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The explosion of massive stars involves the formation of a shock wave. In stars that

develop iron cores, this shock wave stalls on its way out due to neutrino emission and

the breakup of heavy nuclei flowing through the shock. For the explosion to succeed,

a fraction of the gravitational binding energy of the collapsed core that is radiated in

neutrinos needs to be absorbed by the material below the shock. How much energy is

needed depends on the interplay between non-spherical hydrodynamic instabilities, neu-

trino heating, and nuclear dissociation. This thesis seeks to understand this interplay

through numerical experiments that model the key physical components of the system

and separate them out to examine their individual effects. Specifically, one- and two-

dimensional time-dependent hydrodynamic simulations are performed to study the effects

of non-spherical shock oscillations, neutrino-driven convection, and alpha particle recom-

bination on the dynamics of the system and the critical heating rate for explosion.

We find that nuclear dissociation has a significant effect on the linear stability and

saturation amplitude of shock oscillations. At the critical neutrino heating rate for an ex-

plosion, convection due to a negative entropy gradient plays a major role in driving dipolar

shock motions. One dimensional explosions are due to a global instability involving the

advection of entropy perturbations from the shock to the region where the accretion flow

cools due to neutrino emission. Large scale shock expansions in two-dimensions are due

to a finite amplitude instability involving the balance between buoyancy forces and the
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ram pressure of the flow upstream of the shock. During these expansions, a significant

amount of energy is released when nucleons recombine into α particles, constituting a

significant last step in the transition to explosion. The critical neutrino heating rate for

an explosion depends sensitively on the starting radius of the shock relative to the radius

at which the binding energy of an α particle is comparable to the gravitational binding

energy.
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Chapter 1

Introduction

1.1 Overview

Core-collapse supernovae are the last stage in the life cycle of massive stars, during which

an explosion powered by the gravitational collapse of the stellar core expels the envelope,

injecting ∼ 1051 erg into the surrounding interstellar medium (e.g., Woosley et al. 2002).

Observationally, these explosions manifest themselves as a sudden increase in brightness

at the location of the progenitor star, with a subsequent decay on a timescale of weeks

to months. The explosion leaves behind either a neutron star or a black hole.

The term supernova comes from the Latin word nova, which means new. The lat-

ter was originally used by Tycho Brahe in his book De Nova Stella to denote a “new

star” that he observed to appear in the sky in 1572 (Murdin & Murdin, 1985). Such

“guest stars” had been recorded by Chinese astronomers as early as 185 CE. Baade &

Zwicky (1934b) first distinguished classical novae, with a typical bolometric luminosity

& 1038 erg s−1 (Gallagher & Starrfield, 1978) and a Galactic rate of ∼ 50 yr−1 (Shara,

1989), from supernovae, which at peak emit ∼ 1042 erg s−1 in photons (Woosley et al.,

2002) and occur at a rate ∼ 1/100 yr−1 in the Milky Way (Cappellaro et al., 1999).

The former arise from a thermonuclear explosion on the surface of a white dwarf that
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accretes matter from a low-mass stellar companion (Gallagher & Starrfield, 1978), while

the latter can have two origins. Type Ia supernovae, which at their peak display strong

silicon absorption but no hydrogen lines in their spectrum, are thought to originate in the

runaway thermonuclear burning of a white dwarf that completely disrupts it (e.g., Hille-

brandt & Niemeyer 2000). The remaining supernova types (Ib, Ic, and II) correspond to

core-collapse supernovae (e.g., Woosley et al. 2002).

Given the low Galactic rate, most core-collapse supernova data accumulated with

modern telescopes correspond to events in distant galaxies. This normally means that

only their optical, near infrared, and (for some objects) X-ray and/or radio emission

can be detected (e.g., Hamuy 2004). An exception to this was Supernova 1987A (SN

1987A) in the Large Magellanic Cloud (LMC). The small distance (50 kpc) allowed the

detection of neutrinos from the explosion, very detailed long term observations of the

electromagnetic light curve, and an unambiguous identification of the stellar progenitor

from previous stellar population studies in the LMC, providing a rich dataset to which

theories could be compared (Arnett et al., 1989). In spite of this increase in our under-

standing of core-collapse supernovae, some fundamental questions regarding the explosion

mechanism remain still unanswered.

In what follows, we elaborate on the importance of core-collapse supernovae for as-

trophysics, review previous and current work on the explosion mechanism, and lay out

the questions that we address in this thesis.

1.2 Importance for Astrophysics

Core-collapse supernovae play a fundamental role in the evolution of the universe. They

are: (1) the site where a significant fraction of heavy elements is produced; (2) the place

where neutron stars are born; and (3) the source of shock waves that are believed to

accelerate most Galactic cosmic rays. We expand on each of these aspects below.
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In addition to the advanced stages of nuclear burning experienced by stars more

massive than 8M¯, several nuclear processes take place after a successful supernova

shock is launched (Burbidge et al. 1957; see Wallerstein et al. 1997 or Woosley et al. 2002

for a recent review): explosive burning of Si, O, C, and Ne, which together account for

a significant fraction of ejected elements up the iron group; the p process, which creates

proton rich nuclei such as 168Yb through absorption of γ-rays; the neutrino process,

which arises due to scattering of µ and τ neutrinos off abundant targets, exciting nuclei

to unbound levels that decay by emitting a neutron, and producing nuclei like 19F from

20Ne; and the r process or rapid neutron capture process, which is thought to take place

in the neutrino driven wind following the explosion (or in a high entropy outflow from a

highly asymmetric explosion), and which is responsible for generating about one half of

the neutron-rich nuclei heavier than iron.

The initial collapse of the iron core is halted when the central regions reach nuclear

density (Bethe et al., 1979), with a substantial stiffening of the equation of state of the

material. This generates sound waves which steepen into an outgoing shock (Brown

et al., 1982), in what supernova theorists call the bounce phase. The core that is left

behind stores its gravitational energy of collapse in thermal and degeneracy energy. The

bulk of the core is dense enough to be opaque to neutrinos, with its outer surface con-

ventionally defined at the point where the optical depth for neutrinos reaches 2/3: the

neutrinosphere1. Neutrinos diffuse from the inner core towards the neutrinosphere, at

which point they become free to leave the system. In this way, the collapsed core loses

heat and lepton number and contracts, much in the same way as a protostar undergoes

Kelvin-Helmholtz contraction. The collapsed core is correspondingly called protoneutron

star, and its Kelvin-Helmoltz contraction is conventionally referred to as deleptonization

(e.g., Burrows et al. 1981). Depending on the outcome of the explosion and the mass

1Since the opacity for each neutrino species is dominated by a different process, and depends on the
neutrino energy, there is a neutrinosphere for each particle species and energy (e.g., Bethe 1990). To
simplify the discussion, we take the neutrinosphere to be a single surface in the remainder of this work.
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of the progenitor star, the forming neutron star can either survive the supernova, or

collapse into a black hole (if the total mass exceeds the maximum mass allowed by the

dense matter equation of state; see §1.3.1). Neutron stars are the densest and in some

cases also the most magnetized objects in the universe, providing a unique laboratory

for probing physics in extreme parameter regimes not accessible in laboratories on Earth

(see, e.g., Lattimer & Prakash 2007 and Harding & Lai 2006 for recent reviews).

Cosmic rays are high energy particles that are incident on the Earth’s atmosphere.

Their energy spectrum follows a power law from 1 GeV to about 1020 eV, with changes

in the spectral index around 1015.5, 1017.8, and 1019 eV (the first and second knee, and

the ankle, respectively, e.g., Nagano & Watson 2000). Cosmic rays with energies below

the first knee are thought to be of galactic origin, given that their lifetime in the galactic

disk is much shorter than the age of the galaxy (e.g., Kulsrud 2005). They are thought

to be produced through diffusive shock acceleration in supernova remnants (SNRs): high

energy particles bounce across the shock many times by scattering off Alfvén waves. This

process naturally produces an energy spectrum close to that observed below the first knee

(e.g., Blandford & Eichler 1987).

1.3 The Explosion Mechanism

1.3.1 Constraints from Observations and

Stellar Evolution Theory

Theoretical lightcurves of core-collapse supernovae in the ultraviolet, optical, and near-

infrared are relatively well understood. The critical parameters are the mass of the

hydrogen envelope, the radius, the explosion energy, and the mass of 56Ni synthesized.

The lightcurve is quite insensitive to the details of energy injection in the collapsed core

(Woosley et al., 2002). However, the simplest radiation transfer models do not say any-
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thing about the shape of the explosion, and how the energy and ejecta are distributed in

space. There is increasing observational evidence pointing to explosions being intrinsi-

cally asymmetric, such as the early detection of radioactive element emission and clumpy

ejecta from SN1987A (see references in Janka & Mueller 1996 and Kifonidis et al. 2006),

jet-like outflows from the supernova remnant Cas A (e.g., DeLaney et al. 2009), and

spectropolarimetric observations that show an increase in the asymmetry of the ejecta as

the photosphere reaches the helium core boundary (e.g., Wang & Wheeler 2008). Obtain-

ing the explosion energy from first principles and as a function of progenitor mass and

metallicity is one of the main goals of supernova theory. The amount of heavy elements

synthesized, mass cut, type of remnant, and binary effects are also of interest. Although

the explosion mechanism is currently not well understood, significant constraints can be

obtained from stellar evolution theory.

Stars with main sequence masses below about 8M¯ develop a degenerate core and

do not ignite carbon, while stars above about 11M¯ ignite carbon non-degenerately and

go through all the advanced nuclear burning stages leading to the formation of an iron

core (Woosley et al., 2002). In between2, the star develops an O-Ne-Mg core, and its

subsequent evolution can follow two paths: either (1) form a heavy white dwarf, or (2)

become unstable due to electron capture and collapse to a neutron star, triggering a

supernova (Miyaji et al., 1980). In the second case, the steepness of the density profile

outside the O-Ne-Mg core makes it easy for the shock to succeed: the mass accretion rate

decreases rapidly with time. Hence this type of supernova is not considered to be prob-

lematic: explosions are found in spherical symmetry through the neutrino mechanism,

albeit somewhat subluminous (explosion energy ∼ 1050 erg, Kitaura et al. 2006, see also

§1.3.3).

In stars of solar metallicity, the mass of the iron core is thought to depend weakly

2The precise limits of this mass interval depend on the helium abundance, metallicity, and the treat-
ment of convection and convective overshoot in stellar models (Woosley et al., 2002).
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on progenitor mass above ∼ 30M¯ due to the nearly complete ejection of the hydrogen

envelope (Woosley et al., 2002). The mass of iron and neutron-rich elements ejected per

supernova is limited by abundance measurements in stars (Weaver et al., 1978). A lower

limit to the baryonic mass3 of the remnant is given by the mass of the iron core (Woosley

et al., 2002). A jump in entropy and steep density decline outside the oxygen burning

shell also suggests that the baryonic mass of the remnant is limited from above by the

mass enclosed by the oxygen layer (Woosley et al., 2002). These two bounds on the

remnant are respectively 1.4 and 1.6M¯ for progenitors above 30M¯, and essentially the

same for 15M¯ stars (Fig. 17 of Woosley et al. 2002). The oxygen shell mass increases

in between 20 and 30M¯ progenitors, peaking above 2M¯ around 25M¯.

Based on these results, the following conclusions are usually drawn for stars that form

iron cores. (1) There is a mass limit around 20M¯ below which a type II supernova and a

neutron star results, the explosion mechanism being not well understood at present. (2)

The lower mass limit for black hole formation is determined by the amount of fallback :

even if a successful supernova is launched, the mass of the remnant can rise above the

maximum mass allowed by the dense matter equation of state. The details of fallback

depend on the explosion mechanism and progenitor density structure (e.g., Woosley &

Weaver 1995), while the equation of state above nuclear saturation density is still not

well understood, so this mass limit is highly uncertain at present. (3) A failed explosion

would of course result in massive fallback and the formation of a black hole. (4) Stars

above 30 M¯, or less massive stars in binaries, are thought to be the progenitors of type

Ib and Ic supernovae due to the lack of hydrogen lines in their spectra.

Large uncertainties in the post-main sequence mass loss prevent a definite conclusion

about whether a neutron star or a black hole is left after the explosion of a star with mass

above 30M¯ (Woosley et al., 2002). Nevertheless, the similarity in the He core mass with

3This is the rest mass in unbound baryons. During deleptonization, the protoneutron star radiates
away ∼ 10 − 15% of its rest mass in neutrinos, therefore the final gravitational mass is lower than the
baryonic mass by this amount (Woosley et al., 2002).
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15M¯ progenitors suggests that the same explosion mechanism operates in supernovae

of type Ib,c and type II (Woosley et al., 2002). In the case where the conventional

explosion fails, a different type of explosion can be powered if there is enough angular

momentum to form a disk, resulting in a long duration gamma-ray burst (Bodenheimer

& Woosley, 1983; Woosley, 1993; MacFadyen & Woosley, 1999). This is supported by

increasing evidence that this type of gamma-ray bursts are accompanied by (mostly type

Ic) core collapse supernovae (although the reverse is not necessarily true, Woosley &

Bloom 2006).

For stars of lower metallicity, stellar winds are less powerful and the mass limit for

hydrogen envelope ejection increases. This also means that the mass of the iron core

increases and therefore, in addition to fallback, direct black hole formation during collapse

becomes possible (Woosley et al., 2002). If the helium core reaches 40M¯, a different

instability takes place (Fowler & Hoyle, 1964; Bond et al., 1984): the increase in internal

energy due to contraction following helium burning goes into the formation of electron-

positron pairs. The creation of these particles temporarily reduces the adiabatic index

below 4/3 and collapse ensues, with the continuing temperature increase resulting in

even more pairs. Up to about 130M¯ He core mass (Woosley et al., 2002), the onset

of oxygen burning is able to halt the implosion. Since the collapse is dynamic, the

central temperature overshoots the value implied by hydrostatic equilibrium, and the

excess nuclear burning results in a thermonuclear explosion that completely disrupts the

star. This is commonly known as a pair instability supernova. Above 130M¯, however,

thermonuclear burning is not able to halt collapse and, in the absence of rotation, the

star collapses directly to a black hole. Rotation increases the limiting mass. Stars with

helium cores large enough to trigger the pair-instability mechanism have main sequence

masses ∼ 100M¯ or higher (Woosley et al., 2002) and are thus very rare. This mechanism

is therefore only relevant for Population III stars.
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A complete understanding of the explosion mechanism of non-rotating4 progenitors,

with metallicities comparable to solar, would enable to obtain from first principles the

explosion energy, nucleosynthetic yields, and the type of remnant, all as a function of

progenitor mass. We now review previous steps in this direction, leading us to the current

state of the field.

1.3.2 Early Theories

Baade & Zwicky (1934b) were the first to estimate, from the visual lightcurve, that the

total energetic output from of a supernova is ∼ 1051 − 1054 erg, and that this implies

a fundamental transformation of the star. They further proposed in Baade & Zwicky

(1934a) that the explosion is the result of the transition from a normal star to a neutron

star. Burbidge et al. (1957) explained how the collapse of the iron core of a massive star

is initiated once the Chandrasekhar mass is approached. The dissociation of iron into

alpha particles, and electron captures such as 56Fe+ e− → 56Mn+ νe reduce the pressure

support and allow the collapse to take place on the dynamical time. They proposed that

the explosion was powered by thermonuclear burning of the outer layers of the core due

to an increase in the temperature following collapse.

The first time-dependent hydrodynamic calculations of stellar explosions were per-

formed by Stirling Colgate and collaborators at Lawrence Livermore National Laboratory

in the 1960s. They wished to understand the γ-ray signature of supernovae in satellites

that were being designed to verify a nuclear test ban in space, the same satellites that

would later discover γ-ray bursts (Colgate, 2004). Colgate & Johnson (1960) calculated

the evolution of an outward propagating shock generated by injecting 1052 erg at the

center of the system (mimicking the energy release from gravitational collapse). The

energy was calibrated so as to eject 1M¯ of material, in agreement with observations.

4Most massive, solar metallicity stars are expected to have rotation rates that, although rapid com-
pared with the sun, have no dynamical importance in an explosion (Heger et al., 2005), see also §1.3.4.
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They focused on the spectrum of cosmic rays that was generated during the expansion

of the shock through the outer stellar layers. Colgate & White (1966) included the grav-

itational collapse of the core in their calculations, which releases far more energy than

the thermonuclear burning of the outer core. They found that the energy could be trans-

ferred to the outer stellar mantle via high energy (∼ 50 MeV) neutrinos arising from

accretion onto the hard surface of a small neutron star (∼ 10 km). Subsequent work by

Arnett (1967) found that this energy transfer mechanism is not efficient enough for stars

with massive cores. With a more careful treatment of neutrino transport, Wilson (1971)

found that energy transfer was minimal and that the explosion failed altogether.

Freedman (1974) pointed out that the existence of a neutral current (e.g., weak inter-

actions mediated by the Z boson) implies that neutrinos would scatter off heavy nuclei

during collapse, thereby preventing excessive neutrino cooling of the collapsed core. At

densities ∼ 1012 g cm−3, the collision time for this process becomes comparable to the

dynamical time, and neutrinos are said to be trapped (e.g., Bethe 1990). By the early

1980s, after several years of continuous improvement in 1D neutrino transport codes, a

consensus emerged that the initial bounce shock stalls on its way out due to energy loss

to nuclear dissociation and electron capture (e.g., Bowers & Wilson 1982 and references

therein).

1.3.3 The Neutrino Mechanism

The next breakthrough came with the discovery by Wilson (1985) that few tenths of

a second after the initial shock bounce, the material behind the stalled shock absorbs

significant heat from neutrinos, giving rise to an explosion with a somewhat weak energy

(∼ 1050 erg). This revival of the stalled shock was put on a firmer theoretical footing

by Bethe & Wilson (1985), and constitutes the currently favored channel for generating

an explosion (the so-called neutrino mechanism). The energy transfer takes place via

reactions involving the charged weak current (mediated by the W± boson), that is, the
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absorption of electron-type neutrinos and antineutrinos by nucleons:

νe + n → e− + p (1.1)

ν̄e + p → e+ + n. (1.2)

The efficiency of energy transfer by this process needs to be fairly low (∼ 1%, since

1053 erg are emitted in neutrinos and the explosion energy is ∼ 1051 from observations).

This encouraged researchers to invest significant effort in improving the methods of neu-

trino transport, neutrino opacities, and the equation of state of dense matter. Simulations

incorporating multigroup (energy dependent) Boltzmann neutrino transport showed that

stars that form iron cores do not explode in spherical symmetry. This result did not

depend on whether Newtonian gravity (Thompson et al., 2003), full general relativity

(Liebendörfer et al., 2001; Sumiyoshi et al., 2005), or a more approximate description of

the gravitational field (Rampp & Janka, 2002) was employed. Lower mass stars which

form an O-Ne-Mg core can explode in spherical symmetry by this mechanism (Kitaura

et al., 2006; Janka et al., 2008).

With the availability of increasing computational power, numerical simulations in

more than one spatial dimension became possible in the 1990s. Herant et al. (1992)

were the first to perform two-dimensional hydrodynamic calculations of the postbounce

phase, with an approximate implementation of the neutrino physics. They found that

convection is excited by neutrino heating outside the neutrinosphere, thereby increasing

the residency time of infalling material, and generating successful explosions for cases

that failed in one dimension. They also found that the convective cells extended to

large scales, potentially leading to an asymmetric explosion. The presence of a negative

entropy gradient behind the shock had already been pointed out by Bethe (1990) as a

driver of postshock convection. Subsequent work with approximate neutrino physics by

Miller et al. (1993), Herant et al. (1994), Burrows et al. (1995), Janka & Mueller (1996),

and Mezzacappa et al. (1998) found indeed that postshock convection was vigorous,
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but did not agree as to whether it would make a difference in reviving a stalled shock

that would otherwise fail in one dimension. The disagreement originated in the differing

approximations that were employed for the neutrino heating and cooling, as well as the

numerical methods for treating the hydrodynamics (Mezzacappa et al., 1998).

Convection of a different sort had already been suggested by Epstein (1979) to oc-

cur below the neutrinosphere, driven by the negative lepton gradient that arises due

to the diffusion of neutrinos out of the protoneutron star. Using a mixing-length ap-

proach, Burrows (1987) found that protoneutron star convection yielded a 50% increase

in the temperature of the neutrinosphere, with consequent increases in the neutrino lu-

minosities. Doubly diffusive instabilities that assume faster heat diffusion than lepton

number diffusion (neutron fingers) were invoked by Wilson & Mayle (1988) and Wilson

& Mayle (1993) to enhance the neutrino luminosities, allowing them to obtain success-

ful explosions. A more careful analysis by Bruenn et al. (2004) shows that diffusion of

lepton number is always faster than thermal diffusion, which prevents neutron fingers

from forming. More recent two-dimensional hydrodynamic simulations with multigroup

neutrino transport show that indeed neutron fingers do not arise, and that protoneutron

star convection takes place in a limited layer of negative lepton gradient. Convection

significantly affects the µ and τ neutrino luminosities, but yields only modest changes

for νe and ν̄e (Buras et al., 2006b; Dessart et al., 2006). The amplification and transport

of magnetic fields by protoneutron star convection has been considered by Thompson

& Duncan (1993) and Thompson & Murray (2001), respectively, although the effect on

the explosion mechanism when no significant rotation is present has only been explored

analytically by Thompson (2000).

Two-dimensional collapse calculations with a more realistic treatment of neutrino

transport became available in the past several years, revealing the importance of multi-

dimensional instabilities above the neutrinosphere for the explosion mechanism (Walder

et al., 2005; Swesty & Myra, 2005b,a; Buras et al., 2006b,a; Burrows et al., 2006, 2007b;
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Ott et al., 2008; Marek & Janka, 2009). Buras et al. (2006a) found that an 11M¯ model,

which did not explode in spherical symmetry, also failed when the two-dimensional grid

was restricted to a 90 degree wedge around the equator. However, when the grid was

allowed to cover the whole range of polar angles, a successful (albeit marginal) explo-

sion was uncovered. The reason is that the postshock fluid was able to perform strong

dipolar motions, which strengthened convection and allowed the absorption of enough

heat to trigger an explosion. Similar results were obtained by Marek & Janka (2009)

with the same 15M¯ model as Buras et al. (2006b) and a 180 degree grid. In this case

some evidence for an explosion is obtained at late times (∼ 600 ms), with strong dipolar

overturns of the postshock flow and recombination of α-particles. The work of Burrows

et al. (2006) and Burrows et al. (2007b) also found strong dipolar motions, but they

obtained explosions powered by a different mechanism (see §1.3.4).

Blondin et al. (2003) found that a standing spherical accretion shock is linearly unsta-

ble to non-spherical perturbations in the absence of convection. Using a simplified setup,

which neglects the energy loss due to nuclear dissociation but otherwise starts with a

density profile similar to that seen in full collapse calculations, they found that the shock

develops an overstable mode in two dimensions, but is stable in spherical symmetry. The

origin of the linear instability became the subject of debate, with Blondin & Mezzacappa

(2006) arguing for a purely acoustic cycle, and Foglizzo et al. (2007) favoring a feedback

between advected entropy-vortex perturbations and outgoing sound waves. Interest in

the stability of the shocked fluid remained vivid, as it became clear that dipolar insta-

bilities could be the origin of the high proper motions of radio pulsars. However, one

should be cautious in associating this linear instability (commonly referred to as Standing

Accretion Shock Instability, or SASI) with the large amplitude shock motions observed in

full collapse calculations, as the latter arise in the presence of strong convective motions

that are driven by neutrino heating. It is also unclear how nuclear dissociation at the

shock affects its stability.
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Given that full collapse calculations are expensive computationally, a set of two-

dimensional (2D), parametric hydrodynamic studies that approximate the effects of neu-

trino transport have been performed recently to probe multidimensional effects (Fryer

et al., 2006; Scheck et al., 2006; Ohnishi et al., 2006; Fryer & Young, 2007; Scheck et al.,

2008; Iwakami et al., 2008; Murphy & Burrows, 2008). Ohnishi et al. (2006) conducted

simulations of a standing accretion shock with a steady-state initial condition, including

heating and cooling as energy source terms and using a realistic equation of state. They

also found that the nonlinear shock oscillations are dominated by large scale modes,

and that the mode periods scale with the postshock advection time (in line with the

interpretation of Foglizzo et al. 2007 and the quantitative results of the linear stability

analysis of Yamasaki & Yamada (2007)). Scheck et al. (2006) and Scheck et al. (2008)

performed a large number of simulations that use approximate neutrino transport but a

realistic equation of state. They found dipolar asymmetries large enough to explain the

proper motions of most radio pulsars, and showed that convection is damped by strong

accretion, as predicted by the linear analysis of Foglizzo et al. (2006). Fryer & Young

(2007) studied the effects of shock motions on convection using an SPH code and grey

neutrino transport, finding that in 3D the dipolar mode is not dominant.

Work by Blondin & Mezzacappa (2007) and Blondin & Shaw (2007) has investigated

the nature of the 3D SASI without including the effects of neutrino heating or nuclear

dissociation. They find that the shock can develop a spiral mode that could in principle

spin up the forming neutron star. Iwakami et al. (2008) studied the development of the

SASI in three dimensions (3D) with the same model as Ohnishi et al. (2006), focusing

on the saturation properties and its comparison with the 2D case. The linear stability

study of Yamasaki & Foglizzo (2008) has shown that at the equatorial midplane, the

advective-acoustic cycle argued by Foglizzo et al. (2007) to drive the linear SASI also

favors spiral modes that rotate in the same direction as the accretion flow.
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1.3.4 Alternative Mechanisms

At present, the neutrino mechanism remains viable, and the fact that it arises naturally

from the global energetics of the system makes it the favored one. But given the fail-

ures of spherically symmetric simulations and marginal success in the 2D case, it is not

guaranteed to be robust. Here we briefly review alternative mechanisms that have been

explored previously.

LeBlanc & Wilson (1970) investigated the consequences of rapid rotation and mag-

netic fields on the collapse with time-dependent 2D cylindrical axisymmetric MHD simu-

lations. Starting with a uniformly rotating core with strong poloidal magnetic field, they

found that at high densities, the centrifugal force becomes dynamically important, with

significant deviations from spherical symmetry taking place. Strong differential rotation

amplifies the magnetic field by a factor ∼ 100 over pure flux freezing due to collapse.

Once the collapse halts, this toroidal field generates an axial jet that causes a bipolar

explosion due to an increase in the magnetic over gas pressure along the rotation axis.

This constitutes the essence of the magnetorotational mechanism, with subsequent com-

putations having improved the physics but still finding the same qualitative result. An

important step forward was taken with the work of Akiyama et al. (2003), who showed

that the magnetorotational instability (MRI) leads to exponential amplification of a seed

magnetic field at the boundary of the protoneutron star as well as in the postshock cavity,

in contrast to the linear growth of toroidal field by line wrapping found by LeBlanc & Wil-

son (1970). To date, the work of Burrows et al. (2007a) remains the only5 time-dependent

2D MHD collapse simulation of iron-core stars to include multigroup neutrino transport.

They find powerful explosions, although they need to assume rapid rotation in the pre-

collapse core (period of 2 s) and large seed magnetic fields (∼ 1011 G). The main problem

with the magnetorotational mechanism is that rapid progenitor rotation presents poten-

5Dessart et al. (2007) have performed 2D multigroup neutrino-transport MHD simulations of accretion
induced collapse of a white dwarf to a neutron star.
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tial problems, because if too large it can result in the neutron star over-energizing the

surrounding nebula (e.g., Ott et al. 2006). Hence the rotational kinetic energy needed for

successful magnetorotational models is somewhat fine-tuned. Also, axisymmetric veloc-

ity fields cannot sustain axisymmetric fields via dynamos action (Cowling, 1933), hence

three-dimensional simulations are required for proper modeling of this scenario.

Burrows et al. (2006) performed a full 2D core-collapse calculation of a 15 M¯ star

with a computational grid that transitions from spherical to cartesian at ∼ 20 km,

allowing the collapsed core to move relative to the center of mass of the system. They

found that neutrino heating was not able to drive an outflow, but instead that the

explosion developed at late times (∼ 1 s) and was powered by acoustic emission from the

protoneutron star. They interpreted this acoustic emission as arising from dissipation

of saturated g-modes of the collapsed core, which are excited by anisotropic accretion

plumes caused by the strong dipolar shock motions. Correspondingly, this has been

named the acoustic mechanism. Burrows et al. (2007b) found that it is able to power

explosions for progenitor stars up to 25M¯. The advantage of this mechanism is that it

operates whenever the neutrino mechanism fails. However, it remains controversial for

several reasons. First, because the core can only move along the axis of symmetry in a

2D axisymmetric simulation, increasing the dimensionality may result in lower saturation

amplitudes and thus insufficient acoustic power to energize the shock. Second, it has not

been verified independently: Marek & Janka (2009) find g-modes in their protoneutron

star, but not with the amplitudes reported in Burrows et al. (2006)6. Finally, the analytic

work of Weinberg & Quataert (2008) found that the dominant dipolar g-mode witnessed

in the simulations of Burrows et al. (2006) is nonlinearly coupled to modes of a high radial

order, which are dissipated by neutrino diffusion. These modes cannot be resolved by

Burrows et al. (2006), and can lower the g-mode saturation energy by a factor ∼ 100. The

6The simulations of Marek & Janka (2009) do not, however, follow the evolution to ∼ 1 s as done by
Burrows et al. (2006), and evolve the inner part of their core in spherical symmetry to avoid the angular
timestep restriction at small radii.
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work of Fryer & Young (2007) made with an SPH code in 3D does not find a significant

core motion. Full neutrino transport in 3D at high resolution is required to settle the

fate of this mechanism, to capture multidimensional and dissipation processes effectively.

Very recently, Sagert et al. (2009) modeled the collapse of 10M¯ and 15M¯ stars

in spherical symmetry using an equation of state that allows for a phase transition to

deconfined quark matter. After the initial bounce shock becomes stalled, a fraction of the

protoneutron star enters a mixed quark-hadronic phase, which decreases the adiabatic

index and triggers a second collapse. This second collapse is halted by the formation

of pure quark matter, generating a second shock. When the second shock meets the

original stalled shock, the system gains enough energy to trigger an explosion. A key

prediction of this model is the appearance of a second neutrino burst due to the passage

of the second shock across the neutrinosphere. At present, the quark matter equation

of state is computed with a phenomenological model (the MIT bag) which is parameter

dependent. Further progress in quantum chromodynamics at high densities is needed to

understand the feasibility of this model.

1.4 This Thesis

Dating back to the early days of time-dependent calculations, theorists have tried to

use state-of-the art progenitor models, microphysics, and numerical techniques. This is

generally viewed as the only way in which the combination of physical processes driving

an explosion will ultimately be uncovered. However, the task is daunting: in particular,

extending multi-energy and multi-species neutrino transport to three spatial dimensions

is not possible with current computational capabilities (e.g., Marek & Janka 2009). The

many nonlinear feedbacks that are present make it difficult to disentangle the causes of

even the most dramatic global effects (e.g., the results of Burrows et al. 2006 and Marek

& Janka (2009)).
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An alternative approach, also dating back to the first time-dependent calculations,

has been to use approximate descriptions of various components of the physics, in an

attempt to speed up the otherwise slow progress towards full realism, or to gain a more

fundamental understanding of global phenomena through parametric studies. Given the

fact that developing a full core-collapse code is a long undertaking, we take the second

approach in this thesis.

Numerous unexplained aspects of global instabilities observed in full collapse calcu-

lations can be addressed with a simplified hydrodynamic setup that nonetheless includes

the essential physics in a parameterized form. In particular, the effects of nuclear disso-

ciation on the stability of the shock have not been studied separately7, despite being one

of the most significant sources and sinks of energy in the system. Indeed, at an accretion

rate of 0.3M¯ s−1 over 200 ms, full dissociation of iron (8.8 MeV per nucleon, Audi et al.

2003) takes away 1051 erg of internal energy and thus pressure support behind the shock.

The material which flows through the stalled shock (predominantly iron, silicon, and

oxygen) is only weakly bound to the forming neutron star, but loses roughly half of its

kinetic energy to nuclear dissociation. The Bernoulli parameter (enthalpy plus kinetic

and gravitational energies, equal to the energy flux divided by mass flux) of the shocked

material with this dissociation energy subtracted becomes substantially negative. Much

of this dissociation energy can be restored if protons and neutrons recombine into alpha

particles, but this generally requires an outward expansion of the shock from the radius

of ∼ 100−150 km at which it typically stalls. The successful expansion of the shock does

not, however, require imparting positive energy to the entire post-shock fluid: buoyancy

forces will drive a global finite-amplitude instability in the presence of large-scale density

inhomogeneities. The stability analysis given in Thompson (2000) shows that a non-

spherical breakout of the shock is then possible.

Our main goal is to gain an understanding of results from more realistic but com-

7Simulations employing a realistic equation of state implicitly account for this effect.
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plicated simulations in terms of fundamental physical principles. In particular, we focus

on:

1. The effects of nuclear dissociation on the global modes of the shock in the absence

of neutrino heating, and thus in isolation from convection. We also investigate the

influence of different matter equations of state and upstream Mach numbers. The

goal here is to probe the sensitivity of the modes to different aspects of the flow

structure and equation of state.

2. The interplay between these intrinsic overstable oscillations of the shock and con-

vection. We want to understand better the driving agent behind the large amplitude

shock displacements that are observed in more complete multidimensional collapse

calculations.

3. The dynamics of the shock at the transition from accretion to explosion in one and

two spatial dimensions. We intend to gain a more fundamental understanding of

global instabilities occurring at this transition, and on the differences introduced

by changing the dimensionality of the flow.

4. The effects of α-particle recombination on the dynamics of the flow and the critical

heating rate for explosion. Here the goal is to separate out the role of nuclear

energy generation.

To pursue these goals, we have designed a set of numerical experiments consisting

of time-dependent hydrodynamic simulations of a standing accretion shock that employ

equations of state of increasing complexity. We concentrate on the phase of the supernova

where the bounce shock has stalled, at which point global instabilities of the flow begin

to play a significant role.

We use the code FLASH2.5 (Fryxell et al., 2000), which is well tested in problems

involving nuclear energy release in compressible fluids (Calder et al., 2002). We adopt a
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steady state model as our initial condition, and a constant mass accretion rate, neutrino

luminosity, and fixed inner boundary. The steady-state approximation to the stalled

shock phase was first introduced by Burrows & Goshy (1993), and has recently been

used by Ohnishi et al. (2006) to study the non-linear development of the shocked flow

with a semi-realistic equation of state and neutrino heating.

To address goal #1 above, we start by modeling the accretion flow as a polytropic

fluid, from which a fixed dissociation energy is removed immediately below the shock (so

as to mimic the most important effect of nuclear dissociation), and allow for neutrino

cooling but not heating. We also solve and modify the linear stability calculation of

Foglizzo et al. (2007) to study the linear modes of the accretion flow. We then add neu-

trino heating in a simple, parametrized way, without any attempt at simulating neutrino

transport. In this way, we can drive convection below the shock and address goal #2

above. We then gradually increase the intensity of heating until an explosion is uncov-

ered, and study the dynamics obtained around the critical point to investigate goal #3.

Finally, we generalize the prescription of constant dissociation energy to allow for nuclear

statistical equilibrium (NSE) between neutrons, protons, and α-particles. In this way,

the energy feedback from α-particle recombination can be introduced (goal #4).

The plan of this thesis is as follows. In Chapter 2 we describe in detail the physical

model we employ in this investigation, the numerical setup used in our time-dependent

hydrodynamic calculations, and the diagnostic methods employed to analyze results.

Chapter 3 addresses the linear phase of the SASI, focusing on the effects of a finite

amount of nuclear dissociation, varying adiabatic index, and incident Mach number on

the linear eigenfrequencies, as well as further probing the instability mechanism behind

fundamental modes of the flow. In Chapter 4 we employ our hydrodynamic simulations to

explore the nonlinear, saturated state of the instability and its energetics in the absence

of heating, as well as its interplay with convection when heating is gradually added

to the system. Chapter 5 examines the time-dependent dynamics in 1D and 2D when
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the heating rate is close the critical value to cause an explosion. Finally, the effects

of α-particle recombination on the dynamics and critical heating rate for explosion are

investigated in Chapter 6. Chapters 3-6 each close with a summary of the main results,

and our general conclusions follow in Chapter 7.



Chapter 2

Methods

2.1 Overview

In this chapter we describe the physical model we employ in our investigation (§2.2),

the numerical techniques (§2.3), and analysis tools (§2.4). We focus on the phase of the

supernova at which the stalled shock undergoes multidimensional hydrodynamic insta-

bilities. Since we are interested in nonlinear phenomena, we perform time-dependent

hydrodynamic simulations, and model nuclear dissociation, gravity, and energy source

terms from neutrinos in a schematic way.

2.2 Physical Model

The initial configuration is a steady, spherically symmetric flow onto a gravitating point

mass M with a hard surface at some radius r∗, corresponding roughly to the neutri-

nosphere. More complete core-collapse calculations find that the mass between the neu-

trinosphere and the shock is at most ∼ 0.1M¯, compared to 1.3 − 1.4M¯ below the

neutrinosphere (e.g., Marek & Janka 2009 for a 15M¯ progenitor). Point mass gravity

is therefore a reasonable approximation when focusing on the nonlinear dynamics of the

shock. Even though seed perturbations in the progenitor star may be amplified dur-

21
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ing collapse (Lai & Goldreich, 2000), the collapsing core is by itself stable to nonradial

perturbations (Goldreich & Weber, 1980). In the absence of any physically motivated

asphericity in the progenitor, we assume that the collapsing material is spherically sym-

metric.

The flow contains a standing shock wave, and the settling flow below the shock cools

radiatively in a narrow layer outside r = r∗. In more realistic calculations, which treat the

effect of neutrinos with a higher degree of realism (e.g., Liebendörfer et al. 2001), cooling

and heating by neutrinos is a consequence of the radial profiles of two simultaneous

processes: cooling due to the capture of electrons and positrons, and heating due to the

absorption of electron-type neutrinos and antineutrinos (Bethe & Wilson, 1985) in the

regions that are nearly transparent to neutrinos. In our model, we include them as local

energy source terms in the energy equation; we elaborate on this approximation in §2.2.2.

Similarly, realistic simulations include nuclear dissociation and recombination below the

shock implicitly through the equation of state. Here, we want to test the effect of nuclear

processes explicitly, therefore we include them as another source therm in the energy

equation. The details of this are given in §2.2.1.

The space of such accretion shock models is labeled basically by three parameters:

accretion rate Ṁ , luminosity Lν in electron neutrinos and anti-neutrinos, and the radius

r∗ of the base of the settling flow. The mass M of the collapsed material represents a

fourth parameter, but it covers a narrower range than the other three.

For shock stability calculations without neutrino heating, our parameter space is two-

dimensional, and we label it by the size of the envelope r∗/rs0 and the amount of nuclear

dissociation below the shock, which is equivalent to giving rs0 physical dimensions.

In calculations that include heating, we explore a two-dimensional surface through

this three-dimensional parameter space by i) fixing the ratio of r∗ to the initial shock

radius rs0 in the absence of heating (r∗/rs0 = 0.4); ii) allowing rs0 to vary with respect to

an appropriately chosen physical radius; and then iii) increasing the level of heating until



Chapter 2. Methods 23

an explosion is uncovered. In the full problem, the shock radius at zero heating is a unique

function of Ṁ and r∗, with a small additional dependence on M and the composition

of the flow outside the shock (Houck & Chevalier, 1992). The secular cooling of the

collapsed core forces a gradual decrease in r∗, and Ṁ also varies with time and with

progenitor model.

Given the important role that α-particle recombination plays in the final stages of an

explosion, we implement ii) in our simulations with neutrino heating by referencing rs0

to the radius where the gravitational binding energy of an α-particle equals its nuclear

binding energy,

rα =
GMmα

Qα

' 254M1.3 km. (2.1)

Here Qα ' 28.30 MeV is the energy needed to break up an α-particle into 2 neutrons and

2 protons (e.g., Audi et al. 2003), mα the mass of an α-particle, and M1.3 = M/(1.3M¯).

Choice i) allows us to consider models that have, implicitly, both a range of physical

values of r∗ and a range of Ṁ . It is, of course, made partly for computational simplicity

(the limited size of the computational domain) and also to facilitate a comparison between

models that have different values of rs0/rα. Once this choice is made, the normalization of

the cooling function is adjusted to give a fixed value of r∗/rs0. The heating rate remains

freely adjustable thereafter.

We adopt this simplification because we do not intend to find the precise value of the

critical neutrino luminosity, but instead to probe the behavior of the system around this

critical point, whatever its absolute value.

Our system of units is the following. All flow variables are made dimensionless by

scaling radii to to the initial shock radius rs0, all velocities to the free-fall velocity at this

radius, vff 0(rs0) = (2GM/rs0)
1/2, the time to the free-fall time rs0/vff(rs0), and the density

to the initial upstream density ρ1. Numerical values appropriate for the stalled shock

phase of a core collapse are rs0 ∼ 150 km, vff 0(rs0) ∼ 4.8 × 109M
1/2
1.3 (rs0/150 km)−1/2

cm s−1, tff0 ≡ rs0/vff 0 ∼ 3.1 M
−1/2
1.3 (rs0/150 km)3/2 ms, and ρ1 ∼ 4.4 × 107Ṁ0.3 M

−1/2
1.3
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(rs0/150 km)−3/2 g cm−3 (assuming a strong shock). Here the mass accretion rate has

been normalized to Ṁ = 0.3 Ṁ0.3 M¯ s−1. Throughout this work we denote the average

of a function F (X, ...) over some variable X by 〈F 〉X . Table 2.1 summarizes the most

frequently used, non-standard symbols.

2.2.1 Equation of State

Our equation of state is that of an ideal gas with adiabatic index γ. This choice is made

to enable a clear identification of effects caused by the equation of state on the behavior

of the flow, some of which are incorporated explicitly in the evolution of the internal

energy. We choose the value of γ so as to achieve a realistic density profile near the base

of the settling flow, given the fact that we are not explicitly including changes in the

electron fraction due to weak processes (see also §2.3.1).

We model nuclear dissociation in two ways. First, we remove a fixed specific energy

ε right below the shock. This represents the prompt and complete breakup of whatever

heavy nuclei are present in the upstream flow. When rs0 ∼ 150 km, the gravitational

binding energy per nucleon at the shock is ∼ 12M1.3(150km/rs0) MeV, higher than the

' 8.8 MeV binding energy per nucleon of 56Fe (e.g., Audi et al. 2003). In our simplified

model, the effect of dissociation is parameterized by a constant dissociation energy per

unit mass ε. For example, the complete dissociation of iron into nucleons costs an energy

ε

v2
ff0

' 0.37 M−1
1.3

( rs0

150 km

)
. (2.2)

The main limitation of this approximation is that the dissociation energy does not change

with the radius (or inclination) of the shock. The main advantage is simplicity: ε is

independent of any dimensional parameters and can be expressed as a fraction of v2
ff0.

We also use a more accurate dissociation model which allows for NSE between α-

particles and nucleons.1 During the stalled shock phase of core-collapse supernovae, the

1Although heavier nuclei can begin to recombine once the shock moves significantly beyond rα,
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Table 2.1: List of frequently used, non-standard symbols

Symbol Description

〈F 〉X Average of function F over variable X

b Bernoulli parameter, (eq. 2.8)

cs Sound speed, equal to
√

γp/ρ

denuc/dt Specific nuclear energy generation rate (eq. 2.15)

ε Specific nuclear binding energy (if no subscript, free parameter; subscripted

cases specific to particle species, eqns. 2.3 and 2.4)

H Normalization of heating function, eqn. (2.6)

` Index of Legendre polynomial P`(cos (θ))

L Energy generation rate per unit volume. Subscript C corresponds to cooling

(eq. 2.5), H to heating (eq. 2.6), and α to particle advection (eq. 2.7)

M Mach number

r∗ Stellar radius, inner boundary of the domain

rα Radius where α recombination energy equals gravitational binding energy

(eq. 2.1)

rs0 Initial shock radius in the absence of heating

rs Shock radius

s Entropy (lower case denotes per unit mass, upper case per baryon)

tff0 Free-fall time at rs0, equal to rs0/vff0

v2
ff0 Squared free-fall speed at rs0, equal to 2GM/rs0

ωgrow Growth rate

ωosc Oscillation frequency

wad Adiabatic rate of change of enthalpy, eq. (6.1)

Xi Mass fraction of species i, superscript eq denotes NSE value
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shock sits at r ∼ 100 − 200 km, with a postshock temperature T > 1 MeV and density

ρ & 109 g cm−3. In these conditions, the heavy nuclei flowing through the shock are

broken up into α, protons, and neutrons. A range of isotopes are present in the iron core

of a massive star as well as in nuclear burning shells (Woosley et al., 2002), but since

the binding energy per nucleon varies only by ∼ 10% we simply assume a single type of

nucleus in the upstream flow. We focus here on the later stages of the stalled shock phase,

during which the oxygen shell is accreted. An energy QO ' 14.44 MeV must be injected

to dissociate an 16O nucleus into 4 α-particles (Audi et al., 2003), which corresponds to

the specific dissociation energy

εO =
QO

mO

= 0.038M−1
1.3

( r

150 km

)
v2

ff0(r). (2.3)

Here mO ' 16mu is the mass of an oxygen nucleus, with mu the atomic mass unit. The

smallness of this number indicates that little oxygen survives in the post-shock flow, and

so we set the equilibrium mass fraction of oxygen to zero below the shock, Xeq
O = 0. The

binding energy of an α-particle is of course much larger, giving

εα =
Qα

mα

= 0.295M−1
1.3

( r

150 km

)
v2

ff0(r). (2.4)

We find that α-particles appear in significant numbers only at relatively large radii

(& 0.5 rα) and in material that has either i) been significantly heated by electron neutrinos

closer to the neutrinosphere and rises; or ii) been freshly shocked outside rα. The electrons

are only mildly degenerate in material that has a high entropy and α-particle content,

so that neutrino heating drives the electron fraction Ye close to ∼ 0.5 (or even slightly

above: see, e.g., Buras et al. 2006a). We therefore set Ye = 0.5 in the Saha equation that

determines the equilibrium mass fractions Xeq
n , Xeq

p and Xeq
α = 1 − Xeq

n − Xeq
p . These

quantities are tabulated as functions of the pressure p and density ρ using an ideal, finite-

temperature and partially degenerate equation of state for electrons and nucleons; see

this generally occurs only after the threshold for an explosion has been reached, and makes a modest
additional contribution to the recombination energy.
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Appendix A for details. Specific choices must then be made for the parameters rs0, M ,

and Ṁ ; we generally take M = 1.3 M¯ and Ṁ = 0.3 M¯ s−1, but allow rs0 to vary. An

investigation of how changes in Ye feed back onto the formation of α-particles is left for

future work.

2.2.2 Energy Source Terms

There are two main energy source terms in the nearly transparent region between the

neutrinosphere and the shock. As the accretion flow settles onto the protoneutron star,

electrons and positrons are captured onto free nucleons, emitting electron-type neutrinos

and antineutrinos. The energy released per unit volume due to this process depends on

density and temperature approximately as ∼ ρT 6 (e.g., Janka 2001). Using the fact that

the temperature T ∝ p/ρ for both the nucleon and relativistic particle contribution to

the pressure, it is possible to show that the temperature scales inversely with radius in

this region (Bethe, 1993). Heating, on the other hand, is due to absorption of electron

type neutrinos and antineutrinos leaking from the protoneutron star (eq. 1.1), with a

minor contribution from the cooling due to accretion mentioned previously. The specific

heating rate is then the specific energy flux from neutrinos times the cross section for

absorption: the radial dependence arises from the geometric dilution of the neutrino

flux from the protoneutron star, ∼ r−2 (e.g., Janka 2001). The normalization of both

energy source terms is such that they balance each other at some radius between the

neutrinosphere and the shock, conventionally called the gain radius (Bethe & Wilson,

1985), with heating dominating above this radius.

In our model, the rate of release of internal energy per unit volume has the basic form

LC = Apαρβ−α. (2.5)

To make contact with previous calculations, we have adopted the same parameterization

as used by Blondin & Mezzacappa (2006), α = 1.5, β = 2.5. This choice of exponents
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is consistent with cooling by the capture of non-degenerate e+ and e− on free nucleons

when the pressure is dominated by relativistic particles. (LC ∝ ρT 6 ∝ ρp3/2.) Inside the

radius where the electrons become strongly degenerate, one has LC ∝ p
3/2
e np ∝ (Yeρ)3.

This gives essentially the same dependence of LC on r as eq. (2.5) when Ye = constant

and γ = 4
3

(corresponding to ρ ∝ r−3 in a nearly adiabatic settling flow). In more

realistic collapse calculations, Ye grows with radius between the neutrinosphere and the

shock, but ρ tends to decrease more rapidly than ∼ r−3 (e.g. Buras et al. 2006b). Our

choice of cooling function appears to widen the gain region slightly compared with these

calculations, and therefore to reduce the critical heating rate for an explosion. The bulk

of the cooling occurs in a narrow layer close to the accretor at r = r∗, and the accreted

material accumulates in the first few computational cells adjacent to the inner boundary

without a major effect on the rest of the flow. The constant normalization factor A

determines the radius r∗ at which the flow stagnates, and thus the ratio r∗/rs0.

We model neutrino heating as a local energy generation rate per unit volume of the

form

LH = H(1−Xα)ρ/r2. (2.6)

The normalization constant H measures the strength of the heating. The factor (1−Xα)

accounts for the fact that the cross section for neutrino absorption by α-particles is much

smaller than that for free nucleons (Bethe, 1990). For simplicity, we do not include the

flux factor due to the transition between diffusion and free-streaming. Our focus here is

on the nature of the instabilities occurring in the flow near the threshold for an explosion,

and we do not attempt a numerical evaluation of the critical heating rate.

An additional energy source term arises from the change in the equilibrium fraction

of α-particles as they are advected in the steady state initial solution. The instantaneous

adjustment of Xα to its equilibrium value, combined with eq. (2.14), yields an energy
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generation rate per unit volume

Lα = ρvrεα
dXeq

α

dr
= ρvrεα

[
∂Xeq

α

∂ρ

dρ

dr
+

∂Xeq
α

∂p

dp

dr

]
. (2.7)

This energy generation rate is negative, as the temperature increases inwards and thus

the α-particle fraction decreases with decreasing radius (the radial velocity vr is negative).

2.3 Numerical Model

We perform one- and two-dimensional, time-dependent hydrodynamic simulations with

FLASH2.5 (Fryxell et al., 2000). This is a second-order Godunov-type adaptive mesh

refinement (AMR) code which implements the piecewise parabolic method (PPM) of

Colella & Woodward (1984). The code allows for source terms in the equations of mo-

mentum and energy conservation, which represent an external gravitational field and

spatially distributed heating and cooling, as well as nuclear burning. In what follows, we

describe the initial conditions for our runs, and our treatment of time dependent aspects.

2.3.1 Initial Conditions

The spherically symmetric flow has a net rate of mass transfer Ṁ = 4πr2ρ|vr| from the

outer boundary to the center. A standing shock is present at r = rs0, and the flow outside

this shock, weakly bound to the protoneutron star, has a vanishing Bernoulli parameter

b ≡ 1

2
v2

r +
γ

(γ − 1)

p

ρ
− GM

r
= 0 (r > rs0), (2.8)

which ensures a vanishing energy flux through the shock. In the above, G is Newton’s

constant. The flow upstream of the shock has a finite pressure p1 and Mach number

M1 = |vr|/cs1 = |vr|(γp1/ρ1)
−1/2, which are related to the upstream density by p1 =

(ρ1/[γM2
1])(Ṁ/[4πρ1r

2
s0])

2. There is no cooling or nuclear dissociation above the shock,

hence the conditions Ṁ = constant, b = 0, and the equation of state completely determine

the initial flow for r > rs0.
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The upstream and downstream flow profiles are connected through the Rankine-

Hugoniot jump conditions that conserve mass, momentum, and energy across the shock.

To account for nuclear dissociation during initialization, the equation of energy conser-

vation (e.g., Landau & Lifshitz 1987) at r = rs0 is modified to read

1

2
v2

1 +
γ

γ − 1

p1

ρ1

=
1

2
v2

2 +
γ

γ − 1

p2

ρ2

+ ε. (2.9)

Here the subscripts 1 and 2 label the upstream and downstream flow variables, and

the expression for the specific internal energy of a polytropic gas has been used, eint =

(p/ρ)/(γ − 1). This yields a compression factor (Thompson, 2000)

κ ≡ ρ2

ρ1

= (γ + 1)

[
(
γ +M−2

1

)−
√

(
1−M−2

1

)2
+ (γ2 − 1)

2ε

v2
1

]−1

, (2.10)

which reduces to κ → (γ + 1)/(γ − 1) for M1 → ∞ and ε = 0. Increasing ε increases

the compression factor and decreases the post-shock Mach number. For the models

that include NSE abundances, the dissociation energy at the shock is obtained from

equation (2.14) using XO = 1 and Xα = 0 upstream of the shock:

ε(t = 0) = εO + (1−Xeq
α [ρ2, p2]) εα. (2.11)

Figure 2.1 shows how ε(t = 0) and Xeq
α depend on the shock radius rs0, for upstream flows

composed2 of pure 16O and 56Fe, and for different values of Ṁ . The dissociation energy

is approximately constant inside ∼ 75 km, where the downstream flow is composed of

free nucleons, but decreases at greater distances, remaining ∼ 40% of the gravitational

binding energy at the shock. The mass fraction of α-particles reaches 50% at r = 150−175

km, with a weak dependence on Ṁ .

The initial flow downstream of the shock is obtained by solving the time-independent

continuity, Euler, and energy equations in spherical symmetry, including the energy

source terms described in §2.2.2. The details of this can be found in Appendix B.

2In the case where the upstream flow is pure 56Fe, we replace εO in eq. (2.11) with εFe = QFe/mFe '
0.093M−1

1.3 (r/150 km) v2
ff0(r), and set the electron fraction to Ye = 26/56 in the NSE calculation behind

the shock.
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Figure 2.1: Equilibrium mass fraction of α-particles Xeq
α , and ratio of initial dissocia-

tion energy ε(t = 0) [eq. 2.11] to v2
ff0 behind a spherical shock positioned at radius rs0.

Curves of different shadings correspond to different mass accretion rates. The Rankine-

Hugoniot shock jump conditions and dissociation energy are calculated self-consistently,

as described in Appendix B. Square brackets refer to the upstream composition of the

accretion flow, which for simplicity is taken to be pure 56Fe or 16O. The Mach number

upstream of the shock is M1 = 5, and the central mass is M = 1.3M¯.
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In the absence of heating, the steady-state that is obtained is similar in structure

to that calculated by Houck & Chevalier (1992) for hyper-Eddington accretion onto a

neutron star. For our choice of cooling exponents, and for fixed r∗/rs0 and γ, the main

effects of increasing ε are an increase in the compression factor κ, a smaller postshock

Mach number, and a steepening of the density profile (see Fig. 2.2). In going from ε = 0

to ε = 0.25v2
ff0, the normalization of the cooling function is decreased by a factor of 127

(keeping r∗/rs0 and γ = 4/3 fixed).

The introduction of heating causes a change in the structure of the initial flow config-

uration. The radius rs of the shock in the time-independent solution to the flow equations

increases with heating rate; that is, rs ≥ rs0. For our explosion calculations, we choose six

sequences of models, each with a range of heating parameters H ≥ 0, and each evolved

both in spherical (1D) and axial (2D) symmetry. Their parameters are summarized in

Table 2.2. In each sequence, the normalization of the cooling function is chosen so that

r∗/rs = 0.4 at zero heating. Three sequences have a constant dissociation energy, which

take the values ε/v2
ff0 = {0.1, 0.15, 0.2}. The other three sequences assume NSE below the

shock, and have shock radii rs0 = {50, 75, 125} km at zero heating. This means that the

physical value of the cooling radius also takes on different values, namely {20, 30, 50} km.

In effect, our models are probing different sizes for the neutrinosphere, and different times

following the collapse. The other parameters in the NSE models are M = 1.3M¯ and

Ṁ = 0.3M¯ s−1.

For each sequence, Table 2.2 samples some properties of a few models: one with zero

heating, another with H close to the critical value for an explosion, and a third with the

largest heating parameter that will allow a steady solution. Note that the shock starts

out at ∼ 1.3 rs0 in the time-independent, spherical flow solution, and quickly saturates at

∼ (1.8−2)rs0 in the 2D models with heating just below the threshold for an explosion (see

Figure 5.2). The quantity ε/v2
1 references the dissociation energy to (twice) the kinetic

energy of the upstream flow, and is the key free parameter determining the compression
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Figure 2.2: Sample initial density profiles normalized to the postshock density ρ2 (upper

panel), and normalized radial velocity gradient (lower panel), for dissociation energies in

the range ε/v2
ff0 = [0, 0.25] and in the absence of heating. (Higher curves represent larger

ε.) Increasing the dissociation energy steepens the density profile as well as strengthening

the shock compression. The velocity gradient also becomes stronger just above the cooling

layer (white circles denote the radius of maximum sound speed). In this particular

sequence, the normalization of the cooling function A is smaller by a factor of 127 when

ε = 0.25v2
ff0 than when ε = 0.
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rate κ across the shock (eq. [2.10]).

When examining how the prescription for nuclear dissociation influences the results

of simulations with heating, we will focus on the ε = 0.15v2
ff0 sequence and the NSE

sequence with rs0 = 75 km, which have similar initial density profiles (due to the low

initial α-particle abundance in the NSE model).

The six initial models at zero heating are shown in Fig. 2.3a. Panel (b) shows the

sequence of initial models with rs0 = 75km and a range of heating parameters. The

model with H = 0.007v3
ff0rs0 is close to the threshold for an explosion, while the one with

H = 0.009v3
ff0rs0 is well above threshold. At higher values of H, cooling by α-particle

dissociation (eq. [2.7]) can be significant in a layer below the shock, causing the density

profile to steepen slightly. Fig 2.3c shows how our constant-γ, ideal gas approximation to

the internal energy of the flow compares with the full EOS containing finite-temperature

and partially degenerate electrons (see Appendix B for details). The curves labeled “+α”

include our prescription for heating/cooling by α-particle recombination/dissociation,

and those labeled “−α” do not. We show the sequence with the largest shock radius

(rs0 = 125 km) so that NSE allows some α’s to be present. The neglect of electron

captures below the shock results in an adiabatic index between 4/3 and 5/3 in the zone

where α-particles are absent. This causes the EOS to stiffen, so that the density profile

is well approximated by an ideal gas with γ ' 1.48 at zero heating. Adding in heating

tends to flatten the density profile even more, and with γ = 1.48 it would be much flatter

than is typically seen in a realistic core collapse model. Hence we choose an EOS with

γ = 4/3.

2.3.2 Time Dependent Aspects

FLASH2.5 uses a dimensionally split hydrodynamic solver, with source terms applied

in an operator split way in between hydrodynamic sweeps (Fryxell et al., 2000). Our

computational domain employs spherical polar coordinates, and the grid is uniformly
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Table 2.2: Sample Configurations for Explosion Calculations

ε/v2
ff0 Hv−3

ff rs0
−1 rs/rs0 ε/v2

1 κ χ

0.1 0 1.00 0.10 7.3 0

8.00E-3 1.27 0.13 7.7 4.5

1.48E-2∗ 2.57 0.31 11.0 22

0.15 0 1.00 0.15 8.6 0

7.00E-3 1.29 0.20 9.6 9.0

1.17E-2∗ 2.34 0.41 18.9 40

0.2 0 1.00 0.20 10.1 0

5.50E-3 1.30 0.27 12.5 19

8.38E-3∗ 2.08 0.47 34.9 74

rs0 [km] Hv−3
ff rs0

−1 rs/rs0 ε(t = 0)/v2
1 κ χ Xeq

α (rs)

50 0 1.00 0.11 7.6 0 5.5E-6

8.00E-3 1.29 0.15 8.1 5.5 6.1E-5

1.43E-2∗ 3.01 0.26 8.6 27 0.43

75 0 1.00 0.17 9.0 0 4.3E-4

6.50E-3 1.30 0.22 10.1 11 4.5E-2

1.15E-2∗ 3.61 0.21 6.8 51 0.83

125 0 1.00 0.21 10.7 0 0.26

3.50E-3 1.33 0.21 9.9 22 0.51

7.28E-3∗ 3.99 0.18 6.1 120 0.99

∗ No-steady state heating rate (e.g., Burrows & Goshy 1993).
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Figure 2.3: Sample initial density profiles, which are solutions to the spherically symmet-

ric and time-independent flow equations. Panel (a) shows the zero-heating configurations

for all the sequences shown in Table 2.2. Other parameters are γ = 4/3, M1(rs0) = 5

for all configurations, and Ṁ = 0.3M¯ s−1, M = 1.3M¯ for the NSE models. Panel (b)

shows a sequence with a fixed cooling function and range of heating rates (H is given

in units of rs0v
3
ff 0). The dashed line shows the upstream flow. Panel (c) shows a se-

quence with different equations of state, rs0 = 125 km, and H = 0. The labels “+α” and

“−α” mean with and without α-particles included in the EOS, while “full” means that

the EOS explicitly includes finite-temperature and partially degenerate electrons, black

body photons, and ideal-gas ions. All other parameters are the same as in (a). Only the

γ = 4/3 upstream flow is shown. See Appendix B for further details.
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spaced in both r and θ. Two dimensional calculations make use of the full range of polar

angles, θ = [0, π]. We employ a baseline resolution ∆rbase = rs0/320 and ∆θbase = π/192.

To better resolve the cooling layer, one extra level of mesh refinement is added to all

blocks satisfying r < r∗+0.1(rs0− r∗). To avoid excessively large gradients in this region

and enhanced cooling due to discreteness effects, we adjust the normalization A of the

cooling function to satisfy

∣∣∣
∑

i

(LH, i −LC, i + Lα, i) Vi

∣∣∣ ' 0.995

[
GM

r∗
− ε(t = 0)

]
|Ṁ |, (2.12)

where the sum is taken over the computational cells below the shock at our fixed reso-

lution, Vi is the volume of each computational cell, and the source terms are evaluated

at the inner radial cell face. The numerical coefficient on the right hand side depends on

the radial resolution, and is chosen empirically to prevent runaway cooling due to dis-

creteness effects in time-dependent calculations. This results in an initial Mach number

∼ 10−3 − 10−2 at the inner boundary. The default FLASH2.5 Riemann solver is used,

which we find can support high incident Mach numbers M1 . 102. We have not wit-

nessed the appearance of the odd-even decoupling instability at the shock (Quirk, 1994),

which allows us to avoid using a hybrid Riemann solver. (We find that the hybrid solver

in FLASH2.5 has problems for M1 & 10 in our setup.)

In all simulations reported in this paper, we use a reflecting inner boundary in the

radial direction. The flow at the outer radial boundary (situated at 7 rs0 for explosion

calculations) is given by the upstream steady state solution. The angular boundaries at

θ = 0 and θ = π are also reflecting in 2D simulations. Our choice of a static and reflecting

inner boundary is made for computational simplicity. In a real core collapse, the radius

of the neutrinosphere decreases with time. The effect of such a dynamic inner boundary

on the linear growth of shock perturbations has been examined by Scheck et al. (2008) in

a semi-realistic collapse simulation. They found that it facilitated growth by increasing

the strength of the velocity gradient above the neutrinosphere. In addition, Burrows

et al. (2006) reported evidence for a transient SASI instability in the first 100 ms of their
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full 2D collapse simulations. The analysis of the SASI by Scheck et al. (2008), like ours,

used a reflecting inner boundary, albeit one positioned inside the neutrinosphere. Our

results provide strong evidence that linear growth depends on the structure of the flow

between the shock and the cooling layer, which suggests (but does not prove) that a more

realistic mass distribution below the cooling layer will not have a large impact on the

growth of linear perturbations above the cooling layer. Yamasaki & Yamada (2007) find

that a zero-gradient inner boundary condition (dδvr/dr = 0) has a quantitative but not

a qualitative effect on the form of the linear eigenmodes.

At our baseline resolution, the accretion flow in 2D remains spherically symmetric

for several tens or even hundreds of dynamical times at the shock. To excite specific

oscillatory modes of the shock, we introduce an overdense shell in the flow upstream of

the shock, with an angular dependence given by a Legendre polynomial of a single order

`. In the absence of this perturbation, the flow still experiences a small startup error that

is composed of two spherically symmetric transients: an outgoing sound wave due to the

finite (albeit small) Mach number at the inner reflecting boundary, and an ingoing entropy

wave due to the initial discontinuity at the shock (see, e.g., Leveque 1998). Since these

initial transients do not affect non-spherical modes, we made no attempt to suppress them

by increasing the numerical dissipation (as is done by Blondin et al. 2003 and Blondin

& Mezzacappa 2006), and instead use PPM in its default FLASH2.5 configuration [see

Colella & Woodward (1984); Fryxell et al. (2000) for details]. The spherical transients can

be minimized (but never completely eliminated) by locally increasing the resolution at

the shock, and by simultaneously decreasing the innermost Mach number and increasing

resolution at the inner boundary. To trigger convection below the shock, we introduce

random cell-to-cell velocity perturbations in vr and vθ at t = 0, with an amplitude 1% of

the steady state radial velocity.

For the adopted scaling of our cooling function LC with p and ρ, the ratio of cooling

time to flow time decreases with decreasing entropy. The post-shock fluid then undergoes
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runaway cooling in time-dependent simulations, and the shock collapses within a few

sound crossing times. We have therefore implemented a cutoff in entropy in the net

energy source term due to neutrinos,

Lnet = (LH −LC) exp [−(s/smin)
2], (2.13)

where LH and LC are the heating and cooling functions without cutoff (eq. 2.5 and 2.6),

respectively, s = (γ−1)−1 ln (p/ργ) an entropy function, and smin the value of s at r = r∗

that is obtained in the initial solution using Lnet = (LH −LC). The result is that the

accreted fluid accumulates in the first few computational cells outside r∗, with a minimal

modification in the outer post-shock flow structure.

In models implementing NSE abundances, a specific energy

enuc = −XO(εO + εα)− (Xα −Xeq
α [ρ, p]) εα, (2.14)

is either released to or absorbed from the internal energy of the fluid below the shock

within a single time step (it can be of either sign). Here XO is non-vanishing only for

fluid elements that have just passed across the shock, and we have set Xeq
O = 0. The

quantity (2.14) is introduced as an energy source term in FLASH, and from it one readily

obtains a rate of release of nuclear binding energy per unit mass,

denuc

dt
≡ enuc

∆t
, (2.15)

where ∆t is the simulation time step. For constant dissociation runs, we set Xα = Xeq
α = 0

below the shock at all times and leave the total dissociation energy ε = εO + εα as a

free parameter, so that eq. (2.14) is always a sink term at the shock, enuc = −XOε. We

aim to choose a threshold for “burning” (that is, nuclear dissociation) which maintains

a composition of nearly 100% heavy nuclei upstream of the shock, and 100% α-particles

and nucleons downstream. The composition of the fluid is divided this way in the initial

condition, with all fluid injected at later times through the outer radial boundary being
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entirely heavy nuclei. Details of our implementation of nuclear burning and modifications

to the original FLASH2.5 module are discussed in Appendix C.

An explosion is defined as either i) a collision between the shock and the outer bound-

ary of the simulation volume (r = 7rs0) within 1000tff0 of the start of the simulation; or

ii) in the special case of the 1D constant-ε models, a transient expansion that breaks a

quasi-steady pattern within the same timeframe (see §5.2). Even in the 1D simulations,

very small changes in heating rate can lead to dramatic changes in shock behavior, and

so this definition of explosion is good enough for our purposes.

Potential numerical instabilities result from a combination of a high cooling rate and

a low Mach number in the cooling layer. We find that the time integration is stable

when the cutoff (2.13) is imposed on Lnet, because the cooling time is never smaller

than the Courant time. (FLASH2.5 automatically restricts the timestep so as to satisfy

the Courant-Friedrichs-Levy condition.) Our implementation of nuclear dissociation also

avoids introducing instabilities, since the energy extracted from the flow in one time step

is kept smaller than the internal energy (Appendix C).

The hydrodynamics module in FLASH has undergone extensive testing (Calder et al.,

2002), and so we focus our efforts on verifying our setup and on the interaction of the

different physics modules with the hydrodynamic solver. The most basic and complete

test we can think of is the reproduction of the linear growth rates of the SASI. The results

are given in the next chapter. We have tested the implementation of our NSE model by

verifying that, in the absence of initial perturbations, our steady state initial conditions

remain steady. Spherical transients present in the initial data die out in a few ` = 0

oscillation cycles, and are present even when nuclear burning is omitted.
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2.4 Diagnostic Methods

2.4.1 Procedure for Obtaining SASI Eigenfrequencies from a

Hydrodynamical Simulation

To excite a particular SASI mode in our simulations, we add an overdense shell up-

stream of the shock with the desired angular dependence and a sinusoidal radial profile

(amplitude ∼ 10 %, width ∼ 0.2rs0). This generates an initial shock displacement with

very small amplitude (negligible compared with the spherically symmetric displacement

described in § 2.3.2), followed by a growth of the SASI mode on the advection timescale.

To measure the growth rate ωgrow and oscillation frequency ωosc of a mode associated

with a given Legendre-`, we project the shock surface onto the corresponding Legendre

polynomial, obtaining a time-dependent Legendre coefficient,

a`(t) =
2` + 1

2

∫ π

0

Rs(θ, t) P`(θ) sin θ dθ, (2.16)

where P` is the Legendre polynomial and Rs(θ, t) is the shock surface, defined as the

locus of points with pressure pshock =
√

p1p2. For the strong shock simulations, this has

a numerical value pshock ' 0.01ρ1v
2
ff0.

The time-dependent Legendre coefficient is then fitted with the functional form

a`(t) = c1 + c2 eωgrowt sin (ωosct + c3) + c4t, (2.17)

where ωgrow is the growth rate, ωosc the oscillation frequency, and the ci are constants.

This fitting function works well whenever there is only a single unstable harmonic, usually

the fundamental, for a given ` (see, e.g., lower-left panel in Fig. 4.2 during the first

∼ 100tff0). The fitting is performed with a Levenberg-Marquardt algorithm (Press et al.,

2006).

For the fitting we choose a temporal range that begins when the Legendre coefficient

starts a clean sinusoidal oscillation, and which ends when a`(t) = (rs0− r∗)/10 for ` ≥ 1,
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corresponding to a shock displacement of 10% of the unperturbed value at the poles. Our

temporal sampling interval is tff0/2, about a quarter of the radial sound crossing time

from r∗ to rs0.

To estimate the uncertainty in the fitted eigenfrequencies, we assign a “measurement

error” to a`(t), which we compute as follows. The error in Rs(θ, t) is taken to be one-half

the size of the baseline resolution, ∆rbase/2. The size of the angular cell ∆θbase enters

through the computation of the integral in eq. (2.16) as a discrete sum. Errors adding

up in quadrature then yield

δa` =
2` + 1

4
∆rbase∆θbase

√∑
i

P 2
` (θi) sin2 θi, (2.18)

where the sum is performed over all the angular cells. This result is then used as the

input error in the Levenberg-Marquardt algorithm. The error bars shown in Fig. 3.2 are

the 1-sigma errors that output from the fitting routine, multiplied by 3.

2.4.2 Linear Stability Analysis with Nuclear Dissociation Down-

stream of the Shock

Foglizzo et al. (2007) formulate SASI eigenvalue problem assuming a constant-γ ideal

gas equation of state. Generalizing this formalism to account for a constant dissociation

energy ε is straightforward when thermal energy is removed from the flow only immedi-

ately below the shock. The background flow solution is modified, but the algebraic form

of the perturbation equations is not. We therefore use the differential system given in

eqns. (10)-(13) of Foglizzo et al. (2007), which employs the variables

f = vrδvr +
2csδcs

(γ − 1)
, (2.19)

h =
δ(ρvr)

ρvr

, (2.20)

δS =
1

γ − 1

(
δp

p
− γ

δρ

ρ

)
, (2.21)

δK = r2v · (∇× δω) + `(` + 1)
c2

γ
δS, (2.22)
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where ω = ∇×v. All quantities are projected onto spherical harmonics Y m
` . A complex

eigenvalue ω ≡ ωosc + iωgrow is obtained by enforcing δvr = 0 at r = r∗ + 10−4(rs0 − r∗).

The eigenfrequencies obtained are nearly insensitive to the radius at which this boundary

condition is applied, so long as it lies inside the cooling layer.

A subtlety in the treatment of the boundary conditions at the shock is worth dis-

cussing. When the shock is perturbed to a position rs0 + ∆r and velocity ∆v, the

equation of energy conservation across the discontinuity becomes

1

2
(v1−∆v)2+

c2
s1

γ − 1
=

1

2
(v2 + δvr −∆v)2+

γ

γ − 1

(
p2

ρ2

+
δp2

ρ2

− p2

ρ2

δρ2

ρ2

)
+

∂ε

∂ρ
δρ2+

∂ε

∂p
δp2.

(2.23)

Here, as before, 1 and 2 label the upstream and downstream flows in the frame of the

accretor. When ε = constant, the algebraic form of this equation is unchanged from

the case ε = 0. Although the Bernoulli parameter b of the background flow below

the shock is reduced, the perturbation f = δb does not receive additional terms. The

boundary conditions on f , h, δS, and δK therefore have the same algebraic form as

eqns. (B10)-(B12), (A6) and (B15) of Foglizzo et al. (2007). By contrast, the shock

boundary conditions on the perturbation variables δρ2, δp2 and δvr do acquire additional

terms resulting from the changing compression ratio κ (eq. [2.10]). We have checked that

these additional terms cancel out in the boundary conditions on f , h, δS, and δK.

To account for heating and our entropy cutoff (eq. 2.13) in the linear stability calcu-

lation, one needs to add additional terms to the perturbation to the cooling term in the

energy equation (eq. A7 of Foglizzo et al. 2007),

δ

(
Lnet

ρvr

)
=

{(
LH

ρvr

)
δρ

ρ
−

(
LC

ρvr

)[
β

δρ

ρ
+ α

δc2

c2

]}
e−(s/smin)2

−
(

Lnet

ρv

)[
δρ

ρ
+

δvr

vr

+ 2
s

s2
min

]
. (2.24)

The precise analytic eigenfrequencies are somewhat sensitive smin, so this parameter

needs to be the same in both linear stability and simulation for proper comparison. The

difference between including and excluding the entropy cutoff in the linear stability can
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be seen from Fig. 3.1, where results obtained without entropy cutoff are shown as dashed

lines.

2.4.3 Residency Time

In order to track the residency time of the fluid in the gain region, we assign a scalar

to each spherically symmetric mass shell in the upstream flow. This scalar is passively

advected by FLASH2.5. Through this technique, we are able to assign a “fluid” time to

each element in the domain, corresponding to the time at which the mass shell would cross

the instantaneous angle averaged shock position if advected from the outer boundary at

the upstream velocity:

tF = tOB +

∫ rOB

〈rs(t)〉θ

dr

|vr| . (2.25)

Here tOB is the time at which the fluid enters through the outer radial boundary at

r = rOB, and 〈rs(t)〉θ is the angle averaged shock position. Initially, tOB = 0 and all the

fluid below the shock is set to tF = 0. This prescription works well for statistical studies

(§5.3.2), tracing large scale fluid patches, despite some inevitable turbulent mixing among

neighboring fluid parcels.



Chapter 3

Linear Phase of the SASI

3.1 Overview

In this chapter, we focus on the linear growth of perturbations of the accretion flow be-

low the shock. Previous investigations of the linear Standing Accretion Shock Instability

(SASI) have employed simplified physical models (Blondin & Mezzacappa, 2006; Foglizzo

et al., 2007; Laming, 2007), or made use of semi-realistic simulations (Yamasaki & Ya-

mada, 2007; Ohnishi et al., 2006; Scheck et al., 2008) to measure its rate of growth and

oscillation frequency. The presence of the linear instability in more realistic simulations

is not clear, however, given the highly nonlinear behavior of the system (e.g., Buras et al.

2006b,a; Burrows et al. 2007b). Nevertheless, it is of interest to gain a better under-

standing of the physical mechanism driving an intrinsic fluid instability of the accretion

shock (that is, independent of convective motions), and studying its development from a

laminar accretion flow. A study of the non-linear phase of the instability is deferred to

Chapter 4.

The nature of the linear instability mechanism has been clearly demonstrated in the

WKB regime (Foglizzo et al., 2007): the growth of higher radial overtones is due to the

“advective-acoustic” cycle first described by Foglizzo & Tagger (2000). This cycle involves

45
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a non-spherical deformation of the shock, which creates entropy and vortex waves in the

downstream flow. These perturbations become partly compressive as they are advected

toward the star, thereby creating an outgoing sound wave that interacts with the shock.

There is growth if the secondary shock oscillation is larger in amplitude than the initial

perturbation. The instability is aided if the flow is strongly decelerated somewhere below

the shock. There is no purely acoustic instability.

The linear stability analysis of Foglizzo et al. (2007) found approximate agreement

with the real frequencies and growth rates measured in the axisymmetric hydrodynam-

ical simulations of Blondin & Mezzacappa (2006) – which involve low-order modes of

the shock – and good agreement for the ` = 0 modes in particular. Yamasaki & Ya-

mada (2007) solved the eigenvalue problem in an accretion flow with a realistic equation

of state and strong neutrino heating. They also found that the eigenfrequencies most

closely matched the advective-acoustic cycle. Hydrodynamical simulations show that

the oscillation period scales with the advection time at moderate to large shock radius

(Ohnishi et al., 2006; Scheck et al., 2008).

The mechanism driving fundamental, low order angular modes of the flow has not yet

been conclusively found. These modes happen to be the most unstable ones, having the

greatest influence on the symmetry of the flow. In addition, the effects of a finite rate of

nuclear dissociation at the shock on the instability have not yet been studied in isolation.

The increased density jump and low Mach number of the flow are expected to have an

important effect on the modes of the flow regardless of whether they involve advected or

purely acoustic perturbations.

In what follows, we examine the linear phase of the SASI in three steps. First, we

show detailed agreement between eigenfrequencies measured from our time-dependent

hydrodynamic simulations with those from a solution to the modified linear stability

analysis of Foglizzo et al. (2007) over a moderate parameter range (§3.2). We then

use this verified linear stability calculation to explore the effects of nuclear dissociation,
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incident Mach number, and adiabatic index on the eigenmodes over a wider parameter

range (3.3). We finally use the eigenmode calculation to further probe the mechanism

behind the fundamental modes of the flow, by looking at the dependence of the growth

rate on the characteristic timescales of the flow (3.4). A summary of the most important

results of this chapter follows in §3.5.

3.2 Comparison of Hydrodynamical Simulation and

the Solution to the Eigenvalue Problem

Our method for generating a perturbation and measuring its growth in a hydrodynamical

simulation is described in §2.4.1; and our method for calculating the linear eigenmodes of

the accretion flow is summarized in §2.4.2. The three basic parameters of the flow are the

ratio r∗/rs0 of cooling radius to shock radius, the adiabatic index γ, and the dissociation

energy ε/v2
ff0.

It is possible to make a clean measurement of an individual SASI mode in a hydrody-

namical simulation when the fundamental is the only unstable mode (at a given `). We

have run simulations both in regions of parameter space where this condition is satisfied

– as predicted by linear stability analysis – and where it is not. The presence of unsta-

ble overtones can be gleaned from the time evolution of a particular coefficient in the

Legendre expansion of the shock radius, which deviates from a sinusoid of exponentially

increasing amplitude.

First we reconsider the stability of the zero-energy accretion flow (ε = 0), and spe-

cialize to an adiabatic index γ = 4/3. In the parameter range relevant to core-collapse

supernovae, we find that the most unstable modes are ` = 1 and ` = 2, in agreement with

the work of Blondin & Mezzacappa (2006) and Foglizzo et al. (2007). The eigenvalue

analysis of Foglizzo et al. (2007) correctly predicts the location of critical stability points

of the fundamental and first radial overtone, for ` = 0− 3. We have also solved the dif-
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Figure 3.1: Growth rates ωgrow (upper panels) and oscillation frequencies ωosc (lower

panels) of the SASI, in units of inverse free-fall time at the shock, versus the ratio of

stellar radius to shock radius r∗/rs0. In the left panels, the unperturbed flow has zero

energy flux (ε = 0) and upstream Mach number M1 ' 87. In the right panels, specific

internal energy ε = 0.25v2
ff0 is removed from the flow just below the shock; and M1 = 5.

The lines give the solution to the eigenvalue problem of Foglizzo et al. (2007) for different

spherical harmonics: ` = 1 (red), ` = 2 (green), and ` = 3 (blue), with thick lines

representing the fundamental mode and thin lines the first radial overtone. The dashed

lines show the effect of neglecting the cutoff in the cooling function (eq. [2.13]). (See

§2.4.2 for details.) Symbols show the eigenfrequencies obtained from time-dependent

hydrodynamic simulations: for ` = 1 (down-triangles), ` = 2 (squares), and ` = 3 (up-

triangles). Uncertainties in the fitted parameters are smaller than the symbol size. (See

§2.4.1 for details.)
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ferential system of Houck & Chevalier (1992), finding that not only the critical stability

points but also the growth rates do not agree with what we measure in our simulations

(although results for ` = 0 are identical to those of Foglizzo et al. 2007). In the remain-

der of this subsection, we refer to simulation results for which only the fundamental is

unstable.

The left panels of Fig. 3.1 show growth rates and oscillation frequencies1 for the modes

` = 1, 2, 3, in the case where the flow upstream of the shock has a high Mach number

M1 ≈ 87. There is very good agreement between the calculated eigenfrequencies and

the output of the hydrodynamic simulation: 1 − 3%, 1 − 2%, and 1 − 2% for the real

frequencies of the ` = 1, 2, and 3 modes, respectively, and 2 − 4%, 2− 8%, and 5 − 8%

for the growth rates. Our method for estimating the uncertainty in the measured mode

frequencies is detailed in §2.4.1. The most important systematic errors arise from the

discreteness of the mesh, the discrete summation involved in the Legendre projection,

and the discrete time sampling. The error bars are comparable to or smaller than the

size of the symbols in Fig. 3.1, typically δω tff0 ∼ 5× 10−3.

The agreement between the two methods of calculating the growth rates becomes

worse at larger `. We attribute this to the better sampling of the lower-` modes by the

grid, which results in weaker numerical dissipation. (The effects of numerical dissipation

in PPM typically depend on the ratio of cell width to wavelength: Porter & Woodward

1994.)

When the dissociation energy is increased to ε = 0.25v2
ff0, the agreement between the

two calculational methods is reduced a bit, to 4 − 5% for the oscillation frequencies for

both ` = 1 and ` = 2, and 18 − 30% and 20 − 42% for the growth rates, respectively.2

A more extensive exploration of the influence of finite ε and a reduced upstream Mach

1We have chosen to plot eigenfrequencies in units of the inverse free-fall time tff0 at rs0, since this is
directly related to simulation time when both the stellar mass and the shock radius are held fixed.

2The absolute value of the discrepancy between the two sets of growth rates is similar to that found
for ε = 0, namely (10−3 − 10−2)tff0

−1.
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Figure 3.2: Growth rates (left) and oscillation frequencies (right) as a function of reso-

lution, for the ` = 3 mode in a flow with r∗/rs0 = 0.7 (see panels a,b of Fig. 3.1). The

dashed line in each panel shows the solution to the linear stability problem, and symbols

represent measurements from hydrodynamical simulations at different radial and angular

resolutions. See §2.3.2 for a description of the grid spacing, and §2.4.1 for an explanation

of the error bars. The dotted line shows the best power-law fit to the difference of growth

rate error on resolution: ∆ωgrow ∝ (∆r∆θ)−0.75±0.10.



Chapter 3. Linear Phase of the SASI 51

0.2 0.4 0.6 0.8
r
*
 / r

s0

-0.1

0

0.1

0.2

ω
gr

ow
t ff

0

(a)

0.2 0.4 0.6 0.8
r
*
 / r

s0

0.01

0.1

1

ω
os

ct ff
0

(b)

0.2 0.4 0.6 0.8
r
*
 / r

s0

-0.5

0

0.5

1

ω
gr

ow
 (

r s0
 -

 r
*) 

/ |
v 2|

(c)

0.2 0.4 0.6 0.8
r
*
 / r

s0

0.5

1

1.5

2

2.5

3

3.5

4

ω
os

c (
r s0

-r
*) 

/ |
v 2|

(d)

Figure 3.3: Growth rates (left) and oscillation frequencies (right) of the fundamental ` = 1

(red) and ` = 2 (green) modes as a function of r∗/rs0, for dissociation energies ε/v2
ff0 =

0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.33. Panels (a) and (b) show eigenfrequencies in units

of the inverse free-fall timescale tff0. Lower curves correspond to higher dissociation

energy. Panels (c) and (d) show the same curves, but in units of the inverse of the

time required to traverse the postshock cavity at the postshock speed, (rs0− r∗)/|v2|. In

panel (d), increasing dissociation makes the peak of the curves move to the right. Other

parameters of the sequence are γ = 4/3 and M1 →∞. See text for description.
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Figure 3.4: Radial overtones of the ` = 1 mode as a function of nuclear dissociation

energy ε. The bold line denotes the fundamental mode, and the thin lines the first 11

overtones. Other parameters are r∗/rs0 = 0.4, γ = 4/3, and M1 → ∞. Even though

nuclear dissociation significantly decreases the growth rate, there is always an unstable

overtone.
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Figure 3.5: Growth rates (left) and oscillation frequencies (right) of the fun-

damental ` = 1 mode as a function of incident Mach number, for ε/v2
ff0 =

0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, and 0.2, with decreasing curves for higher dis-

sociation energy. Other parameters are r∗/rs0 = 0.4 and γ = 4/3. Eigenfrequencies are

modified significantly when M1 . 5. The normalization of the cooling function A is

bigger by a factor 4− 5 for M1 = 2 relative to M1 = 100 throughout the range in ε.
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Figure 3.6: Radial overtones of the ` = 1 mode as a function of adiabatic index γ, for a

vanishing energy accretion flow [ε = 0, panels (a) and (c)] and a flow with internal energy

ε = 0.25v2
ff0 removed below the shock [panels (b) and (d)]. The upper row shows results

in units of the inverse free-fall time tff0, whereas the lower row shows eigenfrequencies in

units of the inverse of the time required to traverse the shock cavity at the postshock

velocity, (rs0 − r∗)/|v2|. The bold line denotes the fundamental mode, the thin lines the

first 5 (a,c) and 11 (b,d) overtones. Growth rates generally decrease toward smaller γ,

but there is always an unstable overtone. This qualitative result is independent of the

size of the density jump at the shock. Other parameters are r∗/rs0 = 0.4, ε = 0, and

M1 →∞.
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number on the mode frequencies is made in the next subsection. For now, we emphasize

the good agreement between analytics and numerics.

We have also checked the effects of resolution. Fig. 3.2 shows results for r∗/rs0 = 0.7

and ` = 3 [see panels (a) and (b) of Fig. 3.1]. The growth rates show the expected

behavior, with increasing agreement between the two methods with increasing radial and

angular resolution. We observe a greater sensitivity to the angular width ∆θ of the grid

cells than to their radial width. The real frequencies show a much weaker trend. In sum,

a four-fold decrease in ∆r and ∆θ improves the agreement in the two sets of growth rates

from 7% to 0.8%, while the disagreement in the real frequencies stays nearly constant

within uncertainties at 1.5%. Part of this difference in behavior with resolution may be

due to the fact that lateral sound waves are involved in setting the growth rate (§3.4),

and our baseline grid resolves the radial distances much better than meridional ones,

therefore a small improvement in angular resolution leads to significant improvement in

the growth rate accuracy.

3.3 Dependence of Eigenfrequencies on Nuclear Dis-

sociation and Adiabatic Index

We now turn to the effect of nuclear dissociation on the oscillation frequencies and growth

rates. As is observed in the right panels of Fig. 3.1, there is a substantial reduction in

growth rate when the dissociation energy is raised to ε = 0.25v2
ff (and the Mach number

upstream of the shock is reduced to M1 = 5). One also observes a significant drop in

the real frequency. This effect is further illustrated in Figs. 3.3a,b for the fundamental

` = 1 and ` = 2 modes, as the rate of nuclear dissociation is gradually increased.

Both trends can be partially explained in terms of an increase in the advection time

below the shock. A finite nuclear dissociation energy at the shock increases the compres-
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sion factor κ (eq. 2.10) and decreases the post-shock Mach number

M2 =

[
κ

(
γ +

1

M2
1

)
− γ

]−1/2

. (3.1)

The advection time scales as rs0/v2 ∝ κ, whereas the lateral sound-travel time has a

weak dependence on κ. As a result, the advection time increases relative to the lateral

sound travel time. The growth rate of a mode of fixed ` peaks when the advection time

is comparable to the period of a lateral sound wave within the settling zone between

the shock and the surface of the accretor (see §3.4). This makes it more difficult for

the pressure perturbation at diametrically opposite points on the shock to maintain the

correct relative phase. The peak growth rate therefore moves to higher r∗/rs0 for fixed `,

or to a lower Legendre index for fixed r∗/rs0, as ε is increased. This can be observed in

Figs. 3.1 and 3.3a,c.

The advective-acoustic cycle yields a WKB growth rate scaling as ωgrow ∼ ln |Q|/tQ,

where Q is the efficiency of the cycle and tQ ∼ 2π/ωosc its duration (Foglizzo et al., 2007).

For larger dissociation energies, tQ is dominated by the advection time, and tQ increases

somewhat faster than linearly3 in κ. The oscillation frequencies depend mainly on the

flow time, as can be seen by scaling them to |v2|/(rs0 − r∗) (Fig. 3.3d). On the other

hand, Fig. 3.3c shows that the growth rates decrease with increasing ε even after this

first-order effect is removed.

The growth rate also depends on the coefficients for the conversion of an outgoing

sound wave to an ingoing entropy or vortex wave at the shock; and for the linear excitation

of an outgoing sound wave by the ingoing mode. As is shown in Appendix D of Fernández

& Thompson (2009b), the first coefficient increases with increasing dissociation energy.

In the limit of strong shock compression, it is given by

δρS
2

δρ−2
= −2(γ − 1)(1−M2)

M2(1 + γM2)
∼ γ1/2(γ − 1)κ1/2. (3.2)

3For large values of ε, the density profile steepens relative to ρ ∼ r−3 and thus the velocity decreases
faster than linearly with radius. The advection time (3.3) is then dominated by the innermost part of
the flow (see, e.g., Figure 2.2).
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We therefore conclude that the reduction in growth rate signals a decreasing efficiency

for the conversion of an ingoing entropy-vortex perturbation into a sound wave.

We also observe that the velocity gradient at the base of the settling flow becomes

stronger with increasing shock compression: the gradient scale vr/(dvr/dr) is reduced

by a factor of ∼ 2 as ε is raised from 0 to 0.25v2
ff0. We suspect that this second effect

has a weaker influence on the growth rate, given our observation that that rapid growth

depends on an approximate equality between the radial flow time and the lateral sound

travel time in between the cooling layer and the shock (see §3.4).

The fundamental mode can be stabilized for sufficiently high ε, as is apparent in

Fig. 3.3. Nonetheless an unstable mode can always be found among the higher radial

overtones. Figure 3.4 shows the growth rates of the first 11 overtones of the ` = 1 mode

as a function of ε, for r∗/rs0 = 0.4.

Our ability to find linearly unstable modes stands in contrast to the analysis of Ya-

masaki & Yamada (2007), which employed a single, more realistic equation of state, and

found no unstable modes in the absence of neutrino heating. But the comparison be-

tween both studies is made difficult by the fact that we are keeping the ratio r∗/rs0 fixed,

whereas in the absence of heating Yamasaki & Yamada (2007) obtain a very small shock

radius. It should also be emphasized that our unstable modes undergo a weak non-linear

development: the position of the shock is perturbed only slightly when ε ≥ 0.15 v2
ff0 (see

§4.3). Neutrino heating therefore plays a crucial role in maintaining large-amplitude

oscillations of the shock for realistic values of the dissociation energy ε (§4.4).

A reduction in the upstream Mach number has a measurable effect on the frequency

and growth rate of the SASI (see Fig. 3.5). When M1 > 10, one reaches the asymptotic,

strong-shock regime, and the eigenfrequencies are essentially constant. Lower values of

M1 push up the post-shock velocity and the real frequency of the mode (at fixed value

of r∗/rs0). Growth is substantially reduced for a weak shock when ε is close to zero, but

is only modestly affected when ε is large.
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The dependence of the growth rate (` = 1) on the adiabatic index γ is shown in

Fig. 3.6 for ε = 0 and 0.25v2
ff0, in units of tff0

−1 as well as |v2|/(rs0 − r∗). Reducing γ

has some similar effects to increasing ε at fixed γ: the flow slows down below the shock,

and the density profile steepens4. The growth rate is therefore reduced, and the peak

growth rate is found at higher radial overtones (see §3.4). When the radius of the shock is

allowed to vary, the peak growth rate moves to a higher value of r∗/rs0 as γ is decreased.

3.4 On the linear instability mechanism

Here we provide further insight into the mechanism driving the fastest growing, low-

frequency modes of a spherical shock. We show that growth involves the radial advection

of entropy and vortex perturbations, and the lateral propagation of sound waves in the

settling flow below the shock. This explains the observation by Blondin & Mezzacappa

(2006) that the communication of pressure perturbations by lateral sound waves plays a

role in the SASI, but disagrees with their inference that the mechanism may be purely

acoustic.

To this end, we calculate the growth rate as a function of the size of the settling region

by solving the eigenvalue problem as formulated by Foglizzo et al. (2007) for several

spherical harmonics in a zero-energy accretion flow (ε = 0). The basic configuration of

the flow is the same as described in §2. By changing the ratio of r∗ to rs0, we are able

to change the radial advection time relative to the time for a sound wave to propagate

laterally within the flow.

The upper panel of Fig. 3.7 shows the growth rates of the fundamental (thick lines)

and first radial overtone (thin lines) of the ` = 1− 4 modes, as a function of r∗/rs0. The

lower panel compares the advection time of the flow from the (unperturbed) shock in to

4In near hydrostatic equilibrium and for an adiabatic flow, p/ρ ∝ ργ−1 ∝ r−1, thus ρ ∝ r−1/(γ−1)

and the profile steepens when γ decreases.
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r∗,

tadv =

∫ rs0

r∗

dr

|vr| , (3.3)

with the period of a meridional sound wave of Legendre index `. The acoustic period is

plotted at two different radii: right below the shock,

tmax,` =
2πrs0

`cs,2

, (3.4)

and at the base of the settling flow,

tmin,` =
2πr∗
`cs,∗

≈ tmax,`

(
r∗
rs0

)3/2

. (3.5)

Here cs,2 is the sound speed downstream of the shock, and cs,∗ = cs,2(rs0/r∗)1/2 is a good

approximation to the sound speed at the top of the cooling layer. The self-gravity of the

accreting material is assumed negligible, and most of the post-shock region is essentially

adiabatic for the chosen cooling function. Hence, tmax,` corresponds to the longest possible

period of a lateral sound wave of spherical harmonic ` outside the cooling layer. The

shortest acoustic period (∼ tmin,`) is found at the base of the settling flow.

For any given `, the peak of the growth rate of the fundamental mode is always found

where tmin,` < tadv < tmax,`; the growth rate of the first radial overtone peaks where

tmin,` < tadv/2 < tmax,`. The basic result does not depend on whether one uses the radial

advection timescale, or the sum of the advection time and the radial sound travel time

(which is significantly shorter). Fig. 3.8 focuses on the radial overtones of ` = 1, which

have significant growth at large values of rs0/r∗. The peak of the n-th radial overtone

satisfies tmin,1 < tadv/(n + 1) < tmax,1.

The main conclusion that we draw from Figs. 3.7 and 3.8 is that the radial flow time

controls the overtone of the fastest-growing mode, while the period of the meridional

sound wave controls the angular order. The situation is illustrated in Figure 3.9 for

an n = 0 and ` = 2 mode. This interplay between the two timescales points to the

advective-acoustic cycle as the mechanism driving the instability.



Chapter 3. Linear Phase of the SASI 60

0

0.1

0.2

ω
gr

ow
 t ff

0

0.2 0.4 0.6 0.8
r
*
 / r

s0

0

5

10

15

tim
e 

[t
ff

0]

t
max,1

t
max,2

t
max,3

t
max,4

t
adv

t
min,1

t
min,2

l=3

l=2

l=1

l=4

t
min,3

t
min,4

t
adv

 /2

Figure 3.7: Upper panel: grow rates of linear modes of the shock, versus r∗/rs0 for

various spherical harmonics: ` = 1 (red), ` = 2 (green), ` = 3 (blue) and ` = 4 (orange).

Thick curves denote the fundamental mode; thin curves the first radial overtone. Lower

panel: various timescales in the flow below the shock: advection time tadv from shock to

star; period tmax,` of lateral sound wave just below the shock; and period tmin,` of lateral

sound wave just above the cooling layer. Dotted lines show the intersection between

tadv and tmax,`, and dot-dashed lines the intersection between tadv and tmin,`. Growth

of the fundamental mode is concentrated where tmin,` < tadv < tmax,`, and similarly

tmin,` < tadv/(n + 1) < tmax,` for the nth radial overtone.
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r∗)/(n + 1) is equal to the period of a lateral sound wave of wavelength 2πr/` at a

radius r in between the shock and stellar radius. The Figure illustrates the case of the

fundamental (n = 0) ` = 2 mode.
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The ` = 0 mode deserves special comment. We find that its oscillation period is

nearly twice the duration of the advective acoustic cycle, 2(tadv + ts,up), where ts,up is the

time taken for a sound wave to travel radially from r∗ to rs0. This is demonstrated for a

wide range of shock radii in Fig. 3.10. A purely spherical perturbation of the shock will

excite a downgoing entropy wave. For example, a stationary shock displacement ∆ξ will

generate, for a strong shock with γ = 4/3 and negligible cooling, an entropy perturbation

(Foglizzo et al., 2007)

δS = − ∆ξ

2rs0

(
5− 3γ

γ − 1

)
. (3.6)

The corresponding pressure perturbation below the shock has the opposite sign (Foglizzo

et al., 2007),

δp

p
= − [1 + (γ − 1)M2

2]

(1−M2
2)

δS. (3.7)

When the entropy wave reaches the cooling layer, the sign of the change in the (negative)

cooling rate per unit volume (eq. [2.5]) is the same as the sign of the entropy perturbation

(at constant pressure),

δLC

LC

= −(γ − 1)

γ
(β − α)δS. (3.8)

As a result, a positive pressure perturbation at the shock5 generates an increase in the

cooling rate at the base of the settling flow, and therefore a negative pressure perturbation

that is communicated back to the shock on the radial acoustic time. This secondary

pressure perturbation is in phase with the pressure perturbation at the shock if the

mode period is twice the period of the advective-acoustic cycle. This analysis of the

` = 0 mode helps to explain the importance of lateral acoustic waves in the growth of

non-radial perturbations.

5As measured at its unperturbed position.
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3.5 Summary

In this chapter we have investigated the linear phase of the Standing Accretion Shock

Instability through a combination of time-dependent hydrodynamic simulations and lin-

ear stability analysis. The main results reported here are the following:

1. — The growth rate of the Standing Accretion Shock Instability (SASI) is significantly

reduced when ∼ 20 − 50% of the gravitational binding energy of the flow is absorbed

by nuclear dissociation. A lowering of the adiabatic index of the flow (or, equivalently,

a steepening of the density profile above ρ(r) ∼ r−3) has a similar effect. Introducing

dissociation to the flow causes a strong reduction in growth rates even for relatively large

adiabatic indices (γ = 1.4−1.45). The lower growth rates appear to result from a weaker

coupling between the ingoing entropy-vortex wave and a sound wave that acts back on

the shock. This reduced coupling is caused in part by a lengthening of the radial flow
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time in comparison with the time for a sound wave to propagate laterally below the

shock. Increasing the dissociation energy also pushes the strongest instability to lower `

at fixed r∗/rs0, and to higher n at fixed `.

2. — By solving the eigenvalue problem, we do find some unstable modes for all values

of ε. By contrast, the linear stability analysis of Yamasaki & Yamada (2007) found no

unstable modes for radial overtones ≤ 2 at vanishing neutrino luminosity (but evidence

for very strong growth of n = 3 modes, which we do not find), albeit with small shock

radii since their cooling function was fixed.

3. — The strongest growth of shock perturbations of spherical harmonic ` and radial

overtone n is encountered when the radial flow time across a distance ∼ (r− r∗)/(n + 1)

equals the period 2πr/`cs(r) of a lateral sound wave, at some radius r in between the

cooling layer and the shock. This provides a compelling argument as to why the linear

instability involves a feedback between a radially propagating entropy-vortex perturba-

tion, and a laterally propagating acoustic perturbation.

4. — The period of a spherical (` = 0) mode is nearly twice the radial flow time, that

is, approximately double the period of the fundamental non-radial modes. This is due

to a change in sign between the pressure perturbation at the shock, and the pressure

perturbation that is induced in the cooling layer at the base of the accretion flow by the

advected entropy perturbation.



Chapter 4

Non-Linear Phase of the SASI

4.1 Overview

This chapter addresses the non-linear development of the Standing Accretion Shock In-

stability in axisymmetry. Previous nonlinear studies have employed simplified adiabatic

flows (Blondin et al., 2003; Blondin & Mezzacappa, 2006), included neutrino heating and

a complete equation of state in a semi-realistic way (Ohnishi et al., 2006; Scheck et al.,

2008; Iwakami et al., 2008), or made use of results from full collapse calculations (Buras

et al., 2006b,a; Burrows et al., 2007b; Marek & Janka, 2009). With the exception of

Ohnishi et al. (2006) and Scheck et al. (2008), most studies have addressed the problem

in a descriptive, phenomenological way, focusing on the period of the oscillations, the

relative strength of different modes, and the amount of instantaneous meridional kinetic

energy generated. Ohnishi et al. (2006) examined the spherical harmonic spectrum of

the shock during the saturated phase, showing that it follows a power-law and that there

is mode coupling. Scheck et al. (2008) showed that the period of the instability closely

follows the advection time, and explored its interplay with convection. These studies

have, however, made use of a complete equation of state, and in one case employed a

moving inner boundary (Scheck et al., 2008).

66
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Work on the three-dimensional version of the instability has also been performed

(Blondin & Mezzacappa 2007, Blondin & Shaw 2007 Iwakami et al. 2008, Yamasaki &

Foglizzo 2008). At the time of this writing, this work is still in the descriptive stage,

and focuses on the potential development of a spiral mode. Since there are fundamental

differences in two- and three-dimensional hydrodynamics, we refrain from comparing

our results to these studies (see Iwakami et al. 2008 for a comparison of the saturation

amplitudes in 2D and 3D). This will be a subject for future study.

As with the linear phase, no systematic study has been performed to understand

the effects of nuclear dissociation on the saturation amplitude, and thus the energy

budget of the instability. We are also interested in understanding the extent to which the

nonlinear shock oscillations observed during more realistic simulations, where convection

is vigorous, are the consequence of an intrinsic instability of the fluid (i.e., the SASI) or

arise as a consequence of forcing by convection.

In what follows, we present results from our time-dependent numerical experiments.

We begin with a description of the transition from a laminar accretion flow to a turbulent,

quasi-steady state (§4.2). We then explore some time-averaged properties of this state,

such as angle-averaged profiles, saturation amplitudes, and energies (§4.3) when either

dissociation at the shock or the size of the envelope are changed. Finally, we address the

behavior of the SASI as heating is gradually introduced into the flow (§4.4).

4.2 From Linear Instability to Saturation

The oscillation of the shock, and the fluid below it, remains coherent during the initial

linear phase. Consider the ` = 1 SASI mode. The shocked fluid in the expanding pole has

an increased energy density relative to the surrounding fluid. As a result, the expanding

pole is the source of a sound wave that propagates laterally to the other pole. When

the radial advection time is comparable to this lateral sound travel time, this pressure
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enhancement reaches the opposite pole just as the phase of the oscillation has reversed,

thereby reinforcing the outward expansion of the shock. The standing wave observed

by Blondin & Mezzacappa (2006) can be interpreted in this way (instead of the purely

acoustic phenomenon proposed by these authors).

The non-linear development of the SASI, in the absence of nuclear dissociation or

in the presence of neutrino heating, involves relatively large shock deformations that

generate non-radial flows and shock kinks (e.g, Blondin & Mezzacappa 2006; Scheck

et al. 2008). On the other hand, when nuclear dissociation takes a significant fraction of

the accretion kinetic energy and the SASI is not forced by convection, shock oscillations

saturate at a much lower amplitude and shock kinks do not form. Nevertheless, nonlinear

coupling between different modes still takes place and the shock thus acts as a generator

of vorticity.

In the longer term, the axisymmetric flow reaches a quasi-steady state, with a broad

range of oscillation frequencies. One could draw a parallel between this behavior and

that of confined 2D turbulence, which reaches a quasi-steady state in which the vorticity

accumulates on the largest spatial scales, decaying on the very long viscous timescale

(Davidson, 2004).

4.3 Time-Averaged Properties

Since none of our simulated flows explode, we are able to average the properties of the

fluid over a fairly long period of time (T ∼ 102−103 dynamical times at the unperturbed

position of the shock). In a turbulent system that displays a quasi-steady state behavior,

a time average is equivalent to an ensemble average (e.g. Davidson 2004). The mean and

r.m.s. fluctuation of a quantity f(r, θ, t) are defined in the usual way,

〈f(r, θ)〉 ≡ 1

T

∫ T

0

f(r, θ, t) dt, (4.1)
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and

∆f(r, θ) ≡ (〈f 2〉 − 〈f〉2)1/2
. (4.2)

Fig. 4.1 shows the velocity field and sound speed, averaged over time and angle

θ, in accretion flows with ε = 0 and 0.15v2
ff . At any given moment one can define

minimum and maximum shock radii, which allows the construction of time averages

〈rs,min〉, 〈rs,max〉 and fluctuations ∆rs,min, ∆rs,max. One can distinguish four different

zones in the flow, from the inside out: (1) the cooling layer, extending from the inner

boundary to roughly the point of maximum of 〈cs〉; (2) the adiabatic envelope, which

is bounded above approximately by 〈rs,min〉 − ∆rs,min; (3) the shock oscillation zone,

extending from this radius out to 〈rs,max〉 + ∆rs,max; and (4) the supersonic accretion

flow. It is immediately evident that, as expected from the quasi-steady state behavior,

accretion proceeds almost the same as in the unperturbed case, with 〈vr〉 and 〈vθ〉 closely

following the unperturbed velocity profile. The fluctuations ∆vr and ∆vθ are comparable

in magnitude and much larger than the mean flow, although they remain below 〈cs〉. As

expected, the angle average of 〈vθ〉 vanishes. Notice also that the sound speed in the

mean flow is everywhere lower than in the initial configuration, a point that we explore

below.

A dramatic feature of Fig. 4.1 is the reduction in the amplitude of the shock oscil-

lation as the effect of nuclear dissociation is introduced into the flow. It is important

to understand the extent to which the oscillations seen in core collapse simulations are

the result of an intrinsic fluid instability, as opposed to a coupling of the shock to the

convective motions that are maintained by neutrino heating. To this end, we have run a

series of simulations with ε increasing from 0 to 0.25 v2
ff , and analyzed the change in the

character of the turbulence. Since the growth rate of the SASI is strongly reduced by

nuclear dissociation, we have chosen a ratio of accretion radius to shock radius for which

the growth rate of the fundamental peaks when ε = 0 (namely r∗/rs0 = 0.4, the same

value used for our explosion calculations, see §2.3.1). A fraction 1− 2ε/v2
ff0 of the accre-
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Figure 4.1: Time-averaged profiles of velocity and sound speed in the fully developed,

nonlinear phase of the SASI. Upper panel represents a zero-energy flow (ε = 0), and lower

panel a flow in which internal energy ε = 0.15v2
ff0 is removed below the shock. Notice that

the shock moves over a smaller range of radii in the second case. Spherical and temporal

averages are given by the solid lines, and r.m.s. fluctuations by the dashed lines, for:

radial velocity (blue), radial velocity in the unperturbed flow (lower black); meridional

velocity (red), sound speed (green) and sound speed in the unperturbed flow (upper

black). Vertical lines denote: the inner boundary (left dotted); the inner excursion of the

shock (middle dotted); the outer excursion of the shock (right dotted); the r.m.s. range

of the ` = 0 component of the shock radius (dot-dashed). See the text for definitions of

these quantities. Other parameters are r∗/rs0 = 0.4, γ = 4/3, M1 = 87.
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tion energy at the shock is available for exciting turbulent motions below the shock. This

corresponds to 50%− 100% of the accretion energy for the flows that we are examining.

The results of this study are summarized in Figs. 4.2 and 4.3, and Table 4.1. The first

figure shows the amplitude of the ` = 0, 1 Legendre coefficients a0,1 of the shock radius,

as a function of time, for a few runs. Their amplitude drops dramatically as ε increases

above 0.15 v2
ff . Some configurations display significant intermittency in the oscillations,

as exemplified by the case ε = 0.1 v2
ff0.

The following figure shows the time-average 〈a0,1〉 and r.m.s. ∆a0,1 of the Legendre

coefficients (〈a1〉 ≈ 0). These quantities have been normalized to the time-average of the

steady shock position for a 1D run with the same parameters. This procedure allows us to

remove a small offset from rs0 in 〈a0〉 that is caused by the finite initial velocity at the inner

boundary of the simulations, as can be seen in the upper panels of Fig. 4.2. The ` = 0

mode, being stable, settles to a steady value within a few oscillation cycles. For the lower

values of ε, a modest monopole shift in the shock radius remains in 2D, as compared with

1D, but this becomes insignificant for ε ≥ 0.15v2
ff . The time-averaged ` = 1 coefficient

nearly vanishes when half of the accretion energy is removed by dissociation (ε = 0.25 v2
ff).

In a real core collapse, the protoneutron star contracts by more than a factor of two

in radius while the shock is still stalled. We have therefore run a series of simulations

with different r∗/rs0, to check whether the envelope size has a significant influence on the

properties of the saturated state. Figure 4.4 shows the ` = 0, 1 Legendre coefficients for

these runs, which have vanishing dissociation energy. As the envelope size increases by a

factor of two, the fractional ` = 0 expansion of the shock nearly doubles, increasing from

1.15〈rs〉1D to 1.29〈rs〉1D, where 〈rs〉1D is the steady shock position in 1D. On the other

hand, the rms amplitude of the ` = 1 oscillations only increases by ∼ 20%.

The partitioning of the energy of the fluid below the shock into different components

is explored in the lower panels of Figs. 4.3 and 4.4. Since our 1D runs do not display

any growing mode, and settle into a well-defined steady state configuration, we use them
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Figure 4.3: Time-averaged properties of the shocked flow. Horizontal axis labels the

fraction of the gravitational energy that is available for exciting oscillations of the shock.

Upper panel: r.m.s. fluctuation of the ` = 0 and ` = 1 components of the shock radius,

with points denoting mean values. Radius has been scaled to the equilibrium shock

radius in the 1D solution (which is stable). Middle panel: various components of the

energy of the 2D flow below the shock, averaged over time, relative to the 1D flow. Black

symbols denote internal energy and red symbols denote ratio of internal to gravitational

energy. Error bars represent the r.m.s. fluctuation. Lower panel: time average of the

fluid kinetic energy below the shock, relative to the internal energy (red symbols) and

gravitational energy (black symbols). Notice the dramatic drop in these ratios with

increasing dissociation energy. The system expands mainly as a result of the growth of

turbulent kinetic energy, with a smaller net change in internal energy.
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to calculate reference values of the kinetic, internal, and gravitational potential energies.

These quantities are denoted by Ekin,1D, Eint,1D, and Egrav,1D, respectively, with the spatial

integral being carried out between the radius at which cs peaks and 〈rs〉1D. The analogous

quantities 〈Ekin,2D〉, 〈Eint,2D〉, and 〈Egrav,2D〉 are obtained by integrating over volume

and averaging over time1. Table 4.1 displays the time averaged energies and their rms

fluctuations for both sequences of runs. By increasing ε and thus the shock compression

factor κ, the mass in the adiabatic layer increases and so does the gravitational binding

energy. The internal energy also increases with increasing dissociation energy, because

approximate hydrostatic equilibrium needs to be maintained.

Table 4.1: Time-Averaged Energya of Flow below Shock (2D)

r∗/rs0 ε/v2
ff0 |〈Egrv〉| 〈Eint〉 〈Ekin,r〉 〈Ekin,θ〉

0.4 0 62± 4 40± 3 1.8± 0.6 1.7± 0.5

0.05 74± 3 45± 2 1.6± 0.7 1.7± 0.6

0.1 95± 3 55± 2 1.4± 0.7 1.4± 0.7

0.15 129.1± 0.9 74± 1 0.4± 0.2 0.4± 0.2

0.2 200.0± 0.7 107.6± 0.6 0.2± 0.1 0.1± 0.1

0.25 320.3± 0.7 159.6± 0.3 0.21± 0.02 0.13± 0.03

0.5 0 39± 3 26± 2 1.2± 0.5 1.1± 0.4

0.375 0 70± 6 46± 4 1.8± 0.7 1.6± 0.5

0.25 0 123± 7 80± 4 3.1± 1.0 2.5± 0.7

a Energies are measured in units of ρ1v
2
ff0r

3
s0 ≈ 3.4× 1048Ṁ0.3M

1/2
1.3 (rs0/150km)1/2 erg.

Error bars denote the r.m.s. fluctuation.

The internal energy measured in the 2D simulations generally overlaps that in the

1D flow, with some increase for ε = 0 and ε = 0.2v2
ff0. Its ratio to the gravitational

1The integration over volume is performed from the radius at which the angle and time average of cs

peaks to the instantaneous shock surface.
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energy, however, drops by about 10% relative to the 1D flow for ε = 0 − 0.2v2
ff0, which

is compensated by the increase in kinetic energy (see also Table 4.1). So our results

point to a scenario in which the post-shock envelope expands as a result of the onset

of turbulence, keeping its internal energy nearly constant. The fraction of the accretion

energy that is converted to turbulent kinetic energy decreases with increasing ε, from

∼ 10% of the internal energy for ε = 0 to about 0.1% for ε = 0.2v2
ff0. From Table 4.1

one can see that the total turbulent kinetic energy is very close to the fluctuation in

the internal energy. As regards the dependence on r∗/rs0, we note that the fraction of

the internal energy going to turbulence decreases with increasing envelope size, but the

absolute value of the turbulent kinetic energy more than doubles.

4.4 Convection and the SASI

Overturns of the fluid below the shock can be triggered in two distinct ways: through

the development of Schwarzschild convection in the presence of a strong negative entropy

gradient, or via the non-linear development of the SASI (§4.3). We now show that the

amplitude of the dipolar mode that is excited in the shock is strongly tied to the level

of neutrino heating, and so depends on a balance between non-linear excitation and

damping mechanisms. To a certain extent, this distinction is of secondary importance,

in the sense that memory of the linear phase of the instability is lost once the inflow

of fresh material below the shock bifurcates from older shocked fluid. Nonetheless, the

origin of the convective motions does have implications for the stability of ` = 1 and 2

modes in 3D simulations: one expects that large scale oscillations will change shape and

direction more rapidly if they are triggered primarily by neutrino heating.

We can ask whether a heating parameter H that yields an explosion will also form an

unstable entropy gradient below the shock. Convection develops through a competition

between inward advection and neutrino heating. A detailed analysis by Foglizzo et al.
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Figure 4.4: Same as Fig. 4.3, but now varying r∗/rs0 for fixed ε = 0.
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Figure 4.5: The development of a convective instability is strongly limited when the

parameter χ . 3 These panels show snapshots of entropy (normalized to initial postshock

value) in a NSE run (rs0 = 75 km) with two different heating rates. When χ = 2.1,

convective cells of a limited extent are triggered in the layer where the net heating rate is

strongest, but they do not propagate into the upper parts of the gain region. Convection

becomes much more vigorous and widespread when χ = 5.5. Note that both of these

models are non-exploding.
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Figure 4.6: Amplitude (r.m.s.) of ` = 0, 1, 2 modes of the shock in two model sequences

with varying heating parameter H. Stars indicate exploding runs. We show the r.m.s.

fluctuation of the difference between the instantaneous Legendre coefficient a` and a

running average 〈a`〉50t that is computed over a window of width 50tff0 (see text). This

subtracts the secular movement of the shock in runs that are close to or above the

threshold for explosion. Note that the amplitude is measured in absolute units (rs0).
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Figure 4.7: Principal shock Legendre coefficient and the radial median of the angle-

averaged entropy gradient for the ε = 0.15v2
ff0 model and two different heating rates,

corresponding to χ = 1.5 (H = 0.002 rs0 v3
ff 0, blue curves) and χ = 3.9 (H = 0.004 rs0 v3

ff 0,

red curves). Both runs are below the threshold for an explosion, but vigorous convection

is established throughout the gain region in the run with the higher heating rate. Top

(bottom) two panels: seed perturbation is a shell with ` = 1 (` = 2) density profile. A

running average of the entropy gradient (temporal width 20tff0) appears as thick solid

lines.
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(2006) shows that the parameter

χ ≡
∫ ∣∣∣∣

ωBV

vr

∣∣∣∣ dr, (4.3)

must exceed a critical value ' 3 for unstable convective plumes to grow before being

advected downward through the gain region below the shock. Here ωBV is the Brunt-

Väisälä frequency (e.g., Kippenhahn & Weigert 1994),

ω2
BV =

1

γ

(
GM

r2

)(
∂ ln p

∂r
− γ

∂ ln ρ

∂r

)
=

(γ − 1)

γ

(
GM

r2

)
∂S

∂r
. (4.4)

Using our initial flow models, we can translate H into a value for χ, and find (Ta-

ble 2.2) that typically χ ∼ 5− 20 at the threshold for a neutrino-driven explosion. The

implication for convection below the shock is illustrated in Fig. 4.5, which shows two

snapshots for models with χ = 2.1 and 5.5, neither of which explodes. At the lower heat-

ing rate, the time required for convection to develop depends on the strength of the seed

perturbation, whereas at the higher heating rate convective overturns develop rapidly

within the layer of strong neutrino heating and spread throughout the post-shock region

over a few dozen dynamical times. (The figure shows the result in the case where the

seed perturbation is dominated by a small spherical startup error in the initial model.)

A larger growth rate of the SASI does not change this qualitative result, as its growth

requires at least a few oscillations with period comparable to an advection timescale,

thus being implicitly accounted for in the definition of χ. The quantitative difference

would be that, below the critical value, the SASI would grow faster and to larger ampli-

tudes. We conclude that, near the threshold for a neutrino-driven explosion and for our

given set of physical assumptions, convection is driven primarily through the develop-

ment of a strong, negative entropy gradient within the gain region, rather than through

the non-linear development of SASI modes.

In §4.3 we considered the non-linear, saturated state of the SASI in the absence of

neutrino heating, and showed that the amplitude of the shock oscillations drops signifi-

cantly as the dissociation energy ε is increased. We now explore how the r.m.s. amplitude
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of the shock oscillations correlates with the strength of heating. To eliminate the effect

of secular shock motions around or above the threshold for explosion, we first calculate

the running average 〈a`〉50t of the shock Legendre coefficients a` over an interval 50tff0,

and then calculate the r.m.s. fluctuation of â` ≡ a` − 〈a`〉50t over the duration of each

simulation. The result is plotted in Fig. 4.6 as a function of H for two model sequences

(ε = 0.15v2
ff0 and NSE with rs0 = 75 km).

There is a clear trend of increasing ` = 1, 2 mode amplitude with increasing heating

rate. This confirms our previous suggestion that large-amplitude shock oscillations re-

quire strong heating when the dissociation energy behind the shock exceeds ∼ 0.15v2
ff0.

The models with H = 0 reveal a slight exception to the overall trend: the r.m.s. ampli-

tude of the shock oscillations appears larger than it does in models with small but finite

heating rate, because the oscillations are strongly intermittent at H = 0 (see middle pan-

els of Figure 4.3). The shock oscillations grow much stronger just below the threshold for

explosion (exploding runs are marked by stars), above which they seem to saturate. Note

also that their amplitudes do not vary much with the choice of dissociation model. The

r.m.s. amplitudes relative to the running average of a0 at the threshold for explosion are

{5%, 12%, 8%} for the ` = 1, 2, 3 modes in the ε/v2
ff0 = 0.15 sequence, and {6%, 12%, 7%}

in the NSE rs0 = 75 km sequence.

We have performed an additional sequence of runs in which we drop an overdense

shell with a given Legendre index ` through the shock (see §2.3.2). This has the effect of

selectively triggering individual SASI modes. Figures 4.7 and 4.8 display the Legendre

coefficients of the shock alongside the radial median (over the gain region) of the angle-

averaged entropy gradient. We find that the amplitude of the ` = 1 and 2 modes

is strongly tied to the strength of convection. For both types of dissociation models,

convection is quenched by the accretion flow when χ < 3: it grows intermittently in

strength, but never reaches large enough amplitudes to significantly distort the shock

surface. As a consequence, the entropy gradient remains shallow and negative most
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Figure 4.9: Histogram of vorticity vs. Mach number in the gain region, weighted by

mass, at three different instants in the evolution of the run with ε = 0.15v2
ff0, ` = 1 seed

perturbation, and χ = 3.9 (corresponding to the upper two panels in Fig. 4.7). The

distribution broadens once convection is fully developed, but before the dipolar shock

mode shows significant growth. The vertical lines show the vorticity of a convective flow

with period equal to (solid) the mean radial advection time and (dashed) the period of

a lateral sound wave at the midpoint between r∗ and rs.
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of the time, with coherent shock oscillations taking place simultaneously. The shock

oscillations have a low amplitude due to the large dissociation energy.

Convection grows much more rapidly when χ > 3, distorting the shock surface before

the SASI has the chance to execute a few oscillations. In this case, the entropy gradient is

initially more negative, but quickly flattens. Indeed, the ` = 1, 2 amplitudes only become

large in models where neutrino-driven convection is strong enough to flatten the entropy

gradient.

Another way of seeing that convection is the forcing agent behind shock oscillations

when χ > 3 is to analyze the distribution of vorticity in the gain region. Figure 4.9 shows

a histogram of vorticity vs. Mach number at three different instants in the evolution of

the run with ε = 0.15v2
ff0, ` = 1 seed perturbation, and χ = 3.9 (upper two panels in

Figure 4.7). At t = 20tff0, convection is just getting started and the vortical motions are

restricted to Mach numbers . 0.3. However, by t = 35tff0 the Mach number distribution

extends up to M & 0.5 and has almost reached its asymptotic form (t = 60tff0), at the

same time that convection has filled the region below the shock. The dipolar mode of

the shock develops a large amplitude only after this fully developed convective state has

been reached. The convective rolls are a source of acoustic radiation (e.g. Goldreich &

Kumar 1988), which will drive a dipolar oscillation of the shock if the overturn frequency

is comparable to the frequency of the ` = 1 mode, |∇ × v| ∼ 2 × 2π/tadv. This zone is

marked by the vertical solid lines in Fig. 4.9, and indeed encompasses most of the mass.

4.5 Summary

In this chapter we have studied the nonlinear properties of the SASI when a finite rate

of nuclear dissociation is allowed to take place behind the accretion shock, and when

neutrino heating is gradually added into the fluid, driving convective motions. The main

results can be summarized as follows:
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1. — The nonlinear development of the SASI in two dimensions and without heating

is characterized by a quasi-steady state that is reached after the linear modes have sat-

urated. As the dissociation energy is increased, the fluctuations of the shock about its

unperturbed position are greatly reduced in amplitude. We infer that strong neutrino

heating is needed to drive large-amplitude, dipolar oscillations of the shock in a realistic

core collapse environment.

2. — The expansion of the shock that we observe appears to be driven mainly (but

not entirely) by the action of turbulent pressure; we observe a smaller absolute positive

change in the internal energy of the flow below the shock. The turbulent kinetic energy

saturates at . 10% of the internal energy. A large expansion of the shock therefore is

possible only if the flow has nearly vanishing total energy.

3. – The amplitude of the ` = 1 and 2 modes correlates strongly with the value of the

heating parameter, and is coupled to the appearance of vigorous neutrino-driven convec-

tion below the shock. In agreement with the work of Foglizzo et al. (2006) and Scheck

et al. (2008), we find that χ ≈ 3 marks the transition from a strong linear instability in

a nearly laminar flow below the shock, to a volume-filling convective instability. In all of

our simulations, the threshold for explosion lies well within the latter regime. This high-

lights a basic difference between 1D and 2D explosions: the mechanism is fundamentally

non-linear in two dimensions.

4. – Vortical motions with a Mach number ∼ 0.3-0.5 first appear at the onset of con-

vective instability around the radius of maximal neutrino heating, but before the dipolar

mode of the shock reaches its limiting amplitude. These vortices are a source of acoustic

waves, which have a similar period to the large-scale oscillation of the shock. Near the
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threshold for an explosion, the turbulence in the gain region becomes supersonic, as the

existence of widespread secondary shocks attests. These shocks convert turbulent kinetic

energy to internal energy, increasing the effective heating rate.



Chapter 5

Explosion Hydrodynamics in

One and Two Dimensions

5.1 Overview

In this chapter we explore the dynamics of one- and two-dimensional accretion shocks

with neutrino heating, around the threshold for an explosion. We are interested in under-

standing aspects of the phenomenology observed in more complete collapse calculations

which, due to the large number of physical effects involved, are hard to attribute to a

single mechanism. In the process, we introduce a number of new methods for measuring

the physical properties of the accretion flow.

The literature analyzing explosion hydrodynamics in 1D is extensive and dates back

to the very first supernova simulations (see §1.3). The existence of an upper limit to the

neutrino heating rate for a steady accretion flow was first pointed out by Burrows & Goshy

(1993). More recent parametric collapse calculations have shown that the heating rate

required to cause an explosion is generally lower than this upper limit in 2D, and in some

cases also in 1D (Murphy & Burrows, 2008). This and other studies have found that the

behavior of the system around the critical heating rate for explosion involves a series of

87
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transient fluid motions involving global hydrodynamic instabilities (Buras et al., 2006b;

Ohnishi et al., 2006; Scheck et al., 2008). Aside from phenomenological descriptions,

these transients in the system are so far not well understood in terms of basic physical

principles. A linear stability analysis by Thompson (2000) found that large scale shock

expansions are due to a finite amplitude buoyant instability of the postshock flow, but

occurrence of this effect has not yet been probed in time-dependent calculations.

Here we report results of numerical experiments performed with our simplified ac-

cretion shock model. Starting from the setup previously employed to explore shock

oscillations, we gradually add neutrino heating (modelled via eq. 2.6) until an explosion

is uncovered.

The plan of the chapter is as follows. In §5.2 we study the behavior of 1D systems,

including an explanation for overstable oscillations that precede explosion, the onset of

explosion, and the origin of the critical heating rate in spherical symmetry. In §5.3 we

address two-dimensional simulations, focusing on the operation of a heat engine in the

heating region, the residency time of the fluid, and the morphology of explosion in 2D.

5.2 One-Dimensional Simulations

An explosion in spherical symmetry involves the development of an unstable ` = 0 SASI

mode. We showed in §3.4 that, in the absence of neutrino heating, the period of this

mode is essentially twice the post-shock advection time. As heating is introduced into

the flow, we find that this relation is maintained. The ` = 0 mode is damped until the

heating rate is pushed above a critical value, which we now discuss.

It should be emphasized that this critical heating rate is generally lower than that

defined by Burrows & Goshy (1993), which marked the disappearance of a steady, spher-

ically symmetric solution to the flow equations. Large amplitude 1D shock oscillations

have been witnessed near the threshold for explosion in calculations by Ohnishi et al.
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(2006) and Murphy & Burrows (2008). Both calculations employed a realistic EOS, but

like us included neutrino heating as a local source term in the energy equation. Oscil-

lations have also been seen by Buras et al. (2006a) in more elaborate calculations with

Boltzmann neutrino transport.

The nature of the 1D SASI oscillation was discussed in §3.4. The cycle is stable for

γ = 4/3 and r∗/rs0 = 0.4. When heating is added, the density profile flattens. This is

analog to an increase in γ, which increases the linear growth rates and thus pushes the

system towards instability (§3.3). There is a critical heating rate for which the damping

effect of the 1D SASI is neutralized and there is no net growth. We find that, once the

heating rate exceeds this critical value, the system always explodes.

We therefore define the critical heating rate in our 1D simulations to be the minimum

heating rate for growing shock oscillations.1 Figure 5.1 shows linear eigenfrequencies as a

function of heating rate for our 1D initial configurations with constant dissociation. These

values were obtained by solving the differential system of Foglizzo et al. (2007), modified

to account for a constant rate of nuclear dissociation (§2.4.2) as well as incorporating the

heating function in eq. (2.6). The runs marked by stars explode within a time 1000tff0,

and so require a small, but finite, positive growth rate.

In an exploding run, expansions become longer and contractions shorter as the shock

oscillations become nonlinear. In each contraction, the heating from compression adds

to that from neutrinos (which increases with density) and causes an even greater bounce;

the behavior is akin to a ball bouncing from the floor which on each bounce receives

a greater impulse. Eventually the accretion flow is halted during a contraction. This

marks the point of explosion, beyond which the oscillating feedback between the shock

and the cooling layer is broken. Material then tends to pile up in the gain region, is

further heated, and more material reverses direction. The net effect is to push the shock

1We define our critical heating parameter Hcr to be the average of the values in the exploding and
non-exploding runs that are closest to the threshold for explosion, within our fiducial 1000tff0 cutoff.
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Figure 5.1: Linear growth rates (top) and oscillation frequencies (bottom) of 1D mod-

els with constant dissociation energy ε, as a function of heating parameter H around

the threshold for explosion. Stars denote configurations that explode within 1000tff0. In-

creased heating makes the system more unstable because the density profile flattens, akin

to an increase in γ. Dotted lines show the frequency ωosc = 2π/(2tadv). Oscillation fre-

quencies decrease with increasing heating rate because rs moves out relative to r∗, so that

the advection time tadv (eq. [3.3]) increases. Increasing the dissociation energy implies a

higher relative growth rate for an explosion, because the oscillation period increases with

ε, and so few oscillations are possible in our fixed time limit.
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outward.

We find that this onset of explosion is entirely mediated by neutrino and compres-

sional heating, being independent on whether α-particles are allowed to recombine. This

changes as the shock starts running outward; we discuss the details in the next chapter.

5.3 Two-Dimensional Simulations

Extending the flow calculation to two dimensions reveals some subtle patterns of behavior.

The time evolution of the shock is shown in the left panel of Fig. 5.2 for a range of

heating rates near the threshold for explosion. In contrast with the 1D runs, the breakout

of the shock looks similar in models with constant dissociation energy and with NSE

between neutrons, protons, and α-particles below the shock (we elaborate on the effects

of α-particle recombination in the next chapter). Both types of models are subject to

buoyancy-driven instabilities, which allow cold material below the shock to interchange

position with hotter material within the gain region. As a result, the shock is highly

asymmetric at breakout in both cases.

Around the threshold for explosion, all of our runs develop vigorous convective mo-

tions before the SASI has a chance to undergo even a few oscillations. At high heating

rates, we find that the convective instability is driven by the negative entropy gradi-

ent within the layer of neutrino heating. In non-exploding runs, the shock settles to a

quasi-equilibrium state with oscillations taking place over a range of angular (Legendre)

index `, as previously seen by Ohnishi et al. (2006), Scheck et al. (2008), and Murphy &

Burrows (2008). The amplitude of the ` = 1 and 2 modes remains small until the heating

parameter H has begun to exceed about one half the critical value for an explosion.
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Figure 5.2: Left panel: Angle-averaged shock radius (solid lines) and maximum shock

radius (dotted lines) for various 2D models around the threshold for explosion. Upper

panel shows runs with constant dissociation energy ε = 0.15v2
ff0, while lower panels dis-

plays NSE runs with rs0 as labeled. Critical heating rates Hcr are different for each

configuration, and can be found in Figure 6.10. Right panel: Black lines show expansion

timescale of maximum shock radius texp ∼ rs,max/|drs,max/dt|, computed using a polyno-

mial fit for the runs just above the threshold for explosion (corresponding to the grey

solid lines on the right panels). Green and red lines show the average residency time over

the 50% and 10% of the gain region volume with highest tres, respectively (see §5.3.2 for

the definition of this timescale). Shock breakout occurs whenever texp ∼ 〈tres〉vol, except

in the model where recombination heating is dominant (rs0 = 125 km).
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5.3.1 Heat Engine in a Two-Dimensional Explosion

Fresh material that is accreted through an oblique shock has a relatively low entropy, but

once it reaches the base of the gain region it is exposed to an intense flux of electron-type

neutrinos and is heated. A buoyancy force will push some of this heated material upward,

and force an overturn of the fluid below the shock. Material with a longer residency time

may therefore undergo multiple episodes of heating. On this basis, Herant et al. (1992,

1994) suggested that a convective flow would mediate a heat engine below the shock that

would drive a secular increase in the energy of the shocked fluid.

We now investigate whether a heat engine operates in our simulations, and how it

depends on the heating parameter H. We focus on a model with a constant nuclear

dissociation energy, ε = 0.15v2
ff0. In this class of models, the infalling heavy nuclei are

completely broken up below the shock, and no heating by the reassembly of α-particles

is allowed. As a first step, we average the convective flow over windows of width 50 tff 0,

which de-emphasizes short term fluctuations in the averaged velocity field 〈v〉t. Figure 5.3

shows 〈v〉t and 〈b〉t (eq. [2.8]) at four different times in the run with H just above the

threshold for explosion (H = 1.02Hcr). Two prominent convection cells fill the postshock

domain, being separated from each other by a single accretion plume. This configuration

is a direct consequence of the artificial symmetries of the flow, since two-dimensional

turbulence is known to result in the accumulation of vorticity on the largest spatial

scales (e.g., Davidson 2004).

The radius of maximum heating (r ' 0.66rs0) coincides with the lower boundary of

the convective cells, across which material flows horizontally. Heated fluid is lifted by

buoyancy forces and accumulates in the region in between the top of convective cells and

the shock. A strong deformation of the shock allows the plume of fresh material to descend

diagonally between the convective cells. The tilt of this cold downflow intermittently flips

in sign, and the averaged circulation pattern typically has an “∞” shape. The heating of

fluid parcels in the two hemispheres is also intermittent, and sometimes two circulation
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Figure 5.3: Four snapshots of the exploding model with ε = 0.15v2
ff0 and H = 1.02Hcr.

The Bernoulli parameter (color map) and the velocity field (white arrows) are averaged

over intervals of duration 50 tff 0. The thick white contours show the surface with 50%

mass fraction in heavy nuclei (time-averaged). The yellow curve in the lower-left panel

shows the result of integrating a streamline of this time-averaged velocity field, starting

from a point just above the radius of maximum heating. The curve performs an overturn

after ' 45tff0, and takes an extra ' 8tff0 to reach the inner boundary.

flows are established simultaneously, thereby causing a bipolar expansion of the shock.

The accumulation of a bubble of hot material right behind the shock is a consequence

of the balance of the buoyancy force acting within the bubble, and the ram pressure of

the preshock material. The ratio of force densities is (Thompson, 2000)

Fbuoy

Fram

'
(

ρ− ρbubble

ρ

)(
2GM/rs

v2
r

)
∆Ωbubble, (5.1)

where rs is the shock radius, vr is the ambient radial flow speed, ρ is the ambient density,

ρbubble the density of the bubble, and ∆Ωbubble is its angular size. A low-density bubble
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(ρ − ρbubble ∼ ρ) can resist being entrained by the convective flow once it grows to a

size ∆Ωbubble ∼ M2
con Sr, where Mcon is the convective Mach number. On the other

hand, the bubble must attain a much larger angular size ∆Ωbubble ∼ 1 Sr if the buoyancy

force is to overcome the upstream ram (|vr| ∼ vff) and force a significant expansion of

the shock surface. Figure 5.3 shows that the extent of the shock expansion is indeed

correlated with the angular width of the region where hot material accumulates.

We have identified a useful figure of merit which connects a secular increase in the

shock radius to the strength of neutrino heating at the base of the gain region. Figure 5.4

shows the absolute value of the Bernoulli parameter b at the radius of maximum heating

(rH,max ' 0.66rs0) as a function of polar angle θ. In the top panel, the four sets of thin

solid lines correspond to the four snapshots of Fig. 5.3, and the bottom panel shows the

analogous results for a non-exploding run. Overplotted as thick solid lines is the quantity

Θ =
〈LH −LC

ρ

〉
t,θ∗,r=rH,max

rH,max

|〈vθ〉t,θ∗| . (5.2)

This measures the specific energy that is absorbed from neutrinos by the material that

flows laterally along the lower boundary of the convective cells. In eq. (5.2), the angular

average of the heating rate and meridional velocity is restricted to a single convective

cell.2

In non-exploding models, the circulation in the gain region settles to a quasi-steady

state, with no net amplification of the mass in material with positive b. The heat absorbed

at the base of the convective cells is of the same order of the Bernoulli parameter of the

fluid, that is, Θ . |b|. In an exploding model, Θ will often exceed |b| by a factor 2-3. As

is shown in the upper panel of Fig. 5.4, Θ grows with time as the system approaches the

explosion.

2To identify the range of angles comprising the lower boundary of a convective cell (r = rH,max), we
first average 〈vθ〉t over all polar angles, and then define a single cell as a zone where |〈vr〉t| < |〈vθ〉t,θ| and
vθ has the same sign. Once the convective cells have been so identified, the angular average is repeated
within each cell. The quantity |〈vθ〉t,θ∗| appearing in eq. (5.2) represents this more restricted average,
which typically covers ∼ 1 rad in the polar direction (e.g., Fig. 5.3).
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lateral advection Θ (eq. [5.2], thick lines) at the radius of maximum heating rH,max (dotted

lines show the boundaries of convective cells). These quantities are averaged over intervals

of duration 50 tff 0. The upper panel shows the exploding run with ε = 0.15v2
ff0 and

H = 1.02Hcr (the same as in Fig. 5.3), and the lower panel shows the non-exploding run

with ε = 0.15v2
ff0 and H = 0.91Hcr.
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Our observation that the bulk of the neutrino heating takes place within horizontal

flows suggests that the ratio of heating timescale to radial advection time in the gain

layer, usually employed as a measure of closeness to explosions in two-dimensional sim-

ulations (e.g., Thompson et al. 2005; Buras et al. 2006a; Scheck et al. 2008; Murphy &

Burrows 2008), may be a less precise diagnostic of the conditions for explosion in 2D:

the horizontal convective velocity is typically low compared with the downward velocity

of the main accretion plume. We do observe that the main accretion plume becomes

strongly distorted near the threshold for an explosion, so that a significant fraction of the

plume material enters one of the convection cells. This effectively decreases the amount

of material that accretes to the protoneutron star and thus increases the overall advection

timescale across the gain region.

5.3.2 Residency Time

A long residency time of material in the gain region is commonly viewed as a key in-

gredient in a successful neutrino-driven explosion. Here we are interested in probing the

lifetime of the large scale parcels of hot fluid identified in the previous section. To calcu-

late tres, we use the method described in §2.4.3: we first assign a unique “fluid time” tF

(eq. [2.25]) to each infalling radial mass shell in the simulation, which is effectively the

time at which it passes the shock. We then define3 the residency time of the fluid as

tres = t− tF , (5.3)

where t is the present time. A related method (tracer particles) is used by Murphy

& Burrows (2008) to calculate the residency time in collapse simulations with a more

realistic EOS.

3Since tF is defined in terms of the angle-averaged radius of the shock, there is a modest error in tF
due to non-radial deformations of the shock. Given the lack of substantial large-scale mixing between
the single accretion funnel and convective cells, this prescription serves well as a tracer of different fluid
populations.
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As material with positive Bernoulli parameter accumulates below the shock, we indeed

find that its tres grows larger. The shock starts running outward if the energy of this un-

bound material grows on a timescale shorter than the convective time. The right panel of

Figure 5.2 shows the characteristic expansion time of the shock texp ∼ rs,max/|drs,max/dt|
(as measured at its outermost radius), alongside 〈tres〉vol (as measured within the mate-

rial comprising the upper part of the residency time distribution). The final breakout of

the shock seen in the left panel of Fig. 5.2 corresponds to the time when texp ∼ 〈tres〉vol.

The breakout is a bit more gradual in the rs0 = 125 km model with heating just above

threshold for an explosion (H = 1.04Hcr). In this case, the expansion time of the shock

remains somewhat longer than the residency time of material below the shock, which

implies that the breakout depends on the continuing release of nuclear binding energy as

well as on the separation of positive-energy fluid from the accretion flow.

The lengthening of the mean residency time can largely be ascribed to the increased

dynamical time of the expanding shock. What changes most dramatically during break-

out is the ratio of the expansion time to the dynamical time. Note that large changes in

the distribution of tres are concentrated in regions of positive b. In Fig.5.5, we plot the

distribution of b and tres in the ε = 0.15v2
ff0 run that is just above the threshold for an

explosion (see Fig. 5.3). Regions with small or negative residency time represent freshly

injected fluid. The distribution is stratified in b around tres ∼ 40tff0 (which is approxi-

mately an overturn period of a convective cell, see §5.3.1 and Figure 5.3). Material with

more negative b resides on average at a smaller radius. Fluid with a longer residency

time has mostly positive b, corresponding to material transported upwards by convective

cells.
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run with ε = 0.15v2
ff0 (see also Fig. 5.3). The colors label the mass weighted radius, and

we include all material experiencing a net excess of neutrino heating over cooling.
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5.4 Summary

In this chapter we have investigated the dynamics of one- and two-dimensional time

dependent simulations of an accretion shock with neutrino heating around the threshold

for an explosion. Our main results are the following:

1. – The large-amplitude oscillations that are seen in 1D runs near an explosion are the

consequence of the ` = 0 SASI as modified by heating. In contrast with the ` = 1, 2

modes of a laminar accretion flow, the period of these oscillations is close to twice the

post-shock advection time. The critical heating rate for an explosion (assuming constant

mass accretion rate, neutrino luminosity, and inner boundary) corresponds to neutral

stability for the ` = 0 mode.

2. – Non-spherical deformations of the shock are tied to the formation of large-scale

plumes of material with positive energy. Our two-dimensional explosions with a super-

critical heating rate involve a large-scale convective instability that relies on the accu-

mulation of vorticity on the largest spatial scales. Volume-filling convective cells are

apparent in a time-averaged sense. Transient heating events create positive-energy mate-

rial that accumulates in between the convective cells and the shock. A significant fraction

of the heating occurs in horizontal flows at the base of the convective cells, which are fed

by a dominant equatorial accretion plume. If the heating parameter is large enough, this

results in an amplifying cycle and explosion.



Chapter 6

Effects of Alpha-Particle

Recombination on Explosion

Hydrodynamics

6.1 Overview

In this chapter we examine the effect of alpha particle recombination on the dynamics

and critical neutrino heating rate in one- and two-dimensional systems. Even though the

finite-temperature equations of state used in core-collapse calculations include the effect

of nuclear dissociation and recombination in the internal energy of the fluid (e.g., Lattimer

& Swesty 1991), the effect of this energy source on the dynamics of the postshock flow

has received little attention in numerical studies.

Bethe (1993) pointed out that when the shock expands to a radius close to rα (equa-

tion 2.1), its temperature decreases below T ∼ 1 MeV and nucleons recombine into

α-particles. This releases enough energy to unbind the fluid and propel the shock out-

wards (see also Bethe 1996). This effect is enhanced due to the fact that the ram pressure

upstream of the shock decreases with increasing distance from the collapsed core (Bethe,

101
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1997). More recently, Marek & Janka (2009) have found evidence for a neutrino-driven

explosion of a 15M¯ progenitor at late times (∼ 0.6 s), powered in part by the recom-

bination of α-particles, in a 2D simulation. The two-dimensional semi-realistic collapse

calculations of Murphy & Burrows (2008) show a sudden acceleration of the shock in

exploding runs when the shock reaches a radial position ∼ 250 km.

Here we intend to quantify the effect of nuclear energy generation in the shock dy-

namics by comparing models with constant nuclear dissociation, which do not allow

recombination, and the more realistic NSE prescription (see §2.2.1). We focus on the

relative contributions of neutrino heating and α-particle recombination to shock break-

out, their spatial distribution, and the dependence of the critical neutrino heating rate

for explosion on the nuclear energy generation rate.

The chapter is organized as follows: §6.2 addresses one-dimensional simulations, §6.3

the dynamics in 2D, and §6.4 the critical heating rate in both cases.

6.2 One-Dimensional Simulations

The onset of explosion in our model is controlled entirely by neutrino and compressional

heating (§5.2). Here we focus on the dynamics of the flow once the shock has started

moving away from the star. Shock breakout is controlled by the build-up of positive-

energy fluid downstream of the shock, and therefore is sensitive to the density profile.

Heating by neutrinos is concentrated fairly close to the protoneutron star, inside a dis-

tance ∼ (2 − 3)r∗. Heating by α-particle recombination is concentrated at a greater

distance ∼ rα (eq. [2.1]), but still can reach a comparable amplitude.

The dependence of shock breakout on heating rate is displayed in Fig. 6.1 for two ac-

cretion models and several values of H close to Hcr (see Table 2.2). The initial expansion

of the shock during the explosion phase is very similar for models with constant ε and

with NSE in the shocked fluid. However, the time evolution bifurcates near the radius
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rα.

Figure 6.2 shows successive profiles of the shocked flow in the exploding run with

H = 1.09Hcr and rs0 = 75 km. The α-particle fraction approaches unity as the shock

reaches the radius rα. The second panel shows the specific nuclear energy generation rate

[eq. (2.15)] normalized to the adiabatic rate of change of the enthalpy,

wad =
1

ρ

dp

dt
= −c2

s∇ · v. (6.1)

Here cs = (γp/ρ)1/2 is the sound speed. The third panel compares the amplitude and

distribution of neutrino and recombination heating, and the bottom panel plots the radial

velocity in the postshock region.

We can summarize this behavior as follows: during the initial expansion phase, fluid

below the shock continues to move inward, and the dissociation of α-particles removes

energy from the flow (as expected from eq. [2.7]). Some fluid behind the shock begins to

move outward around 300tff0, but nuclear dissociation still causes a net loss of internal

energy. However, the recombination of α-particles sets in above rα, especially in regions

where Xα . 0.5. By the time the shock hits the outer boundary, denuc/dt exceeds one-half

of |wad|.
The dependence of the density contrast κ (eq. [2.10]) on radius also has an influence on

the details of breakout. When the dissociation energy ε is held fixed, κ increases toward

larger radius. This has the effect of creating a dense layer of fluid below the shock when rs

is such that ε ∼ v2
ff/2. In spherical symmetry, the breakout of the shock is then impeded

by the accumulation of a dense layer of material that cannot exchange position with the

lighter material below it. It can happen that the energy in the expanding region is no

longer able to sustain the heavier material above, and the shock collapses, as shown in

Fig. 6.1 for the constant ε run with H = 1.08Hcr. This obstruction is avoided when

statistical equilibrium between neutrons, protons, and α-particles is maintained below

the shock, because ε/v2
1 and κ both decrease gradually as the shock expands to distances

much larger than rs0 (Fig. 2.1). This limit to the shock expansion does not occur in
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Figure 6.1: Shock radius as a function of time for two sequences of 1D simulations. The

upper panel shows runs with constant dissociation energy ε = 0.15v2
ff0, and a range of

heating coefficients H near the critical value Hcr = (0.006625 ± 0.000125)v3
ff 0rs0. The

lower panel shows runs with rs0 = 75 km and an α-particle contribution to the EOS. In

this case, Xeq
α is initially negligible everywhere below the shock (see Table 2.2), but grows

as the shock expands. The horizontal dotted line labels the radius rα at which the nuclear

binding energy Qα of an α-particle equals its gravitational binding energy (eq. 2.1). The

critical heating for this second sequence is lower, Hcr = (0.006125± 0.000125)v3
ff 0rs0.
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Figure 6.2: Radial profiles of various quantities during shock breakout in the NSE model

with H = 1.09Hcr and rs0 = 75 km (Fig. 6.1). Top panel: mass fraction of α-particles.

Second panel: rate of release of specific nuclear binding energy denuc/dt compared with

the (adiabatic) rate of change of enthalpy wad [eq. 6.1]. Third panel: net neutrino heating

rate per unit volume LH −LC (thin curves) and denuc/dt (thick dashed curves), both

normalized to the local value of c2
s = γp/ρ. Bottom panel: radial velocity normalized to

vff0 at radius rs0. Both denuc/dt and wad are smoothed in radius for clarity.
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2D, as this situation would be Rayleigh-Taylor unstable (dense fluid over light fluid is

unstable on the dynamical time tff0).

6.3 Two-Dimensional Simulations

In the previous chapter we discussed how neutrino heating can result in the accumulation

of large scale parcels of hot fluid behind the shock, driving a secular expansion through

buoyancy forces (§5.3.1). Here we focus on the relative contributions of neutrino heating

and α-particle recombination to the subsequent expansion of the shock, as well as their

spatial distribution.

One gains considerable insight into the mechanism driving shock breakout by exam-

ining the distribution of Bernoulli parameter (eq. [2.8]) in the shocked fluid. We first

consider the NSE runs with rs0 = 50 km and 125 km, with the heating parameter H

just above the threshold for an explosion. Two snapshots from each of these runs are

shown in Figs. 6.3 and 6.4. In the first case, the initial equilibrium shock radius is only

∼ rα/4 km, and α-particles are essentially absent below the shock. In the second, the

shock starts at ∼ 2rα/3 and Xα ∼ 0.5 initially in the postshock flow.

Large deformations of the outer shock are generally caused by convective plumes that

carry positive energy. Strong neutrino heating is generally concentrated inside the inner

bound (b < 0) zone. The degree of symmetry of the bound material depends on the

α-particle abundance. In the rs0 = 125 km run, the bound region is spherically stratified

and the material with b > 0 is generally excluded from it. Strong recombination heating

is present both below and above the surface where b ' 0, indicating that it is mainly

responsible for imparting positive energy to the shocked material. The mean shock

radius expands by a factor ∼ 2.5 between the two frames in Fig. 6.4, but the growth in

the volume of positive-energy material is not accompanied by a significant expansion of

the inner bound region, whose outer radius remains fixed at r ' rα. This segregation
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Figure 6.3: Snapshots in the evolution of the NSE run with rs0 = 50 km, well inside

rα, just above the threshold for an explosion. Within each panel, the top figure displays

Bernoulli parameter b; the middle figure the rate of change of nuclear binding energy

per unit mass; and the bottom figure the net neutrino heating rate per unit mass. Left:

α-particles begin to form as the shock approaches rα in the rs0 = 50 km run, but neutrino

heating remains much stronger than recombination heating. Right: the same run just

before the shock hits the outer boundary. When the shock starts off well inside rα,

neutrino heating dominates the initial expansion, and material with b > 0 forms well

inside rα (see §5.3.1).
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Figure 6.4: Same as Figure 6.3, but now showing the NSE run with rs0 = 125 km,

close to rα, just above the threshold for an explosion. Left: the early development of an

asymmetric plume with positive b. Right: the same run just before the shock hits the

outer boundary. In this rs0 = 125 km run, the heating by α-particle recombination is

enhanced with respect to neutrino heating due to the large Xα in the initial stationary

model. Recombination heating straddles the central zone with b < 0, which maintains a

nearly spherical boundary near the radius rα (' 2.0 rs0).
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of bound from unbound material is broken when the shock is more compact initially, as

is seen in the two panels of Fig. 6.3. A single dominant accretion plume is continuously

present, which funnels cold and dense material into the zone of strong neutrino heating.

Alpha-particles are present only well outside the boundary between b < 0 and b > 0.

The relative strength of neutrino heating and recombination heating depends on the

initial radius of the shock, and on the Bernoulli parameter of the postshock material.

Figure 6.5 separates out cooling by α-particle dissociation from heating by recombination

and neutrino radiation during the pre-explosion quasi-steady state (leftmost panels), the

onset of explosion (second panel left to right), and shock breakout (two rightmost panels).

[See Figure 5.2 for comparison.] The colored curves separate out the positive, negative,

and net contributions from nuclear energy generation. The sharp negative spike near

b = 0 represents α-particle dissociation in fresh, cold downflows. The formation of

material with b > 0 is primarily due to α-particle recombination in the rs0 = 125 km run.

As the initial radius of the shock is reduced with respect to rα, neutrino heating makes

a proportionately larger contribution near breakout.

The strength of the boost given to the shock by recombination heating can be gauged

by comparing denuc/dt to the adiabatic rate of change wad of the enthalpy of the flow

(eq. [6.1]). Figure 6.6 shows the result for all three NSE sequences with H just above

Hcr. In all cases, denuc/dt ' wad in various parts of the shocked fluid once the shock

extends beyond a radius ' rα, just as in 1D. Most of the heat input by recombination is

concentrated where Xα ∼ 0− 0.5.

Strong recombination heating quite naturally extends below the zone where α-particles

are present in significant numbers, as is seen in Fig. 6.7. The first and third panels of this

figure depict the pre-explosion steady state of the rs0 = 75 km model with H = 1.02Hcr,

while the second and fourth panels show the last time before the shock hits the outer

boundary. At the latter time, one sees that the strongest recombination heating is con-

centrated in a layer where Xα . 0.5, at the base of the extended α-rich plumes. Just as
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Figure 6.5: Heating rate of material, as distributed with respect to Bernoulli parameter

b. This illustrates the relative importance of neutrino heating and nuclear dissocia-

tion/recombination in hot and cold parts of the flow. We restrict attention to material in

the gain region (defined by LH > LC) in the three 2D NSE runs just above the threshold

for explosion. Four snapshots are shown: the pre-explosion quasi-steady state (leftmost),

onset of explosion (second from left to right), and breakout (third and fourth). Black

curves: net heating rate resulting from neutrino absorption and emission. Red/green

curves: heating/cooling rate by α-particle recombination and dissociation in material

with denuc/dt > 0 and denuc/dt < 0, respectively. Blue curves: net heating/cooling rate

due to changing α-particle abundance. The sharp negative spike near b = 0 represents

α-particle dissociation in fresh, cold downflows. The formation of material with b > 0 is

primarily due to α-particle recombination in the rs0 = 125 km run. As the initial radius

of the shock is reduced with respect to rα, neutrino heating makes a proportionately

larger contribution near breakout.
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Figure 6.6: Ratio of denuc/dt (rate of release of specific nuclear binding energy, eq. [2.15])

to wad (adiabatic rate of change of the enthalpy, eq. [6.1]) for the three NSE models with

H just above Hcr.
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in the 1D simulations (e.g. Fig. 6.2), Xα approaches unity during shock breakout.

Histograms of denuc/dt versus b and Xα are shown in Fig. 6.8. The rapid dissociation of

α-particles in fresh downflows is represented by the long tail toward large negative values

of denuc/dt, showing that nuclear energy generation constitutes a net energy sink of the

system. The α-particle concentration is very stratified, with higher Xα occurring at larger

radius. Most of the mass with positive Bernoulli parameter is located at large radii. It is

also apparent from Fig. 6.8 that material with a longer residency time tends to have lower

Xα, as is expected because it also tends to have a higher temperature. Before the shock

gets close to a radius rα, most of the shocked material has negative Bernoulli parameter

and tres . 50tff0, pointing to material lingering for about one convective overturn.

Another interesting feature of Fig. 6.4 is the presence of secondary shocks, which are

triggered once the outer shock becomes significantly non-spherical. Their locations are

marked by discrete jumps in the rate of recombination heating. Secondary shocks are

also prevalent throughout the nonlinear phase in the constant-ε models. Figure 6.9 shows

the normalized pressure gradient (r/p)|∇p| for collapse models of both types, when H is

just above threshold for an explosion (right before the shock hits the outer boundary of

the simulation volume). In both cases, secondary shocks extend over the whole postshock

domain, signaling the dissipation of supersonic turbulence which is stirred by accretion

plumes that penetrate into the gain region.

6.4 Critical Heating Rate for Explosion

An explosion occurs when the heating parameter H is raised above a critical value1 Hcr.

We now explore how Hcr depends on the details of the EOS and the initial radius of the

shock. One can express H simply in terms of the ratio of the heating rate (4πr3LH) to

the accretion luminosity (GMṀ/r), in the idealized (but unrealistic) case where the flow

1Our method for determining Hcr is discussed in §5.2.
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Figure 6.7: Top panels: rate of release of specific nuclear binding energy denuc/dt. Bottom

panels: mass fraction of α-particles Xα. We show two instants in the exploding NSE run

with rs0 = 75 km and H = 1.02Hcr. The shock contour is approximated by the white

line which marks XO = 90%.
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Figure 6.9: Normalized pressure gradient (r/p)|∇p| showing the secondary shock struc-

ture during breakout. The top model is ε = 0.15v2
ff0 and the bottom NSE with

rs0 = 75 km. Both have heating rates just above the threshold for an explosion.
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is composed only of free nucleons and moves hypersonically. Then this ratio depends on

H but not on the accretion rate Ṁ = 4πr2ρ(r)|vff(r)|. The precise value of the reference

radius is unimportant; we choose rs0, the shock radius in the time-independent, spherical

flow solution at H = 0. Then

4πrs0
3LH [ρ1(rs0)]

GMṀ/rs0

∣∣∣∣
Xα=0; M=∞

=
2H

rs0v3
ff 0

. (6.2)

This quantity is ∼ 10−3 − 10−2 in the models we examine, which are below or near the

threshold for explosion.

Note that the cooling in our model is concentrated at the base of the settling flow.

As a result, the width of the gain region (relative to the shock radius) does not change

significantly between different models. The critical heating parameter is therefore only

indirectly related to the amplitude of the cooling function through the structure of the

settling flow below the shock. Our purpose here is to explore how the critical heating rate

depends on the strength of the gravitational binding of the shocked fluid to the collapsed

core, and on the abundance of alpha particles.

Figure 6.10 displays Hcr for all of our model sequences. The abscissa is ε/v2
1, where ε

is the nuclear dissociation energy and v1 is the flow speed upstream of the shock in the

initial configuration (that is, in the time-independent, spherical flow solution). In the

case of the NSE equation of state, this quantity can be translated into an initial value

of the shock radius using Fig. 2.1. (Note that ε/v2
1 has a weak dependence on rs in the

NSE sequence.)

A few interesting features of Fig. 6.10 deserve comment. First, a comparison with

Table 2.2 shows that the critical heating rate for explosion is ∼ 50−70% of the maximum

heating rate for which a steady-state flow solution can be found. The maximal heating

parameter Hsteady for a steady flow corresponds directly to the one first determined by

Burrows & Goshy (1993) using a more realistic EOS. Note also that the values of Hcr in

the 1D and 2D models are much closer to each other than they are to Hsteady. This result

is perhaps not surprising, given that the explosion is not immediate, but is approached
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Figure 6.10: Critical heating parameter Hcr that yields an explosion, for all the model

sequences explored in this paper (Table 2.2). The abscissa is the ratio of ε to v2
1 in the

initial flow configuration (v1 being the radial flow velocity just upstream of the shock).

Error bars show the separation between exploding and non-exploding models, with the

points marking the average.
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through a series of transient fluid motions.

Second, Hcr is lower when NSE between n, p and α is maintained below the shock.

The difference between the NSE models and the constant-ε models is only ∼ 10% in

Hcr when the shock starts out well below rα (eq. [2.1]). In spherical symmetry, this

effect can be ascribed to the slow decline of ε with increasing shock radius: this makes

it easier for the shock to expand through the range of radii where ε/v2
ff0 approaches 1

2
.

An explosion is significantly easier when the fluid below the shock starts out with a

significant population of α particles, as in the models with rs0 = 125 km (note that ε/v2
1

decreases at large radius in the NSE model, see Figure 2.1).

Third, Hcr tends to decrease with increasing ε/v2
1: a slightly lower heating rate per

unit mass is required to explode a flow with a larger density contrast κ across the shock.

Because almost all the gravitating mass is in the collapsed core, the gravitational binding

energy of the gain region is approximately proportional to κ, whereas the net heat ab-

sorbed over the advection time is a stronger function of density, tadv

∫
(LH−LC)d3r ∝ κ2.

(One factor of κ comes from the advection time tadv as given by eq. [3.3], and the other

from the density dependence of LH .) For example, Table 2.2 shows that κ is ∼ 1.6 times

larger for ε/v2
ff0 = 0.2 than for ε/v2

ff0 = 0.1, and that Hcr is smaller by the inverse of the

same factor.

Fourth, the 2D runs all require less heating than their 1D counterparts to explode.

A major reason for this is that all two-dimensional configurations explode along one

or both poles (see Figs. 6.6 and 5.3), so that less material must be lifted through the

gravitational field than in a fully spherical explosion. We have found that the precise

value of the difference between the critical heating rate in the 1D and 2D explosions

depends on the choice of r∗/rs0, and therefore on the normalization C of the cooling

function. The fact that we find a smaller difference than Murphy & Burrows (2008) may

be a consequence of our simpler cooling function and equation of state.

The critical heating rate depends in an interesting way on the starting radius of the
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Figure 6.11: Critical heating parameter Hcr that yields an explosion, for the runs that

include α-particles in the EOS. The abscissa is the ratio of the initial shock radius rs to

rα. Error bars have the same meaning as in Fig. 6.10. The critical heating parameter (a

close analog of Lν) decreases substantially with increasing shock radius. The differences

in Hcr between the 1D and 2D models also decreases.
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shock, in a way that points to the recombination of α-particles as an important last

step in the transition to an explosion. Figure 6.11 shows that Hcr in the NSE models

grows rapidly as the initial shock radius2 rs is pushed inside rα. Here we normalize the

heating parameter at a fixed physical radius, namely rα. Translated into the context of

a realistic core collapse, this means that the critical neutrino luminosity for an explosion

decreases with increasing shock radius. The radius of the stalled shock depends, in turn,

on the EOS above nuclear matter density: Marek & Janka (2009) find that a softer EOS

corresponds to a larger shock radius, mainly due to the higher accretion luminosity onto

the neutronized core. Here we have subsumed this uncertainty in the high-density EOS

into a single free parameter, the ratio rs0/rα. Hydrodynamic instabilities are effective at

driving an explosion to the extent that they push the shock radius close to rα; beyond this

point, the remainder of the work on the flow is done largely by α-particle recombination.

One also notices from Fig. 6.11 that the difference between Hcr in 1D and 2D depends

on the starting radius of the shock. The closer rs0 is to rα, the weaker the dependence

of the critical heating rate on the dimensionality of the flow.

6.5 Summary

In this chapter we have explored the quantitative effect that the energy released by alpha-

particle recombination has on an accretion shock system close to the threshold for an

explosion. We have focused on the nature of shock breakout on one- and two-dimensional

systems, the relative importance of neutrino and recombination heating, their spatial dis-

tribution, and their effect on the critical heating rate for an explosion. Our main results

can be summarized as follows:

1. – The critical heating parameter that yields an explosion depends sensitively on the

2Note that rs is the shock radius in the time-independent flow solution. For a fixed cooling function,
rs is a monotonically increasing function of H, and equals rs0 at H = 0.
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starting position of the shock relative to rα. This means that the critical neutrino lu-

minosity depends sensitively on the stall radius of the shock and, in turn, on the core

structure of the progenitor star and the density profile in the forming neutron star.

Within the framework explored in this paper, we find two extreme types of explosion.

In the first, neutrino heating does most of the work, with a significant final boost from

α-particle recombination. In the second, neutrino heating is generally less important at

promoting material below the shock to positive energies.

2. – During the final stages of an explosion, the heat released by α-particle recombina-

tion is comparable to the work done by adiabatic expansion. This heat is concentrated in

material that has previously been heated by neutrinos. Significantly more energy is lost

through α-particle dissociation in fresh downflows, so that nuclear dissociation remains

on balance an energy sink within the accretion flow.

3. – The critical heating parameter Hcr for an explosion is generally lower in 2D than

in 1D, but the difference becomes smaller as the starting radius of the shock approaches

rα. The precise value of the difference is dependent on the ratio r∗/rs0 and thus on the

cooling efficiency and equation of state.

4. – We have explored essentially one ratio of cooling radius to shock radius, namely

r∗/rs0 = 0.4 at zero heating (corresponding to r∗/rs ∼ 0.2 near the threshold for an

explosion). The growth of the ` = 1 SASI mode is strongest for this particular aspect

ratio when ε = 0 (see Figure 12 of Paper I). As dissociation is introduced into the flow,

we found that the peak growth rate moves to larger values of r∗/rs0. On the other hand,

detailed collapse calculations indicate ratios of neutrinosphere radius to shock radius that

are even smaller than ∼ 0.2 following ∼ 100 ms after collapse (e.g. Marek & Janka 2009).

We conclude that the l = 1 SASI mode is not being artificially suppressed by our choice
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of initial shock size.



Chapter 7

Conclusions

In this thesis, we have investigated the stability and dynamics of a spherical accretion

shock in the context of core-collapse supernovae. We have done so by constructing a

simplified model of the system that incorporates the relevant physical processes in steps

of increasing complexity. Our main goal has been to understand nonlinear phenomena

involving multidimensional hydrodynamic instabilities from a fundamental point of view.

We have focused on the intrinsic stability of the accretion flow, in the absence of

neutrino-driven convection, when nuclear dissociation is allowed to take place below the

shock. We then added neutrino heating gradually, and studied the competition between

the overstable mode and convective motions driven by a negative entropy gradient in the

region where heating dominates cooling. Later, we increased the heating rate until an

explosion was uncovered, and studied the dynamics in 1D and 2D, focusing on under-

standing the differences introduced by dimensionality. Finally, we assessed the effects of

α-particle recombination on the dynamics and critical heating rate for explosion.

We found that nuclear dissociation at realistic levels significantly damps the standing

accretion shock instability (SASI), both in its linear phase and when fully saturated,

with similar effects being obtained when reducing the adiabatic index of the flow. We

have also found that the maximum growth rates of these modes are attained when the

123
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radial advection time below the shock is comparable to the lateral sound crossing time,

with the radial cycle determining the mode overtone and the lateral period the angular

degree. Regarding the interplay with convection, we agree with previous investigations in

that there is a critical heating rate below which convection is quenched by the accretion

flow and the SASI dominates. At the threshold for a neutrino-driven explosion, we find

that all of our simulations are above this critical point where convection dominates the

dynamics. Indeed, the maximal amplitude of dipolar shock motions is found when the

oscillation period is comparable to the convective period.

In spite of the simplifications introduced in our model, the calculations already show

many similarities with more elaborate collapse calculations. One-dimensional explosions

are due to a global instability resembling the spherically symmetric version of the SASI,

modified by heating. Strong deformations of the shock in 2D are driven by material with

positive Bernoulli parameter, which generally resides outside the radius rα where the

gravitational binding energy of an α-particle is equal to its nuclear binding energy. The

recombination of α-particles plays a major role in creating this positive-energy material,

but for this to happen the shock must be pushed beyond ∼ 200 km from the neutronized

core.

In this investigation, we have considered only neutrino heating as the impetus for

the initial expansion of the shock, rather than more exotic effects such as rotation or

magnetic fields. We found that the critical neutrino luminosity for an explosion is a

steep function of the position of the shock relative to the radius rα. Significant EOS

uncertainties remain at supranuclear densities. A softening or hardening of the EOS

feeds back on the position of the shock for a given pre-collapse stellar model (Marek

& Janka, 2009). Variations in the density profile of the progenitor star will similarly

modify the position of the shock, the concentration of α-particles below it, and therefore

the critical neutrino luminosity for an explosion.

There are at least two reasons why explosions by the mechanism investigated here
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may be more difficult in 3D than in 2D. First, the existence of more degrees of freedom

for the low-order modes of the shock in 3D implies that the amplitude of individual shock

oscillations is lower (see, e.g., the results of Iwakami et al. 2008). As a result, it is more

difficult for the shock to extend out to the radius where α-particle recombination gives

it the final push. Second, an explosion that is driven by neutrino heating in 2D involves

the accumulation of vorticity on the largest spatial scales, an effect that is special to

two dimensions. A full resolution of these issues is possible only with high-resolution 3D

simulations.

Our model for the shocked material retains one significant simplification: we do not

allow the electron fraction Ye to vary with position below the accretion shock. Here there

are two competing effects: electron captures tend to reduce Ye, whereas absorption of

νe and ν̄e tends to drive high-entropy material below the shock toward Ye ' 0.5. Since

we are interested especially in the dynamics of this high-entropy material, we have set

Ye = 0.5 throughout the flow. The consequences of introducing these additional degrees

of freedom in the equation of state will be examined in future work.

We conclude by emphasizing that significant insight can be gained by performing

carefully constructed numerical experiments in a situation where the real problem is very

complicated. Separating out, and gradually adding different physical ingredients in a

nonlinear context allows the identification of the relative importance of each effect on

the total outcome, when all the pieces are put in place. In this way, the understanding

of natural phenomena in terms of fundamental physical principles is better advanced.



Appendix A

Alpha-Particle Abundance in

Nuclear Statistical Equilibrium

We calculate the α-particle mass fraction Xα in nuclear statistical equilibrium by limiting

the nuclear species to α-particles and free nucleons, and fixing the electron fraction

Ye = 0.5. We tabulate Xα and temperature T as a function of pressure p and density ρ,

and then use these tables to calculate the rate of release of nuclear binding energy by the

method described in §2.2.1. The temperature does not appear explicitly in the FLASH

hydrodynamic solver, and only enters the flow equations indirectly through Xα.

We include the contributions to p from radiation, relativistic and partially degener-

ate electron-positron pairs, and nonrelativistic α-particles and nucleons. When kBT >

mec
2/2, it can be written (Bethe et al., 1980):

p =
1

12

(kBT )4

(~c)3

[
11π2

15
+ 2η2 +

1

π2
η4

]
+

(
1− 3

4
Xα

)
ρ

mu

kBT, (A.1)

where η = µe/(kBT ) the normalized electron chemical potential, also known as degener-

acy parameter, and ~, c, and mu are Planck’s constant, the speed of light, and the atomic

mass unit, respectively. The density and degeneracy parameter are further related by

ρ =
mu

3π2Ye

(
kBT

~c

)3

η(π2 + η2), (A.2)
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where Ye is the electron fraction. The equilibrium fraction of α-particles is given by the

nuclear Saha equation,

X2
nX2

p =
1

2
Xα

[
munQ(T )

ρ

]3

exp

(
− Qα

kBT

)
; nQ(T ) =

(
mukBT

2π~2

)3/2

(A.3)

as supplemented by the conditions of mass and charge conservation,

Xn + Xp + Xα = 1 (A.4)

Xp +
1

2
Xα = Ye. (A.5)

In eqs. (A.3)-(A.5), Xn and Xp are the mass fractions of free neutrons and protons,

respectively, and Qα = 28.3 MeV is the binding energy of an α-particle. Combining

eqs. (A.1) and (A.2) gives η and T in terms of p and ρ. The equilibrium mass fraction Xeq
α

is calculated from ρ and T . For numerical calculations, we tabulate Xeq
α , ∂Xeq

α /∂ ln ρ, and

∂Xeq
α /∂ ln p for a grid of density and pressure. In addition, we tabulate partial derivatives

of T to substitute in eqs. (B.10) and (B.11).

Figure A.1 shows contours of constant Xeq
α and constant entropy for different variables

as a function of density. The entropy per nucleon is obtained by adding the contributions

from the different components (e.g. Bethe et al. 1980),

S = π2Ye
(11π2/15 + η2)

η(π2 + η2)
+

(
1− 3

4
Xα

) [
5

2
+ ln

{
munQ(T )

ρ

}]

−Xp ln Xp −Xn ln Xn − 1

4
Xα ln (Xα/32). (A.6)

The postshock density in the initial configuration is typically ρ2 ∼ 109 g cm−3 with an

entropy ∼ 10−15kB/nucleon. The formation of α-particles that is seen in Fig. 2.1 results

from an expansion of the shock into the part of the thermodynamic plane in Figs. A.1a,b

where ρ2 < 109 g cm−3 and T . 1 MeV. In this regime, the electrons are non-degenerate

and the pressure in photons and pairs begins to exceed the nucleon pressure. The dip in

the adiabatic index seen in Fig. A.1f results from α-particle dissociation/recombination,

which partially compensates the change in internal energy due to compression/expansion.
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Figure A.1: Equation of state of a fluid containing n, p, α, photons, and finite-

temperature and partially degenerate electrons, in nuclear statistical equilibrium. We

solve eqns. (A.1)-(A.5) and tabulate all quantities on a grid of density and pressure.

Panels (a), (b) and (c): pressure, temperature, and degeneracy parameter as a function

of density, for fixed values of Xeq
α and entropy. Dotted line: η = π, the approximate

boundary between degenerate and non-degenerate electrons. The gray area shows the re-

gion of the thermodynamic plane where Xeq
O = 0.5. Panel (d): partial derivatives of Xeq

α

with respect to density (solid lines, positive) and pressure (dashed lines, negative). Panel

(e): ratio of relativistic pressure (photons and pairs) to material pressure (α-particles

and nucleons). Panel (f): adiabatic index γ for different adiabats (dotted line: γ = 4/3).



Appendix B

Time-Independent Flow Equations

Describing Initial Models

We write down the ordinary differential equations that are used to compute the ini-

tial flow, and the density profiles in Fig. 2.3a,b,c. The steady state Euler equations in

spherical symmetry are

1

vr

dvr

dr
+

1

ρ

dρ

dr
+

2

r
= 0 (B.1)

vr
dvr

dr
+

1

ρ

dp

dr
+ g = 0 (B.2)

ρvr
deint

dr
− pvr

ρ

dρ

dr
= LH −LC + Lα, (B.3)

where eint is the internal energy per unit mass, LH , LC , and Lα the source terms

described in eqns. (2.5)-(2.7), and g = GM/r2. Since two variables suffice to describe

the thermodynamic state of a system, we write

deint

dr
≡ Ep

dp

dr
+ Eρ

dρ

dr
. (B.4)

and

Lα ≡ Ap
dp

dr
+ Aρ

dρ

dr
. (B.5)
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The coefficients Ei and Ai encode the dependence on the equation of state. Replacing

eqns. (B.4) and (B.5) in (B.3), and using eqns. (B.1) and (B.2) to eliminate the pressure

derivative, we obtain

dρ

dr
=

(ρvrEp − Ap) (ρg − 2ρv2
r/r) + (LH −LC)

(ρvrEρ − pvr/ρ− Aρ) + v2
r (ρvrEp − Ap)

. (B.6)

The coefficients in eqs. (B.4) and (B.5) work out to

Ep =
1

(γ − 1)ρ
(constant γ) (B.7)

Eρ = − p

(γ − 1)ρ2
(constant γ). (B.8)

for a constant-γ equation of state, eint = p/[(γ−1)ρ]. The pressure (eq. [A.1]) in the NSE

model described in Appendix A can be decomposed into contributions from relativistic

particles and from nucleons, p = prel + pmat, and the specific internal energy is

eint =
1

ρ

(
3prel +

3

2
pmat

)
= 3

p

ρ
− 3

2

(
1− 3

4
Xα

)
kBT

mu

. (B.9)

One therefore finds

Ep =
3

ρ
+

9

8

kBT

mu

∂Xα

∂p
− 3

2

(
1− 3

4
Xα

)
1

mu

∂(kBT )

∂p
, (NSE) (B.10)

Eρ = −3p

ρ2
+

9

8

kBT

mu

∂Xα

∂ρ
− 3

2

(
1− 3

4
Xα

)
1

mu

∂(kBT )

∂ρ
. (NSE) (B.11)

The initial postshock solution is obtained by integrating the above equations from rs

to an inner radius r∗ at which the flow stagnates. We iterate the normalization of the

cooling function in eq. (2.5) so that r∗ = 0.4rs0 in the absence of heating. When adding

heating, the cooling normalization and r∗ are kept fixed, which results in an expansion

of the shock from its initial position to rs > rs0 (Fig. 2.3a,b).

When including α-particles in the EOS, one needs to calculate self-consistently the

value of Xeq
α below the shock, the corresponding dissociation energy ε(t = 0) [eq. (2.11)],

and compression factor κ [eq. (2.10)]. The density upstream of the shock is obtained

from

ρ1(rs) =
Ṁ

4πr2
s |v1(rs)| , (B.12)
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where

v1(rs) = − vff(rs)√
1 + 2M−2

1 (rs)/(γ − 1)
(B.13)

is the upstream velocity at r = rs, while the upstream pressure satisfies

p1(rs) =
ρ1(rs)[v1(rs)]

2

γM2
1(rs)

. (B.14)

Eqns. (B.12) and (B.14) are transformed to physical units for input to the NSE model

by adopting M1(rs0) = 5, Ṁ = 0.3 M¯ s−1, M = 1.3 M¯, and a particular value for the

shock radius rs0 in the absence of heating.



Appendix C

Numerical Treatment of Nuclear

Burning in FLASH2.5

Nuclear dissociation is implemented by means of the fuel+ash nuclear burning module

in FLASH2.5 (Fryxell et al., 2000). To prevent undesired dissociation effects upstream of

the shock, we replace the density and temperature thresholds for burning in the default

version of the code with a threshold in Mach number: burning takes place so long as

the fluid has a Mach number lower than Mburn = 2. This results in a small amount of

incomplete burning in the presence of strong shock deformations, a phenomenon which

is also encountered in the full collapse problem. The critical heating parameter Hcr

depends weakly on Mburn: changes in Mburn cause small changes in the amount of

unburnt material with zero Bernoulli parameter, and only slightly alters the net energy

of the gain region. At the outer boundary of the simulation volume, Mburn is just below

the Mach number of the upstream flow. We have tried expanding the outer boundary to

r = 9rs0 (with a somewhat smaller Mburn) and found that runs that did hit r = 7rs0 still

hit the new outer boundary.

For constant ε models, the threshold in Mach number has the effect of localizing

the nuclear dissociation right behind the shock. In principle all of the kinetic energy of
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accretion can be absorbed by nuclear dissociation downstream of a shock: the Riemann

problem has a limiting solution ρ2 →∞ and v2 → 0, with ρ2v2 = ρ1v1, which for a strong

shock yields ε → v2
1/2. However, the numerical evolution of the problem in discrete

timesteps limits the dissociation energy to be smaller in magnitude than the specific

internal energy of the fluid, otherwise negative pressure results. In particular, since we

want to maintain a steady shock as background flow for shock stability calculations, the

maximum dissociation energy that can be removed in a single timestep at r = rs0 is the

internal energy of the postshock flow after dissociation has been subtracted. That is, if

we allow for the density contrast κ to increase according to eq. (2.10), then we require

ε <
v2

1

γ(γ − 1)M2
2κ

2
, (C.1)

where M2 is the post-shock Mach number, eq. (3.1). The maximum single-step dis-

sociation energy εmax is obtained by equating the two sides of eq. (C.1). One finds

εmax ' 0.213v2
ff for γ = 4/3 and M1 →∞.

In reality, burning of the shocked fluid occurs within a layer of a finite width. To relax

the above limit on ε, we have modified the default fuel+ash submodule of FLASH2.5 to

allow nuclear dissociation to occur in stages: instead of burning all the fuel into ash in

a single step, we only allow the burning of a fraction 1/nburn at a time. The value of

nburn is adjusted empirically so as to avoid numerical problems at large expansions of

the shock, where ε may approach the local value1 of v2
ff/2. In most cases, the burning is

spread across ∼ nburn cells behind the shock. We have checked that the mode frequencies

of the flow are insensitive to the particular choice, as long as the single-step constraint

is met.

In the NSE nuclear dissociation model, burning takes place in a more extended region

behind the shock. In this case, the numerical stability of the flow is maintained using an

1As we discuss in § 4, the shock oscillations saturate at a low amplitude when ε > 0.15v2
ff , which

means that this effect is negligible for the simulations reported in this paper.
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implicit update of the pressure in between hydro sweeps,

pnew = pcur + (γ − 1)ρenuc(ρ, pnew), (C.2)

where enuc is the energy generation per timestep in equation (2.14), and the subscripts

cur and new refer to the current and new value of the pressure, respectively. The density

is kept constant across this step, so as to be consistent with the other source terms.

Equation (C.2) usually converges in 3-4 Newton iterations, adding a negligible overhead

to our execution time. We restrict the timestep of the simulation so that, in addition

to the standard Courant-Friedrichs-Levy condition, it enforces |enuc| < 0.8(p/ρ)/(γ − 1).

To prevent α-particle recombination in the cooling layer (due to the decrease of internal

energy), we adopt a cutoff in density, so that Xα = 0 if ρ > 3× 1010g cm−3.
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