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Throughout the evolution of a planetary system, planets, especially those newly formed, interact by several

means with a variety of the system’s constituents. In particular, the influence of the most massive planets

is expected to govern much of the long-term evolution of the system. In early stages of this evolution, the

gas disk that provided the material from which the planets formed also acts to couple the planets to its own

dynamics. In part I of this thesis, I describe a new hydrodynamic code that I have developed, tuned to study

these interactions. Using this code, I explore the formation of hydrodynamic structures within the disk, such

as jets and eddies, that arise from the influence of the planets on the overall flow. I show that while the

formation of vortices is damped in disks with a large enough viscosity, jet formation is more robust in this

sense and jet structures form even in viscous flows. I furtherpropose that these jets may affect the amount

of material transport that occurs in the flow in a manner similar to that found in the Earth’s atmosphere and

in the weather layers of the Jovian planets. In order to qualify this claim, I perform preliminary numerical

experiments that aim to establish this relationship.

Even after the removal of the gas disk, the gravitational influence of massive planets—or stellar com-

panions in the case of multiple systems—severely limits therange of stable orbits of the system’s lesser

planets. In part II of this thesis, I examine the physical mechanisms responsible for planet ejection from

unstable orbits previously observed in numerical experiments. I determine the instability is due to overlap

of subresonances lying within mean-motion resonances.
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Preface

The first extrasolar planet orbiting a main sequence star, 51Pegasi, was announced byMayor & Queloz

(1995). As of this writing, 248 extrasolar planets in 202 planetary systems have been discovered

(http://vo.obspm.fr/exoplanetes/encyclo/encycl.html). The most striking contrast between these

gas giants and those of our own solar system is that many of them have exceedingly short-period orbits (down

to a day) while others have relatively high eccentricities.Such knowledge has forced the original theories

of solar system formation and evolution, based solely on theplanets within our own solar system, to be

rewritten, and the task of developing new mechanisms and theories that can explain the observed differences

has occupied theorists for the past decade.

Planet formation can be considered the late stage of star formation, which begins millions of years

earlier. According to standard theory, the formation of a solar nebula starts with diffuse material in molecular

clouds. By processes still debated, overdense clumps of gaswithin the molecular cloud form; within such

a clump there may be several centrally concentrated regionsof gas which are infalling. These centrally

concentrated regions will eventually become the protostars of loosely grouped stellar systems. While the

infalling gas is able to dissipate energy, it cannot easily do the same for its angular momentum, especially

at longer distances from the central concentration. A flattened disk of material forms, and infalling material

accretes towards the central protostar through this gas disk. At this stage of formation, the system is still

enshrouded by envelopes of dusty gas, however the existenceof such disks has been observationally inferred

around young low-mass stellar objects from their infrared excesses (Adams et al., 1987). Direct images of

disks have also been obtained at later stages of system development (Bally et al., 2000) after most of the

surrounding gas and dust has been removed. The process by which planets form in this enshrouded early

solar system are currently debated and observations can currently provide no direct evidence for a particular

theory.

Bodenheimer et al.(2000) argues that it is very unlikely that planets with short-period orbits could

have formed where they presently lie. Gravitational fragmentation has been proposed as a mechanism

to form planets within a few dynamical times if the disk gas iscold and dense enough, but reasonable

disk parameters suggest that disks are very stable and not prone to self-gravitating instabilities except at

large radii (>100 AU). Furthermore, the dynamics of such processes tend toproduce only massive objects

(>10MJ). Alternatively (see for example,Lissauer(1993)) one can form planets through the conglomeration

of small dust particles, a process which yields planetesimals, up to a kilometer in size over 0.1−1Myr. Once

1
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this size, the planetesimals’ gravity will cause them to loosely group together, reaching larger sizes up to a

few tens of an Earth mass. By this final stage, the protoplanetis massive enough that runaway gas accretion

occurs, leading to a gas giant with a mass of order 10− 1000M⊕. This so-called core accretion process does

not favor the formation of planets at small distances from the parent star either. The temperature must be

cool enough at the formation location for the dust grains to condense out. For many observed extra-solar

systems this location lies well outside the current location of the protoplanets. Furthermore, even assuming

the formation of planetesimals was possible at small radii,most reasonable distributions of gas density do not

have enough material at the inner annuli of a disk to build up Jupiter-mass planets once runaway accretion

starts. By contrast, the total mass available per logarithmic radius increases further out in the disk.

Based on such arguments, most current scenarios posit formation of protoplanets at 5− 20 AU from the

star, and expect that in a given system these planets will migrate inwards or outwards to different radii. For

this work it is assumed that reasonable mechanisms exist to form protoplanets at these radii without specific

consideration of their formation process.

Regardless of the formation mechanism, one or more giant planets existing within the gas disk will exert

a marked influence on the subsequent evolution of the disk. A planet’s gravity launches spiral density waves

in the disk (Goldreich & Tremaine, 1979), leading inwards and trailing outwards from the planet’s location.

These spiral density waves can interact with the disk and subsequently back on the planet itself. They are

physical manifestations of torques between the planet and the disk which can cause the planet to migrate

(usually inwards towards the central star) or alter its eccentricity. In Part I of this thesis, I study various

effects arising from the planet’s couple to the gas disk using computational fluid dynamics to model such

interactions.

During the late stages of solar system evolution, the final mass, orbital radius, and eccentricity of any

gas giants within a solar system will affect the subsequent stability of any terrestrial planets within the

system, the habitability of such planets, and the potentialdevelopment of life on such planets. Within our

own solar system, Jupiter positively affects the habitability of Earth as it helps to remove potential Earth-

crossing comets. Such an influence need not be positive. In the extreme case where a second star rather

than a gas giant exists within the system, the presence of thecompanion star will severely limit the range

of stable orbital radii for any terrestrial planets. The possibility of a second star is important to consider as

roughly 60% of the stars in our local neighborhood are in binary or higher-multiple systems (Duquennoy &

Mayor, 1991). The planet formation process inside these systems could differ markedly from that around

single stars, due to the dynamical influence of the second star. Nonetheless, thein-situ stability of previously

formed planets is a starting point for examining the stability of planetesimals and gas existing during the

process of formation. A planet orbiting around a star in a binary system will experience forces from both

the parent star and the companion star, and it may be dislodged from its host star as a results of these dual

forces. In part II of this thesis, I examine the physical mechanisms for such planet ejection previously seen

in numerical experiments.
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Chapter 1

Introduction

The presence of a Jupiter-mass protoplanet within a protoplanetary disk has definite influences on the sub-

sequent evolution of the disk and on any additional planets within that system. Such planets grossly affect

the distribution of important fluid quantities such as mass,momentum and vorticity within the disk in a both

non-linear and non-local manner.

Theoretical work on early solar-system evolution has focused on the interactions of a single protoplanet

and a hydrodynamic disk. Authors such asGoldreich & Tremaine(1979, 1980); Ward(1986, 1996, 1997);

Artymowicz (1993) andTanaka et al.(2002) established that tidal interactions between a protoplanet and

the disk generate spiral density waves as a manifestation ofthe torque exchange between the planet and the

disk, and that in the linear regime, the net result of the torque exchange is to migrate the planet inward. This

phenomenon is the leading explanation for the short-periodorbits observed in extrasolar planetary systems.

Scenarios examining the behavior of a single protoplanet have been modelled computationally byKley

(1999); Bryden et al.(1999); Nelson et al.(2000). Their simulations capture the excitation of spiral density

waves which form within the disks over a few dynamical times.The deposition of angular momentum from

the planet near its orbit redistributes the surrounding gasin a manner which tends to clear a gap in the

density profile. There is a competing torque due to the disk viscosity which acts to smooth out any density

perturbations. Then a necessary condition for gap formation is that the planet is massive enough such that

the tidal torque is greater than the viscous torque. To further ensure that the angular momentum transported

by the planet is deposited in the planet’s vicinity further requires that the Hill radius of the planet be on the

order of the disk’s scale height. This second condition enables tidal disturbances caused by the planet to

induce local nonlinear shock dissipation. Simulations (de Val-Borro et al., 2006) indicate that gaps are just

able to form for Neptune-sized planets in disks with viscosity on the low end of what observations suggest

exist in a planetary disks. Disks with correspondingly larger viscosity require a more massive planet in order

to form a gap.

The combined influence of multiple protoplanets in a disk is aless well-explored scenario. The effect that

two protoplanets have on gap-clearing was examined briefly by Kley (2000), where he found that once gaps

have formed around each respective planet, the remaining inter-orbital annulus of gas between the planets

5
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is also cleared within a few hundred orbits. Although the interpretation of Kley’s results was complicated

by relative migration of the planets, a mechanism for the inter-orbital gas clearing was not proposed. In

this thesis (Ch.5), I present results which modify Kley’s conclusions and propose an explanation for these

new findings. These findings and additional studies (Crida & Morbidelli, 2007) suggest the important role

that viscosity plays in the evolution of systems, dependingon its magnitude and the details of its physical

form (and implementation). The results ofCrida et al.(2007) are based on a new code which embeds a one-

dimensional viscous spreading model of the disk, covering amuch larger domain than the two-dimensional

grid surrounding the region of interest. The addition of theviscous solution accounts for the global evolution

of the disk more consistently than otherwise, and the authors report instances where the typical inward

migration of the protoplanets is often slowed and may even beeven reversed.

Several proposed mechanisms exist to account for the observed eccentricities of extrasolar planets. Sim-

ulations including multiple planets (Kley, 2000) produce eccentricity growth when differential migration of

multiple planets within such a system causes the planets to become locked within a strong mean-motion

resonance (such as the 2:1 resonance). In such cases the eccentricity excitation comes from the resonance

dynamics of the two planets. Using this mechanism to explainthe high eccentricities of many extrasolar

planets would require a second planet to have existed in eachsystem and in many cases, to have subse-

quently been ejected.Goldreich & Sari(2003) andOgilvie & Lubow (2003) proposed an alternative mech-

anism for exciting the eccentricity of a protoplanet via interactions with the gas disk, rather than possible

additional planets within the system.Masset & Ogilvie(2004) andD’Angelo et al.(2006) computationally

tested this scenario, and their results support the theoretical conjecture as a possible excitation mechanism.

Nonetheless,Juric & Tremaine(2007) recently advanced the idea that the dynamical relaxation of a system

of multiple planets over 107–108 yrs could instead explain the observed distribution of eccentricities.

Finally, a string of recent work has examined the distributions and production of potential vorticity

within the disk based on theoretical work byPapaloizou & Lin(1989); Sheehan et al.(1999); Lovelace et al.

(1999); Godon & Livio (2000) andLi et al. (2000). Li et al. (2001) andKlahr & Bodenheimer(2003) studied

the generation of Rossby wave instabilities and vortices inbaroclinic disks through forced turbulence.de

Val-Borro et al.(2007) andOu et al.(2007) considered the growth of vortices due to such effects when there

is an embedded protoplanet.

Potential vorticity is an important quantity to consider. In two-dimensional barotropic flows, the quantity

is a conserved tracer of fluid elements. Even when not explicitly conserved, the quantity is a useful diagnos-

tic in balanced flows. Furthermore, its long history of use inatmospheric dynamics, which involves many

analogous structures and models, means that many analyses and results can be borrowed from previous work

in that context.

Despite the qualitative agreement between simulations andtheoretical predictions on some of the points

mentioned above, it is difficult to ascertain to what extent the finer details of simulations should be consid-

ered physically accurate. Many such results are exceedingly sensitive to the specifics of the simulation and

can vary considerably from code to code. The authors,de Val-Borro et al.(2006), initiated a comparison
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between different incarnations of several different hydrodynamics codes on the single-protoplanet problem.

Such a systematic comparison of results is essential to be able to rely on further outcomes from numerical

experiments.

In this thesis I describe the development of a numerical codebased on an algorithm byPen(1998) and

Trac & Pen(2003) previously used on cosmological problems. I modify the code for use in the simulation

of planet-disk interactions and perform a systematic comparison of results depending on the details of the

implementation similar tode Val-Borro et al.(2006). Based on this careful examination, I use the code

to consider the dynamics in the region between two forming protoplanets. I am particularly interested in

the vorticity distribution and the effects that it has on material transport. I confirm several of the results

discussed inOu et al.(2007) andde Val-Borro et al.(2007) and extend the study to disks with multiple

protoplanets. I also discuss analogous finding from atmospheric physics and their possible relation to the

protoplanetary-disk system.

In Chapter2 I provide the necessary theoretical background required tostudy protoplanetary disks.

Details of the numerical code are left for Chapter3, where I also compare its performance on a suite of

standard shock problems. In Chapter4, I detail the results of the code in simulations involving a single

protoplanet embedded in a gas disk. Results from simulations of multiple protoplanets are discussed in

Chapter5, and conclusions are presented in Chapter6.
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Chapter 2

Protoplanet-Disk Dynamics

2.1 Introduction

This chapter provides the necessary theoretical background to study protoplanetary disks. I discuss the

basics of Eulerian fluid dynamics, introducing the necessary equations in Section2.2. In Section2.3I discuss

the standard steady-state models of protoplanetary disk structure, including typical treatments of viscosity

and transport. Section2.4describes the relevant interactions that occur between disks and protoplanets that

can cause planetary migration and eccentricity growth. Finally in Section2.5 I discuss potential vorticity

and its role as a transport barrier for use in Chapter5.

2.2 Eulerian hydrodynamics

2.2.1 Mass and momentum evolution

An Eulerian formulation of the standard fluid dynamics equations may be obtained by first considering con-

servation of mass and momentum within a control volume (seeKundu, 1990, for example). The application

of these conservation laws yields the time evolution of the fluid’s density,ρ, and velocity,u:

∂ρ

∂t
+ u ·∇ρ = −ρ∇· u (2.1)

ρ
∂u
∂t
+ ρu ·∇u = −ρ∇φ + ∇· τ − 2Ω × ρu + ρΩ2R, (2.2)

whereu ·∇ is the advective operator,u ·∇ =
∑

i ui
∂
∂xi

. The termρ∇φ represents any conservative body force

(gravity, say) andτ is the stress tensor for the fluid. The Coriolis acceleration, −2Ω × u, and the centrifugal

acceleration,Ω2R, only appear in frames which are rotating with respect to an inertial frame. The quantity,

Ω, is the rotation rate of the frame and the vector,R, is the cylindrical radius perpendicular to the rotation

direction.

These equations express the evolution of a conserved fluid quantity,q (eitherρ or ui), due to the advection

9
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of that fluid quantity (u ·∇q). The right-hand side term in the density equation represents any divergence

of fluid through the boundary of the control volume, and in themomentum equations the right hand side

includes any existing forces acting on the control volume. These equations are valid for any solid or liquid

which may be treated as a continuum, no matter the relationship between the stress tensor,τ, and the fluid

response.

2.2.2 Stress and strain rate tensors in the Newtonian limit

In order to determine a closed form of the above equations oneneeds to determine a more explicit form for

the stress tensor,τ. To start, one breaks the stress tensor into an isotropic anda nonisotropic component:

τi j = −pδi j + σi j. The isotropic component,pδi j, exists even when the fluid is at rest and represents the

thermodynamic pressure (seeKundu, 1990, §4.10). The nonisotropic term,σi j, results from stresses due to

fluid motion. Assuming a Newtonian fluid whereby the stress tensor is linearly related to the strain rate, one

expects the nonisotropic component of the tensor to be linearly proportional to the velocity gradient. This

velocity gradient may be decomposed into symmetric and asymmetric parts:

∂ui

∂x j
=

1
2

(

∂ui

∂x j
+
∂u j

∂xi

)

+
1
2

(

∂ui

∂x j
−
∂u j

∂xi

)

. (2.3)

The second term on the right-hand side does not generate stress. The first term does so and is defined to be

thestrain rate tensor, ei j =
1
2

(

∂ui
∂x j
+

∂u j

∂xi

)

. Kundu(1990) determines the relationship between the stress and

the strain rate tensors in the Newtonian limit to be

σi j = 2µei j −
2
3
µ(∇· u)δi j, (2.4)

whereµ is the viscosity coefficient. The momentum evolution equation, equation (2.2), may thus be recast

as

ρ
∂ui

∂t
+ ρu j

∂ui

∂x j
= − ∂p

∂xi
− ρ ∂φ

∂xi
+

∂

∂x j

[

2µei j −
2
3
µ(∇· u)δi j

]

. (2.5)

The molecular viscosity coefficient,µ, may be written in terms of the kinematic coefficient,ν, using the re-

lation,νρ = µ. Specific components of stress tensor are written out for Cartesian and cylindrical coordinates

in AppendixA.

2.2.3 Energy equations

In order to determine akinetic energy equation, one may take the scalar product of equation(2.2) with u and

integrate by parts to obtain,

ρ
∂(1

2u2
i )

∂t
+ ρu j

∂1
2(u2

i )

∂x j
= −ρui

∂φt

∂xi
+ ui

∂τi j

∂x j
, (2.6)
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whereφt = φ − 1
2Ω

2R2 andu·(Ω × ρu) = 0. Kundu(1990) describes increases in the fluid’sinternal energy,

ε, due to deformation of the fluid elements and the addition of heat flux,ψ, by the equation

ρ
∂ε

∂t
+ ρu j

∂ε

∂x j
= τi j

∂ui

∂x j
− ∂ψi

∂xi
. (2.7)

Equations (2.6) and (2.7) may be added, yielding

ρ
∂(ε + 1

2u2
i )

∂t
+ ρu j

∂(ε + 1
2u2

i )

∂x j
= −ρui

∂φt

∂xi
+
∂(τi jui)

∂x j
− ∂ψi

∂xi
. (2.8)

Adding 1
2u2

i times equation (2.1) to the above equation, one obtains

∂e
∂t
+ ∇· (ue) = −ρu·∇φt + ∇· (τ·u) − ∇·ψ, (2.9)

wheree = ρε + 1
2ρu2

i is the total energy density.

In order to close these equations, one requires an equation of state relating the internal energy to other

known quantities. I consider two equations of state within the present research context. For an adiabatic

gas (ψ = 0 in eq. [2.9]) the internal energy density depends only on the pressure and density asρε = 1
γ−1 p,

for adiabatic index,γ. I also consider the simpler locally isothermal equation ofstate (equivalent toγ → 1

in the adiabatic case) where the pressure and energy are related by the local sound speed, which itself is

a prescribed function of the disk radius. Usingp = ρc2
s , I set the sound speed to be proportional to the

Keplerian velocity viacs = mHvK . The ratio,mH = H(r)/r, is a property of the disk and is taken to be

constant. It describes thethickness of the disk where larger values correspond to a hotter (thicker) disk. Its

value is typically chosen to be 0.05 and unless otherwise indicated we will adopt this fiducialvalue. Such

parametrizations are further discussed in Section2.3.

2.2.4 Flux form of the Euler equations

It is possible to obtain a form of the Euler equations where the conservation of mass, momentum and energy

is more explicitly apparent. Beginning with equation (2.1), one can rewrite it using the vector identity,

∇·(au) = u·∇a + a∇·u, as
∂ρ

∂t
+ ∇·ρu = 0. (2.10)

Similarly one rewrites the momentum equations by taking thedensity terms within the derivatives to yield

∂ρu
∂t
− u

∂ρ

∂t
+ ∇·(ρuu) − u∇·(ρu) = −∇p − ρ∇φ + ∇·σ, (2.11)

whereρu u ≡ ρuiu j is a direct product yielding a matrix. Note that the terms multiplied by the vector,u,

are identical to those of mass conservation and vanish. The pressure and stress tensor may be taken into the
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divergence term yielding
∂ρu
∂t
+ ∇·[ρuu + pI − σ] = −ρ∇φ, (2.12)

whereI is the identity matrix. The adiabatic energy equation may also be rearranged as

∂e
∂t
+ ∇· [ue − u·τ] = −ρu·(∇φ). (2.13)

When written in flux-conservative form in terms of the solution vector,q = (ρ, ρu1, ρu2, ρu3, e), flux

tensor,F(q), and source vector,S, these equations all have the same formally simple form,

∂q
∂t
+ ∇· F = S. (2.14)

The form of equation (2.14) is the one I model computationally. For reference, I expandthis form of the

Euler equations into its separate components in both Cartesian and cylindrical coordinates in AppendixA.

Equation (2.14) may be integrated over the entire domain volume,V, to yield

∫

V

∂q
∂t

dV +
∫

V
∇· FdV −

∫

V
SdV = 0. (2.15)

Reversing the derivative and integral in the first term and rewriting the second term using Gauss’ Law yields

a useful integral form of the equation:

∂

∂t

∫

V
qdV +

∫

∂V
F·ndA = 0. (2.16)

where n is the normal vector to the domain boundary,∂V. Unless external source terms are introduced

at the domain boundary (representing influxes and effluxes of the fluid quantities) the integral of the flux

over the domain boundary vanishes as the flux vector is necessarily tangential to the domain boundary.

Because the source term is explicitly given asS = (0,−ρ ∂φ

∂x1
,−ρ ∂φ

∂x2
,−ρ ∂φ

∂x3
,−ρui

∂φ

∂xi
), all of its components

are perfect integrals when integrated over the fluid volume and it too vanishes as long as the source of the

gravitational potential is completely confined within the total fluid volume which is being considered. In

such cases the integral,∂
∂t

∫

V
qi, is zero and quantities that satisfy equations of the above form are not only

locally conserved, but also globally conserved. Thus, the Euler equations globally conserve the domain-

integrated quantities,
∫

V
qi, specifically, the total mass, Cartesian momenta, and energy of the fluid. Global

conservation will not strictly hold when there is an external potential which is located outside of the fluid

volume. In such cases the external potential (say that of a central star at the center of an accretion disk

which is being modelled as an annular region of fluid surrounding the star) represents a possible source/sink

of energy and momentum which is only being accounted for overpart of the fluid volume.
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2.2.5 Angular momentum

Equation (2.12) describes the conservation of linear momentum. In cylindrical coordinates, it is not possible

to write a strictly conservative form of the linear momentumequation involving the natural cylindrical

momentum componentsρur andρuθ, because these quantities are notindividually conserved; rather the

linear Cartesian components,ρux andρuy are each conserved. Instead, it is a fluid’sangular momentum

along the rotation axis, which is conserved in a rotating system, and as such, it is a more natural physical

variable to work with. Numerically, its use yields better results as well (see§4.5). An angular momentum

conservation equation may be found by taking the cross-product of equation (2.2) with the vectorR, defined

as the components of the position vector,x, which are perpendicular to the rotation of the frame (so that

Ω× x = Ω× R). Defining the angular momentum density along the rotation axis ash = ρu× R · Ω̂, one has

∂h
∂t
+ ∇·hu + ρu·[∇(ΩR2)] = ∇·τ × R·Ω̂ − ρ∇φ × R·Ω̂. (2.17)

The third term on the left-hand side represents the contribution to the angular momentum balance due

to the rotation of the frame. By making use of the continuity equation, this term may be rewritten as

ρu·[∇(ΩR2)] = ∇·[R2Ωρu] − R2Ω∇·ρu = ∇·[R2Ωρu] + R2Ω∂ρ/∂t. The conservative form then becomes

∂H
∂t
+ ∇·[Hu + RpI − Rσ] = −(ρ∇φ × R)·Ω̂, (2.18)

whereH = h + ρR2Ω is the absolute angular momentum density. This equation is written out in cylindrical

coordinates in AppendixA. As per the discussion in subsection2.2.4, both the angular momentum flux and

the source term, (ρ∇φ × R)·Ω̂, vanish assuming a bounded fluid volume, so that equation (2.18) forms a

global conservation equation for the angular momentum. I compare results solving for two different sets of

solution variables, (ρ, ρur , ρuθ) and (ρ, ρur ,H), in Section4.5.

2.3 Protoplanetary disk models

The presence of planetary disks has been inferred around about half of all T Tauri stars from their infrared

excesses (seeAdams et al., 1987, for example). Direct images of disks have also been observed at later

stages of system development once much of the surrounding gas and dust have been removed (Bally et al.,

2000). Masses have been estimated atMd ∼ 10−2±1M⊙ with sizes from 20− 100 AU (Beckwith & Sargent,

1996). Observed IR excesses (Adams et al., 1987) are consistent with the disk undergoing steady-state

accretion, however, they do little to constrain the mass-infall rates. Studies of optical excess emission

from young stellar objects (White & Hillenbrand, 2004) suggest time-averaged mass-accretion rates of a

few ×10−8M⊙/yr. Luminosities of emission-lines assumed to originate from infalling magnetospheric flows

(Hartmann et al., 1994; Muzerolle et al., 1998a) suggest similar rates (Muzerolle et al., 1998b; Doppmann

et al., 2005). These accretion rate estimates along with the decreasingfraction of disks observed around
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late-stage T Tauri stars both suggest disk lifetimes on the order of 107 yrs.

2.3.1 Temperature and density distributions

Following Nelson et al.(2000), Bryden et al.(2000), and the like, I typically model accretion disks using

locally isothermal conditions. The temperature and corresponding sound speed as well as the background

density are prescribed functions of radius. Once these prescriptions are chosen one can determine the local

pressure using the ideal gas law,p = ρc2
s .

The prescription for the temperature is determined assuming vertical hydrostatic equilibrium: to first

order, the vertical pressure gradient is balanced by the vertical component of the gravitational force,∂p/∂z =

−ρg sinθ, where sinθ ≈ z/r for a thin disk is the ratio of mid-plane height to radius. Thegravitational

acceleration is given byg = GM∗/r2, which written in terms of the Keplerian velocity isg = v2
K/r. One

can approximate the pressure gradient as∂p/∂z = c2
s∂ρ/∂z, assuming the vertical change in density away

from the midplane is substantially greater than that of the temperature. Solving for the density yields an

exponential atmosphere,ρ(z) = ρ0 exp(−z2/H2), in terms of a scale height,H/r =
√

2cs/vK .

Observations yield disk temperatures ofT ∼ 103−101 K corresponding to distances from the disk center

of R ∼ 10−1−102 AU (Adams et al., 1988). Using the above scale height relations, these observations suggest

such disks are supersonic withH/r ∼ 0.03− 0.1. For the purposes of this investigation, I assume a flat disk

with constant value of this ratio, taken to beH/r = 0.05 unless otherwise indicated.

While observations can help to estimate the masses of planetary disks, their density distributions are

poorly constrained. Estimates based on the heavy-metal composition of the planets within our own solar

system suggests a density profile which varies asr−3/2 between Venus and Neptune. While I have used this

distribution in certain simulations, I typically model disks with initially uniform density distribution with

a total mass of 0.002M∗ out to the orbit of the nearest planet. The results I present are not sensitive to the

choice of distribution.

2.3.2 Alpha-viscosity models

Molecular viscosity is not large enough by several orders ofmagnitude to account for observed mass-infall

rates. Diffusive processes transport fluid quantities on a timescalel2/D, whereD is the relevant diffusion

coefficient. For a typical microphysical kinematic viscosity ofν = 105cm2/s in a disk, it would take the

lifetime of the disk to transport material only∼ 10−3AU.

To account for the high mass-infall rates observed in black-hole accretion disks,Shakura & Sunyaev

(1973) postulated an anomalous turbulent viscosity which would explain the efficient transport. Their treat-

ment and the subsequent treatment ofLynden-Bell & Pringle(1974) modelled the anomalous viscosity

simply as an enhanced version of a vertically averaged Navier-Stokes viscosity. Using cylindrical coordi-

nates, for a Keplerian disk, this assumption allows ther − θ component of the stress tensor, appearing in the
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radial derivative of the angular velocity equation (see eq.[A.13]) to be written as

σrθ = rρνturb
dΩ
dr
. (2.19)

Under such an assumption, the stress depends on the local angular-velocity gradient.

It is further assumed that the enhanced turbulent viscositycan parametrized as,νturb = αcsH, in terms

of the dimensionless parameter,α < 1. The rationale behind this parameterization is that turbulence can

generate eddies only as large as the scale height of the disk,H, with a turnover time no faster thanH/cs.

Replacing this parameterization in equation (2.19), one has

σrθ = αp
d lnΩ
d ln r

(2.20)

for a thin disk whereH/r ∼ cs/vK . The above assumptions thus relate the efficiency of transport directly

to the vertically averaged local pressure. In modern literature such a treatment is termed an alpha-viscosity

model.

Many physical mechanisms have been proposed to explain the efficient transport observed in accretion

disks(for a review, seePapaloizou & Lin, 1995). The magneto-rotational instability (MRI) appears to be

one of the few nontransient mechanisms which can generate transport rates that are large enough (α ∼ 0.01,

Hawley & Balbus(1991)) to match those that are observed (α ∼ 10−2,Hartmann et al.(1998)); however, its

functionality in planetary disks may be limited by low levels of ionization (Gammie, 1996).

Regardless of the specifics of the physical process, equating transport due to turbulent instabilities with

an alpha-viscosity prescription is accurate only in a spaceand time-averaged sense, at best. While authors

such asStone et al.(2000) caution against such simple prescriptions, global simulations are currently too

computationally expensive to dynamically account for turbulent transport in other than such a simplified

way.

When discussing viscosity present in the simulations, I adopt the approach of most authors performing

global disk simulations, and use the standard alpha-prescription. Estimates in Chapter4 suggest that numer-

ical viscosity limits the value of alpha to beα & 10−3.5 without an explicitly added viscosity. Larger values

of α may be obtained by modelling an additional physical viscosity of a given value within a simulation.

In Chapter5 I calculate local values of transport caused by hydrodynamic structures such as jets and

vortices generated within the disk by the planet. I show thatthe time-averaged effective transport due to

such structures is substantial and correlates with the potential vorticity distribution.

2.4 Planet-Disk interactions

Protoplanets are able to interact with a variety of solar system constituents likely to exist during the early

stages of the system’s evolution (during the mid- to final-stages of its formation). The catalogue of possible

interaction mechanisms is often referenced to provide explanations for many of the characteristics of our
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own solar system as well as the differing characteristics thus-far evident in extra-solar systems, namely the

existence of gas-giant planets with short-period orbits and high eccentricities. I briefly describe some of

these mechanisms.

Early solar systems are likely to be littered with small asteroid-sized planetesimals that have not yet

grown large enough to begin grouping with other planetesimals or accrete gas. The ejection of a substantial

fraction of these objects lying within the orbit of a protoplanet, would cause the planet to migrate inward

(Murray et al., 1998). To move a Jupiter-mass planet by severalAU, this mechanism would require a very

massive disk of initial material to produce enough planetesimals. A gas disk of such a size would likely be

unstable. However this scenario is a more plausible explanation for the migration of the less massive ice

giants such as Neptune and Uranus, and possibly even Saturn (Levison et al., 2007).

If there exist multiple planets within the same system, resonant interactions can drive up the eccentricity

of one or more of the objects.Rasio & Ford(1996); Weidenschilling & Marzari(1996) andFord et al.

(2001) examined this scenario with two planets, but such interactions result in an eccentricity distribution

which is too low when compared with observed values (Ford et al., 2001; Goldreich & Sari, 2003). More

recentlyJuric & Tremaine(2007) have shown that resonant interactions involving more thantwo planets

may better explain the observed eccentricity distributions.

Protoplanets may also tidally interact with the gas disk in which they are embedded. The planet and

disk are able to exchange angular momentum at resonance locations within the disk, where the orbital

harmonics of the gas and the protoplanet are commensurate. The resulting gravitational torques can cause

the protoplanet to migrate or alter its eccentricity, depending on the particular resonances involved. I discuss

these two possible effects in more detail below.

2.4.1 Resonance locations

Goldreich & Tremaine(1979) performed a perturbation expansion of the mass and momentum conservation

laws (eqs. [2.1] and [2.2]) in an inertial frame. They expanded these equations for aninviscid cylindrical

disk of fluid (where the stress tensor contributes only a thermodynamic pressure term) subject to a central

gravitational potential as well as an external perturbing mass. Within the context of planetary systems, the

role of the central potential is played by the central star and the protoplanet provides the perturbation po-

tential. Their analysis showed that the solution to such an expansion allows spiral density wave propagation

to occur within the disk except at specific resonance locations where strong interactions occur between the

protoplanet and the disk. Away from these resonance locations, the spiral waves transport angular momen-

tum within the disk, but do not exchange momentum between thedisk and the planet. Nonetheless the spiral

waves are visible manifestations of the interaction. I comment further on them in Chapter4 when examining

the results of my simulations.

Resonance locations are where the frequency harmonics of the planet’s potential,Ωℓ,m, are commen-

surate with either the fluid’s mean orbital frequency,Ω, (so-called corotation resonances) or its epicyclic

frequency,κ, (so-called Linblad resonances). For a resonance of order,m, these locations are defined by
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Resonance Amplitude
Frequency of

Location (1
a )(da

dt )res (1
e )(de

dt )resPotential Fluid

Principal OLR φm,m(r, e0
p) Ωp Ω + κ/m (m + 1)/m −− +

Principal CR φm,m(r, e0
p) Ωp Ω 1 ? ?

Principal ILR φm,m(r, e0
p) Ωp Ω − κ/m (m − 1)/m ++ −

Fast 1st-Order OLR φm+1,m(r, e1
p) Ωp + κp/m Ω + κ/m 1 − −

Fast 1st-Order CR φm+1,m(r, e1
p) Ωp + κp/m Ω m/(m + 1) − −−

Fast 1st-Order ILR, φm+1,m(r, e1
p) Ωp + κp/m Ω − κ/m (m − 1)/(m + 1) + ++

Slow 1st-Order OLR φm−1,m(r, e1
p) Ωp − κp/m Ω + κ/m (m + 1)/(m − 1) − ++

Slow 1st-Order CR φm−1,m(r, e1
p) Ωp − κp/m Ω m/(m − 1) + −−

Slow 1st-Order ILR φm−1,m(r, e1
p) Ωp − κp/m Ω − κ/m 1 + −

Table 2.1 List of properties of resonances including their location and their action on the planet’s semi-
major axis and eccentricity. Locations are listed in relative units of f given byr = rp f 3/2 assumingκ = Ω as
for a pressureless disk andκp = Ωp as for a central point-mass potential. Leading-order effects are denoted
by double signs. (AfterMasset & Ogilvie, 2004; Goldreich & Sari, 2003).

m|(Ωℓ,m −Ω)| = 0 for corotation resonances (CRs) and bym|(Ωℓ,m −Ω)| = ±κ for Linblad resonances (LRs).

The term, Outer Linblad resonances (OLRs), distinguishes LRs that occur at physical locations in the disk

which are further out from the central star relative the corresponding Inner Linblad resonances (ILRs).

The harmonics of the planet’s potential may be considered bydecomposing the perturbing potential

into a Fourier series of angular modes, cos(θ − Ωℓ,mt), each with amplitude,φℓ,m(r, ep). The value ofΩℓ,m

corresponds to the pattern frequency of the mode. In the caseof a planet moving on a circular orbit, an

expansion of its potential only contains terms involving its mean orbital frequency so thatΩℓ,m = Ωp. For

planets on elliptical orbits, the potential may be expandedto order,ℓ, in moments of the planet’s epicyclic

frequency asΩℓ,m = Ωp + (ℓ−m)κp/m. Considering components up to first order in the planet’s eccentricity

(ℓ = m ± 1), each mode,m, contributes three potential components, each of which maybe commensurate

with the gas disk at three possible locations. For later reference, some of the properties and physical effects

of the interactions at these nine locations are summarized in Table2.1.

2.4.2 Torquing formulas

The work of Goldreich & Tremaine(1979) developed two formulas for the torque exchange between a

protoplanet and a gas disk at either LRs or CRs, which I quote here as

TL = −mπ2
∣

∣

∣

∣

∣

ρ

rdD/dr

∣

∣

∣

∣

∣

[

r
dφℓ,m

dr
+

2Ωφℓ,m
Ω −Ωℓ,m

]2
∣

∣

∣

∣

∣

∣

∣

rL

(2.21)

TC =
1
2

mπ2
φ2
ℓ,m

dΩ/dr
d
dr

(

ρ

B

)

∣

∣

∣

∣

∣

∣

∣

rc

(2.22)
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whereD = κ2 − m2(Ω − Ωl,m)2 and 2B = 2Ω + rdΩ/dr. All variables are to be evaluated at the location of

the resonance.

Equations (2.21) and (2.22), show that the strength of the Linblad and corotation resonances increases

with order,m, while at the same time, the resonance locations approach the planet (Table2.1). If the pressure

gradients in the gas were zero, the locations of the Lindbladresonances would indeed move closer to the

location of the planet. However, the effect of a pressure gradient is to bias the position of the LRs away from

their nominal positions according to

m | Ω −Ωℓ,m |= ±κ[1 + ξ2]1/2, (2.23)

whereξ = mH/rp. This bias leads to a limiting position for the high-order modes atrL = rp±2H
√

1+ ξ2/3ξ

such thatrL → rp ± 2H/3 asξ → ∞. As the resonance locations and the planet become separatedon the

order of (H/r) for largem, the exerted torques become negligible. This result is referred to as the “torque

cut-off” (Goldreich & Tremaine, 1980; Artymowicz, 1993).

An evaluation of the Linblad torque formula (seeGoldreich & Tremaine, 1980; Ward, 1986) reveals that

interactions with ILRs cause the planet to gain momentum while interactions with OLRs remove angular

momentum from the planet. For the principle LRs this exchange may be be understood as follows. The per-

turbations of the planet on gas particles just inside its orbit cause those particles to lose angular momentum

to the planet since they orbit more quickly than the planet. Likewise the particles just outside of the planet’s

orbit gain angular momentum from the planet. The effect of these reciprocal interactions is to clear the gas

surrounding the planet.

If this clearing proceeds on a timescale that is faster than that over which viscosity can resmooth such

perturbations, a gap may form in the disk. In such regimes, the density in Formulas (2.21) and (2.22) can

no longer be approximated by its unperturbed value, and the interactions become nonlinear. This division

between linear and nonlinear regimes based on the formationof a gap is discussed in the next two sections.

2.4.3 Type I migration

Were the exchanges of angular momentum due to principle LRs symmetrical, the planet’s orbital radius

would remain constant. In a gas disk, pressure gradients again exert their influence here as they shift the

locations of all resonances inward. This shift occurs because pressure gradients provide additional support

to the fluid at a given location in the disk, allowing the fluid’s orbital frequency to be slower at a given

location than without such support. This inward shift meansthat the OLRs couple more strongly to the

planet’s location than do the ILRs leading to a net loss of momentum from the planet and causing its inward

migration.

When the planet’s mass is small enough such that the perturbation exerted is small, linear theory can

be used to examine the effect on the planet. The torque in equation (2.21) is dependent on the gas density

and protoplanet mass according toTL ∝ ρM2
p. This relationship leads to a migration timescale inversely
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proportional toMp (Ward, 1997):

τ  ∼ 2× 104
(

Mp

M⊕

)−1 (

Md

0.002M∗

)−1 (

H/r
0.05

)3

Ω−1. (2.24)

Migration in this regime is called type I migration.

2.4.4 Type II migration

When the perturbation becomes nonlinear, the planet beginsto affect the structure of the gas disk around

its orbit, altering the local gas density,ρ. The non-linear waves (carrying the angular momentum flux)

are presumed to grow very quickly in amplitude and to begin tobreak very soon after they are launched,

depositing their momentum in the vicinity of the planet. This process will try to open a gap surrounding the

protoplanet. This gap is maintainable if the timescale on which the waves transfer angular momentum to the

gap is shorter than the timescale on which viscous diffusion smooths out such density perturbations. With

a cleared gap, the planet effectively becomes locked into the viscous evolution of the disk and will migrate

inwards or outwards on a viscous timescale. Only the very outer parts of the disk are diffusing outward

for typical disk models (seePringle, 1981, for example). The planet is thus likely to migrate inwards on a

timescale given by (Ward, 1997)

τ  ∼ 4× 104
(

α

10−2

)−1
(

H/r
0.05

)−2

Ω−1. (2.25)

This timescale has been parametrized in terms of the alpha-viscosity (see§2.3). Migration in this regime is

referred to as Type II migration.

2.5 Potential vorticity and transport barriers

The potential vorticity (PV) is a useful quantity to consider in many balanced flows, from three-dimensional

stratified systems where the bulk motion is layerwise to rotating systems where the rotation acts to “two-

dimensionalize” the system. The potential vorticity has a long history of use in atmospheric physics,

since Rossby(1940) and Ertel (1942) both introduced several different forms of the quantity for both

two-dimensional and three-dimensional flows. In astronomy, only its two-dimensional form tends to be

considered (Papaloizou & Lin, 1989; Ogilvie & Lubow, 2006), where it is has been termed thevortensity.

I introduce the quantity for the present work because in atmospheric contexts, strong gradients of PV

have been numerically and observationally linked to transport barriers—surfaces or contours of a flow

through which passively advected material elements do not pass. I wish to exploit this connection in my

own results. After introducing potential vorticity, I discuss some work in atmospheric and planetary physics

contexts which has explored this connection.
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2.5.1 Potential vorticity evolution

The absolute vorticity,q, in any reference frame is given as the curl of the relative velocity within the frame,

ω = ∇ × u, plus any contribution from the motion of the frame. At a given location in a frame rotating at

the Keplerian frequency,Ω(r) =
√

GM∗/r3, the absolute vorticity is thus,q = ∇ × (u + rΩθ̂) = (ω + 2Ω)ẑ,

where the last equality assumes a two-dimensional system, rotating around thez-axis. In balanced flows

without large-scale contributions from wave phenomena (inertial or acoustics waves, for example), strong

PV gradients in one direction, imply the presence of a jet with a flow direction perpendicular to and with

its axis along the direction of the PV gradient. This conclusion depends only on the mathematical relation

between the PV and the curl of the velocity. Determining the velocity field based on the PV distribution is

termed “PV inversion” in the atmospheric literature.

The equation for vorticity evolution in a corotating frame may be obtained by taking the curl of equation

(2.2), to yield

∂q
∂t
+ u ·∇q = q·∇u − q∇· u

+
1

ρ2
∇ρ × ∇p + ν∇ × ∇2u, (2.26)

where some vector algebra is used to write∇ × (u ·∇u) +∇ × 2Ω × u = ∇ × q × u = u ·∇q − q·∇u + q∇· u,

and the stress tensor is represented as simple Laplacian diffusion. Continuity allows us to write

∂Q
∂t
+ u ·∇Q = Q·∇u +

1
ρ3
∇ρ × ∇p +

ν

ρ
∇2ω. (2.27)

where thepotential vorticity, Q, is defined asQ = ρ−1q in astronomy.

For the two-dimensional disks I consider, the potential vorticity (PV) reduces to a scalar quantity. Also

for two-dimensional flows, the first term on the right-hand side which represents vortex stretching and

tilting must be zero. The second term on the right-hand side represents contributions from baroclinity; for

barotropic equations of state, this terms also vanishes. Inlocally isothermal disks, the temperature gradient

is a prescribed function of radius, while the density can be independently altered by compressibility, leading

to baroclinic generation of vorticity.Ou et al.(2007) discuss this effect. The last term in equation (2.27)

represents diffusion of relative vorticity due to dissipative processes.

Ignoring any PV generation or diffusion due to the right-hand side of equation (2.27), in two dimensions

it reduces to an expression of two-dimensional vortex kinematics, and the PV measured in the inertial frame

is conserved following the fluid motion. Thus, in a rotating frame, if a fluid parcel’s density increases, it

must begin to rotate negatively with respect to the frame’s motion, in order to conserve PV.

In atmospheric physics similar kinematics govern the (2D) shallow-water equations. For more compli-

cated three-dimensional systems, theRossby-Ertel potential vorticity, QRE = q·∇Θ, whereΘ is the potential

temperature (the temperature of a given fluid parcel when adiabatically brought to a reference pressure-

surface), is introduced. Rossby-Ertel potential vorticity is conserved for inviscid fluid elements along isen-
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tropes (even for baroclinic fluids). In such contexts the full Rossby-Ertel potential vorticity is often referred

to simply as the potential vorticity, but it should not be mistaken with the simpler, two-dimensional fluid

quantity as defined in astronomy.

2.5.2 PV gradients as transport barriers

Numerous studies in atmospheric and planetary physics haveexamined the link between strong gradients

of PV, jets and eddy-transport barriers. I provide a brief overview of some of these results and some of the

current theoretical arguments which have been put forth to explain the connection.

Juckes & McIntyre(1987) performed numerical studies of polar vortex models (the polar vortices are

roughly circular caps of high-PV air on either of the Earth’spoles, separated from the surrounding low-PV

air by a sharp PV gradient and a corresponding eastward jet).In their experiments the high-PV regions

behaved as material entities, withstanding large-scale disruptions from the surrounding fluid. Although the

air within the high-PV region was susceptible to small-scale erosion of material, it was almost impervious

to incursions of the surrounding low-PV air. Chemical tracer data and analyses of effective diffusivities

(Nakamura, 1996) from the Arctic and Antarctic polar regions confirm the highdegree of isolation of this

polar air and the low levels of mixing (transport) from surrounding air into these regions (McIntyre, 1989;

Haynes & Shuckburgh, 2000). Marshall et al.(2006) performed a similar study of the Antarctic circumpolar

current, finding low effective diffusivities along the jet axis of the current and high values onthe equatorward

flank. In this study regions of high and low effective diffusivity were shown to be correlated with regions of,

respectively, weak and strong isentropic PV gradients.

Sommeria et al.(1989) performed laboratory experiments demonstrating low levels of transport across

jets formed in a rotating tank. In these experiments, a radially inward fluid flow is setup in a rotating

cylindrical tank with a sloped bottom (acting as a background PV gradient). At sufficiently large radial flow

rates an eastward (prograde) jet forms with a strong gradient of PV across its axis. The strength of the jet is

stated to depend upon the balance between the torque arisingfrom the Coriolis force on the radially pumped

fluid and that arising from viscosity. Away from the center ofthe jet, the PV gradients are relatively weak

and the transport shown to be much stronger.

Finally work on the upper weather layer of Jupiter and the other gas giants suggests a similar link

between jets and lowered transport. Data taken from the Cassini spacecraft (Porco et al., 2003) is consistent

with Jupiter’s system of belts and zones forming a “PV staircase”, where broad regions of almost uniform

PV lying on broad, westward jets are separated by sharp PV gradients, collocated on strong, narrow eastward

jets. In his original review,Marcus(1993) reached this conclusion based on models of vortex interactions.

A more recent analysis byBeron-Vera et al.(2007) demonstrates that both the eastward and westward jets of

such a staircase structure should function as meridional transport barriers, explaining the relative chemical

isolation of the belts and zones from one another.

Despite the large number of studies linking jets and transport barriers, a clear physical mechanism which

explains the connection has not been fully developed. The relationship becomes apparent if one acceptsa
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priori the tenet that PV gradients inhibit mixing. Perturbations to such a system will amplify any existing

or produced PV gradients—in regions with relatively weak PVgradients, mixing will be strong, while in

regions with relatively strong PV gradients, mixing will beweak. The combined effect is reduce gradients

where they are already weak and increase them where they are strong. PV inversion naturally implies a

narrow, eastward jet centered on the sharp gradients.

Alternatively, if there are hydrodynamic processes distinct from two-dimensional vorticity kinematics

that cause inhomogeneous mixing, sharp PV gradients and jetshould develop in the regions defined by weak

mixing. For further explanations of the possible mechanisms at work see works by (Baldwin et al., 2007,

and references within) andRypina et al.(2006, 2007).



Chapter 3

Computational Fluid Dynamics

3.1 Introduction

In this chapter I discuss the basics of computational fluid dynamics and summarize the numerical method

based on the original Total Variation Diminishing (TVD) code byTrac & Pen(2003). I describe my mod-

ifications to the original code—the adaptation of the algorithm for use on a cylindrical grid and the imple-

mentation a fast advection scheme in the azimuthal direction based on the work ofMasset(2000). In this

chapter I also describe the performance of the code on a suiteof four standard hydrodynamical tests.

3.2 CFD basics

In computational fluid dynamics, one generally discretizesa continuous problem by one of two ways. The

first method, the Eulerian approach, discretizes the spatial domain into volumes termed grid cells, between

which the fluid moves. By contrast, in the Lagrangian approach the fluid is discretized into fluid elements

(or ‘particles’) which can then move freely according to their initial velocities and only their interactions

need to be modelled.

For problems such as those in accretion-disk dynamics wherethe fluid velocities are dominated by a

large background flow, Lagrangian methods may initially seem more intuitive. In such situations, Eulerian

methods will spend the bulk of their time advecting fluid between cells, requiring hundreds of time steps

per orbit simply to model the background flow, with the computational inefficiency and the accumulated

numerical error implied by such numerous iterations. However, the usual Lagrangian method, SPH, does

not easily allow the higher spatial accuracy that grid methods can employ, nor does it capture shocks as ac-

curately as grid methods. Both of these properties are necessary to examine subtle effects like the interaction

of resonances and to accurately calculate the torquing due to spiral density waves on the protoplanet. Fur-

thermore, SPH codes preferentially resolve high-density regions, meaning that in planet-disk simulations,

where the formation of a gap in the disk is an important part ofthe dynamics, these codes will under-resolve

such regions (de Val-Borro et al., 2006). Given these considerations, I use an Eulerian approach, along

23
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with an implemented method that increases algorithm efficiency in the presence of a large background flow

(discussed in§3.10).

After discretizing the spatial domain into finite volumes, an Eulerian approach must calculate changes in

fluid quantities over a specifiedtime step. The numerical values at points on the grid are usually interpreted

to be the cell-averaged quantities of the fluid variable. In order to calculate new cell-averaged quantities

after a finite amount of time, one writes equation (2.15) in one dimension and for a single conserved fluid

quantity so thatq(x, t) ≡ q(x, t). Ignoring source terms this reduction yields

∂

∂t

∫ x2

x1

q(x, t)dx +
∂

∂x

∫ x2

x1

F(x, t)dx = 0. (3.1)

For a single cell at location,xi, the spatial boundaries of the cell are atx1 = xi−1/2 andx2 = xi+1/2. The

integrals
∫ x2

x1
qdx and

∫ x2

x1
F(x, t)dx represent the cell-averaged fluid quantities,qi andFi, allowing one to

write the discretized equation,

qt+∆t
i − qt

i

∆t
+

Ft
i+1/2 − Ft

i−1/2

∆x
= 0, (3.2)

where superscripts reference the specific time step and subscripts reference the spatial cell. Note that in order

to computeqt+∆t
i for any grid cell, one requires the value of that cell’s flux,Fi±1/2, at its boundaries. This

value for the flux must be interpolated from the known cell-averaged values at the cell centers. The manner

in which a given finite-volume fluid algorithm interpolates this flux determines the order and accuracy of

the algorithm.

The interpolation of the cell-boundary fluxes and the subsequent reconstruction of fluid quantities as

discretized in equation (3.2) are both determined using only a finite number of neighbouring cells. This

truncation of the information used in the reconstruction process introduces errors which may be diffusive

or dispersive in nature. Diffusive errors result from excessive clipping and averaging occurring during the

reconstruction process, resulting in the smearing of an initially sharp profile. Such errors are unavoidable in

computational codes, but can be minimized. Dispersive errors result from spurious over- and undershoots

occurring during the reconstruction process. They result in ringing-type oscillations occurring near sharp

discontinuities.

I illustrate these two types of errors by advecting both a square wave and a sinusoidal wave form. Figure

3.1shows the initial waveform and the resulting waveform afteradvection once through a periodic domain.

The diffusive scheme has decreased the overall variation of both thesmooth and the square waveforms and

has broadened (smeared) their widths as well. The dispersive scheme does a good job of advecting the

smooth wave form with little loss of amplitude, but the square wave form displays the ringing oscillations,

characteristic of dispersive schemes.
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Figure 3.1 Initial and advected wave forms illustrating diffusive and dispersive errors. The thick, light-grey
line is the initial wave form. The solid line is the wave advected once through the periodic box using a
diffusive scheme. The dotted line is the same initial form advected once through the box with a dispersive
scheme.
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3.3 Algorithm summary

The TVD code is a finite-volume method, second-order accurate in time and space. It uses a Total Variation

Diminishing (TVD) spatial scheme (described in§3.4), which helps to control spurious oscillations, to

solve the advective terms in the Euler equations. Time-stepping is accomplished through a standard second-

order Runge-Kutta scheme. For the first half-time step of theRunge-Kutta scheme, the fluxes at the cells

boundaries,Fi±1/2, are interpolated using the first-order upwind method (described briefly in§3.4.1). For

the full-time step, the second-order limiter method is used(§3.4.2). Non-viscous source terms are treated

separately using a second or higher-order Runge-Kutta scheme and the viscous terms are approximated as

second-order finite differences.

3.4 The Total Variation Diminishing algorithm

Full details of the TVD algorithm are provided inTrac & Pen(2003); I will merely summarize the method

here. The TVD algorithm is a second-order, nonlinear algorithm that restricts thetotal variation of the

discrete solution’s flux at a given time step,

2(
∑

Ft
max −

∑

Ft
min), (3.3)

to be less than or equal to that at the previous time step. The variablesFt
max andFt

min refer to local maxima

and minima in the flux’s solution set. Spurious oscillationsincrease the number of extrema and thus increase

the total variation.

3.4.1 The upwind method

Any flux-interpolation scheme which satisfies condition (3.3) is called a TVD method. A first-order example

of such a method is the upwind method that I use to interpolatethe cell-boundary fluxes for the half time

step. It assigns fluxes based on the direction in which fluid isadvecting by assuming that most of the flux

at a given cell boundary comes from cells upwind of the boundary location. Considering a one-dimensional

flow where flow to the right (larger indices) is positive, the upwind scheme can be described by

FU
i+1/2 = Fi, ui > 0

FU
i+1/2 = Fi+1, ui+1 < 0.

(3.4)

This algorithm is highly diffusive.Godunov(1957) discusses the properties of TVD algorithms, noting that

the upwind method is the only first-order algorithm which is TVD; and therefore, less diffusive algorithms

must necessarily be nonlinear.
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3.4.2 Second-order schemes

It is possible to improve upon the upwind scheme by considering second-order corrections to the assigned

fluxes. For flow to the right there are two second-order corrections:

∆FL
i+1/2 =

Fi − Fi−1

2
,

∆FR
i+1/2 =

Fi+1 − Fi

2
. (3.5)

These two corrections consider the influence of flux from the cells further to the left and to the right of the

ith (upwind) cell. In a similar manner for flow to the left, there are two second-order corrections, which

consider the influence of flux from cells to the left and right of the (i+1)-th (upwind) cell:

∆FL
i+1/2 =

Fi+1 − Fi

2
,

∆FR
i+1/2 =

Fi+2 − Fi+1

2
. (3.6)

To determine the actual value of the correction to the purelyupwind flux, I apply alimiter, φ(∆FL,∆FR),

which determines the relative weight of the two corrections. For a given limiter, the second-order boundary

flux is determined to beFU
i+1/2 + ∆Fi+1/2, where∆Fi+1/2 = φ(∆FL

i+1/2,∆FR
i+1/2).

I consider four established limiters: Minmod, Van Leer, MC and Superbee, all designed to satisfy the

TVD condition (eq. [3.3]) as well as two newly designed schemes. The Minmod limiter determines the flux

correction according to

φMM (a, b) =



















min(|a|, |b|), ab ≥ 0

0, ab < 0
. (3.7)

The Van Leer limiter takes the harmonic mean of the two corrections:

φVL (a, b) =



















2ab
a+b , ab ≥ 0

0, ab < 0
(3.8)

while the MC limiter determines the flux as,

φMC (a, b) =



















min
[ |a|+|b|

2 ,min(2|a|, 2|b|)
]

, ab ≥ 0

0, ab < 0
. (3.9)

The superbee limiter is defined as

φS B(a, b) =



















max(min(2|a|, |b|),min(|a|, 2|b|)), ab ≥ 0

0, ab < 0
. (3.10)

It is possible to examine these schemes graphically in termsof the ratio of leftward and rightward cor-
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rections,ξ = ∆FL/∆FR, and the corresponding magnitude of the chosen flux correction, ∆F. They are

displayed in Figure3.2. Note that all the above limiters are zero when the flux corrections are of opposite

sign (whereξ is negative) as occurs near an extremum. This feature prevents growth of the extremum. They

are also all symmetric under exchange ofa andb. Note that the exchange,a → b corresponds toξ → 1/ξ;

hence, the definitionξ = ∆FL/∆FR rather thanξ = ∆FR/∆FL is arbitrary.

The region defined by∆F < max(0,min(2, 2ξ)) satisfies non-linear stability conditions determined tobe

in the general class of TVD-stable limiters (Sweby, 1984). Limiters that satisfy the above condition and that

are also second-order accurate are found within the area bounded by the superbee and minmod limiters.

The Minmod limiter is the most diffusive because it always takes the minimum value of the correction

possible which is still second order; thus, any flux not assigned by the second-order reconstruction ends up

being smeared out over more than one grid cell. The Van Leer, and MC, AS and mixed schemes (see below)

are all progressively less diffusive, as they assign more and more of the possible flux correction to a definite

cell. Superbee is the least diffusive second-order limiter possible, but at the cost of increased instability.

These tradeoffs are discussed further in Section3.11.

Also shown on the graph are the AS and MB limiters I designed which sometimes exhibit better com-

promises between stability and higher-order accuracy. TheMB limiter is a normalized linear combination

of the MC and SM schemes. In practice I usually weight the scheme as 80% MC and 20% SB as drawn in

Figure3.2. The AS limiter is asymmetric with respect to the left- and rightward flux corrections; thus, it is

defined differently forξ1 = ∆FR/∆FL andξ2 = ∆FL/∆FR. It can, however be defined without reference to

either flux ratio as

φas(a, b) =



















max
[

0,min
{

3(|a|+|b|)
5 ,min(|a|, 2|b|)

}

,min
{

(5|a|−3|b|)
3 ,min(2|a|, |b|)

}]

, ab ≥ 0

0, ab < 0.
(3.11)

I discuss more details of their performance in subsections3.11.2and3.11.3.

3.5 Time step restrictions

In nature, information of various kinds is limited by physical laws to propagate at finite speeds. The speed

of sound, for example, limits the speed at which pressure disturbances can propagate in a given medium.

Numerically, information propagates on a grid because neighbouring cells are used to determine a given

cell’s reconstruction at the next time step. Restrictions equivalent to the speed of sound must be imposed in

a numerical code to insure that numerical information does not propagate at physically unrealistic speeds.

In practise one limits the value used for the time step so thatthe types of waves being modelled cannot

affect grid cells which are further away than the waves could have reached were their equivalent physical

speeds so-limited. Such conditions are calledCourant-Friedrichs-Lewy (CFL) conditions, and they ensure

CFL stability. Failure to regulate the time step in this way will cause the code to be massively unstable and

highly inaccurate.
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Figure 3.2 Flux corrections for the considered limiter schemes: Minmod (heavy solid), Van Leer (dot-
dashed), MC (fine solid), mixed (fine dashed), AS (dotted), and Superbee (heavy dashed).
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Consider the one dimensional Euler equations. They supportthree types of waves: entropy waves which

move at the fluid’s flow speed,u, and two types of acoustic waves which travel “rightward” and “leftward” at

the speed of sound relative to the flow speed,u+ cs andu− cs, respectively. Then, at a given spatial location,

the maximum and minimum values of these three speeds determines the speed at which information can

travel to the right and to the left, respectively. More generally one can limit the time step due to the two

global speed extrema. These two speeds are equivalent to thelargest and smallest eigenvalue of the flux

Jacobian,∂F(q)/∂q as demonstrated inLaney(1998).

The time step may be further limited by other physical restrictions such as the CFL condition imposed

by viscosity. Physical and numerical viscosity are furtherdiscussed in Section4.6. The fast advection

algorithm (§3.10) places a further restriction on the time step in order to ensure that differential rotation

does not cause two adjacent annuli of fluid to shear past one another by more than a half grid cell. In

simulations of protoplanetary disks, the restriction due to the acoustic waves is usually the most stringent.

3.6 Wave splitting

In the discussion of the TVD method I have implicitly assumedthat it is possible to determine the fluid’s

direction of flow. When solving the Euler equations, this determination is not always straightforward as the

pressure can influence the total velocity in a cell through the sound speed. In order to determine a set flow

direction for each cell, the equations are split into leftward and rightward-travelling components and the

coupled system,

∂q
∂t
+
∂

∂x
(cw) = 0 (3.12)

∂w
∂t
+
∂

∂x
(cq) = 0, (3.13)

is solved, where the definitions,q = qR + qL, andw = F/c = qR − qL, define the solution variables in

terms of the leftward and rightward-travelling waves. Equation (3.13) represents a separate equation for

the evolution of the normalized flux vector,w. The variable,c, is a positive-definite function which has the

interpretation of a speed associated with a particular gridcell. The solution is TVD for values ofc greater

than or equal to the largest eigenvalue of the flux Jacobian,∂F(q)/∂q. Because the the waves are split into

separate rightward and leftward components, the maximum eigenvalue of the Jacobian is satisfied for both

components by the valueci = |ui|+ cs wherecs is the sound speed for the cell. Substituting these definitions

into equations (3.12)–(3.13) decouples the system and yields

∂q
∂t
+
∂FR

∂x
− ∂FL

∂x
= 0, (3.14)

whereFL = cqL andFR = cqR. The original coupled system, equations (3.12) and (3.13), is then equivalent

to the solutions of the two separate leftward- and rightward-moving waves given in equation (3.14). It is
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now possible to separately solve for each of the travelling waves using the second order Runge-Kutta/TVD

scheme and add results to determine the full solution.

3.7 Operator splitting

The above description applies to the Euler equations in one dimension. Multiple dimensions and additional

source terms present in the full Navier-Stokes equations are accounted for by using the operator splitting

technique ofStrang(1968). A full time step is performed as a double sweep through an ordered sequence of

operators comprising the full equation, first in forward sequence, then in reverse. To illustrate this process

for a single double sweep, I write equation (2.14) using operators as

∂q j

∂t
+

ND
∑

i

Li[q j] − S g,φ[q j] − V[q j] = 0, (3.15)

whereND is the number of physical dimensions being modeling. TheLi[q j] terms represent the update

of q j in a single direction due to advective terms,
∑ND

i ui∂q j/∂xi. The operators,S g,φ and V represent

additional routines which differ numerically from the TVD algorithm and account for the effects of gravity,

source terms due to cylindrical geometry and viscosity. I have lumped the source terms due to gravity and

geometry into the same operator as they are performed in the same subroutine. The first half of the double

sweep is then performed in the sequence,

qt+∆t
j = VS g,φL3L2L1[q j], (3.16)

and a second sweep is then performed using the same time step,∆t, to yield the completely updated solution

qt+2∆t
j = L1L2L3S g,φVVS g,φL3L2L1[q j]. (3.17)

As discussed inStrang(1968) this procedure ensures second-order accuracy.

3.8 Alterations for cylindrical grids

In order to determine the changes required to solve the Eulerequations on cylindrical rather than Cartesian

grids, I examine the equations in AppendixA for zero viscosity (µ = 0) and no external potential (φ = 0).

In Cartesian coordinates they may be written as

∂q
∂t
+
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
= 0 (3.18)
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compared to their form in cylindrical coordinates:

∂q
∂t
+

1
r
∂rFr

∂r
+

1
r
∂Fθ

∂θ
+
∂Fz

∂z
= S (3.19)

whereS = (0, ρu2
θ
/r, ρuruθ/r, 0, 0) for the solution setq = (ρ, ρur, ρuθ) andS = (0, ρu2

θ
/r, 0, 0, 0) for the

solution setq = (ρ, ρur,H).

Equations (3.18) and (3.19) are computationally equivalent for the substitutionsq(x, y, z) → q(r, θ, z),

F(xi, yi, zi) → F(ri, θi, zi) and (∆x,∆y,∆z) → (ri∆r, ri∆θ,∆z) if the effects of the source termS are also

included. I account for this term using a second-order Runge-Kutta scheme implemented with operator

splitting as discussed in Section3.7. When performing the radial sweep the fluxes are multiplied by the

additional factor ofr as required. Equivalently: while the azimuthal advection operator acts directly on the

solution vector asLθ[q], the radial advection operator acts on the solution vectorscaled by r asLr[rq].

3.9 Boundary treatments

Special boundary conditions are required only in the non-angular directions. The angular coordinate is

numerically treated as periodic by directly mapping the (Nθ+1)-th cell to the 1st cell when calculating the

fluxes.

In the radial direction, I usenb = 2ND ghost cells on the inner and outer edges of the computational

domain. This number of additional cells prevents the effects of lower-order flux interpolations occurring at

the first and last cells from propagating in towards the center of the domain. After the solution quantities are

updated at the end of each double sweep, the values of these boundary cells are redetermined, depending

on the physical effect being employed. I consider three treatments here. The first simply re-initializes

the quantities in the ghost cells to the initial conditions or some known, prescribed solution. The second

re-assigns the cell values according to

qnb−i = wqnb+i+1, i = 0, nb − 1

qNr−nb+i+1 = wqNr−nb−i, i = 0, nb − 1 (3.20)

wherew = 1 for all variables except the radial velocity whenw = −1. This boundary treatment approximates

reflecting boundary conditions for which all scalar variables are symmetric around the boundary while vector

variables are anti-symmetric. The third treatment re-assigns the cell values according to the prescription

qi+1 = qnb+i+1, i = 0, nb − 1

qNr−nb+i = qNr−2∗nb+i, i = 0, nb − 1 (3.21)

for all variables. This treatment approximates a free-streaming outflow boundary.

In addition to the boundary treatments discussed above, I sometimes implement wave-damping condi-
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tions near the boundaries, but still inside the solution domain proper. These wave-damping conditions are

described by

q(r, t) = q(r, 0)+ [q(r, t) − q(r, 0)]e|r−rb |t/(τR0). (3.22)

Such a treatment damps any perturbations about the initial equilibrium solution that are within distance,rb,

of the boundary, on a spatial scale,R0 and on an orbital time scale,τ.

3.10 Fast angular advection routine

I discuss in Section3.2how accurately predicting the physics of accretion disk dynamics requires the use of

a grid code, but that such an approach is computationally inefficient and numerically diffusive for flows with

a large background component. The large background flow speed lowers the time step allowed by the CFL

stability condition, requiring hundred of iterations per orbit, much of which goes into simply translating the

fluid in the direction of the background flow.

In order to increase the efficiency of the code in such situations, I adopt the fast advection algorithm

described byMasset(2000) for use in two-dimensional polar grid codes. The algorithmtakes advantage of

the near-Keplerian velocity profile of accretion disks in order to obtain a significant computational speed-

up as well as a significant reduction in the numerical viscosity. The algorithm’s underlying strategy is to

subtract off the bulk background flow, which can be considered simply a translation of grid quantities in the

angular direction, leaving the dynamically important residual velocity.

I discuss the velocity decomposition scheme of the algorithm below and the methods used to transport

the fluid variables by each of the different components.

3.10.1 Method summary

In decomposing the velocity, the cylindrical grid is brokenup into a series of annuli and an averaged,

background velocity in the azimuthal direction,uAVG (r), is calculated for each annulus. The first veloc-

ity component corresponds to the residual amount,uRES (r, θ), by which the total velocity differs from

its azimuthally averaged value,uAVG (r). The averaged, background velocity is further decomposedas,

uAVG (r) = uS H (r) + uCR (r). The former component is constructed to correspond to the largest possible

whole-number shift of grid cells in the azimuthal directionand the second to the remaining partial-cell

shift. Neither of these components depend on the angular variable. The whole-number shift is rounded to

the nearest integer so that the partial-cell shift may be positive or negative, but will always correspond to a

shift magnitude less than or equal to half a grid cell. The total velocity at any cell on the grid is then given

as

u(r, θ) = uS H (r) + uCR (r) + uRES (r, θ). (3.23)

The transport of fluid quantities due to theuS H component is easily accomplished by numerically shifting
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the fluid variables by the appropriate number of cells in the azimuthal direction. Because the shift is integral,

the process does not introduce any numerical diffusion. Also, since it represents the advection of a balanced,

steady-state fluid flow, the process does not limit the size oftime step permitted by the CFL condition as

such flows do not support wave phenomena.

Transport of the partial-cell component is accomplished byshifting a second-order interpolation of the

fluid variables by the appropriate azimuthal amount. The details of the second-order interpolation used

are laid out in the subsection below. While this treatment does introduce some numerical viscosity via the

interpolation, per the same reasoning as above, it does not limit the time step allowed by the CFL condition.

Finally, transport of fluid quantities due to the residual azimuthal component is performed by the TVD

algorithm, just as for the radial velocity sweep. This transport step contributes to the numerical viscosity and

also lowers the size of the time step allowed for stability. However, if the flow is near-Keplerian, the residual

velocity will be small and the time step will be much larger than that permitted by the full azimuthal velocity.

In practice, the allowed time step is increased by a factor of5− 10 times that allowed without removing the

background flow. I provide further comparisons and discussion of this improvement in Section4.4.

3.10.2 Transporting fluid quantities via second-order interpolations

Transport of a fluid quantity along an annulus due to a velocity which is independent of the grid cell may be

accomplished by interpolating the function and redetermining the interpolation at a shifted location. This

process is not unstable; therefore, it does not decrease theCFL-allowed time step, but it does introduce

some diffusion as peaks in the interpolated quantity are shifted by fractions of a grid cell and must then be

redistributed among more than one cell.

Consider a known distribution along a single direction of cell-averaged values,q(xi), corresponding to

a given fluid quantity. The cell-averaged values of the quantity can be related to an assumed underlying

continuous quantity,q(x), by the relation

q(xi) =
1

xi+1/2 − xi−1/2

∫ xi+1/2

xi−1/2

q(x)dx (3.24)

Assuming a single advection direction,uad, one can determine an upwind two-cell interpolation for the

continuous function,q(x), as

q(x) = m−(x − xi−1) + b−, uad > 0 (3.25)

q(x) = m+(x − xi+1) + b+, uad < 0 (3.26)

wherem− = (qi − qi−1)/(xi − xi−1), m+ = (qi+1 − qi)/(xi+1 − xi), b− = qi−1 andb+ = qi+1. Notice that the

definition ofq(xi) in equation (3.24) is self-consistent for the above interpolations. For a fractional cell shift

of width, f∆x = uCR∆t, whereuCR > 0 and∆x = (xi+1/2 − xi−1/2) material advected into theith cell was
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previously betweenxi+1/2 − | f |∆x andxi−1/2 − | f |∆x. Then, the updated cell-averaged value atxi is

q′(xi) =
1
∆x

∫ xi+1/2−| f |∆x

xi−1/2−| f |∆x
[m−(x − xi−1) + b−]dx

= qi(1− | f |) + qi−1| f |. (3.27)

For a shift whereuCR < 0, the cell-averaged fluid quantity is updated due to advection of material previous

located betweenxi+1/2 + | f |∆x andxi−1/2 + | f |∆x so that

q′(xi) =
1
∆x

∫ xi+1/2+| f |∆x

xi−1/2+| f |∆x
[m+(x − xi+1) + b+]dx

= qi(1− | f |) + qi+1| f |. (3.28)

The above two-cell interpolation may be extended to higher order. In the code I implement a centered,

three-cell interpolation (of orderf 2) to update the fluid quantities by the constant fractional velocity, uCR , in

the azimuthal direction.

3.11 Hydrodynamical tests

I perform a suite of four hydrodynamic tests in order to ascertain the accuracy and stability of the code:

a Sedov-Taylor blast wave, a two-dimensional oblique shockat three different angles, a Kelvin-Helmholtz

(KH) instability test and a cylindrical bow-shock test. Allexcept the KH instability test contain super-

sonic fluid flow. The first three tests are performed in Cartesian coordinates and the last test is performed

in cylindrical coordinates. The results of these tests are compared to those from the piece-

wise parabolic method (PPM,Colella & Woodward, 1984) code as implemented inVH-1

(http://wonka.physics.ncsu.edu/pub/VH-1/), and when possible with analytical solutions. When

referring to results from the TVD code, the limiter scheme used for the simulation will be placed in paren-

theses.

3.11.1 Sedov-Taylor blast wave

A Sedov-Taylor blast wave is a strong, pressure-driven explosion resulting in a spherical shock front with

self-similar subsonic flow in the post-shock region.Landau & Lifshitz(1959) detail the analytical solution.

In order to simulate such an explosion, I initialize the computational grid with a fluid of uniform density,

ρ0, and pressure,p0, except for the central grid cell where the pressure is set tobe pc = 105p0. The gas is

unmoving initially and I setγ = 5/3.

Figure3.3 compares the resulting density, momentum and pressure using 1283 grid cells after a time

where the shock wave has travelled 57 grid cells. A random selection of 1/100th of the data is plotted.

Values have been normalized to their expected analytical values immediately behind the shock front which

http://wonka.physics.ncsu.edu/pub/VH-1/
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Figure 3.3 Density, total momentum and pressure of a Sedov-Taylor explosion after the initial shock front
has travelled 57 grid cells. The analytical solutions are drawn with dashed lines. All values for the quantities
have been normalized to their expected analytical values immediately behind the shock front.
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Figure 3.4 Density, total momentum and pressure after the shock front has travelled 57 grid cells. TVD(VL)
results are shown in black and PPM results are shown in blue. The analytical solutions are drawn with red,
dashed lines.
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I quote fromLandau & Lifshitz(1959) as:

ρs =

(

γ + 1
γ − 1

)

ρ0 (3.29)

vs =

(

2
γ + 1

)

v f r (3.30)

ps =

(

2
γ + 1

)

ρ0v2
f r (3.31)

whereρ0 is the density of the ambient medium andv f r is the velocity of the shock front. These values are

determined by the Rankine-Hugoniot jump conditions and canbe applied to shocks in general. Note that for

an adiabatic gas withγ = 5/3 the post-shock density can be at most 4 times larger than that of the ambient

medium. For an isothermal shock, it is unconstrained.

The code does a good job of reproducing the analytical results of all three quantities in the post-shocked

region, resolving the shock front over 2− 3 grid cells and reproducing about 80% of the expected shock

strength. Figure3.4 compares the resolution of the shock front as captured by theTVD(VL) and PPM

codes. The resolution of the front is slightly better with the TVD code and the shape of the front differs

slightly between the two codes. Besides these differences the codes perform similarly.

3.11.2 Two-dimensional oblique shock

The two-dimensional oblique shock is a version of the one-dimensional Sod shock tube (seeLandau &

Lifshitz, 1959, for example) set-up in a two-dimensional box at an angle to the box boundaries. In the

1-D Sod shock a jump discontinuity is initialized where the pressure and density of two regions of fluid

are initially disparate (say, separated by a membrane). Thetwo regions of fluid may or may not initially

be moving relative to one another. In the 2-D oblique case, the fact that the initial density and pressure

discontinuities are at an angle causes the resulting shock front to propagate obliquely across the box. The

specific initial conditions I implement are given by

ρ =



















1, x < x0

0.125, x ≥ x0

(3.32)

p =



















1, x < x0

0.1, x ≥ x0

, (3.33)

with no initial velocity. For the two dimensional test, I setx0 = 0.25 along the vertical and horizontal box

boundaries so thatx0 =
√

2(0.25) along the central diagonal.

Figure3.5shows the density and pressure of the TVD(VL) and PPM codes measured along the central

diagonal of the box and the corresponding analytical solution at the elapsed time. Both codes agree well with

the analytical solution, capturing the shock front and backward travelling rarefaction wave in both density

and pressure as well as the contact discontinuity in the density profile nearxdiagonal = 0.5.
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Figure 3.5 Density and pressure when the shock has reachedxdiagonal=0.67 Results from the TVD(VL) are
drawn in the heavy, grey line, results from the PPM simulation are shown in the heavy, dashed line and the
analytical solution is drawn in the fine, solid line.

In order to compare the results between the different TVD limiter schemes, Figure3.6shows the differ-

ence between the computed density and that of the analyticalsolution for the five TVD limiter schemes as

well as the PPM code (differences between the computed and analytical pressure show analogous results).

The PPM code does better than any of the TVD codes at minimizing the diffusion near shock fronts and

discontinuities, while the diffusion of the TVD codes varies considerably at these points. The superbee

limiter has the least diffusion of the TVD codes, and is close to the PPM results except that it displays some

spurious oscillations before the shock fronts. These oscillations are indicative of instabilities and in practice,

if the simulation has too many shocks, the superbee limiter can force the size of the time step allowed by

CFD conditions too small to be of practical use. The asymmetric limiter scheme has only slightly more

diffusion than the superbee scheme and correspondingly has smaller pre-shock oscillations and higher sta-

bility. In practice the asymmetric scheme has not forced thetime step size to be too small and has proved

a good compromise between stability and lowered diffusion. The MC limiter scheme (not shown) has al-

most identical results to the Van Leer scheme which shows more diffusion than the previous schemes and

the minmod scheme shows the most diffusion. The PPM code does not show oscillations because it places

further conditions on the dynamics that tend to flatten gradients before and after a discontinuity.

Because the Sod Shock Tube is propagating at an angle, it proves a useful examination of any differences

caused by dimensional splitting. Figure3.7shows contour plots of the density from the TVD and PPM codes

run with Nx × Ny = 180x180 resolution and outflow conditions on all boundaries. Formost of the length of

the initial jump discontinuity the shock front is straight and propagates at the same speed along the original

diagonal. As one gets close to the sides of the front, the fluidis able to “bleed” away towards the open sides

(and eventually out of the box once it reaches the boundaries). As a result the shock front begins to diffract
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Figure 3.6 Density differences between numerical and analytical solutions for thedifferent codes. Devia-
tions from the analytical solution are measured by the scaleon the left. The analytical solution is shown in
the heavy, pale grey line, measured by the scale on the right.

at the edges; this bending increases as the front evolves in time.

3.11.3 Kelvin-Helmholtz instability

In any two fluids with shear (such as that caused by differential rotation), if the velocity gradient in the

shear region is strong enough compared with the stratification, the Kelvin Helmholtz (KH) instability should

develop. This instability is difficult to capture accurately in numerical simulations. Codeslike the PPM code

can overproduce the instability’s small-scale turbulent structure for a given resolution (Dwarkadas et al.,

2004) while a code with too much diffusion will underproduce such structure. SPH codes also perform

poorly on such a test when there is a density jump across the shearing region. I find a wide range of

small-scale structure production from the different limiter schemes enabling me to control the amount of

small-scale structure in a simulation by choosing an appropriate limiter scheme.

The KH instability is initialized on a Cartesian grid of resolution Nx × Ny = 400× 400 that is periodic
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Figure 3.7 Density contour plots illustrating propagationof an oblique shock at angles,θ = 45◦, θ = 30◦

andθ = 15◦ from top to bottom, respectively. Figures on the left show the TVD(MC) results, figures on the
right, the PPM results. The dashed lines show the initial location of the discontinuity.
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in the x direction and has reflecting boundaries on the top andbottom. The fluid in the top half of the

box is set moving to the left at about one thirteenth of the sound speed and the fluid on the bottom is set

moving to the right with the same speed. The densities of the two regions of fluid are set to values of

0.9 and 1.1 on the top and bottom, respectively, in order to help visualize the instability. The interface

between the two fluids is initialized to a sine wave in order toexcite the instability. Figure3.8shows results

from the TVD(MB,AS,MC,MM) and PPM codes. Each rows has threepanels showing density contour

plots, snapshots taken att = 0.3, t = 0.6 andt = 1.5, respectively. Time is measured in units where the

undisturbed fluid propagates completely across the box in unit time.

The superbee limiter proves too unstable in this test and shortly after t = 0.3 the time step becomes

unreasonably small. The other different limiters produce a range of small-scale structure. The minmod

limiter produces the least, developing only a single cusp along the interface and only a single, loose cat’s

eye structure. The MC limiter has less diffusion and shows hints of small scale instabilities at t=0.3 forming

along the interface. The final cat’s eye is more tightly woundand shows increased substructure as well.

Finally the AS limiter produces as much substructure as the PPM code. Indeed at times,t = 0.3 and

t = 0.6, the results look very similar. At time,t = 1.5, both codes show very complicated interfaces with

much mixing between the two fluid layers. As in the oblique shock test, the PPM code shows evidence of

flattening or clipping the density profile. The TVD runs exhibit larger variation in the density, not only near

the interface, but also in the bulk regions of the fluids. The density of the PPM code is comparatively very

uniform in the bulk of each fluid region, illustrated by the uniform yellow and blue colors in each region.

The KH instability test readily demonstrates the differences between the different limiters and codes.

The reason that this test does so is that with an infinitely sharp interface the KH problem is formally ill

posed, and the growth rate for infinitely small disturbancesis infinitely fast. Because there exists no small-

scale cutoff for the dynamics, the numerics themselves dictate the evolution on the smallest scales.

3.11.4 Supersonic flow around a cylinder

In order to test the implementation of the Euler equations ona cylindrical grid, I examined the formation of

a bow shock caused by supersonic flow around a cylinder. I initialize a cylindrical grid spanning an annular

region from 2≤ r ≤ 20, 0≤ q ≤ 2π with resolution,Nr × Nq = 600× 150, with a supersonic flow to the

left at three times the sound speed. The initial density and pressure on the grid are uniform. The density is

set equal to the adiabatic index,ρ = 5/3, and the pressure is set top = 1. The inner boundary of the grid is

reflecting, simulating a solid cylinder around which a bow shock forms. The outer boundary allows outflow.

Figure3.9shows the results from the TVD(VL) and PPM simulations.

The two codes both produce a density peak just in front of the cylinder with a value close to 6 (about

6 and 6.4, respectively, for the PPM and TVD(VL) codes). These peak densities are about 90% and 96%

of the post-shock density ofρs = 4ρ0 for an adiabatic shock of index,γ = 5/3. Again the TVD code has

small-scale oscillations in front of the shock, which the PPM code appears to have flattened. Both codes

capture the smaller tail shocks produced at the rear of the cylinder.
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Figure 3.8 Density contours for a KH instability. Each row shows a contour plot of the density taken at
t = 0.3, t = 0.6 andt = 1.5, respectively. The first four rows show results from the TVDcode using the
minmod, MC, AS and mixed limiters, respectively. The last row shows results from the PPM code.
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Figure 3.9 Density contour plots of the steady-state density. The image on the left shows results from
the TVD(VL) code and the image on the right, that from the PPM code. The black circles represent the
boundary of the cylinder.



Chapter 4

The Protoplanet Comparison Problem

4.1 Introduction

In this Chapter, I describe the standard setup where a singleprotoplanet is embedded within a gas disk. I

provide a systematic comparison of results depending on several details and parameters of the implementa-

tion. The purpose of such a study is to be able to better determine which details observed within a run are

physically realistic and consistent between runs and whichare likely due to numerical artifacts. In Section

4.3, I present the reference results of the code on a “Jupiter-mass” planet. Section4.4discusses the speedup

obtained through the use of the fast advection algorithm as well as differences in the results caused by its

use. Differences caused by the choice of two different sets of solution variables are presented in Section

4.5. Sections4.6, 4.7, and4.8 examine the influence of viscosity (both numerical and physical viscosity),

resolution, and choice of limiter, respectively. I summarize all these results in Section4.9.

4.2 Problem setup

The details for the setup are the same as those used byde Val-Borro et al.(2006) and represent what is now

a standard problem in accretion disk theory. A polar grid is setup with initial conditions (described below)

using a given mesh resolution,Nr × Nθ. In this chapter, the standard run usesNr × Nθ = 384× 384. The

azimuthal range is always taken to be [−π, π] and unless otherwise indicated, the radial range is [0.4a, 2.5a],

wherea is the mean orbital radius of the protoplanet. The gravitational potential of the star is calculated for

a grid position,r = (r, θ), in terms of the central star’s mass,M∗ and location,r∗,asφ∗ = −GM∗/|r − r∗|
while the protoplanet is represented through the softened potential,

φp =
−Gmp

√

|r − rp|2 + ǫ2
. (4.1)

The softening length,ǫ, is fixed in terms of the disk’s scale height asǫ = 0.6H(a). A “Jupiter-mass” planet

is defined in terms of the system’s mass ratio,µ = mp/(mp + M∗), to haveµ = 10−3. Simulations with a

45
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single planet are calculated in the frame corotating with the planet, with the origin at the system’s center of

mass. This choice of origin means that the star orbits a distance,µa, from the origin, the planet at a distance,

(1− µ)a.

I use dimensionless units where the unit of mass is taken to bethe total mass of the system,M∗ + mp.

Length is measured in units of the planet’s initial radial separation from the star,a, and I set the gravitational

constant,G, to unity. Time is measured in units of the orbital time,

τ =

√

a3

G(M∗ + mp)
. (4.2)

With this definition, one orbital period takes 2π units of simulation time.

Fiducial initial conditions are those of a uniform-densityKeplerian disk, which is the equilibrium solu-

tion for a single central potential of mass,M∗. I transform the azimuthal velocity into the corotating frame

and correct for pressure support asuθ =
√

(GM∗)/r[(1 − m2
H)1/2 − (r/a)3/2], wheremH = H/r is the disk

thickness. In order to allow the Keplerian disk to graduallyadjust to the influence of any additional poten-

tial, such as that due to an orbiting planet, the potential ofthe planet is slowly “turned-on” according to the

formula,

φp(r, t) = sin2
[ t
4Nτ

]

φp(r), (4.3)

wheret is the simulation time andN = 10 is the number of orbits over which the potential is turned on.

After the prescribed number of orbits the full value of the potential,φp(r), is left constant.

4.3 Standard comparison run

Here I present a standard comparison run of the code for a Jupiter-mass planet, run for 300 orbits using

the VL limiter scheme. The calculation is performed advecting the solution set (ρ, ρur,H), whereH =

ρ(ruθ + r2Ω) is the absolute angular momentum (combined gas and frame) in the corotating frame.

In Figure4.1I show density contours after 5, 10, 20, 50, 100 and 300 orbits. Note the appearance of the

spiral arms occurs very quickly—within a few dynamical times at most. There are two trailing arms outside

the planet’s orbital radius and three arms inside the orbital radius. They are close to steady-state in the sense

that they occur at fixed locations within the disk when time-averaged over a few orbits, although they exhibit

small spatial and temporal oscillations in simulations with low-viscosity.

As the simulation progress, the planet begins to clear gas from its orbit, but not uniformly. Gas is more

readily cleared in two orbital tracks 1− 2 Hill radii, RH ≡ (µ/3)1/3, to the inside and the outside of the

planet’s orbit. These locations are the approximate distance at which the averaged torque density due to

neighbouring resonances peaks (around resonance order,m = 10; seeWard (1996) for details). There is

a further asymmetry in the efficiency of the gas clearing for locations trailing and leading the planet as

demonstrated in Figure4.2. It shows the density, averaged along the full azimuth direction at five different
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Figure 4.1 Density contours for a standard Jupiter mass run using the VL limiter scheme. Each plot in
sequence shows a contour of the density taken after 5, 10, 20,50, 100, and 300 orbits, respectively.
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Figure 4.2 Azimuthally averaged density profile of the standard Jupiter mass run using the VL limiter
scheme. The inset displays the same averaged densities for the 5 different times in the solid curves as well
as averages forθ > 0 in the dotted curves andθ < 0 in the dashed curves.

times during the simulation. Especially during the initialformation of the gap, the total density in the track

outside the planet’s orbit is much lower relative to the density in the track inside its orbit. In the inset, solid

lines show the averaged density as before, while the broken lines show the averages separated into halves

for θ > 0 (dashed) andθ < 0 (dotted). While the gap region leading the planet seems to clear approximately

equally inside and outside the planet’s orbit, the region trailing the planet to the outside clears more quickly

than elsewhere and the region trailing the planet to the inside clears more slowly.

Note that there are regions of fluid within the gap which persist over time. These regions surround the

L4 andL5 Lagrangian equilibrium points located atθ = ±π/3. In Figure4.1 these are the circularly shaped

overdensities which remain within the gap. I illustrate theevolution of these regions in Figure4.3. The

density plotted has been radially averaged at each azimuth from r = 0.9a to r = 1.1a. Again there is a
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Figure 4.3 Average density within the gap region for the standard Jupiter-mass run. The density within
10% of the planet’s orbital radius has been radially averaged. Note the asymmetry between theL4 andL5

equilibrium points.

leading-trailing asymmetry. This asymmetry has been observed in most planet codes to varying degrees (see

de Val-Borro et al., 2006).

In addition to the above libration islands at theL4 andL5 points, there are large over-densities which

begin to develop due to the generation of vortices to either side of the gap region. Initially several small

vortices develop at roughly the same radii, but spaced in azimuth. These vortices appear as roughly concen-

tric overdensities in the density contour plots (in Fig.4.1 at 20 orbits there are three such regions at both

r/a = 0.75 andr/a = 1.3). As the simulation progresses, the vortices grow and begin to merge, depending

on their radial location within the disk. In disks with largeviscosity, (ν & 10−5), the vortices do not form.

Similar structures have been observed in other codes at low viscosity. The vortices are likely the result of

Rossby-wave instabilities (seePapaloizou & Lin, 1989; Lovelace et al., 1999; Li et al., 2000, 2001, and
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Figure 4.4 Time evolution of the torque on the planet’s orbitdue to the disk. The torque is broken up into
components from the disk material inside (dotted) and outside the planet’s orbits (dashed). Black lines show
the two components and the net torque from all the disk material more than one Hill radius,RH = (µ/3)1/3,
away from the planet. Grey lines show the two components and the net torque due to material between
0.5RH andRH.

references therein). I discuss their generation and evolution more thoroughly in Section5.2.

In Figure4.4 I present the total torque summed over various regions of thedisk, showing its evolution

over the course of the simulation. A running average over a period of 10 orbits has been performed to

smooth out some of the oscillations. As per the treatment inde Val-Borro et al.(2006), material within

the Hill sphere is considered separately, mimicking the effect of the torque-cutoff. The gas within this

region feels the softened gravitational potential of the planet, rather than the long-range singular potential.

As theoretically predicted (Goldreich & Tremaine, 1980; Ward, 1986), the torque inside the planet’s orbit

is positive (transferring angular momentum to the planet),while that outside the planet’s orbit is negative

(angular momentum is transferred from the planet to the exterior disk). Also as predicted, there is an

asymmetry in the magnitudes of these torques (Ward, 1996). The net torque on the planet is negative and
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would cause it to migrate inwards, were its orbit not held fixed.

The initially smooth, broader scale oscillations of the total torque (on a time scale of∼ 20 orbits) are

consistent with Phase I evolution, as described byKoller et al. (2003). The frequency of the subsequent

rapid variations which develop matches the inverse period of the large vortex outside the planet’s orbit as

measured in the frame of the planet.

4.4 Speed-up due to the fast advection algorithm

Using the fast-advection algorithm discussed in Section4.4 decreases the number of iterations required to

perform a simulation. This result is accomplished by subtracting off the average background flow in the az-

imuthal direction, and advecting fluid quantities via the TVD method by only the residual azimuthal velocity

atop of the background flow. The subsequent transport of these quantities due to the background flow may

be performed without limiting the time step allowed by the CFL condition. The simulation time is reduced

approximately by the ratio of the residual azimuthal velocity to the full azimuthal velocity. This reduction

comes at the expense of increased diffusion introduced by the transport of quantities by the background flow.

In order to determine the effect of this diffusion on my results, I compare the standard run with and without

the fast advection routine implemented.

In Figure4.5 I show density plots taken after 20, 100 and 300 orbits comparing a run which uses the

fast-advection routine and one which does not (I refer to thelatter as the pure TVD run). The run which

uses the routine requires 7.8 times fewer iterations to reach 100 orbits and finishes 6.6 times faster. It is

evident from the density plots that the algorithm increasesthe diffusion of the simulation; nonetheless, the

important structures of the flow are still apparent. The spiral arms show nonsteady-state behavior and the

libration islands of fluid are present in both runs. Vorticesform on the same radial lines in both runs and

eventually merge (the two separate vortices present in the pure TVD run have merged by 400 orbits). Both

results also show narrow tendrils of gas threading the gap region.

I compare results for the azimuthally averaged density and the radially averaged density in Figure4.6.

Again the increased diffusion is apparent, but the results are otherwise similar.

4.5 Dependence on the chosen solution set

Kley (1998) has shown that advecting the absolute angular momentum,ρr(uθ + rΩ) (that of both the fluid

and the frame), as written in equation (2.18) produces better results than just advecting the quantityρruθ.

In practise this distinction is between accounting for the Coriolis and centripetal accelerations terms using

the hydro portion of the code (the TVD method in my case) or as source terms where they are solved via

the Runge-Kutta method. I perform a comparison between a simulation which uses the solution variables

(ρ, ρur,H) and one which uses the solution variables (ρ, ρur,H/r), that is between one which solves for the

absolute specific angular momentum and one which solves for the absolute specific angular velocity. As one



52 C 4. T P C P

0.5 1.0 1.5 2.0 2.5
r/a

-1.0

-0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5
r/a

-1.0

-0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5
r/a

-1.0

-0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5
r/a

-1.0

-0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5
r/a

-1.0

-0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5
r/a

-1.0

-0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Figure 4.5 Snapshots of the density after 20, 100 and 300 orbits (top, middle and bottom rows). Results
from the standard run are on the right; results from the pure TVD run are on the left. The two vortices still
present at 300 orbits in the pure TVD run have merged into a single vortex by 400 orbits as in the standard
run.
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Figure 4.6 Comparisons of the azimuthally averaged densityand the radially averaged density in the gap
region. Results drawn in dark lines are from the pure TVD run;those in the pale lines are from the standard
run. As expected the use of the algorithm increases the diffusion in the simulation.

might expect, the latter yields poorer results, since the global angular momentum is not formally conserved

in such a case.

In Figure4.7I compare the density of the solution sets after 10, 50 and 100orbits. While both properly

capture the locations of the spiral arms, the formulation which conserves angular momentum appears to

have less diffusion than the one which does not. Figure4.8 shows that while the angular velocity scheme

captures the gross details of the gap such as its width and depth, other structures in the flow, such as the

L4 and L5 libration islands, and the vortex lines are missing. In addition, the actual preservation of mass

and angular momentum over the course of the simulation differ: the scheme that uses angular velocity as a

solution variable conserves mass and angular momentum over100 orbits to about 4% and 3%, respectively;

the scheme that uses angular momentum as the solution variable conserves these quantities to within 2%

and 1%, respectively.

4.6 Effects of viscosity

The presence of physical viscosity tends to smooth perturbations of physically conserved quantities. Parametriz-

ing the viscosity for a flat, alpha-disk model (§2.3.2) results in a relationship between the viscosity coef-

ficient, ν, and turbulent efficiency,α, given byν = αm2
H

√
GM∗r wheremH is the disk thickness. For an

expected range ofα-values taken to beα = 10−2 − 10−3 (Hartmann et al., 1998) and a disk thickness of

mH = 0.05, one findsν ≈ 10−4.5 − 10−5.5. Figure4.9 shows the evolution of the density for a simulation

with ν = 1× 10−5. The physical viscosity is implemented by direct differencing, accurate to order (∆x)2, of

the stress tensor terms as written out in AppendixA. While the evolution of the spiral arms occurs on the
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Figure 4.7 Snapshots of the density comparing results after10, 50 and 100 orbits for two different sets of
solution variables. Plots on the left are for the solution set, (ρ, ρur, ρ(uθ + rΩ)), while those on the right are
for (ρ, ρur, ρr(uθ + rΩ)).
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Figure 4.8 Comparisons of the azimuthally averaged densityand the radially averaged density in the gap
region. The runs drawn in dark lines use angular velocity as asolution variable, while those in the pale lines
use angular momentum as a solution variable. While the gap profiles are close in the radial direction, they
are substantially different in the azimuthal direction.

same timescale, many of the structures in the simulation areno longer present with this additional physical

viscosity: theL4 andL5 libration islands are less marked and the vortex lines seen previously are absent.

Figure4.10compares the radially and azimuthally averaged densities at several orbital times for runs with

and without added physical viscosity. While it appears thatthere may be libration islands of fluid in the

viscous run which begin to develop, their radial and azimuthal structure is smoothed out by the viscosity.

Note that if the added physical viscosity is reduced in orderby another half-magnitude, the libration islands

are once again present (see below).

Any numerical algorithm exhibits numerical viscosity due to the combined results of diffusive and dis-

persive errors (discussed in§3.2). While physical viscosity is characterized by the form of the stress-strain

tensor (in a Newtonian fluid there is a linear relationship between the two), an algorithm’s numerical vis-

cosity can differ from the physical viscosity, not only in the amplitude or spatial dependence of the viscosity

coefficient, but also in the relationship between the stress and strain. Except for the most diffusive schemes,

the numerical viscosity of an algorithm usually displays a nonlinear dependence on the velocity gradient.

These higher order terms tend to introduce dispersion.

Despite this potential incongruity between physical and numerical viscosity, it is useful to have an esti-

mate for the value of the viscosity coefficient at which the two viscosities may be considered approximately

equal in their effects. In order to determine this value, I compare the resultsof several simulations with

various levels of added physical viscosity (implemented asdescribed at the beginning of this section). By

reducing the value of the viscosity coefficient,ν, to a point where the results of the simulations are approx-

imately the same irrespective of its addition, I obtain an estimate for the numerical viscosity present in the
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Figure 4.9 Snapshots of the density for a standard Jupiter mass run using the VL limiter scheme with a
viscosity ofν = 1× 10−5 (α ≈ 0.004). Each plot in sequence shows a contour of the density taken after 5,
10, 20, 50, 100 and 300 orbits, respectively.
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Figure 4.10 Comparisons of the azimuthally averaged density and the radially averaged density in the gap
region. The dark lines haveν = 1 × 10−5; the pale lines have no added viscosity. The viscosity makesthe
islands of fluid surrounding theL4 andL5 points unmaintainable.

simulation.

Figure 4.11 shows the results of decreasing the value of the physical viscosity coefficient from ν =

3 × 10−4 to ν = 1 × 10−6 in roughly half-magnitude increments. These simulations are performed using

the VL limiter scheme run for 100 orbits. Increasing the level of viscosity present narrows the gap width,

decreases its depth and softens the density gradient at its edges. Even when introduced at a level of 10−6

there is a difference in the averaged density profile, especially in the gapregion. This suggests the numerical

viscosity of the code is of approximately the same magnitudeor less. The results using other limiter schemes

are analogous and suggest a similar level of diffusion with more or less dispersion. They are discussed further

in Section4.8. Comparison with Figure4.8suggests that the numerical viscosity using the alternate solution

variables, (ρ, ρur , ρ(uθ + rΩ)), is more than an order of magnitude higher.

In Figure4.12I show the variation of the torques with viscosity. All the torques are similar for the three

lowest values of added viscosity. Only at values ofν = 1×10−5 or larger are the differences discernable—the

torques from the inner and outer parts of the disk both increase in magnitude, but the net torque decreases

for large enough viscosities. In addition, the rapid oscillations damp beyondν = 10−5 because the large

outer vortex is no longer able to form. The increase of material within the gap region with larger viscosity

could explain the increase in magnitude of the inner and outer torques. With a large enough viscosity, the

asymmetry of the density profile causing the inner and outer torques on the planet are smoothed out, and the

net torque decreases.
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Figure 4.11 Comparisons of the azimuthally averaged density and the radially averaged density in the gap
region at different values of added physical viscosity. All results use the VL limiter scheme and are taken at
100 orbits. The addition of physical viscosity, even at the level of∼ 10−6, alters the results of the simulation,
especially within the gap region, suggesting the numericalviscosity of the simulation is at the same level
or lower. Comparison with Figure4.8 suggests that the numerical viscosity using the alternate solution
variables, (ρ, ρur , ρ(uθ + rΩ)), is more than an order of magnitude higher.

4.7 Effects of resolution and evidence of numerical convergence

The effects of numerical viscosity become more pronounced at lowerresolutions. Figure4.13 shows the

azimuthally and radially averaged densities for several different resolutions above and below that of the

standard run. The effects of increasing the resolution are most apparent inside the planet’s orbit. Low radial

resolution appears to make the slope of the gap shallower on the inside edge of the planet’s orbit. For the

two runs with the lowest radial resolution,Nr = 128, the libration islands of fluid do not exist—likely the

numerical viscosity at these resolutions is too large for them to be maintained. Also, as the radial resolution

increases, two distinct vortex lines and corresponding overdensities (at approximatelyr = 0.55 andr = 0.70)

become apparent inside the planet’s orbit, rather than justa single line, or none.

Note that increasing the azimuthal resolution relative to the radial resolution widens the gap profile.

At resolutions where the results have not yet converged, it also effects some of the details of the structures

presents within the disk, the vortex lines and the the libration islands, in a more complicated manner, because

the number of iterations required to reach 100 orbits differs amongst differing resolutions by as much as a

factor of three. Thus, the effects of numerical resolution are the result of a competitionbetween an increased

amount of diffusion from an increased number of iterations required, and adecreased amount of numerical

viscosity due to the increased grid resolution.

Figure4.14shows the torques as the resolution is varied. The runs with the three or four highest reso-

lutions are consistent with one another. Note that while thetorques over the inner and outer parts are still
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Figure 4.12 Time evolution of the torque on the planet’s orbit due to the disk. The torque is broken up into
components from the disk material inside (dotted) and outside the planet’s orbits (dashed). Also plotted is
the total net torque. The torque calculated is only that frommaterial further out than one Hill radius from
the planet. The palest lines have no added viscosity and fromthere the viscosity increases in half-magnitude
increments fromν = 1× 10−6 to 3× 10−4 for the heavy black lines.
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Figure 4.13 Comparisons of the azimuthally averaged density and the radially averaged density in the gap
region for different resolutions. All results use the VL limiter and are taken at 100 orbits. Results in the top
row have no added viscosity, those in the bottom row haveν = 10−5.

increasing slightly in magnitude with higher resolution, the total torque remains the same, except for the

two lowest resolution runs.

4.8 Effects of the limiter scheme

The results from the Sod shock tube test and the Kelvin-Helmholtz instability in Section3.11have already

illustrated that the different limiter schemes show different levels of numerical viscosity—both differing

diffusion and dispersion. Figure4.15shows the azimuthally and radially averaged densities for the minmod,

VanLeer, MC, mixed (MB) and superbee schemes used in the standard run. As in Section3.11, the superbee

scheme shows the least diffusion, but the most dispersion. This is evident from the increased density of
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Figure 4.14 Time evolution of the torque on the planet’s orbit due to the disk as a function of resolution.
The graph on the left has no added physical viscosity; the graph on the right hasν = 1× 10−5. The torque
is broken up into components from the disk material inside (dotted) and outside the planet’s orbits (dashed).
Only material further than one Hill radius from the planet isincluded in the calculation. The palest lines
show the lowest resolution of the 5 runs. The darkest lines show the highest resolution.

the fluid in the gap region, as well as its oscillatory structure. The mixed and MC schemes also show a

fair amount of dispersion. The VanLeer scheme seems to show diffusion comparable to that of the MC and

mixed schemes but substantially less dispersion. As beforethe minmod scheme show the most diffusion.

Figure4.16shows the resulting torques for each limiter scheme. These are consistent with the previous

results.

4.9 Summary

The above comparisons shown that the modified TVD code produces results consistent with a wide variety

of other codes examined in the protoplanet comparison project (de Val-Borro et al., 2006). In particular

I confirm the existence of libration islands at theL4 andL5 points, the asymmetry in the density of those

islands, the sign and magnitude of the torque exerted on the planet by the disk and the growth and merging

of vortices outside the planet’s orbit at low viscosity.

I find that the large vortex which forms outside the planet’s orbit causes substantial torque oscillations

on the planet. These oscillations correspond to repeated passes of the vortex by the planet. Increasing the

viscosity beyondν ≥ 10−5 damps the formation of the vortex thereby removing the oscillatory signature

from the torque. The existence of additionalvortex lines to the inside of the planet’s orbit are demonstrated.

Through use of theFARGO-like fast-advection algorithm, I achieve a reduction in the required simu-

lation time by a factor of 6.5. I also find that use of the absolute angular momentum ratherthan angular

velocity as a solution variable decreases the simulations numerical diffusion by over an order of magnitude.
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Figure 4.15 Comparisons of the azimuthally averaged density and the radially averaged density in the gap
region for different limiter schemes. All results are taken at 100 orbits. The top two graphs have no added
physical viscosity; the bottom two graphs haveν = 1× 10−5.
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Figure 4.16 Time evolution of the torque on the planet’s orbit due to the disk for different limiters. The graph
on the left has no added physical viscosity; the graph on the right hasν = 1 × 10−5. The torque is broken
up into components from the disk material inside (dotted) and outside the planet’s orbits (dashed). Only
material further than one Hill radius from the planet is included in the calculation. The lines from darkest to
palest correspond to the minmod, VanLeer, MC, mixed (MB) andsuperbee limiter schemes respectively.

I determine the level of numerical viscosity present withinthe code to beν < 10−6 (α < 10−3.5), enabling

the simulation of situation with Reynolds numbers on the order of Re = UL × 106.

Results from the single protoplanet problem concerning therelative diffusion and dispersion due to the

various limiter schemes are consistent with results presented in Section3.11.
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Chapter 5

The Role of Potential Vorticity, Vortices and

Jets in Early Solar System Development

5.1 Introduction

In the previous chapter, I provided a careful examination ofthe developed code and the physically rele-

vant structures produced in planet-disk simulations. In this chapter, I further examine these structures and

the influence they have on the disk’s development. I first examine the evolution of the potential vorticity

distribution, and show its relation to corresponding jet and vortex/eddy structures in disks with a single

protoplanet (§5.2) and with two protoplanets (§5.3). In the latter case, I demonstrate the failure of two

widely separated planets to readily evacuate the inter-orbital gas between them. This conclusion modifies

previously published results and holds even in the presenceof viscosity and in runs with low resolution. In

Section5.4, I examine the connection between the eddy and jet structures and the averaged angular momen-

tum transport. I then clarify how the above results for two-planet disk depend on the orbital separation of the

planets (§5.5). Finally in Section5.6, I relate a possible explanation for these results, discussconsequences

of the observed structures for the evolution of such systemsand comment on the applicability of such an

analysis to three-dimensional disks.

5.2 Potential vorticity and structure evolution for a single protoplanet

In Figures5.1 and5.2, I show the evolution of PV,Q ≡ ρ−1(∇ × u + 2Ω) · ẑ (see§2.5), and the azimuthal

velocity field over 300 orbits, for a Jupiter-mass planet using the Van Leer limiter and a resolution ofNr ×
Nθ = 768× 1152. Vortices develop, appearing in the PV map as closed contours which have negative PV

relative to the background value. Initially several small vortices form at roughly the same radii, but spaced

in azimuth. After 20 orbits, two vortex lines are visible, and by 50 orbits a third vortex line has appeared.

As the simulation progresses, the vortices grow and begin tomerge, until a single large vortex develops.

These vortices appear as overdensities in density maps discussed in Chapter4. They are likely the result of

65
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Figure 5.1 Potential vorticity contours for a Jupiter-massrun using the VL limiter at resolution,Nr × Nθ =

768× 1152. Each plot in sequence shows a contour of logQ taken after 5, 10, 20, 50, 100, and 300 orbits,
respectively.
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Figure 5.2 Contours of jet velocity (see text) corresponding to the PV shown in Figure5.1. Note that strong
jets develop to either side of the gap.
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Rossby-wave instabilities as discussed byPapaloizou & Lin(1989); Lovelace et al.(1999); Li et al. (2000,

2001) and references therein.

The velocity shown in Figure5.2 (hereafter referred to as thejet velocity), has the Keplerian velocity

subtracted off so thatu jet = uθ − vK . The jet velocity is the “headwind” or “tailwind” that a testparticle

moving at the Keplerian speed would feel inside the flow. Two large jets develop to either side of the gap

(centered at approximatelyr = 0.80 andr = 1.25). These jets oppose the local Keplerian value of the shear

velocity which would otherwise be positive inside the planet’s orbit and negative outside its orbit. At the

centers of the two main jets, the jet speed is more than 3% of the background Keplerian flow—60% of the

sound speed. As such, these structures are substantial local deviations from the overall balanced flow. They

are a result of the density gradient at the edge of the gap. This gradient and the flow it induces is strong

enough that rotation causes an azimuthal jet to form, analagous to the formation of mid-latitude jet streams

on the Earth from the latitudinal temperature gradient. Thesecond set of jets which develop within the gap

(0.9 . r . 1.1)) correspond to particles on horseshoe orbits of the coorbital region. These jets and the

corresponding horseshoe-orbit regions shrink as the gas azimuthally opposite the planet is evacuated and

eventually become the libration islands/eddies discussed in Chapter4. Note that with increased resolution

the time required for the horseshoe regions to shrink increases.

I display azimuthally averaged values of the PV and the jet velocity in Figure5.3. Note that extrema in

the PV profile correspond to a vanishing jet velocity and the centers of the jets straddle the gradients of PV

between successive extrema, with negative slopes of PV corresponding to positive jet velocities and positive

slopes of PV corresponding to a negative jet velocities. Theobserved jet velocity is induced by deviations in

PV from the balanced flow (PV anomalies) via PV inversion. Theinitial value of the PV shown in Figure5.3

is the background value due to the Keplerian velocity gradient. This background value acts as a mean-flow

reservoir from which PV disturbances can extract energy. Ananalysis for two-dimensional, incompressible,

inviscid fluids shows that while negative PV perturbations are able to extract momentum and energy from

the mean flow and thus grow in magnitude, positive perturbations are not (Lithwick, 2007). This analysis

may explain why the radii in Figure5.3 which have negative PV relative to the background flow are the

locations at which vortices are able to grow and merge—they correspond to the previously discussed vortex

lines. Note that a gradient of PV supports the propagation ofRossby waves, and breaking Rossby waves are

associated with many of the jets seen in the Earth’s atmosphere (see§2.5.2).

As demonstrated in the previous chapter, the presence of toomuch viscosity destroys the growth and

merging of vortices, possibly because it suppresses the Rossby-wave instability mechanism.de Val-Borro

et al. (2007) arrive at the same conclusion in a forthcoming work. Viscosity does not, however, change

the relative sign of the PV with respect to the background in these regions. In Figure5.4 I show the PV

distribution as in Figure5.1 above, but for a simulation run withν = 1 × 10−5. Although the vortices are

absent, Figure5.5indicates that jets still form. I compare the averaged values of the PV and jet velocity from

the viscous and inviscid runs in Figure5.6. Both the main jets and the pair within the gap are comparatively

weaker, and the latter pair are eventually sheared away as the distribution of PV in the gap homogenizes.
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Figure 5.3 Azimuthally-averaged logarithmic PV and jet velocity corresponding to the results shown Figures
5.1and5.2.
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Figure 5.4 Potential vorticity contours for a Jupiter-massrun using the VL limiter at resolution,Nr × Nθ =

768× 1152 withν = 10−5. Each plot in sequence shows a contour of logQ taken after 5, 10, 20, 50, 100,
and 300 orbits, respectively.
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Figure 5.5 Contours of jet velocity (see text) corresponding to the PV shown in Figure5.4. Note that jets
still develop to either side of the gap.
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Figure 5.6 Azimuthally-averaged logarithmic PV profile andjet velocity corresponding to Figures5.4 and
5.5, respectively shown in heavy lines; those corresponding toFigures5.1 and5.2 (without viscosity) are
shown in pale lines.
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5.3 Potential vorticity evolution with two planets

With two protoplanets present, the gas surrounding each planet evolves in a manner similar to a single pro-

toplanet, as long as the planets are widely separated enough. I examine the effect of altering the separation

distance in Section5.5. For now, I focus on the case where the second planet is at twice the orbital radius

of the first planet. For the remainder of this chapter, units are specified relative to the inner planet (which is

fixed with semi-major axis,a1 = 1) unless otherwise stated.

The problem setup for two-planet simulations is nearly the same as that for a single planet. I still perform

the simulations in the corotating frame of the first planet; however I place the system’s origin at the central

star, rather than the system’s center of mass. To account forthe new origin I redefine the planets’ potentials

as

φi =
−Gmi

√

|r − ri|2 + ǫ2
+

Gmi

r3
i

r·ri, (5.1)

whereri is the position of the planet. The second term accounts for the indirect acceleration of the frame due

to the planet’s gravitational tug on the star. I extend the radial range to [0.4a1, 4a1], increase the standard

resolution toNr × Nθ = 768× 1152 and set both planet’s masses to be 10−3M∗. The potential of the inner

planet increases from zero to its full value for the first 10 orbits as before; the potential of the outer planet

likewise increases over 10 orbits, beginning once the innerplanet has completed 20 orbits.

In Figures5.7, 5.8and5.9I show the density, PV and jet velocity distributions for a simulation with two

planets after 50, 100, 200, 400, 600, and 800 orbits of the inner planet. As before vortex lines form to either

side of both planets. Because the two planets are close enough, the vortex lines between them merge together

after 100 orbits (see§5.5). As the simulation progresses, the gas between the two planets accumulates into

a single vortex and is very slow to clear from between the two planets. Figure5.10shows the azimuthally

averaged quantities from the above simulations at a selection of times. The mass of gas within the vortex

at 800 orbits is approximately 4mp. Such a concentration of material would have dynamical effects on

the system, however, following its evolution in a self-consistent manner would require accounting for the

self-gravity of the gas in the region.

These results hold even for simulations run with added viscosity or at low resolution. I show in Figure

5.11the azimuthally averaged density and PV distributions after 50, 100, 400, and 800 orbits for two such

simulations. The first is a high resolution run as before but with ν = 1× 10−5. As in the single-planet case,

viscosity prevents the formation of vortices—the large vortex which previously formed between the planets

is absent. Nonetheless, the sharp gradients of PV and corresponding jets between the planets remain as in

the viscous single-planet simulation. While, the inter-orbital mass clears somewhat faster than the inviscid

run, roughly half the mass initially present in the region still remains after 1000 orbits (see Fig.5.12below).

Averaged quantities from a low resolution run (Nr×Nθ = 128×128) are also shown in Figure5.11. Vortices

form to either side of the outer planet just as in the high-resolution run despite the coarse resolution. Again,

sharp PV gradients and a pair of jets are present between the planets.

In Figure5.12I compare the change in mass of different regions of the disk for the standard two-planet
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Figure 5.7 Density contours from a simulation with two protoplanets with orbital radii of (a1, a2) = (1, 2)
taken after 50, 100, 200, 400, 600, and 800 orbits of the innerplanet.
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Figure 5.8 Contours of logarithmic PV from a simulation withtwo protoplanets with orbital radii of
(a1, a2) = (1, 2) taken after 50, 100, 200, 400, 600, and 800 orbits of the inner planet.
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Figure 5.9 Jet velocity from a simulation with two protoplanets with orbital radii of (a1, a2) = (1, 2) taken
after 50, 100, 200, 400, 600, and 800 orbits of the inner planet.
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Figure 5.10 Azimuthally averaged density, logarithmic PV profile and jet velocity corresponding to Figures
5.7, 5.8and5.9.
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Figure 5.11 Azimuthally averaged density logarithmic PV and jet velocity (top. middle and bottom rows,
respectively). Plots on the left are from the standard two-planet resolution run withν = 10−5; those on the
right are from a low-resolution run (Nr × Nθ = 128× 128).
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Figure 5.12 Change in mass of various regions of the disk, normalized in each region with respect to the
initial mass within that region. The plot on the left shows evolution of different disk regions for the inviscid,
Nr×Nθ = 768×1152 run. The plot on the right shows the evolution of the middle disk only for four different
combinations of viscosity, resolution and density profile.

simulation, with the viscous and low resolution runs. After1000 orbits in the standard run, more than half

of the original gas mass still remains in the region between the planets. This slow clearing of the gas from

the inter-orbit region contradicts previous low-resolution results byKley (2000). In that work, the region

between two planets with the same relative spacing was seen to clear within 300 orbits to better than 95%.

Although the planets were allowed to migrate with respect toone another, the mass evacuation primarily

occurred while the planets were still far apart. The simulation by Kley also used ar−3/2 profile for the

density distribution. The evolution of the mass from a run with this density profile is also plotted in Figure

5.12and only affects the results in the inter-orbital region by 5%.
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5.4 The connection with averaged transport

The connection observed in atmospheric systems between jetstructure and reduced transport offers a pos-

sible explanation for the slow clearing observed in the above simulations. According to such studies, the

evolution of strong jets in the flow is synonymous with weakened transport in the region. Strictly speaking,

the transport is lowered for materially conserved quantities, rather than globally conserved quantities. Thus

while the evolution of the total mass within the region is notconstrained, the evolution of the total mass

between a given number of tracked fluid elements should be. Because it is not possible to track material ele-

ments in an Eulerian code, observing the density within the region provides an estimate of how the material

mass elements are evolving only in an spatially and temporally averaged sense.

In order to estimate the level of momentum transport within the disk, I calculate an effective viscosity

coefficient based on the radial movement of angular momentum. Following work by Balbus & Hawley

(1998); Li et al. (2001); Klahr & Bodenheimer(2003), I define the total averaged angular momentum flux

as

Fm = r2(< ρuru
′
θ > + < ρurūθ >), (5.2)

where the angled brackets represent a spatial and azimuthalaverage. In writing equation (5.2), I assume that

the azimuthal velocity can be decomposed into mean and varying components asuθ = ūθ + u′
θ
. The first

term in the equation represents transport due to correlations in the velocity components while the second

indicates the direct radial flow of matter. It is possible to define an instantaneous, local version of an effective

alpha-parameter based on equation (5.2) as

α(r, θ, t) =
ρur(uθ − ūθ)

p
, (5.3)

wherep = ρc2
s is the pressure. All variables are functions ofr, θ andt except for the azimuthally averaged

velocity, ūθ(r, t), and the sounds speed,cs(r). I also define an averaged effective alpha-parameter, averaged

in azimuth and time,

< α >=
< ρuruθ > − < ρurūθ >

< ρ > c2
s

. (5.4)

Note that the above equations can be written in terms of the jet velocities sinceuθ − ūθ = u jet − ū jet by

the definition of the jet velocity.

In the upper half of Figure5.13 I show the instantaneous, local alpha-parameter values fora single

planet simulation after 200 orbits. The simulation was performed with resolution,Nr × Nθ = 768× 1152,

and over a radial range of (0.4a1, 4a1). The calculated value of the alpha-parameter varies considerably both

spatially and temporally. Averaging in azimuth and time produces a more coherent picture. In the lower half

of Figure5.13I show the temporally averaged local alpha-parameter. Instantaneous values were sampled

11 times an orbit and averaged over 10 orbits. In the averagedresults, eddies at theL4 andL5 points display

their characteristic quadrupole transport pattern (Li et al., 2001). Also visible beyondr = 2 is transport
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Figure 5.13 Local transport calculated as anα-parameter for a single planet simulation. The top plot shows
the instantaneous transport; the bottom plot is averaged over 10 orbits.
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Figure 5.14 Individual transport components: the thick grey line shows the total averaged transport, the
solid black line show the component due to velocity correlations, and the dashed line show the component
due to the averaged jet velocity.

associated with the spiral arms.

I present calculations of the fully averaged alpha-parameter (eq. [5.4]) in Figure 5.14. Results shown

were averaged in azimuth and in time over 10 orbits as described above. Averaged over 5 orbits, they are

almost identical and only when averaged over 2 or 1 orbits do larger fluctuations occur. The averaged jet

transport as calculated is only significant near the centersof the large jets which bracket the planet’s orbit.

Most of the transport is due to correlations between velocities. Note that the spiral density wave transport is

clearly shown with a strength given byα ∼ 10−3.

In the top graph, bottom panel of Figure5.15, I show the averaged alpha-parameter calculated from a

simulation with two planets. Results from two separate simulations with just one of the two planets are also

shown. The averaged value of the alpha-parameter correlates with the relative vorticity distribution,q, and
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Figure 5.15 Top graph: effective alpha (bottom panel) from a two-planet simulation (a1 = 1, a2 = 2) after
200 orbits of the inner planet and from separate simulationswith only one of the planets present. The top
panel shows that relative vorticity, PV and density all correlate with the effective alpha-parameter. In the top
panel the ordinate marks only the relative vorticity; the logarithmic PV and density have been appropriately
scaled. Bottom graph: relative vorticity, density and effective alpha from a run withν = 1 × 10−5 (solid
lines) along with the same results from the inviscid run (dotted lines) shown in the top graph.
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by extension with the PV distribution as well, as can be seen by comparison with the top panel. Also shown

is the averaged density which correlates negatively with alpha. When interpreted as a measure of the angular

momentum transport occurring in the disk, the above result supports the conjecture made in the previous

section, that the jet structures between the planet are associated with lowered transport. Such an association

could explain the slow clearing of gas between the planets. In the bottom graph of Figure5.15I compare

the averaged value of the alpha-parameter from an inviscid run and a run withν = 1× 10−5 (α = 0.004). As

expected, viscosity increases the measured level of transport and other correlated values adjust accordingly.

Over much of the range between the planets, the amount of added viscosity has resulted in an equivalent

increase in the calculated value of< α >.

5.5 The dependence of mass clearing on the planets’ relativeseparation

In order to further investigate the relationship between disk structures, and the amount of mass and radial

momentum transport, I performed a series of simulations with the outer planet at different relative orbital

separations from the inner planet. Figures5.16and5.17show density and PV contours for six simulations all

with a1 = 1., but witha2 = 1.6, 1.7, 1.8, 1.9, 2.0, 2.5. Results shown are after 200 orbits of the outer planet,

in order to consistently compare the inter-orbit region. Asthe separation between the planet decreases, the

mass between the planets clears in a shorter and shorter amount of time. Correspondingly, as the separation

increases, larger and more massive vortices are apparent inthe inter-orbital region. For the simulation with

a2 = 2.5, the two vortex lines which form outside the inner planet’sorbit and inside the outer planet’s orbit

are spaced widely enough that they do not merge over the course of the simulation (1000 orbits of the inner

planet).

In Figure5.18I show the relative change in mass of the inter-orbit region for each of the separations. A

clear trend exists: as the separation increases the rate at which mass is removed from the region decreases.

Calculations of the averaged alpha-value are shown in Figure 5.19 along with the relative vorticity and

density for the six simulations after 200 orbits of the innerplanet. If the planets’ orbits are close enough,

the vorticity profiles begin to overlap, increasing the transport in the inter-orbital region and evacuating the

gas more quickly.

5.6 Discussion and future work

I have demonstrated that jets evolve spontaneously in diskswith one or two protoplanets, forming to either

side of a planet’s orbit as the planets affect the flow in the disk. The jets are related to the sharp radial

gradients in the potential vorticity through PV inversion and to the density (pressure) gradients that occur in

the disk (most prominently at the gap edges). The density gradients and the flows they produce are strong

enough that rotation causes an azimuthal jet to form. This process is analagous to the mid-latitude zonal jet

streams in the Earth’s atmosphere which result from the latitudinal pressure gradient.
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Figure 5.16 Density contours after 200 orbits of the outer planet for simulations witha1 = 1 anda2 = 1.6,
1.7, 1.8, 1.9, 2.0, and 2.5, left to right and top to bottom.
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Figure 5.17 PV density contours after 200 orbits of the outerplanet for simulation witha2 = 1.6, 1.7, 1.8,
1.9, 2.0, and 2.5, left to right and top to bottom.
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Figure 5.18 Change in mass of the region between the planets with radius separation between the planets.
Each curve is normalized relative to the initial mass between the planets.
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Figure 5.19 Each panel shows the estimated level of transport calculated as an effective alpha-parameter
(dark line), relative vorticity (dot-dashed line, scale not shown) and density (pale line) after 200 orbits of the
inner planet.
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Studies in atmospheric physics show that jets are able to form spontaneously from forced turbulence

via baroclinic instabilities (Rhines, 1975; Panetta, 1993; Cho & Polvani, 1996), and that this process may

explain jet patterns seen in the Earth’s atmosphere and in the atmospheres of the Jovian planets (Williams,

1978). (Klahr & Bodenheimer, 2003) have demonstrated that baroclinic turbulence in planetary disks pro-

duces outward angular momentum transport with a strength characterized byα = 10−4–10−2. The turbulence

in their simulations produced both pressure and Rossby waves and generated large vortices with significant

overdensities. I have presented results where similar vortices develop, possibly through a similar baroclinic

instability process. In the two-planet simulations a largevortex was formed between the planets, with a mass

of approximately 4mp. Such a concentration of gas will likely affect the subsequent evolution of the system,

and a self-consistent examination of its evolution would require accounting for the gas’ self-gravity. I have

also shown that the vortex formation process is damped onceν & 10−5, however the jet formation process is

more robust in this sense, and jet structures form even in viscous flows.

These jets are important. Atmospheric studies show weakened transport along the central axes of jets, or

equivalently along gradients of PV (McIntyre, 1989; Sommeria et al., 1989; Haynes & Shuckburgh, 2000;

Marshall et al., 2006). Prompted by these studies, I have estimated the averaged radial angular momentum

transport present in the my simulations as an effective alpha-parameter. The measured transport calculated

as such is outwards as expected and varies considerably overthe extent of the disk, from as large as<

α >= 0.01–0.05 in the vicinity of the planets to< α >∼ 10−3 away from the planets, in regions where

the spiral arms dominate. Near the planets I have shown that the calculated alpha-parameter correlates

with the PV itself, rather than with its gradient. Alpha-parameters greater than 10−2 are quite large and

could reflect the strictly two-dimensional nature of the simulations rather than layerwise two-dimensional

turbulence embedded in a rotating three-dimensional disk.I also caution that while interpreting the average

alpha-parameter as a measure of the radial angular momentumtransport appears reasonably consistent, their

actual relationship should be further investigated.

I have demonstrated a clear connection between the rate of mass evacuation and the inter-orbital sep-

aration of two protoplanets embedded in as gas disk. These results are also consistent with measurements

of the averaged transport, calculated as an alpha-coefficient. As the orbital separation of the planets in-

creases, the measured alpha-parameter decreases and the mass evacuates more slowly. In particular, I find

different results than those published byKley (2000) when the outer planet is at twice the orbital radius of

the inner planet. Kley showed the mass in the inter-orbital region was evacuated to 95% over 300 orbits,

while my simulations only showed evacuation to 40% over 1000orbits. These conclusions stand even when

performed at low resolution and with added viscosity at the level,ν = 1 × 10−5. The relation between the

jets and weakened transport provides a possible explanation for this discrepancy. Simulations with larger

numerical viscosity would produce weaker jet structures. If the jet structures become too weak and too

broad, the transport in the jet region increases.

It is still unclear how this gas is able to cross the planet’s orbit. Masset & Ogilvie(2004) have shown how

fluid streamlines pass across a single potential component in the presence of viscosity, but an actual planet
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potential creates a mess of overlapping resonances in the coorbital region. The overlap of these resonances

suggests the region should be chaotic. Whether the gas is able to “tunnel” across the region anywhere, or

only at preferred azimuths (such as at the planet’s azimuth,or opposite its azimuth) is unknown.

Furthermore, I have not yet addressed the source of the vorticity generated in the simulations that I

presented. While baroclinic generation of PV is certainly possible,Ou et al.(2007) have noted that the dis-

tribution of baroclinically generated vorticity expectedin such a disk does not match the actually observed

PV generation. The authors suggest mixing of PV may be responsible for this discrepancy. This explanation

is especially interesting in light of atmospheric studies which suggest inhomogeneous mixing may be re-

sponsible for creating PV gradients in the first place. Yet what is the source of this mixing? The generation

of vortex lines atr ≈ 0.55 andr ≈ 0.7 are locations of them = 3 andm = 5 Lindblad resonances. While

refraining from a descent into numerology, it is nonetheless tempting to suggest that spiral density waves

launched in such regions could provide an alternative source of wave activity leading to the observed jets

and possibly provide a source of mixing in the coorbital region. Simulations with an adiabatic code may

help address this question since Rossby waves are not supported in such a disk. If the formation of jets still

occurs in such simulations, it would indicate that the spiral density wave activity causes their formation.

Finally, I consider possible differences that three-dimensional effects could have on these results. Be-

cause the system under consideration is rotating, even flow in a two-dimensional disk should still be layer-

wise two-dimensional. This can be estimated by the Ekman number for the flow, defined asE = ν/2ΩH2.

For an alpha-disk this expression becomesE = αm2
H

√
(GM∗r)/(2ΩH2) = α/2. Since observations suggest

α = 10−3–10−2, the flows in such disks should be well-approximated as two-dimensional except near plan-

ets where substantial departures from vertical hydrostatic equilibrium exist. This result suggests the sort of

analysis I have presented here could prove useful in three dimensions.



Chapter 6

Summary

A major aim of this thesis was to develop a hydrodynamic code based on the cosmological TVD code by

Trac & Pen(2003) suitable to perform studies of protoplanetary disks.

I have presented the details of the original code and the TVD algorithm in Chapter3. I have modified the

original code to work on cylindrical grids and have implemented aFARGO-like algorithm (Masset, 2000)

which reduces the require computation time for near-Keplerian flows. I have demonstrated a reduction in

the required simulation time by a factor of 6.6 when applied to a disk simulation of interest (§4.4). I have

also tested the accuracy of the code on four different hydrodynamic problems: a Sedov-Taylor blast wave,

an oblique Sod shock-tube, a Kelvin-Helmholtz instabilityand a cylindrical bow shock. The code performs

well on these tests, where comparison with theoretical solutions is possible and shows similar performance

to the piece-wise parabolic code,VH-1, on all four tests.

In Chapter4 I performed a detailed study of the code’s performance on thenow-standard protoplanet-

disk interaction problem. This problem examines the interaction of a single massive protoplanet embedded

in a gas disk. The results from this comparison were consistent with the ensemble results published inde

Val-Borro et al.(2006), which compared results a large variety of codes on this problem. In particular, both

the latter project and my own simulations display librationislands in the coorbital region of the planet (at

the L4 and L5 points) and an asymmetry in the density of those islands. They also correctly predict the

sign the torque exerted on the planet by the disk and show comparable torque magnitudes. The growth and

merging of vortices outside the planet’s orbit in low-viscosity simulations are also confirmed. Furthering

results presented inde Val-Borro et al.(2006), I have demonstrated the existence of additionalvortex lines

to the inside of the planet’s orbit, and confirmed that the large vortex which forms exterior to the planet’s

orbit, substantially affects the measured torque on the planet. The large oscillations present in the torque

correspond to repeated passes of the outer vortex by the planet and increasing the viscosity beyondν = 10−5

damps the formation of the vortex and removes the oscillatory signature from the torque.

I have determined the level of numerical viscosity present within the code to beν . 10−6 (α . 10−3.5),

enabling the simulation of flows with Reynolds numbers on theorder ofRe = UL × 106 for characteristic

speeds,U and length-scales,L. The results of the viscosity tests indicate that using angular velocity rather
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than angular momentum as a solution variable increases numerical diffusion by over a magnitude. This

result complements previous work byKley (1998).

In Chapter5 I continued to explore the flow structures observed in the previous chapter, including the

consideration of multiple protoplanets. I demonstrated spontaneous evolution of jets in disks with either one

or two protoplanets. Because the flow is balanced, these jetsare related to potential vorticity anomalies

via PV inversion,Q = ρ−1
∇ × u. Formation of large vortices with non-negligible concentrations of gas

(∼ 4mp) are consistent with results byKlahr & Bodenheimer(2003) which show similar vortex formation

in simulations of forced baroclinic turbulence. In addition I showed that the vortex formation process is

damped onceν & 10−5, however the jet formation process is more robust and jet structures are able to form

even in viscous flows.

I found different results than those published byKley (2000) which demonstrated efficient evacuation

of inter-orbital gas between two protoplanets. Instead, simulations of a variety of planet orbital separations

indicate that the efficiency of gas evacuation depends strongly on the separationof the planets’ orbits and

simulation of the parameters used by Kley showinefficient gas removal. These conclusions stand even when

performed at low resolution and with viscosity. I proposed apossible explanation for the inefficient clearing,

suggesting weakened transport associated with the jet structures which form between the protoplanets may

be responsible. I tested this conjecture by measuring an effective alpha-parameter associated with the radial

angular momentum transport. The measured parameter indicated outward transport of angular momentum

as expected and showed that the amount of measured transportis indeed lower lower in the jet region, and

is correlated with the potential vorticity.



Part II

Ejection of Planets from Binary Systems
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Chapter 7

Introduction

The majority of solar-type stars in our neighborhood (∼ 60%) are in binary or higher multiple systems

(Duquennoy & Mayor, 1991). Despite this majority, there are still questions as to howmany of these

multiple-star systems host planets, and whether or not the planet formation process inside these systems

differs markedly from that around single stars. Radial-velocity surveys have shown that∼ 20% of the

extrasolar planets reside in binaries (Eggenberger et al., 2004), but the true fraction is likely higher as these

surveys select against observing known binaries.

While it is clear that much theoretical and observational effort is still needed to fully answer the above

questions, significant progress has been made in one sub-area of this issue—the dynamical stability of plan-

ets in binary systems. The body of literature on this topic isextensive, with most studies focusing on

numerical techniques.Hénon & Guyot(1970) numerically studied periodic planet orbits in circular binaries

(circular restricted problem) as a function of the binary mass ratio. Benest(1993) included binary eccen-

tricity in his study but only focused on a few astronomical systems.Rabl & Dvorak(1988) also considered

eccentric binaries but limited their studies to equal-massstars.Holman & Wiegert(1999, hereafter HW99)

is the most comprehensive and homogeneous study to date. They numerically integrated (initially circular)

planet orbits for 104 binary periods, and charted out the stability region as a function of binary separation,

eccentricity, and mass ratio, for both the S-type (circum-stellar) and P-type (circum-binary) planetary orbits.

Pilat-Lohinger & Dvorak(2002) have since included the effect of planet eccentricity but found it to be less

important than the binary eccentricity. With the intentionto quantify the confines of habitable zones around

binary stars,Musielak et al.(2005) also investigated the stability of both S-type and P-type planetary orbits

in circular binaries. To this end, they adopted a criterion for stability that differs slightly from that used in

other works. However, they found results that largely agreewith those from previous works, including those

of HW99. Marzari et al.(2005) examined the stability of multiple planets in binary systems, including the

effects of mutual planetary perturbations. In this case, interactions among the planets themselves appear

to be the leading cause for instability.David et al.(2003) concentrated on studying ejection timescales for

planets within the unstable region. They established an empirical formula for the ejection timescale that is

a steep function of the periastron distance from the binary companion. Beyond a certain distance, however,
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this trend is expected to break down and the ejection time become infinite (the system becomes stable). The

location of this break is the boundary for which we are interested in searching. Since the aforementioned

papers have confirmed the HW99 results, we focus on comparingour analytical results against HW99 ex-

clusively. The numerical results of HW99 andRabl & Dvorak(1988) uphold general expectations that the

stability space (comprising the binary’s eccentricity andthe ratio of the planet’s semimajor axis to that of the

binary) shrinks with decreasing stellar separation, with increasing orbital eccentricity, and with increasing

companion mass. However, the underlying physical mechanism for planet ejection has yet to be demon-

strated. Moreover, current computational capabilities limit the integration time (up to 104 binary orbits in

HW99) and permit only coarse-grid parameter searches. The former limitation may allow longer term in-

stabilities to be missed while the latter blurs the transition from stability to instability, hiding the existence

of possible ‘(in-)stability islands.’

In this thesis we study individual orbital resonances and the conditions for which they overlap, focusing

on the orbits most relevant for radial-velocity searches—the so-called S-type orbits (Dvorak, 1984), where

the planet orbits around one of the stars. The second star is considered to be an external perturber. Through

this examination we expose the instability mechanism to be chaotic diffusion of the planet’s orbital elements,

caused by overlap of mean-motion subresonances. These subresonances typically lay atop one another,

but this degeneracy is lifted by the secular forcing of the companion star, thereby increasing the extent of

the instability phase space. We are also able to delineate the topology of transition between stability and

instability and exclude the existence of longer term instabilities. This study is limited to coplanar systems.

In Chapter8 we discuss the necessary background and present the analytical arguments that allow us to

determine the boundaries of stability. We also compare our calculations against numerical results from

HW99 (§9.1) and results of ejection timescales fromDavid et al.(2003) (§9.2). Section9.3 includes an

argument for scaling the instability boundary analytically, which allows us to exclude the existence of long-

term instabilities, and section9.4 finishes the chapter with a discussion of the limiting case ofthe circular

restricted problem. Final comments and future directions are produced in Chapter10.



Chapter 8

Resonance Overlap Formalism

8.1 The two-body problem

The two-body problem is discussed in a wide variety of textbooks (for example, seeMurray & Dermott,

1999). Here we will merely quote the required results. Consider two masses,m1 andm2, located at positions

r1 and r2 with respect to an inertial origin, and subject to their mutual gravitational forces,F1 = G m1m2
r3 r,

andF2 = −G m1m2
r3 r, wherer = r2 − r1. Their relative motion may be described by the equation

d2r
dt2
+ µ

r
r3
= 0, (8.1)

whereµ = G(m1 + m2) andG is Newton’s gravitational constant. The two objects’ center of mass, (m1r1 +

mr r2)/(m1 + m2), is constrained to move at constant velocity in a straight line with respect to the inertial

origin. In terms of unit vectors, ˆr andθ̂, which are respectively along and perpendicular tor we can write

r̈ − rθ̇2 = − µ
r2
, (8.2)

which may be integrated to yield

r =
a(1− e2)

1+ e cos(θ −̟)
. (8.3)

This equation describes the motion ofm2 in terms of its separation,r, and true longitude,θ, for an

elliptical orbit aboutm1 with eccentricity,e, and semimajor axis,a. The angle,̟ , is the longitude of

pericenter. The length of time required to complete a singleorbit is the period,T , given asT = 4π2a3/µ,

which allows us to define amean motion, n = 2π/T . The angular velocity,̇θ, is a nonlinear function of time

and the longitude,θ. It is therefore convenient to introduce the mean longitude, λ, which is defined to be a

linear function of time such thatλ = nt + ǫ whereǫ is the initial mean longitude (called themean longitude

at epoch). Note that all longitudes are defined relative to an common,arbitrary reference direction.
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8.2 The three-body problem via the disturbing function

Unlike the two-body problem, the general case of three-bodymotion is non-integrable. It may, however, be

simplified by limiting oneself to the restricted problem where two of the bodies’ masses are negligible in

comparison with that of the third. One then considers each ofthe lesser objects to be independently executing

two-body motion relative to the principal body with the inclusion of perturbing effects due to the other lesser

mass body. The perturbing potential of the second lesser body is called the disturbing function. We apply

this type of analysis to planet orbits within an S-type binary star system, where the planet orbits one of the

stars and the orbit of the second, companion star encircles both the planet and the primary (Dvorak, 1984).

We treat the external companion star and the planet as the lesser objects, and the central star as the primary.

While the mass of the companion star is not small in comparison to the mass of the primary,mc, we shall

assume that its perturbation of the planet’s orbit via the disturbing function does remain small due to its

extended distance from the planet. We may express the disturbing function,R, using Legendre polynomials

in the form (eq. 6.24Murray & Dermott, 1999, hereafter MD99)

R = Gm′

a′

∑

S j cosϕ j. (8.4)

We use primed variables to refer to orbital elements of the companion star and unprimed variables for

those of the planet.S j is a strength coefficient that depends on the eccentricities of the planet and the

companion, and on the ratio of their semimajor axes,α = a/a′. The planet’s mean motion,n, is expressed

asn2 = G(mc + m)/a3. The angle argument is

ϕ j = j1λ
′ + j2λ + j3̟

′ + j4̟. (8.5)

The summation in equation (8.4) is formally over all integer combinations, (j1, j2, j3, j4), that satisfy the

d’Alembert relation: j1+ j2+ j3+ j4 = 0. Explicit expansions ofS j (in terms of the companion and planet’s

orbital elements) to low orders may be found in a variety of sources including Table B.3 of MD99. MD99

also provide formulas either to fully expand the disturbingfunction to arbitrary order or to expand those

terms associated with a particular value of the argument,ϕ j, to arbitrary order. Because the full expansion

of the disturbing function to higher and higher orders quickly becomes unwieldy, it is useful to consider the

expansion for limited values of the argument. Only those which are of longest period (most slowly varying)

are most relevant to the dynamics. It is assumed that the individual contributions of shorter period angles

will cancel out one another.

To understand which combinations of angles one expects to have the longest period, consider the un-

perturbed (2-body) problem. In this problem the mean longitudes, (λ, λ′), vary linearly with time at a rate

given by their mean motions while the longitudes of pericenter, (̟ , ̟′), are constant. In a similar man-

ner, we expect that the mean longitudes will vary rapidly in comparison to the longitudes of pericenter

in the perturbed system. Then anyϕ j comprising a combinations of angles that do not contain the mean
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longitudes will vary slowly in comparison to other combinations. These combinations in which the mean

longitudes are absent are termed secular. Combinations which do contain the mean longitudes may also be

slowly varying but only in a spatially localized region. To see this effect, consider the general argument,

ϕ j = j1λ′ + j2λ + j3̟′ + j4̟, whereλ′ = n′t + ǫ′ andλ = nt + ǫ. Assuming thatǫ′ andǫ are small in

comparison ton′t andnt, allows us to write (j1λ′+ j2λ) ≈ ( j1n′+ j2n)t. Then near locations where the orbital

periods are approximately commensurate and satisfy, (j1n′ + j2n) ≈ 0, the total argument, (j1λ′ + j2λ) is of

longer period than either orbital period individually. Arguments for which this condition occurs are termed

resonant. In averaging over the possible combinations of (j1, j2, j3, j4) for a particular value ofα we only

consider secular and resonant terms to be relevant to the orbital dynamics and assume that the values ofϕ j

for other combinations are of short-enough period for theircontributions to cancel out one another.

Removing these types of fast oscillating terms in equation (8.4) by integrating over an appropriately

long time and keeping terms to the lowest order in eccentricities, we obtain the averaged disturbing function

for the planet due to the perturbations of the companion star:

R =
Gm′

a′
[

fs1(e2 + e′2) + fs2ee′ cos(̟ ′ −̟)

+ fre
′| j3|e| j4| cosϕ j

]

. (8.6)

The first two terms in the brackets arise from the two lowest order secular interactions, (j1 = j2 = 0, with

either j3 = j4 = 0 or j3 = − j4 = 1) while the last term accounts for MMRs situated atj1n′ + j2n ≈ 0.

In particular, these could include resonances that share the samej1 and j2 values but have different j3 (and

therefore j4) values. We call these ‘subresonances’ of a given MMR (j1, j2). Their importance will be

expounded later. The coefficients fs1 and fs2 are functions ofα alone. Explicit expressions for them are

listed in Table B.3 of MD99. Thefr coefficient depends onα as well as the particular resonance under

consideration. Note that the strength of thefr term depends on the product of the planet’s and companion’s

eccentricities to the exponent of the subresonance order. Explicit values for fr are listed in MD99 only up

to fourth order. To obtain values offr for higher order terms there are two expansion formulas provided

(eqs. [6.36] and [6.113] in MD99). AppendixB details the expansion of equation (6.113) for the types of

resonances we consider. We find that computer expansions of both formulas yield similar results and agree

with the explicit formula at low order. As a caveat we note that both of these formulas make use of the

series solution to Kepler’s equation (eq. [2.52] in MD99) inorder to determine the expansion in terms of an

object’s orbital elements. Since the series solution to Kepler’s equation diverges fore, e′ > 0.6627434, the

expansion formulas are not valid above that value, and so we limit our studies toe, e′ < 0.6.

8.3 Lagrange’s equations

Lagrange’s equations describe the variation in the orbitalelements given an expansion of the disturbing

function in terms of the orbital elements. Derivations of these equations may be found inBrouwer &
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Clemence(1961) or Roy (1988). We state to lowest order in eccentricity the equations describing variations

in n, e, ̟ andǫ:

ṅ = − 3

a2

∂R
∂λ

(8.7)

ė = − 1
na2e

∂R
∂̟

(8.8)

˙̟ = − 1

na2e

∂R
∂e

(8.9)

ǫ̇ = − e

2na2

∂R
∂e
. (8.10)

Variations of the planet’s orbital elements are then found using the disturbing function for the planet (eq.

8.6) as

ṅ = 3 j2Crne′| j3|e| j4| sinϕ j (8.11)

ė = − Cs2 e′ sin(̟ ′ −̟) + j4Cre
′| j3|e| j4|−1 sinϕ j (8.12)

˙̟ = 2Cs1 +Cs2
e′

e
cos(̟ ′ −̟) + | j4|Cre

′| j3|e| j4|−2 cosϕ j (8.13)

ǫ̇ = Cs1e2 +
Cs2

2
e′e cos(̟ ′ −̟) +

| j4|
2

Cre
′| j3|e| j4| cosϕ j. (8.14)

where theC-coefficients are related to thef -coefficients in equation (8.6) by Cx = [Gm′/(na2a′)] fx ≈
(m′/mc)nα fx(α). The variation inǫ is smaller than that in̟ by a factor ofe2 and can be neglected. Pertur-

bations of the companion’s orbital elements due to the planet are also ignored.

8.4 Exact resonance and resonance overlap

Exact resonance is defined to occur when both sinϕ j = 0 and ˙ϕ j = 0, viz. j1n′ + j2n + j4 ˙̟ = 0. Near

such a location,ϕ j librates about its resonant value. Moving away from the resonance location, there exists

a boundary beyond whichϕ j changes from libration to circulation. This boundary defines thewidth of the

resonance, namely, the range of space over which the resonance dominates the planet’s dynamics. When the

widths of two resonances become comparable to their separation, the planet can be affected simultaneously

by these overlapping resonances. Mathematically, the overlap of two or more resonances causes neighboring

trajectories to diverge exponentially with time (Chirikov, 1979; Wisdom, 1980). This exponential divergence

occurs on the Lyapunov timescale (TL), which, as argued byHolman & Murray(1996), is comparable to the

libration timescale for the resonances in question. Exceptin the case of ‘bounded chaos,’ orbital parameters

for the planet undergo unbounded random walks leading to ejection on a timescale called the event timescale

(Te). ThoughTe fluctuates depending on the system, studies have shown that it roughly correlates withTL

(see, e.g.Lecar et al., 1992).

In our problem, the large companion mass produces strong secular forcing, making it different from
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typical solar system dynamics problems. Firstly, even if the planet initially has zero eccentricity, it is forced

to oscillate with an eccentricity amplitude (eqs. [8.12] and [8.13]),

esec=
Cs2

2Cs1
e′ , (8.15)

on the short secular timescale∆t ∼ 2π/(2Cs1). The magnitude ofesec decreases with decreasingα but can

be as large ase′/2 near the 3:1 resonance. We performed numerical integrations confirming that in our

problem, the secular eccentricity scales with the binary eccentricity according toesec ∼ αe′. This scaling

is expected based on the low order expansion forCs1 andCs2 in equation (8.15). For equal-mass binaries,

the secular timescale ranges from∼ 20 planet orbital periods at the 3:1 resonance to∼ 1000 periods at the

20:1 resonance. While the secular timescale is likely too long when compared with the mean motion of

the companion to allow for the ‘evection resonance’ (Touma & Wisdom, 1998) (when the companion mass

dominates so thatµ → 1, the evection resonance may become important—see§9.4), it is typically much

shorter than the resonant timescale. Considering also thatthe resonant strength is at maximum when the

value ofe is at its largest, we can assume thate = esecfor the resonant interactions. Planets possessing a free

eccentricity in addition to the forced value can reach higher overall eccentricity and will therefore be more

unstable.

The second effect of the companion’s strong secular forcing is to displacethe centroid of different

subresonances away from each other. In AppendixC, we derive expressions for the centroid position and

the width of a resonance when secular forcing is important. While the width remains unchanged from the

non-secular case, the centroid of a MMR is shifted from its nominal position, (j1n′+ j2n = 0), by an amount,

|δn| ∼ |2( j4/ j2)Cs1|. When there is no secular forcing, the subresonances are degenerate and lie atop one

another. Secular forcing displaces the subresonances fromone another, greatly expanding the region over

which overlap occurs. This effect is illustrated in Figure8.1for two groups of MMRs.

8.5 Chaotic diffusion and planet instability

Resonance overlap generates chaotic diffusion, but as pointed out byMurray (1992), under some circum-

stances resonance overlap will lead only to ‘bounded chaos’—unpredictable but limited variations in the

orbital elements. One such example is provided byGladman(1993). Results from our numerical experi-

ments (Fig.9.1) as well as discussions in§9.4 suggest that this is not a major concern for determining the

instability boundary. In the remaining discussion we, therefore, do not distinguish between the concepts of

resonance overlap and planet instability.

Another question relates to whether the overlap between subresonances is as potent as that between

distinct MMRs, thereby leading to planet instability on an astronomically interesting timescale (see the

review byMalhotra, 1998). Our calculations in§9.2 suggest that this is indeed so—the chaotic diffusion

caused by subresonance overlap leads to planet ejection within 1 Gyr (often much faster) for most systems.
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Figure 8.1 Location and width of various subresonances as a function ofe′, obtained for aµ = 0.1 binary
system. The top group are the subresonances of the 5:1 MMR (identified by their respectivej4 values)
and the lower group, of the 6:1 MMR. We take the planet eccentricity to be the secularly forced value.
The centroids of different subresonances within a distinct MMR are displaced from each other due to both
secular and resonant forcing though the secular effect dominates at low values ofe′. Shaded regions are
regions of instability, as defined in the text. Overlap between subresonances of the same MMR covers a
much larger region than overlap between distinct MMRs.



Chapter 9

Results

9.1 Comparison with numerical results

In our determination of regions of resonance overlap, we include resonances withj1 ≥ 3, −4 ≤ j2 ≤ −1,

and−| j1 + j2| ≤ j3 ≤ 0. We restrict the value ofj2 since the strength of a resonance scales ase′| j3| e| j4| ∝
e′| j1+ j2| (eq. [8.6]). For a given orbital separation,α, the ratio of j2/ j1 is determined by Kepler’s third

law: α3 = ( j2/ j1)2(1 − µ); hence, the strongest resonances havej2 = −1. In fact, we show that even the

j2 = −4,−3, and−2 resonances do not affect the instability boundary much. Moreover, whilej3 = 0 is the

strongest subresonance in solar system dynamics (in light of Jupiter’s small eccentricity), we find here that

all subresonances are essential to determine the overlap region.

Coupling strengths are calculated using the aforementioned series expansion formulas in MD99 (Ap-

pendixB) while the location and width of each resonance are obtainedusing the formulas derived in Ap-

pendixC. The planet eccentricity is taken to be the secularly forcedvalue (eq. [8.15]). All coefficients are

evaluated at exact resonance, assuming the resonance widthis small. In the (α, e′) phase space, a region is

designated as unstable if more than one resonance (or subresonance) spans it. We further assign a similar

status, at the same value ofe′, to the entire extent inα of the subresonance in which this region is situated

(see Fig.8.1). Depending on its orbital phase, a planet situated within asingle resonance (elsewhere spanned

by additional resonances), but which is still outside of theregion of overlap proper, may (or may not) librate

into the latter. This definition of unstable regions ensuresthat all potentially unstable orbits are included.

Again, our analytical study is limited toe′ < 0.6 to ensure a convergent disturbing function.

Our full results are shown in Figure9.1 for mass-ratioµ = 0.1, and in Figure9.2 for µ = 0.5. As

has been indicated in Figure8.1, the instability boundary is jagged, with jutting peninsulas and narrow

inlets. This is different from the smooth lines presented by HW99. However, their curves largely trace the

outline of our results. The two sets of results can be considered consistent since HW99 carried out their

investigation over a crude grid inα − e′ space. To confirm this, we perform similar numerical integrations,

with a much finer grid in a selected region ofα − e′ space. We adopt the Hierarchical Jacobi Symplectic

integrator byBeust(2003), an add-on to the SWIFT package (Duncan et al., 1998) for studying dynamics in
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multiple-star stellar systems. Planets are initialized tohave random orbital phases and an eccentricity given

by e = esec (initializing planets with zero eccentricity produces similar results). We integrate their orbits

for 3000 binary periods. The stability of these orbits is indicated in the inset of Figure9.1. The detailed

topology agrees well with that obtained from our perturbation analysis, and in many cases, one can even

identify the (sub)-resonances responsible for the instability. This suggests that resonance overlap and the

consequential chaotic diffusion is the mechanism responsible for the planet instability observed in HW99’s

numerical investigation. Moreover, there is little evidence for ‘bounded chaos’ near the instability boundary,

so that one can adopt the boundary of resonance overlap as theboundary for planet instability.

9.2 Sensitivity to initial conditions and relevant timescales

In an effort to delineate the differences between the chaotic dynamics existing within regions of resonance

overlap and the regular dynamics existing just outside suchregions, we numerically integrate two sets of two

initially ‘close’ planets. Both sets of planets are situated near the 5:1 MMR in a binary system with mass

ratio,µ = 0.1, and eccentricity,e′ = 0.2. The first set of two planets are situated directly within the region of

overlap atα = 0.33, while the second set are situated just outside the regionof overlap atα = 0.32. Figure

9.3presents the results of integrating the first set of two planets initialized with identical orbital parameters

except for a tenth of a degree difference in their orbital phase positions. The Lyapunov timescale is defined

as the timescale for exponential divergence between two infinitesimally close orbits. We roughly estimate

this timescale for the trajectories presented in Figure9.3and obtainTL ≈ 10 binary orbits. De-correlation in

the semimajor axis and eccentricity becomes apparent to theeye after approximately 50 binary orbits. The

libration time within this resonance, which one expects to be of the same order as the Lyapunov time, is∼ 54

binary orbits. The planets are ejected in turn after about 1500 and 3800 binary orbits. Further integrations

at the same location with different initial orbital phases show a wide spread in the ejection times ranging

from 50–4000 binary orbits, corresponding to∼ 104 – 106 years for a solar-mass binary at 50 AU.Murray &

Holman(1997) andDavid et al.(2003) presented two different empirical expressions that relate the (widely

scattered) ejection time (Te) to the Lyapunov timescale. The former found a relationshipbetween these

two timescales (applicable to overlapping subresonances)given byTe/T ′ = 10a(TL/T ′)b wherea = 1.45

andb = 1.68, and whereT ′ denotes the binary orbital period. Applying this formula toour case yields

an ejection time ofTe/T ′ ∼ 2000. The expression byDavid et al.(2003) yields a comparable value of

Te/T ′ ∼ 7400. Within the scatter, both values agree with our experiments.

Adopting the expression byMurray & Holman(1997), we obtain ejection times for various resonances.

Lower order resonances lead to faster ejection, while at thehigher end, for example, the 30:1 resonance,

we find Te/T ′ ≤ 106 for a system with mass-ratio,µ = 0.1. This resonance (corresponding toα = 0.10)

defines the maximum stable orbit for the most eccentric binary orbit we consider (e′ = 0.66). The ejection

time corresponds to∼ 400 Myrs for a 50 AU binary and∼ 1 Gyrs for a 100 AU binary (all assuming a total

system mass equal to one solar mass). We conclude that overlap of subresonances leads to planet ejection
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10:3 Resonance
  7:2 Resonance
11:3 Resonance

  4:1 Resonance

13:3 Resonance
  9:2 Resonance

  5:1 Resonance

Figure 9.1 Stability diagram for planets in aµ = 0.1 binary system. The solid curve connecting filled
circles locates the maximum stable value ofα = a/a′ as obtained by HW99 while dots map regions of
instability caused by resonance overlap. Resonances included in this calculation are described in the text.
The instability boundary as it exists when considering onlythe distinct MMRs (keepingj3 = 0) is denoted by
filled triangles. Over the eccentricity range of interest, overlap between subresonances is the most significant
source of planet instability. Ase′ → 0, widths of most resonances approach 0 except for the 2:1 and3:1
resonances. The dashed curve shows the lower confine of a 3:1 resonance—overlap between subresonances
within the 3:1 MMR can explain instability in circular binaries. Inset: results of numerical integration
over a selected region ofα − e′ space. Dashes represent planet orbits that remain stable for more than
3000 binary periods; filled squares represent unstable orbits. Horizontal lines indicate centroid locations of
certain MMRs that are responsible for the jutting peninsulas. At eache′ value, j2 = −1 MMRs yield the
shortest period unstable orbits. Stability for points nearthe instability boundary are sensitive to the initial
conditions. Regions of resonance overlap coincide with that for planet instability and there is little evidence
for ‘bounded chaos.’
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Figure 9.2 Stability diagram for planets in an equal-mass binary system (µ = 0.5). Symbols are the same
as those in Fig.9.1. We obtain these results using a perturbation formula that is strictly valid only for
µ ≪ 1—this may account for some of the discrepancy between our results (dots) and those of HW99 (solid
curve).
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Figure 9.3 Numerical integration of two planets initialized with identical orbital parameters except for a
tenth of a percent difference in the initial orbital phase. The resulting semimajor axis and eccentricity are
plotted as functions of time (measured in binary orbital periods, T ′) in solid (or dotted) curves for each
planet. The Lyapunov timescale is estimated to be∼ 10 binary orbits, and de-correlation in the semimajor
axis and eccentricity becomes apparent to the eye after approximately 50 binary orbits. The planets are
ejected in turn after about 1500 and 3800 orbits.
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on astronomically interesting timescales, for the parameters we have considered.

By contrast, the results of the second set of integrations where we instead situate the two planets just

outside the region of resonance overlap at a location given by α = 0.32, do not exhibit sensitivity on the

initial conditions and no planet is ejected within our integration time (104T ′). The transition to instability

occurs over a narrow region.

One major discrepancy between our results and those of HW99 can be observed in Figure9.2for equal-

mass binaries: at low binary eccentricity, the HW99 curve falls below that obtained from our perturbation

analysis. This discrepancy likely reflects failure of the expansion formula whenµ is large.

A key question of interest asks, for a given binary (with fixedµ ande′), what is the longest period stable

planet orbit? HW99 provided a fitting formula for the minimumunstableα as a function ofµ ande′. Our

results here indicate, however, that the minimum unstableα should be reduced by up to∼ 20% from their

values. This reduction is related to the thin instability peninsulas evident in our Figures9.1and9.2.

9.3 Analytical scaling of the instability boundary

In order to understand how the outline of the instability boundary depends on various parameters, we propose

the following rough scaling argument. Let neighboring subresonances be spaced by∆n, where due to secular

forcing, ∆n ≈ 2|Cs1/ j2| (eq. [C.10]). Resonant interactions also modify the centroid of a resonance, but

they are less important than the secular effect for smalle′. The width of an individual subresonance,k,

is expressed in equation (C.11), which in most cases can be simplified ask ≈ [4 j24/(3 j2)] |Cr |e′| j3|e| j4|−2.

Adoptinge = esec≈ αe′, and requiring resonance overlap (∆n < 2k), we find that instability occurs when

α ≥ αcrit =

(

3
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. (9.1)

Defining f4 = | j4/ j1|, and relatingj1 to α by Kepler’s Law,| j1/ j2|2α3 = 1− µ, we recast equation (9.1) as

α ≥ αcrit ≈

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, (9.2)

where j1 is also a function ofα. Numerically, we observe that, regardless of the mass ratioand the resonance

involved, |Cs1/Cr| rises monotonically withf4 and clusters around 0.02 when f4 ≈ 0.5. For simplicity,

we solve forαcrit considering onlyf4 ≈ 0.5. The results are plotted in Figure9.4 for three mass ratios.

When only j2 = −1 MMRs are considered, theµ = 0.1 andµ = 0.2 results sit atop each other falling

somewhat below the respective HW99 curves at small values ofe′ and above them at large values. Besides

errors resulting from our crude approximation in takingf4 = 0.5, two other factors may contribute to this

discrepancy. The first is that we are searching for the very minimum value ofα at each value ofe′ that

allows resonance overlap. As is shown in Fig.9.1, this may lie up to 20% below the HW99 numerical result.

The second factor is that we ignore overlap between distinctMMRs, which may be important at sufficiently
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Figure 9.4 Comparison of instability boundaries obtained based on simple approximations of our analytical
arguments (eq. [9.2]) and numerical results of HW99. The group of dashed curves represents the approxi-
mate overlap condition forj2 = −1 MMRs while the dot-dashed group represents those forj2 = −2 MMRs,
both with | j4| = j1/2. Within each group, from top to bottom, the value of the mass-ratio isµ = 0.1, 0.2
(these two curves almost coincide), and 0.5, respectively. If we recalculate the bottom-most dashed curve
(µ = 0.5) assuming the value ofCs1/Cr is 10 times smaller, we obtain the results shown in the dottedcurve.

largee′. Whenµ = 0.5, our curve consistently sits above the HW99 line, resembling the discrepancy shown

in Fig. 9.2. This discrepancy, as we argue above, likely reflects failure of the expansion formula whenµ is

large (more below).

Despite these shortcomings, this simple analysis yields some useful insight. Comparing overlap con-

ditions between those resonances withj2 = −1 and those withj2 = −2, reveals that the latter resonances

always occur at a larger value ofα for a givene′ value. They are therefore not important for determining

the instability boundary and we conclude that our neglect of| j2| > 4 MMRs is valid. This point is further

emphasized in the inset of Fig.9.1. Based on this conclusion, we argue that instability boundaries obtained

from finite-duration numerical integration are reliable, even though they may not detect long-term instabili-

ties brought about by very high-order resonances (e.g., 50:3). A second point concerns the fact that we have

ignored terms of orderµ2 in the expansion of the disturbing function, and that ourCs1 andCr coefficients

are only correct to order-of-magnitude. We argue, however,that the instability boundary depends only on

the ratio ofCs1/Cr (eq. [9.2]). Moreover, if, for instance, the true ratio ofCs1/Cr is smaller by a factor of

10 than our adopted value of 0.02, the instability boundary forµ = 0.5 is moved downward inα by as much
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as 10% (Fig.9.4).

Our arguments here are based on very crude scaling relationships. They ought to be checked using more

elaborate numerical experiments.

9.4 The circular, restricted limit

We focus one′ = 0 binaries to study the following two issues: the applicability of the Hill criterion for

predicting planet instability, and the relevance of ‘bounded chaos’ that prevents us from using resonance

overlap as a synonym for planet instability.

With the exception of those of first and second order, the widths of all other MMRs approach zero in

circular binaries (see AppendixC). The resonance overlap condition in this limit is particularly easy to

analyze. In the case whereµ → 0 (the sun-asteroid-planet problem),Wisdom(1980) derived the overlap

condition between first-order (p+ 1:p) resonances as described by|1−α| = |a′ − a|/a′ ≤ 1.307µ2/7 (also see

Duncan et al., 1989; Malhotra, 1998). For largerµ values, we argue that overlap between the (3,−1,−1,−1)

and (3,−1, 0,−2) subresonances defines the lowestα value for which chaos can set in. Note that we calculate

the resonance location and width using expansion formulas that are strictly valid only forµ ≪ 1. We suspect

this approximation may lead to some uncertainty in the results in Fig.9.5. Moreover, we have not considered

the ‘evection resonance’, which becomes important asµ → 1 (Touma & Wisdom, 1998; Nesvorný et al.,

2003).

The stability of planets in a circular binary can also be studied using the concept of Hill stability (e.g. see

Murray & Dermott, 1999). In such systems, there exists an integral of motion, the Jacobi constant, which

defines permitted regions of planetary movement. For a planet that begins with a circular orbit around one

star (as in HW99), there is a critical value ofα below which the zero-velocity curve with the same Jacobi

constant is ‘closed’ and the planet cannot escape. For values ofα greater than this critical value, the planet is

allowed to escape by the Hill criterion but willnot unless its orbit is chaotic due to overlapping resonances.

In other words, the Hill criterion is a necessary but not a sufficient condition for planetinstability.

To calculateαcrit, one needs to carefully consider the phrase ‘begins with a circular orbit.’ Forµ ≪ 1

systems (analogous to the sun-asteroid-planet problem), it is more appropriate to actualize this condition

by taking the sidereal velocity (velocity in the binary center-of-mass frame) to beGmc/a; while for µ → 1

systems (analogous to the planet-satellite-sun problem),the more reasonable approach is to set the synodic

velocity (in the host star’s rotating frame) to beGmc/a. For intermediateµ values, we adopt the approach

that yields the higher value ofαcrit. The resultant values ofαcrit are plotted in Fig.9.5 as a function of

µ. In particular, in the limit whereµ → 1, we find thatαcrit = (1/3)R′H = [(1 − µ)/81]1/3 whereR′H is

the Hill radius of the binary companion (Szebehely, 1978), and in the limit whereµ ≪ 1, we find that

αcrit = 1− 2.1µ1/3.

While the Hill criterion gives the energetic condition for planet instability, resonance overlap provides

the dynamical cause. How do results from the Hill criterion compare with those from the resonance overlap
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Figure 9.5 Instability boundary for circular binaries as a function of mass ratioµ. The solid curve depicts
the result obtained based on the Hill criterion. Planets situated within shaded regions could potentially be
ejected from the host star, though they will not be unless their orbits are chaotic. Overplotted are analytical
results for the boundary of resonance overlap (and therefore chaos, but not necessarily ejection): asµ → 0,
the overlap condition betweenp + 1:p resonances yieldsαcrit ≥ 1 − 1.307µ2/7 (Wisdom, 1980); for larger
µ values, overlap between the (3,−1,−1,−1) and (3,−1, 0,−2) subresonances occurs forα values above the
open squares (this study). Locations of the open squares arecalculated using expansion formula strictly valid
only forµ ≪ 1. Also plotted (in filled circles) are the numerical resultsby HW99—planets situated above the
filled circles are numerically shown to have unstable orbits. Left and right lower panels expand the view near
µ = 0 andµ = 1, respectively. Forµ → 1, the Hill criterion is well quantified as (1/3)RH = 0.23(1− µ)1/3

(dashed curve).
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criterion? Intriguingly, they seem to closely trace each other over smallµ, intermediateµ and largeµ values

(Fig. 9.5). The only exception is whenµ → 0 (visible whenµ ≤ 10−4) for which the resonance overlap

occurs over a larger range than does the Hill criterion.Gladman(1993) has studied this limit and concluded

that ‘bounded chaos,’ producing unpredictable but limitedvariations in the orbital elements, reigns in the

intervening region. This instance, however, is the only clear sign of bounded chaos in the circular, restricted

problem.

Numerical results by HW99 (filled circles in Fig.9.5) and our own simulations also confirm this seem-

ingly coincidental agreement between the resonance overlap condition and the Hill criterion. It appears then,

that in practice, the Hill criterion is not only a necessary,but also a sufficient condition for planet instability.



Chapter 10

Final Comments and Future Work

A planet in a binary system experiences both secular and resonant perturbations from the binary companion.

It may be dislodged from its host star if it is simultaneouslyaffected by two resonances. We find that

overlap between subresonances of the same MMR accounts for the instability observed by HW99 and our

own numerical integration. There is little evidence for bounded chaos, and the word ”resonance overlap”

can be interchanged with the word ”orbital instability.” Our instability boundaries largely agree with those

obtained by HW99, albeit with many fine features. The juttingpeninsulas and deep inlets in the instability

boundary correspond to the instability (or stability) islands first observed by HW99. The presence of these

islands suggests that the longest period stable orbit at each e′-value could be reduced by as much as 20%

from the HW99 value. Moreover, our analysis suggests that overlap between very high-order resonances

(e.g., 50:3) does not substantially modify the instabilityboundary: these weak resonances, while producing

slow chaotic diffusion, which may be missed by finite-duration numerical integrations, do not contribute

markedly to planet instability.

In detail, the centroids of different subresonances are displaced from each other by the strong secular

forcing of the companion enlarging the phase space of resonance overlap. Chaotic diffusion caused by

subresonance overlap is observed to be fast, unlike cases inthe solar system. The longest ejection timescale

in our study, corresponding to subresonance overlap withinthe 30:1 MMR, is∼ 106 binary orbits, or, 1 Gyr

for a 100 AU solar-mass binary. For comparison, the 5:1 MMR overlap gives rise to an ejection time∼ 2000

binary orbits.

Compared with numerical integrations, our perturbation analysis has the following shortcomings: the

perturbation strength is calculated accurate only to first order in the mass ratio between the companion and

the host star, and the perturbation formula diverges fore, e′ > 0.66.

As a final note, we raise the issue of stability in circular binary systems (e′ = 0). While the Hill criterion

(critical Jacobi constant) gives the energetic condition for planet instability, resonance overlap provides the

dynamical cause. We observe that over almost the entire range of mass ratio, the Hill criterion and resonance

overlap yield similar criticalα-values, making the Hill criterion not only a necessary, butalso a sufficient

condition for planet instability.
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Appendix A

Flux form Euler equations in Cartesian and

cylindrical coordinates

A.1 Cartesian coordinates

Expanding equations (2.10), (2.12), and (2.13) in Cartesian coordinates one obtains

∂ρ

∂t
+
∂

∂x
[ρu] +

∂

∂y
[ρv] +

∂

∂z
[ρw] = 0 (A.1)

∂ρu
∂t
+
∂

∂x
[ρu2 + p] +

∂

∂y
[ρuv] +

∂

∂z
[ρuw] = −ρ∂φ

∂x
+
∂σxx

∂x
+
∂σxy

∂y
+
∂σxz

∂z
(A.2)

∂ρv
∂t
+
∂

∂x
[ρuv] +

∂

∂y
[ρv2 + p] +

∂

∂z
[ρvw] = −ρ∂φ

∂y
+
∂σyx

∂x
+
∂σyy

∂y
+
∂σyz

∂z
(A.3)

∂ρw
∂t
+
∂

∂x
[ρuw] +

∂

∂y
[ρvw] +

∂

∂z
[ρw2 + p] = −ρ∂φ

∂z
+
∂σzx

∂x
+
∂σzy

∂y
+
∂σzz

∂z
(A.4)

∂e
∂t
+
∂

∂x
[u(e + p)] +

∂

∂y
[v(e + p)] +

∂

∂z
[w(e + p)] = −ρ

[

u
∂φ

∂x
+ v

∂φ

∂y
+ w

∂φ

∂z

]

+
∂

∂x
[(uσxx + vσxy + wσxz)] +

∂

∂y
[(uσyx + vσyy + wσyz)] +

∂

∂z
[(uσzx + vσzy + wσzz)], (A.5)

whereui ≡ (u, v,w) in Cartesian coordinates. Using the derived form for the stress tensor, equation (2.4)

becomes

σi j = 2µ































∂u
∂x −

1
3∇· u

1
2(∂u

∂y +
∂v
∂x ) 1

2(∂u
∂z +

∂w
∂x )

1
2( ∂v

∂x +
∂u
∂y ) ∂v

∂y −
1
3∇· u

1
2(∂v

∂z +
∂w
∂y )

1
2(∂w

∂x +
∂u
∂z ) 1

2(∂w
∂y +

∂v
∂z ) ∂w

∂z −
1
3∇· u































, (A.6)

where∇· u = ∂u
∂x +

∂v
∂y +

∂w
∂z .
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A.2 Cylindrical Coordinates

To find the form of these equations in cylindrical coordinates one can perform the usual sequential applica-

tions of the chain rule. Or look up the forms in the back of a good Electromagnetism textbook. Either way,

one obtains

∂ρ

∂t
+

1
r
∂

∂r
[ρrur] +

1
r
∂

∂θ
[ρuθ] +

∂

∂z
[ρuz] = 0 (A.7)

∂ρur

∂t
+

1
r
∂

∂r
[ρru2

r + pr] +
1
r
∂

∂θ
[ρuruθ] +

∂

∂z
[ρuruz]

= −ρ∂φ
∂r
+

1
r
∂rσrr

∂r
+

1
r
∂σθr

∂θ
+
∂σzr

∂z
− σθθ

r
+

p
r
+
ρu2

θ

r
(A.8)

∂ρuθ
∂t
+

1
r
∂

∂r
[ρruruθ] +

1
r
∂

∂θ
[ρu2

θ + p] +
∂

∂z
[ρuθuz]

= −ρ1
r
∂φ

∂θ
+

1
r
∂rσrθ

∂r
+

1
r
∂σθθ

∂θ
+
∂σzθ

∂z
+
σθr

r
− ρuruθ

r
(A.9)

∂ρuz

∂t
+

1
r
∂

∂r
[ρruruz] +

1
r
∂

∂θ
[ρuθuz] +

∂

∂z
[ρu2

z + p]

= −ρ∂φ
∂z
+

1
r
∂rσrz

∂r
+

1
r
∂σθz

∂θ
+
∂σzz

∂z
(A.10)

∂e
∂t
+

1
r
∂

∂r
[rur(e + p)] +

1
r
∂

∂θ
[uθ(e + p)] +

∂

∂z
[uz(e + p)]

= −ρ
[

ur
∂φ

∂r
+ uθ

1
r
∂φ

∂θ
+ uz

∂φ

∂z

]

+
1
r
∂

∂r
[r(urσrr + uθσθr + uzσzr)]

+
1
r
∂

∂θ
[urσrθ + uθσθθ + uzσzθ] +

∂

z∂
[urσrz + uθσθz + uzσzz], (A.11)

whereui ≡ (ur , uθ, uz) in Cylindrical coordinates. Similarly, the derived form for the stress tensor, equation

(2.4), becomes

σi j = 2µ































∂ur
∂r −

1
3∇· u

1
2(1

r
∂ur
∂θ
+

∂uθ
∂r −

uθ
r ) 1

2(∂ur
∂z +

∂uz
∂r )

1
2(∂uθ

∂r +
1
r
∂ur
∂θ
− uθ

r ) 1
r
∂uθ
∂θ
+

ur
r −

1
3∇· u

1
2(∂uθ

∂z +
1
r
∂uz
∂θ

)
1
2(∂uz

∂r +
∂ur
∂z ) 1

2(1
r
∂uz
∂θ
+

∂uθ
∂z ) ∂uz

∂z −
1
3∇·u































, (A.12)

where∇· u = 1
r
∂rur
∂r +

1
r
∂uθ
∂θ
+

∂uz
∂z .

A.2.1 Angular momentum in cylindrical coordinates

Aligning the rotation vector along thez-axis, the vectorR is simply the cylindrical radius,r. For H =

ρr(uθ + rΩ), equation (2.18) then becomes:

∂H
∂t
+

1
r
∂

∂r
[rHur] +

1
r
∂

∂θ
[Huθ + pr] +

∂

∂z
[Huz]

= −ρ∂φ
∂θ
+

1
r
∂r2σrθ

∂r
+
∂σθθ

∂θ
+ r

∂σzθ

∂z
+ σθr. (A.13)



Appendix B

Expansion of the disturbing function for

j1: j2 orbital resonances

Ellis & Murray (2000) derived an expansion of the disturbing function to maximumorderNmax for a specific

argument of the resonant angle,ϕ j = j1λ′+ j3λ+ j3̟′+ j4̟+ j5Ω′+ j6Ω, listed in MD99 as equations (6.113–

6.126). For reference we list these equations here. The disturbing function due to an external perturber is

given as

R = µ′

a′
(RD + αRE), (B.1)

where

RD =

imax
∑

i=0

(2i)!
i!

(−1)i

22i+1
αi

×
i

∑

s=smin

nmax
∑

n=0

(2s − 4n + 1)(s − n)!
22nn!(2s − 2n + 1)!

s−2n
∑

m=0

κm
(s − 2n − m)!
(s − 2n + m)!

× (−1)s−2n−mFs−2n,m,p(I)Fs−2n,m,p′ (I
′)

i−s
∑

l=0

(−1)s22s

(i − s − l)!l!

×
ℓmax
∑

ℓ=0

(−1)ℓ

ℓ!

ℓ
∑

k=0

(

ℓ

k

)

(−1)kαℓ
dℓ

dαℓ
b( j)

i+ 1
2

(α)

× Xi+k,− j2− j4
− j2

(e)X−(i+k+1), j1+ j3
j1

(e′)

× cos[j1λ
′ + j3λ + j3̟

′ + j4̟ + j5Ω
′ + j6Ω] (B.2)

and

RE = −κm
(1− m)!
(1+ m)!

F1,m,p(I)F1,m,p′(I
′)X1,− j2− j4
− j2

(e)X−2, j1+ j3
j1

(e′)

× cos[j1λ
′ + j3λ + j3̟

′ + j4̟ + j5Ω
′ + j6Ω], (B.3)
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with κ0 = 1 andκm = 2 for m , 0. We discuss the inclination functions,Fu,v,w(I), the eccentricity functions,

Xa,b
c (e), and the Laplace functions,b( j)

i+ 1
2

(α), below. The following definitions apply for the direct partof the

disturbing function:

q = j4

q′ = − j3

ℓmax = Nmax − | j5| − | j6|

(pmin, p′min) =



















(1
2 |a|, 0) if a = j5 + j6 < 0

(0, 1
2 |a|) if a = j5 + j6 ≥ 0

smin = max(pmin, p′min, j6 + 2pmin,− j5 + 2′min)

imax = Int[(Nmax − | j3| − | j4|)/2]

nmax = Int[(s − smin)/2] smin ≤ s ≤ i

mmin =



















0 if s, j5 are both even or both odd

1 if s, j5 are neither both even nor both odd

(p, p′) = (− j6 − m + s − 2n, j5 − m + s − 2n) pmin, p′min ≤ p, p′ ≤ s − 2n

j = | j2 + i − 2l − 2n − 2p + q|

where Int[x] takes the integer part ofx.

We are interested in expanding arguments up to orderNmax = | j1 + j2| for coplanar systems where

j5 = j6 = 0. We consider terms of the formj1 > 0, j2 < 0 and−| j1 + j2| ≤ j3 ≤ 0. Along with the

D’Alembert relation, we can then determine values for the above definitions to be:

mmin = 0

(pmin, p′min) = 0

smin = 0

ℓmax = | j1 + j2|

imax = Int[(| j1 + j2| − | j3| − | j4|)/2] = 0

nmax = 0

p = p′ = 0

q = j4

q′ = − j3

j = | j2 + j4|
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With these values equation (B.2) reduces to

RD =
1
2

| j1+ j2|
∑

ℓ=0

(−1)ℓ

ℓ!

ℓ
∑

k=0

(

ℓ

k

)

(−1)kαℓ
dℓ

dαℓ
b(| j2+ j4|)

1
2

(α)

× Xk,− j2− j4
− j2

(e)X−(k+1), j1+ j3
j1

(e′)

× cos[j1λ
′ + j3λ + j3̟

′ + j4̟], (B.4)

where we have use the fact that the inclination function,Fu,v,w(I) (defined in MD99), is unity foru = v =

w = 0.

The functions,Xa,b
c (e), are Hansen coefficients defined for ˆα = max(0, c − b) andβ̂ = max(0, b − c) as

Xa,b
c (e) = e|c−b|

∞
∑

σ=0

Xa,b
σ+α̂,σ+β̂

e2σ (B.5)

in terms of the Newcomb operators,Xa,b
c,d , which are themselves defined recursively as

Xa,b
0,0 = 1

Xa,b
1,0 = b − a/2

4cXa,b
c,0 = 2(2b − a)Xa,b+1

c−1,0 + (b − a)Xa,b+2
c−2,0 . (B.6)

We will see that cases whered , 0 are not relevant for the expansions we consider. The Newcomb operators

also satisfyXa,b
c,d = 0 if eitherc or d are negative, and have the symmetry property thatXa,b

c,d = Xa,−b
d,c if d > c.

MD99 state that the Hansen coefficients need only be calculated to orderNmax − | j3| − | j5| − | j6| in e and to

orderNmax − | j4| − | j5| − | j6| in e′. For the cases we consider this condition requires Hansen coeffcients be

calculated to orders| j4| and| j3| in e ande′ respectively. This meansσ = 0 is the only term required in both

e ande′ and we obtain

Xk,− j2− j4
− j2

(e) = e| j4|Xk, j2+ j4
− j4,0

(B.7)

X−(k+1), j1+ j3
j1

(e′) = e′| j3|X−(k+1), j1+ j3
− j3,0

, (B.8)

where we have made use of the symmetry property in writingX(e). We computationally solve for the

Newcomb coefficients as required by implementing a recursive subroutine.

The Laplace coefficients,b( j)
s (α) wheres = i + 1/2 are defined by

1
2

b( j)
s (α) =

1
2π

∫ 2π

0

cos jψ dψ

(1− 2α cosψ + α2)s
. (B.9)

Because numerical integration of the above definition is slow to converge, we choose to solve for the Laplace
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coefficients using the equivalent series form:

1
2

b( j)
s (α) =

s(s + 1)...(s + j − 1)
1 · 2 · 3 · . . . j

α j

×
[

1+
s(s + j)
1( j + 1)

α2 +
s(s + 1)(s + j)(s + j + 1)

1 · 2( j + 1)( j + 2)
α4 + . . .

]

. (B.10)

Theℓ-th order derivatives of the Laplace function were also implemented as series solutions.

The indirect part of the disturbing function is only nonzeroin cases wherep, p′ andm are integers equal

to 0 or 1. An analysis of the integers involved shows that for cases in which we are interested, we have

p = p′. Also whenp, p′ = 1 we havem = −1 (so that the indirect part does not appear) and whenp, p′ = 0,

m = 1. This last possibility contributes and indirect term of the form

RE = −X1,− j2− j4
− j2

(e)X−2, j1+ j3
j1

(e′) cos[j1λ
′ + j3λ + j3̟

′ + j4̟] (B.11)

whenp = ( j2 + j4 + 1)/2 = 0. Becausej2, j4 < 0 this last restriction only holds whenj2 = −1 and j4 = 0.

In writing RE, we have used the fact thatF1,1,0(0) = 1.



Appendix C

Width of a mean-motion resonance under

secular forcing

Murray & Dermott(1999) presented a derivation for the width of a MMR when the resonance angle evolves

due to a single resonance. In our situation with a massive third body, secular effects on the resonance angle

have to be taken into account. We show here how this modifies the resonance width and resonance centroid.

The relevant resonance angle as well as its time derivativesare

ϕ j = j1λ
′ + j2λ + j3̟

′ + j4̟ (C.1)

ϕ̇ j = j1n′ + j2n + j4 ˙̟ (C.2)

ϕ̈ j = j2ṅ + j4 ¨̟ . (C.3)

The time-variations ofn′, e′,̟′, andǫ′ due to the influence of the planet are neglected as the planet can

effectively be thought of as a test mass (m/mc ≪ 1). We also neglect variations inǫ as previously mentioned.

We take the time derivative of equation (8.13), substitute equations (8.12) and (8.13) into the right-hand

side, and use the resulting equations to recast equation (C.3) into the form

ϕ̈ j =
[

3 j22C̃rne| j4| − j4| j4|C̃re
| j4|−2( j1n′ + j2n) − 2| j4|3Cs1C̃re

| j4|−2
]

sinϕ j

−
[

| j4|3C̃r
2e2| j4|−4

]

sin 2ϕ j, (C.4)

whereC̃r = Cre′| j3|. This reduces to equation (8.63) of MD99 when| j4| = 1 andCs1 = 0. In deriving this

equation, we have made some simplifying assumptions. Firstly, we have ignored the time-dependence of

Cs1 andCr, which are in reality both functions ofα. Secondly, we have neglected theCs2 terms in equations

(8.12) and (8.13) as we expect their time-averaged contributions to be negligible.

We look for a solution of the system that is pendulum-like as in the case without secular forcing where

the system satisfies a mechanical energy equation of the formE = 1
2ϕ̇ j

2 + k sin2 1
2ϕ j. For a pendulum-like

solution we expect thatn = n0+ k cos[ϕ j/2], wheren0 is the mean motion associated with the nominal value
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of the resonance andk is a constant that describes the amplitude of the oscillation, or equivalently, the width

of the resonance. The choice of the angular form, cos[ϕ j/2], is determined by the libration amplitude of

the resonant angleϕ j (−π to π) as well as the presumed angle where maximum change in the mean motion

occurs (ϕ j = 0). The latter applies whenCr < 0 and shifts toϕ j = π whenCr > 0; however, the final result

does not depend on the presumed sign ofCr.

Substituting the assumed form of the solution into equation(C.2) and evaluating at maximum potential

energy where (ϕ j, ϕ̇ j) = (π, 0) allows us to write

j1n′ + j2n = j2k cos
1
2
ϕ j − 2 j4Cs1 + j4| j4|C̃re

| j4|−2. (C.5)

We obtain an energy equation by substituting this expression into equation (C.4), multiplying by ϕ̇ j and

integrating in time to yield

1
2
ϕ̇ j

2 =
[

−6 j22C̃rne| j4| + 2| j4|4C̃r
2e2| j4|−4

]

cos2
1
2
ϕ j (C.6)

+
4
3

j2 j4| j4|kC̃re
| j4|−2 cos3

1
2
ϕ j − | j4|3C̃r

2
e2| j4|−4 sin2 ϕ j.

Evaluating this expression atϕ j = 0 we obtain

ϕ̇ j
2
ϕ j=0 = −12j22C̃rne| j4| + 4| j4|4C̃r

2e2| j4|−4 +
8
3

j2 j4| j4|kC̃re
| j4|−2. (C.7)

We obtain a second equation for ˙ϕ j
2
ϕ j=0 by substituting equation (C.5) into equation (C.2), evaluating the

result atϕ j = 0 and squaring:

ϕ̇ j
2
ϕ j=0 = j22k2 + 4 j2 j4| j4|kC̃re

| j4|−2 + 4| j4|4C̃r
2e2| j4|−4. (C.8)

Equating these two expressions we obtain the following quadratic in k:

k2 +
4
3

j4| j4|
j2

kC̃re
| j4|−2 + 12C̃rne| j4| = 0. (C.9)

AssumingCr > 0 we would have chosenn = n0 + k sin[ϕ j/2] such that ˙ϕ j = 0 atϕ j = 0 and obtained a

quadratic ink with opposite signs in front of the twõCr terms.

Solving for k we have expressions for the centroid of the resonance (eq. [C.5]) and the resonance

amplitude, irrespective of the sign ofCr:

j1n′ + j2n0 = −2 j4Cs1 − j4| j4||C̃r|e| j4|−2, (C.10)

k =
2
3

j4| j4|
j2
|C̃r |e| j4|−2 ±

√

12|C̃r |ne| j4|














1+
j44|C̃r |e| j4|−4

27j22n















1/2

. (C.11)

The secular term is important for shifting the centroid of the resonance, but does not contribute to the width
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of the resonance. In fact, the width formula is identical to equation (8.75) of MD99 where secular forcing is

ignored.

The simple pendulum approach applies only when the resonantwidth is small, i.e.,δn = nmax−nmin ≪ n.

Moreover, assuming thate is driven by the secular interaction to a value that is proportional toe′ (eq. [8.15]),

most MMRs have widths which approach 0 ase′ → 0. The first-order (e.g., 2:1) and second-order (e.g., 3:1)

resonances that satisfyj4 , 0 are exceptions; the width diverges for the former and approaches a constant

for the latter.
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