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Abstract

Planetary system evolution: planet-disk interactions @adet ejection from binary systems

Lawrence Russell Mudryk
Doctor of Philosophy
Graduate Department of Astronomy and Astrophysics
University of Toronto
2007

Throughout the evolution of a planetary system, planefse@ally those newly formed, interact by several
means with a variety of the system'’s constituents. In palerc the influence of the most massive planets
is expected to govern much of the long-term evolution of §&tesn. In early stages of this evolution, the
gas disk that provided the material from which the planetshéml also acts to couple the planets to its own
dynamics. In part | of this thesis, | describe a new hydrodyisacode that | have developed, tuned to study
these interactions. Using this code, | explore the fornmadithydrodynamic structures within the disk, such
as jets and eddies, that arise from the influence of the @anethe overall flow. | show that while the
formation of vortices is damped in disks with a large enouiglcosity, jet formation is more robust in this
sense and jet structures form even in viscous flows. | fupthapose that these jets maffext the amount
of material transport that occurs in the flow in a manner sintid that found in the Earth’s atmosphere and
in the weather layers of the Jovian planets. In order to fu#dis claim, | perform preliminary numerical
experiments that aim to establish this relationship.

Even after the removal of the gas disk, the gravitationaliarfte of massive planets—or stellar com-
panions in the case of multiple systems—severely limitsrémge of stable orbits of the system’s lesser
planets. In part Il of this thesis, | examine the physical hagisms responsible for planet ejection from
unstable orbits previously observed in numerical expamnisiel determine the instability is due to overlap

of subresonances lying within mean-motion resonances.
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Preface

The first extrasolar planet orbiting a main sequence staRdgfasi, was announced Mayor & Queloz
(1995. As of this writing, 248 extrasolar planets in 202 plangtalystems have been discovered
(http://vo.obspm. fr/exoplanetes/encyclo/encycl.html). The most striking contrast between these
gas giants and those of our own solar system is that manyofhiage exceedingly short-period orbits (down
to a day) while others have relatively high eccentriciti&sich knowledge has forced the original theories
of solar system formation and evolution, based solely onpthaets within our own solar system, to be
rewritten, and the task of developing new mechanisms aruttidsethat can explain the observeételiences
has occupied theorists for the past decade.

Planet formation can be considered the late stage of staratan, which begins millions of years
earlier. According to standard theory, the formation oflarseebula starts with iuse material in molecular
clouds. By processes still debated, overdense clumps okiglais the molecular cloud form; within such
a clump there may be several centrally concentrated regibgas which are infalling. These centrally
concentrated regions will eventually become the protestioosely grouped stellar systems. While the
infalling gas is able to dissipate energy, it cannot easiiylee same for its angular momentum, especially
at longer distances from the central concentration. A figtledisk of material forms, and infalling material
accretes towards the central protostar through this g&s disthis stage of formation, the system is still
enshrouded by envelopes of dusty gas, however the existésoeh disks has been observationally inferred
around young low-mass stellar objects from their infranecessesAdams et al.1987. Direct images of
disks have also been obtained at later stages of systenogaveht Bally et al, 2000 after most of the
surrounding gas and dust has been removed. The process tly planets form in this enshrouded early
solar system are currently debated and observations cesntyrprovide no direct evidence for a particular
theory.

Bodenheimer et al(2000 argues that it is very unlikely that planets with shortipeérorbits could
have formed where they presently lie. Gravitational fragtagon has been proposed as a mechanism
to form planets within a few dynamical times if the disk gas@d and dense enough, but reasonable
disk parameters suggest that disks are very stable and o po self-gravitating instabilities except at
large radii ¢100 AU). Furthermore, the dynamics of such processes teptbtiuce only massive objects
(>10M3;). Alternatively (see for exampléjssauer(1993) one can form planets through the conglomeration
of small dust particles, a process which yields planetdsinug to a kilometer in size over.D-1Myr. Once
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this size, the planetesimals’ gravity will cause them taskdg group together, reaching larger sizes up to a
few tens of an Earth mass. By this final stage, the protoplamatissive enough that runaway gas accretion
occurs, leading to a gas giant with a mass of order 1000Mg,. This so-called core accretion process does
not favor the formation of planets at small distances fromphrent star either. The temperature must be
cool enough at the formation location for the dust grainsaindense out. For many observed extra-solar
systems this location lies well outside the current locatibthe protoplanets. Furthermore, even assuming
the formation of planetesimals was possible at small rebist reasonable distributions of gas density do not
have enough material at the inner annuli of a disk to buildugitdr-mass planets once runaway accretion
starts. By contrast, the total mass available per logariheadius increases further out in the disk.

Based on such arguments, most current scenarios posittfomad protoplanets at 5 20 AU from the
star, and expect that in a given system these planets willatgignwards or outwards toftierent radii. For
this work it is assumed that reasonable mechanisms existriofrotoplanets at these radii without specific
consideration of their formation process.

Regardless of the formation mechanism, one or more gianefdaxisting within the gas disk will exert
a marked influence on the subsequent evolution of the diskaregis gravity launches spiral density waves
in the disk Goldreich & Tremaingl979, leading inwards and trailing outwards from the planedtsation.
These spiral density waves can interact with the disk andexpently back on the planet itself. They are
physical manifestations of torques between the planet lamdlisk which can cause the planet to migrate
(usually inwards towards the central star) or alter its ptragty. In Part | of this thesis, | study various
effects arising from the planet’s couple to the gas disk usingprdational fluid dynamics to model such
interactions.

During the late stages of solar system evolution, the finasnarbital radius, and eccentricity of any
gas giants within a solar system wiltfact the subsequent stability of any terrestrial planetfiwithe
system, the habitability of such planets, and the potedgaklopment of life on such planets. Within our
own solar system, Jupiter positivelyfects the habitability of Earth as it helps to remove potérarth-
crossing comets. Such an influence need not be positive.elextreme case where a second star rather
than a gas giant exists within the system, the presence alaimpanion star will severely limit the range
of stable orbital radii for any terrestrial planets. Thegb#ity of a second star is important to consider as
roughly 60% of the stars in our local neighborhood are intyira higher-multiple system©uquennoy &
Mayor, 1991). The planet formation process inside these systems cafilel dharkedly from that around
single stars, due to the dynamical influence of the secondtaetheless, thie-situ stability of previously
formed planets is a starting point for examining the stgbiif planetesimals and gas existing during the
process of formation. A planet orbiting around a star in abjrsystem will experience forces from both
the parent star and the companion star, and it may be digiougm its host star as a results of these dual
forces. In part Il of this thesis, | examine the physical n@tbims for such planet ejection previously seen
in numerical experiments.
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Chapter 1

Introduction

The presence of a Jupiter-mass protoplanet within a pratephry disk has definite influences on the sub-
sequent evolution of the disk and on any additional plandtsimthat system. Such planets grossiieat
the distribution of important fluid quantities such as massmentum and vorticity within the disk in a both
non-linear and non-local manner.

Theoretical work on early solar-system evolution has fedusn the interactions of a single protoplanet
and a hydrodynamic disk. Authors such@sldreich & Tremaing1979 1980; Ward (1986 1996 1997);
Artymowicz (1993 and Tanaka et al(2002 established that tidal interactions between a protopland
the disk generate spiral density waves as a manifestatitreabrque exchange between the planet and the
disk, and that in the linear regime, the net result of theuergxchange is to migrate the planet inward. This
phenomenon is the leading explanation for the short-pesibds observed in extrasolar planetary systems.

Scenarios examining the behavior of a single protoplanet baen modelled computationally Byey
(1999; Bryden et al(1999; Nelson et al(2000. Their simulations capture the excitation of spiral dgnsi
waves which form within the disks over a few dynamical timEse deposition of angular momentum from
the planet near its orbit redistributes the surrounding iges manner which tends to clear a gap in the
density profile. There is a competing torque due to the diskosity which acts to smooth out any density
perturbations. Then a necessary condition for gap formasighat the planet is massive enough such that
the tidal torque is greater than the viscous torque. To &rémsure that the angular momentum transported
by the planet is deposited in the planet’s vicinity furthequires that the Hill radius of the planet be on the
order of the disk’s scale height. This second condition kEsatidal disturbances caused by the planet to
induce local nonlinear shock dissipation. Simulatioths Yal-Borro et al.2006 indicate that gaps are just
able to form for Neptune-sized planets in disks with vistgosn the low end of what observations suggest
exist in a planetary disks. Disks with correspondingly éargscosity require a more massive planet in order
to form a gap.

The combined influence of multiple protoplanets in a disklesa well-explored scenario. Thext that
two protoplanets have on gap-clearing was examined brigfKidy (2000, where he found that once gaps
have formed around each respective planet, the remainfiagarbital annulus of gas between the planets
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is also cleared within a few hundred orbits. Although theriptetation of Kley’s results was complicated
by relative migration of the planets, a mechanism for thertorbital gas clearing was not proposed. In
this thesis (Ch5), | present results which modify Kley’s conclusions andgwse an explanation for these
new findings. These findings and additional studésda & Morbidelli, 2007 suggest the important role
that viscosity plays in the evolution of systems, dependingts magnitude and the details of its physical
form (and implementation). The results@fida et al(2007) are based on a new code which embeds a one-
dimensional viscous spreading model of the disk, coveringieh larger domain than the two-dimensional
grid surrounding the region of interest. The addition oftseous solution accounts for the global evolution
of the disk more consistently than otherwise, and the astheport instances where the typical inward
migration of the protoplanets is often slowed and may eveevea reversed.

Several proposed mechanisms exist to account for the azbencentricities of extrasolar planets. Sim-
ulations including multiple planet¥{ey, 2000 produce eccentricity growth whenff#irential migration of
multiple planets within such a system causes the planetedornbe locked within a strong mean-motion
resonance (such as the 2:1 resonance). In such cases théieitgeexcitation comes from the resonance
dynamics of the two planets. Using this mechanism to explanhigh eccentricities of many extrasolar
planets would require a second planet to have existed in ggtkm and in many cases, to have subse-
quently been ejectedsoldreich & Sari(2003 andOgilvie & Lubow (2003 proposed an alternative mech-
anism for exciting the eccentricity of a protoplanet vieenaictions with the gas disk, rather than possible
additional planets within the systerilasset & Ogilvie(2004 andD’Angelo et al.(200§ computationally
tested this scenario, and their results support the thearebnjecture as a possible excitation mechanism.
Nonetheless]uric & Tremaing2007) recently advanced the idea that the dynamical relaxati@nsgstem
of multiple planets over 18-1C° yrs could instead explain the observed distribution of ptrisities.

Finally, a string of recent work has examined the distrimsi and production of potential vorticity
within the disk based on theoretical work Bgpaloizou & Lin(1989; Sheehan et a(1999; Lovelace et al.
(1999; Godon & Livio (2000 andLi et al. (2000. Li et al. (2001) andKlahr & Bodenheimef2003 studied
the generation of Rosshy wave instabilities and vorticesairoclinic disks through forced turbulenceée
Val-Borro et al.(2007) andOu et al.(2007) considered the growth of vortices due to suffiees when there
is an embedded protoplanet.

Potential vorticity is an important quantity to consider.two-dimensional barotropic flows, the quantity
is a conserved tracer of fluid elements. Even when not eXgladnserved, the quantity is a useful diagnos-
tic in balanced flows. Furthermore, its long history of usatimospheric dynamics, which involves many
analogous structures and models, means that many anahgessalts can be borrowed from previous work
in that context.

Despite the qualitative agreement between simulationsheatetical predictions on some of the points
mentioned above, it is flicult to ascertain to what extent the finer details of simafetishould be consid-
ered physically accurate. Many such results are excegdasgisitive to the specifics of the simulation and
can vary considerably from code to code. The authdesyal-Borro et al(2006, initiated a comparison



between dierent incarnations of severalfidirent hydrodynamics codes on the single-protoplanet enobl
Such a systematic comparison of results is essential tolba@bely on further outcomes from numerical
experiments.

In this thesis | describe the development of a numerical ¢@ded on an algorithm Hyen(1998 and
Trac & Pen(2003 previously used on cosmological problems. | modify theectm use in the simulation
of planet-disk interactions and perform a systematic caoispa of results depending on the details of the
implementation similar tale Val-Borro et al.(2009. Based on this careful examination, | use the code
to consider the dynamics in the region between two formirmigmianets. | am particularly interested in
the vorticity distribution and thefiects that it has on material transport. | confirm several efrésults
discussed irOu et al.(2007) andde Val-Borro et al(2007) and extend the study to disks with multiple
protoplanets. | also discuss analogous finding from atmergplphysics and their possible relation to the
protoplanetary-disk system.

In Chapter2 | provide the necessary theoretical background requirestudy protoplanetary disks.
Details of the numerical code are left for Chap8mwhere | also compare its performance on a suite of
standard shock problems. In Chapterl detail the results of the code in simulations involvingirgse
protoplanet embedded in a gas disk. Results from simuktidrmultiple protoplanets are discussed in
Chapter5, and conclusions are presented in Chafter
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Chapter 2

Protoplanet-Disk Dynamics

2.1 Introduction

This chapter provides the necessary theoretical backdromrstudy protoplanetary disks. | discuss the
basics of Eulerian fluid dynamics, introducing the necgssguations in Sectiol.2 In Section2.3I discuss
the standard steady-state models of protoplanetary digktste, including typical treatments of viscosity
and transport. Sectich4 describes the relevant interactions that occur betwedss disd protoplanets that
can cause planetary migration and eccentricity growthallinn Section2.5 1 discuss potential vorticity
and its role as a transport barrier for use in Chapter

2.2 Eulerian hydrodynamics

2.2.1 Mass and momentum evolution

An Eulerian formulation of the standard fluid dynamics eturet may be obtained by first considering con-
servation of mass and momentum within a control volume Kaeely, 199Q for example). The application
of these conservation laws yields the time evolution of thiel$ density,0, and velocity,u:

% +Uu-Vp = —pV-u (2.1)
paa—E[J +pu-VU = —pVo+ V-1 —2Q X pu + pQ?°R, (2.2)

0

whereu -V is the advective operatan,V = }; Ui 5 -

The termpV¢ represents any conservative body force
(gravity, say) and is the stress tensor for the fluid. The Coriolis acceleratif2 x u, and the centrifugal
accelerationQ?R, only appear in frames which are rotating with respect tertial frame. The quantity,
Q, is the rotation rate of the frame and the vect®y,s the cylindrical radius perpendicular to the rotation
direction.

These equations express the evolution of a conserved flaiatity g (eitherp or u;), due to the advection
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of that fluid quantity (-Vq). The right-hand side term in the density equation reptssany divergence
of fluid through the boundary of the control volume, and in thementum equations the right hand side
includes any existing forces acting on the control volumieese equations are valid for any solid or liquid
which may be treated as a continuum, no matter the relatiph&iween the stress tenser,and the fluid

response.

2.2.2 Stress and strain rate tensors in the Newtonian limit

In order to determine a closed form of the above equationseads to determine a more explicit form for
the stress tensot,. To start, one breaks the stress tensor into an isotropi@arahisotropic component:

Tij = —Pdij + ij. The isotropic componenfy;j, exists even when the fluid is at rest and represents the
thermodynamic pressure (skendy, 199Q §4.10). The nonisotropic tern;;j, results from stresses due to
fluid motion. Assuming a Newtonian fluid whereby the stressate is linearly related to the strain rate, one
expects the nonisotropic component of the tensor to berlinpeoportional to the velocity gradient. This
velocity gradient may be decomposed into symmetric and asstnic parts:

S ) .

o _ 1 /0y an
2\0xj 0%

= 2\ax * ox

The second term on the right-hand side does not generass.sirbe first term does so and is defined to be
ou;
%
the strain rate tensors in the Newtonian limit to be

the strain rate tensor, g = %(g—)‘(’; + ) Kundu (1990 determines the relationship between the stress and

2
Tij = 2u€j - 5/1(V' u)dij, (2.4)

wherey is the viscosity coficient. The momentum evolution equation, equatid?)( may thus be recast
as

O O ap 0p 0 2

— +pUj— =——— —p— + — i — =u(V-u)dii| - 2.5
Pat P Jaxj % Paxi I 2ug | 3ﬂ( )0ij (2.5)
The molecular viscosity cdicient,u, may be written in terms of the kinematic d¢beient, v, using the re-
lation, vp = u. Specific components of stress tensor are written out faie€ian and cylindrical coordinates

in AppendixA.

2.2.3 Energy equations

In order to determine kinetic energy equation, one may take the scalar product of equ@&idrwith u and
integrate by parts to obtain,

a(3u2 _a%(uf) ~

g O]
ot A 0X;

U— + U ,
p'a>q I(9Xj

(2.6)
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whereg; = ¢ — %QZR2 andu-(Q x pu) = 0. Kundu (1990 describes increases in the fluidigernal energy,
&, due to deformation of the fluid elements and the additioreatt filux,y, by the equation

oe o ol 0y
s 08 _ Ou 0% 2.7
Pt TPgx T Mgk ~ ax @7

Equations 2.6) and @.7) may be added, yielding

o(e + :—2LU|2) ole + %Ulz) oy O(Tijui) Oy
- = —pUj— - —=. 2.8
Pt TP PUiax © Tax % 28)
Adding %ulz times equationd.1) to the above equation, one obtains
oe
— + V. (ue) = —pu-V¢; + V- (7-u) — V- ¢4, (2.9)

ot

wheree = pe + %,oui2 is the total energy density.

In order to close these equations, one requires an equdtiiate relating the internal energy to other
known quantities. | consider two equations of state withia present research context. For an adiabatic
gas (¢ = 0in eq. R.9) the internal energy density depends only on the presswutalansity agpe = y—fl p,
for adiabatic indexy. | also consider the simpler locally isothermal equatiostate (equivalent tg — 1
in the adiabatic case) where the pressure and energy atedrdla the local sound speed, which itself is
a prescribed function of the disk radius. Usipg= pc2, | set the sound speed to be proportional to the
Keplerian velocity viacs = myvk. The ratio,my = H(r)/r, is a property of the disk and is taken to be
constant. It describes thiickness of the disk where larger values correspond to a hotter (#n)otisk. Its
value is typically chosen to be@b and unless otherwise indicated we will adopt this fiduegdlie. Such
parametrizations are further discussed in Seci@n

2.2.4 Flux form of the Euler equations

It is possible to obtain a form of the Euler equations wheeectbnservation of mass, momentum and energy
is more explicitly apparent. Beginning with equatidh 1), one can rewrite it using the vector identity,
V-(au) = u-Va+ av-u, as

% +V-pu = 0. (2.10)

Similarly one rewrites the momentum equations by takingdimesity terms within the derivatives to yield

a'aitu - u% + V-(ouu) — uV-(pu) = =Vp—-pVe¢ + V.0, (2.11)

wherepuu = puju; is a direct product yielding a matrix. Note that the termstipliéd by the vectory,

are identical to those of mass conservation and vanish. fdssire and stress tensor may be taken into the
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divergence term yielding

‘9'(;%’ + V[puu + pl — o] = —pVo, (2.12)

wherel is the identity matrix. The adiabatic energy equation map &le rearranged as

Z—f + V-[ue - u-t] = —pu-(Ve). (2.13)

When written in flux-conservative form in terms of the saativector,q = (o, pus, pUz, pus, €), flux
tensor,F(q), and source vecto§, these equations all have the same formally simple form,

a9
= tV-F=5S (2.14)

The form of equationZ.14) is the one | model computationally. For reference, | expduisl form of the
Euler equations into its separate components in both Gamtesd cylindrical coordinates in Appendix

Equation 2.14 may be integrated over the entire domain volumgto yield

f@varfv- FdV—deV:O. (2.15)
v ot v v

Reversing the derivative and integral in the first term amditing the second term using Gauss’ Law yields

a useful integral form of the equation:

ﬁfqu+f F-ndA = 0. (2.16)
ot Jv oV

wheren is the normal vector to the domain bounda#y/. Unless external source terms are introduced
at the domain boundary (representing influxes affidnaes of the fluid quantities) the integral of the flux

over the domain boundary vanishes as the flux vector is nadlgstangential to the domain boundary.

Because the source term is explicitly given&as (0, _pj_z’ —pg—)‘fz, —pg—)‘g, —,ouig—)"fi

are perfect integrals when integrated over the fluid volunigtoo vanishes as long as the source of the

), all of its components

gravitational potential is completely confined within tleat fluid volume which is being considered. In
such cases the integr%, ﬂ/ i, is zero and quantities that satisfy equations of the abonra &re not only
locally conserved, but also globally conserved. Thus, thkeiEequations globally conserve the domain-
integrated quantitiesﬂ, i, specifically, the total mass, Cartesian momenta, and gmérfe fluid. Global
conservation will not strictly hold when there is an exténpatential which is located outside of the fluid
volume. In such cases the external potential (say that ohtralestar at the center of an accretion disk
which is being modelled as an annular region of fluid surrinopthe star) represents a possible solsio&

of energy and momentum which is only being accounted for paerof the fluid volume.
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2.2.5 Angular momentum

Equation 2.12) describes the conservation of linear momentum. In cyigadicoordinates, it is not possible
to write a strictly conservative form of the linear momenteiguation involving the natural cylindrical
momentum componenijsu, andpu,, because these quantities are malividually conserved; rather the
linear Cartesian componenis,ly andpuy are each conserved. Instead, it is a fluia'gular momentum
along the rotation axis, which is conserved in a rotatingesys and as such, it is a more natural physical
variable to work with. Numerically, its use yields bettesutts as well (se€4.5). An angular momentum
conservation equation may be found by taking the crossttanf equation Z.2) with the vectorR, defined

as the components of the position vectorwhich are perpendicular to the rotation of the frame (s@ tha
Q x x = Q@ x R). Defining the angular momentum density along the rotatids @ash = pux R - Q, one has

2—? + V-hu + pu[V(QR?)] = Vor X RQ — pV x RQ. (2.17)

The third term on the left-hand side represents the corimibuo the angular momentum balance due
to the rotation of the frame. By making use of the continuiguation, this term may be rewritten as
pU[V(QR?)] = V[R?Qpu] — R?QV-pu = V-[R2Qpu] + R2Qdp/dt. The conservative form then becomes

88—': + V-[Hu + Rpl — Ro] = —(0V¢ x R)-Q, (2.18)

whereH = h + pR?Q is the absolute angular momentum density. This equatiomiitew out in cylindrical
coordinates in AppendiR. As per the discussion in subsecti®r2.4 both the angular momentum flux and
the source term,oV¢ x R)-fz, vanish assuming a bounded fluid volume, so that equafidB(forms a
global conservation equation for the angular momentummpare results solving for two filerent sets of
solution variables,q pur, pug) and p, pur, H), in Sectiord.5.

2.3 Protoplanetary disk models

The presence of planetary disks has been inferred around bhatb of all T Tauri stars from their infrared
excesses (se&dams et al. 1987, for example). Direct images of disks have also been obdeavédater
stages of system development once much of the surroundmgrghdust have been remové&hlly et al,
2000. Masses have been estimatedvat~ 10-2*1M,, with sizes from 20- 100 AU (Beckwith & Sargent
19969. Observed IR excessefdams et al. 1987 are consistent with the disk undergoing steady-state
accretion, however, they do little to constrain the masasHimates. Studies of optical excess emission
from young stellar objectsWhite & Hillenbrand 2004 suggest time-averaged mass-accretion rates of a
few x10"8Mg/yr. Luminosities of emission-lines assumed to originaterfinfalling magnetospheric flows
(Hartmann et a).1994 Muzerolle et al. 19983 suggest similar rateduzerolle et al, 1998 Doppmann

et al, 2005. These accretion rate estimates along with the decre#sintion of disks observed around
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late-stage T Tauri stars both suggest disk lifetimes on ttieraf 10 yrs.

2.3.1 Temperature and density distributions

Following Nelson et al(2000, Bryden et al.(2000, and the like, | typically model accretion disks using
locally isothermal conditions. The temperature and cpweding sound speed as well as the background
density are prescribed functions of radius. Once theseippéisns are chosen one can determine the local
pressure using the ideal gas lgws pc2.

The prescription for the temperature is determined assyiwéntical hydrostatic equilibrium: to first
order, the vertical pressure gradient is balanced by the&gecomponent of the gravitational foragp/0z =
—pgsing, where sirg ~ z/r for a thin disk is the ratio of mid-plane height to radius. Tdravitational
acceleration is given by = GM.,/r2, which written in terms of the Keplerian velocity gs= vﬁ/r. One
can approximate the pressure gradiendpz = c2dp/dz, assuming the vertical change in density away
from the midplane is substantially greater than that of #mperature. Solving for the density yields an
exponential atmospherg(z) = po exp(z2/H?), in terms of a scale heighij/r = V2cs/vk.

Observations yield disk temperaturesTof 10° 10! K corresponding to distances from the disk center
of R~ 101-10% AU (Adams et al.1988. Using the above scale height relations, these obsensasiaggest
such disks are supersonic withr ~ 0.03 - 0.1. For the purposes of this investigation, | assume a flat disk
with constant value of this ratio, taken to biér = 0.05 unless otherwise indicated.

While observations can help to estimate the masses of pigndisks, their density distributions are
poorly constrained. Estimates based on the heavy-metapasition of the planets within our own solar
system suggests a density profile which varies @8 between Venus and Neptune. While | have used this
distribution in certain simulations, | typically model Bgswith initially uniform density distribution with
a total mass of @02M.. out to the orbit of the nearest planet. The results | presenhat sensitive to the
choice of distribution.

2.3.2 Alpha-viscosity models

Molecular viscosity is not large enough by several ordemnmiagnitude to account for observed mass-infall
rates. Difusive processes transport fluid quantities on a timedéalz whereD is the relevant dfusion
codficient. For a typical microphysical kinematic viscosityyof= 10Pcn?/s in a disk, it would take the
lifetime of the disk to transport material ordy 10-3AU.

To account for the high mass-infall rates observed in bladlle- accretion disksShakura & Sunyaev
(1973 postulated an anomalous turbulent viscosity which wowfalan the déficient transport. Their treat-
ment and the subsequent treatmentpfiden-Bell & Pringle(1974 modelled the anomalous viscosity
simply as an enhanced version of a vertically averaged N&tmkes viscosity. Using cylindrical coordi-

nates, for a Keplerian disk, this assumption allowsrth& component of the stress tensor, appearing in the
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radial derivative of the angular velocity equation (see[&gl3]) to be written as

Org = IPVrb (2.19)

o
Under such an assumption, the stress depends on the locdhamglocity gradient.

It is further assumed that the enhanced turbulent viscasityparametrized agy,n = aCsH, in terms
of the dimensionless parameter,< 1. The rationale behind this parameterization is that erme can
generate eddies only as large as the scale height of thehdjskijth a turnover time no faster that/cs.
Replacing this parameterization in equati@mil®, one has

dinQ
dinr

o9 = ap (2.20)

for a thin disk whereH/r ~ cs/vk. The above assumptions thus relate theiency of transport directly
to the vertically averaged local pressure. In modern litgeasuch a treatment is termed an alpha-viscosity
model.

Many physical mechanisms have been proposed to explairfiibizet transport observed in accretion
disks(for a review, sePapaloizou & Lin 1995. The magneto-rotational instability (MRI) appears to be
one of the few nontransient mechanisms which can geneeatspiort rates that are large enough-(0.01,
Hawley & Balbus(1991)) to match those that are observed~ 10-2,Hartmann et al(1998); however, its
functionality in planetary disks may be limited by low leself ionization Gammie 1996.

Regardless of the specifics of the physical process, eguatinsport due to turbulent instabilities with
an alpha-viscosity prescription is accurate only in a spametime-averaged sense, at best. While authors
such asStone et al(2000 caution against such simple prescriptions, global sitraria are currently too
computationally expensive to dynamically account for tleht transport in other than such a simplified
way.

When discussing viscosity present in the simulations, patlte approach of most authors performing
global disk simulations, and use the standard alpha-ppsiser. Estimates in Chaptdrsuggest that numer-
ical viscosity limits the value of alpha to laex> 10~3° without an explicitly added viscosity. Larger values
of @ may be obtained by modelling an additional physical visggasi a given value within a simulation.

In Chapter5 | calculate local values of transport caused by hydrodynastructures such as jets and
vortices generated within the disk by the planet. | show thattime-averagedfiective transport due to

such structures is substantial and correlates with thenpaterorticity distribution.

2.4 Planet-Disk interactions

Protoplanets are able to interact with a variety of solatesgsconstituents likely to exist during the early
stages of the system’s evolution (during the mid- to finages of its formation). The catalogue of possible
interaction mechanisms is often referenced to provideamgtlons for many of the characteristics of our



16 CHAPTER 2. ProTtOPLANET-DIsk DyNamics

own solar system as well as thdfdring characteristics thus-far evident in extra-solatesys, namely the
existence of gas-giant planets with short-period orbitd ligh eccentricities. | briefly describe some of
these mechanisms.

Early solar systems are likely to be littered with small esitksized planetesimals that have not yet
grown large enough to begin grouping with other planetelsimaaccrete gas. The ejection of a substantial
fraction of these objects lying within the orbit of a protapét, would cause the planet to migrate inward
(Murray et al, 1998. To move a Jupiter-mass planet by seveydl, this mechanism would require a very
massive disk of initial material to produce enough plangtaks. A gas disk of such a size would likely be
unstable. However this scenario is a more plausible exptanfor the migration of the less massive ice
giants such as Neptune and Uranus, and possibly even Shawisdn et al. 2007).

If there exist multiple planets within the same system, masbinteractions can drive up the eccentricity
of one or more of the objectsRasio & Ford(1996; Weidenschilling & Marzari(1996 and Ford et al.
(2001 examined this scenario with two planets, but such interastresult in an eccentricity distribution
which is too low when compared with observed valuesr@ et al, 2001 Goldreich & Sarj 2003. More
recentlyJuric & Tremaine(2007) have shown that resonant interactions involving more thanplanets
may better explain the observed eccentricity distribigion

Protoplanets may also tidally interact with the gas disk hlial they are embedded. The planet and
disk are able to exchange angular momentum at resonancgofecavithin the disk, where the orbital
harmonics of the gas and the protoplanet are commensurhgeresulting gravitational torques can cause
the protoplanet to migrate or alter its eccentricity, defpeg on the particular resonances involved. | discuss
these two possiblefiects in more detail below.

2.4.1 Resonance locations

Goldreich & Tremain€1979 performed a perturbation expansion of the mass and momecanservation
laws (egs. 2.1] and [2.2]) in an inertial frame. They expanded these equations fanascid cylindrical
disk of fluid (where the stress tensor contributes only antloelynamic pressure term) subject to a central
gravitational potential as well as an external perturbirassn Within the context of planetary systems, the
role of the central potential is played by the central stat #oe protoplanet provides the perturbation po-
tential. Their analysis showed that the solution to suchx@auesion allows spiral density wave propagation
to occur within the disk except at specific resonance lonatishere strong interactions occur between the
protoplanet and the disk. Away from these resonance latstithe spiral waves transport angular momen-
tum within the disk, but do not exchange momentum betweedidieand the planet. Nonetheless the spiral
waves are visible manifestations of the interaction. | cantifiurther on them in Chaptérwhen examining
the results of my simulations.

Resonance locations are where the frequency harmonics giléimet’s potentialQ2, ,,, are commen-
surate with either the fluid’'s mean orbital frequengy, (so-called corotation resonances) or its epicyclic
frequency,, (so-called Linblad resonances). For a resonance of ongelhese locations are defined by
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Frequency of

Resonance Amplitude o, Fliig  -ocation ) ®)res (1) (L)res
Principal OLR pmm(r.€9)  Qp Q+x/m (m+1)/m — +
Principal CR dmm(r, eg) Qp Q 1 ? ?
Principal ILR dmm(r, e§) Qp Q-—k/Mm (m-1)/m ++ -
Fast 1st-Order OLR ¢mam(T.€5) Qp+kp/Mm Q+x/m 1 - -
Fast 1st-Order CR  ¢muim(r.€5) Qp+kp/M  Q m/(m+ 1) - —
Fast 1st-Order ILR,  ¢me1.m(r, eg) Qp+kp/Mm Q—-k/m (m-1)/(m+1) + ++
Slow 1st-Order OLR  ¢pm-1.m(r, er) Qp—kp/Mm Q+k/m (m+1)/(m-1) - ++
Slow 1st-Order CR  ¢m-1.m(r, eg) Qp—kp/m Q m/(m- 1) + —
Slow 1st-Order ILR  ¢m-1m(r.€) Qp—kp/Mm Q-x/m 1 + -

Table 2.1 List of properties of resonances including theiation and their action on the planet’s semi-
major axis and eccentricity. Locations are listed in re&tinits off given byr = r,Df3/2 assumingc = Q as
for a pressureless disk arg = Q, as for a central point-mass potential. Leading-ordésats are denoted
by double signs. (AfteMasset & Ogilvie 2004 Goldreich & Sarj 2003.

m/(Q,m— Q)| = 0 for corotation resonances (CRs) andi{2, n — Q)| = +« for Linblad resonances (LRS).
The term, Outer Linblad resonances (OLRs), distinguishes that occur at physical locations in the disk
which are further out from the central star relative the esponding Inner Linblad resonances (ILRS).

The harmonics of the planet’s potential may be considereddmpmposing the perturbing potential
into a Fourier series of angular modes, @os(,mt), each with amplitudeg, m(r, e,). The value ofQ;
corresponds to the pattern frequency of the mode. In the aaaeplanet moving on a circular orbit, an
expansion of its potential only contains terms involvirgritean orbital frequency so th@t , = Qp. For
planets on elliptical orbits, the potential may be expantedrder,£, in moments of the planet’s epicyclic
frequency a2, m = Qp + (£ —M)kp/m. Considering components up to first order in the planet'segcity
(¢ = m+ 1), each modem, contributes three potential components, each of which beagommensurate
with the gas disk at three possible locations. For latereaise, some of the properties and physidtdas
of the interactions at these nine locations are summariz@dble2.1

2.4.2 Torquing formulas

The work of Goldreich & Tremaing(1979 developed two formulas for the torque exchange between a
protoplanet and a gas disk at either LRs or CRs, which | quete &s

2
2 P derm 2Q¢;m
L= -m rdD/drH ar Q- Qim (2.21)
L
2
Te = ;m dQ/drdr(B) (2.22)

le
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whereD = «? - m(Q - Q m)? and B = 2Q + rdQ/dr. All variables are to be evaluated at the location of
the resonance.

Equations 2.21) and @.22), show that the strength of the Linblad and corotation rasoas increases
with order,m, while at the same time, the resonance locations approagiidhet (Tabl&.1). If the pressure
gradients in the gas were zero, the locations of the Lindi#adnances would indeed move closer to the
location of the planet. However, thé&ect of a pressure gradient is to bias the position of the L Rg/dmom
their nominal positions according to

m| Q- Qum |= 41 + £2]Y2, (2.23)

where¢ = mH/r . This bias leads to a limiting position for the high-orderdee ar| = rp+2H /1 + £2/3¢
such that| — rp + 2H/3 as¢ — . As the resonance locations and the planet become separatbd
order of H/r) for largem, the exerted torques become negligible. This result ignedeto as the “torque
cut-off” (Goldreich & Tremaing198Q Artymowicz, 1993.

An evaluation of the Linblad torque formula (séeldreich & Tremaing198Q Ward, 1986 reveals that
interactions with ILRs cause the planet to gain momentumenihteractions with OLRs remove angular
momentum from the planet. For the principle LRs this excleamgy be be understood as follows. The per-
turbations of the planet on gas particles just inside its aduse those particles to lose angular momentum
to the planet since they orbit more quickly than the planéelise the particles just outside of the planet’s
orbit gain angular momentum from the planet. Tlieet of these reciprocal interactions is to clear the gas
surrounding the planet.

If this clearing proceeds on a timescale that is faster thahdver which viscosity can resmooth such
perturbations, a gap may form in the disk. In such regimesdtnsity in Formulas2(21) and .22 can
no longer be approximated by its unperturbed value, andntieeaictions become nonlinear. This division
between linear and nonlinear regimes based on the formatiamap is discussed in the next two sections.

2.4.3 Type | migration

Were the exchanges of angular momentum due to principle yRenetrical, the planet’s orbital radius
would remain constant. In a gas disk, pressure gradienia agart their influence here as they shift the
locations of all resonances inward. This shift occurs beeaguressure gradients provide additional support
to the fluid at a given location in the disk, allowing the flgidirbital frequency to be slower at a given
location than without such support. This inward shift metirad the OLRs couple more strongly to the
planet’s location than do the ILRs leading to a net loss of miaitim from the planet and causing its inward
migration.

When the planet's mass is small enough such that the petitumbexerted is small, linear theory can
be used to examine thdfect on the planet. The torque in equati@i2() is dependent on the gas density
and protoplanet mass accordingTp « pr). This relationship leads to a migration timescale inversel
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proportional toMp, (Ward, 1997):

Mp\ ' Mg \H(H/r\?
~2x 104 =L ol 2.24
e (M®) (0.002|v|*) (0.05) (2.24)

Migration in this regime is called type | migration.

2.4.4 Type Il migration

When the perturbation becomes nonlinear, the planet bégia$ect the structure of the gas disk around
its orbit, altering the local gas density, The non-linear waves (carrying the angular momentum flux)
are presumed to grow very quickly in amplitude and to begibremak very soon after they are launched,
depositing their momentum in the vicinity of the planet. §process will try to open a gap surrounding the
protoplanet. This gap is maintainable if the timescale oitlwthe waves transfer angular momentum to the
gap is shorter than the timescale on which viscoti&isiion smooths out such density perturbations. With
a cleared gap, the plandtectively becomes locked into the viscous evolution of thek @nd will migrate
inwards or outwards on a viscous timescale. Only the vergrooarts of the disk are filusing outward
for typical disk models (seBringle 1981, for example). The planet is thus likely to migrate inwardsao
timescale given byWard, 1997

-1 H -2
rn~4><104(%) (%) ot (2.25)

This timescale has been parametrized in terms of the algicasity (se€2.3). Migration in this regime is
referred to as Type Il migration.

2.5 Potential vorticity and transport barriers

The potential vorticity (PV) is a useful quantity to congidemany balanced flows, from three-dimensional
stratified systems where the bulk motion is layerwise totimgasystems where the rotation acts to “two-
dimensionalize” the system. The potential vorticity hasoagl history of use in atmospheric physics,
since Rossby (1940 and Ertel (1942 both introduced several fiierent forms of the quantity for both
two-dimensional and three-dimensional flows. In astronoomyy its two-dimensional form tends to be
consideredRapaloizou & Lin 1989 Ogilvie & Lubow, 2006, where it is has been termed thartensity.

| introduce the quantity for the present work because in apheric contexts, strong gradients of PV
have been numerically and observationally linked to trarsparriers—surfaces or contours of a flow
through which passively advected material elements do ass.pl wish to exploit this connection in my
own results. After introducing potential vorticity, | dises some work in atmospheric and planetary physics

contexts which has explored this connection.
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2.5.1 Potential vorticity evolution

The absolute vorticityg, in any reference frame is given as the curl of the relativeocity within the frame,
w = V x u, plus any contribution from the motion of the frame. At a givecation in a frame rotating at
the Keplerian frequency(r) = YGM.,/r3, the absolute vorticity is thusj = V x (U + rQf) = (w + 2Q)2,
where the last equality assumes a two-dimensional systatatjirg around the-axis. In balanced flows
without large-scale contributions from wave phenomenarfial or acoustics waves, for example), strong
PV gradients in one direction, imply the presence of a jehwitflow direction perpendicular to and with
its axis along the direction of the PV gradient. This conicdnglepends only on the mathematical relation
between the PV and the curl of the velocity. Determining tekeity field based on the PV distribution is
termed “PV inversion” in the atmospheric literature.

The equation for vorticity evolution in a corotating frameyrbe obtained by taking the curl of equation
(2.2), to yield

%+U.Vq = ¢Vu-qgV-u

1
+ =5 Vpx Vp+ vV x V2, (2.26)
o

where some vector algebra is used to whitg (U-Vu) + Vx2Qxu=Vxgxu=u-Vq-gVu+ gVv-u,

and the stress tensor is represented as simple Laplaéfasidin. Continuity allows us to write

‘98—? +UVQ = QVu+ %vp X Vp+ EVZw. (2.27)
where thepotential vorticity, Q, is defined af = p~1qin astronomy.

For the two-dimensional disks | consider, the potentiatiely (PV) reduces to a scalar quantity. Also
for two-dimensional flows, the first term on the right-handesivhich represents vortex stretching and
tilting must be zero. The second term on the right-hand sgeasents contributions from baroclinity; for
barotropic equations of state, this terms also vanishelacahly isothermal disks, the temperature gradient
is a prescribed function of radius, while the density camidependently altered by compressibility, leading
to baroclinic generation of vorticityOu et al.(2007) discuss this #ect. The last term in equatio2.@7)
represents diusion of relative vorticity due to dissipative processes.

Ignoring any PV generation orftlision due to the right-hand side of equati@2(), in two dimensions
it reduces to an expression of two-dimensional vortex kiaira, and the PV measured in the inertial frame
is conserved following the fluid motion. Thus, in a rotatimgrhe, if a fluid parcel’'s density increases, it
must begin to rotate negatively with respect to the frames§aon, in order to conserve PV.

In atmospheric physics similar kinematics govern the (2i)lsw-water equations. For more compli-
cated three-dimensional systems, Rossby-Ertel potential vorticity, Qre = 0-VO, where® is the potential
temperature (the temperature of a given fluid parcel wheabatically brought to a reference pressure-

surface), is introduced. Rossby-Ertel potential vorficit conserved for inviscid fluid elements along isen-



2.5. RTENTIAL VORTICITY AND TRANSPORT BARRIERS 21

tropes (even for baroclinic fluids). In such contexts théRadssby-Ertel potential vorticity is often referred
to simply as the potential vorticity, but it should not be taien with the simpler, two-dimensional fluid
guantity as defined in astronomy.

2.5.2 PV gradients as transport barriers

Numerous studies in atmospheric and planetary physics éwamined the link between strong gradients
of PV, jets and eddy-transport barriers. | provide a briefroiew of some of these results and some of the
current theoretical arguments which have been put fortixptae the connection.

Juckes & Mcintyre(1987) performed numerical studies of polar vortex models (thiarpeortices are
roughly circular caps of high-PV air on either of the Earihddes, separated from the surrounding low-PV
air by a sharp PV gradient and a corresponding eastward ljetheir experiments the high-PV regions
behaved as material entities, withstanding large-scaleigtions from the surrounding fluid. Although the
air within the high-PV region was susceptible to small-saosion of material, it was almost impervious
to incursions of the surrounding low-PV air. Chemical tradata and analyses offective difusivities
(Nakamura 1996 from the Arctic and Antarctic polar regions confirm the hidggree of isolation of this
polar air and the low levels of mixing (transport) from swmding air into these region$/Cintyre, 1989
Haynes & Shuckburg2000. Marshall et al(2006 performed a similar study of the Antarctic circumpolar
current, finding low &ective ditusivities along the jet axis of the current and high valuetherequatorward
flank. In this study regions of high and loufective difusivity were shown to be correlated with regions of,
respectively, weak and strong isentropic PV gradients.

Sommeria et al(1989 performed laboratory experiments demonstrating lowl&egétransport across
jets formed in a rotating tank. In these experiments, a Hgdiaward fluid flow is setup in a rotating
cylindrical tank with a sloped bottom (acting as a backghBV gradient). At sfiiciently large radial flow
rates an eastward (prograde) jet forms with a strong gradidPV across its axis. The strength of the jet is
stated to depend upon the balance between the torque drizmghe Coriolis force on the radially pumped
fluid and that arising from viscosity. Away from the centertiog jet, the PV gradients are relatively weak
and the transport shown to be much stronger.

Finally work on the upper weather layer of Jupiter and theeotlias giants suggests a similar link
between jets and lowered transport. Data taken from theil@agsmcecraft Porco et al.2003 is consistent
with Jupiter’s system of belts and zones forming a “PV st&ec, where broad regions of almost uniform
PV lying on broad, westward jets are separated by sharp Rifegns, collocated on strong, narrow eastward
jets. In his original reviewmMarcus(1993 reached this conclusion based on models of vortex interat
A more recent analysis yeron-Vera et al(2007) demonstrates that both the eastward and westward jets of
such a staircase structure should function as meridioaatport barriers, explaining the relative chemical
isolation of the belts and zones from one another.

Despite the large number of studies linking jets and trarsyoriers, a clear physical mechanism which
explains the connection has not been fully developed. Tla¢igaship becomes apparent if one accepts
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priori the tenet that PV gradients inhibit mixing. Perturbatiomsuch a system will amplify any existing
or produced PV gradients—in regions with relatively weak ¢gr¥dients, mixing will be strong, while in
regions with relatively strong PV gradients, mixing will ieak. The combinedfkect is reduce gradients
where they are already weak and increase them where theyrang.s PV inversion naturally implies a
narrow, eastward jet centered on the sharp gradients.

Alternatively, if there are hydrodynamic processes distinom two-dimensional vorticity kinematics
that cause inhomogeneous mixing, sharp PV gradients asldgeatd develop in the regions defined by weak
mixing. For further explanations of the possible mechasistinwork see works byB@aldwin et al, 2007,
and references within) ari@lypina et al (2006 2007).



Chapter 3

Computational Fluid Dynamics

3.1 Introduction

In this chapter | discuss the basics of computational fluidatlyics and summarize the numerical method
based on the original Total Variation Diminishing (TVD) @by Trac & Pen(2003. | describe my mod-
ifications to the original code—the adaptation of the aldponi for use on a cylindrical grid and the imple-
mentation a fast advection scheme in the azimuthal dinedisssed on the work dflasset(2000. In this
chapter | also describe the performance of the code on adfifiver standard hydrodynamical tests.

3.2 CFD basics

In computational fluid dynamics, one generally discretae®ntinuous problem by one of two ways. The
first method, the Eulerian approach, discretizes the dmhiraain into volumes termed grid cells, between
which the fluid moves. By contrast, in the Lagrangian appndae fluid is discretized into fluid elements
(or ‘particles’) which can then move freely according toitheitial velocities and only their interactions
need to be modelled.

For problems such as those in accretion-disk dynamics wtheréuid velocities are dominated by a
large background flow, Lagrangian methods may initiallynseaore intuitive. In such situations, Eulerian
methods will spend the bulk of their time advecting fluid beén cells, requiring hundreds of time steps
per orbit simply to model the background flow, with the congpiginal indficiency and the accumulated
numerical error implied by such numerous iterations. Havethe usual Lagrangian method, SPH, does
not easily allow the higher spatial accuracy that grid meéshcan employ, nor does it capture shocks as ac-
curately as grid methods. Both of these properties are sage examine subtldfects like the interaction
of resonances and to accurately calculate the torquingalspittal density waves on the protoplanet. Fur-
thermore, SPH codes preferentially resolve high-densitjyons, meaning that in planet-disk simulations,
where the formation of a gap in the disk is an important patthefdynamics, these codes will under-resolve
such regionsde Val-Borro et al.200§. Given these considerations, | use an Eulerian approdchg a

23
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with an implemented method that increases algoritificiency in the presence of a large background flow
(discussed ir§3.10.

After discretizing the spatial domain into finite volumes,Eulerian approach must calculate changes in
fluid quantities over a specifidtne step. The numerical values at points on the grid are usually pméted
to be the cell-averaged quantities of the fluid variable. raeo to calculate new cell-averaged quantities
after a finite amount of time, one writes equati@l§) in one dimension and for a single conserved fluid
quantity so thag(x, t) = q(x, t). Ignoring source terms this reduction yields

A q a [ q
anl q(x,t) X+E<fx1 F(x t)dx = 0. (3.1)

For a single cell at locatiorx;, the spatial boundaries of the cell arexat= xi_1/2 andxz = Xi+1/2. The
integralsfx)l(2 qdx andfx)l(2 F(x, t)dx represent the cell-averaged fluid quantitiesand F;, allowing one to
write the discretized equation,

t t
Cﬁmt - CI} N Fi+1/2 - Fi—1/2 B

At AX

0, (3.2)

where superscripts reference the specific time step andripisseference the spatial cell. Note that in order
to computeqit+At for any grid cell, one requires the value of that cell’'s fléx.1/2, at its boundaries. This
value for the flux must be interpolated from the known ceb+aged values at the cell centers. The manner
in which a given finite-volume fluid algorithm interpolatdss flux determines the order and accuracy of
the algorithm.

The interpolation of the cell-boundary fluxes and the subsetjreconstruction of fluid quantities as
discretized in equation3(2) are both determined using only a finite number of neighlogugdells. This
truncation of the information used in the reconstructioacpss introduces errors which may bé&usive
or dispersive in nature. Busive errors result from excessive clipping and averagitwywing during the
reconstruction process, resulting in the smearing of diailyi sharp profile. Such errors are unavoidable in
computational codes, but can be minimized. Dispersiveremesult from spurious over- and undershoots
occurring during the reconstruction process. They resutinging-type oscillations occurring near sharp
discontinuities.

I illustrate these two types of errors by advecting both aasgwave and a sinusoidal wave form. Figure
3.1shows the initial waveform and the resulting waveform adigvection once through a periodic domain.
The difusive scheme has decreased the overall variation of bottntbeth and the square waveforms and
has broadened (smeared) their widths as well. The disgessiieme does a good job of advecting the
smooth wave form with little loss of amplitude, but the squasave form displays the ringing oscillations,

characteristic of dispersive schemes.
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Figure 3.1 Initial and advected wave forms illustratinffusive and dispersive errors. The thick, light-grey
line is the initial wave form. The solid line is the wave adwetonce through the periodic box using a
diffusive scheme. The dotted line is the same initial form a@eeonce through the box with a dispersive
scheme.
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3.3 Algorithm summary

The TVD code is a finite-volume method, second-order acelirdime and space. It uses a Total Variation
Diminishing (TVD) spatial scheme (described §8.4), which helps to control spurious oscillations, to
solve the advective terms in the Euler equations. Timepstegps accomplished through a standard second-
order Runge-Kutta scheme. For the first half-time step ofRbage-Kutta scheme, the fluxes at the cells
boundariesFi.1/2, are interpolated using the first-order upwind method (dlesd briefly in§3.4.1). For

the full-time step, the second-order limiter method is uggd4.2. Non-viscous source terms are treated
separately using a second or higher-order Runge-Kuttarselaamd the viscous terms are approximated as

second-order finite fierences.

3.4 The Total Variation Diminishing algorithm

Full details of the TVD algorithm are provided irrac & Pen(2003; | will merely summarize the method
here. The TVD algorithm is a second-order, nonlinear alforithat restricts théotal variation of the

discrete solution’s flux at a given time step,

2(2 Flo— Z FLo), (3.3)

to be less than or equal to that at the previous time step. atiablesF},, and F}ﬂn refer to local maxima
and minima in the flux’s solution set. Spurious oscillatiomyease the number of extrema and thus increase

the total variation.

3.4.1 The upwind method

Any flux-interpolation scheme which satisfies conditi@8( is called a TVD method. A first-order example
of such a method is the upwind method that | use to interpalaecell-boundary fluxes for the half time
step. It assigns fluxes based on the direction in which fluetigecting by assuming that most of the flux
at a given cell boundary comes from cells upwind of the boanftecation. Considering a one-dimensional
flow where flow to the right (larger indices) is positive, thamind scheme can be described by

Filil/Z = ki, u >0 (3.4)

FY = Fi;1, U1 <O.
This algorithm is highly dfusive. Godunov(1957) discusses the properties of TVD algorithms, noting that
the upwind method is the only first-order algorithm which MIO; and therefore, less filusive algorithms

must necessarily be nonlinear.
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3.4.2 Second-order schemes

It is possible to improve upon the upwind scheme by considesecond-order corrections to the assigned
fluxes. For flow to the right there are two second-order ctioes:

Fi— Fio

L i i-1

AFi1e = ——

AFRy, = —Fi+12_ iy (3.5)

These two corrections consider the influence of flux from #ilks durther to the left and to the right of the
ith (upwind) cell. In a similar manner for flow to the left, tkeare two second-order corrections, which

consider the influence of flux from cells to the left and righthee (+1)-th (upwind) cell:

Ei..—F
L i+1 i

AFLy, = —5— 5

AFiFj_l/z _ Fi2 ; I:i+1. (36)

To determine the actual value of the correction to the punehyind flux, | apply alimiter, ¢(AF-, AFR),
which determines the relative weight of the two correctidf@r a given limiter, the second-order boundary

flux is determined to b&Y ,  + AFi,1/2, whereAF 1, = ¢(AFiL+1/2,AFiFil/2).

i+1/2

| consider four established limiters: Minmod, Van Leer, M@le&Superbee, all designed to satisfy the
TVD condition (eg. B.3]) as well as two newly designed schemes. The Minmod limigteidnines the flux
correction according to

b (ab) = min(a, [bl), ab>0 (3.7)
M 0, ab<0 '
The Van Leer limiter takes the harmonic mean of the two ctioes:
2ab
£ ab>0
ab)={ &b - 3.8
¢y (&, b) { 0 ab<0 (3.8)

while the MC limiter determines the flux as,

min| 25 min(2al, 2b))|. ab>0
a,b) = 2 : 3.9
Puc (@, b) { 0 ab<0 (3.9)
The superbee limiter is defined as
max(min(2lal, |bf), min(al, 2|bl)), ab>0
¢ss(aa b) = . (3.10)
0, ab<O

It is possible to examine these schemes graphically in texihtke ratio of leftward and rightward cor-
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rections,¢& = AFL/AFR, and the corresponding magnitude of the chosen flux coorecNF. They are
displayed in Figure3.2 Note that all the above limiters are zero when the flux cdioas are of opposite
sign (wheref is negative) as occurs near an extremum. This feature @segeswth of the extremum. They
are also all symmetric under exchangea@ndb. Note that the exchanga,— b corresponds t§ — 1/¢;
hence, the definitiogf = AF-/AFR rather tharg = AFR/AF! is arbitrary.

The region defined bxF < max(Q min(2, 2£)) satisfies non-linear stability conditions determineti¢o
in the general class of TVD-stable limiteiSweby 1984). Limiters that satisfy the above condition and that
are also second-order accurate are found within the areadediby the superbee and minmod limiters.

The Minmod limiter is the most ffusive because it always takes the minimum value of the diorec
possible which is still second order; thus, any flux not assigby the second-order reconstruction ends up
being smeared out over more than one grid cell. The Van LaedniiC, AS and mixed schemes (see below)
are all progressively lessftlisive, as they assign more and more of the possible flux ¢mmneto a definite
cell. Superbee is the leastfiisive second-order limiter possible, but at the cost ofeéased instability.
These tradefts are discussed further in Secti®ri 1

Also shown on the graph are the AS and MB limiters | designeitiveometimes exhibit better com-
promises between stability and higher-order accuracy. MBdimiter is a normalized linear combination
of the MC and SM schemes. In practice | usually weight the mehas 80% MC and 20% SB as drawn in
Figure3.2 The AS limiter is asymmetric with respect to the left- arghtivard flux corrections; thus, it is
defined diferently foré, = AFR/AFL andé, = AFL/AFR. It can, however be defined without reference to

either flux ratio as

max| 0, min {20 min(al, 2bl)} , min {220 min(2al, [b)}|. ab>0

pas(a, b) = { (3.11)

0, ab<

| discuss more details of their performance in subsectbh$.2and3.11.3

3.5 Time step restrictions

In nature, information of various kinds is limited by phyaitaws to propagate at finite speeds. The speed
of sound, for example, limits the speed at which pressurithiances can propagate in a given medium.
Numerically, information propagates on a grid becausehimigring cells are used to determine a given
cell’s reconstruction at the next time step. Restrictiomsiaalent to the speed of sound must be imposed in
a numerical code to insure that numerical information dagspropagate at physically unrealistic speeds.
In practise one limits the value used for the time step sott@atypes of waves being modelled cannot
affect grid cells which are further away than the waves could hhaached were their equivalent physical
speeds so-limited. Such conditions are calBadirant-Friedrichs-Lewy (CFL) conditions, and they ensure
CFL stability. Failure to regulate the time step in this walll sause the code to be massively unstable and
highly inaccurate.
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Figure 3.2 Flux corrections for the considered limiter sohs: Minmod (heavy solid), Van Leer (dot-
dashed), MC (fine solid), mixed (fine dashed), AS (dotted), @uperbee (heavy dashed).
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Consider the one dimensional Euler equations. They supipes types of waves: entropy waves which
move at the fluid’s flow speed, and two types of acoustic waves which travel “rightwardd dleftward” at
the speed of sound relative to the flow spaedgcs andu— cs, respectively. Then, at a given spatial location,
the maximum and minimum values of these three speeds detsrtie speed at which information can
travel to the right and to the left, respectively. More gafigrone can limit the time step due to the two
global speed extrema. These two speeds are equivalent targfest and smallest eigenvalue of the flux
JacobiangF(q)/dq as demonstrated inaney(1998.

The time step may be further limited by other physical reBtms such as the CFL condition imposed
by viscosity. Physical and numerical viscosity are furtdescussed in SectioA.6. The fast advection
algorithm §3.10 places a further restriction on the time step in order tausnshat diferential rotation
does not cause two adjacent annuli of fluid to shear past ootenby more than a half grid cell. In
simulations of protoplanetary disks, the restriction duthe acoustic waves is usually the most stringent.

3.6 Wave splitting

In the discussion of the TVD method | have implicitly assuntieak it is possible to determine the fluid’s
direction of flow. When solving the Euler equations, thisedetination is not always straightforward as the
pressure can influence the total velocity in a cell throughsthund speed. In order to determine a set flow
direction for each cell, the equations are split into lefivand rightward-travelling components and the

coupled system,

aq 9,
a2t —ax(cw) =0 (3.12)
ow 0

= 3D =0, (3.13)

is solved, where the definitions, = qf + ¢, andw = F/c = R — ', define the solution variables in
terms of the leftward and rightward-travelling waves. Boqra(3.13 represents a separate equation for
the evolution of the normalized flux vectav, The variableg, is a positive-definite function which has the
interpretation of a speed associated with a particular ggltd The solution is TVD for values af greater
than or equal to the largest eigenvalue of the flux Jacoldi(g)/dg. Because the the waves are split into
separate rightward and leftward components, the maximgenealue of the Jacobian is satisfied for both
components by the valug = |uj| + cs wherecs is the sound speed for the cell. Substituting these defirstio
into equations3.12—(3.13 decouples the system and yields

dq  OFR 9F-

o + W - W = O, (314)

whereF! = cg- andFR = cgR. The original coupled system, equatioislQ) and .13, is then equivalent
to the solutions of the two separate leftward- and rightwaming waves given in equatior.(L4). It is
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now possible to separately solve for each of the travelliages using the second order Runge-K/IttD
scheme and add results to determine the full solution.

3.7 Operator splitting

The above description applies to the Euler equations in anergsion. Multiple dimensions and additional
source terms present in the full Navier-Stokes equatioasaaecounted for by using the operator splitting
technique ofStrang(1969. A full time step is performed as a double sweep through dered sequence of
operators comprising the full equation, first in forwardsence, then in reverse. To illustrate this process

for a single double sweep, | write equatidhi4) using operators as

dq; o
% - Z Li[aj] = Sggla;] - VIa;] =0, (3.15)

whereNp is the number of physical dimensions being modeling. Tlig;] terms represent the update
of g; in a single direction due to advective terrrEi',\ID uidqj/0%. The operatorsSy, andV represent
additional routines which élier numerically from the TVD algorithm and account for tifeets of gravity,
source terms due to cylindrical geometry and viscosity.velamped the source terms due to gravity and
geometry into the same operator as they are performed irathe subroutine. The first half of the double

sweep is then performed in the sequence,
g = VSgelLalala[q], (3.16)
and a second sweep is then performed using the same timestepyield the completely updated solution
0" = L1LoLsSgeVVSgglslola[g]. (3.17)

As discussed itstrang(1968 this procedure ensures second-order accuracy.

3.8 Alterations for cylindrical grids

In order to determine the changes required to solve the Egleations on cylindrical rather than Cartesian
grids, | examine the equations in Appendifor zero viscosity g = 0) and no external potentiap (= 0).
In Cartesian coordinates they may be written as

09 , 0Fy  OF, OF,

~0 3.18
ot ox oy oz (3.18)
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compared to their form in cylindrical coordinates:

09 1ok,  10Fs  OF,

ot +r or r o6 * 0z =S (3.19)

whereS = (0, pu3/r, purUg/r, 0,0) for the solution set] = (p, pur, pUg) andS = (0, pu/r,0,0,0) for the
solution setq = (p, pur, H).

Equations 8.18 and @.19 are computationally equivalent for the substitutiay(s,y,2) — q(r, 9, 2),
F(%,Vi,z) — F(ri,6;,z) and AXx Ay,AZ) — (riAr,riAg, A2) if the effects of the source ter8 are also
included. | account for this term using a second-order Rufgfga scheme implemented with operator
splitting as discussed in Secti@7. When performing the radial sweep the fluxes are multipligdhe
additional factor of as required. Equivalently: while the azimuthal advectiperator acts directly on the
solution vector as[q], the radial advection operator acts on the solution vestated by r ag[rq].

3.9 Boundary treatments

Special boundary conditions are required only in the nayukar directions. The angular coordinate is
numerically treated as periodic by directly mapping tNg+1)-th cell to the 1st cell when calculating the
fluxes.

In the radial direction, | use, = 2o ghost cells on the inner and outer edges of the computational
domain. This number of additional cells prevents tieats of lower-order flux interpolations occurring at
the first and last cells from propagating in towards the aarftthe domain. After the solution quantities are
updated at the end of each double sweep, the values of thesddry cells are redetermined, depending
on the physical #ect being employed. | consider three treatments here. Tsiesimply re-initializes
the quantities in the ghost cells to the initial conditiomssome known, prescribed solution. The second
re-assigns the cell values according to

qﬂb—i = anb+i+1a i = 05 Np — 1

ONe—np+i+1 = WON,—np—i» 1=0,np—1 (3.20)

wherew = 1 for all variables except the radial velocity when= —1. This boundary treatment approximates
reflecting boundary conditions for which all scalar vareshre symmetric around the boundary while vector

variables are anti-symmetric. The third treatment regassthe cell values according to the prescription

Gi+1 = Onp+i+1, i=0,n -1

ON-mp+i = ONp—2smpti> 1= 0,Np =1 (3.21)

for all variables. This treatment approximates a freeastriag outflow boundary.
In addition to the boundary treatments discussed abovanésmes implement wave-damping condi-
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tions near the boundaries, but still inside the solution dionproper. These wave-damping conditions are
described by
q(r.t) = q(r, 0) + [q(r. t) — g(r, 0)]e" "M/ (Fo), (3.22)

of the boundary, on a spatial scal®, and on an orbital time scale,

3.10 Fast angular advection routine

| discuss in Sectio3.2how accurately predicting the physics of accretion diskahgits requires the use of
a grid code, but that such an approach is computationalicrent and numerically diusive for flows with

a large background component. The large background flonddpa®rs the time step allowed by the CFL
stability condition, requiring hundred of iterations pebib, much of which goes into simply translating the
fluid in the direction of the background flow.

In order to increase theffeciency of the code in such situations, | adopt the fast adweetlgorithm
described byMasset(2000 for use in two-dimensional polar grid codes. The algoritiakes advantage of
the near-Keplerian velocity profile of accretion disks indlerto obtain a significant computational speed-
up as well as a significant reduction in the numerical visdgosthe algorithm’s underlying strategy is to
subtract @ the bulk background flow, which can be considered simplyrestedion of grid quantities in the
angular direction, leaving the dynamically important desil velocity.

| discuss the velocity decomposition scheme of the algorittelow and the methods used to transport
the fluid variables by each of theffiirent components.

3.10.1 Method summary

In decomposing the velocity, the cylindrical grid is brokep into a series of annuli and an averaged,
background velocity in the azimuthal directiom,(r), is calculated for each annulus. The first veloc-
ity component corresponds to the residual amount(r,6), by which the total velocity diers from

its azimuthally averaged valuey, . (r). The averaged, background velocity is further decompassed
Uye(r) = Ug,(r) + ug(r). The former component is constructed to correspond to dlges$t possible
whole-number shift of grid cells in the azimuthal directiand the second to the remaining partial-cell
shift. Neither of these components depend on the angul@blkar The whole-number shift is rounded to
the nearest integer so that the partial-cell shift may béipesr negative, but will always correspond to a
shift magnitude less than or equal to half a grid cell. Thalte¢locity at any cell on the grid is then given

as
U(T. 6) = Uy (1) + U (1) + U (. ). (3.23)

The transport of fluid quantities due to thg, component is easily accomplished by numerically shifting
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the fluid variables by the appropriate number of cells in ttimathal direction. Because the shift is integral,
the process does not introduce any numeridalision. Also, since it represents the advection of a balagnced
steady-state fluid flow, the process does not limit the siziinué step permitted by the CFL condition as
such flows do not support wave phenomena.

Transport of the partial-cell component is accomplishedtufting a second-order interpolation of the
fluid variables by the appropriate azimuthal amount. Thaitdebf the second-order interpolation used
are laid out in the subsection below. While this treatmermtsdatroduce some numerical viscosity via the
interpolation, per the same reasoning as above, it doegmmibthie time step allowed by the CFL condition.

Finally, transport of fluid quantities due to the residudghazhal component is performed by the TVD
algorithm, just as for the radial velocity sweep. This tgzors step contributes to the numerical viscosity and
also lowers the size of the time step allowed for stabilitpwidver, if the flow is near-Keplerian, the residual
velocity will be small and the time step will be much largeaiiithat permitted by the full azimuthal velocity.
In practice, the allowed time step is increased by a factér-of.0 times that allowed without removing the
background flow. | provide further comparisons and disaussf this improvement in Sectioh4.

3.10.2 Transporting fluid quantities via second-order intepolations

Transport of a fluid quantity along an annulus due to a vefogtiich is independent of the grid cell may be
accomplished by interpolating the function and redeteimgithe interpolation at a shifted location. This
process is not unstable; therefore, it does not decreas€Rheallowed time step, but it does introduce
some dffusion as peaks in the interpolated quantity are shifted dugtiins of a grid cell and must then be
redistributed among more than one cell.

Consider a known distribution along a single direction df-aeeraged valuegj(x;), corresponding to
a given fluid quantity. The cell-averaged values of the gtactan be related to an assumed underlying

continuous quantityg(x), by the relation

Xi+1/2

—on 1
W00 = = [ atoux (3.24)

-1/2

Assuming a single advection direction,y, one can determine an upwind two-cell interpolation for the
continuous functiong(x), as

q(¥) = M(X—%i-1) +b-, Uag >0 (3.25)
q(¥) = My(X = Xi11) + by, Uag <O (3.26)

wherem. = (G — Gi_1)/(X = Xi-1), My = (G4 — G)/(%i+2 — %), b- = G_, andb, = G,,. Notice that the
definition ofq(x) in equation 8.24) is self-consistent for the above interpolations. For atfomal cell shift
of width, fAx = u.At, whereu,, > 0 andAx = (Xi+1/2 — Xi—1/2) material advected into thi¢h cell was
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previously between;.1/2 — |f|[Ax andxi_1/2 — | f|AX. Then, the updated cell-averaged value;as

1 Xi+1/2— FAX

q'(x) — [m_(x - Xi-1) + b_]dx
AX Jxi_1/o-1f16x

= Gi@-If]) +Gi_qlfl. (3.27)

For a shift wherai, < 0O, the cell-averaged fluid quantity is updated due to adveai material previous
located betweem;.1/2 + | f|Ax andx_1/2 + | f|Ax so that

1 Xi+1/2+ FAX

q'(x) [, (X — Xi41) + by ]dx

E( Xi—1/2+|fIAX
= G- If]) + Gl fl. (3.28)

The above two-cell interpolation may be extended to highdeo In the code | implement a centered,
three-cell interpolation (of ordei?) to update the fluid quantities by the constant fractionaity, U, in
the azimuthal direction.

3.11 Hydrodynamical tests

| perform a suite of four hydrodynamic tests in order to asdéerthe accuracy and stability of the code:
a Sedov-Taylor blast wave, a two-dimensional oblique staidkree diferent angles, a Kelvin-Helmholtz
(KH) instability test and a cylindrical bow-shock test. Adkcept the KH instability test contain super-
sonic fluid flow. The first three tests are performed in Caatesioordinates and the last test is performed
in cylindrical coordinates. The results of these tests apepared to those from the piece-
wise parabolic method (PPMColella & Woodward 1984 code as implemented invH-1
(http://wonka.physics.ncsu.edu/pub/VH-1/), and when possible with analytical solutions. When
referring to results from the TVD code, the limiter schemedutor the simulation will be placed in paren-
theses.

3.11.1 Sedov-Taylor blast wave

A Sedov-Taylor blast wave is a strong, pressure-drivenaskph resulting in a spherical shock front with
self-similar subsonic flow in the post-shock regidvandau & Lifshitz(1959 detail the analytical solution.
In order to simulate such an explosion, | initialize the camagional grid with a fluid of uniform density,
po, and pressurepg, except for the central grid cell where the pressure is sbefa. = 10°py. The gas is
unmoving initially and | sef = 5/3.

Figure 3.3 compares the resulting density, momentum and pressurg U8 grid cells after a time
where the shock wave has travelled 57 grid cells. A randomcteh of 1/100th of the data is plotted.
Values have been normalized to their expected analytidaésammediately behind the shock front which
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Figure 3.3 Density, total momentum and pressure of a SedgloiTexplosion after the initial shock front
has travelled 57 grid cells. The analytical solutions aeswirwith dashed lines. All values for the quantities
have been normalized to their expected analytical valueseidiately behind the shock front.
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Figure 3.4 Density, total momentum and pressure after thekstont has travelled 57 grid cells. TVD(VL)
results are shown in black and PPM results are shown in bloe.analytical solutions are drawn with red,
dashed lines.
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| quote fromLandau & Lifshitz(1959 as:

ps - (ﬂ)po (3.29)
y-1
2
2

ps = (y—+ 1)poV%r (3.31)

wherepg is the density of the ambient medium awng is the velocity of the shock front. These values are
determined by the Rankine-Hugoniot jump conditions andeaapplied to shocks in general. Note that for
an adiabatic gas with = 5/3 the post-shock density can be at most 4 times larger thaofitiae ambient
medium. For an isothermal shock, it is unconstrained.

The code does a good job of reproducing the analytical estifill three quantities in the post-shocked
region, resolving the shock front over-23 grid cells and reproducing about 80% of the expected shock
strength. Figure3.4 compares the resolution of the shock front as captured byr#a(VvVL) and PPM
codes. The resolution of the front is slightly better witle fiVD code and the shape of the fronifdrs
slightly between the two codes. Besides thesieinces the codes perform similarly.

3.11.2 Two-dimensional oblique shock

The two-dimensional oblique shock is a version of the omeedisional Sod shock tube (skandau &
Lifshitz, 1959 for example) set-up in a two-dimensional box at an angléhéldox boundaries. In the
1-D Sod shock a jump discontinuity is initialized where tlregsure and density of two regions of fluid
are initially disparate (say, separated by a membrane). tWwbeegions of fluid may or may not initially
be moving relative to one another. In the 2-D oblique case,fédlet that the initial density and pressure
discontinuities are at an angle causes the resulting shiook to propagate obliquely across the box. The
specific initial conditions | implement are given by

1, X<Xp
o - (3.32)
0.125 X=X
1, x<
D = o (3.33)
01 X=X

with no initial velocity. For the two dimensional test, | sgt= 0.25 along the vertical and horizontal box
boundaries so thaty = V2(0.25) along the central diagonal.

Figure3.5shows the density and pressure of the TVD(VL) and PPM codesuned along the central
diagonal of the box and the corresponding analytical smitdit the elapsed time. Both codes agree well with
the analytical solution, capturing the shock front and baukl travelling rarefaction wave in both density
and pressure as well as the contact discontinuity in theitygm®file nearxgiagona = 0.5.
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Figure 3.5 Density and pressure when the shock has reaghgsta-o67 Results from the TVD(VL) are
drawn in the heavy, grey line, results from the PPM simuradce shown in the heavy, dashed line and the
analytical solution is drawn in the fine, solid line.

In order to compare the results between thgedent TVD limiter schemes, Figu®6 shows the dter-
ence between the computed density and that of the analgtitation for the five TVD limiter schemes as
well as the PPM code (fierences between the computed and analytical pressure stabegaus results).
The PPM code does better than any of the TVD codes at minigittia dffusion near shock fronts and
discontinuities, while the diusion of the TVD codes varies considerably at these pointse Superbee
limiter has the least éusion of the TVD codes, and is close to the PPM results exbapittdisplays some
spurious oscillations before the shock fronts. Theselasioihs are indicative of instabilities and in practice,
if the simulation has too many shocks, the superbee limaarforce the size of the time step allowed by
CFD conditions too small to be of practical use. The asymiméiniter scheme has only slightly more
diffusion than the superbee scheme and correspondingly haeispralshock oscillations and higher sta-
bility. In practice the asymmetric scheme has not forcedithe step size to be too small and has proved
a good compromise between stability and loweretlidion. The MC limiter scheme (not shown) has al-
most identical results to the Van Leer scheme which show® riffusion than the previous schemes and
the minmod scheme shows the mostusion. The PPM code does not show oscillations becausecepla
further conditions on the dynamics that tend to flatten gnaigi before and after a discontinuity.

Because the Sod Shock Tube is propagating at an angle, épeowseful examination of anyfidirences
caused by dimensional splitting. Figu8€& shows contour plots of the density from the TVD and PPM codes
run with Ny x Ny = 180x180 resolution and outflow conditions on all boundaries. rRost of the length of
the initial jump discontinuity the shock front is straightdapropagates at the same speed along the original
diagonal. As one gets close to the sides of the front, the ifuadhle to “bleed” away towards the open sides
(and eventually out of the box once it reaches the boundaresa result the shock front begins tdfdact



40 Cuaprter 3. CompuTtaTioNnaL FLump DyNamics

TT T I TTTTT TrT T T T T TTT TTTTTTTTT FrTT T T T T \\\\\\\\\‘\\\\\\\\\ \\\.\ /“O
- Analytical B
TVD (MM) — = = — -
0.04 - TVD (VL) -
TVD (AS) srrerinniinn
B | TVD (SB) — — — ]
L ‘l PPM -0.8
L | |
0.02 |- | .
|
\ 1 b
! A -1 0.6
\ ) :
L 7
Q. |
< 0.00 U
-10.4
—0.02 ]
| —-10.2
L | 4
—0.04 | \ -
L I ]
\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\ll ‘\\\\\\\\\‘\\\\\ \\\‘\\\\ OO

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Xdiogomo\

Figure 3.6 Density dierences between numerical and analytical solutions foditfierent codes. Devia-
tions from the analytical solution are measured by the smalhe left. The analytical solution is shown in
the heavy, pale grey line, measured by the scale on the right.

at the edges; this bending increases as the front evolvaaén t

3.11.3 Kelvin-Helmholtz instability

In any two fluids with shear (such as that caused lfedential rotation), if the velocity gradient in the
shear region is strong enough compared with the stratificatihe Kelvin Helmholtz (KH) instability should
develop. This instability is diicult to capture accurately in numerical simulations. Cdittesthe PPM code
can overproduce the instability’'s small-scale turbulénicsure for a given resolutiorDivarkadas et al.
2004 while a code with too much ffusion will underproduce such structure. SPH codes alsmmperf
poorly on such a test when there is a density jump across tbarisly region. | find a wide range of
small-scale structure production from théfeient limiter schemes enabling me to control the amount of

small-scale structure in a simulation by choosing an apjatsplimiter scheme.

The KH instability is initialized on a Cartesian grid of résion Ny x Ny = 400x 400 that is periodic
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Figure 3.7 Density contour plots illustrating propagataran oblique shock at angleg,= 45°, 0 = 30°
andé = 15° from top to bottom, respectively. Figures on the left shoev TWD(MC) results, figures on the
right, the PPM results. The dashed lines show the initiadtion of the discontinuity.
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in the x direction and has reflecting boundaries on the topleattbm. The fluid in the top half of the
box is set moving to the left at about one thirteenth of thendogpeed and the fluid on the bottom is set
moving to the right with the same speed. The densities of weregions of fluid are set to values of
0.9 and 11 on the top and bottom, respectively, in order to help vigealhe instability. The interface
between the two fluids is initialized to a sine wave in ordesxoite the instability. Figur8.8 shows results
from the TVD(MB,AS,MC,MM) and PPM codes. Each rows has thpaeels showing density contour
plots, snapshots taken at 0.3,t = 0.6 andt = 1.5, respectively. Time is measured in units where the
undisturbed fluid propagates completely across the boxitrtiore.

The superbee limiter proves too unstable in this test andlghaftert = 0.3 the time step becomes
unreasonably small. The otherfldirent limiters produce a range of small-scale structuree mimmod
limiter produces the least, developing only a single cusp@lthe interface and only a single, loose cat's
eye structure. The MC limiter has lesstdsion and shows hints of small scale instabilities=8x 8 forming
along the interface. The final cat’'s eye is more tightly woamd shows increased substructure as well.
Finally the AS limiter produces as much substructure as bl Bode. Indeed at times, = 0.3 and
t = 0.6, the results look very similar. At timé,= 1.5, both codes show very complicated interfaces with
much mixing between the two fluid layers. As in the obliqueckhtest, the PPM code shows evidence of
flattening or clipping the density profile. The TVD runs exhiarger variation in the density, not only near
the interface, but also in the bulk regions of the fluids. Thegity of the PPM code is comparatively very
uniform in the bulk of each fluid region, illustrated by thaform yellow and blue colors in each region.

The KH instability test readily demonstrates th&eliences between thefldirent limiters and codes.
The reason that this test does so is that with an infinitelypsiderface the KH problem is formally ill
posed, and the growth rate for infinitely small disturbarisasfinitely fast. Because there exists no small-
scale cutff for the dynamics, the numerics themselves dictate the #onlon the smallest scales.

3.11.4 Supersonic flow around a cylinder

In order to test the implementation of the Euler equationa owylindrical grid, | examined the formation of
a bow shock caused by supersonic flow around a cylinder.idlizié a cylindrical grid spanning an annular
region from 2< r < 20, 0< g < 2r with resolution,N; x Ng = 600x 150, with a supersonic flow to the
left at three times the sound speed. The initial density aedgure on the grid are uniform. The density is
set equal to the adiabatic index= 5/3, and the pressure is setfio= 1. The inner boundary of the grid is
reflecting, simulating a solid cylinder around which a bowdahforms. The outer boundary allows outflow.
Figure3.9shows the results from the TVD(VL) and PPM simulations.

The two codes both produce a density peak just in front of yfiader with a value close to 6 (about
6 and 6.4, respectively, for the PPM and TVD(VL) codes). Ehpsak densities are about 90% and 96%
of the post-shock density @f; = 4pg for an adiabatic shock of index, = 5/3. Again the TVD code has
small-scale oscillations in front of the shock, which thevP&ode appears to have flattened. Both codes
capture the smaller tail shocks produced at the rear of thedey.
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Figure 3.8 Density contours for a KH instability. Each rowwsis a contour plot of the density taken at
t =0.3,t = 0.6 andt = 1.5, respectively. The first four rows show results from the Tstidle using the
minmod, MC, AS and mixed limiters, respectively. The last shows results from the PPM code.



44 Cuaprter 3. CompuTtaTioNnaL FLump DyNamics
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Figure 3.9 Density contour plots of the steady-state dgndihe image on the left shows results from
the TVD(VL) code and the image on the right, that from the PRMec The black circles represent the
boundary of the cylinder.



Chapter 4

The Protoplanet Comparison Problem

4.1 Introduction

In this Chapter, | describe the standard setup where a somgteplanet is embedded within a gas disk. |
provide a systematic comparison of results depending agrakdetails and parameters of the implementa-
tion. The purpose of such a study is to be able to better datermhich details observed within a run are
physically realistic and consistent between runs and waiehikely due to numerical artifacts. In Section
4.3 | present the reference results of the code on a “Jupiteshydanet. Sectiod.4 discusses the speedup
obtained through the use of the fast advection algorithm elsas diferences in the results caused by its
use. Diferences caused by the choice of twéiatient sets of solution variables are presented in Section
4.5, Sections4.6, 4.7, and4.8 examine the influence of viscosity (both numerical and piatsriscosity),
resolution, and choice of limiter, respectively. | summarall these results in Sectidmd.

4.2 Problem setup

The details for the setup are the same as those usdd bgl-Borro et al(2006 and represent what is now
a standard problem in accretion disk theory. A polar griceisig with initial conditions (described below)
using a given mesh resolutioN; x Ny. In this chapter, the standard run u$gsx Ny = 384x 384. The
azimuthal range is always taken to ber[ 7] and unless otherwise indicated, the radial range.#&a[@.5a],
wherea is the mean orbital radius of the protoplanet. The graateti potential of the star is calculated for
a grid position,r = (r, ), in terms of the central star's madd,. and locationr.,as¢. = —GM../|r — r,|
while the protoplanet is represented through the softengehpal,

-G
bp = —— (a.1)

JIr = rpl2 + €

The softening lengthe, is fixed in terms of the disk’s scale heightas 0.6H(a). A “Jupiter-mass” planet
is defined in terms of the system’s mass ratioz my/(mp + M.,), to haveu = 10°3. Simulations with a

45
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single planet are calculated in the frame corotating withglanet, with the origin at the system’s center of
mass. This choice of origin means that the star orbits ardistga, from the origin, the planet at a distance,
(1-wa

| use dimensionless units where the unit of mass is taken théototal mass of the systerl, + mj,.
Length is measured in units of the planet’s initial radigdaation from the stag, and | set the gravitational

constantG, to unity. Time is measured in units of the orbital time,

a3
= \/ G(M, + mp)’ #.2)

With this definition, one orbital period takeg 2nits of simulation time.

Fiducial initial conditions are those of a uniform-dendttgplerian disk, which is the equilibrium solu-
tion for a single central potential of madd,.. | transform the azimuthal velocity into the corotatingnira
and correct for pressure supportwas= V(GM,)/r[(1 — m3)"/2 — (r/a)*?], wheremy = H/r is the disk
thickness. In order to allow the Keplerian disk to gradualtijust to the influence of any additional poten-
tial, such as that due to an orbiting planet, the potentighhefplanet is slowly “turned-on” according to the
formula,

5o(r0) = S| 2= (1), 43)

wheret is the simulation time and&v = 10 is the number of orbits over which the potential is turned o
After the prescribed number of orbits the full value of thegmbial, ¢,(r), is left constant.

4.3 Standard comparison run

Here | present a standard comparison run of the code for &edumpass planet, run for 300 orbits using
the VL limiter scheme. The calculation is performed advegtihe solution seto our, H), whereH =
p(rug + r?Q) is the absolute angular momentum (combined gas and frantlegicorotating frame.

In Figure4.11 show density contours after 5, 10, 20, 50, 100 and 300 orNitée the appearance of the
spiral arms occurs very quickly—within a few dynamical tsre¢ most. There are two trailing arms outside
the planet’s orbital radius and three arms inside the dnizEithus. They are close to steady-state in the sense
that they occur at fixed locations within the disk when tinveraged over a few orbits, although they exhibit
small spatial and temporal oscillations in simulationshwldw-viscosity.

As the simulation progress, the planet begins to clear gas fis orbit, but not uniformly. Gas is more
readily cleared in two orbital tracks 4 2 Hill radii, Ry = (1/3)Y3, to the inside and the outside of the
planet's orbit. These locations are the approximate distaa which the averaged torque density due to
neighbouring resonances peaks (around resonance arderl0; seeWard (1996 for details). There is
a further asymmetry in thefficiency of the gas clearing for locations trailing and legdihe planet as
demonstrated in Figuré.2 It shows the density, averaged along the full azimuth divacat five diferent
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Figure 4.1 Density contours for a standard Jupiter mass singuhe VL limiter scheme. Each plot in

sequence shows a contour of the density taken after 5, 1602200, and 300 orbits, respectively.
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Figure 4.2 Azimuthally averaged density profile of the st@ddJupiter mass run using the VL limiter
scheme. The inset displays the same averaged densitigsefbrdiferent times in the solid curves as well
as averages far > 0 in the dotted curves ar@d< 0 in the dashed curves.

times during the simulation. Especially during the inifiaimation of the gap, the total density in the track
outside the planet’s orbit is much lower relative to the dgria the track inside its orbit. In the inset, solid
lines show the averaged density as before, while the brakes show the averages separated into halves
for 6 > 0 (dashed) and < 0 (dotted). While the gap region leading the planet seemkety approximately
equally inside and outside the planet’s orbit, the regiailiig the planet to the outside clears more quickly
than elsewhere and the region trailing the planet to thelénsiears more slowly.

Note that there are regions of fluid within the gap which @traver time. These regions surround the
L4 andLs Lagrangian equilibrium points located @t +r/3. In Figure4.1these are the circularly shaped
overdensities which remain within the gap. | illustrate gwlution of these regions in Figuke3. The
density plotted has been radially averaged at each azimomhif = 0.9ator = 1.1a. Again there is a
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Figure 4.3 Average density within the gap region for the déad Jupiter-mass run. The density within
10% of the planet’s orbital radius has been radially avetadéote the asymmetry between thg andLs
equilibrium points.

leading-trailing asymmetry. This asymmetry has been eleskin most planet codes to varying degrees (see
de Val-Borro et al.2008.

In addition to the above libration islands at thg andLs points, there are large over-densities which
begin to develop due to the generation of vortices to eithtgr of the gap region. Initially several small
vortices develop at roughly the same radii, but spaced muathi. These vortices appear as roughly concen-
tric overdensities in the density contour plots (in Hgl at 20 orbits there are three such regions at both
r/a = 0.75 andr/a = 1.3). As the simulation progresses, the vortices grow andnbegmerge, depending
on their radial location within the disk. In disks with largiscosity, ¢ > 107°), the vortices do not form.
Similar structures have been observed in other codes atikmosity. The vortices are likely the result of
Rossby-wave instabilities (sé¢gapaloizou & Lin 1989 Lovelace et al.1999 Li et al., 200Q 2001, and



50 CHAPTER 4. THE ProTOPLANET COMPARISON PROBLEM

\
| Far T'm 777777777 b
FQ’( Tout -
0.4 ol T ]
7 Near Ti, 4
Near T,
i Near T . *
0.2 * ]
Lo |
o 0.0 |
g 7 i
E i | I H H \ ; ﬂl'”[\ s
\ | ™| l\
i) i ,mu,x *
i Mhl A"” J qu |
- )! a ]
e |
oal! ]
| {
by |
L L L ‘ L L ‘ L L ‘ L L ‘ L L
0 50 100 150 200 250

Orbital Period

Figure 4.4 Time evolution of the torque on the planet’s odbié¢ to the disk. The torque is broken up into
components from the disk material inside (dotted) and datsie planet’s orbits (dashed). Black lines show
the two components and the net torque from all the disk naterdre than one Hill radiugy = (u/3)Y3,
away from the planet. Grey lines show the two components hadet torque due to material between
0.5Ry andRy.

references therein). | discuss their generation and ewalutore thoroughly in Sectioh.2

In Figure4.41 present the total torque summed over various regions oflisie showing its evolution
over the course of the simulation. A running average overrigef 10 orbits has been performed to
smooth out some of the oscillations. As per the treatmenteirval-Borro et al. (2006, material within
the Hill sphere is considered separately, mimicking tffeat of the torque-cutd. The gas within this
region feels the softened gravitational potential of thenpt, rather than the long-range singular potential.
As theoretically predicted@oldreich & Tremainge1980Q Ward, 1986, the torque inside the planet's orbit
is positive (transferring angular momentum to the plangtjile that outside the planet’s orbit is negative
(angular momentum is transferred from the planet to theriextelisk). Also as predicted, there is an
asymmetry in the magnitudes of these torqu&ard 1996. The net torque on the planet is negative and
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would cause it to migrate inwards, were its orbit not helddixe

The initially smooth, broader scale oscillations of theatdbrque (on a time scale of 20 orbits) are
consistent with Phase | evolution, as describedKbifer et al. (2003. The frequency of the subsequent
rapid variations which develop matches the inverse perfatelarge vortex outside the planet's orbit as

measured in the frame of the planet.

4.4 Speed-up due to the fast advection algorithm

Using the fast-advection algorithm discussed in Sedlidrdecreases the number of iterations required to
perform a simulation. This result is accomplished by subing of the average background flow in the az-
imuthal direction, and advecting fluid quantities via theD Wethod by only the residual azimuthal velocity
atop of the background flow. The subsequent transport oétheantities due to the background flow may
be performed without limiting the time step allowed by theL@®ndition. The simulation time is reduced
approximately by the ratio of the residual azimuthal velpto the full azimuthal velocity. This reduction
comes at the expense of increaseftudion introduced by the transport of quantities by the bemkgd flow.

In order to determine thefiect of this difusion on my results, | compare the standard run with and witho
the fast advection routine implemented.

In Figure4.51 show density plots taken after 20, 100 and 300 orbits coimgax run which uses the
fast-advection routine and one which does not (I refer toldtter as the pure TVD run). The run which
uses the routine requires8rtimes fewer iterations to reach 100 orbits and finishéstihes faster. It is
evident from the density plots that the algorithm increabesdifusion of the simulation; nonetheless, the
important structures of the flow are still apparent. Thea@rms show nonsteady-state behavior and the
libration islands of fluid are present in both runs. Vortiéelsn on the same radial lines in both runs and
eventually merge (the two separate vortices present indhe PVD run have merged by 400 orbits). Both
results also show narrow tendrils of gas threading the ggipme

| compare results for the azimuthally averaged density hadddially averaged density in Figu4es.

Again the increased fiusion is apparent, but the results are otherwise similar.

4.5 Dependence on the chosen solution set

Kley (1998 has shown that advecting the absolute angular momentt(uy, + rQ2) (that of both the fluid
and the frame), as written in equatich 18 produces better results than just advecting the quapntity.

In practise this distinction is between accounting for tlegi@is and centripetal accelerations terms using
the hydro portion of the code (the TVD method in my case) orcagce terms where they are solved via
the Runge-Kutta method. | perform a comparison between alatimn which uses the solution variables
(o, pur, H) and one which uses the solution variableso(r, H/r), that is between one which solves for the

absolute specific angular momentum and one which solvebdalisolute specific angular velocity. As one
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Figure 4.5 Snapshots of the density after 20, 100 and 30@sq(tiop, middle and bottom rows). Results
from the standard run are on the right; results from the piB Tun are on the left. The two vortices still
present at 300 orbits in the pure TVD run have merged intoglesivortex by 400 orbits as in the standard
run.
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Figure 4.6 Comparisons of the azimuthally averaged desiti/the radially averaged density in the gap
region. Results drawn in dark lines are from the pure TVD thase in the pale lines are from the standard
run. As expected the use of the algorithm increases ftfiesthn in the simulation.

might expect, the latter yields poorer results, since tbbalangular momentum is not formally conserved
in such a case.

In Figure4.71 compare the density of the solution sets after 10, 50 andioi@s. While both properly
capture the locations of the spiral arms, the formulationctvitonserves angular momentum appears to
have less dfusion than the one which does not. Figdr8 shows that while the angular velocity scheme
captures the gross details of the gap such as its width artth,degher structures in the flow, such as the
L4 andLs libration islands, and the vortex lines are missing. In &ddj the actual preservation of mass
and angular momentum over the course of the simulatifierdithe scheme that uses angular velocity as a
solution variable conserves mass and angular momentuni6@eorbits to about 4% and 3%, respectively;

the scheme that uses angular momentum as the solution leaciaserves these quantities to within 2%
and 1%, respectively.

4.6 HEffects of viscosity

The presence of physical viscosity tends to smooth pettiorizof physically conserved quantities. Parametriz-
ing the viscosity for a flat, alpha-disk mode&l2(3.2 results in a relationship between the viscosity coef-
ficient, v, and turbulent ficiency, «, given byv = am|2_| VGM,r wheremy is the disk thickness. For an
expected range af-values taken to be = 1072 — 10~3 (Hartmann et a).1998 and a disk thickness of

my = 0.05, one finds ~ 1074% — 10755, Figure4.9 shows the evolution of the density for a simulation
with v = 1 x 107°. The physical viscosity is implemented by diredfeiencing, accurate to ordexx)?, of

the stress tensor terms as written out in ApperfdiXWhile the evolution of the spiral arms occurs on the
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Figure 4.7 Snapshots of the density comparing results 2@te50 and 100 orbits for two filerent sets of
solution variables. Plots on the left are for the solution @epur, p(uy + rQ2)), while those on the right are

for (o, pur, pr (U + rQ)).
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Figure 4.8 Comparisons of the azimuthally averaged demsiti/the radially averaged density in the gap
region. The runs drawn in dark lines use angular velocity ss@ion variable, while those in the pale lines
use angular momentum as a solution variable. While the gafilgs are close in the radial direction, they
are substantially dlierent in the azimuthal direction.

same timescale, many of the structures in the simulatiom@fenger present with this additional physical
viscosity: theL4 andLs libration islands are less marked and the vortex lines seeviqusly are absent.
Figure4.10compares the radially and azimuthally averaged densities\eral orbital times for runs with
and without added physical viscosity. While it appears thate may be libration islands of fluid in the
viscous run which begin to develop, their radial and aziraugructure is smoothed out by the viscosity.
Note that if the added physical viscosity is reduced in olyeanother half-magnitude, the libration islands

are once again present (see below).

Any numerical algorithm exhibits numerical viscosity doetie combined results offtlisive and dis-
persive errors (discussed §3.2). While physical viscosity is characterized by the formloé stress-strain
tensor (in a Newtonian fluid there is a linear relationshipMeen the two), an algorithm’s numerical vis-
cosity can difer from the physical viscosity, not only in the amplitude pasal dependence of the viscosity
codficient, but also in the relationship between the stress aathsExcept for the most ffusive schemes,
the numerical viscosity of an algorithm usually displaysoalmear dependence on the velocity gradient.
These higher order terms tend to introduce dispersion.

Despite this potential incongruity between physical anchetcal viscosity, it is useful to have an esti-
mate for the value of the viscosity déeient at which the two viscosities may be considered apprately
equal in their &ects. In order to determine this value, | compare the resdlseveral simulations with
various levels of added physical viscosity (implementedescribed at the beginning of this section). By
reducing the value of the viscosity dteient, v, to a point where the results of the simulations are approx-

imately the same irrespective of its addition, | obtain aingste for the numerical viscosity present in the
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Figure 4.9 Snapshots of the density for a standard Jupites ma using the VL limiter scheme with a
viscosity ofy = 1 x 10°° (a ~ 0.004). Each plot in sequence shows a contour of the densigntafer 5,
10, 20, 50, 100 and 300 orbits, respectively.
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Figure 4.10 Comparisons of the azimuthally averaged deasidl the radially averaged density in the gap
region. The dark lines have= 1 x 107°; the pale lines have no added viscosity. The viscosity mties
islands of fluid surrounding thie; andLs points unmaintainable.

simulation.

Figure 4.11 shows the results of decreasing the value of the physicabsity codficient fromy =
3x10%tov = 1 x 107 in roughly half-magnitude increments. These simulatioresperformed using
the VL limiter scheme run for 100 orbits. Increasing the lefeviscosity present narrows the gap width,
decreases its depth and softens the density gradient atgése Even when introduced at a level of~4.0
there is a dierence in the averaged density profile, especially in theegipn. This suggests the numerical
viscosity of the code is of approximately the same magnitudess. The results using other limiter schemes
are analogous and suggest a similar level fitidion with more or less dispersion. They are discusseddurth
in Sectiord.8 Comparison with Figurd.8suggests that the numerical viscosity using the alterrcdigicn

variables, 6, pur, p(ug + rQ2)), is more than an order of magnitude higher.

In Figure4.121 show the variation of the torques with viscosity. All thedaes are similar for the three
lowest values of added viscosity. Only at values ef 1x107° or larger are the dlierences discernable—the
torques from the inner and outer parts of the disk both irsgréia magnitude, but the net torque decreases
for large enough viscosities. In addition, the rapid oatiins damp beyond = 10~ because the large
outer vortex is no longer able to form. The increase of maltevithin the gap region with larger viscosity
could explain the increase in magnitude of the inner andrdatgques. With a large enough viscosity, the
asymmetry of the density profile causing the inner and ooteues on the planet are smoothed out, and the

net torque decreases.
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Figure 4.11 Comparisons of the azimuthally averaged deasidl the radially averaged density in the gap
region at diferent values of added physical viscosity. All results usevth limiter scheme and are taken at
100 orbits. The addition of physical viscosity, even at thesl of~ 1079, alters the results of the simulation,
especially within the gap region, suggesting the numesitsadosity of the simulation is at the same level
or lower. Comparison with Figurd.8 suggests that the numerical viscosity using the alternaltgicn
variables, 6, pur, p(ug + rQ2)), is more than an order of magnitude higher.

4.7 Hfects of resolution and evidence of numerical convergence

The dfects of numerical viscosity become more pronounced at loesglutions. Figuret.13 shows the
azimuthally and radially averaged densities for severfiedint resolutions above and below that of the
standard run. Thefiects of increasing the resolution are most apparent insglplanet’s orbit. Low radial
resolution appears to make the slope of the gap shallowenemside edge of the planet’s orbit. For the
two runs with the lowest radial resolutioN, = 128, the libration islands of fluid do not exist—likely the
numerical viscosity at these resolutions is too large fenttio be maintained. Also, as the radial resolution
increases, two distinct vortex lines and correspondingdwresities (at approximatety= 0.55 andr = 0.70)

become apparent inside the planet’s orbit, rather tharajasigle line, or none.

Note that increasing the azimuthal resolution relativehi® itadial resolution widens the gap profile.
At resolutions where the results have not yet convergedsat éfects some of the details of the structures
presents within the disk, the vortex lines and the the libraslands, in a more complicated manner, because
the number of iterations required to reach 100 orbiffeds amongst dliering resolutions by as much as a
factor of three. Thus, thdlects of numerical resolution are the result of a competibetween an increased
amount of difusion from an increased number of iterations required, ateceeased amount of numerical

viscosity due to the increased grid resolution.

Figure4.14shows the torques as the resolution is varied. The runs héthhree or four highest reso-

lutions are consistent with one another. Note that whiletdingues over the inner and outer parts are still
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Figure 4.12 Time evolution of the torque on the planet’stadbie to the disk. The torque is broken up into
components from the disk material inside (dotted) and dattie planet’s orbits (dashed). Also plotted is
the total net torque. The torque calculated is only that froaterial further out than one Hill radius from
the planet. The palest lines have no added viscosity andtfiers the viscosity increases in half-magnitude
increments fromy = 1 x 107 to 3x 107* for the heavy black lines.
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Figure 4.13 Comparisons of the azimuthally averaged deasid the radially averaged density in the gap
region for diferent resolutions. All results use the VL limiter and areetafat 100 orbits. Results in the top
row have no added viscosity, those in the bottom row hexel0-°.

increasing slightly in magnitude with higher resolutiohe ttotal torque remains the same, except for the
two lowest resolution runs.

4.8 Hfects of the limiter scheme

The results from the Sod shock tube test and the Kelvin-Helinlnstability in Sectior8.11have already
illustrated that the dierent limiter schemes showflirent levels of numerical viscosity—bothfi@iring
diffusion and dispersion. Figu#el5shows the azimuthally and radially averaged densitiesi®ntinmod,
VanLeer, MC, mixed (MB) and superbee schemes used in thdatdnun. As in SectioB.11, the superbee

scheme shows the leastfdision, but the most dispersion. This is evident from thedased density of
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Figure 4.14 Time evolution of the torque on the planet’s todhbie to the disk as a function of resolution.

The graph on the left has no added physical viscosity; thetgom the right has = 1 x 107°. The torque

is broken up into components from the disk material insidetédl) and outside the planet’s orbits (dashed).
Only material further than one Hill radius from the planetnisluded in the calculation. The palest lines

show the lowest resolution of the 5 runs. The darkest linesghe highest resolution.

the fluid in the gap region, as well as its oscillatory struetuThe mixed and MC schemes also show a
fair amount of dispersion. The VanLeer scheme seems to shiwsidn comparable to that of the MC and
mixed schemes but substantially less dispersion. As béfereninmod scheme show the modtasion.

Figure4.16shows the resulting torques for each limiter scheme. Theseamsistent with the previous
results.

4.9 Summary

The above comparisons shown that the modified TVD code pesdresults consistent with a wide variety
of other codes examined in the protoplanet comparison gr¢jie Val-Borro et al.2009. In particular
I confirm the existence of libration islands at the and L5 points, the asymmetry in the density of those
islands, the sign and magnitude of the torque exerted onlémefby the disk and the growth and merging
of vortices outside the planet’s orbit at low viscosity.
| find that the large vortex which forms outside the planetisitotcauses substantial torque oscillations
on the planet. These oscillations correspond to repeateskpaf the vortex by the planet. Increasing the
viscosity beyonds > 107> damps the formation of the vortex thereby removing the lagoily signature
from the torque. The existence of additionattex lines to the inside of the planet’s orbit are demonstrated.
Through use of th&ARGO-like fast-advection algorithm, | achieve a reduction ie tequired simu-
lation time by a factor of &. | also find that use of the absolute angular momentum raftfzer angular

velocity as a solution variable decreases the simulationsanical difusion by over an order of magnitude.
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Figure 4.16 Time evolution of the torque on the planet'stathe to the disk for dferent limiters. The graph
on the left has no added physical viscosity; the graph onigie hasy = 1 x 10°. The torque is broken
up into components from the disk material inside (dotted) antside the planet’s orbits (dashed). Only
material further than one Hill radius from the planet is ud#d in the calculation. The lines from darkest to
palest correspond to the minmod, VanLeer, MC, mixed (MB) sungkrbee limiter schemes respectively.

| determine the level of numerical viscosity present witthie code to be < 107 (¢ < 10739), enabling
the simulation of situation with Reynolds numbers on theeof Re = UL x 10°.

Results from the single protoplanet problem concerningé¢ltative difusion and dispersion due to the
various limiter schemes are consistent with results pteden Sectior8.11
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Chapter 5

The Role of Potential Vorticity, Vortices and
Jets in Early Solar System Development

5.1 Introduction

In the previous chapter, | provided a careful examinatiorthef developed code and the physically rele-
vant structures produced in planet-disk simulations. is thapter, | further examine these structures and
the influence they have on the disk’s development. | first éxarthe evolution of the potential vorticity
distribution, and show its relation to corresponding jetl aortexeddy structures in disks with a single
protoplanet §5.2) and with two protoplanets$b.3). In the latter case, | demonstrate the failure of two
widely separated planets to readily evacuate the intdtabripas between them. This conclusion modifies
previously published results and holds even in the preseheiscosity and in runs with low resolution. In
Section5.4, | examine the connection between the eddy and jet strigcturd the averaged angular momen-
tum transport. | then clarify how the above results for tWwaret disk depend on the orbital separation of the
planets §5.5). Finally in Sectionb.6, | relate a possible explanation for these results, discossequences
of the observed structures for the evolution of such syst@nascomment on the applicability of such an
analysis to three-dimensional disks.

5.2 Potential vorticity and structure evolution for a single protoplanet

In Figures5.1and5.2, | show the evolution of PMQ = p~1(V x u + 2Q) - 2 (see§2.5), and the azimuthal
velocity field over 300 orbits, for a Jupiter-mass planehgghe Van Leer limiter and a resolution Nf x

Ny = 768 x 1152. Vortices develop, appearing in the PV map as closetbamwhich have negative PV
relative to the background value. Initially several smailttices form at roughly the same radii, but spaced
in azimuth. After 20 orbits, two vortex lines are visibledaoy 50 orbits a third vortex line has appeared.
As the simulation progresses, the vortices grow and begmemge, until a single large vortex develops.
These vortices appear as overdensities in density mapssdist in Chaptet. They are likely the result of

65
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Figure 5.1 Potential vorticity contours for a Jupiter-meags using the VL limiter at resolutior\, x Ny =
768x 1152. Each plot in sequence shows a contour ofddgken after 5, 10, 20, 50, 100, and 300 orbits,
respectively.
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Figure 5.2 Contours of jet velocity (see text) correspogdmthe PV shown in Figurg.1 Note that strong
jets develop to either side of the gap.



68 Cuaprrer 5. THE RoLE oF PoteNTIAL VORTICITY, VORTICES AND JETS IN EARLY SOLAR SySTEM DEVELOPMENT

Rossby-wave instabilities as discusseddapaloizou & Lin(1989; Lovelace et al(1999; Li et al. (200Q
2007 and references therein.

The velocity shown in Figur®.2 (hereafter referred to as thet velocity), has the Keplerian velocity
subtracted fi so thatuj¢ = Uy — v,. The jet velocity is the “headwind” or “tailwind” that a teparticle
moving at the Keplerian speed would feel inside the flow. Targé jets develop to either side of the gap
(centered at approximatety= 0.80 andr = 1.25). These jets oppose the local Keplerian value of the shear
velocity which would otherwise be positive inside the pk&erbit and negative outside its orbit. At the
centers of the two main jets, the jet speed is more than 3%edbdlckground Keplerian flow—60% of the
sound speed. As such, these structures are substantiadiéntations from the overall balanced flow. They
are a result of the density gradient at the edge of the gaps graidient and the flow it induces is strong
enough that rotation causes an azimuthal jet to form, anakatp the formation of mid-latitude jet streams
on the Earth from the latitudinal temperature gradient. 3éeond set of jets which develop within the gap
(0.9 < r < 1.1)) correspond to particles on horseshoe orbits of the dabmegion. These jets and the
corresponding horseshoe-orbit regions shrink as the gasitmlly opposite the planet is evacuated and
eventually become the libration islarielddies discussed in Chapter Note that with increased resolution
the time required for the horseshoe regions to shrink ise®a

| display azimuthally averaged values of the PV and the jktoity in Figure5.3. Note that extrema in
the PV profile correspond to a vanishing jet velocity and theters of the jets straddle the gradients of PV
between successive extrema, with negative slopes of P¥smonding to positive jet velocities and positive
slopes of PV corresponding to a negative jet velocities. diigerved jet velocity is induced by deviations in
PV from the balanced flow (PV anomalies) via PV inversion. iHi&l value of the PV shown in Figure.3
is the background value due to the Keplerian velocity gradi€his background value acts as a mean-flow
reservoir from which PV disturbances can extract energyaralysis for two-dimensional, incompressible,
inviscid fluids shows that while negative PV perturbations a@ble to extract momentum and energy from
the mean flow and thus grow in magnitude, positive pertushatiare notl(ithwick, 2007). This analysis
may explain why the radii in Figure.3 which have negative PV relative to the background flow are the
locations at which vortices are able to grow and merge—tloesespond to the previously discussed vortex
lines. Note that a gradient of PV supports the propagatidRosisby waves, and breaking Rossby waves are
associated with many of the jets seen in the Earth’s atmosi{kees2.5.29.

As demonstrated in the previous chapter, the presence ohtmh viscosity destroys the growth and
merging of vortices, possibly because it suppresses thsbiRagave instability mechanisnie Val-Borro
et al. (2007 arrive at the same conclusion in a forthcoming work. Vigyodoes not, however, change
the relative sign of the PV with respect to the backgrounchese regions. In Figurg.4 | show the PV
distribution as in Figuré.1 above, but for a simulation run with= 1 x 107°. Although the vortices are
absent, Figur&.5indicates that jets still form. | compare the averaged \&abfehe PV and jet velocity from
the viscous and inviscid runs in Figuseb. Both the main jets and the pair within the gap are compaaistiv
weaker, and the latter pair are eventually sheared awayeafistiibution of PV in the gap homogenizes.
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Figure 5.4 Potential vorticity contours for a Jupiter-meags using the VL limiter at resolutiorl\, x Ny =
768x 1152 withy = 10°°. Each plot in sequence shows a contour ofQotaken after 5, 10, 20, 50, 100,
and 300 orbits, respectively.
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Figure 5.5 Contours of jet velocity (see text) correspogdimthe PV shown in Figurg.4. Note that jets
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5.3 Potential vorticity evolution with two planets

With two protoplanets present, the gas surrounding eactepkvolves in a manner similar to a single pro-
toplanet, as long as the planets are widely separated enbaghmine the fect of altering the separation
distance in SectioB.5. For now, | focus on the case where the second planet is at théorbital radius
of the first planet. For the remainder of this chapter, umgsspecified relative to the inner planet (which is
fixed with semi-major axisg; = 1) unless otherwise stated.

The problem setup for two-planet simulations is nearly #rae as that for a single planet. | still perform
the simulations in the corotating frame of the first planetyvever | place the system’s origin at the central
star, rather than the system’s center of mass. To accouttidarew origin | redefine the planets’ potentials
as

p=——om L OM (5.1)

Vr=rp+e r}

wherer; is the position of the planet. The second term accounts &intdirect acceleration of the frame due

to the planet’s gravitational tug on the star. | extend tltBalarange to [Ma;, 4a1], increase the standard
resolution toN, x Ny = 768x 1152 and set both planet’s masses to be?M). The potential of the inner
planet increases from zero to its full value for the first 10itsras before; the potential of the outer planet
likewise increases over 10 orbits, beginning once the ipfertet has completed 20 orbits.

In Figuresb.7, 5.8and5.91 show the density, PV and jet velocity distributions for mslation with two
planets after 50, 100, 200, 400, 600, and 800 orbits of theriplanet. As before vortex lines form to either
side of both planets. Because the two planets are close knihwgvortex lines between them merge together
after 100 orbits (se§5.5). As the simulation progresses, the gas between the twetslaccumulates into
a single vortex and is very slow to clear from between the tl@ogts. Figuréd.10shows the azimuthally
averaged quantities from the above simulations at a setecofi times. The mass of gas within the vortex
at 800 orbits is approximatelymnd,. Such a concentration of material would have dynamicidots on
the system, however, following its evolution in a self-dstent manner would require accounting for the
self-gravity of the gas in the region.

These results hold even for simulations run with added gisgor at low resolution. | show in Figure
5.11the azimuthally averaged density and PV distributionsr & 100, 400, and 800 orbits for two such
simulations. The first is a high resolution run as before hith w= 1 x 10°°. As in the single-planet case,
viscosity prevents the formation of vortices—the large@omvhich previously formed between the planets
is absent. Nonetheless, the sharp gradients of PV and porréisig jets between the planets remain as in
the viscous single-planet simulation. While, the intdsitad mass clears somewhat faster than the inviscid
run, roughly half the mass initially present in the regiah sgmains after 1000 orbits (see Fig.12below).
Averaged quantities from a low resolution rux k Ny = 128x 128) are also shown in Figukell Vortices
form to either side of the outer planet just as in the higlold®n run despite the coarse resolution. Again,
sharp PV gradients and a pair of jets are present betweenahetg.

In Figure5.121 compare the change in mass oftdrent regions of the disk for the standard two-planet
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Figure 5.7 Density contours from a simulation with two ppémets with orbital radii ofds, a2) = (1,2)
taken after 50, 100, 200, 400, 600, and 800 orbits of the iplzeret.
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Figure 5.8 Contours of logarithmic PV from a simulation withio protoplanets with orbital radii of
(a1, a2) = (1, 2) taken after 50, 100, 200, 400, 600, and 800 orbits of theriplanet.
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Figure 5.9 Jet velocity from a simulation with two protopd#s with orbital radii of &;, ap) = (1, 2) taken
after 50, 100, 200, 400, 600, and 800 orbits of the inner plane
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Figure 5.10 Azimuthally averaged density, logarithmic R&fie and jet velocity corresponding to Figures
5.7,5.8and5.9.
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Figure 5.11 Azimuthally averaged density logarithmic P\d gt velocity (top. middle and bottom rows,
respectively). Plots on the left are from the standard tvemgx resolution run wittr = 10°; those on the
right are from a low-resolution ru\g x Ny = 128x 128).
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Figure 5.12 Change in mass of various regions of the disknalized in each region with respect to the
initial mass within that region. The plot on the left showsletion of different disk regions for the inviscid,
Nr xNg = 768x 1152 run. The plot on the right shows the evolution of the neidiisk only for four diferent
combinations of viscosity, resolution and density profile.

simulation, with the viscous and low resolution runs. Aft@00 orbits in the standard run, more than half
of the original gas mass still remains in the region betwéerplanets. This slow clearing of the gas from
the inter-orbit region contradicts previous low-resalatiresults byKley (2000. In that work, the region
between two planets with the same relative spacing was sedadr within 300 orbits to better than 95%.
Although the planets were allowed to migrate with respeatrte another, the mass evacuation primarily
occurred while the planets were still far apart. The simaaby Kley also used a~%/2 profile for the
density distribution. The evolution of the mass from a ruthwvtinis density profile is also plotted in Figure
5.12and only dfects the results in the inter-orbital region by 5%.
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5.4 The connection with averaged transport

The connection observed in atmospheric systems betwestrieture and reduced transpoffers a pos-
sible explanation for the slow clearing observed in the absimulations. According to such studies, the
evolution of strong jets in the flow is synonymous with weaetransport in the region. Strictly speaking,
the transport is lowered for materially conserved quagjtrather than globally conserved quantities. Thus
while the evolution of the total mass within the region is nonhstrained, the evolution of the total mass
between a given number of tracked fluid elements should beal®e it is not possible to track material ele-
ments in an Eulerian code, observing the density within ¢iggon provides an estimate of how the material
mass elements are evolving only in an spatially and temiycaeéraged sense.

In order to estimate the level of momentum transport withim diisk, | calculate anfiective viscosity
codficient based on the radial movement of angular momentum.owioly work by Balbus & Hawley
(1998; Li et al. (2001); Klahr & Bodenheimei(2003, | define the total averaged angular momentum flux
as

Fn = (< pUrl) > + < pUr Uy >), (5.2)

where the angled brackets represent a spatial and azinavirage. In writing equatiorb(2), | assume that
the azimuthal velocity can be decomposed into mean andngagomponents asy = Uy + u;. The first
term in the equation represents transport due to corrakiio the velocity components while the second
indicates the direct radial flow of matter. It is possible édide an instantaneous, local version of &e&ive
alpha-parameter based on equatibr?)(as

ofr,6,1) = ‘Mp_@ (5.3)

wherep = pc? is the pressure. All variables are functionsrpf andt except for the azimuthally averaged
velocity, ug(r, t), and the sounds speeti(r). | also define an averagedfective alpha-parameter, averaged

in azimuth and time, _
< pUrUg > — < pUr Uy >
<a>= P P~ (5.4)
<p>C2

Note that the above equations can be written in terms of theejecities sincaly — Uy = Ujet — Ujet DY
the definition of the jet velocity.

In the upper half of Figur&.131 show the instantaneous, local alpha-parameter valuea fingle
planet simulation after 200 orbits. The simulation was @ened with resolutionN; x Ny = 768x 1152,
and over a radial range of @&, 4a;). The calculated value of the alpha-parameter varies derably both
spatially and temporally. Averaging in azimuth and timeduoes a more coherent picture. In the lower half
of Figure5.131 show the temporally averaged local alpha-parameteramhtaheous values were sampled
11 times an orbit and averaged over 10 orbits. In the averapedts, eddies at tHe, andLs points display
their characteristic quadrupole transport pattérinef al., 2001). Also visible beyond = 2 is transport
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Figure 5.13 Local transport calculated asnaparameter for a single planet simulation. The top plot show
the instantaneous transport; the bottom plot is averagedIdorbits.



82 Cuaprrer 5. THE RoLE oF PotenTIAL VORTICITY, VORTICES AND JETS IN EARLY SOLAR SySTEM DEVELOPMENT

005 L T T T T T T T T T T T T T T T T T T T T T T T ‘ T T T T T T T T T ]

B Total Jet Transport ]

C Average Jet Transport — — — 7]

B Correlated Transport .

0.04 [ 7
0.03F 7

A L i
S B ]
Y 0.02F E
0.01F 7
0.00 fp—="=s— -

: I T | ‘ I Oy N | ‘ N Y I N | ‘ I Y I I N | :

1 2 3 4

r/a

Figure 5.14 Individual transport components: the thickydnee shows the total averaged transport, the
solid black line show the component due to velocity corietet, and the dashed line show the component
due to the averaged jet velocity.

associated with the spiral arms.

| present calculations of the fully averaged alpha-param@q. p.4]) in Figure5.14 Results shown
were averaged in azimuth and in time over 10 orbits as desti@bove. Averaged over 5 orbits, they are
almost identical and only when averaged over 2 or 1 orbitsadgel fluctuations occur. The averaged jet
transport as calculated is only significant near the cemtietise large jets which bracket the planet’s orbit.
Most of the transport is due to correlations between vekxitNote that the spiral density wave transport is
clearly shown with a strength given lay~ 1073.

In the top graph, bottom panel of Figubel5 | show the averaged alpha-parameter calculated from a
simulation with two planets. Results from two separate &itmns with just one of the two planets are also
shown. The averaged value of the alpha-parameter coselatle the relative vorticity distributiong, and
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Figure 5.15 Top graph:fiective alpha (bottom panel) from a two-planet simulatian£ 1,a, = 2) after
200 orbits of the inner planet and from separate simulatwitts only one of the planets present. The top
panel shows that relative vorticity, PV and density all eate with the &ective alpha-parameter. In the top
panel the ordinate marks only the relative vorticity; thgddthmic PV and density have been appropriately
scaled. Bottom graph: relative vorticity, density arfteetive alpha from a run with = 1 x 10 (solid
lines) along with the same results from the inviscid runt@ibtines) shown in the top graph.
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by extension with the PV distribution as well, as can be sgetoimparison with the top panel. Also shown
is the averaged density which correlates negatively withal When interpreted as a measure of the angular
momentum transport occurring in the disk, the above resyparts the conjecture made in the previous
section, that the jet structures between the planet areiasss with lowered transport. Such an association
could explain the slow clearing of gas between the planetshe bottom graph of Figurg.151 compare

the averaged value of the alpha-parameter from an inviscichnd a run withy = 1 x 107 (o = 0.004). As
expected, viscosity increases the measured level of tanapd other correlated values adjust accordingly.
Over much of the range between the planets, the amount ofladsieosity has resulted in an equivalent

increase in the calculated value-ofr >.

5.5 The dependence of mass clearing on the planets’ relatigeparation

In order to further investigate the relationship betweesk ditructures, and the amount of mass and radial
momentum transport, | performed a series of simulationk tié outer planet at fierent relative orbital
separations from the inner planet. Figuses6and5.17show density and PV contours for six simulations all
with &g = 1., but witha, = 1.6,1.7,1.8,1.9, 2.0, 2.5. Results shown are after 200 orbits of the outer planet,
in order to consistently compare the inter-orbit region.tiie separation between the planet decreases, the
mass between the planets clears in a shorter and shortentainfdime. Correspondingly, as the separation
increases, larger and more massive vortices are appartmd inter-orbital region. For the simulation with
a, = 2.5, the two vortex lines which form outside the inner planetkit and inside the outer planet’s orbit
are spaced widely enough that they do not merge over theeofithe simulation (1000 orbits of the inner
planet).

In Figure5.181 show the relative change in mass of the inter-orbit regamreaich of the separations. A
clear trend exists: as the separation increases the rateictt mass is removed from the region decreases.
Calculations of the averaged alpha-value are shown in €igurO along with the relative vorticity and
density for the six simulations after 200 orbits of the inpkmet. If the planets’ orbits are close enough,
the vorticity profiles begin to overlap, increasing the §ort in the inter-orbital region and evacuating the

gas more quickly.

5.6 Discussion and future work

| have demonstrated that jets evolve spontaneously in #@ifksone or two protoplanets, forming to either

side of a planet’s orbit as the planet$eat the flow in the disk. The jets are related to the sharp Iradia
gradients in the potential vorticity through PV inversiarddo the density (pressure) gradients that occur in
the disk (most prominently at the gap edges). The densiigmés and the flows they produce are strong
enough that rotation causes an azimuthal jet to form. Tlisg®s is analagous to the mid-latitude zonal jet

streams in the Earth’s atmosphere which result from thrutitial pressure gradient.
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Figure 5.16 Density contours after 200 orbits of the outanet for simulations witla; = 1 anda, = 1.6,
1.7, 18, 19, 20, and 25, left to right and top to bottom.
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Figure 5.17 PV density contours after 200 orbits of the optanet for simulation witka, = 1.6, 17, 18,
1.9, 20, and 25, left to right and top to bottom.
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Figure 5.18 Change in mass of the region between the plantisadius separation between the planets.
Each curve is normalized relative to the initial mass betwtbe planets.
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Figure 5.19 Each panel shows the estimated level of trahsptrulated as anfiective alpha-parameter
(dark line), relative vorticity (dot-dashed line, scald slbhown) and density (pale line) after 200 orbits of the
inner planet.
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Studies in atmospheric physics show that jets are able to fpontaneously from forced turbulence
via baroclinic instabilities Rhines 1975 Panettal993 Cho & Polvanj 1996, and that this process may
explain jet patterns seen in the Earth’s atmosphere anciatthospheres of the Jovian planétélifams,
1978. (Klahr & Bodenheimer2003 have demonstrated that baroclinic turbulence in plagpedeaks pro-
duces outward angular momentum transport with a strengtiacterized by = 107*-1072. The turbulence
in their simulations produced both pressure and Rossbyseave generated large vortices with significant
overdensities. | have presented results where similaicesrtevelop, possibly through a similar baroclinic
instability process. In the two-planet simulations a larggex was formed between the planets, with a mass
of approximately #,. Such a concentration of gas will likelyfact the subsequent evolution of the system,
and a self-consistent examination of its evolution woulguiee accounting for the gas’ self-gravity. | have
also shown that the vortex formation process is damped orc20°, however the jet formation process is
more robust in this sense, and jet structures form even aouisflows.

These jets are important. Atmospheric studies show weakeaesport along the central axes of jets, or
equivalently along gradients of PWICIntyre, 1989 Sommeria et a].1989 Haynes & Shuckburgh200Q
Marshall et al.2006§. Prompted by these studies, | have estimated the averaged angular momentum
transport present in the my simulations as f#eaive alpha-parameter. The measured transport caldulate
as such is outwards as expected and varies considerablythm/extent of the disk, from as large &s
a >= 0.01-Q05 in the vicinity of the planets t& « >~ 102 away from the planets, in regions where
the spiral arms dominate. Near the planets | have shown lileatdlculated alpha-parameter correlates
with the PV itself, rather than with its gradient. Alpha-pareters greater than Hare quite large and
could reflect the strictly two-dimensional nature of the @liations rather than layerwise two-dimensional
turbulence embedded in a rotating three-dimensional dlislso caution that while interpreting the average
alpha-parameter as a measure of the radial angular moméramsport appears reasonably consistent, their

actual relationship should be further investigated.

| have demonstrated a clear connection between the rate sxf avacuation and the inter-orbital sep-
aration of two protoplanets embedded in as gas disk. Thesé#tgare also consistent with measurements
of the averaged transport, calculated as an alph&iciemt. As the orbital separation of the planets in-
creases, the measured alpha-parameter decreases andsthevaruates more slowly. In particular, 1 find
different results than those publishedKigy (2000 when the outer planet is at twice the orbital radius of
the inner planet. Kley showed the mass in the inter-orbéglan was evacuated to 95% over 300 orbits,
while my simulations only showed evacuation to 40% over 1@@@ts. These conclusions stand even when
performed at low resolution and with added viscosity at #wel, v = 1 x 10°. The relation between the
jets and weakened transport provides a possible explanttiahis discrepancy. Simulations with larger
numerical viscosity would produce weaker jet structurestheé jet structures become too weak and too

broad, the transport in the jet region increases.

Itis still unclear how this gas is able to cross the planatitoMasset & Ogilvie(2004 have shown how

fluid streamlines pass across a single potential compondheipresence of viscosity, but an actual planet
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potential creates a mess of overlapping resonances in tbita region. The overlap of these resonances
suggests the region should be chaotic. Whether the gasag@biunnel” across the region anywhere, or
only at preferred azimuths (such as at the planet’s azinoutbpposite its azimuth) is unknown.
Furthermore, | have not yet addressed the source of thecitprgjenerated in the simulations that |
presented. While baroclinic generation of PV is certairdggible,Ou et al.(2007) have noted that the dis-
tribution of baroclinically generated vorticity expectiedsuch a disk does not match the actually observed
PV generation. The authors suggest mixing of PV may be resdiplerfor this discrepancy. This explanation
is especially interesting in light of atmospheric studidsiohi suggest inhomogeneous mixing may be re-
sponsible for creating PV gradients in the first place. Yeatis the source of this mixing? The generation
of vortex lines atr ~ 0.55 andr ~ 0.7 are locations of then = 3 andm = 5 Lindblad resonances. While
refraining from a descent into numerology, it is nonetheleEsmpting to suggest that spiral density waves
launched in such regions could provide an alternative goafavave activity leading to the observed jets
and possibly provide a source of mixing in the coorbital oegi Simulations with an adiabatic code may
help address this question since Rossby waves are not segpoisuch a disk. If the formation of jets still
occurs in such simulations, it would indicate that the dplemsity wave activity causes their formation.
Finally, | consider possible fierences that three-dimensiondlleets could have on these results. Be-
cause the system under consideration is rotating, even fi@wo-dimensional disk should still be layer-
wise two-dimensional. This can be estimated by the Ekmarbeurfor the flow, defined a& = v/2QH?2.
For an alpha-disk this expression becories en¥, V(GM.r)/(2QH?) = «/2. Since observations suggest
a = 1073-107?, the flows in such disks should be well-approximated as tinwedsional except near plan-
ets where substantial departures from vertical hydraséatuilibrium exist. This result suggests the sort of

analysis | have presented here could prove useful in threer@§ions.



Chapter 6

Summary

A major aim of this thesis was to develop a hydrodynamic caaletl on the cosmological TVD code by
Trac & Pen(2003 suitable to perform studies of protoplanetary disks.

| have presented the details of the original code and the Tig@righm in ChapteB. | have modified the
original code to work on cylindrical grids and have implersehaFARGO-like algorithm (Masset 2000
which reduces the require computation time for near-Kégfeflows. | have demonstrated a reduction in
the required simulation time by a factor a66vhen applied to a disk simulation of intere$t(4). | have
also tested the accuracy of the code on fottiiedent hydrodynamic problems: a Sedov-Taylor blast wave,
an obliqgue Sod shock-tube, a Kelvin-Helmholtz instabiéityd a cylindrical bow shock. The code performs
well on these tests, where comparison with theoreticaltisisi is possible and shows similar performance
to the piece-wise parabolic codéii-1, on all four tests.

In Chapter4 | performed a detailed study of the code’s performance omtvestandard protoplanet-
disk interaction problem. This problem examines the imtioa of a single massive protoplanet embedded
in a gas disk. The results from this comparison were comgistéh the ensemble results publisheddia
Val-Borro et al.(2006, which compared results a large variety of codes on thiblpro. In particular, both
the latter project and my own simulations display libratisiands in the coorbital region of the planet (at
the L4 and Ls points) and an asymmetry in the density of those islands.y Bieo correctly predict the
sign the torque exerted on the planet by the disk and show a@hle torque magnitudes. The growth and
merging of vortices outside the planet’s orbit in low-visityp simulations are also confirmed. Furthering
results presented ite Val-Borro et al(2006, | have demonstrated the existence of additiommatex lines
to the inside of the planet’s orbit, and confirmed that thgdarortex which forms exterior to the planet’s
orbit, substantially fiects the measured torque on the planet. The large osailapesent in the torque
correspond to repeated passes of the outer vortex by thet@ad increasing the viscosity beyone 107°
damps the formation of the vortex and removes the oscillagmnature from the torque.

| have determined the level of numerical viscosity presetiiwthe code to be < 107 (o < 10739),
enabling the simulation of flows with Reynolds numbers ondiuer ofRe = UL x 1P for characteristic
speedslJ and length-scaled,. The results of the viscosity tests indicate that using Emgielocity rather
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than angular momentum as a solution variable increases naahdiffusion by over a magnitude. This
result complements previous work Eyey (1999.

In Chapter5 | continued to explore the flow structures observed in theipus chapter, including the
consideration of multiple protoplanets. | demonstratezhfgneous evolution of jets in disks with either one
or two protoplanets. Because the flow is balanced, thesaijetselated to potential vorticity anomalies
via PV inversion,Q = p~1V x u. Formation of large vortices with non-negligible concatitns of gas
(~ 4my) are consistent with results ¢lahr & Bodenheime(2003 which show similar vortex formation
in simulations of forced baroclinic turbulence. In additibshowed that the vortex formation process is
damped once x> 10°°, however the jet formation process is more robust and jetstres are able to form
even in viscous flows.

| found different results than those published Kigy (2000 which demonstratedfigcient evacuation
of inter-orbital gas between two protoplanets. Insteadutations of a variety of planet orbital separations
indicate that the ficiency of gas evacuation depends strongly on the separatitihve planets’ orbits and
simulation of the parameters used by Kley shogfficient gas removal. These conclusions stand even when
performed at low resolution and with viscosity. | proposgabasible explanation for the ifiecient clearing,
suggesting weakened transport associated with the jetstas which form between the protoplanets may
be responsible. | tested this conjecture by measurindfante alpha-parameter associated with the radial
angular momentum transport. The measured parameter fedicatward transport of angular momentum
as expected and showed that the amount of measured traispmieed lower lower in the jet region, and

is correlated with the potential vorticity.
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Chapter 7

Introduction

The majority of solar-type stars in our neighborhoed §0%) are in binary or higher multiple systems
(Duguennoy & Mayoy 1991). Despite this majority, there are still questions as to hmany of these
multiple-star systems host planets, and whether or not ldreepformation process inside these systems
differs markedly from that around single stars. Radial-velosiirveys have shown that 20% of the
extrasolar planets reside in binari€&g@enberger et al2004, but the true fraction is likely higher as these
surveys select against observing known binaries.

While it is clear that much theoretical and observatiorfidreis still needed to fully answer the above
guestions, significant progress has been made in one salpfditgs issue—the dynamical stability of plan-
ets in binary systems. The body of literature on this topiextgensive, with most studies focusing on
numerical techniquesdénon & Guyot(1970 numerically studied periodic planet orbits in circulandies
(circular restricted problem) as a function of the binarysmeatio. Benest(1993 included binary eccen-
tricity in his study but only focused on a few astronomicateyns.Rabl & Dvorak(1988 also considered
eccentric binaries but limited their studies to equal-nsass.Holman & Wiegert(1999 hereafter HW99)
is the most comprehensive and homogeneous study to datg.ntiheerically integrated (initially circular)
planet orbits for 16 binary periods, and charted out the stability region as atfon of binary separation,
eccentricity, and mass ratio, for both the S-type (circtietlar) and P-type (circum-binary) planetary orbits.
Pilat-Lohinger & Dvorak(2002 have since included thefect of planet eccentricity but found it to be less
important than the binary eccentricity. With the intentiorquantify the confines of habitable zones around
binary starsMusielak et al(2005 also investigated the stability of both S-type and P-tylamgtary orbits
in circular binaries. To this end, they adopted a criterionstability that difers slightly from that used in
other works. However, they found results that largely agrgle those from previous works, including those
of HW99. Marzari et al.(2005 examined the stability of multiple planets in binary sys$g including the
effects of mutual planetary perturbations. In this case, acteans among the planets themselves appear
to be the leading cause for instabiliipavid et al.(2003 concentrated on studying ejection timescales for
planets within the unstable region. They established ariramapformula for the ejection timescale that is
a steep function of the periastron distance from the binampaanion. Beyond a certain distance, however,
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this trend is expected to break down and the ejection timerhednfinite (the system becomes stable). The
location of this break is the boundary for which we are irdtgd in searching. Since the aforementioned
papers have confirmed the HW99 results, we focus on compatingnalytical results against HW99 ex-
clusively. The numerical results of HW99 aR&bl & Dvorak (1988 uphold general expectations that the
stability space (comprising the binary’s eccentricity #melratio of the planet’'s semimajor axis to that of the
binary) shrinks with decreasing stellar separation, wittréasing orbital eccentricity, and with increasing
companion mass. However, the underlying physical mechafos planet ejection has yet to be demon-
strated. Moreover, current computational capabilitiestlihe integration time (up to fObinary orbits in
HW99) and permit only coarse-grid parameter searches. dineef limitation may allow longer term in-
stabilities to be missed while the latter blurs the traasitirom stability to instability, hiding the existence
of possible ‘(in-)stability islands.’

In this thesis we study individual orbital resonances amedctinditions for which they overlap, focusing
on the orbits most relevant for radial-velocity searchdse-do-called S-type orbit®{orak 1984, where
the planet orbits around one of the stars. The second stansdered to be an external perturber. Through
this examination we expose the instability mechanism tdia@tic difusion of the planet’s orbital elements,
caused by overlap of mean-motion subresonances. Thesessubnces typically lay atop one another,
but this degeneracy is lifted by the secular forcing of thepanion star, thereby increasing the extent of
the instability phase space. We are also able to delineat&fology of transition between stability and
instability and exclude the existence of longer term ingites. This study is limited to coplanar systems.
In Chapter8 we discuss the necessary background and present the ealabrjuments that allow us to
determine the boundaries of stability. We also compare algutations against numerical results from
HW99 (§9.1) and results of ejection timescales frddavid et al.(2003 (§9.2). Section9.3 includes an
argument for scaling the instability boundary analytizalvhich allows us to exclude the existence of long-
term instabilities, and sectioh4 finishes the chapter with a discussion of the limiting casthefcircular
restricted problem. Final comments and future directiorspaoduced in ChaptdiO.



Chapter 8

Resonance Overlap Formalism

8.1 The two-body problem

The two-body problem is discussed in a wide variety of teakso(for example, seblurray & Dermott
1999. Here we will merely quote the required results. Considermassesyy andny, located at positions
r{ andr, with respect to an inertial origin, and subject to their naliigravitational forcesF; = Gm;g'*zr,

andF; = -G mig“z r, wherer = r, — r1. Their relative motion may be described by the equation

d?r r

2 *H5 =0, (8.1)

whereu = G(my + mp) andG is Newton’s gravitational constant. The two objects’ cetfemass, fri +
mry)/ (Mg + my), is constrained to move at constant velocity in a straigt@ With respect to the inertial
origin. In terms of unit vectors, &ndd, which are respectively along and perpendicular vee can write

e 2 _ M
F-r6? =5, (8.2)
which may be integrated to yield
a(l-¢€)

= Trecost o) (8.3)

This equation describes the motion $ in terms of its separatiorr, and true longitudeg, for an
elliptical orbit aboutm; with eccentricity,e, and semimajor axisa. The angle,w, is the longitude of
pericenter. The length of time required to complete a sioght is the periodT, given asT = 4r%a3/u,
which allows us to define mean motion, n = 2/ T. The angular velocityg, is a nonlinear function of time
and the longituded. It is therefore convenient to introduce the mean longitugdevhich is defined to be a
linear function of time such that = nt + € wheree is the initial mean longitude (called timaean longitude
at epoch). Note that all longitudes are defined relative to an comradpifrary reference direction.
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8.2 The three-body problem via the disturbing function

Unlike the two-body problem, the general case of three-budyion is non-integrable. It may, however, be
simplified by limiting oneself to the restricted problem whdwo of the bodies’ masses are negligible in
comparison with that of the third. One then considers eatiheadesser objects to be independently executing
two-body motion relative to the principal body with the iasion of perturbing #ects due to the other lesser
mass body. The perturbing potential of the second lesser isathlled the disturbing function. We apply
this type of analysis to planet orbits within an S-type bjnstar system, where the planet orbits one of the
stars and the orbit of the second, companion star enciroligstbe planet and the primaripyorak 1984).

We treat the external companion star and the planet as therlebjects, and the central star as the primary.
While the mass of the companion star is not small in comparisdhe mass of the primary., we shall
assume that its perturbation of the planet's orbit via trstudbing function does remain small due to its
extended distance from the planet. We may express theldisfuiunction,R, using Legendre polynomials
in the form (eq. 6.24Murray & Dermott 1999 hereafter MD99)

GnY
R=— > Sjcosy;. (8.4)

We use primed variables to refer to orbital elements of thmpamion star and unprimed variables for
those of the planetS; is a strength cd&cient that depends on the eccentricities of the planet aed th
companion, and on the ratio of their semimajor axes, a/a’. The planet's mean motiom, is expressed
asn? = G(m + m)/a3. The angle argument is

@j = 1A' + jod + j3@’ + j4. (8.5)

The summation in equatior8.d) is formally over all integer combinationsji( j», j3, j4), that satisfy the
d’ Alembert relation: j1+ jo+ ja+ ja = 0. Explicit expansions d§; (in terms of the companion and planet’s
orbital elements) to low orders may be found in a variety afrses including Table B.3 of MD99. MD99
also provide formulas either to fully expand the disturbfogction to arbitrary order or to expand those
terms associated with a particular value of the argumgntio arbitrary order. Because the full expansion
of the disturbing function to higher and higher orders glyidlecomes unwieldy, it is useful to consider the
expansion for limited values of the argument. Only thosectvlaire of longest period (most slowly varying)
are most relevant to the dynamics. It is assumed that theidhdil contributions of shorter period angles
will cancel out one another.

To understand which combinations of angles one expectsve the longest period, consider the un-
perturbed (2-body) problem. In this problem the mean lamgs, 4, A’), vary linearly with time at a rate
given by their mean motions while the longitudes of perieentw, w’), are constant. In a similar man-
ner, we expect that the mean longitudes will vary rapidly amparison to the longitudes of pericenter
in the perturbed system. Then apy comprising a combinations of angles that do not contain tearm
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longitudes will vary slowly in comparison to other combioat. These combinations in which the mean
longitudes are absent are termed secular. Combinatiorehwiioi contain the mean longitudes may also be
slowly varying but only in a spatially localized region. Teesthis &ect, consider the general argument,
¢j = j1d' + j2d + j3@’ + jsw, Wwhered’ = 't + € andA = nt + e. Assuming that’ ande are small in
comparison tav't andnt, allows us to write [12” + j21) ~ (j1N’ + jon)t. Then near locations where the orbital
periods are approximately commensurate and satigfy, ¢ jon) ~ 0, the total argument,j{2’ + j»1) is of
longer period than either orbital period individually. Argents for which this condition occurs are termed
resonant. In averaging over the possible combinationg$10f4, j3, j4) for a particular value o& we only
consider secular and resonant terms to be relevant to titalatpnamics and assume that the valueg pf
for other combinations are of short-enough period for theirtributions to cancel out one another.

Removing these types of fast oscillating terms in equatid) by integrating over an appropriately
long time and keeping terms to the lowest order in eccetigs;iwe obtain the averaged disturbing function
for the planet due to the perturbations of the companion star

R = i—m [fsl(ez + &?) + fyee cosr’ — @)
+frelisleld cosg)|. (8.6)

The first two terms in the brackets arise from the two lowedepsecular interactionsj;(= j» = 0, with
eitherj3 = j4 = 0 or j3 = —j4 = 1) while the last term accounts for MMRs situatedjat’ + jon ~ 0.

In particular, these could include resonances that shareaimej; and j» values but have ffierentj; (and
therefore j,4) values. We call these ‘subresonances’ of a given MMR j¢). Their importance will be
expounded later. The cfirients fg; and fy are functions otx alone. Explicit expressions for them are
listed in Table B.3 of MD99. Thd, codficient depends on as well as the particular resonance under
consideration. Note that the strength of theéerm depends on the product of the planet’s and companion’s
eccentricities to the exponent of the subresonance ordglici values for f, are listed in MD99 only up

to fourth order. To obtain values df for higher order terms there are two expansion formulasigeal
(egs. [6.36] and [6.113] in MD99). AppendE details the expansion of equation (6.113) for the types of
resonances we consider. We find that computer expansiorsiofdrmulas yield similar results and agree
with the explicit formula at low order. As a caveat we notetthath of these formulas make use of the
series solution to Kepler's equation (eq. [2.52] in MD99bider to determine the expansion in terms of an
object’s orbital elements. Since the series solution tolé&&pequation diverges fag, € > 0.6627434, the
expansion formulas are not valid above that value, and s@mvedur studies tae, € < 0.6.

8.3 Lagrange’s equations

Lagrange’s equations describe the variation in the orleilainents given an expansion of the disturbing
function in terms of the orbital elements. Derivations oégl equations may be found Brouwer &
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Clemencg1961) or Roy (1989. We state to lowest order in eccentricity the equationsrileisg variations

inn, e @ ande:

3 0R

= =5 (8.7)
e = —%ze% 8.8)
& = —%ze% (8.9)
- _TZZZ_S (8.10)

Variations of the planet’s orbital elements are then fousidgithe disturbing function for the planet (eq.
8.6) as

h = 3j.Cnellell sing; (8.11)
& = —Cgésin@ —o)+ j4Crellldlsing, (8.12)
@ = 2Cq+Cos cos@’ — @) + |jalCrelel2 cosyp; (8.13)
€ = Cgq€+ TSZe’ecos(w’ - @)+ “—S'Cre"h'é“' oSy (8.14)

where theC-codficients are related to thé-cogficients in equation8.6) by Cy, = [GnY/(na2a)] fyx ~
(Y /me)na fy(@). The variation ine is smaller than that iz by a factor ofe? and can be neglected. Pertur-
bations of the companion’s orbital elements due to the plareealso ignored.

8.4 Exact resonance and resonance overlap

Exact resonance is defined to occur when bothpgia 0 andy; = 0, viz. j1n" + jon + jaw = 0. Near
such a locationg;j librates about its resonant value. Moving away from themasoe location, there exists
a boundary beyond whicp; changes from libration to circulation. This boundary deditieewidth of the
resonance, namely, the range of space over which the resodaminates the planet’'s dynamics. When the
widths of two resonances become comparable to their semaréte planet can befected simultaneously
by these overlapping resonances. Mathematically, thdagvef two or more resonances causes neighboring
trajectories to diverge exponentially with tim@k{irikov, 1979 Wisdom 1980. This exponential divergence
occurs on the Lyapunov timescalB |, which, as argued bylolman & Murray(1996, is comparable to the
libration timescale for the resonances in question. Exicebte case of ‘bounded chaos,’ orbital parameters
for the planet undergo unbounded random walks leading thiejeon a timescale called the event timescale
(Te). ThoughTe fluctuates depending on the system, studies have showrt thaghly correlates witi_
(see, e.glecar et al.1992.

In our problem, the large companion mass produces strongaseforcing, making it dierent from
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typical solar system dynamics problems. Firstly, evenefpfanet initially has zero eccentricity, it is forced
to oscillate with an eccentricity amplitude (eg8.1d and [8.13),

Ceo

o ¢, (8.15)

€sec =

on the short secular timescald ~ 2/(2C4). The magnitude oésec decreases with decreasingout can

be as large ag’/2 near the 3:1 resonance. We performed numerical integeatonfirming that in our
problem, the secular eccentricity scales with the binageeticity according t@sec ~ a€. This scaling

is expected based on the low order expansiorCigrandCg in equation 8.15. For equal-mass binaries,
the secular timescale ranges fren20 planet orbital periods at the 3:1 resonance ttD00 periods at the
20:1 resonance. While the secular timescale is likely tow levhen compared with the mean motion of
the companion to allow for the ‘evection resonandeyma & Wisdom 1998 (when the companion mass
dominates so thagi — 1, the evection resonance may become important—§8e®, it is typically much
shorter than the resonant timescale. Considering alsahlbatesonant strength is at maximum when the
value ofeis at its largest, we can assume that esecfor the resonant interactions. Planets possessing a free
eccentricity in addition to the forced value can reach higiverall eccentricity and will therefore be more
unstable.

The second féect of the companion’s strong secular forcing is to displdme centroid of dierent
subresonances away from each other. In Appe@iwe derive expressions for the centroid position and
the width of a resonance when secular forcing is importartil&®\the width remains unchanged from the
non-secular case, the centroid of a MMR is shifted from itsimal position, {1’ + jon = 0), by an amount,
|on ~ 12(j4/ j2)Csl. When there is no secular forcing, the subresonances aemeede and lie atop one
another. Secular forcing displaces the subresonancesdnenanother, greatly expanding the region over
which overlap occurs. Thidiect is illustrated in Figur8.1for two groups of MMRs.

8.5 Chaotic diffusion and planet instability

Resonance overlap generates chaofffugion, but as pointed out byiurray (1992, under some circum-
stances resonance overlap will lead only to ‘bounded chaospredictable but limited variations in the
orbital elements. One such example is provided3gdman(1993. Results from our numerical experi-
ments (Fig.9.1) as well as discussions §9.4 suggest that this is not a major concern for determining the
instability boundary. In the remaining discussion we, ¢fiere, do not distinguish between the concepts of
resonance overlap and planet instability.

Another question relates to whether the overlap betweeresabances is as potent as that between
distinct MMRs, thereby leading to planet instability on atranomically interesting timescale (see the
review byMalhotrg 1998. Our calculations ir§9.2 suggest that this is indeed so—the chaotitudion
caused by subresonance overlap leads to planet ejectibmiGyr (often much faster) for most systems.
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Figure 8.1 Location and width of various subresonances asdibn ofe’, obtained for a« = 0.1 binary

system. The top group are the subresonances of the 5:1 MMHRtifiéd by their respectivg, values)

and the lower group, of the 6:1 MMR. We take the planet ecaatytrto be the secularly forced value.
The centroids of dferent subresonances within a distinct MMR are displacem ffach other due to both
secular and resonant forcing though the secuficedominates at low values ef. Shaded regions are
regions of instability, as defined in the text. Overlap betwsubresonances of the same MMR covers a
much larger region than overlap between distinct MMRs.



Chapter 9

Results

9.1 Comparison with numerical results

In our determination of regions of resonance overlap, wkideresonances withy > 3, -4 < jo < -1,
and—|j1 + jo| < jas < 0. We restrict the value of; since the strength of a resonance scales!is! o«
elirtial (eq. B.6]). For a given orbital separation, the ratio of j,/j; is determined by Kepler's third
law: a2 = (j»/j1)%(1 - n); hence, the strongest resonances have —1. In fact, we show that even the
j» = —4,-3, and-2 resonances do noffact the instability boundary much. Moreover, whjle= 0 is the
strongest subresonance in solar system dynamics (in lightpiter's small eccentricity), we find here that
all subresonances are essential to determine the ovegemre

Coupling strengths are calculated using the aforemerdiceeies expansion formulas in MD99 (Ap-
pendixB) while the location and width of each resonance are obtairsaty the formulas derived in Ap-
pendixC. The planet eccentricity is taken to be the secularly fonadde (eq. 8.15). All coefficients are
evaluated at exact resonance, assuming the resonanceisvitiall. In the ¢, €) phase space, a region is
designated as unstable if more than one resonance (or snhre) spans it. We further assign a similar
status, at the same value @f to the entire extent ia of the subresonance in which this region is situated
(see Fig8.1). Depending on its orbital phase, a planet situated witlsimgle resonance (elsewhere spanned
by additional resonances), but which is still outside ofrégion of overlap proper, may (or may not) librate
into the latter. This definition of unstable regions ensuhes all potentially unstable orbits are included.
Again, our analytical study is limited & < 0.6 to ensure a convergent disturbing function.

Our full results are shown in Figur@.1 for mass-ratiou = 0.1, and in Figured.2 for u = 0.5. As
has been indicated in Figu&l, the instability boundary is jagged, with jutting penireiland narrow
inlets. This is diferent from the smooth lines presented by HW99. Howevenr tgves largely trace the
outline of our results. The two sets of results can be consiteonsistent since HW99 carried out their
investigation over a crude grid ia— € space. To confirm this, we perform similar numerical intégres,
with a much finer grid in a selected region @t € space. We adopt the Hierarchical Jacobi Symplectic
integrator byBeust(2003, an add-on to the SWIFT packadeuncan et al.1998 for studying dynamics in
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multiple-star stellar systems. Planets are initializedaee random orbital phases and an eccentricity given
by e = e (initializing planets with zero eccentricity produces #ganresults). We integrate their orbits
for 3000 binary periods. The stability of these orbits isidated in the inset of Figur8.1L The detailed
topology agrees well with that obtained from our pertudratanalysis, and in many cases, one can even
identify the (sub)-resonances responsible for the inabirhis suggests that resonance overlap and the
consequential chaoticfliision is the mechanism responsible for the planet instatmbserved in HW99's
numerical investigation. Moreover, there is little eviderior ‘bounded chaos’ near the instability boundary,
so that one can adopt the boundary of resonance overlap beuhédary for planet instability.

9.2 Sensitivity to initial conditions and relevant timescées

In an efort to delineate the flierences between the chaotic dynamics existing within nsgod resonance
overlap and the regular dynamics existing just outside segions, we numerically integrate two sets of two
initially ‘close’ planets. Both sets of planets are sitaatear the 5:1 MMR in a binary system with mass
ratio,u = 0.1, and eccentricitye’ = 0.2. The first set of two planets are situated directly withia thgion of
overlap ate = 0.33, while the second set are situated just outside the ragiowerlap ate = 0.32. Figure
9.3 presents the results of integrating the first set of two pifamétialized with identical orbital parameters
except for a tenth of a degreefldirence in their orbital phase positions. The Lyapunov toakesis defined
as the timescale for exponential divergence between twoitedimally close orbits. We roughly estimate
this timescale for the trajectories presented in FiguBand obtainl| ~ 10 binary orbits. De-correlation in
the semimajor axis and eccentricity becomes apparent teyihafter approximately 50 binary orbits. The
libration time within this resonance, which one expectsd@bthe same order as the Lyapunov time; 4
binary orbits. The planets are ejected in turn after abo00Xnd 3800 binary orbits. Further integrations
at the same location with flierent initial orbital phases show a wide spread in the gerdiimes ranging
from 50—4000 binary orbits, corresponding~td.0* — 1P years for a solar-mass binary at 50 Adurray &
Holman (1997 andDavid et al.(2003 presented two dierent empirical expressions that relate the (widely
scattered) ejection timeT§) to the Lyapunov timescale. The former found a relationdieépveen these
two timescales (applicable to overlapping subresonargigsh by Te/T’ = 103(T_/T’)° wherea = 1.45
andb = 1.68, and wherdl” denotes the binary orbital period. Applying this formulaciar case yields
an ejection time off¢/T’” ~ 2000. The expression hyavid et al.(2003 yields a comparable value of
Te/T’ ~ 7400. Within the scatter, both values agree with our expemis

Adopting the expression bylurray & Holman(1997), we obtain ejection times for various resonances.
Lower order resonances lead to faster ejection, while ahitdjeer end, for example, the 30:1 resonance,
we find T¢/T’ < 10° for a system with mass-ratig, = 0.1. This resonance (correspondingato= 0.10)
defines the maximum stable orbit for the most eccentric Bipdbit we considerd = 0.66). The ejection
time corresponds te 400 Myrs for a 50 AU binary and 1 Gyrs for a 100 AU binary (all assuming a total

system mass equal to one solar mass). We conclude that pedérsabresonances leads to planet ejection
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Figure 9.1 Stability diagram for planets inia= 0.1 binary system. The solid curve connecting filled
circles locates the maximum stable valueaot= a/a’ as obtained by HW99 while dots map regions of
instability caused by resonance overlap. Resonancesdexdtlin this calculation are described in the text.
The instability boundary as it exists when considering ahéydistinct MMRs (keepings = 0) is denoted by
filled triangles. Over the eccentricity range of interesertap between subresonances is the most significant
source of planet instability. A — 0, widths of most resonances approach 0 except for the 2:B:4nd
resonances. The dashed curve shows the lower confine of asgiiance—overlap between subresonances
within the 3:1 MMR can explain instability in circular birias. Inset: results of numerical integration
over a selected region af — € space. Dashes represent planet orbits that remain stabfedie than
3000 binary periods; filled squares represent unstablésoitdorizontal lines indicate centroid locations of
certain MMRs that are responsible for the jutting peninsulat eache’ value, j, = —1 MMRs yield the
shortest period unstable orbits. Stability for points ribarinstability boundary are sensitive to the initial
conditions. Regions of resonance overlap coincide withftirgplanet instability and there is little evidence
for ‘bounded chaos.’
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Figure 9.2 Stability diagram for planets in an equal-massutyi systemy = 0.5). Symbols are the same
as those in Fig9.1L We obtain these results using a perturbation formula thatrictly valid only for
u < 1—this may account for some of the discrepancy between suitse(dots) and those of HW99 (solid
curve).
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Figure 9.3 Numerical integration of two planets initiatizesith identical orbital parameters except for a
tenth of a percent flierence in the initial orbital phase. The resulting semimajds and eccentricity are
plotted as functions of time (measured in binary orbitaliques, T’) in solid (or dotted) curves for each
planet. The Lyapunov timescale is estimated te-b#0 binary orbits, and de-correlation in the semimajor
axis and eccentricity becomes apparent to the eye afteoxppately 50 binary orbits. The planets are
ejected in turn after about 1500 and 3800 orbits.
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on astronomically interesting timescales, for the paranseive have considered.

By contrast, the results of the second set of integrationsrevive instead situate the two planets just
outside the region of resonance overlap at a location giyem B 0.32, do not exhibit sensitivity on the
initial conditions and no planet is ejected within our inegn time (16T’). The transition to instability
OCCUrs over a narrow region.

One major discrepancy between our results and those of HM98& observed in FiguB2for equal-
mass binaries: at low binary eccentricity, the HW99 cuniks faelow that obtained from our perturbation
analysis. This discrepancy likely reflects failure of theaxsion formula whep is large.

A key question of interest asks, for a given binary (with fixeahde’), what is the longest period stable
planet orbit? HW99 provided a fitting formula for the minimumstablex as a function of: ande’. Our
results here indicate, however, that the minimum unstatdbould be reduced by up to 20% from their
values. This reduction is related to the thin instabilityipsulas evident in our Figurésland9.2

9.3 Analytical scaling of the instability boundary

In order to understand how the outline of the instability ihhdary depends on various parameters, we propose
the following rough scaling argument. Let neighboring gslenances be spacedAy, where due to secular
forcing, An = 2|Cq/j2| (eg. [C.1(Q). Resonant interactions also modify the centroid of a masce, but
they are less important than the seculfie& for smalle’. The width of an individual subresonande,

is expressed in equatiol©(11), which in most cases can be simplifiedlas: [4j2/(3]2)] IC;|e/islelal=2,
Adoptinge = e~ a€, and requiring resonance overlam(< 2k), we find that instability occurs when

3 CS
9.1
‘ Cr‘ ( )

1/(1jal-2)
4] j42e/lirtial-2 )

a = Qerit =(

Defining f4 = |j4/j1], and relatingj; to a by Kepler's Law, j1/jol%@® = 1 — u, we recast equatiord(1) as

3 ‘C_sl
4171121 - welhl2 1 C

1/(falj2l-5)
) , (9.2)

@ 2 Qcrit z(

wherej is also a function ofr. Numerically, we observe that, regardless of the massaatidthe resonance
involved, |Cq /C;| rises monotonically withfs; and clusters around.@ whenf; ~ 0.5. For simplicity,
we solve foragj; considering onlyf, ~ 0.5. The results are plotted in FiguBe4 for three mass ratios.
When only j, = —1 MMRs are considered, the = 0.1 andu = 0.2 results sit atop each other falling
somewhat below the respective HW99 curves at small valuesanfd above them at large values. Besides
errors resulting from our crude approximation in takifag= 0.5, two other factors may contribute to this
discrepancy. The first is that we are searching for the venirmum value ofa at each value o€ that
allows resonance overlap. As is shown in EdL, this may lie up to 20% below the HW99 numerical result.
The second factor is that we ignore overlap between distiMRs, which may be important at ficiently
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Figure 9.4 Comparison of instability boundaries obtainasdd on simple approximations of our analytical
arguments (eq.9.2)) and numerical results of HW99. The group of dashed curepsesents the approxi-
mate overlap condition foj, = -1 MMRs while the dot-dashed group represents thosgfer—2 MMRs,
both with|j4] = j1/2. Within each group, from top to bottom, the value of the mrasi® isu = 0.1,0.2
(these two curves almost coincide), an8,Gespectively. If we recalculate the bottom-most dashedec
(u = 0.5) assuming the value @ /C; is 10 times smaller, we obtain the results shown in the daiiede.

large€’. Whenu = 0.5, our curve consistently sits above the HW99 line, resarglilie discrepancy shown
in Fig. 9.2 This discrepancy, as we argue above, likely reflects faiairthe expansion formula whenis
large (more below).

Despite these shortcomings, this simple analysis yieldsesoseful insight. Comparing overlap con-
ditions between those resonances with= —1 and those withj, = —2, reveals that the latter resonances
always occur at a larger value effor a givene’ value. They are therefore not important for determining
the instability boundary and we conclude that our negle¢j0f> 4 MMRs is valid. This point is further
emphasized in the inset of Fig.1 Based on this conclusion, we argue that instability botiedabtained
from finite-duration numerical integration are reliableere though they may not detect long-term instabili-
ties brought about by very high-order resonances (e.g3) 58:second point concerns the fact that we have
ignored terms of ordex? in the expansion of the disturbing function, and that 6gr andC, coeficients
are only correct to order-of-magnitude. We argue, howdbet, the instability boundary depends only on
the ratio ofCg/C; (eq. P.2]). Moreover, if, for instance, the true ratio 6%;/C, is smaller by a factor of
10 than our adopted value 0f02, the instability boundary fqr = 0.5 is moved downward i by as much
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as 10% (Fig9.4).
Our arguments here are based on very crude scaling relaifi@ns hey ought to be checked using more

elaborate numerical experiments.

9.4 The circular, restricted limit

We focus one¢’ = 0 binaries to study the following two issues: the applidgbibf the Hill criterion for
predicting planet instability, and the relevance of ‘boettdchaos’ that prevents us from using resonance
overlap as a synonym for planet instability.

With the exception of those of first and second order, thehsidlf all other MMRs approach zero in
circular binaries (see Appendi®). The resonance overlap condition in this limit is partily easy to
analyze. In the case where— 0 (the sun-asteroid-planet problenyjsdom (1980 derived the overlap
condition between first-ordep@ 1:p) resonances as described|by- o| = | —al/a’ < 1.3074%7 (also see
Duncan et a|.1989 Malhotra 1998. For largeru values, we argue that overlap between the-(3—-1, -1)
and (3-1, 0, —2) subresonances defines the lowesgalue for which chaos can setin. Note that we calculate
the resonance location and width using expansion formhksare strictly valid only for < 1. We suspect
this approximation may lead to some uncertainty in the tesulFig.9.5. Moreover, we have not considered
the ‘evection resonance’, which becomes important as 1 (Touma & Wisdom 1998 Nesvorny et al.
2003.

The stability of planets in a circular binary can also be igddising the concept of Hill stability (e.g. see
Murray & Dermott 1999. In such systems, there exists an integral of motion, tkkeklaconstant, which
defines permitted regions of planetary movement. For a ptha¢begins with a circular orbit around one
star (as in HW99), there is a critical value @below which the zero-velocity curve with the same Jacobi
constant is ‘closed’ and the planet cannot escape. Forvaluegreater than this critical value, the planet is
allowed to escape by the Hill criterion but wilbt unless its orbit is chaotic due to overlapping resonances.
In other words, the Hill criterion is a necessary but not fisient condition for planeinstability.

To calculateaci;, one needs to carefully consider the phrase ‘begins withcaleir orbit.” Fory < 1
systems (analogous to the sun-asteroid-planet probléns)more appropriate to actualize this condition
by taking the sidereal velocity (velocity in the binary candf-mass frame) to b@&m./a; while fory — 1
systems (analogous to the planet-satellite-sun probligm)nore reasonable approach is to set the synodic
velocity (in the host star’s rotating frame) to f@en./a. For intermediate: values, we adopt the approach
that yields the higher value afi. The resultant values af.; are plotted in Fig9.5 as a function of
p. In particular, in the limit wherg: — 1, we find thateeic = (1/3)R}, = [(1 — 1)/81]*® whereR, is
the Hill radius of the binary companiorStebehely 1978, and in the limit whereu < 1, we find that
agrit = 1 - 2.1u173,

While the Hill criterion gives the energetic condition fdaepet instability, resonance overlap provides

the dynamical cause. How do results from the Hill criteriompare with those from the resonance overlap
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Figure 9.5 Instability boundary for circular binaries asuadtion of mass ratig. The solid curve depicts
the result obtained based on the Hill criterion. Planetsagi#id within shaded regions could potentially be
ejected from the host star, though they will not be unless thbits are chaotic. Overplotted are analytical
results for the boundary of resonance overlap (and thereflonos, but not necessarily ejection)uas 0,
the overlap condition betweem+ 1:p resonances yieldsci; > 1 — 1.3074%7 (Wisdom 1980); for larger

u values, overlap between the @1, -1, —1) and (3-1, 0, —2) subresonances occurs tovalues above the
open squares (this study). Locations of the open squaresfardated using expansion formula strictly valid
only foru < 1. Also plotted (in filled circles) are the numerical resblysHW99—planets situated above the
filled circles are numerically shown to have unstable orliieft and right lower panels expand the view near
u =0 andu = 1, respectively. For — 1, the Hill criterion is well quantified as (B)Ry = 0.23(1 - u)*/3
(dashed curve).
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criterion? Intriguingly, they seem to closely trace eadieobver small;, intermediate: and largeu values
(Fig. 9.5. The only exception is whep — 0 (visible whenu < 104) for which the resonance overlap
occurs over a larger range than does the Hill criterl@rmadman(1993 has studied this limit and concluded
that ‘bounded chaos,’” producing unpredictable but limiadations in the orbital elements, reigns in the
intervening region. This instance, however, is the onlaickgn of bounded chaos in the circular, restricted
problem.

Numerical results by HW99 (filled circles in Fi§.5 and our own simulations also confirm this seem-
ingly coincidental agreement between the resonance @veoladition and the Hill criterion. It appears then,
that in practice, the Hill criterion is not only a necesséy, also a sfiicient condition for planet instability.



Chapter 10

Final Comments and Future Work

A planet in a binary system experiences both secular andaesperturbations from the binary companion.
It may be dislodged from its host star if it is simultaneouatiected by two resonances. We find that
overlap between subresonances of the same MMR accountsefangtability observed by HW99 and our
own numerical integration. There is little evidence for bded chaos, and the word "resonance overlap”
can be interchanged with the word "orbital instability.” KOnstability boundaries largely agree with those
obtained by HW99, albeit with many fine features. The jutfieginsulas and deep inlets in the instability
boundary correspond to the instability (or stability) reda first observed by HW99. The presence of these
islands suggests that the longest period stable orbit &tea@lue could be reduced by as much as 20%
from the HW99 value. Moreover, our analysis suggests thatlaw between very high-order resonances
(e.g., 50:3) does not substantially modify the instabitipundary: these weak resonances, while producing
slow chaotic difusion, which may be missed by finite-duration numericalgragons, do not contribute
markedly to planet instability.

In detail, the centroids of ffierent subresonances are displaced from each other by timg stecular
forcing of the companion enlarging the phase space of resenaverlap. Chaotic ffusion caused by
subresonance overlap is observed to be fast, unlike caties dolar system. The longest ejection timescale
in our study, corresponding to subresonance overlap witi&r80:1 MMR, is~ 10° binary orbits, or, 1 Gyr
for a 100 AU solar-mass binary. For comparison, the 5:1 MMEap gives rise to an ejection tirme2000
binary orbits.

Compared with numerical integrations, our perturbatioalysis has the following shortcomings: the
perturbation strength is calculated accurate only to fird¢oin the mass ratio between the companion and
the host star, and the perturbation formula divergeg/fer> 0.66.

As a final note, we raise the issue of stability in circulardbjnsystemsd = 0). While the Hill criterion
(critical Jacobi constant) gives the energetic conditimnplanet instability, resonance overlap provides the
dynamical cause. We observe that over almost the entire @imgass ratio, the Hill criterion and resonance
overlap yield similar criticak-values, making the Hill criterion not only a necessary, &gb a séicient
condition for planet instability.

113
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Appendix A

Flux form Euler equations in Cartesian and

cylindrical coordinates

A.1 Cartesian coordinates

Expanding equation(10), (2.12), and Q.13 in Cartesian coordinates one obtains

B+ o + o + o] = (A1)
% n &muz L pl+ %[puv] + aﬁz[puw] - —p‘;¢ ag;* ag;y + agz"z (A2)
B+ L fown + ﬁ[pv2 ]+ o fow] = _p‘;i ag;* a;’;y agzyz (A3)
‘9‘(;%” + ﬁ[p w] + —[pWV] + —[p\/\12 +pl = —pg(i a{;’;x 4 agyzy a‘afzﬂ (A.4)
Z—f + —[u(e+ p)] + —[v(e+ p)] + —[W(e+ p)] =-p u% + va—‘; Wgﬁ

+ % [(Uorxx + Voxy + Woryg)] + @ [(ua'yx + Voryy + Wory,)] + % [(UO’ZX + Vo + Woz)], (A.5)

whereu; = (u,v,w) in Cartesian coordinates. Using the derived form for thessttensor, equatior2.4)

becomes

ov ow

_ Ou
whereV-u = & + o T

Tij = 2u
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A.2 Cylindrical Coordinates

To find the form of these equations in cylindrical coordisab@e can perform the usual sequential applica-
tions of the chain rule. Or look up the forms in the back of adj&tectromagnetism textbook. Either way,

one obtains
L (fr[p ]+ =2 fow] + = o] = 0 (A
agtlr ?a—[pru + pr] - 19 [pUrue] + aﬁZ[PUrUz]
B Akt mt ke
% + %%[ﬂ Ur Ug] + [Pue +pl + a%[puguz]
a’;tjz %%[p rurUy] + Eg[pueuz] + [PUE +pl
oe

s ol p) + %a%[ue(e"‘ Pl + = [us(e+ p)]

ot
9¢ 19¢ f9¢

-p ura + ugra— + U 757 + ——[I'(UrO'rr + Ugogr + Uz07r)]
10 9
+ Fa—e[ura'rg + UgO gy + UZO—zg] + %[Uro'rz + Upogz + UZO—ZZ.I’ (A'll)

whereu; = (ur, Ug, Uy) in Cylindrical coordinates. Similarly, the derived formrfthe stress tensor, equation

(2.4), becomes

o _ 1y, 10u |, duy _ U 1,0u auz
a —3v-u G5 + 5 ) 35+ %)
o= 6ug 16ur _ W 19up ur _1 au(; 10y,
cij=2u| (G- e+ 3V-u () | (A.12)
auz 6ur 1 auz au(; a 1
35 + 55) 3G + D) 5 —5V-U

. 1oru | 10w 9%
whereV-u = ; Tt ror T o

A.2.1 Angular momentum in cylindrical coordinates

Aligning the rotation vector along theaxis, the vectoR is simply the cylindrical radius;. ForH =
or(uy + rQ), equation 2.18 then becomes:

oH 190 10 0
E + ?E[rHur] + Fa—H[HUQ + pr] + —Z[HUZ]

a¢ 10r%0rg oy dom
= = . A.13
Poe " ar T ae oz T (A.13)




Appendix B

Expansion of the disturbing function for

J1. ]2 orbital resonances

Ellis & Murray (2000 derived an expansion of the disturbing function to maxinarderN.x for a specific

argument of the resonant anglg,= j1A'+jaA+ 3@’ + jaw+ jsQ'+ 6L, listed in MD99 as equations (6.113—

6.126). For reference we list these equations here. Therbisy function due to an external perturber is

given as

where

and

Rp

R = %(RD + aRe),

2i 1
£ ! 2|+
s-2n

! (2s-4n+1)(s—ny! (s=2n—m)!
% Z Z 27ni(2s—2n + 1)! rrZ‘:;)Km(s— 20+ m)!

S=Smin N=0

i-s ( 1)5225

X DT a0 2y () ) gy

dal i+
XXI_+J-|§ jo— J4(e)le(l+k+1),ll+la(e()

gl’TﬂX
( 1)02( )( l)k l d b(J)l(a’)

X €OS[j1d” + j3d + jz@w' + jaw + j5Q" + j6Q]

(1-m)!
(1+m)

X COS[j1A" + jad + 3@ + jaw + j5Q + 6,

—Km——
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ArPENDIX B. EXPANSION OF THE DISTURBING FUNCTION FOR ] 1. j2 ORBITAL RESONANCES

with ko = 1 andkm = 2 for m # 0. We discuss the inclination functioris,w(l), the eccentricity functions,

Xf}b(e), and the Laplace functionblfi)1 (@), below. The following definitions apply for the direct paftthe
2

disturbing function:

q
q/
Crrax

(pmina p;nm)
Smin

I max

Nmax

Mmin

(p. P)

j

ja
—i3
Nmax — |jsl = ljel
{ (3@.0) if a=js+js<0
(0.3la) if a=js+js>0
MaxXPrin, Ppins 16 + 2Pmin, —J5 + 21in)
INt[(Nmax — ljal = 1jal)/2]
INt[(S— Smin)/2] Smin < S<i
0 if s js are botheven or both odd
{ 1 if s js are neither both even nor both odd
(~j6—M+S=2n,j5—M+S=2n) Prin, Py < PP < S-2n

[]2+i—-21—2n-2p+(

where Intx] takes the integer part of

We are interested in expanding arguments up to oljgk = |j1 + jo| for coplanar systems where

js = je = 0. We consider terms of the form > 0, jo» < 0 and—|j1 + jo| < j3 < 0. Along with the

D’'Alembert relation, we can then determine values for thevaldefinitions to be:

Mmin = 0

(pl'TiI’l’ p;‘nn) = 0

Sin = 0
lrax = lj1+ ]2l
imax = Int[(lj1+ jol = 1jal = 1jal)/2] = O
Nax = O
p = pP=0
qa = Ja
g = -is

i = li2+ j4l
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With these values equatioB @) reduces to

1|11+12I (—l)g l4 i
Rp = E Z kZ:;( )( 1)k f b(“ J|)( )

{!
=0
x XE,j—le—M (e)xj—l(k+l),11+13 (€)

X €0S[j14" + j3d + jz@’ + jaw], (B.4)

where we have use the fact that the inclination functiegyw(l) (defined in MD99), is unity fou = v =
w=0.

The functions,X?b(e), are Hansen cdicients defined for = max(Q ¢ — b) and3 = max(Qb - c) as

ab c—b| 0'
XC (e) e| Z o+a 0'+,8 (BS)
in terms of the Newcomb operatobs?é’, which are themselves defined recursively as
ab  _
Xoo = 1
Xt = b-a/2
4eXE = 2(2b- )X+ (b— )Xy (B.6)

We will see that cases whede# 0 are not relevant for the expansions we consider. The Nelaparators
also satisfyx®; = 0 if eitherc or d are negative, and have the symmetry property ¥igt= X3.°if d > c.
MD99 state that the Hansen dheients need only be calculated to ordd¥ax — |j3| — |js| — |jel in eand to
orderNmax — |j4l — ljs| — |jel in €. For the cases we consider this condition requires Hanseffcmmts be
calculated to orderg4| and|js| in e and€ respectively. This means = 0 is the only term required in both
eand€ and we obtain

X g = glixtzle (B.7)

—ja,0

xj—l(k+1),jl+j3(e,) - glislx~ (k+1)11+13 (B.8)

-j3.0

where we have made use of the symmetry property in wri¥igg). We computationally solve for the
Newcomb cofficients as required by implementing a recursive subroutine.

The Laplace ca@cients,by’ (e) wheres = i + 1/2 are defined by

2 cosjy dy
27r (1- 2 cosy + a?)s’

b“’( )= > (B.9)

Because numerical integration of the above definition i& stoconverge, we choose to solve for the Laplace
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codficients using the equivalent series form:

1 () _ s(s+1).(s+j-1) ;
(@) = 1.2-3..] o
S(s+J) o S(s+1)(s+j)(s+]+1)
TGt T T 12+ 0(+2) o (B.10)

The¢-th order derivatives of the Laplace function were also enpénted as series solutions.

The indirect part of the disturbing function is only nonzercases where, p’ andmare integers equal
to 0 or 1. An analysis of the integers involved shows that fses in which we are interested, we have
p = p'. Also whenp, p’ = 1 we havan = -1 (so that the indirect part does not appear) and when = 0,

m = 1. This last possibility contributes and indirect term o form

Re = XX 2 (@) cosfjad + jad + jsw' + jaw] (B.11)

whenp = (j2 + ja + 1)/2 = 0. Becausgpy, j4 < 0 this last restriction only holds whega = -1 andj4 = 0.
In writing Rg, we have used the fact thgg 1 0(0) = 1.



Appendix C

Width of a mean-motion resonance under
secular forcing

Murray & Dermott(1999 presented a derivation for the width of a MMR when the resgrangle evolves
due to a single resonance. In our situation with a massive bady, secularféects on the resonance angle
have to be taken into account. We show here how this modifeesegonance width and resonance centroid.

The relevant resonance angle as well as its time derivadines

¢j = 1A+ Jod+ j3w’ + juw (C.1)
©j = jain + jon+ jaw (C.2)
@) = JoN+ jaw. (C.3)

The time-variations of, €, @’, ande’ due to the influence of the planet are neglected as the planet ¢
effectively be thought of as a test masg/(n. < 1). We also neglect variations émas previously mentioned.

We take the time derivative of equatioB.13, substitute equation8(12 and @.13 into the right-hand
side, and use the resulting equations to recast equaii@i(to the form

g = [3i5Cne — jaljalCre 2 (janf + jon) - 2jaPCaCrel ] sing,
~ [1iaPC*e144] sin 2p;, (C.4)

whereC; = C, €5l This reduces to equation (8.63) of MD99 whgsi = 1 andCg = 0. In deriving this
equation, we have made some simplifying assumptions. I\fsivge have ignored the time-dependence of
Cgq andC;, which are in reality both functions af. Secondly, we have neglected tBg terms in equations
(8.12 and B8.13 as we expect their time-averaged contributions to be giedg.

We look for a solution of the system that is pendulum-likerathie case without secular forcing where
the system satisfies a mechanical energy equation of theEomt}gij + ksir? %goj. For a pendulum-like
solution we expect that = ng + kcosfp; /2], whereng is the mean motion associated with the nominal value
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of the resonance arldis a constant that describes the amplitude of the oscitlaboequivalently, the width
of the resonance. The choice of the angular form, €g4], is determined by the libration amplitude of
the resonant angle; (- to ) as well as the presumed angle where maximum change in the meton
occurs f; = 0). The latter applies whe@; < 0 and shifts tap; = # whenC, > 0; however, the final result
does not depend on the presumed sig@.of

Substituting the assumed form of the solution into equaf®®) and evaluating at maximum potential
energy whereg;, ¢;) = (r, 0) allows us to write

o 1 . o
jan’ + jan = jokcosZej - 2jaCa + jaljalCrel=2, (C.5)

We obtain an energy equation by substituting this expradsio equationC.4), multiplying by ¢; and
integrating in time to yield

1. o~ . o . 1
5901'2 = [—GchrnéM' +2|J4|4Cr292“4|_4] cos >¥i (C.6)
N A 1 . 3% 2 olild
+3J2JaljakC e coS Spj — 1ja°C 1 sinf .
Evaluating this expression @} = 0 we obtain

. ok g ax2 s 8 o
b1z, = ~125Cene!! + 4)ja*C o 1 2 gl jalkCrel (C.7)

We obtain a second equation fp)f&j'zo by substituting equationd.5) into equation C.2), evaluating the
result atp; = 0 and squaring:

¢j§j:o = j2k% + 424l jalkC 42 4 4j4°C, P-4, (C.8)
Equating these two expressions we obtain the following ratadin k:

4 2lallaly s dia2 4 196 el = 0, (C.9)

k2
3 2

AssumingC; > 0 we would have chosem= ng + ksin[y;/2] such thatp; = 0 aty; = 0 and obtained a
quadratic ink with opposite signs in front of the twd, terms.

Solving for k we have expressions for the centroid of the masce (eq. €.5]) and the resonance
amplitude, irrespective of the sign Gf:

~2j4Cq1 — jaljallCrl€2, (C.10)
- AR 1 Alial~4N\1/2
35, IC; €42 + \/12/C;|nelial | 1 + 27 . (C.11)

The secular term is important for shifting the centroid & thsonance, but does not contribute to the width

jin’ + j2no
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of the resonance. In fact, the width formula is identicaldoation (8.75) of MD99 where secular forcing is
ignored.

The simple pendulum approach applies only when the resavidtit is small, i.€.9n = Nmax—Nmin < N.
Moreover, assuming thatis driven by the secular interaction to a value that is propoal to€’ (eq. [8.15),
most MMRs have widths which approach Ogas~» 0. The first-order (e.g., 2:1) and second-order (e.g., 3:1)
resonances that satisfy # 0 are exceptions; the width diverges for the former and aggves a constant

for the latter.
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