crucial problem.

Current surveys normally use photometric redshifts, which could add uncertainties to

the results (Ma et al., 2006). Finally, there is contamination from the unknown intrinsic

ellipticity of galaxies and their correlation with neighboring galaxies caused by local tidal

forces (Croft & Metzler, 2000; Heavens et al., 2000; Lee & Pen, 2001; Crittenden et al.,

2001). One can try to eliminate these effects by not counting the galaxies in the same

redshift bins when the two-point functions of shear are calculated.

4http://home.fnal.gov/ rocky/DETF/
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With numerous next generation surveys such as DUNE5, JDEM6, PanSTARRS7,

LSST8 from both space and the ground, cosmic shear seems very promising as a tool to

understand dark energy (Albrecht et al., 2006). As we mentioned earlier, the dark matter

distribution itself follows an non-Gaussian distribution. The non-Gaussianity degrades

the Fisher information content of dark matter power spectrum by order of magnitudes,

and causes saturation effect at trans-linear scales (Rimes & Hamilton, 2005). It will

be useful to study how much this will affect the dark energy constraints resulting from

cosmic shear surveys.

Because the statistics of cosmic shear are non-Gaussian, to correctly estimate the

constraints on cosmological parameters, using the likelihood function, requires the input

of higher order statistics such as the covariance matrix of the correlation function or the

power spectrum. This is often provided by ray-tracing lensing simulations. As we will

explain in chapter 2, the four-point statistics of the κ field generated from ray-tracing

simulations are biased because of the inevitable recycling of simulation boxes. This issue

is less serious with the two-point statistics. In chapter 2, we will present a new method

for calculating the covariance matrix from simulations, and probing its constraints on

dark energy parameters.

1.4.3 Lensing reconstruction from diffuse background

Galaxies are plentiful on the sky, but their intrinsic properties are not understood from

first principles, and must be measured from the data. Future surveys may map as many

as 1010 source objects. Using galaxies as lensing sources has several potential limits

(Hirata & Seljak, 2004), including the need to calibrate redshift space distributions and

PSF corrections, to be better than the desired accuracy, say 1%. This will be challenging

5http://www.dune-mission.net
6http://jdem.gsfc.nasa.gov/
7http://pan-starrs.ifa.hawaii.edu
8http://www.lsst.org
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for the next generation of experiments.

Some sources, such as the CMB, are in principle very clean, since its redshift and

statistical properties are well understood. Unfortunately, there is only one 2-D CMB sky

with an exponential damping at ℓ ≫ 1000, which limits the number of source modes to

∼ 106.

The potential of detecting the 21-cm background from the dark ages will open a new

window for cosmological detections. Studying the 21-cm background as high redshifts

lensing source, as well as the physics of the 21-cm background itself, will provide rich

and valuable information to the evolution of universe. The number of modes on the sky

is potentially very large, with numbers of 1016 or more. For this reason, 21-cm lensing

has recently attracted attention.

The lensing reconstruction method for CMB and 21-cm background are different from

galaxies. Galaxies are resolved lensing sources, and thus the lensing effect can be deter-

mined by the change in the shape of galaxies. In diffuse sources, individual objects can

not be distinguished and only a diffuse background can be mapped. For such sources,

quadratic estimators need to be constructed to extract the lensing signal. I first heuris-

tically review quadratic lensing estimation in two dimensions. Then I briefly introduce

the works done with CMB Lensing in 2-D. Later I will proceed with a generalization to

3-D with a quantitative derivation in Chapter 3 and 4.

Lensing changes the spatial distribution of a temperature field. Lensing estimation

relies on statistical changes to quadratic quantities in the source plane temperature field.

We use a tilde to denote a lensed quantity. All estimators work by convolving the

temperature field with a window,

T̃1(x) =

∫

d2x′T̃ (x′)W1(x − x
′) , (1.37)

and a second window

T̃2(x) =

∫

d2x′T̃ (x′)W2(x − x
′) . (1.38)
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The quadratic estimator is simply the product of the two convolved temperature fields,

E(x) ≡ T̃1(x)T̃2(x). (1.39)

In the weak lensing case, the estimator is a linear function of the weak lensing parameters

(κ, γ). The simplest case is two equal, azimuthally symmetric window functions W1 =

W2 = f(r). We first consider the limit where κ is a constant value, then the estimator is

linearly proportionate to κ:

〈E(x)〉 ∝ κ+ V , (1.40)

and V is a normalization constant proportional to the mean covariance of the smoothed

temperature field when lensing is absent 〈T1(x)T2(x)〉. Here 〈...〉 means ensemble average.

For a stochastic random field, the ensemble average can be calculated by the volume

average if the volume is big enough. We can absorb V as well as the normalization

coefficient into E for convenience, i.e., E(x) ≡ T̃1(x)T̃2(x) − V . Therefore E(x) is an

unbiased estimator of κ, i.e., 〈E(x)〉 = 〈κ̂(x)〉 = κ. When κ is spatially variable, E needs

to be normalized by a scale dependent factor b(k). This corresponds to a convolution of

κ with a kernel:

〈E(x)〉 =

∫

d2x′κ(x′)b(x − x
′) , (1.41)

where kernel b is the Fourier transform of the normalization factor. Therefore E(k) =

b(k)κ̂(k), here κ̂(k) is the Fourier transform of the estimator κ̂(x).

One can optimize the functions to minimize the error on the lensing variables. In this

thesis we will compare various forms of the smoothing windows, which include as special

case the traditional Optimal Quadratic Deflection Estimator (OQDE). The simplest case

is a constant value of κ, for which one can compute its variance

〈κ̂2〉 = 〈(T̃1(x)2)2〉. (1.42)

Lensing is a small perturbation of the variance, therefore we can calculate the variance

from the unlensed source field, i.e., 〈(T1(x)2)2〉 ≈ 〈(T̃1(x)2)2〉. Performing a variation to
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minimize the variance, one can find the optimal window function. Generally, one would

think a fixed window function might not be optimal for all scales, i.e., 〈κ̂(k)2〉 might

not be minimized at the same time for all k modes. Fortunately, it turns out that the

optimal window functions do not depend on the spatial structure of the lensing field.

Only the normalization factor b in Eq. (1.41) is scale dependent. We solve the optimal

window function at scales k = |k| . ka, where the constant κ approximation works well.

Here the characteristic scale ka is determined by the smallest scale kc of 21-cm sources

resolved in a given experiment, as well as the non-Gaussianity of sources. We will explain

the details later in section 3.3. We expect the resulting window function to be optimal

for all scales, and will verify this at section 3.4.

Shear and deflection angles are tensorial and vectorial quantities and require anisotropic

or vectorial choices of the window function

Eγ = T̃1T̃2, T̃1 =

∫

d2θ′T̃ (θ′)W1(θ − θ
′), T̃2 =

∫

d2θ′T̃ (θ′)W2(θ − θ
′) , (1.43)

Ed = T̃1T̃2, T̃1 =

∫

d2θ′T̃ (θ′)W1(θ − θ
′), T̃2 =

∫

d2θ′T̃ (θ′)W2(θ − θ
′) . (1.44)

This will be explained in detail in section 3.2 and section 3.2.1.

The source is usually treated as a Gaussian random field in the literature on recon-

struction methods. While this is valid for CMB on large angular scales, 21-cm back-

ground sources are not necessarily Gaussian. In this thesis we attempt to understand

the influence of this non-Gaussianity. Optimal estimators for Gaussian sources are not

necessarily optimal for non-Gaussian sources. Here, we will construct the convergence

and shear field directly, instead of following the deflection angles or potential field recon-

struction in CMB lensing. There are three reasons to do this: Firstly, the strength of

lensing is evident through the magnitude of κ or γ since they are dimensionless quan-

tities. The rms deflection angle of photons from 21-cm emission is at the magnitude of

a few arcmin, which is comparable to the lensing scales we are resolving. Some authors

argued that perturbation theory on the deflection angle will break down at these scales
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(Cooray, 2004; Mandel & Zaldarriaga, 2006). However, κ and γ are still small and can

still work with perturbation calculations without ambiguity. Secondly, κ and γ have well

defined limits as they approach a constant, while only spatially variable deflection angles

or potentials can be measured. This significantly simplifies the derivations. Finally, κ

and γ are standard variables to use in broader lensing studies, such as strong lensing and

cosmic shear. Using the same convention in different subfields will help to generalize the

underlying physics of lensing.

In chapter 3, we will derive the optimal quadratic estimators for κ and γ separately

assuming a Gaussian source distribution. These estimators are unbiased, as shown in

appendix A, though they are non-optimal for non-Gaussian sources. Furthermore, we

confirm that our combined estimators for κ and γ have the same optimality as the OQDE

for Gaussian sources. We generate non-Gaussian sources from cosmological simulations,

and apply both OQDE and our estimators. We find our new estimators are superior.

In chapter 4, we construct the optimal estimator for non-Gaussian sources. The

estimator is composed by the inverse covariance matrix of source power spectrum, which

is measured from a large number of independent N-body simulations. We find the optimal

estimator have a few times fewer noise than the Gaussian optimal estimator of chapter

3.

2-D case: CMB Lensing

Though my thesis mainly focuses on lensing reconstruction with 21-cm sources, the lens-

ing estimators we will use in chapter 3 and 4 use the same approach as CMB lensing,

and therefore it is helpful to explain what CMB lensing is.

The CMB, which originates from the last scattering surface, is the farthest source

which can be observed. The CMB is an approximately uniformly distributed background

radiation at a temperature of 2.725K today, with a fluctuation level of 10−5. According to

inflation theory, the CMB fluctuation follows a Gaussian distribution. The CMB photons
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are distorted by the large-scale structure as they propagate from z ∼ 1100 to present, and

can be used to explore the large scale structure from present time to the last scattering

surface at redshift 1100. This will change the statistical distribution of the background

radiation. We will discuss the lensing of CMB by large-scale structure. The CMB is also

lensed by clusters (Seljak & Zaldarriaga, 2000), which will not be discussed here. The

deflection is at about the 2 arcmin level (Lewis & Challinor, 2006). The CMB power

spectrum is suppressed by a few percent at ℓ ∼ 1000, and has an added tail at ℓ > 6000.

This makes it hard to distinguish the lensing from CMB power spectrum directly.

Seljak and Zaldarriaga (Zaldarriaga & Seljak, 1999; Seljak & Zaldarriaga, 1999) first

started to extract lensing information by constructing quadratic estimators which are

two-point function of the lensed temperature field. The estimators are the natural results

of perturbation theory. They constructed the estimators with

Eκ =
−σ−1

S [T̃ 2
,x + T̃ 2

,y](θ) + 1

2
,

Eγ1
=

−σ−1
S [T̃ 2

,x − T̃ 2
,y](θ)

2
,

Eγ2
= −σ−1

S [T̃,xT̃,y](θ) , (1.45)

where T̃,x, T̃,y are the gradients of the lensed temperature field at the two perpendicular

directions, and σS is the normalization constant. These quadratic estimators can give

unbiased results, i.e., 〈Eκ〉 = κ, 〈Eγ1
〉 = γ1, 〈Eγ2

〉 = γ2, however they do not provide the

minimum noise. A widely used estimator is the minimum variance quadratic estimator

for the deflection angle or potential (Hu, 2001). The original form of their estimator is

Ed(ℓ) = iℓN(ℓ)

∫

d2ℓ

(2π)2
T̃ (ℓ′)T̃ (ℓ′ − ℓ)g(ℓ, ℓ′) , (1.46)

g(ℓ, ℓ′) =
(ℓ − ℓ

′) · ℓC
|ℓ−ℓ

′
|
+ ℓ

′ · ℓCℓ

2C̃tot

ℓ
′ C̃tot

ℓ−ℓ
′

, (1.47)

where N(ℓ) is a normalization factor, which happens to be the reciprocal of the recon-

struction noise; T̃ (ℓ)T̃ (ℓ′) = δ2D(ℓ− ℓ
′)C̃ℓ, C̃

tot
ℓ = C̃ℓ + CN

ℓ , C̃ℓ is the power spectrum of
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the lensed CMB temperature map, and CN
ℓ is the experimental noise contribution. We

could rewrite the estimator as the product of two smoothed temperatures:

Ed(θ) = T1(θ)T2(θ) , (1.48)

and

Ed(ℓ) = bd(ℓ)d(ℓ) . (1.49)

bd is a normalization factor, T1 =
∫

d2θ′T (θ′)W1(θ−θ′) and T2 =
∫

d2θ′T (θ′)W2(θ−

θ
′) are convolved temperature fields, where the window functions are Fourier transforms

of (Lewis & Challinor, 2006):

W1(ℓ) =
−iℓCℓ

C̃tot

ℓ

,

W2(ℓ) =
1

C̃tot

ℓ

. (1.50)

The CMB is a 2-D distribution, so that there is one CMB sky behind one patch of

lensing field. The CMB lensing reconstruction itself can be very noisy. However, this can

be improved by cross correlating a lensed CMB map with other cosmic structure tracers

such as galaxies distributions. The lensing signal was first detected in the CMB by Smith

et al. (2007): They found a 3.4σ detection in the cross correlation of the all sky WMAP

CMB map and the radio galaxies in the NRAO VLA Sky Survey (NVSS).

3-D case: 21-cm Lensing

In this thesis, I will mainly discuss the lensing of 21-cm emission from neutral Hydrogen

gas, from before and during the epoch of ionization (z ∼ 7 − 20), and at lower redshifts

(1 < z < 6).

The 21-cm line emission is the transition between the two spin-flip states status of

ground state neutral hydrogen. In the Rayleigh-Jeans limit, the brightness temperature

Tb of 21-cm radiation in a patch of the sky is equal to

Tb = TCMBe
−τ + Ts(1 − e−τ ) , (1.51)



Chapter 1. Introduction 29

where TCMB is the temperature of CMB photons, Ts is the spin temperature, and the

optical depth (Iliev et al., 2002) can be calculated as

τ =
3λ3

0A10T⋆nHI(z)

32πTsH(z)
=

0.28

Ts

(
1 + z

10
)3/2 ρHI

〈ρH〉 , (1.52)

T⋆ = 0.068 K came from the the energy difference E10, A10 is the Einstein coefficient,

λ0 = 21.16 cm is the rest frame wavelength of the emission, nHI and ρHI are the number

density and density of neutral hydrogen, and 〈ρH〉 is the mean density of total hydrogen.

Therefore, the increment of brightness temperature on top of the CMB background δTb ≈

(Ts − TCMB)τ/(1 + z) is also proportional to the ionization ratio and the density at that

region. The spin temperature of 21-cm radiation is defined by

n1

n0
=
g1

g0
e−E10/kBTs , (1.53)

where n1, n0 are the number densities of electrons at the two spin level, g1/g0 = 3 is

the ratio of spin degeneracy factors, and kB is the Boltzmann constant. When the

spin temperature is higher than the CMB temperature, emission will be observed; while

absorption will be observed when Ts is lower than TCMB. For z ≈ 140−1000, TK ≈ TCMB

because of Thompson scattering of CMB photons. For z ≈ 20 − 140, the gas decouples

from the CMB photons and cools adiabatically, and Ts is coupled to TK by collisions,

which is below TCMB. Later, when the first generation of stars form and ionize the

surrounding gas, the kinetic temperature of the gas become higher than TCMB from

heating by X-rays, Lyα photons, and shocks. Ts is coupled to TK by Lyα pumping

(or Wouthuysen-Field effect) (Wouthuysen, 1952), Ts ≈ TK ≫ TCMB (Ciardi & Madau,

2003). We can generally observe 21-cm emissions from re-ionization.

Because the 21-cm line is a forbidden emission line, the optical depth τ is much

smaller than 1. Therefore, the 21-cm sources up to very high distances (z ∼ 1 − 140)

can be observed. Furthermore, Hydrogen is the most abundant element in the universe

(75% of total ), and 21-cm line emission is a rich source for cosmological detections. We

can use 21-cm line to probe a large part of the Hubble volume. Most importantly, since
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21-cm line is a line emission, the redshifts of sources are determined straightforwardly by

comparing the frequency of observation with the intrinsic wavelength.

The ongoing 21-cm surveys, such as the Giant Metre Radio Telescope (GMRT) ex-

periment (Pen et al., 2008), 21CMA9, and many upcoming experiments such as Low Fre-

quency Array (LOFAR10) (Kassim et al., 2000), Murchison Widefield Array (MWA11),

and Square Kilometer Array (SKA12) (van Haarlem, 2000), make it promising to study

21-cm for both cosmological and astrophysical interests.

There are a few advantages to use the 21-cm line as lensing sources. The 21-cm

sources have structures on small scales and exist between a broad range of redshifts,

which indicates a high source number density and thus less noise. the 21-cm sources

are located at high redshift, so that the lensing signal is strong. Furthermore, the 21-

cm map naturally contains three-dimensional information. The redshift distribution of

sources can be determined with small errors.

21-cm emission is similar to the CMB since both are diffuse background. Therefore,

the techniques used in CMB lensing can be applied to the 21-cm lensing study. On the

other hand, 21-cm is unlike CMB, which has an intrinsic Gaussian distribution. Non-

linear gravitational clustering leads to non-Gaussianity, and ultimately to reionization.

In contrast to CMB lensing, where the Gaussian assumption works well, non-Gaussianity

in 21-cm lensing may affect the results. However, most of the reconstruction methods are

based on a Gaussian source distribution assumption, and their results are also discussed

for Gaussian sources. (Pen, 2004; Cooray, 2004; Zahn & Zaldarriaga, 2006; Metcalf &

White, 2007; Hilbert et al., 2007).

In chapter 3, we will address this non-Gaussianity problem of the lensing of 21-

cm sources at the epoch of reionization. We develop optimal estimators for κ and γ

9http://web.phys.cmu.edu/ past/, http://21cma.bao.ac.cn/
10http://www.lofar.nl/
11http://www.mwatelescope.org/
12http://www.skatelescope.org/
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under a Gaussian assumption. Non-Gaussian sources are generated from cosmological

simulations, and we examine the influence of non-Gaussianity with the estimators using

the simulated sources. We find that non-Gaussianity could increase the reconstruction

noise by orders of magnitude.

21-cm radiation from post reionization redshifts (z < 6) might be easier to detect, and

will allow data to be obtained sooner compared with those from the epoch of reionization,

because their distance is closer. Interests in mapping these 21-cm sources are shown by

multiple groups (Peterson et al., 2006; Tegmark & Zaldarriaga, 2008; Wyithe et al., 2008;

Chang et al., 2008). The most recent one, CHIME (Chang et al., 2008) proposed to map

the intensity of 21-cm sources at z ∼ 1 − 3 for half of the sky in two years of operation.

The original goals of these surveys are to measure the BAO, where the sound horizon

scale, rs ∼ 150Mpc, works as a standard ruler for cosmological distance. If we use these

21-cm intensity maps at z ∼ 1 − 3 as lensing sources, the lenses at z ∼ 0.5 − 1 can be

explored, where the cosmic structures are very sensitive to different models of dark energy.

In Chapter 4, we numerically construct the optimal estimator for non-Gaussian sources

by running hundreds of N-body simulations. We will show that the reconstruction noise

from the optimal estimator is a few times lower than the optimal Gaussian estimator,

and reduced dramatically by a large sky coverage experiment like CHIME.

1.5 Cosmological simulations and the application in

lensing

The large-scale structure of the universe can be well described by linear perturbation

theory in many research fields. However, because lensing phenomena is sensitive to non-

linear effects at ℓ ≥ 1000 (Jain & Seljak, 1997). We have to rely on N-body cosmological

simulations rather than linear perturbation theory. In addition, the covariance of shear

correlations (or power spectra) is a four-point function of the lensing field. Wick’s theorem
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can not be applied, because the lensing field is not Gaussian. The covariance should be

measured directly from simulations.

1.5.1 Cosmological simulations

Many cosmological simulations are using N-body dynamics (Efstathiou et al., 1985;

Bertschinger, 1998). The universe are assumed to be homogeneous so that it is suffi-

cient to set periodic boxes, usually about a few hundred Mpc at each dimension. The

box needs to be big enough to be a fair sample of the universe. The dark matter and gas

distribution are approximately represented by millions or even billions of particles in a

cosmic volume. Because simulations are conducted at very large scale and motion of the

particles are much smaller compared to the speed of light, Newtonian gravity law can

be used. Particles are evolved forward in time with Newtonian force interaction. The

forces are calculated from density distribution by solving Poisson equation through Fast

Fourier Transform (FFT).

There are two representative schemes in cosmological simulations: particle-mesh (PM)

and Tree method. Several improvements on these methods are achieved such as particle-

particle/particle-mesh(P3M), adaptive mesh algorithm and some hybrid methods. The

Tree algorithm could achieve high resolution, and is good at studying local physical

processes such as galaxy formation. On the other hand, the featured advantage of PM

algorithm is its faster speed than Tree. Because we need a large number of simulations

to understand the uncertainties in lensing statistics, we used a PM algorithm.

The initial power spectrum of density is calculated from

P (k) = Akn|T (k)|2 , (1.54)

where T (k) is the transfer function, and n is the spectral index. The amplitude A can

be determined by the normalization of σ8. We normalize it from WMAP measurement

in this thesis.
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The initial particle distribution is a Gaussian random field. To generate the particle

distribution, we generally apply the Zeldovich approximation. The initial displacement

of particles can be written as

x(t) = q +G(t)f(q), (1.55)

v = a
dx

dt
= a

dG

dt
f , (1.56)

where x is the Eulerian position, q is the Lagrangian position, f(q) is the displacement

field as a function of coordinate. If there is a perturbation, the gravitational collapse first

happens along the shortest axis and the structure becomes flattened. The displacement

field can be solved by linearized continuity equation,

∇ · f = − δ

G(t)
, (1.57)

where f = ∇ψ is the gradient of a potential. The Zeldovich approximation is the first

order perturbation theory in the Lagrangian coordinate.

1.5.2 Multiple-plane ray-tracing lensing simulation

In the cosmological scale, the dark matter distribution is approximated by a series of mass

sheet, called “multiple lens-plane approximation”. The Jacobin matrix is calculated by

the sum of Jacobin at individual lens plane (thin lens approximation).

J =
∑

J(zi) (1.58)

The higher order terms including the correlation between lens planes are neglected.

In simulations, each output volume is treated as the projected mass sheet at the

mid-plane. Rays are shot through these planes, and deflections are calculated on each

plane. This treatment is valid under the Born approximation. There are also many

modifications to the ray-tracing method to examine the effect of various approximations,

e.g., Born approximation, Limber approximation, secondary effect such as Lens-Lens
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coupling (White & Hu, 2000; Jain et al., 2000; Hamana & Mellier, 2001; Hamana et al.,

2002; Semboloni et al., 2007). As we will present in Chapter 2, a large number of

independent simulations are much more important than the correction of the Born and

Limber approximations in our study of lensing statistics uncertainties. We also find a

way to calculate the Fisher matrix of lensing power spectra from a finite number of

simulations without worrying about the redundancy of simulation data.

An alternative approach of lensing simulations is the ray bundle method. Barber et al.

(1999) use bundles of rays to represent a circular images and calculate the change of the

shapes and area. However, their approaches are more complicated, and not suitable for

lensing statistics studies with a large number of simulations.

1.5.3 Simulation code

Our numerical simulations in this thesis are performed using the publicly available N-

body codes PMFAST (Merz et al., 2005) and CUBEPM13.

PMFAST is a two-level mesh PM code highly parallized and optimized for speed.

PMFAST is supported by distributed memory systems through MPI and shared memory

via OpenMP. The gravitational forces are decomposed into a long-range part and a short-

range one. The forces are then computed on the two level of meshes. The coarse mesh

is global, and four times coarser than the local fine mesh. Most of the force calculations

are done locally on the fine mesh. The global coarse forces are updated after several

time steps, while the fine forces are calculated every time step. The simulation volume

is decomposed along one dimension (slab decomposition). Computation of each part is

performed on one node. The communications between these nodes are realized by MPI.

Further shared-memory parallelization is done via OpenMP to optimize memory usage

on shared memory nodes. PMFAST was run on the lobsters cluster of CITA. The largest

run is on a 37123 mesh with 6.4 × 109 particles, which take nearly a week to finish at

13http://www.cita.utoronto.ca/mediawiki/index.php/CubePM
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z = 0 with about 300 time steps. We will use PMFAST in chapter 3.

CUBEPM is the successor to PMFAST: the decomposition of the simulation volume in

CUBEPM is done cubically, which allows more nodes to be used, making the code much

faster. In addition to the features provided by PMFAST, CUBEPM contains support

for gas evolution through use of a TVD MHD module, and has particle-particle forces

implemented at sub-grid scales. To improve the force resolution, CUBEPM has the option

to use a P3M function. The short-range gravitational force is further decomposed to a

super-grid and sub-grid parts. The super-grid force is done by FFT while the sub-

grid force is calculated by direct sum of forces between particles (particle-particle or PP

calculation). The PP is usually performed at distances of a few grid sizes. The simulation

volume (which is also called simulation box) is cubically decomposed to n3 sub-volumes,

and the calculation of each sub-volume is performed on one node of cluster, i.e., the total

number of nodes used in simulation is n3. The code has been optimal scaling up to (and

hopefully beyond) 1000’s of nodes. A typical 5123 mesh simulation with 8 nodes, utilized

in this thesis (chapter 4), takes 2-3 hours, and a 10243 mesh one with the same number

of nodes (chapter 2) takes about 5 hours to finish. This makes it possible for us to run

hundreds of simulations for many different redshifts and resolutions, which is crucial to

our study of statistical uncertainties.

My thesis is organized as follows: In chapter 2, I will present the Fisher information

and dark energy constraints with a new method of generating the covariance matrix of

the lensing power spectrum from simulations. The content is based on Dore et al. (2009).

In chapter 3, I will present our work on the lensing reconstruction using 21-cm at redshift

10 to 20, which is based on Lu & Pen (2008) ( c©2008. Royal Astronomical Society). In

chapter 4, I will discuss the lensing of 21-cm source at post reionization era and show its

utilization in the constraint of dark energy models at ℓ < 100. This chapter is based on

Lu et al. (2009). I conclude in chapter 5.



Chapter 2

The information content of cosmic

shear surveys

2.1 Overview

What is the information content of cosmic shear surveys? Although this question has

been addressed many times, given the current interest in cosmic shear surveys, to answer

it accurately turns out to be a non-trivial task. It is the purpose of this work to offer a

precise answer to this question.

The measure of cosmic shear (Bartelmann & Schneider, 2001; Van Waerbeke & Mel-

lier, 2003) is considered to be one of the most promising observational tools to understand

the origin of the accelerating expansion of the universe (Albrecht et al., 2006). Commonly

attributed to the existence of some extra unknown physics loosely labelled Dark Energy

(DE), its exact nature has become a salient question in contemporary cosmology (Riess

et al., 2004; Astier et al., 2006; Eisenstein et al., 2005; Cole et al., 2005; Tegmark et al.,

2006; Komatsu et al., 2008; Kilbinger et al., 2008). Characterising the physical proper-

ties of dark energy is the main scientific drive for the development of new and ambitious

surveys.

36
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Whereas new cosmic shear surveys are being advocated (Albrecht et al., 2006) and

designed (Amara & Réfrégier, 2007), we want to study in this work how the 3-D Fisher

information saturation in the dark matter power spectrum translates into the cosmic

shear observables. In particular, one question we would like to answer is whether there

exists a scale above which the Fisher Information for the amplitude of the power spectrum

(projected onto the dark energy figure of merit) saturates. Since above a given angular

scale (ℓ ≥ 2000), our lack of precise modeling of the physics of baryons might require

enormous efforts (White, 2004; Zhan & Knox, 2004; Rudd et al., 2008), it would be inter-

esting to know whether such a saturation happens and in particular how it does compared

to this theoretical uncertainty scale. To tackle this question will require computing the

cosmic shear errors in the fully non-linear regime. While this question has already been

investigated in the literature (White & Hu, 2000; Cooray & Hu, 2001; Semboloni et al.,

2007; Takada & Jain, 2008), we will address it using numerical N-body simulations to

probe accurately the full non-linear regime (neglecting baryons), and a new way to build

the covariance matrix from those quantities. This will lead to the improvement of an

order of magnitude in accuracy compared to previous numerical works in the literature.

We will quantify this statement by measuring the errors on the errors using bootstrap

techniques.

In this chapter, we first introduce the methodology of our work in section 2.2, and

then revisit the 3-D matter power spectrum results in section 2.3, which works as an

introduction to cosmic shear case developed in section 2.4. We discuss in section 2.5 the

practical consequences of these results for current and coming optical surveys, as well as

for the CMB lensing.
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2.2 Methodology

If we want to infer a set of parameters λi from observables y of dimension nx following

a multi-variate Gaussian distribution with a covariance matrix C ≡〈yyt〉 − 〈y〉〈y〉, the

Fisher Information matrix is defined as: (Fisher, 1936; Tegmark et al., 1997, 1998)

Fij ≡
1

2
tr

[

C−1 ∂C

∂λi

C−1 ∂C

∂λj

]

+
∂〈y〉
∂λi

C−1∂〈y〉
∂λj

. (2.1)

Its relevance for parameter estimation can be seen from the Cramér-Rao inequality stating

that the Fisher matrix sets a lower bound on how well a parameter λi can be measured,

i.e., σ2(λi) ≥ 1/Fii. We assume from now on that the covariance matrix C does not

depend on λi (for a discussion in the context of cosmic shear, see Eifler et al. (2008)).

Following Rimes & Hamilton (2005) (hereafter RH05), we define the Fisher information

content of y as

Inf ≡
∑

ij

Fij =
∑

ij

∂〈y〉
∂λi

C−1∂〈y〉
∂λj

. (2.2)

In this chapter, the observables we will consider will be either the 3-D matter power

spectra, y = P (k), or the 2-D convergence power spectra y = Cκ
ℓ defined in Eq. (2.9).

The parameters we will focus on will be the standard cosmological parameters, λ =

(w0, wa,Ωm,Ωb, nS, σ8) (Albrecht et al., 2006). We consider a flat cosmological model

where the density is dominated at late times by dark energy whose equation of state

evolves as w = w0 +wa(1−a). The nominal values for these parameters corresponding to

the currently favored model are λ = (1., 0., 0.1334, 0.0228, 0.963, 0.796) (Komatsu et al.,

2008).

For pedagogical reasons, we will also consider a dimensionless version of Eq. (2.2)

¯Inf ≡
∑

ij

C̄−1
ij , C̄ij =

〈yiyj〉
〈yi〉〈yj〉

. (2.3)

This form would be obtained from Eq. (2.2), if we were measuring the amplitude of a

template P (k) (or Cκ
ℓ ), so that the partial derivatives were unity. Note that because of

non-linear effects, this amplitude does not correspond to σ8 or the curvature perturbation
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amplitude AS. What we will define as the Fisher information in section 2.3 and 2.4 is

related to the variance on the amplitude parameter, λ, if the observables are modeled

as y = λȳ. We find this is a convenient way to visualize the property of the covariance

matrix. Given this definition, since we are interested in quantifying the effects on non-

linearities on the Fisher information content of the measured convergence angular power

spectrum (or 3-D matter power spectrum), it will be particularly insightful to investigate

the scaling of ¯Inf with a cut-off scale ℓmax (kmax), i.e., the cumulative Fisher information

content as a function of the smallest (angular) modes measured. The comparison between

the scaling on large scale (low ℓ and k) where the convergence (matter) field is expected to

be Gaussian to the one in the non-linear regime (high ℓ and k), will thus be of particular

relevance. For this purpose, we define in the matter power spectrum case (at wavenumber

kb),

C̄kbkb′<kmax
=

〈Pkb
Pkb′

〉
〈Pkb

〉〈Pkb′
〉 ,

¯Inf(kmax) =
∑

kb,kb′<kmax
C̄−1

kbkb′
, (2.4)

where Pkb
will be defined in Eq. (2.8), which is the matter power spectrum in a k bin.

Similarly, we define in the angular power spectrum case (at multipole ℓ),

C̄ℓ1ℓ2<ℓmax
=

〈Cκz1z2

ℓ1
Cκz3z4

ℓ2
〉

√

〈Cκz1z1

ℓ1
〉〈Cκz2z2

ℓ1
〉〈Cκz3z3

ℓ2
〉〈Cκz4z4

ℓ2
〉
, ¯Inf(ℓmax) =

∑

ℓ1,ℓ2<ℓmax
C̄−1

ℓ1ℓ2
,(2.5)

where Cκz1z2

ℓ will be defined in Eq. (2.9), which is the convergence (cross-) power spec-

trum in a ℓ bin. The definition of ¯Inf in Eq. (2.3) is easy to interpret since in the

Gaussian case, where Cij ∝yiyjδij , it directly reduces to half the number of measured

modes. We thus have a simple analytical prediction for the expected scaling on large

scales. Note that we choose to define ¯Inf(ℓmax) by imposing a sharp cut-off in Fourier

space. An alternative definition consists in marginalizing over all the modes above kmax

(ℓmax) by adding a white noise level so that, for example, the S/N equals to 1 at k = kmax

(ℓ =ℓmax). We found that both approaches give identical results.

As visible from Eq. (2.3), the key quantity to evaluate the Fisher information content

of our observables is the covariance matrix. For this purpose, we will use a Monte-
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Carlo approach and generate nsim realizations of the observables, yk, through N-body

simulations. We make use of the fast, publicly available CUBEPM code.

Given a set of nsim realizations for yk, we define an estimator for C as (see Hamilton

et al. (2006) for a thorough discussion on how to measure C from one simulation only)

C̃ij =
1

nsim

nsim
∑

s=1

(ys
i − µi)

(

ys
j − µj

)

,

µi =
1

nsim

nsim
∑

s=1

ys
i , (2.6)

where ys
k (s = 1, . . . , nsim) are the values from individual simulations. At this point, it

is often missed that the inverse of a maximum-likelihood estimator for a variable y is in

general not an unbiased estimator of the inverse y−1 (Hartlap et al., 2007). To remedy

this fact, a correction factor is required. Since we also evaluate µ from our simulations,

it can be shown that the following estimator for C−1 is unbiased:

Ĉ−1 =
nsim − ny − 2

nsim − 1
C̃−1. (2.7)

In the convergence angular (cross-) power spectrum covariance matrix 〈Cκz1z2

ℓ1
Cκz3z4

ℓ2
〉, we

found that the number of independent modes, ny, is not easy to define. As thus we

dropped this correction factor. However, we checked carefully the convergence of our

results using an increasing nsim as shown in Fig. 2.1 and Fig. 2.3.

Furthermore, to quantify the error on our statements, we will evaluate the errors on

Ĉ−1 by using the bootstrap method (Efron & Tibshirani, 1993). We will consider 1000

sets of nsim simulations randomly drawn from our nsim simulations and apply to each

the formalism defined above. This procedure allows us to weight our initial set of N-

body simulations in a random manner. Even though we do not fulfil all the conditions

required for the bootstrap method to be reliable (in particular our random variables are

correlated), it still gives us a valuable glimpse at the reliability of our statements, i.e.,

the errors on the errors.
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Figure 2.1 Cumulative Fisher information for the matter power spectrum at z = 1 as defined in Eq.

(2.4). We use either nsim = 50, 100, 200, 300 or 400 simulations. The bootstrap error bars are obtained

using an analysis of 1000 sets of 400 simulations. The dashed orange line corresponds to the Gaussian

prediction, i.e., the number of k modes present in the simulations below kmax. Although the convergence

does not appear to be perfect, the difference between the measurements using 300 or 400 simulations is

smaller than the error bars everywhere. As such we can trust the results obtained with 400 simulations.

This plot reproduces the results of RH05.

2.3 Matter power spectrum Fisher information con-

tent

We first focus on the matter power spectrum and revisit the results of RH05. For this

purpose, we ran 400 N-body simulations with their choice of cosmological model, i.e., a

flat ΛCDM model with Ωm = 0.29, ΩΛ=0.71, Ωb = 0.046, σ8 = 0.97 and h=0.71. Since

we are interested in trans-linear scales, which is the transition regime between the fully

linear regime and the fully non-linear regime, simulations with the comoving box-size

L = 256h−1Mpc and 2563 grid points are appropriate to be used. This gives us roughly a

mass resolution of 9.2×1011M⊙ and a force resolution of 1h−1Mpc. The initial conditions
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of the particles distribution were generated at z = 200.

To improve the convergence, increase the rank of C̃, and alleviate numerical issues

when performing the inversion, we define nx = 20 bins logarithmically spaced in k space

and we measure the average power spectrum within a k bin, y = Pb, as

(2π)3

V
〈δ

k
δ∗
k
〉
k∈b = k3

bPb , (2.8)

where δk is the Fourier transform of the matter over-density, k ∈ b means all modes in the

bin, and V = L3 is the volume of the simulation box. We then use Eq. (2.4) and (2.7)

with nsim = 50, 100, 200, 300 and 400 to compute the cumulative Fisher information

content for various kmax. The results at z = 1 are plotted in Fig. 2.1 as well as the

Gaussian prediction, ¯Inf
G
(kmax) =

∑

b<kmax
nkb

∝ k3
max. Here nkb

is the number of modes

in a k bin. Qualitatively similar results are obtained at different z.

First, we notice that the convergence of ¯Inf in terms of the number of simulation

used seems satisfying although not perfect. We found that the lack of convergence adds

extra uncertainties of the same order as the bootstrap errors. As discovered by Rimes

& Hamilton (2006), the two remarkable features of this cumulative Fisher information

are the following. On linear scales (k < 0.1hMpc−1), the Fisher information content

follows the scaling expected from a Gaussian random field; on trans-linear scales, a sharp

transition to a plateau is observed; in the fully non-linear regime, the Fisher information

returns to a quasi-Gaussian scaling (but with a lower amplitude). These features mean

that the primordial amplitude could be measured with an accuracy directly inverse pro-

portional to the square root of the number of modes on linear scales, and not much more

is learned on trans-linear scales. In other words, the Fisher information is redundant

with the one contained in linear scales. On the other hand, a rising scaling appears in

the fully non-linear regime − at less than 1% of the Gaussian information. The sharp

transition from the linear to the non-linear regime can qualitatively be understood in the

halo model framework, where it corresponds to the transition from the 2-halo term to the

1-halo term (Neyrinck et al., 2006). Whereas on large scales, the Fisher information is
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contained in the 2-halo term and scales as the number of modes measured (or the number

of halos in a given volume), on trans-linear scales, the 1-halo term starts to dominate

but with a large variance since most of its contribution comes from rare massive halos.

This large variance explains why it is hard to extract any Fisher information from the

trans-linear regime supplemental to the one obtained in the linear regime. On smaller

scales though, the 1-halo term contribution comes mostly from numerous smaller mass

halos whose number is much more constant, i.e., fluctuates with much less variance, and

the Fisher information increases again roughly with the number of modes probed, but

about two orders of magnitude less.

Now that we have reproduced and introduced the key results regarding the 3-D matter

power spectrum, we will move to the original goal of this chapter: how does this Fisher

information saturation effect in the matter power spectrum translate into cosmic shear

observables?

2.4 Cosmic shear Fisher information content

We now use nsim = 300 N-body simulations with our nominal cosmology to investigate the

Fisher information content of cosmic shear surveys. To quantify the Fisher information,

we choose the convergence cross-power spectra between two redshift bins zi and zj as our

observable (Bartelmann & Schneider, 2001; Van Waerbeke & Mellier, 2003):

ñzi
ñzj

l2C
κzizj

ℓ

2π
=

∫ ∞

0

dz W zi(z)W zj (z)
H(z)

D2(z)
P (ℓ/D(z), z) , (2.9)

where H(z) is the Hubble parameter, D(z) is the angular diameter distance, P (k, z) is

the 3-dimensional matter power spectrum at redshift z. The lensing kernel is defined as

W zi(z) =
3

2
Ωm

H2
0D(z)

H(z)
(1 + z)

∫ ∞

z

dz′ nzi
(z′)[1 − D(z)

D(z′)
] , (2.10)

ñzi
=

∫ ∞

0

dz nzi
(z) . (2.11)
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where nzi
(z) is the galaxy distribution in the redshift bin i, and ñzi

is the total number

of galaxies in this redshift bin.

In this section, for the sake of simplicity, we will consider a uniform galaxy distribution

in nz = 4 redshift bins each of width ∆z = 0.5, i.e., 1.0 < z < 1.5, 1.5 < z < 2.0, 2.0 <

z < 2.5 and 2.5 < z < 3.0. Each distribution is normalized to unity, i.e., nzi
= 1/∆z and

ñzi
= 1. This choice is motivated by our interest in low redshift lensing of the diffuse

radiation originating from the 21-cm line emission of the neutral hydrogen gas (Lu & Pen,

2008; Pen et al., 2008; Lu et al., 2009). We will consider more realistic galaxy distribution

functions when discussing specific surveys in section 2.5. As discussed in chapter 4, we

found that simulations with L = 200h−1Mpc, 10243 grids, and 5123 particles are close

to optimal for our needs. Each one of these simulations takes about 4.5 hours using 8

nodes (64 CPU) on CITA’s Sunnyvale cluster. We checked that finite resolution effects

do not affect the convergence power spectra up to ℓ ≃ 10000, which will be the smallest

angular scale we consider in this work. The box-size corresponds roughly to an area of 56

square degrees. As a consequence, when considering the dimensionless cumulative Fisher

information, the sum is performed for ℓ ≥ 50.

To compute the covariance matrix using nsim = 300 simulations, we employ an original

method to avoid the artifacts presented in current methods. The now standard approach

to simulate cosmic shear has been pioneered in White & Hu (2000); Jain et al. (2000).

The main procedure is to ray-trace through a light cone build out of a collection of

dark matter density distributions at various redshifts, where the density distributions

are outputted from N-body simulations. This method has been widely tested and its

limitations (angular resolution, periodicity, mass resolutions, etc.) have been quantified

(White & Hu, 2000; Jain et al., 2000; Hamana et al., 2002; Hamana & Mellier, 2001;

Semboloni et al., 2007). It provides great reliability, e.g., to produce κ maps in the

regime of observational interests. However, it is important to notice that given our box

length, from the observer at z = 0 to the most distant lens plane at z = 3, nbox = 24
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boxes are required. In principle, one could build only 12 fully independent light cones out

of our nsim = 300, a number far from enough to compute C−1. A common fix is using

the same simulations more than once in a given light cone after random translations

and rotations of the original boxs. While this trick does increase the number of light

cone realisations that can be generated with a given number of N-body simulations, it

introduces spurious correlations – density fields from the same simulation at different

redshifts are not independent – which are hard to control safely. In fact, from the Limber

approximation we know that the combination of shifting, stacking and recycling will lead

to the correct convergence power spectrum since it is a projection of linear functions of

the density field at each redshift. However, this does not hold anymore when considering

covariance matrices. To remedy this problem, we follow an original approach described

below.

We first compute the covariance matrix of the matter power spectra for each output

redshift by averaging over all the nsim simulations. The final convergence covariance

matrix is then an appropriately weighted sum of the matter covariance matrices computed

at all redshifts. More formally, this procedure can be written this way. To compute the

convergence power spectra, for each output boxes at a given redshift zs1
, we project the

over-density field on a randomly chosen side, δ(x, zs1
), Fourier transform it, δ̃2d(k, zs1

),

and measure its 2-D power spectrum. After converting the comoving wavenumber k to

an angular multipole ℓ = kD(zs1
), we weight the matter power spectra by the lensing

kernel and project them into an angular convergence power spectrum at zs1
:

Ĉzs1,zs2

ℓ = 〈κ̃zs1

ℓ′ κ̃
zs2 ⋆
ℓ′ 〉ℓ±∆ℓ , (2.12)

where

κ̃zs1

ℓ =
∑

i

δ̃2d(ℓ = kD(zs1
), zi)W

zs1(zi) , (2.13)

where W zs1 is the lensing kernel for each slice if the sources are distributed in redshift bin

zs1, and i denotes one of the nbox redshifts. We divide the convergence power spectrum
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in nℓ = 12 bins, and the average in Eq. (2.12) is taken over the Nℓ modes contributing to

this l bin, ℓ− ∆ℓ < ℓ′ = kD(zs1
) < ℓ+ ∆ℓ. For clarity, in this section, we will use Cℓ to

represent Cκ
ℓ . It follows that to compute the convergence cross power spectra covariance

matrix,

Cov (Czs1,zs2

ℓ , Czs3,zs4

ℓ′ ) = 〈Czs1,zs2

ℓ Czs3,zs4

ℓ′ 〉 − 〈Czs1,zs2

ℓ 〉〈Czs3,zs4

ℓ′ 〉 , (2.14)

we need to compute both

〈Czs1,zs2

ℓ Czs3,zs4⋆
ℓ′ 〉sim = 〈κ̃zs1

ℓ κ̃zs2 ⋆
ℓ (κ̃zs3

ℓ′ κ̃
zs4 ⋆
ℓ′ )⋆〉sim (2.15)

=
∑

i1,i2,i3,i4

W zs1(zi1)W
zs2(zi2)W

zs3(zi3)W
zs4(zi4)

〈δ̃2d(ℓ, zi1)δ̃
⋆
2d(ℓ, zi2)δ̃

⋆
2d(ℓ

′, zi3)δ̃2d(ℓ
′, zi4)〉sim ,

(2.16)

and

〈Czs1,zs2

ℓ 〉sim〈Czs3,zs4

ℓ′ 〉sim = 〈κ̃zs1

ℓ κ̃zs2 ⋆
ℓ 〉sim〈κ̃zs3

ℓ′ κ̃
zs4 ⋆
ℓ′ 〉sim (2.17)

=

[

∑

i1

W zs1(zi1)W
zs2(zi1)〈δ̃2d(ℓ, zi1)δ̃

⋆
2d(ℓ, zi1)〉sim

]

×
[

∑

i2

W zs3(zi2)W
zs4(zi2)〈δ̃2d(ℓ

′, zi2)δ̃
⋆
2d(ℓ

′, zi2)〉sim

]

.(2.18)

Note that one need to be careful with the complex conjugates. Whereas the expectation

values for the cross-power spectra are real, the estimator of the cross power spectra are

complex.

Note that if ℓ 6= ℓ′, the cross terms 〈δ̃2d(ℓ, z)δ̃
⋆
2d(ℓ

′, z)〉sim do not contribute. Because

density distributions at different redshifts are independent, 〈δ̃2d(ℓ, zi1)δ̃
⋆
2d(ℓ, zi2)〉sim are
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Figure 2.2 Dimensionless cumulative Fisher information for the convergence cross-power spectra defined

in Eq. (2.5). We here replace the projected density field in each output box by a Gaussian field with the

same power spectrum as the one measured in the N-body box. Each color corresponds to a different sub-

set of redshift source bins of size 1, 2, 3 and 4. The dashed line corresponds to the Gaussian predictions

calculated from the number of modes measured in the simulations.

also zero when i1 6= i2. After some simple arithmetic, the calculation simplifies to

Cov(Czs1,zs2

ℓ , Czs3,zs4

ℓ′ ) =
∑

i1

W zs1(zi1)W
zs2(zi1)W

zs3(zi1)W
zs4(zi1)

[

〈δ̃2d(ℓ, zi1)δ̃
⋆
2d(ℓ, zi1)δ̃2d(ℓ

′, zi1)δ̃
⋆
2d(ℓ

′, zi1)〉sim

− 〈δ̃2d(ℓ, zi1)δ̃
⋆
2d(ℓ, zi1)〉sim〈δ̃2d(ℓ

′, zi1)δ̃
⋆
2d(ℓ

′, zi1)〉sim
]

+
∑

i1,i2,i1 6=i2

W zs1(zi1)W
zs2(zi2)W

zs3(zi1)W
zs4(zi2)

〈δ̃2d(ℓ, zi1)δ̃
⋆
2d(ℓ, zi1)〉sim〈δ̃2d(ℓ

′, zi2)δ̃
⋆
2d(ℓ

′, zi2)〉sim . (2.19)

For the sake of clarity, we omitted the sum over ℓ and ℓ′ modes within the same ℓ

bin. Compared to the common ray-tracing approach, from which kappa maps and the

associated angular (cross-) power spectra are build, the advantages of our method are

two-folds. First, we ensure that there is no contamination due to the recycling of boxes

from the same simulation. While it has been verified that this contamination is a small

effect at the power spectrum level (Hamana et al., 2002), it does introduce biases when

computing the four-point functions of interest to us; those biases have not been properly
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quantified yet. In our scheme, most of those terms are not presented although some

correlations will remain since the output of the same nsim simulations are used to compute

the covariance matrices of the matter power spectra at each redshift. This contamination

is however much smaller. Second, the rate of convergence with the number of simulation

is much faster than that in the usual ray-tracing approach. Because we need nbox to

build a full light cone (nbox = 24 in our case) in the ray-tracing method, the number of

independent light cones is thus nsim/nbox and the rate of convergence for the covariance

matrix goes as
√

nbox/nsim. In our case, the convergence rate for each covariance matrix

at each output redshift goes as 1/
√
nsim. Furthermore, on small angular scales, because

the non-linear evolution makes the (high) k modes evolution quite independent from one

redshift to another, we gain an additional factor 1/
√
nbox so that the convergence rate is

about 1/
√
nsimnbox. This effect is less important on large angular scales. Nevertheless, on

all scales, the 1/
√
nbox scaling still maintains, because various k modes will appropriate

to various ℓ bin so that the errors will still average down as 1/
√
nbox when computing

the final covariance matrix. We thus claim an improvement of convergence rate close to

a factor of nbox (= 24 in our case) compared to the standard ray-tracing method, i.e.,

one order of magnitude improvement (see Fig. 2.3 and discussion in section 2.5).

For cross-checking purposes, we compare all our results with the usual ray-tracing

method. We observe a satisfying agreement between the two methods. We also clearly

observe the different convergence speed as nsim grows.

Once the covariance matrix has been computed, we apply Eq. (2.7) to obtain an

estimate of C−1. As a first check, we consider a set of Gaussian simulations in which the

2-D projected density field at each redshift is replaced by a realisation of a Gaussian field

with a spectrum identical to the one resulting from N-body simulations. In that particular

case, given the exact number of modes in each ℓ bin, we can exactly predict the scaling of

the dimensionless cumulative Fisher information and compare it with the measurements.

We consider different numbers of source bins and all the associated angular cross-power
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Figure 2.3 Dimensionless cumulative Fisher information for the convergence cross-power spectra defined

in Eq. (2.5) when considering either one source redshift bin (1 < z < 1.5, the left plot) or four

(1 < z < 1.5, 1.5 < z < 2, 2 < z < 2.5, 2.5 < z < 3.0, the right plot). Each color corresponds to a

different number of simulations (100, 200 or 300) used to compute the covariance matrix. The weak

scatter among those different points allows us to assess the satisfying level of convergence we can obtain

with 300 simulations.

spectra. The results are displayed in Fig. 2.2, where an excellent agreement is observed

between the analytical prediction (dashed line) and the measured quantities (symbols).

We then move to the genuine N-body simulations and look at the dimensionless Fisher

information for either one source redshift bin (the left panel of Fig. 2.3) and four redshift

source bins (the right panel of Fig. 2.3). In both plots we check the convergence of

our results by varying the number of simulations and compare them with the Gaussian

predictions (red dashed lines). We considered 100, 200 and 300 simulations respectively.

The convergences is satisfying, and the deviance between the symbols are much smaller

than the effects we are interested in, i.e., the differences between the red dashed line and

the symbols. As will be discussed in chapter 4 (Lu et al., 2009), an important criterion

when assessing the convergence of a Monte-Carlo estimator of Ĉ−1 is not the convergence

of the diagonal of Ĉ as in Takahashi et al. (2009) but of Ĉ−1 (or its norm). The relative

difference between the 200 and 300 simulations results, is consistent with our convergence

rate estimate, which is around 8%.
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This satisfying convergence is crucial and gives us confidence in the results displayed

in Fig. 2.3. We can now interpret them. First, it is interesting that the saturation effect

present in the 3-D matter power spectrum (see Fig. 2.1) also appears in the convergence

power spectrum. As expected, whereas N-body results agree with Gaussian predictions

on large (linear) angular scales, a departure from the Gaussian behaviour (red dashed

line) appears at sub-degree scales (ℓ > 300). Not surprisingly, for sources at 1 < z < 1.5,

this corresponds to k ≃ 0.2hMpc−1 at z = 0.5 where the lensing kernel peaks, which is

consistent with what is observed for the 3-D matter power spectrum (at z = 1) in Fig. 2.3.

When higher redshift sources are included, we expect the departure from Gaussianity to

be milder (non-linear evolution decreases with increasing redshift) and at smaller angular

scales (higher ℓ). This corresponds to what is observed in the right panel of Fig. 2.3.

This is illustrated further in Fig. 2.4, where we consider other source redshift distri-

butions. The agreement on large scales with the Gaussian prediction, and the shift of

saturation scale to higher ℓ when the source redshift increases, are both clearly visible.

The saturation effect also decreases as the source redshift increases, and when tomog-

raphy is included. Note that the saturation effect is less dramatic here than in the 3-D

case since the projection inherent to lensing introduces an extra Gaussianization.

2.5 Discussion

Now we have highlighted the dimensionless cumulative Fisher information for some per-

fect idealized survey which has the same angular area as our simulations, next we will

discuss its implications for current and future optical surveys. In particular, we will

quantify the consequences of the Fisher information saturation effects discussed above

on the cosmological parameters. We focus on dark energy which is parametrized by an

evolving equation of state w(a) = w0 +(1−a)wa. We use the dark energy figure of merit

(DE FoM) as our main statistics (Albrecht et al., 2006), which is defined as the area
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Figure 2.4 Dimensionless cumulative Fisher information for the convergence cross-power spectra defined

in Eq. (2.5). Each color correspond to a different sub-set of source redshift band of size nz = 1, 2, 3 or

4. The dashed color line corresponds to the Gaussian prediction for the same number of modes. Similar

to the 3-D case, the effect of non-Gaussianity is clearly visible as a drop in the dimensionless Fisher

information content in the slightly non-linear regime. The scaling becomes quasi-Gaussian again in the

fully non-linear regime. As expected, since non-linearities increase with redshift, the effect is more severe

if the source redshift is lower.

of the 95% contour ellipse in the w0 − wa plane. Following the definition of the Fisher

matrix in Eq. (2.1), if we consider the following observable

Pa=i(i−1)/2+j,ℓ = ñzi
ñzj

C
κzizj

ℓ , (i ≥ j) (2.20)

and a set of six cosmological parameters λµ as mentioned in section 2.2, the Fisher

information matrix is written as

Fµν =
ℓmax
∑

ℓ=2

∑

ab

∂Pa

∂λµ

[C−1]ab
∂Pb

∂λν

. (2.21)

The standard deviance of λµ, σ(λµ) =
√

F−1
µµ .

We will make use of the 300 simulations introduced in section 2.4 and customized

for the diffuse 21-cm lensing in chapter 4 to discuss optical cosmic shear. We do so by

re-weighting the previous results obtained using the wide uniform redshift bins with the
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Figure 2.5 Dark energy figure of merit as a function of scales for 4 different surveys whose parameters

are given in table 2.5. The blue diamonds correspond to the predictions using non-Gaussian covariance

matrices and shot noise contributions. The red diamonds correspond to the Gaussian approximations

to the covariance matrices with shot noises. The orange diamonds correspond to the non-Gaussian

case with the prior expected from the Planck satellite1. The blue and red dashed curves correspond

respectively to the non-Gaussian and Gaussian cases, without shot noise. Whereas we can see that the

inclusion of non-Gaussian error bars is important for perfect noiseless experiments (blue dashed curves)

compared to the perfect noiseless Gaussian errors (red dashed curves), it is less critical when adding

the shot noise coming from the dispersion of intrinsic ellipticities (comparison between blue and red

diamonds).
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Survey I II III IV

Area (deg2) 200 200 5 000 20 000

ngal (arcmin2) 30 30 50 100

σe 0.25 0.25 0.25 0.25

number of redshift bins 1 3 3 4

Table 2.1 Optical surveys considered. They roughly correspond to a current survey like CFHTLS (type

I,II), the soon on-line DES survey (type III), and a wide and deep space survey like Euclid or JDEM

(type IV), respectively.

relative weights appropriate coming from a realistic optical galaxy number density

n(z) ∝ zαe−(z/z0)
β

,

with α = 2 and β = 1.5 . (2.22)

We also rescale the signal covariance matrix by the survey area considered. In this

thesis, we will ignore the uncertainties in the number density, though they are important

(Benjamin et al., 2007). We will consider four surveys whose parameters are given in

table 2.5. They roughly correspond to a current survey like CFHTLS 2, the soon on-line

DES 3 survey, and a wide and deep space survey like Euclid 4 or JDEM, respectively. We

will normalize n(z) so that the galaxy density matches the one given on the second line

of table 2.5 and we will consider the shot noise coming from the intrinsic ellipticities of

objects. Note that our predictions here are somewhat inaccurate as we are re-weighting

our 21-cm sources simulations which will be used in chapter 4, and our ideal survey is

also non-optimal since we consider only 4 redshift bins to perform tomography, which

has been shown to be slightly sub-optimal (Ma et al., 2006). However, our treatment

is accurate enough to discuss the effects of non-Gaussianities that are the focus of our

2http://www.cfht.hawaii.edu/Science/CFHLS/
3https://www.darkenergysurvey.org/
4http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102
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study.

As a reference point, we will also compute the Fisher matrix with a Gaussian approx-

imation to C−1. Doing so, we follow the formalism in Ma et al. (2006). In the Gaussian

case, assuming a shot noise level and a simple Gaussian sample variance, the covariance

matrix is defined as

Cab ℓ = ñiñjñkñl

(

Ctot ik
ℓ Ctot jl

ℓ + Ctot il
ℓ Ctot jk

ℓ

)

, (2.23)

where a = i(i− 1)/2 + j, b = k(k − 1)/2 + l, and the total power spectrum is

Ctot ij
ℓ = Cκ ij

ℓ + δij
σe

2

ñi
, (2.24)

where σe is the rms shear error per galaxy contributed by intrinsic ellipticity and mea-

surement errors.

Fig. 2.5 compares the Gaussian and non-Gaussian cases for the 4 different surveys

whose parameters are defined in table 2.5. From the Type I survey to the Type IV

survey, we simultaneously increase the number of galaxies, the depth, the number of

source redshift bins, and the survey area, which results in an increase in the FoM. As

we previously did for the dimensionless Fisher information content, we will now study

the evolution of the FoM as we increase the number of modes, from the linear regime

to the non-linear regime. This is a proxy to quantify the cosmological interpretation in

this survey as we increase angular sensitivity. The red dashed lines correspond to the

noise free Gaussian approximations while the blue dashed lines correspond to the non-

Gaussian noise free evaluations. As we can see, when comparing these two type of curves,

the saturation effects discovered earlier in the cumulative Fisher information translate

naturally into the evolution of the FoM with ℓmax. In the case of a noiseless survey, the

difference in the FoM at high ℓ can be as high as a factor of 4, even when we consider

only four tomographic bins. This effect is thus important and in stark contrast to the

scaling of the FoM with ℓmax usually assumed in the literature (Amara & Réfrégier, 2007).

However, when introducing realistic levels of noises, the effect is somewhat mitigated as
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Figure 2.6 Bootstrap errors on the relative difference between the noiseless FoM curves for the Type

IV survey. We are thus plotting the relative errors between the red and blue dashed curves in the lower

right panel of Fig. 2.5.

is visible when comparing the red diamonds (Gaussian approximation, with noise) to the

blue diamonds (non-Gaussian covariance matrix, with noise). It is still non-negligible

since the ratio between the Gaussian and non-Gaussian cases at higher ℓmax becomes

close to 1.6. This point constitutes the key result from our study. While potentially very

damaging to the ideal performances of weak lensing surveys, the effect of non-Gaussianity

is tampered by the estimated level of noises expected for current and future surveys. The

inclusion of the Planck prior does not affect those conclusions at high ℓ.

Note also that despite the fact that our plot hint at the ability to measure the con-

vergence power spectra up to ℓ < 10000, in practice, it will most likely be limited by

theoretical uncertainties at ℓ ≤ 3000, at least by our inability to model the details of the

baryon physics (White, 2004; Zhan & Knox, 2004; Rudd et al., 2008).

Consistent conclusions were reached in the halo model based analytical approach fol-

lowed in Cooray & Hu (2001); Takada & Jain (2008). We will discuss the latter, which

is the most recent one, and refer to its discussion of the earlier results of Cooray & Hu

(2001). Our results seem consistent with their evaluation of the S/N (somewhat compa-

rable to our dimensionless Fisher information). So does the effects on parameters when
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Figure 2.7 Dimensionless cumulative Fisher information content as a function of the maximum mul-

tipole for a source plane at z = 1000. A mild saturation effect is still visible. Since the CMB lensing

is sensitive mostly to the growth of structures at z ≃ 2.5, the saturation effect is milder and shifted to

smaller angular scales (higher ℓmax).

considering realistic surveys, although our factor of 1.6 for FoM seems a bit higher. Note

that the comparison is not immediate since the set of parameters we consider is slightly

different. Whereas we consider a flat Universe with 6 parameters including an evolving

dark energy equation of state, they consider non-flat models and allow the spectral in-

dex to run. We do not translate our evaluation of the cross-power spectrum covariance

matrices to real space statistics, and a comparison with real space evaluation of this

effect (Semboloni et al., 2007), can be found at Takada & Jain (2008). A more detailed

comparison between analytical estimates and numerical works would be instructive and

has to be performed, but we leave it for future work. We also do not investigate the

beat-coupling effect (Hamilton et al., 2006; Takada & Jain, 2008). As we understand, it

denotes the extra mode-coupling induced by the finiteness of the observed volume, and

therefore such an effect would be non-existent if the full sky was considered. Since the

exact form of this coupling will depend on the exact mask of any given survey, we de-

cide to ignore this effect here. In practice, as it is usually performed, for example, while

analysing CMB data, we would start from a mask description in real space and propagate
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the induced mode-coupling in Fourier space throughout all our calculations. With their

own prescription, Takada & Jain (2008) found that it does not affect qualitatively the

effect of the non-linear growth of structures.

The comparison with the numerical work of Hu & White (2001) is also not obvious.

First, a different cosmology with a higher σ8 is considered there, which should enhance

the non-linear effect. Second, they consider 200 simulations and use a standard tiling

technique in ray-tracing approach that should give rise to an accuracy of at most 7% on

the errors. All these reasons make a direct comparison a bit difficult.

To quantify further the error on the errors issue, we evaluate the errors of the FoM

for the Type IV survey introduced before using the bootstrap method again. We display

the results in Fig. 2.6 where we plotted the relative difference between the Gaussian

and non-Gaussian FoM as a function of ℓmax. Due to the strong convergence of our

covariance matrix estimation technique, we find the error on the errors to be around 25%

on large scales and sub-percent on the smaller scales we consider. This fact certainly

constitutes an improvement over previous results in the literature and is consistent with

our estimate of a 1/
√
nsimnbox convergence rate. If we use the scaling of 12/

√
nsim

measured by Takahashi et al. (2009), we claim an overall uncertainty due to the limited

number of simulations to be around 14%.

Besides the optical observations of weak lensing, the cosmic microwave background

(CMB) constitutes another source plane where lensing can be observed (see Lewis &

Challinor (2006) for a review). As both the resolution and the sensitivity of detectors

are improved, the CMB lensing can now be measured and it defines the next frontier for

the CMB temperature and polarization measurement (Smith et al., 2008). Using cross

correlation between WMAP data and other tracers of large-scale structures to increase

the S/N, a detection of gravitational lensing in the CMB temperature has been achieved

with marginal significance, i.e. around 2.4 σ (Hirata et al., 2004; Smith et al., 2007;

Hirata et al., 2008). A direct detection in temperature is expected to be achieved soon
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with high significance thanks to the on-going high angular resolution temperature surveys

(ACT5, SPT6, Planck). It is thus interesting to evaluate the effects of the non-linear

growth of structures on the CMB lensing signal. To do so, we compute the cumulative

Fisher information of the amplitude of convergence power spectrum as a function of the

maximum angular scale ℓmax, when considering a single redshift source plane at z = 1000.

The result is displayed in Fig. 2.7. Interestingly, the saturation effect is still visible, and

not surprisingly, since the CMB lensing kernel peaks around z≃ 2.5, the effect is smaller

and shifted to smaller scales. However, in practice, given that the CMB reconstruction

is most likely going to be limited by secondary anisotropies (kinetic SZ in particular and

patchy reionization) around a few ℓ ≃ 3000, it is unlikely that this effect of non-linear

growth will be critical.

To conclude, non-Gaussian effects are potentially very important for weak lensing

surveys and might significantly alter the forecasts done so far. When considering realistic

noise estimate for the coming optical surveys, the impact of non-Gaussian error bars is

much milder.

2.6 Summary

We quantify the Fisher information content of lensing convergence (cross-) power spec-

trum in cosmic shear survey as a function of resolution. In particular, we investigate

whether the Fisher information saturates above a given angular scale. To do so, we rely

heavily on N-body simulations in order to accurately probe the non-linear regime. We

find that while even in a perfect survey, there is no clear saturation scale, that non-linear

growth induced non-Gaussianity can lead to a factor of 4 reduction for the dark energy

figure of merit. This effect is however mitigated by realistic levels of shot noise and we

find that for future surveys, the effect is about a factor of 1.5. To do so, we develop

5http://www.physics.princeton.edu/act/about.html
6http://pole.uchicago.edu/spt/index.php
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a new scheme to compute the relevant covariance matrix of lensing convergence power

spectrum. It leads us to claim an order of magnitude improvement in accuracy using

only twice as many simulations as were previously used. Finally, we evaluate the errors

on the errors using bootstrap methods.



Chapter 3

Lensing of 21-cm line at epoch of

reionization

3.1 Overview

Driven by various surveys, in this chapter and chapter 3, we will discuss the lensing of

the 21-cm line sources. 21-cm emission is similar to CMB: both are diffuse backgrounds.

It is natural to apply the techniques used in CMB lensing. Hu & Okamoto (2002)

expand the CMB lensing field in terms of the gravitational potential (or deflection angles),

and construct a trispectrum based quadratic estimator of potential with maximum S/N.

However, unlike CMB, the 21-cm background has a 3-D distribution and is intrinsically

non-Gaussian. A fully 3-D analysis is explored in Zahn & Zaldarriaga (2006), where they

generalize the 2-D quadratic estimator of CMB lensing (Hu & Okamoto, 2002) to the

3-D Optimal Quadratic Deflection Estimator (OQDE).

A local estimator was proposed in Pen (2004), which assumed a power-law density

power spectrum. In this chapter, we will design localized estimators for the lensing

fields under the Gaussian assumption, and apply the derived reconstruction technique to

Gaussian and non-Gaussian sources. The influence of non-Gaussianity can be measured

60
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by comparing the numerical results between the Gaussian sources and non-Gaussian

sources.

Quadratic lensing reconstruction is a two-point function of the lensed brightness tem-

perature field of the 21-cm emission. In this chapter, 3-D quadratic estimators are con-

structed for the convergence (κ), as well as the shear (γ). Our method recovers the κ

and γ directly instead of gravitational potential or deflection angles. Our estimators

have in principle the same form as the OQDE, consisting of the covariance of two filtered

temperature maps. The OQDE reconstructs the deflection angle, while our estimators re-

construct the kappa and shear fields. Our filtering process can be written as a convolution

of the observed fields. As presented in appendix and section 4, our combined estimator

is unbiased, and equally optimal as the OQDE for Gaussian sources. Our estimator has

better performance for non-Gaussian sources, and recovers three extra (constant) modes

for finite fields.

Other authors also developed reconstruction methods from alternative approaches.

Metcalf & White (2007) give an estimator for shear. They choose 2-D slices at different

redshifts, and then treat these slices as independent source samples for the same lensing

structure. They neglect the information between these slices, so the efficiency of recon-

struction depends on the width of the slices. Cooray (2004) expands the lensed field to

higher order of the gravitational potential, and investigates the resulting corrections to

the lensed power spectrum.

This chapter is organized as follows: The basic framework of lensing and the recon-

struction method is introduced in section 3.2. The numerical methods are presented in

section 3.3. The results are discussed in section 3.4. We conclude in section 3.5.
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3.2 Lensing and reconstruction

Photons are deflected by the gravitational pull of clumpy matter when they propagate

from the source to the observer. This effect can be used to map the mass distribution if we

can measure the distortion of an image. In this section, we will first develop an optimal

quadratic estimator using a maximum likelihood method. The reconstruction depends

on the power spectrum of the source. The noise and normalization of the reconstruction

are calculated in appendix A.

Maximum likelihood estimator of κ

We now derive the quantitative window functions for 21-cm lensing reconstruction. Due

to their similarity, it is helpful to quickly review the reconstruction in CMB lensing again:

The early work by Zaldarriaga & Seljak (1999) used the quadratic combination of the

derivatives of the CMB field to reconstruct the lens distribution, originally also using a

κ and γ formulation. Since the CMB has an intrinsic Gaussian distribution, the optimal

quadratic estimator (Hu, 2001) can also be applied to lensing reconstruction with CMB

polarization (Hu & Okamoto, 2002). Zahn & Zaldarriaga (2006) generalized the optimal

quadratic estimator of CMB lensing to 21-cm lensing.

We will construct estimators for κ and γ with the 21-cm brightness temperature fields,

starting from a maximum likelihood derivation. We will show that the OQDE and our

approach are the same if the sources are Gaussian, however the problem is simplified in

a intuitive way by using the limit that κ and γ vary slowly in small scales. We will show

later the optimal window functions have the same form when κ and γ vary rapidly.

The magnification is

µ =
1

(1 − κ)2 − γ2
∼ 1 + 2κ . (3.1)

The last approximation is valid since both κ and γ are much smaller than 1 in the weak

lensing regime.
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We use Bayesian statistics and assume the prior distribution of parameter κ to be

flat. For a M pixel map on the sky, the posterior likelihood function of the source field

has a Gaussian distribution, and can be written as

P(T̃ (k)) = (2π)−M/2det(CT̃ T̃ )−
1
2 e−

1
2
T̃ †

C
T̃ T̃

−1T̃ . (3.2)

Here T̃ = T̃b + n is the brightness temperature of the diffusive 21-cm emission lensed by

the large-scale structure plus measurement noise. To simplify the algebra, we use the

negative logarithm L of the likelihood function in our calculation,

L = − lnP =
1

2
T̃ †C−1

T̃ T̃
T̃ +

1

2
ln detCT̃ T̃ . (3.3)

Here T̃ is the 3-D discrete Fourier transform of measured temperature. CT̃ T̃ = CS + CN

is the covariance matrix, and the signal contribution CS and noise contribution CN are

both diagonal in Fourier space and uncorrelated to each other. In the continuum limit,

the likelihood function can be written as

L =
1

4π2
[

∫

d3k ln P̃ tot(k) +

∫

d3k
|T̃ (k)|2
P̃ tot(k)

] . (3.4)

We use P̃ tot = P̃ (k) + PN(k) to represent the signal plus noise power spectrum in the

following text, where P̃ (k) is 3-D power spectrum of the distorted 21-cm field, and PN(k)

is the noise power spectrum. The dimensionless power spectrum of the 3-D 21-cm gas

can be written as

∆2(k) =
k3

2π2
P (k) , (3.5)

where k = |k| since the gas is statistically isotropic.

The geometry of the 21-cm field will be changed by lensing:

T̃b(k⊥, k‖) =

∫

d3xT̃b(x)e−ik·x =

∫

d2x⊥

∫

dx‖Tb((1 − κ)x⊥, x‖)e
−i(k⊥·x⊥+k‖x‖)

=
1

(1 − κ)2
Tb(

k⊥

1 − κ
, k‖) , (3.6)

where ’⊥’ and ’‖’ means the perpendicular and parallel direction to the line-of-sight

respectively. We ignore the contribution of shear first. Then the length scale is magnified
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on the transverse plane by a factor κ. Isotropy is broken in 3-D but is still conserved

on the 2-D cross section. The statistical properties of the 21-cm field will be changed by

lensing, i.e., the power spectrum will also change:

〈T̃ ∗
b (k⊥, k‖)T̃b(k

′
⊥, k

′
‖)〉 = (2π)2δ2D(k⊥ − k

′
⊥)(2π)δD(k‖ − k′‖)P̃ (k⊥, k‖) . (3.7)

The delta function has the property:

δ2D(
k⊥

1 − κ
− k′

⊥

1 − κ
) = (1 − κ)2δ2D(k⊥ − k

′
⊥) . (3.8)

Therefore the relationship between the unlensed and lensed power spectrum is

P̃ (k⊥, k‖) =
1

(1 − κ)2
P (

k⊥

1 − κ
, k‖) =

1

(1 − κ)2
P (

√

k2
⊥

(1 − κ)2
+ k2

‖) . (3.9)

The second equivalence is due to the statistical isotropy of the unlensed power spectrum.

The Taylor expansion of the lensed power spectrum is

P̃ tot = P tot +
∂P̃ tot

∂κ

∣

∣

∣

∣

∣

κ=0

κ+
1

2

∂2P̃ tot

∂κ2

∣

∣

∣

∣

∣

κ=κ⋆

κ2 , (3.10)

where κ⋆ in the residual term lies between 0 and κ. The first order derivative at κ = 0

is 2P + ∆P , where ∆P = P ′k(k2
⊥/k

2), and P ′(k) = dP (k)/dk. In this chapter, we

will only consider the first order perturbation. Now we can verify the accuracy of the

approximation ∆κTaylor/κ, which is the ratio of the residual term to the second term

in Eq. (3.10). If we write the first order derivative of power spectrum to kappa as

G(κ) = ∂P̃ tot/∂κ, and the second order derivative as R(κ) = ∂2P̃ tot/∂κ2, there is

∆κTaylor

κ
=

1

2

R(κ = κ⋆)

R(κ = 0)

R(κ = 0)

G(κ = 0)
κ . (3.11)

In most cases, power spectra have an approximately power-law shape P = P0k
n. For

dark matter-like power spectrum, ∆2(k) ∝ k, there is n = −2. R(κ = 0)/G(κ = 0) =

3 − 4(k⊥/k)
2 ∈ [−1, 3]. R(κ = κ⋆)/R(κ = 0) = 1/(1 − κ)4 when k⊥/k = 0; R(κ =

κ⋆)/R(κ = 0) → 22/(1 − κ)2 − 21 when k⊥/k → 1. κ to the epoch of reionization is

about at the 5% level, therefore
∣

∣

∣

∣

∆κTaylor

κ

∣

∣

∣

∣

≤ 1.8κ . (3.12)



Chapter 3. Lensing of 21-cm line at epoch of reionization 65

The precision of a first order κ reconstruction would not be better than the magnitude of

κ itself, i.e., the quadratic reconstruction would not be better than a few percent level.

We will calculate to first order accuracy in κ throughout this chapter, however we need

to keep in mind that the first order perturbation approximation will contribute several

percent error in our calculation.

The maximum likelihood condition requires

δL
δκ

≈ 1

2
L3

∫

d3k

(2π)3

(P̃ tot − |T̃ |2L−3)

P̃ tot2

δP̃

δκ
= 0 . (3.13)

Since we calculate to first order accuracy in κ, a further simplification is 1/P̃ tot2 ≈

[1 − 2κ(2P + ∆P )/P ]/P 2. The first order solution is

Eκ =

∫

d3k

(2π)3
(|T̃ |2L−3)Fκ(k) − Vκ . (3.14)

To simplify the problem, we assume the source is a cube with physical length L in each

dimension. The offset constant Vκ = 〈σ2〉 =
∫

d3k/(2π)3P tot(k)Fκ(k), and the optimal

filter Fκ is

Fκ(k) =
2P (k) + ∆P (k)

P tot2(k)Qκ

, (3.15)

with Qκ =
∫

d3k/(2π)3(2P + ∆P )(k)Fκ(k).

From Parseval’s theorem, we can rewrite Eq. (3.14) in the form of a convolution of

the density field and a window function in real space

∫

d3k

(2π)3
T̃ ∗(k)T̃ (k)Fκ(k) =

∫

d3xT̃ κ
w1

(x)T̃ κ
w2

(x) = L2

∫

dx‖T̃
κ
w1

(x⊥, x‖)T̃
κ
w2

(x⊥, x‖) .

(3.16)

In Eq. (3.16) the two window functions are the decomposition of the optimal filter

W κ
1 (k)W κ

2 (k) = Fκ(k). The last ’=’ in Eq. (3.16) holds when κ is constant. One can

choose W κ
1 (k) = W κ

2 (k) =
√
Fκ. If Fκ < 0, we choose W κ

1 = −W κ
2 =

√

|Fκ|. The

convergence field is equivalent to the covariance of the measured maps smoothed by two

windows. In the slowly spatially varying κ limit, all decomposition into two windows are

equivalent. As we will show later, the shear construction can also be represented in the
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form of the covariance of two filtered temperature maps. These maps will have symmetric

Probability Density Functions (PDF), which can reduce the non-Gaussianity of the maps

so that a better S/N level can be achieved, when the shear window functions are chosen

properly. The last two steps in Eq. (3.16) assumes the fluctuation of the convergence

field is slow compared to the filter. Then we can apply the estimator to each beam in

the map:

Eκ(x⊥) = L−1

∫

dx‖T̃
κ
w1

(x)T̃ κ
w2

(x) − Vκ , (3.17)

where T̃ κ
w1

and T̃ κ
w2

are the convolution of T̃ and window function W κ
1 (x) and W κ

2 (x)

respectively, which are the real space version of W κ
1 (k) and W κ

2 (k). The reconstruction

of κ is dominated by the gradient of the power spectrum d ln ∆2/d ln k, which follows

from the expression of our estimator in Eq. (3.14).

We can generalize the estimator to a spatially varying lensing field. In the appendix

we show
∫

d2x′⊥κ(x
′
⊥)bκ(x⊥ − x

′
⊥) = 〈Eκ(x⊥)〉 . (3.18)

Equivalently, for smaller scales, we will need to normalize the reconstructed lensing field

by a scale dependent factor in Fourier space, which is calculated in the appendix.

κ̂(ℓ) = b−1
κ (ℓ)Eκ(ℓ) = κ(ℓ) + n(ℓ) , (3.19)

where ℓ = k⊥χ(zs), and zs is the redshift of the source. Here bκ(ℓ) is the normalization

factor (limℓ→0 bκ(ℓ) = 1), and n(ℓ) is the noise, since different Fourier modes are inde-

pendent. They do not depend on direction because variables related to κ are isotropic

on the transverse plane. In the appendix, we show that the normalization factor is unity

at small l when Qκ has the form as Qκ =
∫

d3k/(2π)3(2P + ∆P )(k)Fκ(k).

Amblard et al. (2004) have pointed out that the reconstructed kappa could be biased

due to the non-Gaussianity of lenses. One possible reason is that there is only one CMB

sky behind each patch of lensing field. For 21-cm, there are many source planes, and we

expect there is no such bias effect by averaging over these planes.
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Estimator of shear

When shear is taken into account, not only the scale but the directions of the coordinates

are changed. We will start the derivation from the constant shear case. In analogy to κ,

the optimal window function will be the same when γ is spatially variable.

T̃b(k⊥, k‖) =

∫

d3xT̃b(x)e−ik·x =

∫

d2x⊥

∫

dx‖Tb(Jx⊥, x‖)e
−i(k⊥·x⊥+k‖x‖)

= |J|−1

∫

d2x′⊥

∫

dx‖Tb(x
′
⊥, x‖)e

−i(k′
⊥·x′

⊥+k‖x‖) = |J|−1Tb(J
−1

k⊥, k‖) ,(3.20)

here d2x′⊥ = |J|d2x⊥,k
′
⊥ = J−1k⊥. Now the symmetry is broken even on the transverse

plane due to the anisotropic distortion caused by the shear.

Since δ2D(J−1k) = |J|δ2D(k), Eq. (3.7) implies

P̃ (k⊥, k‖) = |J|−1P (J−1
k⊥, k‖) ≈ (1 + 2κ)[P (k) + ∆P (k)(κ+ γ1 cos 2θk⊥

+ γ2 sin 2θk⊥
)] ,

(3.21)

where θk⊥
is the angle between k⊥ and the transverse coordinate. Note in the calcula-

tion of κ, we have ignored the contribution from shear. The reason is that the overall

contribution of shear would be zero to first order magnitude of κ due to the angular

dependence of shear on θk⊥
.

Maximum likelihood requires δL/δγ1 = 0, and δL/δγ2 = 0. The maximum likelihood

shear estimators can be written as a tensor Eγ:

Eγij = L−1

∫

dx‖T̃
γ
wi
T̃ γ

wj
, (3.22)

where T̃ γ
wi

is convolution of the temperature field withW γ
i , andW γ

i (k) = (2∆P/P 2Qγ)
1/2k̂i,

k̂i (i, j = 1, 2) is one of the two unit vectors on the transverse plane. When ∆P < 0,

we can choose W γ
1 = |2∆P/P 2Qγ |1/2k̂1,W

γ
2 = −|2∆P/P 2Qγ |1/2k̂2. The normalization

factor Qγ =
∫

d3k/(2π)3∆P (k)k̂1k̂2W
γ
1 (k)W γ

2 (k). The two components of shear are now:

γ̂1 = Eγ12 = Eγ21, γ̂2 =
Eγ11 −Eγ22

2
. (3.23)

Note that there is a difference between the reconstruction for convergence and shear.

Shear reconstruction depends on the gradient of P (k), while convergence reconstruction
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depends on the gradient of ∆2(k) in a 2-D analogue. To test our method, we can generate

a Gaussian source field with power-law power spectrum P (k) = kβ. In the 2-D analogue

case, the convergence field can not be measured if β = −2, because the variance is

conserved. However in 3-D, when β = −3, the convergence field can still be measured,

which is due to the more complicated shape of the window function in 3-D. When β = 0,

the shear can not be measured in either 2-D or 3-D.

In analogy to κ reconstruction, we can calculate the normalization factors bγ1
and bγ2

.

The calculations for the normalization factors and noise are presented in the appendix.

3.2.1 The combined estimator and the OQDE

The combined estimator of κ can be written as

κ̂comb(ℓ) = c1κ̂(ℓ) + c2γ̂E(ℓ) , (3.24)

where γ̂E is the convergence constructed from shear field,

γ̂E(ℓ) = γ̂1(ℓ) cos 2θℓ + γ̂2(ℓ) sin 2θℓ , (3.25)

and θℓ is the angle of ℓ. c1 and c2 are the weights of two components. The optimal c1

and c2 can be calculated from the covariance matrix of the two estimators

Cκ =







〈κ̂(ℓ)2〉 − 〈κ̂(ℓ)〉2 〈κ̂(ℓ)γ̂E(ℓ)〉 − 〈κ̂(ℓ)〉〈γ̂E(ℓ)〉

〈κ̂(ℓ)γ̂E(ℓ)〉 − 〈κ̂(ℓ)〉〈γ̂E(ℓ)〉 〈γE(ℓ)2〉 − 〈γE(ℓ)〉2






.

To minimize the variance of κ̂comb(ℓ), c1 and c2 are sum of the first and second row

components respectively in C−1
κ , the inverse matrix of Cκ. When ℓ . ℓa = kaχ(zs), κ̂(ℓ)

and γ̂E(ℓ) are uncorrelated and the covariance matrix is diagonal. The weights are simply

proportional to the reciprocal of the noise of two individual estimators c1 ∝ Nκ(ℓ)
−1 and

c2 ∝ NγE
(ℓ)−1.

The lensing power spectrum Cκ

ℓ
is measured by taking the observed power spectrum

Ĉκ

ℓ
and subtracting the computable power spectrum of the noise Nκ(ℓ) (sometime also
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written as CN

ℓ
)

Cκ

ℓ
= Ĉκ

ℓ
− CN

ℓ
. (3.26)

If the source is Gaussian and its power spectrum is known, the noise power spectrum

of estimator Nκ(ℓ) can be calculated using the method described in appendix. If source

is non-Gaussian, Nκ(ℓ) is not derivable from the two-point function, the lensing power

spectrum could be biased. For scales ℓ . ℓa = kaχ(zs), NκγE
(ℓ) ≈ 0. The κ̂ − γ̂E cross

power spectrum does not contain the noise term and does not depend on the source four-

point function. It is less optimal, but more robust. Therefore the cross power spectrum

of convergence and shear will be an unbiased estimator of lensing power spectrum even

when we do not know the unlensed source four-point function, and the noise of the two

estimators themselves.

The 2-D OQDE in CMB lensing can be written as product of two filtered temperature

fields (Hu, 2001; Lewis & Challinor, 2006). Furthermore, the 3-D OQDE can be written

in the same form as Eq. (1.44), though it is not explicit (private communication with

Oliver Zahn).

Ed(θ) = L−1

∫

dx‖T1(θ, x‖)T2(θ, x‖) , (3.27)

and

∫

d2θ′d(θ′)bd(θ − θ
′) = 〈Ed(θ)〉 . (3.28)

bd is a normalization factor, T1 =
∫

d2θ′dx′‖T (θ′)W1(θ − θ′, x‖ − x′‖) and T2 =
∫

d2θ′dx′‖

T (θ′)W2(θ − θ′, x‖ − x′‖) are convolved temperature fields, where the window functions

are Fourier transforms of:

W1(ℓ, k‖) =
−ilP (ℓ, k‖)

P̃ tot(ℓ, k‖)
,

W2(ℓ, k‖) =
1

P̃ tot(ℓ, k‖)
. (3.29)

We note that the OQDE and our estimators have the same form.
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As explained in section 1.4.3, the contribution from lensing in Eq. (1.42) is secondary,

and the noise of reconstruction is mainly determined by the unlensed terms. Therefore

we can measure the numerical reconstruction noise without lensing the sources.

3.3 Numerical methods

3.3.1 Simulation

The fluctuation in the 21-cm brightness temperature may depend on many factors, such

as the gas density, temperature, neutral fraction, radial velocity gradient and Lyα flux

(Barkana & Loeb, 2005). In our work, we do not consider the redshift space distortion

effect caused by the non-zero radial peculiar velocity gradient, and simply assume the

brightness temperature is proportional to the density of the neutral gas.

Tb ≈ (27mK)

(

1 + z

10

)1/2
Ts − TCMB

Ts
(1 + δHI) , (3.30)

where Tb is the brightness temperature increment respective to CMB, Ts is the spin

temperature, which is expected to be much bigger than TCMB once structure are non-

linear, and δHI is the over-density of the neutral hydrogen.

Our work mainly focuses on the non-Gaussian aspect and 3-D properties of the re-

construction, and these effects also exist in a pure dark matter distribution. The neutral

gas will trace the total mass distribution, which is dominated by the dark matter haloes.

A simplification is to use the dark matter as the source directly. Even though this will

bring some bias at small scales, the approximation is valid at large scales (Trac & Pen,

2004). The dark matter distributions are generated using the PMFAST code (Merz et al.,

2005).

The high resolution PMFAST simulation was performed on a 14563 fine mesh with

3.9 × 108 particles. The production platform was the IA-64 ’lobster’ cluster at CITA,

which consists of 8 nodes. One of them was upgraded, so we used the remaining 7 nodes.
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Each node contains four 733 MHz Itanium-1 processors and 64 GB RAM. The simulation

started at an initial redshift zi = 100 and ran for 63 steps with comoving box-size

L = 50h−1 Mpc. The initial condition was generated using the Zeldovich approximation,

and the matter transfer function was calculated using CMBFAST (Seljak & Zaldarriaga,

1996). The cosmological parameters were chosen in accordance with the WMAP result

(Spergel et al., 2003): Ωm = 0.27,ΩΛ = 0.73,Ωb = 0.044, n = 1.0, σ8 = 0.84, and

h0 = 0.71. 20 independent boxes were generated. We had 3-D data at z = 7 at hand,

and used them in our numerical tests for convenience.

3.3.2 Convergence and shear map construction

The dimensionless power spectrum, which is the contribution to the variance of over-

density per logarithmic interval in spatial wave number, can be measured from the source

data in the periodic simulation box.

To reduce the computation time, our numeric results on the reconstruction used a

re-sampled distribution. We generate 20 independent sources each on 5123 grids, to

investigate the statistics. The total co-moving length along the line-of-sight of 20 sim-

ulation boxes is 1h−1 Gpc, which is about the same size as the observable 21-cm region

distributed between redshifts 10− 20. The correlation between the boxes can be ignored

since the box-size is much larger than the non-linear length scale, and the number of

neglected modes is small. The evolution of structure over this redshift is significant. Our

simulations were all measured at the same redshift, so we anticipate the real effects of

non-Gaussianity to be smaller. On the other hand, large scale power is generated by

reionization bubbles, which may contribute to non-Gaussianity as well. In Fig. 3.1, the

solid line is the average power spectrum of the re-sampled sources. To measure the de-

pendence of non-Gaussianity on scale, we will compare the results with different scales

of experimental noise cut-off.

We simply assume the noise to be zero above a cut-off and infinity below the cut-off
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scale. This is a reasonable approximation for a filled aperture experiment, which has

good brightness sensitivity, and an exponentially growing noise at small scales. Three

cut-off where chosen at kc = 1hMpc−1, 4hMpc−1, 16hMpc−1, which represent the linear,

quasi-linear and non-linear scales. Three different experimental noise levels are shown as

vertical lines in Fig. 3.1.

In principle, the convergence map is the variance (or covariance when the filter Fκ

has negative value) of the over-density field after a specified filtering process. Shear is

the covariance of two maps, since the anisotropic filter can not be factored in to a perfect

square. We need to smooth the maps to extract the lensing signal with maximum S/N.

The window function used to smooth the lensed map, which is isotropic in the transverse

directions to the line-of-sight, can be calculated with Eq. (3.15). The gradient of the

power spectrum becomes negative at small scales; that comes from the limited resolution

of the N-body simulation and is unphysical. The experimental noise will put a natural

cut-off at small scales.

As mentioned in Section 2.2.2, the reconstruction of κ will depend on 2P + ∆P . In

2-D this is equivalent to the gradient of the 2-D version of ∆2
2D = k2P2D(k)/2π. In 3-D,

it is more complicated since ∆P (k) is not isotropic. The optimal window functions have

two parts W1 and W2, the choice of which is not unique. One might expect a symmetric

decomposition to have the best S/N. The optimal filter of κ is positive except at a few

modes, and can be decomposed into two equivalent parts (one part needs to contain a

minus sign for those negative value of the filter). In contrast to κ, the shear construction

needs to use the covariance between two different windowed temperature fields, since

there is a sin or cos component in the window function. The window is a function of the

transverse and parallel components of k.

We can calculate the mean covariance of the two smoothed maps along the redshift

axis for each pixel. From Eq. (3.17) we can construct the convergence map. Shear maps

are reconstructed in the same way, except different optimal window functions are used.
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Figure 3.1 The average dimensionless power spectrum of the re-sampled dark matter from the 14563

N-body simulation in three dimensions are given. The solid line is the power spectrum on the 5123

grids. The re-sampled sources keep the non-linearity and the non-Gaussianity of the structures up to

k ∼ 30h Mpc−1. Three different experimental noise cut-offs are shown with kc = 1h Mpc−1,4h Mpc−1,

16h Mpc−1, which represent the linear, quasi-linear and non-linear scales.

The anisotropic part cos 2θk⊥
can be decomposed into cos θk⊥

− sin θk⊥
and cos θk⊥

+

sin θk⊥
. Both windows can generate a field with even PDF so that the distribution is

less non-Gaussian. This is consistent with the numerical results as shown in Fig. 3.6.

Using these two maps, we construct the γ1 map with their covariance, as shown in the

Eq. (3.23). Similarly we can get the γ2 map.

3.4 Numerical results and discussion

Cooray (2004) claims that the variance will not vary considerably and is not a ideal

measurement of the lensing signal. Even though the κ field itself is only a few percent,

the integrated effect from the 3-D images will reduce the noise ratio significantly to

uncover the signal. Zahn & Zaldarriaga (2006) solve the problem from an alternative
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Figure 3.2 The noise of lensing maps from different estimators using experimental noise 1, which cuts

off at kc = 1h Mpc−1. We treat the 1h−1 Gpc rectangle of gas at z = 10− 20 as 20 independent sources

each is a 50h−1 Mpc box-size cube. Structures at these redshifts are similar to those at z = 7 used

by us, though less non-linear. We can expect to see qualitatively similar non-Gaussianity effects in the

reconstruction with the 1h−1 Gpc space except that the non-Gaussianity of sources may be smaller, but

reionization may change that, too. The curves are truncated at
√

2kc, where the noise goes to infinity.

The thick solid line is the expected lensing signal. The dotted line is the lensing reconstruction noise

for a simulated Gaussian source with the same power spectrum. The dashed curve is the noise from the

N-body simulation using the Gaussian estimator, which increases modestly compared to the Gaussian

source. It is identical for the optimal κ, γ reconstruction as it is for the deflection angle. The thin solid

line is noise when shear and convergence are re-weighted by their non-Gaussian variances.
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Figure 3.3 Same of Fig. 3.2, but with cut-off at the quasi-linear scales kc = 4h Mpc−1. The effect of

non-Gaussianity of sources is more pronounced. We can compare the S/N with a fiducial cosmic shear

survey of sources in the same 10 < z < 20 redshift range, which reconstructs the lensing from the shape

of galaxies, with a surface number density of 14 arcmin−2. To map the lensing to the same S/N with

redshift z ∼ 1 sources requires a density of 56 arcmin−2 (Hu & White, 2001) with rms ellipticity of 0.4.

We see that proposed optical lensing surveys are unlikely to outperform 21-cm sources.
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Figure 3.4 Same of Fig. 3.2, but with cut-off at the non-linear scales kc = 16h Mpc−1. At the highly

non-linear scales, the non-Gaussian noise variance is about 3 to 4 magnitude higher than the Gaussian

noise. The combined re-weighted estimator (NG-NG κ+γE) has noise about half an order of magnitude

lower than the OQDE.

approach by generalizing the minimum variance quadratic estimator (Hu & Okamoto,

2002) in CMB lensing to 3-D.

Related work was done in Metcalf & White (2007), where they also construct quadratic

estimators of shear and convergence in real space, even though they did not include the

correlation between the 2-D slices along the line-of-sight and they did not choose the

estimator with minimized noise.
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Figure 3.5 The comparison of reconstruction noise from the combined (κ, γ) estimator and the OQDE.

As shown in section 3.2.1, the combined estimator becomes the sum of κ and γE with weights. For

Gaussian sources, the weights are the reciprocal of the noise of the two estimators respectively. To

compare with the OQDE, we could still use the same weights for non-Gaussian sources, i.e., using

the reciprocal of the noise measured from Gaussian sources. Note the combined estimator with these

weights will be less optimal than using weights calculated from the noise of non-Gaussian sources. The

vertical line shows the characteristic scale ℓc below which the window functions are optimized. While

the optimality is only proved at low ℓ, we find the combined estimator and OQDE equally optimal for

Gaussian sources at all scales. For non-Gaussian sources, they also have the same results. The scatter

is consistent with numerical integration errors from the tabulated power spectrum. Similarly, the noise

for non-Gaussian sources is consistent between the two estimators. We conclude that the combined

estimator is numerically equivalent to OQDE if the weights are optimized for Gaussian sources.
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3.4.1 Non-Gaussianity

The dark matter distribution is linear at large scales, and can be treated as Gaussian.

In the non-linear scales, when the amplitude of density fluctuations is big, the structure

becomes highly non-Gaussian. Reference Gaussian sources with identical power spectrum

to the dark matter are generated.

We treat the 1h−1 Gpc region at z = 10 − 20 as 20 independent sources. Structures

at these redshifts are similar to those at z = 7 used by us, though less non-linear. We

can expect to see similar non-Gaussianity effects in the reconstruction with the 1h−1 Gpc

space except that the non-linear scale is smaller. We compare the reconstruction noise

with three different experimental noise as well as the lensing signal in Fig. 3.2, 3.3 and 3.4.

The thick solid line in the middle panel is the lensing power spectrum, which is calculated

with the Limber integral of the 3-D power spectra of dark matter using Eq. (1.33). We use

the publicly available code Halofit.f (Smith et al., 2003) to generate the non-linear dark

matter power spectra. The code provides both their fitting results, and the results using

the Peacock-Dodds formula (Peacock & Dodds (1996), PD96 hereafter). The halofit code

fits the power spectrum at low redshift to Virgo and GIF CDM simulations, which used

the transfer function of Efstathiou et al. (1992). At higher redshifts, the code does not

operate. We use a combination of the two: Halofit power spectra are used for redshifts

lower than z = 3.0, and PD96 power spectra are used for higher redshifts.

Since the reconstruction noise of κ is isotropic, one can always choose the direction

of the lensing mode ℓ to be parallel with a coordinate axis. In this direction, γ1(ℓ) =

κ(ℓ), γ2(ℓ) = 0, and γE = γ1, which simplifies the numerical calculation. As shown in

section 3.2.1, the combined estimator becomes the sum of κ and γE with weights. The

optimal weights are calculated from the inverse matrix of Cκ, covariance between the two

estimators. The matrix is close to diagonal in small ℓ approximation, so for simplicity

we take the diagonal terms. For Gaussian sources, the weights are the reciprocal of the

noise of the two estimators respectively. For non-Gaussian sources, we could use the
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same weights as the Gaussian sources, i.e., using the reciprocal of the noise measured

from Gaussian sources, or weigh them by calculating their respective measured noise from

non-Gaussian sources. We will show that the combined estimator with Gaussian noise

derived weights has the same noise as the OQDE for both Gaussian and non-Gaussian

sources. Fig. 3.2, 3.3, and 3.4 are results using noise cut-offs from experiment 1, 2 and

3. The curves are truncated at
√

2kc. The non-Gaussianity increased the noise of all

estimators. The first cut-off falls in the linear regime, where the non-Gaussianity only

has a modest effect on the noise. The second cut-off is at the quasi-linear scale. Here the

non-Gaussianity increases the noise of the OQDE by about 1 to 2 orders of magnitude.

At the highly non-linear scales, the non-Gaussian noise is about 3 to 4 magnitude higher

than the Gaussian noise, and in fact higher than that of the more noisy experiment.

Our estimators were derived in the limit that κ and γ are constant. For spatially

variable lens, we solve for the required normalization factors. In the OQDE, the windows

do not depend on the scale of the lens, so one might guess the same Ansatz to hold for

the (κ, γ) estimators. We verify this numerically in Fig. 3.5. The solid line and dotted

line is for Gaussian sources and non-Gaussian sources respectively. The differences are

less than a few percent, and consistent with integration errors from the tabulated power

spectrum, and most importantly, independent of scale, as we had expected. The vertical

line shows the characteristic scale ℓa = χ(zs)ka ∼ χ(zs)kc/2, or below which the window

functions are optimized. As shown in Fig. 3.7, the reconstruction noise is proportional

to k−3 if sources are Gaussian, and most of the contribution to the reconstruction is from

scales near kc. Therefore our approximation holds at scales ℓ < χ(zs)kc/2 with small

deviance. For non-Gaussian sources, ℓa will also be affected by the non-Gaussianity of

sources. While the optimality is only proved at low ℓ, we find the combined estimator and

OQDE equally optimal for Gaussian sources at all scales. For non-Gaussian sources, they

also have the same results. We do note, that for a finite size survey, the (κ, γ) recover

the constant mode, which is lost in the OQDE. Three more numbers are recovered.
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The combined estimator with κ and γE weighted by using the non-Gaussian noise is

more optimal than weighted by using Gaussian noise, therefore has lower noise than the

OQDE. In fact, the non-Gaussian noise of γE is much smaller than κ. To investigate the

origin of this change, we first investigate the cause of the increased noise in non-Gaussian

sources for κ. This could be because either the non-Gaussianity leads to a high kurtosis

in κ, which boosts the errors; or the non-Gaussianity may lead to correlations between

modes, resulting in a smaller number of independent modes, and thus a larger error.

In Fig. 3.6, the PDF of maps smoothed with the κ window are shown. The top,

middle and bottom panel show the results with experimental noise cut-offs 1, 2 and 3.

The solid line is the PDF for maps smoothed with κ window (T κ
1 , T

κ
2 in section 3.2).

Because the window functions are almost symmetric, we plot only one PDF. To see the

full dynamic range on the x-axis, we plot ±|T |1/4 as x-axis, and PDF(|T |1/4)|T |15/4 as the

y-axis. The integral of the x-axis weighted by the y-axis will give 〈T 4〉, which is basically

a estimation of the point-wise non-Gaussian reconstruction noise. Here PDF(|T |1/4) is

the PDF of |T |1/4. To compare with a Gaussian distribution, dotted lines are also plotted.

The contributions to the 〈T 4〉 in experiment 1 mainly come from small fluctuation regions.

In experiment 2, the large outliers play a more important role but one can still expect the

curve to converge. In experiment 3, most contributions come from rare regions with high

fluctuations. Caution should be exercised in the interpretation of the most non-linear

scales, since a larger number of source samples may result in a different error. It is clear,

however, that the noise has increased dramatically.

The kurtosis of κ is 〈(T κ
1 )4〉/〈(T κ

1 )2〉2 − 3, and an analogous quantity can be defined

by 〈(T γ
1 T

γ
2 )2〉/(〈(T γ

1 )2〉〈(T γ
2 )2〉) − 1 for shear. T κ

1 ≈ T κ
2 , and T γ

1 is uncorrelated with T γ
2 .

The noise of κ and γ is determined by both kurtosis and number of independent cells.

For experimental noise 1, the kurtosis of T κ and T γ are 1.2 and 0.29 respectively. The

effectively independent cube cells for κ and γ have side length 4.8h−1 Mpc and 4.6h−1 Mpc

respectively. The corresponding Gaussian sources with the same cut-off have effective
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cell size 3.0h−1 Mpc and 3.5h−1 Mpc. For experimental noise 2, the kurtosis of T κ and

T γ are 18 and 5.7 respectively. The effective cell size for κ and γ are 1.8h−1 Mpc and

1.5h−1 Mpc respectively. The corresponding Gaussian sources with the same cut-off have

effective cell size 1.0h−1 Mpc and 1.1h−1 Mpc. For experimental noise 3, the kurtosis for

T κ and T γ are 1.6× 103 and 3.5× 102 respectively. The effective cell size for κ and γ are

540h−1 Kpc and 310h−1 Kpc respectively. The corresponding Gaussian sources with the

same cut-off have effective cell size 240h−1 Kpc and 290h−1 Kpc. We conclude that the

shear measurements have lower non-Gaussian noise both because of a smaller point-wise

kurtosis, and less correlation between modes.

We will see later that experiment 2 has the largest S/N, which is larger than unity for

ℓ . 6000. We can compare the S/N with cosmic shear surveys, which reconstruct lensing

from the shape of galaxies. The noise can be estimated by σ2
e/ng (Hoekstra et al., 2006;

Hu & White, 2001), where we use σe ≈ 0.4 as the rms intrinsic ellipticity, and ng is the

effective number density of galaxies. We plot the shear noise from a survey of sources

in the same redshift range 10 < z < 20 in Fig. 3.3, with a surface number density of

14 arcmin−2. For more realistic source redshifts z ∼ 1 in proposed optical surveys (Hu &

White, 2001), this corresponds to a surface density of 56 arcmin−2 to achieve the same

fidelity of dark matter reconstruction. In the CFHTLS wide survey the source galaxies

are distributed at redshifts lower than 3, and their effective number density is ∼ 12

galaxies arcmin−2 (Hoekstra et al., 2006). This noise is larger still. Even though non-

Gaussian 21-cm lensing saturates lensing reconstruction, it still measures more modes

than current proposed optical surveys.

In Fig. 3.7, we show the reconstruction noise at two different ℓ versus various ex-

perimental noise cut-off kc. The top panel is for the fundamental mode in the box,

ℓ1 = 2π/L = 783, and the bottom panel is for ℓ2 = 6ℓ1 = 4715. As shown in the plot,

it is clear that the noise of a Gaussian source decreases as kc increases, because of the

increasing number of independent modes. The dotted lines are a least squares fitting
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power-law N0k
−3
c to the Gaussian noises, and N0 = 3.1 × 10−2, 1.3 × 10−1 for top and

bottom panels respectively. This comes from counting the number of available source

modes. The dashed lines connect the non-Gaussian noises of the OQDE. The triangles

are the reconstruction noise for the combination estimator, which is equal to the OQDE

at larger scale kc and about half an order of magnitude lower at smaller scales of kc. From

this plot, we can see that experiments with lower noise does not necessarily decrease the

reconstruction noise of the OQDE for non-Gaussian sources. And the experimental noise

has a limit around the quasi-linear scale where the OQDE achieves its best S/N. The

S/N achieves its maximum around kNG
c ≈ 4hMpc−1. This cut-off with maximum S/N

varies only slowly with ℓ.

If one wants to estimate the effective number of available lensing modes, we can

derive an effective cut-off of a Gaussian field which gives the same S/N as the optimal

non-Gaussian sources estimator. This is kG
c ≈ 2hMpc−1, where the power spectrum of

source is ∆2 ≈ 0.2. The size of the effectively independent cells is 2.0h−1 Mpc. A simple

equivalent Gaussian noise estimate counts all modes up to ∆2(k) < 0.2, which is perhaps

surprisingly low.

For our noise estimates, we stacked simulations all at redshift z = 7. While the

angular diameter distance does not change much to z ∼ 20, the structure does evolve.

We do not have access to the higher redshift outputs to test this effect, but one would

expect a smaller non-linear scale to result in a smaller reconstruction noise.

3.4.2 Future directions

A possible way to find the optimal window functions for non-Gaussian sources is to divide

the window into N frequency bins W1(k1,k2, ...,kN), and apply a numerical variation

to those bins. The noise can be measured numerically by applying the estimator to the

simulated sources. The process of searching for a optimal filter is equivalent to look for

a minimum of reconstruction noise in N dimensional space k1,k2, ...,kN . In fact, the
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optimal window function can be constructed by the inverse of covariance matrix of the

source power spectra. We will present details of the method in chapter 4. In this chapter

we only considered the class of windows which are identical to the optimal Gaussian

estimators with a hard cut-off, as well as two weightings for shear and convergence.

One can also try to Gaussianize the sources by modifying the PDF of all the sources

to be Gaussian. The physical explanation and details of Gaussianization can be found

in Weinberg (1992). The basic idea is that every pixel should preserve its rank in the

whole field during the Gaussianization process. During structure formation, the non-

linear evolution at small scales should not destroy most of the information on the peaks

and dips of the linear field. However, this Gaussianization process will change the power

spectra of sources, and the reconstructed lensing field will be biased. This is not a linear

process, and the variation of power spectrum does not have analytical solution, and can

only be measured numerically with simulated sources.

Recently it has been proposed that one could economically achieve brightness mapping

of 21-cm emission at lower redshifts (Chang et al., 2007), potentially even with existing

telescopes. If individual galaxies are not resolved, one can again ask the question of how

one could reconstruct a lensing signal. This is very similar to the problem studied in this

chapter. We will discuss this with optimal non-Gaussian estimators in chapter 4.

3.5 Summary

In this chapter, we developed the maximum likelihood estimator for the large-scale struc-

ture from the 21-cm emission of the neutral gas before the epoch of re-ionization. The

convergence and shears can be constructed separately. They are independent for ℓ . ℓa.

The cross power spectrum of convergence and shear is more robust unbiased estimator

of lensing power spectrum, which does not require knowledge of the unlensed source

four-point function. To test the effects of non-Gaussianity, we applied our estimators
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Figure 3.6 The PDF of maps smoothed with a κ window are shown. The top, middle and bottom

panel show the results with experimental noise cut-offs 1, 2 and 3. The solid line is the PDF for maps

smoothed with the κ window (T κ in section 3.2). To see the full dynamic range on the x-axis, we plot the

curve with ±|T |1/4 as x-axis, and PDF(|T |1/4)|T |15/4 as the y-axis. The integral of the x-axis weighted

by the y-axis will give 〈T 4〉, which is basically a estimation of the reconstruction noise. The error bars

are estimated from the 20 simulations. To compare with a Gaussian distribution, dotted lines are also

plotted. The contributions to the 〈T 4〉 in experiment 1 mainly come from small fluctuation regions.

In experiment 2, the large outliers play a more important role but one can still expect the curve to

converge. In experiment 3, most contributions come from rare regions with high fluctuations. Caution

should be exercised in the interpretation of the most non-linear scales, since a larger number of source

samples may result in a different error. It is clear, however, that the noise has increased dramatically.
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Figure 3.7 The reconstruction noise versus the cut-off in the experimental noise. The top panel is

for ℓ1 = 2π/L = 783, and the bottom panel is for ℓ2 = 6ℓ1 = 4715. The noise of Gaussian sources

decreases as kc increases, because of the increasing number of independent modes. The dotted lines are

a least squares fitting power-law N0k
−3

c
to the Gaussian noises, and N0 = 3.1× 10−2, 1.3× 10−1 for top

and bottom panels respectively. The dashed lines connect the non-Gaussian noise of the OQDE. The

triangles are the reconstruction noise for the combined estimator, which is equal to the OQDE at larger

scale kc and about half an order of magnitude lower at large kc. The noise of the non-Gaussian sources

changes slowly and saturates or even increases at small scales.
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to simulated data. The sources were generated by N-body simulations, because gas

is expected to trace the total mass distribution. To investigate the influence of non-

Gaussianity, we also use Gaussian sources which have the same power spectra as the

simulated sources. We applied our estimator and the OQDE on both the Gaussian and

non-Gaussian sources. Though our estimators are derived in the simplified case of a

constant convergence, the noise of our combined estimator of convergence and shear are

the same as the OQDE for Gaussian sources for spatially variable lenses. For a finite

survey area, three extra constant modes can be recovered.

At z ∼ 10 − 20, the non-Gaussian nature of the source can increase the error bar by

orders of magnitude, depending on the experimental cut-off scale. Shear construction is

affected less by non-Gaussianity than the convergence field, and the combined estimator

with non-Gaussian noise weights is a better choice than reconstructing with the OQDE.

S/N can not be boosted infinitely by reducing the experimental noise, and achieves its

maximum for a cut-off around kNG
c ≈ 4hMpc−1. Below that scale the S/N starts to

saturate or even decrease. The maximum S/N for non-Gaussian sources is equal to

Gaussian sources with kG
c ≈ 2hMpc−1, where the power spectrum of sources is ∆2 ≈ 0.2

and the side length of the effectively independent cells is 2.0h−1 Mpc. The maximum

S/N is greater than unity for ℓ . 6000, which makes 21-cm lensing very competitive

compared to optical approaches.



Chapter 4

Dark energy and 21-cm intensity

lensing

4.1 Overview

The standard cosmological model has achieved substantial quantitative success through

precision cosmology. It requires a mysterious and dominant dark energy component,

which is not physically understood. Or it may be a hint that Einstein’s General Relativity

is not the correct theory to describe our universe.

Recently, modified gravity models have been studied quantitatively. In order to pass

local precision gravity tests, and match the CMB fluctuations, they tend to differ in their

predictions only on very large scales and at low redshift. A direct mapping in this regime

is challenging.

The kinematic history of the universe is being mapped out using the standard metre

stick of BAO. A range of surveys are underway and have been proposed to produce

a coarse image of large-scale structure (LSS) over a substantial sky area and redshift

range. While these surveys are not directly suitable for lensing mapping, the maps they

produce will be distorted by gravitational lensing (Hui et al., 2007). Since the intrinsic

87
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correlations is known to be statistically isotropic, the lensing induced changes can be used

to reconstruct the dark matter map, in analogy with lensing of the CMB. The latter is

sensitive to the matter at redshifts z ∼ 2−3, where dark energy is expected to have little

impact. On the other hand, BAO surveys map the universe in the redshift ranges 1-4,

hence the associated lensing signal will be sensitive to the non-linear evolution of dark

matter at z ∼ 0.5 − 1, where it is strongly affected by dark energy.

Some of the proposed fast BAO surveys (Chang et al., 2008; Wyithe et al., 2008;

Tegmark & Zaldarriaga, 2008) are based on an intensity mapping approach, where the

LSS is mapped without detection of individual galaxies over a large fraction of the sky.

For such surveys, point source based lensing mappings are not applicable (Zhang & Pen,

2005), and the LSS lensing is the only available tool. Lensing reconstruction using Gaus-

sian Random Fields as sources is now well understood for both 2-D and 3-D structures

(Pen, 2004; Cooray, 2004; Zahn & Zaldarriaga, 2006; Metcalf & White, 2007; Lu & Pen,

2008; Metcalf & White, 2008). Metcalf & White (2008) have explored the possibility of

applying 21-cm lensing from low and high redshifts to the dark energy constraint. While

their method is based on the Gaussian assumption, it was shown that the neglect of

non-Gaussianity could generate orders of magnitude difference in the noise estimation (

chapter 3, also Lu & Pen (2008)).

In general, lensing reconstruction is a quadratic function of the density field, which is

quantified by its power spectrum. RH05 showed that the Fisher information available in

the power spectrum saturates at trans-linear scales, and stays several orders of magnitude

below the Gaussian Fisher information content. In this chapter, we combine the infor-

mation from these approaches, and construct the optimal quadratic lensing estimators

for non-linear sources fields from N-body simulations.

We find that the reconstruction noise of lensing from the simulated sources decreases

with reduced experimental noise at linear scales, saturates at quasi-linear scales, and

drops again at highly non-linear scales. There is a plateau region at the trans-linear
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regime, which is analogous to what was found with the Fisher information content in the

initial amplitude of matter power spectrum by Rimes & Hamilton (2005). Both effects are

caused by the non-Gaussianity (or non-linearity) introduced by gravitational clustering

during structure formation. We found the saturation scale is a steadily increasing function

of the shape of the linear power spectrum.

This non-Gaussianity makes the 21-cm lensing less promising than it first appears.

However, because the abundance of 21-cm sources, the S/N of 21-cm lensing at high

redshift 1 − 6 is still competitive compared with other surveys. The effective number

density of sources defined by the independent number of cells in the 21-cm source, increase

quickly with redshift. At redshift 4 − 6, this number density could be 9 arcmin−2.

The chapter is organized as follows: We overview the progress in the LSS information

and lensing studies in section 4.2. The optimal lensing estimator is introduced in sec-

tion 4.3. The numerical methods are presented in section 4.4. The results are discussed

in section 4.5. We conclude in section 4.6.

4.2 Information and lensing from the LSS

The lensing of Gaussian Random Fields can be described in several ways. For the pur-

poses of this chapter, we are in a regime where the fluctuation scale of the sources is

smaller than the structures of interest in the lenses. In this limit, lensing has two effects

on an image: convergence (κ) and shear (γ).

As we will find through detailed calculations, these two quantities carry a comparable

amount of information, dependent on the slope of the power spectrum of sources. For

pedagogical purposes, we first consider the convergence, that is the stretching of the image

changes the amplitude of fluctuations at a fixed apparent angular scale. By comparing

the power spectrum in different patches, we can measure the relative convergence.

The accuracy of this procedure is proportionate to the precision with which the power
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spectrum can be measured. This problem has been studied in terms of Fisher Information

by RH05, and their results directly translate into the accuracy of lensing reconstruction.

After a technical calculation, we find that the effective number of independent lensing

sources is equal to the RH05 Fisher Information, scaled by a coefficient of order unity,

which depends on the slope of the power spectrum.

A related problem is the impact of lensing on the sky averaged power spectrum (Hui

et al., 2007, 2008; Loverde et al., 2008). There had been concern that the lensing at low

redshift may impact the ability to accurately measure the matter power spectrum at high

redshift. To first order, there is an equal number of positive and negative convergence

patches, so the net effect is second order. Since we can measure the first order effect on

each patch, we can actually correct its impact, and cancel off the second order bias.

4.3 Lensing reconstruction

In the lensing of diffuse background, what is observed is the distorted brightness tempera-

ture distribution. As we discussed in chapter 3, all lensing estimators are quadratic terms

of temperature fields. This is because the underlying lensing field has zero expectation

value at the position of any particular pixel, thus the single field terms disappear. In

other words, the lensing field (convergence κ, shear γ, or deflection angle d) can be recon-

structed with the product of two smoothed temperature fields. For different estimators,

the window functions could also be scalars or vectors.

How to choose the smoothed window is just a matter of optimization. There are also

progressive levels of optimization to be considered: Is the source isotropic? Is the window

function isotropic? For Gaussian distributed temperature field, the optimal window func-

tion can be solved analytically. Hu & Okamoto (2002) formulated the optimal quadratic

deflection angle estimator (OQDE) for 2-D CMB lensing, and later Zahn & Zaldarriaga

(2006) generalized it to 3-D 21-cm lensing. The OQDE surprisingly has the same form
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at all scales, even though an additional scale dependent normalization factor needs to

be applied at the last step. In an alternative approach, by optimizing the reconstruction

noise in the zero-mode, we derived the optimal Gaussian window for the convergence and

shear fields separately in chapter 3.

In reality, 21-cm sources are not Gaussian fields. For simplicity, we use the 3-D

dark matter distribution to represent the 21-cm emission at the same redshift. We

investigated both OQDE and our estimators by numerical tests with simulated non-

Gaussian source fields and mocked Gaussian ones. For Gaussian sources, we found the

combined result of our two estimators has exactly the same S/N as the OQDE. This

agrees with our expectation because of the scale in-dependency of the optimal window

functions. If one window function is optimal at one scale, it is also optimal at other

scales. For non-Gaussian sources however, the optimal window function derived from

Gaussian assumption is not optimal any more. The lensing reconstruction noise could be

underestimated by orders of magnitude if we use the results from Gaussian sources, which

could be calculated analytically by applying Wick’s theorem. By choosing appropriate

weights, our combined estimator has better performance than the OQDE.

In this chapter, we will further explore the optimization of non-Gaussian sources.

We will develop the optimal non-Gaussian estimator, which can only be constructed

by numerical measurements from a large sample of simulations. The reconstruction

noise of optimal lensing estimators for non-Gaussian 21-cm sources are closely related

to the Fisher information contained in non-linear matter power spectrum described by

RH05. They indicated that the Fisher information for the initial amplitude of matter

power spectrum could be written as the sum of the inverse of covariance matrix of power

spectrum estimates, multiplied by the partial derivative of power spectrum with respect

to the initial amplitude. They have revealed the cumulative Fisher information results

up to a maximum scale, which enters the calculation as the upper limit scale of the

covariance matrix. They found a very interesting phenomenon: the Fisher information
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increases at linear scales, and then the growth becomes very slow at the quasi-linear

region (which they label information plateau), and the Fisher information starts to rise

steeply again in non-linear scales.

In this context, Fisher information means how accurate the amplitude of the power

spectrum can be measured. As we will discuss later in section 4.3.1, lensing can be cali-

brated by the change of the source power spectrum. We will also prove that the optimal

window function of non-Gaussian sources actually contains the inverse covariance ma-

trix of the power spectrum. Thus the reconstruction noise of lensing roughly estimates

how much information is contained in the source power spectrum: the lower the noise

level achieved, the more information is gained. Instrumental noises of 21-cm experiments

can be approximately treated as hard cut-offs at some scales, then we could inspect the

reconstruction noises with different cut-off scales. When the sources are Gaussian, the

covariance matrix is diagonal and could be expressed as a square term of the source power

spectrum, and the optimal window function reverts to the form we found in chapter 3.

Our numerical results with Gaussian estimators had similar behavior as RH05: the re-

construction S/N increased first and reached a peak at trans-linear scales. At non-linear

scales, the S/N dropped again. We will explain later, the decline of S/N is an artifi-

cial effect by using the non-optimal window function for non-Gaussian sources. In this

chapter, we will show that the optimal non-Gaussian estimator also leads to a plateau in

trans-linear scales in the S/N plot, and like Fisher information of matter power spectrum

amplitude, the curve falls again in non-linear scales.

The covariance matrix of non-linear power spectrum is measured from an ensemble

of N-body simulations. RH05 showed that the covariance of power spectrum can only

be measured with at least hundreds of independent simulations. Therefore we generated

around 100 or more different sources, depending on the redshift, by running the same

number of N-body simulations.
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4.3.1 Optimal non-Gaussian estimator

As we explained in chapter 1, for the lensing of a diffuse background, all unbiased estima-

tors are two-point functions of the source temperature field with each points convolved

with a window function, no matter which quantity is reconstructed: the convergence,

shear, deflection angle or the potential. To optimize the estimator, one minimizes its

variance which is a four-point function of the temperature distribution. Except for a

Gaussian distribution, four-point functions are in general not analytical, and can not be

calculated from two-point statistics.

In chapter 3, we derived optimal estimators of the convergence and shear for a Gaus-

sian source distribution. Since the optimal window function for Gaussian sources (here-

after optimal Gaussian estimator or optimal Gaussian window function) does not depend

on the scale, we were able to look for its form in the limit of a slowly varying κ (or γ).

We then applied a maximum likelihood method to solve the optimal window. The calcu-

lation was done analytically assuming that the covariance matrix of the power spectrum

is diagonal and can be obtained from the power spectrum, which is the implication of

Wick’s theorem. The variance of the optimal Gaussian estimators rise when the resolu-

tion of the observation is improved, which shows the optimal Gaussian estimators are far

from optimal for non-Gaussian sources distribution.

To find the optimal estimator for non-Gaussian sources, we pursue the calculation

in a slightly difference approach. We adopt a minimum variance method, demonstrate

it with the Gaussian case and generalize it to the non-Gaussian case. First, we solve

the optimal estimator for a constant κ and a Gaussian source, i.e., κ(x) = κ0. We then

generalize the estimator to the optimal non-Gaussian estimator of varying κ and γ.

The lensed power spectrum from observations can be Taylor expanded in first order
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as:

P̃ tot(k) = P̃ (k) + PN(k)

≈ P (k) + PN(k) +
∂P̃ (k)

∂κ

∣

∣

∣

∣

∣

κ=0

κ , (4.1)

where the noise PN = P e+P s includes both the instrumental noise, P e, and the statistical

fluctuation of the power spectrum, P s, which is the sample variance for a Gaussian source.

In chapter 3, we have defined the derivative of the lensed power spectrum with respect

to κ, i.e., G(κ,k) ≡ ∂P̃ (k)
∂κ

. For convenience, we will use G to represent its value at κ = 0,

therefore

G(k) ≈ 2P (k) + ∆P (k) , (4.2)

where ∆P = P ′k(k2
⊥/k

2), P ′(k) = dP (k)/dk, k⊥ means the component of k in the

transverse plane of the line of sight, as defined in chapter 3. Note that here P (k) is

the expectation value of source power spectrum estimate, and P̃ (k) is the lensed power

spectrum of one realization. In the absence of lensing, the power spectrum in one real-

ization is measured by an estimator P̂ (k), which is equal to the sum of P (k) and PN(k).

We frequently use the approximation that 〈(P̃ tot(k) − P (k))2〉 ≈ 〈(P̂ (k) − P (k))2〉 in

the reconstruction noise estimation. To simplify the algebra, we first consider the case

P e = 0, and PN = P s. It will later be straightforward to add the instrumental noise.

Discrete case

Following the convention of Bertschinger (1992), we use subscript [...]k to describe discrete

quantities, and parenthesis [...](k) to describe continuous quantities. For example,

T̃ (k) =

∫ ∞

−∞

d3xT̃ (x)e−ik·x ,

T̃k =
∑

j

T̃ (xj)e
−ik·xj . (4.3)

Note that the observed temperature field is from the contribution of lensed brightness

temperature field and noise: T̃ = T̃b + n. The expectation value of the source power
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spectrum is P
k

= 〈Tb k
T ⋆

b k
〉, and Tb k is the discrete Fourier transform of Tb(x). If the

source brightness temperature follows a Gaussian distribution, the estimators of the

unlensed power spectrum P̂k at different k are independent, and their variance can be

calculated as Var(P̂k) = 〈PN
k

2〉 = 〈P s
k

2〉 = P 2
k
/nkb

, where nkb
is the number of modes in

the k frequency bin.

We first consider the discrete case with an independent set of Fourier frequencies k.

For every frequency, an estimator of κ can be constructed as:

κ̂k =
P̃ tot

k
− Pk

Gk

= κ0 + nk , (4.4)

where nk = PN
k
/Gk. Note κ̂k is not the Fourier transform of κ̂(x), which has a constant

value, but the measurement of κ0 at frequency k. The optimal estimator of κ0 should

be the total contribution from all k appropriately weighted. The minimum variance

estimator of κ0 is

κ̂0 =

∑

κ̂k/σ
2
k

∑

1/σ2
k

, (4.5)

where σ2
k

= 〈nkn
⋆
k
〉 = P 2

k
/nkb

G2
k
. Therefore, the weight at each k is inverse proportional

to the σ2
k
. The reconstruction noise of the minimum variance estimator is now

Var(κ̂0) =
1

∑

1/σ2
k

. (4.6)

More generally, in the non-Gaussian case, power spectrum at different k are corre-

lated. We can write all variables in the form of matrices and vectors:

Gκ0 = P̃tot − P −PN , (4.7)

where G, P and PN are the Nk×1 matrix composed by Gk,Pk and PN
k

respectively, and

Nk is the number of all frequencies. The minimum variance (least square) estimator can

be written as

GtC−1Gκ̂0 = GtC−1(P̃tot −P − PN) , (4.8)
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where Ck,k′ = 〈PN
k
PN

k′ 〉 is the covariance matrix for the power spectrum. Since the terms

introduced by lensing do not dominate in the noise, we have neglected their contribution

in the covariance matrix C. All noise related calculations in the following text will use P̂

instead of P̃ tot, while the estimator of lensing quantities will always use P̃ tot. Therefore

the minimum variance estimator for the non-Gaussian source is

κ̂0 = (GtC−1G)−1GtC−1(P̃tot − P −PN) . (4.9)

and the variance of the estimator is

Var(κ̂0) = (GtC−1G)−1 . (4.10)

Continuous case

We now consider the continuous case. By definition T̃ (k) = T̃kL
3, P (k) = PkL

3, G(k) =

GkL
3 and C(k,k′) = Ck,k′L6. As such, taking the continuum limit leads to

κ̂0 =
1

Q

∫

d3k

(2π)3

d3k′

(2π)3
C−1(k,k′)G(k′)(P̃ tot(k) − P (k) − PN(k))

=

∫

d3k

(2π)3
P̃ tot(k)F(k) − V , (4.11)

where

F(k) =
1

Q

∫

d3k′

(2π)3
C−1(k,k′)G(k′) , (4.12)

Q =

∫

d3k

(2π)3

d3k′

(2π)3
C−1(k,k′)G(k)G(k′) , (4.13)

V =

∫

d3k

(2π)3
(P (k) + PN(k))F(k) . (4.14)

V is the mean variance of the smoothed temperature field. Note that when the source is

Gaussian, the optimal filter is F(k) = G(k)/P (k)2/Q. This is the estimator presented in

chapter 3. Using T̃ (k)T̃ ⋆(k) = (2π)3δ3D(0)P̃ tot(k) = L3P̃ tot(k) and Parseval’s theorem,



Chapter 4. Dark energy and 21-cm intensity lensing 97

we can write the calculation in real space instead of Fourier space

κ̂0 = L−3

∫

d3k

(2π)3
T̃ (k)T̃ ⋆(k)F(k) − V

= L−3

∫

d3xT̃w1(x)T̃w2(x) − V

= T̃w1(x)T̃w2(x) − V , (4.15)

where the two window functions to smooth the temperature field are the decomposition

of F , i.e., W1W2 = F . The noise of κ̂0 is

Var(κ̂0) = L−6

∫

d3k

(2π)3

∫

d3k′

(2π)3
C(k,k′)F(k)F(k′) , (4.16)

where C(k,k′) = 〈(P̂ (k) − P (k))(P̂ (k′) − P (k′))〉 is the covariance matrix of the power

spectrum. Similar to Eq. (4.9) in the discrete case, we have neglected the contribution

from lensed terms in the estimate of the covariance matrix C. It is clear that the noise

for κ̂0 equals Q−1. C(k,k′) will be measured from simulations.

Since

P̃ (k⊥, k‖) = |J|−1P (J−1
k⊥, k‖)

≈ (1 + 2κ)[P (k) + ∆P (k)(κ+ γ1 cos 2θk⊥

+γ2 sin 2θk⊥
)] , (4.17)

where θk⊥
is the angle between k⊥ and the transverse coordinate (chapter 3), the first

order Taylor expansion gives

Gγ1(k) = ∆P (k) cos 2θk⊥
, (4.18)

Gγ2(k) = ∆P (k) sin 2θk⊥
. (4.19)

We will rewrite the equation in spherical coordinates using k = (k, θ, φ), k2
⊥/k

2 = sin2 θ,

and θk⊥
= φ.
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4.4 Numerical methods

We will calculate the reconstruction noise for sources at redshift: 1.25, 3 and 5. The

power spectrum covariance matrix will be measured from N-body simulations. Unless

mentioned explicitly, WMAP5 cosmological parameters are used throughout the chapter:

Ωm = 0.258,ΩΛ = 0.742,Ωb = 0.0441, σ8 = 0.796, ns = 0.963, h = 0.719, τ = 0.087

(Dunkley et al., 2008).

4.4.1 Simulations

We generate the N-body simulations with the CUBEPM code. The total number of nodes

used in simulation is n3. We used n = 2 and 3 in our simulations. The simulations are

run on the SUNNYVALE cluster of CITA, which is a Beowulf cluster composed of 200

Dell PE1950 nodes. For each node there are 2 quad core Intel(R) Xeon(R) E5310 @

1.60GHz processors, 4GB of RAM, and 2 gigE network interfaces.

HI gas is distributed in galaxies. If we ignore the bias between the galaxies and dark

matter distributions, we could approximately use dark matter to represent 21-cm sources

distributions at these redshifts (the simple toy model in chapter 3) since HI sources

are expected to trace dark matter fairly well. We have generated the source distribution

with CUBEPM and we output the 3-D particles distribution at redshifts 1.25, 3 and 5. To

correctly measure the covariance matrix of power spectrum, we generate 400 independent

simulations at z = 0 (RH05). At z = 1.25, we have run 186 simulations. Because the

non-linearlity is less at higher redshift, we have run 100 simulations at z = 3 and 90

simulations at z = 5. The density field is produced by assigning the mass of particles to

nearby grids with Cloud in Cell (CIC) method.

As we will illustrate later, the 3-D Fisher information (as defined in RH05) of the

amplitude of source power spectrum has similarity with the reconstruction noise. We

thus address the convergence as a function of the number of simulations with a Fisher
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Figure 4.1 Power spectrum at z=0, 1.25, 3, and 5. The data points are from simulations, and the

lines are the predicted non-linear power spectra generated by CAMB. The non-linearity increases with

lower redshift. The power spectra from simulations at small scales drop due to the resolution limit. The

parameters of the simulation are shown at table 4.1.
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redshift L(h−1Mpc) ∆2(2π/L) ngrid ∆2(kNy) ks ∆2
lin(ks)

0 256 0.022 256 197 0.12 0.54

1.25 300 0.0036 512 39.3 0.25 0.31

3.0 100 0.015 1024 40.5 0.47 0.19

5.0 50 0.020 1728 26.5 0.99 0.16

Table 4.1 Source simulation parameters. We choose these simulations to optimize the computation

load while maintaining the required resolution. The simulation parameter choice is validated by looking

at the convergence of the Fisher information content of the power spectrum in both linear and non-linear

scales. We found the upper limit for the non-linear power spectrum at the fundamental modes, which

has the same size as the box, is around 0.02; and the lower limit for non-linear power spectrum at

the Nyquist frequency kNy, is around 20. The values of non-linear power spectrum are estimated from

CAMB. ks are the saturation scales of the Fisher information, as shown in Fig. 4.2. We also list the

values of the linear power spectra at these saturation scales for all four redshifts.

information plot. We check the values of
∑

k,k′≤kmax
C̄−1

k,k′, where C̄ is the covariance

matrix of the normalized power spectrum P (k)/〈P (k)〉, that is, the Fisher information

is inversely proportional to the variance of the amplitude of normalized power spectrum.

We have considered runs with different resolutions and box-sizes for each redshift. The

box-size needs to be big enough so that not much of the linear modes are cut-off by the

limited box-size. On the other hand, the non-linear structure needs to be resolved at small

enough scales so that the saturation effect can be seen. We confirmed the convergence

at linear scales by comparing the results with the Gaussian prediction, and at non-linear

scales by comparing with higher resolution simulations. We found the upper limit for

the non-linear power spectrum at the fundamental modes, which has the same size as

the box, is around ∆2 . 0.02; and the lower limit for non-linear power spectrum at the

Nyquist frequency kNy, is around ∆2 & 23. The simulations parameters we finally chose

are given in table 4.1, and the power spectra are shown at Fig. 4.1. The values of the

non-linear power spectrum are estimated from CAMB, and thus can be obtained before
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running simulations. The actual power spectra from N-body simulations are always lower

than that at kNy because of the finite resolution. The sources at z = 1.25 are produced

with simulations with 300h−1Mpc box, and 2563 particles on 5123 grids. For z = 3,

because the matter distribution is more linear, we need to increase the resolution to

reach the non-linear structures at smaller scales. We did this by using a smaller box with

L = 100h−1Mpc and more refined grids with ngrid = 1024. At z = 5, the non-linearity

is lower, and we choose a 50h−1Mpc box with 17283 grids. For the sources at z = 3

and z = 5, we have assigned the particles distributions to 5123 grids though the N-body

simulations were performed on finer meshes for the sake of computation efficiency. We

also include the Fisher information at z=0, repeating the simulations at RH05. We ran

400 simulations with 2563 grids, 1283 particles. The box-size is 256h−1Mpc, and the

cosmological parameters are: Ωm = 0.29,ΩΛ = 0.71,Ωb = 0.046, σ8 = 0.97, and h = 0.71.

The inversion of a large covariance matrix with a few hundred of elements on each

dimension can be numerically challenging. Following RH05, we divide the power spectra

to Nb = 20 bins uniformly distributed in log scale, and calculate the associated band

power spectra and their covariance matrix. Subsequently, we invert the Nb ×Nb matrix

instead. The Fisher information can be seen in Fig. 4.2. All results are normalized

to the values for a 300h−1Mpc box, i.e., multiply the Fisher information measured by

(300/L)3 because larger volume has more independent modes. It is clear that the Fisher

information curves grow as k3 at linear scales, then turn flat at quasi-linear scales (k ∼

0.5 − 2hMpc−1 for z = 1.25), before going up again at non-linear scales with a quasi-

Gaussian scaling. There is a gradual evolution of the plateau from z = 0 to z = 5.

We show the convergence of the Fisher information as a function of both the number

of simulations nsim and the resolution in Fig. 4.3. In the top panel, nsim are reduced from

186 to 100, 50, 30 and 20. The relative difference from the 186 runs result is 2% for 100

runs, and 4% for 50 runs. When the number of simulations is less than 30, the deviation is

comparable to the Fisher information itself. We emphasize here that the required number
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Figure 4.2 The 3-D Fisher information content of the amplitude of power spectrum at z =

0, 1.25, 3.0, 5.0 respectively. All results are normalized to the values for a 300h−1Mpc box. The dashed

line is the Gaussian prediction. It is clear that the Fisher information curves grow as k3 at linear scales,

then turn flat at quasi-linear scales (k ∼ 0.5−2hMpc−1 for z = 1.25), before going up again at non-linear

scales. As expected, there is a gradual evolution of the plateau from z = 0 to z = 5.
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Figure 4.3 Convergence test of the Fisher information as a function of simulations. We increase the

number of simulations in the top panel. The relative difference from the 186 runs result is 2% for 100

runs, and 4% for 50 runs. When the number of simulations is less than 30, the deviance is comparable

to the Fisher information itself. The bottom panel is for different box-sizes, both types have 186 runs.

The error bars are generated by the bootstrap method. The Fisher information from simulations with

L = 150h−1 Mpc agrees reasonably well with the one from 300h−1Mpc simulations. As such, the lower

limit of power spectrum at fundamental mode should be equal to or higher than the value found in the

150h−1 Mpc simulations.
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of simulations also depends on the number of bins Nb : Nb has to be much smaller than

the number of simulations for the covariance matrix to be non-singular. In the bottom

panel, we show the convergence of two set of simulations with different box-sizes. Both

types have 186 runs. The Fisher information from simulations with L = 150h−1 Mpc

agrees reasonably well with the one from 300h−1Mpc simulations. We thus deduce that

the lower limit for the power spectrum at fundamental mode should be equal to or higher

than the value found in the 150h−1 Mpc simulations.

4.4.2 Lensing reconstruction

We now study the lensing reconstruction noise that will be measured directly from re-

constructed lensing maps with the optimal quadratic estimator described in section 4.3.

Power spectrum covariance matrix

The power spectrum covariance matrix can be written as 〈P (k)P (k′)〉 − 〈P (k)〉〈P (k′)〉.

Because the source is isotropic and stationary, 〈P (k)P (k′)〉 can be expressed in a sym-

metric way C(k, k′, cos θk,k′), where cos θk,k′ is the angle between the two vectors on the

two shells denoted by k and k′. We can then expand C in spherical harmonic functions,

and because it is independent of φ, the expansion can be written as the sum of the

Legendre functions

C(k, k′, cos θk,k′) =
∞

∑

l=0

Cl(k, k
′)Pl(cos θk,k′). (4.20)

Here l is a even integer because C(k, k′, cos θk,k′) is an even function of θ. The window

function can be written as an integral of the form

W κ(k) ∝
∫

d3k

(2π)3

′

C−1(k,k′)[Gκ
0(k

′) +Gκ
2(k

′)] , (4.21)

where

Gκ
0(k) = 2P + 2P ′k/3 , (4.22)

Gκ
2(k) = P ′k(− cos2 θk′ + 1/3) , (4.23)
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which are proportional to the zeroth order and second order Legendre function P0(cos θk′)

and P2(cos θk′). For each k, we can always choose the z-axis along it so that cos θk,k′

is equal to cos θk′ without loss of generality. Because the orthogonal property of the

Legendre functions, only zeroth and second terms in C−1 remain, all the higher orders

cancel out by the integral over k′.

In other words, we decompose the optimal window function in two orthogonal com-

ponents from the zeroth and second order of the covariance matrix expansion terms

respectively. For Gaussian sources, the power spectrum modes are uncorrelated with

other modes in different directions or on different shells, therefore all Cl are equal. For

non-Gaussian sources, C2 is about an order of magnitude higher than C0, so the addi-

tional information of lensing obtained by using C2 is negligible (private communication

with Joachim Harnois-Deraps, Harnois-Deraps et al. (2009)).

In Fig. 4.4, we show the optimal non-Gaussian window, and the optimal Gaussian

window function in Fourier space. The latter window has an almost power-law slope,

while the former one has both positive and negative values due to the complicated be-

havior of inverse covariance matrix C−1. We use crosses to represent the absolute values

of the negative part of the optimal non-Gaussian window.

In this chapter, we will reconstruct the estimator using the zeroth order only. Modes

on a shell can be binned as a group first. We could simplify the estimator by calculating its

1-D equivalent, e.g., replacing P (k) with P (k). Working in lower dimension facilitates

the numerical calculation, especially the inversion of covariance matrix. Rather than

working with a 6-D array C(k,k′), we now only need to calculate the covariance matrix

C(k, k′) = 〈P (k)P (k′)〉 − 〈P (k)〉〈P (k′)〉 . (4.24)

We treat the modes on each k shell as independent components and the window function

corresponding to this shell is calculated from the overall contribution of these modes. We

use another trick in the calculation of window function by replacing
∑

C−1(k,k′)G(k′)

with
∑

C−1
0 (k, k′)G0(k

′).
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Figure 4.4 The optimal non-Gaussian window, and the optimal Gaussian window function in Fourier

space. The latter window has an almost power-law slope, while the former one has both positive and

negative values due to the complicated behavior of inverse covariance matrix C
−1. We use crosses to

represent the absolute values of the negative part of the optimal non-Gaussian window.

When considering the shear, the calculation is very similar. Gγ1 = P ′k sin2 θ cos 2φ

can also be written as the sum of Legendre functions:

Gγ1
0 = 2P ′k cos 2φ/3 , (4.25)

Gγ1
2 = P ′k(1/3 − cos2 θ) cos 2φ . (4.26)

Therefore only the zeroth and second order mode of covariance remain, and we will also

just use the zeroth order in the reconstruction of γ1. For γ2, one just need to replace cos 2φ

by sin 2φ. The convergence can be calculated from the reconstructed shear. We will call

this convergence, γE. Similar to chapter 3, we can choose the axis of the coordinate to

be parallel to the direction of the mode measured, so that γE = γ1.
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Figure 4.5 The contribution from one box at z = 1.25 to the variance of various estimators. The

variances are averaged over 186 independent boxes. The reconstruction noises for the Gaussian window,

the optimal window for κ, and the optimal window function for γE are presented. At linear scales, i.e.,

when ℓ < 1000, the two estimators have the same reconstruction noise. The non-Gaussian window has a

factor of a few less noise than the Gaussian estimator, and displays a plateau above the saturation scale.

The plateau means that the non-Gaussianity of sources caused by the effective number of cells increases

slowly below the saturation scales, i.e., the structures are intrinsically correlated below such scales and

external factor such as experimental noise will not have much effect. The Gaussian estimator used in

chapter 3 does not decrease at saturation scale, and even starts to increase at smaller scales. This is

an artifact of the non-optimality of the Gaussian estimator for non-Gaussian sources. We also show the

results from Gaussian sources as dashed (shear) and dotted lines (convergence).
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Convolution

The optimal estimator contains the inverse covariance matrix C−1, which we measure

using around 100 − 200 sources. For 5123 grids, there are about 256 modes covering

the range from the box-size scale to the Nyquist scale. The inversion of the 256 × 256

covariance matrix will be unstable, because the number of eigenvalues is no more than

the total number of independent samples. As such, we will keep using the 20 bins in our

calculation. The binned window function are less optimal, but the difference is a minor

disadvantage compared to the stability of the inversion. Another important term in the

window function is the gradient of the power spectra. Since the power spectrum is close

to a power-law, we calculate the gradient by finding the tangent of the power spectrum

at saturation scale ks measured from the Fisher information on the log-log plot. We find

P ′k = nNLP , and nNL = −1.6,−1.9 and −2.1 for z = 1.25, 3 and 5 respectively.

On the 5123 grids, we calculate the window function with the band power, inverse

matrix, and gradient. The Nearest Grid Point (NGP) method is used to map these band

values to the 3-D grids in Fourier space. From Eq. (4.17), we know that the optimal

window function does not only depend on the amplitude k, but is also a function of k⊥.

Note that when considering the shear, there is an extra angular dependence on θk⊥
, the

direction on the transverse plane that we need to take into account when computing the

window function.

Finally, the 3-D sources are convolved with the optimal window function. Since the

window functions are generated in Fourier space, we can simply transform the temper-

ature fields to Fourier space by Fast Fourier Transform (FFT), multiply by the window

functions, and transform them back to real space. κ or γE maps are integrals of the co-

variance maps of the two convolved fields along the line of sight. Since we are interested

in the zero mode, which is the average value of the covariance, we calculate the recon-

struction noise of the combined estimator of κ and γE (as in chapter 3), which decrease

the noise level. To validate the procedure, we compare the reconstruction noises with
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the analytical predictions in the Gaussian simulations with the same power spectra as

the simulated sources.

4.5 Numerical results and discussion

4.5.1 Reconstruction noise

The optimal estimators were derived in the constant κ(γ) limit (zero-mode). For the other

scales, we need to scale the estimator by a normalization factor b(ℓ). The derivation of

b(ℓ) can be found in appendix A. Not surprisingly, b(ℓ) ≤ 1, and decreases from 1 to 0

when ℓ increases, for any given estimator. For the scales we are interested in – above

the characteristic scale ℓa– b(ℓ) is close to 1, and the noise properties are similar to the

zero-mode one. To illustrate the comparison between different estimators at various ℓ

with the of zero-mode reconstruction, we treat the experimental noise as a hard cut-off

at kc. ℓa ∼ ℓc/2 = χ(zs)kc/2. This is motivated by the fact that the reconstructed

noise is proportional to k−3 on linear scales, and the contribution to the reconstruction

at k ≤ kc/2 are small and can be treated like the zero-mode. The values of ℓa are shown

in Fig. 4.8 and 4.9.

In Fig. 4.5, the zero-mode κ reconstruction noises from various estimators are pre-

sented as functions of various cut-off scales at z = 1.25. For this plot, the noises cor-

respond to the contribution from a single simulation box of width 300h−1Mpc, and is

measured over 186 independent boxes. As a reference, we present the reconstruction

noises from the Gaussian window, non-Gaussian window for κ and the non-Gaussian

window for γE. On linear scales, i.e., when ℓ < 1000, the two estimators of κ have

the same reconstruction noise. At smaller scales, the non-Gaussian window reduces the

noise by factor of a few compared to the Gaussian estimator, and has a plateau after

the saturation scale. The experimental noise smears out the structure in the sources,

and regions which are originally independent become correlated. In other words, lower
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noise level leads to a larger effective number of independent source cells. Similarly, the

effective number of cells increases if the experiment is resolved at smaller scales, there-

fore the reconstructed noise is lower. The plateau means that the non-Gaussianity of

sources cause the effective number of cells to increase very slowly below the saturation

scale, i.e., the structures are intrinsically correlated below this scale and external factors

such as experimental noise will have little effect. The Gaussian estimator we used in

chapter 3 also saturates at saturation scales, and even increases at smaller scales. This

is an artifact effect coming from the fact that the Gaussian estimator is non-optimal

for non-Gaussian sources. Note also that shear has better S/N level than kappa. To

compare with the simulated sources, we also show the results from Gaussian predictions

calculated using Wick’s theorem. In fact, the reconstruction noises in the Gaussian case

can be approximated by the following power-law relationship:

Var(κGauss
0 ) ≈ 3π2L−3k−3

c (1 +
nNL

3
)−2 ,

Var(γGauss
E0 ) ≈ 45π2L−3k−3

c n−2
NL . (4.27)

Note that nNL can not be -3 or 0, otherwise the variance of the estimator is infinity and the

lensing signal can not be reconstructed. An intuitive explanation is that, in these cases

the variance of temperature field are conserved even after being lensed, therefore lensing

maps can not be distinguished from unlensed ones and lensing can not be extracted. This

stems from the fact that we only consider the zero order, C0, in the covariance matrix of

matter power spectrum. Lensing can still be solved for nNL = −3, 0 cases if C2 is taken

into account in the estimator.

4.5.2 Saturation effects

We define the saturation scale ks as the wavenumber where the noise from the Gaussian

prediction is equal to the average amplitude of reconstructed noise in the plateau. We

have discussed the saturation effects of lensing reconstruction in chapter 3, where we
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Figure 4.6 Power spectra at the saturation scales of the lensing reconstruction noises for different

redshifts. It can be seen that ∆2

lin(ks) increases with steeper shape of power spectrum. The points mea-

sured from the κ saturation almost overlap with those measured from the Fisher information saturation

because the shapes of the source power spectra are very close to power-laws.

found that at z = 7 the S/N saturates at the equivalent scale ks where the non-linear

power spectrum of source ∆2(ks) ∼ 0.2. The corresponding linear power spectrum at ks

is about 0.17, which is consistent with the results at other redshifts shown in table 4.2. It

is not clear why the value of ∆2
lin(ks) is slightly higher at z=7. It could come from either

the fact that there were less sources (nsim = 20) or that the estimator was less optimal in

the works of chapter 3. Note that since we used a Gaussian estimator in chapter 3 and

no C−1 term was involved, the convergence of the reconstructed noise should be much

better than that for the Fisher information shown in Fig. 4.3. Since the shape of the

matter power spectrum persists except when the non-linear scales shift to larger scales,

we expect to see similar saturation effects at lower redshifts. This is confirmed by Fig. 4.5

and later by Fig. 4.6.

As we mentioned earlier, the saturation effect resembles the Fisher information satu-
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Figure 4.7 The effective number densities of sources at various redshifts. When the redshift is higher,

the non-linearity of sources goes down. dng/dz/σ2

e increases quickly with redshift. We also plot the

number density for a toy model where ∆2

lin(ks) = 0.2 for all redshifts.

redshift estimator dng/dz/σ
2
e(arcmin−2) Lcell(h

−1Mpc) ℓs ks ∆2
lin(ks)

1.25 κ 0.15 19. 753 0.27 0.32

1.25 γE 0.11 21. 753 0.27 0.32

3.0 κ 0.57 13. 2136 0.46 0.19

3.0 γE 0.48 14. 1671 0.36 0.15

5.0 κ 3.4 7.0 5657 0.99 0.16

5.0 γE 5.6 5.9 4514 0.79 0.13

Table 4.2 Equivalent number densities of galaxies and saturation scales at different redshifts. The

characteristic scale of the independent cell Lcell is approximately the saturation scale ks. The number

density ng is calculated with Eq. (4.28). Because ng itself depends on the box-size of the simulated source

and the variance of intrinsic ellipticities σ2
e , we compare dng/dz/σ2

e instead, which increases rapidly with

redshift. Note that shear has a higher number density than convergence.



Chapter 4. Dark energy and 21-cm intensity lensing 113

ration effect for the initial amplitude of the 3-D dark matter power spectrum in RH05.

Their cumulative Fisher information increases at linear scales. On trans-linear scales, the

Fisher information is degenerate with that from larger scales and the cumulative Fisher

information does not increase. It is possible to view their Fisher information as a special

case of our lensing reconstruction calculation if the gradient term G equals the derivative

of the power spectrum with regard to an overall amplitude. Neyrinck et al. (2006) have

used halo models to explain this saturation effect: on linear scales, the cumulative Fisher

information increases with higher ℓ, as the volume and number of halos do. On trans-

linear scales, the 2-halo term first dominates, which washes out the fluctuation in 1-halo

term. On non-linear scales, the contribution from small mass halos dominates, and the

Fisher information increases again − at less than 1% of the Gaussian information. Our

numerical results confirmed the reports of RH05, and our results agree with theirs.

The saturation scales, as well as the non-linear scales, change with redshifts. To

illustrate this we investigate the evolution of ∆2
lin at the saturation scale. In Fig. 4.6,

we plot ∆2
lin(ks) at three redshifts and we give the corresponding numbers in table 4.2.

Because the optimal estimator is a function of the gradient of the power spectrum, we will

try to see the evolution of ∆2
lin(ks) with the gradient of power spectrum at the saturation

scale. It can be seen that ∆2
lin(ks) increases with steeper shape of power spectrum. The

points from κ almost overlap with those from the Fisher information, because the shapes

of source power spectra are very close to power-laws.

4.5.3 Effective number density

To describe the information content gained in the 21-cm lensing in a more intuitive way,

we define ng, the equivalent effective surface number density of galaxies which gives the

same noise level at the scale where S/N equals to one:

Var(¯̂κ) =
σ2

e

ng · Area
≈ 1

Ncell
. (4.28)
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Figure 4.8 The noise power spectra from the effective number of galaxies, compared with the lensing

signals. The solid lines are the lensing power spectrum. The error bars are the contribution from both

the lensing reconstruction noises and the cosmic variance. The noise dominates over the signal for

sources at z ∼ 1− 1.5, becomes comparable to but less than signal in z ∼ 2− 4, and further decreases at

z ∼ 4 − 6. This corresponds to a sensitivity to lens structures around z = 0.5, 1.0 and 1.5 respectively.

Note that the noise we display here is only valid for ℓ < ℓa, since we calculate ng in the regime where

the noise has similar behavior to zero mode. ℓa are plotted as vertical lines here and in Fig. 4.9.
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Figure 4.9 The ratio of the error bars and lensing signals. The vertical lines are ℓa, and the noise

model is valid for ℓ < ℓa. For ℓ ≫ ℓa, a scaling factor b(ℓ) need to be applied. The calculation for b(ℓ)

is done in chapter 3, and we found it decreased from 1 gradually. Therefore the noises at these small

scales will be higher than what are shown in this plot. However, these scales are not of interest to us in

this chapter. The error bars for 2 − 4 bin are at a few percents level for ℓ ∼ 20 − 500.

Similarly, we can define the number of effective independent cells, Ncell, and an effective

number density for the noise of γE. The characteristic scale of the independent cell is

approximately the saturation scale ks. The cell size is

Lcell = 2π/ks × [27(nNL + 3)−2/8π]1/3 , (4.29)

Lcell = 2π/ks × [45n−2
NL/8π]1/3 for γE , (4.30)

where ℓs = ksχ(z) is the saturation scale that increases with redshift. ng at different

redshifts are shown in table 4.2. Because ng itself depends on the box-size of the simulated

source and the variance of the intrinsic ellipticities σ2
e , we compute dng/dz/σ

2
e instead.

From the table, we see that the effective number density of galaxies increases rapidly with

redshift, and that the shear has higher effective number density than the convergence.

We also plot dng/dz/σ
2
e versus z in Fig. 4.7, where one can see that dng/dz/σ

2
e increases
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quickly with redshift. We also show the number density for a toy model where ∆2
lin(ks) =

0.2 for all redshifts.

In Fig. 4.8, we compare the shot noises ℓ2CN
ℓ /2π from the effective number densities

with the lensing signals. The error bars of the lensing power spectra are also plotted,

which are estimated by

∆Cℓ =

√

2

(2ℓ+ 1)∆ℓfsky

(Cκ
ℓ + CN

ℓ ) , (4.31)

where ∆ℓ ≈ ℓ/2 because we used ℓ = 2n (n = 1, 2, ...) bins, and consider a half sky

survey (Chang et al., 2008) with the fraction of the sky fsky = 1/2. Here we assume the

noise of κ is Gaussian, i.e., the eight-point function of temperature is Gaussian though

the temperature distribution itself is non-Gaussian. Although not obvious, this point

is supported by numerically tests. We also neglect the non-Gaussianity of the lensing

observables themselves, which is not dominant at ℓ < 500 but could become an issue at

higher ℓ (Dore et al., 2009). It can be seen that the noise dominates in z ∼ 1 − 1.5,

becomes comparable to signal in z ∼ 2 − 4, and further decreases at z ∼ 4 − 6. For

redshift bin z ∼ 4− 6, we assume that dng/dz varies slowly, and use ng = dng/dz|z=5∆z

with ∆z = 2, which should provide the correct order of magnitude. Ideally, simulated

sources should be generated at all redshifts between z = 4 and z = 6, and the total

number density is then the integral of dng/dz over all z. The noise is calculated similarly

for 1 − 1.25 and 2 − 4 source redshift bins.

The noise is only valid for ℓ < ℓa ∼ ℓs, because we calculate ng in the regime where

the noise has a similar behavior to the zero mode. We plot ℓa as vertical lines in Fig. 4.9.

The full noise calculation can be done similarly to chapter 3, however the zero-mode κ

calculation works well enough because we are only interested in large scales (small ℓ’s).

The noise at small scales will be due to the increased non-Gaussianity at lower redshifts.

For ℓ > ℓa, b(ℓ) is smaller than 1, and the noise will be higher.

The relative error bars are shown in Fig. 4.9. The error bars for z ∼ 2 − 4 bin

are at a few percents level for ℓ ∼ 20 − 500. Schmidt (2008) pointed out that linear
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Figure 4.10 The lensing power spectra from different models of dark energy (private communication

with Fabian Schmidt). The average redshift is 3.57, where the effective number density of sources is

calculated by interpolation with the values from Fig. 4.7. The error bars are calculated in the same way

as Fig. 4.8.

scales detection of lensing for source galaxies at z ∼ 1 − 3 could be a good way to

distinguish three modified gravity models from a smooth dark energy: f(R) gravity, the

DGP model, and the TeVeS theory. We show the lensing power spectrum from different

models of dark energy (private communication with Fabian Schmidt) in Fig. 4.10. The

average redshift is 3.57, where the effective number density of sources is calculated by

interpolation with the values from Fig. 4.7. The error bars are calculated in the same

way as Fig. 4.8. Because of the high precision of the lensing reconstruction, we can

expect to see a promising use of 21-cm sources to constrain modified gravity.
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Here we discussed how to use 21-cm lensing to constrain dark energy from measuring

the lensing power spectrum. One can also investigate a parametrized dark energy model

by constraining w0, wa using lensing tomography (Dore et al., 2009).

4.6 Summary

In this chapter, we discussed the possibility to constrain dark energy models with the

lensing from 21-cm intensity emission at redshifts 1 − 6. First we derived the optimal

quadratic estimator for non-Gaussian sources, which can be constructed numerically

from simulations. Then we investigated the reconstruction noise with a large number of

simulations, and revealed that there is a saturation scale for the reconstruction noise at

all redshifts. We calculated the effective number densities of 21-cm sources and compared

the corresponding shot noises to the lensing signals. We conclude that 21-cm sources are

promising lensing sources, because they can be observed at high redshift, and may soon

be mapped over half the sky (Chang et al., 2008). The lensing reconstructed from 21-cm

sources at z ∼ 3, has a few percent error bars on linear scales at z ∼ 1, and can be used

to constrain modified gravity models.
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Conclusion

Weak gravitational lensing has proven to be an important component of modern pre-

cision cosmology. Since the first detections (Van Waerbeke et al., 2000; Bacon et al.,

2000; Wittman et al., 2000; Kaiser et al., 2000), cosmic shear has been used to map the

distribution of dark matter directly, without using tracers.

Weak lensing is powerful in understanding the accelerating expansion of our universe,

which is the most challenging question of contemporary cosmology. The acceleration

is widely believed to be caused by dark energy (or vacuum energy) which has negative

pressure. Alternatively , modifications to General Relativity on large scales could also

lead to cosmic acceleration. Almost all new cosmological surveys are designed to find the

answer to the dark energy problem (Albrecht et al., 2006). The ability of constrain the

dark energy is often quantified by the Figure of Merit (FoM), which is the area of the

95% contour ellipse on the w0 −wa plane. Among the four major experimental methods

of dark energy probe, BAO, supernovae, cluster counting and weak lensing, weak lensing

is the one with potentially most powerful constraint ability, i.e., highest Figure of Merit.

There are many next generation cosmic shear experiments, e.g., PanSTARRS, LSST,

JDEM, DUNE, etc. The optimal strategy for such surveys is still under debate. For

example, would a wide and shallow survey be superior to a deep and narrow one? To

119
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answer this question, we need to understand the uncertainties of lensing statistics from the

theoretical side. In this thesis, I have discussed the lensing S/N for the ideal case, where

experimental noise is simplified as a hard cut-off at different scales, i.e., experiments can

only detect structures at k ≤ kc. In reality, the experimental noise are more complicated,

however, most of them are exponential functions of scales or power law (shot noise).

Using hard cut-off as noise can help us to separate the effect caused by intrinsic non-

Gaussianity of sources and lenses from those produced externally by such as the set up

of individual experiments.

To make weak lensing predictions, numerical simulation is a necessary and powerful

tool. Weak lensing probes the matter distribution on nonlinear scales, where perturbative

methods become inadequate. We therefore have to rely on N-body cosmological simula-

tions to generate realizations of the dark matter distribution. N-body simulations also

allow the easy generation of mock lensing data using Monte-Carlo ray-tracing simula-

tions. The lensing signal, e.g., the convergence power spectrum (or cross power spectrum

between different source redshift bins), can be obtained from the simulations. Using these

simulations, we can compute the statistics of lensing observables, including their average

values, but equally importantly their covariance as well. Because the lensing field itself is

non-Gaussian, the error bars are correlated at different scales, meaning that simulations

must be used. Accurate determination of the error covariance requires a large number of

lensing simulations. This is often a non-trivial task (Hamilton et al., 2006).

Inspired by previous works on the Fisher information content of the amplitude of

the dark matter power spectrum (Rimes & Hamilton, 2005), in chapter 2 we discussed

the Fisher information content of the lensing power spectrum, to investigate whether

the Fisher information provided by lensing observables saturates on quasi-linear scales.

In the standard ray tracing method to simulate lensing maps, the lensing light cone is

constructed from a collection of outputs from N-body simulations. Because of the finite

number of simulations, outputs from simulations boxes are usually stacked multiple times,
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which breaks the Independence of the matter distribution between different redshifts,

though the degree of redundancy can be reduced by shifting and rotating these boxes in

a random manner. We developed a new method to calculate the covariance of lensing

convergence power spectrum, which does not have the spurious correlation problem. The

basic idea is to calculate the covariance matrix of matter power spectrum at each redshift

with all simulations, and project these covariance matrices to get the covariance matrix

of lensing convergence power spectrum. We used this method to measure the covariance

matrix from 300 high resolution (10243 grids, 200h−1Mpc box size) N-body simulations.

We checked the influence of lensing non-Gaussianity on the Fisher information content

of the amplitude of lensing convergence power spectrum. The effect is mild, compared

with the 3-D dark matter case. The Fisher information on the amplitude is reduced by

about factor of 10 at ℓ ∼ 10000. We can similarly compute the effect of non-Gaussianity

on cosmological parameter constraints. In particular, we checked the change of the dark

energy FoM caused by the non-Gaussianity. We found the FoM is lowered by a factor of

1.3-1.6 for four types of future lensing surveys. Although the problem has been addressed

multiple times by previous works (Cooray & Hu, 2001; Hu & White, 2001; Semboloni

et al., 2007; Takada & Jain, 2008; Eifler et al., 2008), this is the first robust examination

on the non-Gaussianity issue using simulations.

In chapter 3 and 4, we discussed 21-cm line lensing. Most current research in weak

lensing uses galaxies as sources. Another candidate of lensing source could be the 21-

cm emission from the neutral hydrogen gas at the epoch of reionization (z ∼ 7 − 20).

Ongoing and upcoming surveys to explore the universe at the epoch of reionization such

as 21CMA, GMRT, SKA, MWA, and LOFAR, makes this choice possible. Galaxies

have resolvable shapes, so that the lensing effect can be measured by the statistical

correlation of ellipticity of a group of galaxies. However, similar to the CMB, the 21-cm

line emission is a diffuse background radiation. Structures in the 21-cm line emission

is caused by minihalos (halos with small radius, r . 10Kpc), which are neutral regions
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and have irregular shapes since the reionization from denser regions might be anisotropic.

Nevertheless, the resolution limit of first generation 21-cm experiments (21CMA, GMRT,

LOFAR) will not be sufficient (ℓ ≪ 104) to resolve these object (ℓ ∼ 106) (Pen, 2004;

Pen et al., 2008). We therefore treat the 21-cm emission is a diffuse field, rather than as

compact objects.

In chapter 3, we study the limits of accuracy for measured weak lensing maps from

the diffuse 21-cm radiation at the epoch of reionization using simulations. Lensing distri-

butions can be reconstructed from the observed brightness temperature maps of emission

from 21-cm line sources. Because the 21-cm sources trace the neutral hydrogen distribu-

tion, which itself traces total gas (i.e., ignore the non-uniform ionization fraction), which

in turn traces the dark matter distribution (ignore the galaxy bias), we can simply use

dark matter distribution from simulations to represent 21-cm line sources distribution

(Metcalf & White, 2007, 2008). This is reasonable for a conceptual understanding of

the problems introduced by the non-Gaussianity in the 21-cm sources. Previous opti-

mal quadratic lensing estimators which minimize their variance were derived assuming

sources distribution were Gaussian, and reconstructing deflection angles or gravitational

potentials (Zahn & Zaldarriaga, 2006). We improve on these estimators by using shear

and convergence instead of deflection angles (potentials). This is a generalization of

the deflection (potential) estimator, and is more optimal for non-Gaussian sources. The

cross power spectrum of shear and convergence is an unbiased estimator of lensing power

spectrum which does not require knowledge of the source four-point function. We find

that non-Gaussianity provides a limit to the accuracy of weak lensing reconstruction,

even if instrumental noise is reduced to zero, i.e., the structures of the sources can be

resolved at infinitesimal scales (kc → ∞). This can be intuitively explained by the fact

that different pixels in the sources are not only correlated but also follows non-Gaussian

distributions. Therefore the reconstruction noise will be limited by the number of re-

gions which are large enough to be approximately independent to each other, and we will
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call these regions effective independent cells. We found the reconstruction noise using

the optimal estimator for Gaussian sources, actually worsens as the instrumental resolu-

tion improved beyond trans-linear scales. The best reconstruction result is equivalent to

Gaussian distributed sources with effective independent cell of side length 2.0h−1 Mpc.

Using a source full map from z=10-20, this limiting sensitivity allows mapping of dark

matter at a Signal-to-Noise ratio (S/N) greater than 1 out to ℓ . 6000, which is better

than any other proposed technique for large area weak lensing mapping.

Recently, because of the development of new instruments and the advancement of

experimental techniques, much attentions were also attracted to map the 21-cm sources at

the post-reionization universe (z ∼ 1−6) (Peterson et al., 2006; Tegmark & Zaldarriaga,

2008; Wyithe et al., 2008; Chang et al., 2008). The aggregate emission from these 21-cm

sources are to be mapped instead of detection of individual galaxies, and this method

is called intensity mapping (Pen et al., 2008). The intensity mapping of 21-cm emission

for upcoming experiments, such as CHIME, which is aiming at map the 21-cm intensity

at z ∼ 1 − 3 for half sky in a two year operation time, makes it possible to use them as

lensing sources to study the lenses structures at z ∼ 0.5−1.0, where the cosmic structures

are most sensitive to different models of dark energy. Though the main goal of CHIME

is to investigate the BAO from the 21-cm distribution, we found the 21-cm line lensing

are much more than a by-product science of the survey.

In chapter 4, we studied the possibility of constraining dark energy models with

lensing of the post-reionization 21-cm sources (z ∼ 1 − 6). To do so, we first built the

optimal quadratic estimators (for κ and γ) for non-Gaussian sources. These optimal

estimators need to utilize the inverse covariance matrix C−1 of source power spectrum,

which can only be obtained numerically from simulations. We applied the estimators

on the sources from hundreds of simulations, and investigated the reconstruction noise.

We continue to compare the lensing signal and reconstruction noise for ideal experiment

where the instrumental noise is approximated as hard cut-off. We revealed that there
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is a saturation scale for the reconstruction noise at all redshifts. Unlike the Gaussian

optimal estimators, where the reconstruction noise rises above trans-linear scales, the

reconstruction for the optimal estimators decreases at linear scales, turns flat at trans-

linear scales, and drops again at highly non-linear scales. We found the “V” shape

of the lensing reconstruction noise with Gaussian optimal estimators are the artifacts of

applying non-optimal estimators to sources. We calculated the effective number densities

of independent cells, ng, for the 21-cm sources and compared the shot noises produced

by ng to the lensing signals. We found that although ng is not very high at z ∼ 1 − 1.5,

it increases quickly with redshifts. The S/N is further boosted dramatically by the large

sky coverage. The lensing reconstructed from 21-cm sources at z ∼ 3, has a few percent

error bars at linear scales (ℓ ∼ 100) at z ∼ 1, and can be used to distinguish the vacuum

energy model from alternative gravity models such as f(R) gravity, DGP model and

TeVeS theory (Schmidt, 2008).

In summary, we have studied the non-Gaussianity problem in the lensing signal and

noise in this thesis, using large numbers of high resolution simulations. We first inves-

tigated the effect of non-Gaussian covariance matrix of the lensing convergence power

spectrum using a new robust simulation method. Next we discussed the lensing recon-

struction problem from 21-cm sources at both the epoch of reionization (z ∼ 7 − 20),

and post-reionization age (z ∼ 1 − 6). In the former case, we found the 21-cm lensing is

competent to galaxy surveys; while in the latter case, we found the upcoming surveys at

z ∼ 1−3 with large sky coverage could help to constraint dark energy models at z ∼ 0.5.

Both results describe a promising future for 21-cm lensing.
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Appendix A

Normalization and noise of

quadratic estimator

In the end of section 3.4, the numerical results of the noise of the estimators are shown.

Here we will develop the analytical expression for

Eκ(k⊥) = bκ(k⊥)[κ(k⊥) + n(k⊥)] . (A.1)

For shear, a similar relationship holds even though b and n are not isotropic.

When κ is spatially variable,

T̃b(x) = Tb(x⊥ − D0 − δD(x⊥), x‖) = Tb(x⊥ − D0, x‖) − ∇⊥Tb(x⊥ − D0, x‖) · δD(x⊥) ,

(A.2)

where D(x⊥) = d(x⊥)χ(zs), and d(x⊥) is the deflection angle. Therefore κ = ∇⊥ · δD.

δD(x⊥) = D(x⊥) − D0, and D0 = D(0). δD ≪ x⊥ and can be treated as small

perturbations since κ≪ 1.

Fourier transforming Eq. (3.17),

Eκ(k⊥) =

∫

d2x⊥Eκ(x⊥)e−ik⊥·x⊥ =
1

L

∫

d3xT̃ κ
w1

(x)T̃ κ
w2

(x)e−ik⊥·x⊥ − (2π)2δ2D(k⊥)Vκ .

(A.3)

134



Appendix A. Normalization and noise of quadratic estimator 135

T̃ = T̃b + n, and noise is uncorrelated with the signal. The product in real space can be

represented as a convolution in Fourier space

∫

d3xe−ik⊥·x⊥T̃ κ
w1

(x)T̃ κ
w2

(x) =

∫

d3k′

(2π)3
T̃ κ

w1
(k′

⊥, k
′
‖)T̃

κ
w2

(k⊥ − k
′
⊥,−k′‖) . (A.4)

T̃b(k) =

∫

d3xe−ik·xTb(x⊥ − D(x⊥), x‖)

= e−ik⊥·D0[Tb(k) −
∫

d3xe−ik·x
∇⊥Tb(x⊥, x‖) · δD(x⊥ + D0)] , (A.5)

and the lensing introduced term can be further simplified as

∫

d3xe−ik·x
∇⊥Tb(x⊥, x‖) · δD(x⊥ + D0)

=

∫

d3xe−ik·xTb(x⊥, x‖)(ik⊥ − ∇⊥) · δD(x⊥ + D0)

=

∫

d2k′⊥
(2π)2

Tb(k⊥ − k
′
⊥, k‖)i(k⊥ − k

′
⊥) · δD(k′

⊥)eik
′
⊥·D0 . (A.6)

The quadratic term in Eq. (A.3) can be written as

∫

d3xe−ik⊥·x⊥T̃ κ
w1

(x⊥, x‖)T̃
κ
w2

(x⊥, x‖)

= e−ik⊥·D0

∫

d3k′

(2π)3
W κ

1 (k′
⊥, k

′
‖)W

κ
2 (k⊥ − k

′
⊥,−k′‖)

×[Tb(k
′
⊥, k

′
‖)Tb(k⊥ − k

′
⊥,−k′‖)

−Tb(k⊥ − k
′
⊥,−k′‖)

∫

d2k′′⊥
(2π)2

Tb(k
′
⊥ − k

′′
⊥, k

′
‖)i(k

′
⊥ − k

′′
⊥) · δD(k′′

⊥)eik
′′
⊥·D0

−Tb(k
′
⊥, k

′
‖)

∫

d2k′′′⊥
(2π)2

Tb(k⊥ − k
′
⊥ − k

′′′
⊥ ,−k′‖)i(k⊥ − k

′
⊥ − k

′′′
⊥) · δD(k′′′

⊥)eik
′′′
⊥ ·D0]

+Noise . (A.7)

Using the relationship that

〈Tb(k
′
⊥, k

′
‖)Tb(k⊥ − k

′
⊥,−k′‖)〉 = (2π)3δ3D(k⊥, 0)P (k′

⊥, k
′
‖) , (A.8)

we found that the expectation value of the first terms and the noise term in Eq. (A.7)

can cancel the last term in Eq. (A.3). Note δD(0) = lim∆k→0(∆k)
−1 ∼ (L/2π), and



Appendix A. Normalization and noise of quadratic estimator 136

W κ
2 (k⊥ − k

′
⊥,−k′‖) ∼ W κ

2 (k′
⊥, k

′
‖) since δ2D(k⊥) is nonzero only when k⊥ = 0. Similarly,

the last two terms can be simplified. Both eik
′′
⊥·D0 and eik

′′′
⊥ ·D0 terms cancel e−ik⊥·D0 since

k′′
⊥ = k⊥ and k′′′

⊥ = k⊥ respectively. The normalization factor

bκ(k⊥) =
2

k2
⊥

∫

d3k′

(2π)3
W κ

1 (k′
⊥, k

′
‖)W

κ
2 (k⊥ − k

′
⊥,−k′‖)

×[(k⊥ − k
′
⊥) · k⊥P (k⊥ − k

′
⊥,−k′‖) + k

′
⊥ · k⊥P (k′

⊥, k
′
‖)] . (A.9)

Similarly, replacingW κ
1 ,W

κ
2 byW γ1

1 ,W γ1

2 (W γ2

1 ,W γ2

2 ), and k2
⊥ by k2

⊥ cos 2θk⊥
(k2

⊥ sin 2θk⊥
),

we find the normalization factor for γ1 (γ2).

The noise of the estimator can be calculated in the absence of lensing: 〈|κ̂(k⊥)|2〉 =

〈κ̂(k⊥)κ̂⋆(k⊥)〉. Since 〈|κ̂(k⊥)|2〉 = (2π)2δ2D(0)Nκ(k⊥) and δ2D(0) = lim∆k→0(∆k)
−2 ∼

(L/2π)2, Wick’s theorem gives

Nκ(k⊥)

=
1

b(k⊥)2L

∫

d2k′⊥
(2π)2

∫

dk′‖
(2π)

{P (k⊥ − k
′
⊥,−k′‖)P (k′

⊥, k
′
‖)[W

κ
1 (k⊥ − k

′
⊥,−k′‖)W κ

2 (k′
⊥, k

′
‖)]

2

+P (k⊥ − k
′
⊥,−k′‖)P (k′

⊥, k
′
‖)Fκ(k⊥ − k

′
⊥,−k′‖)Fκ(k′

⊥, k
′
‖)} . (A.10)

The first term is the convolution of P (k)W κ
1 (k)2 and P (k)W κ

2 (k)2, and the second term

is the convolution of P (k)Fκ(k) with itself. The dimensionless quantity k2
⊥Nκ(k⊥)/(2π)

is equivalent to ℓ2CN
ℓ /(2π) in the literature.


