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Since cosmological black holes modify the density and pressure of the surrounding

universe, and introduce heat conduction, they produce simple models of cosmologi-

cal inhomogeneities that can be used to study the effect of inhomogeneities on the

universe’s expansion. In this thesis, new cosmological black hole solutions are ob-

tained by generalizing the expanding Kerr-Schild cosmological black holes to obtain

the charged case, by performing a Kerr-Schild transformation of the Einstein-de Sitter

universe (instead of a closed universe) to obtain non-expanding Kerr-Schild cosmo-

logical black holes in asymptotically-flat universes, and by performing a conformal

transformation on isotropic black hole spacetimes to obtain isotropic cosmological

black hole spacetimes. The latter approach is found to produce cosmological black

holes with energy-momentum tensors that are physical throughout spacetime, unlike

previous solutions for cosmological black holes, which violate the energy conditions in

some region of spacetime. In addition, it is demonstrated that radiation-dominated

and matter-dominated Einstein-de Sitter universes can be directly matched across

a hypersurface of constant time, and this is used to generate the first solutions for

primordial black holes that evolve from being in radiation-dominated background

universes to matter-dominated background universes. Finally, the Weyl curvature,

volume expansion, velocity field, shear, and acceleration are calculated for the cos-

ii



mological black holes. Since the non-isotropic black holes introduce shear, according

to Raychaudhuri’s equation they will tend to decrease the volume expansion of the

universe. Unlike several studies that have suggested the relativistic backreaction of

inhomogeneities would lead to an accelerating expansion of the universe, it is con-

cluded that shear should be the most likely influence of inhomogeneities, so they

should most likely decrease the universe’s expansion.

iii



Acknowledgements

I am thankful to my supervisor, Charles Dyer, for his open-mindedness, patience, and

encouragement. I also thank Ray Carlberg, Roberto Abraham, Ray McLenaghan, and

Amanda Peet for taking the time to read my thesis and provide suggestions.

Thanks go to James Robert Brown for rekindling my interest in science, to Allen

Attard, Brian Wilson, and Dan Giang for aiding my research along the way, and to

Marc Goodman for always being friendly and helpful in the Main Office. I thank

my parents for always supporting my interests in space, as well as Carol Blades and

Byron Desnoyers Winmill for their continual support.

I am grateful to have received financial support for my doctoral studies from the

Natural Sciences and Engineering Research Council of Canada, the Alberta Heritage

Scholarship Fund, Zonta International, the Walter C. Sumner Foundation, the Uni-

versity of Toronto, the Department of Astronomy & Astrophysics, and the family of

Art Sparrow.

iv



Contents

1 Introduction 1

1.1 The Nature of Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Absolute versus Relative Space . . . . . . . . . . . . . . . . . 3

1.1.2 Asymmetric Time versus Asymmetric in Time . . . . . . . . . 6

1.2 The Influence of Inhomogeneities on the Universe’s Expansion . . . . 8

1.2.1 Theoretical Motivations . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Observational Evidence . . . . . . . . . . . . . . . . . . . . . . 13

2 Preliminaries 19

2.1 Solution Generating Techniques . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Conformal Transformations . . . . . . . . . . . . . . . . . . . 20

2.1.2 Kerr-Schild Transformations . . . . . . . . . . . . . . . . . . . 22

2.1.3 Spacetime Matchings . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Previous Work on Cosmological Black Holes . . . . . . . . . . . . . . 25

2.2.1 Swiss Cheese Black Holes . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Kerr-Schild Cosmological Black Holes . . . . . . . . . . . . . . 25

2.2.3 Isotropic Cosmological Black Holes . . . . . . . . . . . . . . . 28

2.3 Universes Containing both Radiation and Matter . . . . . . . . . . . 28

2.4 The Backreaction of Inhomogeneities on the Universe’s Expansion . . 30

2.5 Computer Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Kerr-Schild Cosmological Black Holes 33

3.1 Radiation-Dominated Universes . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Schwarzschild Black Holes . . . . . . . . . . . . . . . . . . . . 34

v



3.1.2 Reissner-Nordström Black Holes . . . . . . . . . . . . . . . . . 38

3.2 Matter-Dominated Universes . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Schwarzschild Black Holes . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Reissner-Nordström Black Holes . . . . . . . . . . . . . . . . . 44

4 Isotropic Cosmological Black Holes 47

4.1 Schwarzschild Black Holes . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Conformal Transformation of an Isotropic Black Hole . . . . . 47

4.1.2 McVittie’s Point Mass in an Expanding Universe . . . . . . . . 50

4.2 Reissner-Nordström Black Holes . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Conformal Transformation of an Isotropic Reissner-Nordström

Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Charged McVittie Black Holes . . . . . . . . . . . . . . . . . . 54

5 Matching Radiation Universes to Dust Universes 57

5.1 Matching Einstein-de Sitter Universes . . . . . . . . . . . . . . . . . . 57

5.2 Matching Kerr-Schild Cosmological Black Hole Backgrounds . . . . . 61

5.3 Matching Isotropic Cosmological Black Hole Backgrounds . . . . . . . 63

6 The Influence of Black Holes on the Universe 67

6.1 Weyl Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Volume Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 The Velocity Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Shear and Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Summary and Discussion 84

Bibliography 91

vi



Chapter 1

Introduction

General Relativity is necessary to understand systems once the mass M becomes of

the order of the spatial size S, so it is needed on small scales for understanding highly

condensed objects, but it is also needed on large scales for understanding systems

as diffuse as the universe, since with M ∼ S3 even the smallest mass density will be

significant on large enough scales. Thus, cosmological black holes unite two relativistic

extremes together in one model. Cosmological black holes are of interest either as

examples of non-isolated, time-dependent black hole solutions or as inhomogeneous

cosmological models that allow for the study of the influence of inhomogeneities on

the universe.

The study of cosmological inhomogeneities is important because the universe isn’t

homogeneous on all scales, yet models of completely homogeneous universes are com-

monly used to represent it, either with the expectation that the general evolution

of a universe with inhomogeneities will in no way differ from that of a completely

smooth universe, or with the belief that the expansion of the universe is governed by

a perfectly homogeneous spatial expansion regardless of local inhomogeneities in the

matter density. Considering that gravitational entropy is maximized when matter

clumps, it is actually surprising that the universe started off as close to homogeneous

as it did, and it would be even more surprising if the universe weren’t becoming more

inhomogeneous with time, yet many people seem to expect the universe should be

perfectly homogeneous. In order to explain the homogeneity of the early universe,

scenarios such as inflation have been hypothesized, but there is no proof that infla-
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Chapter 1. Introduction 2

tion actually happened, so the homogeneity of the early universe remains unexpected.

Bildhauer & Futamase (1991) have speculated that the relativistic backreaction of in-

homogeneities on the background universe may mimic the effect of a cosmological

constant, and Zehavi et al. (1998) have suggested that the cosmological constant may

merely be an artifact of living in an underdense region of the universe such that we

observe the universe to be expanding more slowly as we look further away and equiva-

lently further back in time. Thus, it is necessary to account for the possible influence

of inhomogeneities if we are to properly understand the global nature of the universe.

In this chapter, the nature of spacetime will be discussed to serve as a backdrop

for this thesis, and then the motivation for studying inhomogeneities will be discussed

in further detail. The specific background knowledge and previous work necessary

to understanding the work in this thesis will appear in Chapter 2, and then new

cosmological black hole solutions will be detailed in Chapters 3 and 4. In Chapter

5 it will be shown that radiation-dominated universes can be matched to matter-

dominated universes across hypersurfaces of constant time, and this will be used to

obtain solutions for primordial cosmological black holes that start off in the radiation-

dominated phase of the universe. Finally, the effect of cosmological black holes on

the expansion of the universe will be examined in Chapter 6.

The sign conventions used in this thesis are signature (− + + +) and negative

Einstein sign (Gab = −κTab). Geometrized units (G = c = 1) are generally used (thus

κ = 8π). The notation u|a denotes partial differentiation of u, and the notation u||a

denotes covariant differentiation.

1.1 The Nature of Spacetime

Commonly people speak of the expansion of the universe by talking about space as

though it is a rubber sheet that expands, carrying the galaxies away from one another,

although we know no ether or anything akin to a rubber sheet exists, so we know we

can never observe absolute positions and velocities (regardless of whether any sort

of absolute space even exists). Empirically then, it only makes sense to consider

the velocity field of the matter and how everything is moving relative to everything

else, rather than considering the expansion of space. The redshifting of light is often
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described in terms of photons getting stretched by the expansion of space; however,

we know from Special Relativity that photons don’t have their own rest frames, so

they don’t have an intrinsic wavelength that could get stretched by the expansion of

space. Thus, it is really only appropriate to speak of the photons as getting redshifted

relative to the matter: relative to the matter they are emitted from, they will always

have the same wavelength in that frame of reference, and relative to the matter they

are absorbed by, they would have always had the same wavelength in that frame of

reference.

In homogeneous cosmology, spacetime is foliated by a series of homogeneous spa-

tial slices that each exist at a given time such that space and time appear to be

uniquely specified, although we know from Special Relativity that space and time

aren’t truly separate entities and there isn’t really a unique way to slice up spacetime

such that every observer agrees on the surfaces of simultaneity. It is only because we

deal with spatially-homogeneous models (as opposed to spatially-inhomogeneous or

spacetime-homogeneous models) that there are different surfaces of constant density

that every observer in the universe can decide to consider as the surfaces of simultane-

ity. If the observers don’t move relative to the universe’s matter, then their surfaces of

simultaneity will simply be the homogeneous spatial slices, so it will be natural to see

the universe as being spatially homogeneous. However, there is nothing truly special

about this foliation of spacetime that makes the homogeneous spatial slices the true

surfaces of simultaneity or requires that spacetime be foliated into homogeneous spa-

tial slices. If an observer is boosted to move relative to the background distribution

of matter in the universe, then that observer will see the surfaces of simultaneity as

being inhomogeneous, with an asymmetry in density along the direction of motion.

Thus, it is just a convenience to assume that all observers will agree on what is space

and what is time in a spatially homogeneous cosmological model, although space and

time aren’t really independent or uniquely specified.

1.1.1 Absolute versus Relative Space

Newton claimed that since objects have absolute acceleration (whether something is

accelerating is evidenced by non-inertial effects), they must have absolute velocity
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and position (even if only relative velocity and position are actually observable), so

he believed in the existence of an absolute space that objects move with respect to.

Others such as Leibniz, Berkeley, and later, Mach, claimed that acceleration, velocity,

and position are always merely relative to other objects rather than with respect to

any sort of pre-existing space, seeing space merely as the set of relations among

objects rather than as a concrete substance that acts as a foundation for objects to

exist within. While Newton claimed a single rotating object in an otherwise empty

universe would show the non-inertial effects of its rotation, Leibniz claimed it made

no sense to speak of a single object in rotation, and since no one could ever conduct

the experiment, the argument has never been settled.

Einstein clearly set out with the notion of space as relative, which is evidenced by

the fact that his theory ultimately became known as “Relativity.” Einstein’s notion

of letting mass-energy define the spacetime structure in General Relativity seems

to go in the direction of making the inertial properties of matter dependent on the

contents of spacetime instead of existing independently like one would expect if space

were absolute. Since a point mass falling in a gravitational field experiences no non-

inertial effects, it is more natural to consider the particle to be unaccelerated and

have no forces acting on it; thus, Einstein geometrized gravity to make the effect of

falling in a gravitational field as natural as being in an inertial reference frame so that

now gravity ceases to be considered a force and objects simply move inertially along

geodesics in curved spacetime.

Interestingly, setting a shell of matter in rotation about a central mass in Gen-

eral Relativity will cause the central mass to itself experience non-inertial effects of

rotation (Lense & Thirring 1918); however, the non-inertial effects will be smaller

than if the central mass were rotated at the same angular velocity relative to the

non-rotating shell of matter, so it isn’t simply a matter of relative rotation, although

it does seem Machian at first. Also, a solution to Einstein’s Field Equations exists

for an isolated black hole in rotation that is distinguishable from that of an isolated

non-rotating black hole, which clearly contradicts the Machian notion that rotation

must be relative to other objects, suggesting it is possible to have a single object

in rotation in an otherwise empty universe. In fact, in General Relativity it is still

possible to have vacuum spacetimes (such as Minkowski spacetime), which suggests
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space isn’t merely a set of relations among objects, but must be something more

foundational if it is still possible to have relations without objects.

Fundamentally, it appears it would be difficult to argue that rotation is merely

relative to other objects rather than with respect to absolute space, since if it were

equivalent to consider a rotating object to be a static object in a rotating universe,

then at some finite distance from the object, the universe would appear to be rotating

faster than the speed of light, in violation of the speed limit of Special Relativity:

if we took the Earth to be static and watched the universe rotate by each day, we

wouldn’t have to look any further than the outskirts of the Solar System to see objects

violating the speed of light.

Grünbaum (1964, 1974), Sklar (1974), and Feynman (1995) have claimed that the

existence of absolute rotation in General Relativity stems from assuming boundary

conditions at infinity. However, this appears to be a confusion. Boundary condi-

tions don’t need to be assumed at infinity to devise a solution to Einstein’s Field

Equations: the mass-energy source defines the entire spacetime structure, even if the

source is bounded and the spacetime is infinite in extent. From Sklar’s references,

it appears this notion that absolute rotation depends upon boundary conditions at

infinity originates in a hypothesis of Wheeler’s (1964).

Wheeler hypothesized that it isn’t sufficient that Einstein’s Field Equations be

satisfied by a spacetime, but that certain boundary conditions should also have to

hold for a spacetime to be accepted as a valid solution. Wheeler took it for granted

that inertial properties are solely due to mass-energy (possibly not a valid assumption

if we can still state what is or isn’t inertial in a vacuum spacetime like Minkowski). He

objected to non-closed spacetimes on the grounds that a localized source would have

to be controlling the inertial properties at infinity yet that the spacetimes can only

asymptotically become Minkowski at infinity (he appears to have confused Minkowski

spacetime with what is inertial, despite that the point of General Relativity is to turn

the non-inertial motions due to gravitational forces into inertial motions in a curved

spacetime). Wheeler rejected the Schwarzschild metric as a physically-reasonable

solution on these grounds.

Regardless of whether Wheeler’s hypothesis is valid, his argument wasn’t that

boundary conditions for a given spacetime can be independently varied to allow the



Chapter 1. Introduction 6

inertial properties and the existence of absolute rotation to be arbitrarily imposed.

He simply hypothesized that boundary conditions should be imposed on what is to

be considered a physically-reasonable spacetime in determining whether to accept a

given spacetime as a valid solution or not. Judging by Feynman’s discussion (1995)

the confusion appears to have arisen due to the fact that the Lense-Thirring effect

(1918) was calculated using the weak-field limit, so asymptotic flatness was assumed

in that case for solving the problem of objects in rotation. However, the weak-field

limit is an approximation: in coming up with exact solutions of Einstein’s Field

Equations, asymptotic flatness need not be assumed in deriving asymptotically-flat

spacetimes like Schwarzschild or Kerr (e.g. see the derivations in D’Inverno 1992)

although asymptotic flatness is often assumed simply to obtain the solutions more

quickly.

1.1.2 Asymmetric Time versus Asymmetric in Time

While it is generally assumed that our universe is spatially homogeneous (on large

enough scales at least), it is also generally assumed that our universe isn’t only time-

inhomogeneous, but globally time-asymmetric. Before the expansion of the universe

was discovered, Boltzmann (e.g. see Reichenbach 1956) had hypothesized that since

entropy only increases (or stays the same) on average, then if the universe were infinite

in time, an extremely low-entropy fluctuation would inevitably occur at some time,

and people living in one side of the entropy fluctuation would observe time to be

asymmetric with entropy increasing in one direction even though the universe wasn’t

time-asymmetric as a whole.

After the expansion of the universe was discovered, Gold (1962) assumed the

expansion must itself bring about increasing entropy, since the redshift due to the

expansion of the universe would prevent stars from ever being in thermal equilibrium

with the radiation. However, as Davies (1974) has pointed out, if the expansion of the

universe were to suddenly reverse itself, the contraction of the universe would lead to

a blueshift, but it wouldn’t immediately impact the thermodynamic processes in the

stars; thus, the expansion of the universe can’t be directly tied to the entropy arrow

of time. It is that the universe began in a low entropy state, not that the expansion
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of the universe is associated with increasing entropy, that is relevant. Thus, the

expansion and entropy arrows of time appear to be separate and an explanation such

as Boltzmann’s isn’t sufficient to explain both. This leaves a problem as to whether

time is inherently time asymmetric or events are merely unfolding asymmetrically in

time due to some constraint on the initial conditions.

Gravity tends to clump matter, so qualitatively it makes sense that gravitational

entropy is minimized when matter is homogeneously distributed (although no quan-

titative description of gravitational entropy yet exists), which means the relatively

homogeneous initial distribution of matter in the universe would have been of very

low entropy. Penrose (1979) devised the Weyl Curvature Hypothesis stating that

initial singularities must have no Weyl curvature (the relativistic equivalent of tidal

forces, which would be associated with clumped matter distributions) and final singu-

larities must have infinite Weyl curvature, so this hypothesis presupposes some type

of time-asymmetry that would allow initial and final singularities to be distinguished.

The best evidence for an intrinsic asymmetry in time is the asymmetry in decay

rates between the neutral kaon and anti-kaon, but this presupposes that an anti-

particle is the same as a particle moving backward in time. In reality nothing can

literally move through time (although our perception may suggest otherwise). If

anything were to move through time, 1 s s−1 is dimensionless as far as being a rate of

motion; and if the contents of time were always moving into the future and leaving

the past vacant, then this would require events in time to change as they went from

being future to present to past events. To say that a particle moves forward in time

and then moves backward in time requires having a second timeline to be able to say

what happens first. The direction of motion could never be distinguished within one

timeline, so it should not be possible to distinguish a particle from an anti-particle if

anti-particles really were particles moving backward in time. It would be more fair to

say objects have extension in time than to say they are moving forward or backward

in time. Thus, the decay asymmetry in the neutral kaons might just demonstrate an

asymmetry between matter and anti-matter rather than a temporal asymmetry.

If time isn’t itself asymmetric, and its contents are merely arranged asymmetrically

in time, it is difficult to explain the low gravitational entropy of the early universe. It

may be that since the entropy in the radiation was maximized by being homogeneous
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(radiation is governed by pressure and tends to spread itself out uniformly), and since

radiation dominated prior to matter, then the gravitational entropy was forced to be

low. Another alternative is that it may not be possible to have a Big Bang singularity

unless the universe began homogeneous, so if the universe formed from a single event,

it might have to be initially homogeneous. Yet another alternative is that a large

ensemble of possible universes exists, in which case some universes would randomly

happen to have low entropy, allowing for the existence of a thermodynamic arrow and

potentially the evolution of life, so then it would not be unexpected that we would

happen to find ourselves in a universe that began with low entropy (this argument

is an example of the anthropic principle, which requires that the universe must have

properties that are consistent with the existence of human beings). It remains a

mystery as to why exactly the universe began in such a low entropy state if it isn’t

intrinsically time-asymmetric.

Finally, it should be noted that since the spacetime and the mass-energy aren’t

independent in General Relativity, in the same way a point mass modifies the cur-

vature of what would normally be flat Minkowski spacetime and introduces a radial

asymmetry, the contents of spacetime could introduce an asymmetry in time, so it

might not make sense to ask whether time itself is asymmetric or only its contents

are. Clearly if time itself is asymmetric, its contents can be forced to be so, but it

is also possible that time not be intrinsically asymmetric yet for an asymmetry in its

contents to modify it into being asymmetric.

1.2 The Influence of Inhomogeneities

on the Universe’s Expansion

1.2.1 Theoretical Motivations

Raychaudhuri’s equation is

θ|au
a = −Rabu

aub − 1

3
θ2 − σabσ

ab + ωabω
ab + aa

||a, (1.1)

which essentially states that the partial derivative of the expansion θ goes as the

negative of an energy density term, minus an expansion term, minus a shear term, plus



Chapter 1. Introduction 9

a vorticity term, plus an acceleration term. Thus, mass-energy tends to decrease the

universe’s expansion (as we are commonly aware of in considering the critical density

for the universe), shear also tends to decrease the expansion (the volume expansion

is maximized when the universe expands isotropically and will be diminished if there

is shear), and vorticity tends to increase the expansion (which we are familiar with

in the case of rotating objects like spiral galaxies that maintain themselves against

gravitational collapse). If the fluid flow is geodesic, there will be no acceleration;

otherwise, acceleration (or deceleration) will not surprisingly increase (or decrease)

the expansion.

The components in Raychaudhuri’s equation can be understood by taking the

covariant derivative of the velocity field ua and decomposing it (e.g. see Stephani

1990) as

ua||b = ωab + σab +
1

3
θhab − aaub, (1.2)

where ωab is the rotation tensor, σab is the shear tensor, θ is the expansion, hab is

the projection tensor, and aa = ua||cu
c is the acceleration. The rotation tensor is the

antisymmetric part of ua||b,

ωab = u[a||b] + a[aub], (1.3)

which represents vorticity. The expansion tensor is the symmetric part of ua||b,

θab = u(a||b) + a(aub), (1.4)

and (since aaua = 0) is related to the expansion term

θ = ua
||a, (1.5)

which is the term most closely related to the Hubble constant, representing the

direction-independent expansion that an observer would see. The projection tensor

is

hab = gab + uaub, (1.6)

where gab is the metric tensor. The shear tensor is the symmetric and trace-free part

of ua||b,

σab = θab −
1

3
θhab, (1.7)
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which represents the direction-dependent gradient of the velocity field with the mean

expansion taken out (such that it just shows anisotropy, with the universe having

increased or decreased expansion in certain directions).

Assuming an inhomogeneous universe contains the same overall mass-energy as a

homogeneous universe, just redistributed, and that the fluid flow is either geodesic or

regions of accelerated or decelerated acceleration tend to cancel out, then Raychaud-

huri’s equation suggests the presence of inhomogeneities in the universe may affect

its overall evolution from that of a perfectly homogeneous universe by introducing

shear in the velocity field. With matter tending to fall toward an overdensity such

that the tidal influence on the volume expansion of particles will be to increase their

expansion in the direction toward the overdensity and decrease their expansion in

the directions perpendicular to that of the overdensity, the volume expansion will be

decreased. With a universe filled with many overdensities and underdensities, the net

effect would be many sheared volumes with decreased volume expansion, meaning

the overall volume expansion of the universe should be decreased.

Raychaudhuri’s equation also suggests the presence of vorticity could actually

increase the universe’s volume expansion, tending to act like a cosmological constant.

However, since the presence of vorticity only seems to be apparent in systems on

the scales of solar systems and spiral galaxies, it appears vorticity is only relevant

regionally for supporting specific objects against collapse, rather than on a global

scale. While it seems unlikely the universe could have any net rotation, as discussed

by Gödel (1949) a non-expanding universe of density 10−30 g cm−3 would only have

to undergo rotation every 2 × 1011 yrs to be completely supported by rotation, so if

it were possible for even the most negligible amount of rotation to be introduced, it

could be quite significant.

Interestingly, Raychaudhuri (1955) showed that if vorticity vanishes and the local

expansion is isotropic, then space is locally isotropic. However, we know that in reality

space can’t be locally isotropic since inhomogeneities curve space so that planets orbit

the Sun, we observe gravitational lensing, etc. Thus, assuming that vorticity can be

neglected in considering the influence of inhomogeneities, then that space is locally

anisotropic shows its expansion must be locally anisotropic, so it isn’t strictly correct

to interpret the universe’s expansion as being a uniformly expanding space with the
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galaxies having peculiar velocities with respect to this uniform expansion.

Since the spacetime structure is tied to the mass-energy distribution in General

Relativity, it probably isn’t that surprising that the universe’s expansion would be

considered to be locally inhomogeneous if the matter is locally inhomogeneous. How-

ever, it is more than just a question of whether to interpret the universe’s expansion

as spatially uniform with matter having peculiar velocities in space versus saying the

expansion is non-uniform. It isn’t in general equivalent that the spacetime corre-

sponding to a homogeneous mass distribution can be used in place of the spacetime

corresponding to an inhomogeneous mass distribution, even if the spatial average of

the inhomogeneous mass distribution is the same as the homogeneous spacetime (e.g.

see chapter 9 of Krasiński 1997). This is because Einstein’s Field Equations don’t

equate the spacetime metric gab directly to the mass-energy Tab, but instead they are

related by

Rab −
1

2
Rgab = −κTab (1.8)

(where the Ricci tensor Rab and scalar R both come from taking derivatives of gab).

Thus, to use spatially-averaged quantities and have them satisfy the Field Equations,

one would need the spatial average of the left-hand side, which would involve knowing

the exact form of gab and calculating Rab and R before performing the spatial average,

so just using the homogeneous metric gab that corresponds to a homogeneous Tab to

represent the spatial average of an inhomogeneous Tab will not generally be consistent.

If the homogeneous metric is used to calculate the left-hand side and the left-hand

side is then equated to the spatially-averaged inhomogeneous Tab, in reality there

will generally be a difference between the two sides of the equation, which can be

interpreted as having the effect of a cosmological constant (this will be discussed

further in Chapter 2).

While many people prefer to interpret the universe’s expansion as homogeneous

and then add on the peculiar velocities of objects, they do at least grant that

gravitationally-collapsed objects like stars and galaxies don’t participate in the ex-

pansion, as these objects have reached turnaround, gravitationally collapsed, and

then virialized, so the matter they are composed of no longer possesses the velocity

field associated with the expansion of the universe. Strangely, some have used the

interpretation of a uniformly expanding space and assumed that systems on all scales
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continue to expand along with the universe. Dumin (2003) used lunar radar to mea-

sure the rate that the Moon is spiralling away from the Earth, and then compared

that with the rate expected due to the transfer of energy from the Earth’s rotation

to the Moon to find an excess, which he calculated to correspond to a value for the

Hubble constant Ho of 33 km s−1 Mpc−1.

Previously, Gautreau (1984) showed that orbits about a mass in an FRW universe

wouldn’t be circular although they would deviate only slightly; however, this is to

be expected even in Newtonian gravity, as the expansion of the universe would cause

matter in the background universe to stream out of the orbit and require the orbit

to spiral outward. Assuming in reality that the matter of the background universe

went into the collapsed objects or has at least been perturbed so greatly from the

velocity field of the background universe in the vicinity of the collapsed objects that

it wouldn’t actually stream outward, then one wouldn’t expect any flux of matter out

of the orbits and presumably they would then be stable.

However, in calculating the size of a hydrogen atom in an expanding universe,

Bonnor (1999) found that it would expand 10−67 as fast as matter comoving with

the expansion of the universe, which however slight, is still almost seven times as

much as the expected value based on a Newtonian calculation of the streaming of

the background matter of the universe out of the atom. While it might not actually

make sense to talk about the matter of the universe streaming out of an atom, in

General Relativity a homogeneous matter distribution is smooth down to all scales

rather than consisting of individual particles, so in theory the calculation makes sense.

Bonnor suggested that this excessive expansion might be due to something analogous

to frame dragging, so in the same way a rotating object induces slight vorticity in

surrounding matter, the expansion of the universe might induce slight expansion

in non-expanding objects. It seems possible a factor of 2π could have simply been

dropped somewhere in performing the Newtonian calculation. However, if the relative

motion of matter does influence its inertial properties, then the possibility of induced

expansion seems plausible. It should be noted that if the induced expansion is of

order 10−67 of the expansion of the universe, clearly the effect would be so negligible

as to be unobservable, so it wouldn’t make measurements of Ho on collapsed systems

reasonable, leaving measurements such as Dumin’s (2003) as being highly doubtful.



Chapter 1. Introduction 13

1.2.2 Observational Evidence

There are several areas of prior research that are pertinent to inhomogeneities and

variation in the universe’s expansion. In this section voids, CMB anisotropy, bulk

flows, and local anisotropy in Ho will be discussed.

Existence of Voids

Some people (e.g. Lerner 1991) have argued against the Big Bang theory on the

grounds that it would have taken 100 billion years for the galaxies to fall out of

the voids, assuming they fell at velocities on the order of that of the usual peculiar

velocities of the galaxies. However, considering the universe to be inhomogeneous, it

is much easier to explain the relative absence of galaxies in the voids if they simply

never formed there because the voids are underdense regions that expand fast enough

to never have large regions undergo collapse. The voids aren’t vacuous, so it doesn’t

make sense to expect that galaxies would have fallen out of them yet that they would

still have a background density due to diffuse matter that should have just as easily

fallen out if the galaxies had.

If the universe initially varied slightly from a density parameter of Ω = 1, it would

either have expanded so fast that galaxies never formed, or it would have collapsed

a long time ago. The very existence of the universe’s large network of voids and

superclusters seems best explained if the voids were the initially underdense regions

of the universe that acted like an Ω < 1 universe, so that the density slowed the

expansion very little and allowed the voids to balloon up without structure formation

occurring within them; and if the superclusters were the initially overdense regions of

the universe that acted like an Ω > 1 universe, allowing them to reach turnaround,

and in the densest areas collapse to create a hierarchy of structure.

If one wanted to interpret the expansion of space as uniform, then the existence of

large-scale structure would require space to be undergoing a flux out of the collapsed

regions, where the objects are no longer expanding, and into the voids. Neighbour-

hoods of structure would have to be considered to be making bulk motions with

respect to the uniformly expanding space, so the notion of peculiar velocities on a

uniformly expanding space really doesn’t work as well as if all the galaxies were uni-
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formly distributed through the universe and had totally random peculiar velocities

relative to one another. Thus, the notion of a uniform Hubble flow with peculiar

velocities doesn’t appear to be a particularly good interpretation given the hierarchy

of structure that exists.

Moffat & Tatarski (1995) looked at what observational effects we would theoret-

ically observe if we were to inhabit a local void. Via comparison of their theoretical

curves with a survey of redshift-distance determinations, they found the data were

better fit by a model with a local void than by a homogeneous universe. Zehavi et

al. (1998) used 44 Type Ia supernova Ho values to show that we may just inhabit

an underdense region of the universe (where the expansion in the velocity field has

been slowed less due to gravity than in more dense regions of the universe). Referring

to fig. 4 of Freedman et al. (2001), it appears that the Ho values tend to fall off

beyond a distance of 100 Mpc, which suggests the universe may be expanding faster

locally. A here-there difference in the universe’s expansion could be an alternative to

the notion of a now-then difference, which is the assumption the accelerating universe

(Perlmutter et al. 1999) rests on.

CMB Anisotropy

Tegmark, Oliveira-Costa, & Hamilton (2003) found a correlation in alignments of

the CMB quadrupole and octupole. Suspiciously, the maxima and minima tend to

lie in a plane and the poles of the planar quadrupole and octupole also align with

the CMB dipole (although Tegmark et al. appear to try to disguise this additional

correlation by reporting the co-ordinates with a negative longitude). It seems likely a

common influence is at work in creating the dipole/quadrupole/octupole correlation,

suggesting the CMB dipole might have more to do with the influence of large-scale

structure on the velocity field, rather than simply being the result of our own locally-

perturbed peculiar motion. That this influence brings about a noticeable component

of the quadrupole/octupole suggests it extends from a large scale.

As an example, if a large overdensity existed that we were falling toward, that

overdensity should also be tidally shearing the velocity field in our neighbourhood

as objects in our neighbourhood fell toward the overdensity. For the shearing of the

velocity field to be significant enough to show up in the CMB, one would expect the
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neighbourhood undergoing this shear would have to be reasonably large, suggesting

the inhomogeneity at work would have to be reasonably distant. Thus, it could

suggest our peculiar motion with respect to the CMB is due to inhomogeneity on a

large-scale, rather than merely being a local perturbation in the velocity field.

However, the planar quadrupole/octupole pattern observed is obviously not con-

sistent with the type of shear that would be generated by an essentially spherical

overdensity, as that type of shear wouldn’t introduce highs and lows in a plane perpen-

dicular to the direction we were falling along. Planar variations could be introduced

if we were falling toward a non-spherical overdensity such as a filament (or the edge

of a wall), with the velocity field getting compressed perpendicular to the length of

the overdensity and being unaffected parallel to the length of overdensity. With some

type of complicated structure such as a supercluster with intersecting filaments/walls,

then a planar quadrupole/octupole pattern might be possible, especially if the object

were large and extended such that the mass within a given angle increased with dis-

tance to compensate for differences in distance so that relatively little shear existed

along the CMB dipole direction.

Bulk Flows

Bulk flow studies involve determining the peculiar velocities (with respect to the

CMB) of galaxies within a sample volume to determine a net streaming motion for

that volume (or of a sample volume with respect to us; if that velocity isn’t the

opposite of our motion with respect to the CMB, then it is equivalently saying that

the sample volume is moving with respect to the CMB). Lauer & Postman (1994)

determined a velocity for the Local Group with respect to an Abell cluster sample

extending out to a recessional velocity of 15,000 km s−1. Rather surprisingly, this

velocity differed from the velocity of the Local Group with respect to the CMB,

suggesting a net velocity of the Abell cluster sample (with respect to the CMB) of

689 ± 178 km s−1 toward l = 343o, b = +52o. Although other bulk motion studies

haven’t yielded exactly the same direction as the Lauer & Postman result, other bulk

motion studies have obtained directions that correlate with each other more than

they do with the Lauer & Postman study (see Table 1.2.2). Zaroubi (2002) provided

a thorough review of bulk flows, showing that there is agreement for sample volumes
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Table 1.2.2: Bulk Flow Data

czmax (km s−1) Velocity (km s−1) Co-ordinates (l, b) Reference

6,000 220±60±50 (304±16, 25±11) da Costa et al. 2000

9,200 310±120 (337, -15) ± 23 Giovanelli et al. 1998

10,000 336±96 (321, -1) Parnovsky et al. 2001

11,000 370±110 (305, 14) Dekel et al. 1999

12,000 687±203 (260±13, 0±11) Hudson et al. 2004

13,000 700±250 (272, 10) ± 35 Willick 1999

15,000 689±178 (343, 52) Lauer & Postman 1994

less than 60 h−1 Mpc in radius, but beyond that only half the studies find a bulk

flow with a magnitude consistent with the expected falloff, while the other half find

a bulk flow of roughly three times the expected magnitude.

Over a large enough sample volume, the relative mass fluctuations should be small

enough for there to be little peculiar motion of the volume with respect to the CMB.

Assuming the universe approaches homogeneity on larger scales, the existence of a 700

km s−1 bulk flow on scales of ∼120 h−1 Mpc is very surprising, as that is as high as a

bulk flow could be expected to be even in a very localized volume. Colless et al. (2001)

have argued that the higher-than-expected bulk flows specifically result from the error

due to the window functions of the samples: correcting for the window function of

their own sample, they obtain an insignificant bulk flow of 159 ± 158 km s−1 (no

direction reported). Still, the fact that there appears to be good agreement among

the directions reported from the bulk flow studies that do find significant flows and

even with the directions of the studies that don’t (see fig. 1 of Zaroubi 2002) suggests

that these net streaming motions may not just be artifacts of observational biasing

as Colless et al. have suggested. Hudson et al. (2004) have also claimed the high-

magnitude bulk flows result from sparse sampling, yet apparently found no way to

take the error due to this into account in reporting their bulk flow result.

It is difficult to say that either the expected-magnitude or high-magnitude bulk

flow studies are tainted when they all manage to yield essentially the same direction,

so whether the bulk flows are falling off with sample volume as expected remains

uncertain. Regardless, even the expected bulk flow of ∼200 km s−1 on scales of 100
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h−1 Mpc is likely larger than most people would intuitively expect, suggesting the

notion of peculiar motions on a uniformly expanding background universe isn’t the

most useful model of the universe’s expansion. Also, the bulk flow studies are overly

simplistic to consider a sample volume to be moving coherently in one direction

when there should be multiple perturbations to the velocity field from that of a

homogeneous expansion: the bulk flow studies overlook all the individual variations

that bring about the net streaming motions of consideration (or that could cancel

each other out across the sky to yield no bulk flow of the sample volume).

Local Anisotropy in Ho

The most accurate work to date to study Ho is the HST Extragalactic Distance Scale

Key Project, which finally (Ferrarese et al. 2000; Gibson et al. 2000; Kelson et al.

2000; Mould et al. 2000; Sakai et al. 2000; Freedman et al. 2001) yielded distances

accurate enough for a meaningful study of real variation in observed values of Ho.

McClure and Dyer (2004) used these Ho values and the directions they were obtained

along to map out how Ho varies with direction on the sky and found this variation to

be statistically significant. This variation was at least in partial agreement with the

bulk flow directions (see Figure 1.1), with bulk flow directions tending to align with

higher Ho regions of the sky; however, the pattern of Ho variation observed across the

sky wasn’t consistent with a simple dipole or bulk flow motion, suggesting the bulk

flow studies really may be overly simplistic in failing to discern more complicated

effects than a simple bulk flow in the velocity field.

While this mapping method makes sense for demonstrating there are directional

variations in the universe’s local expansion, it looks at recessional velocity per unit

distance for objects that are different distances away, which is a somewhat clouded

way of looking at the velocity field. Some work was done to examine how the di-

rectional variation may also vary with distance by mapping the variation on the sky

using data binned at different distances. These maps show a statistically significant

directional variation that decreases in magnitude with distance, as well as another

directional variation (of questionable statistical significance) that remains constant

in magnitude with distance. (Neither of these variations appears to change direction

with distance.)
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Figure 1.1: Hubble constant contour map (in Galactic co-ordinates) for a smearing of

the Key Distance Project Ho values across the sky, shown with 500 randomized map

extrema (dots) and bulk flow determinations (triangles). Contours for the smeared-

out map of the actual Ho data range from low (dark) to high (light) values of Ho (in

km s−1 Mpc−1) as labelled, and positions of the randomized minima and maxima,

which are calculated using Gaussian deviates to randomly tweak all the Ho values

about their ranges of uncertainty, are indicated by dark and light dots respectively.

From high to low latitude, the bulk flows are those of da Costa et al. (2000), Dekel

et al. (1999), Willick (1999), Hudson et al. (2004), Parnovsky et al. (2001), and

Giovanelli et al. (1998).
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Preliminaries

2.1 Solution Generating Techniques

A solution to Einstein’s Field Equations

Rab −
1

2
Rgab = −κTab (2.1)

can either be obtained by finding a metric gab from which the entire left-hand side

can then be calculated to allow the energy-momentum tensor Tab to be determined,

or by starting with an energy-momentum tensor and trying to work backward to

obtain the metric that corresponds to it. However, the choice of any particular met-

ric may not lead to a physical energy-momentum tensor, as the energy-momentum

tensor may not satisfy energy conditions or be describable in terms of any known

energy-momentum components; and while it would be usual to want to determine

the spacetime corresponding to a particular mass-energy distribution, starting with

the energy-momentum tensor doesn’t easily allow the metric to be calculated, espe-

cially in cases where specifying the mass-energy distribution requires the metric to be

known in order to be able to specify the mass-energy distribution in the first place.

In coming up with new solutions, it is most straightforward to transform known

metrics in ways that will ideally lead to physically-interesting energy-momentum ten-

sors. Common transformation methods are conformal transformations and Kerr-

Schild transformations, which will be discussed in Sections 2.1.1 and 2.1.2. It is also

possible to cut and paste known spacetimes together to obtain more complex mass-

19
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energy distributions without having to determine new metrics, which will be discussed

in Section 2.1.3; however, there are strict conditions on the matchings.

To be considered a solution of the Field Equations, a metric must yield an energy-

momentum tensor that corresponds to a physically-possible source. The conditions

that are usually considered are the weak, strong, and dominant energy conditions

(e.g. see Wald 1984). The weak energy condition requires that the energy density not

be negative. An observer with unit timelike 4-velocity ua will measure the energy

density as Tabu
aub, so Tabu

aub ≥ 0 for the weak energy condition and the conditions

for the energy density µ and the pressures along the principal directions pi are that

µ ≥ 0 and µ + pi ≥ 0. From Einstein’s Equations it can be shown that

Rabu
aub = −κ

(

Tabu
aub +

1

2
T
)

. (2.2)

The strong energy condition requires Tabu
aub ≥ −1

2
T such that the stresses of matter

are not too large and negative (which requires that µ + pi ≥ 0 and µ + Σpi ≥
0). The dominant energy condition requires that T a

b ub be a timelike or null vector

(which requires µ ≥ |pi|) so that the observer sees matter flowing no faster than the

speed of light. If a spacetime violates the energy conditions in one region, it doesn’t

invalidate the spacetime as a whole: the fact that it is possible to cut and paste

different spacetimes together suggests it may be possible to cut out the invalid regions

of spacetime and replace them with physically-acceptable regions, so the regions of

spacetime that are valid are still useful on their own.

2.1.1 Conformal Transformations

Conformal transformations

ḡab = Ω2gab (2.3)

can be used to generate a new metric ḡab by taking a known metric gab and performing

a point-dependent rescaling of the original metric via the conformal factor Ω. Inter-

estingly, taking the Robertson-Walker metric for the Einstein-de Sitter universe (the

FRW universe that has flat spatial sections)

ds2 = −dt2c + [R(tc)]
2
(

dr2 + r2(dθ2 + sin2θ dφ2)
)

(2.4)
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and changing from the cosmological time tc to a new time co-ordinate t via R(t)dt =

dtc, then

ds2 = [R(t)]2
(

−dt2 + dr2 + r2(dθ2 + sin2θ dφ2)
)

, (2.5)

which is just a conformal transformation of the Minkowski metric

ds2 = −dt2 + dr2 + r2(dθ2 + sin2θ dφ2). (2.6)

Conformal transformations can also transform Minkowski spacetime into non-flat

FRW spacetimes, but the conformal factor is slightly more complicated.

Conformal transformations preserve conformal curvature in the form of the Weyl

tensor Ca
bcd (the relativistic equivalent of tidal forces), which corresponds to the trace-

free part of the Riemann curvature tensor Ra
bcd. Conformal transformations also

preserve null geodesics so that the causal structure of the original and transformed

spacetimes agree. The Ricci scalar and tensor aren’t conformally invariant however,

so it is possible to introduce mass-energy, as seen in the example above in going from

a vacuum spacetime to a radiation-filled or dust-filled Einstein-de Sitter universe.

While it isn’t possible to introduce shear or rotation in the velocity field by way of a

conformal transformation, it is possible to introduce expansion, as seen in the above

example going from Minkowski spacetime to the Einstein-de Sitter universe.

If one is interested in obtaining cosmological models with Weyl curvature or shear,

conformal transformations would only be useful for taking models that already have

Weyl curvature or shear and transforming them to introduce expansion to obtain

models that exist as part of cosmological models. Since Minkowski spacetime is

conformally related to the Einstein-de Sitter universe, this suggests that spacetimes

such as Schwarzschild that are asymptotically Minkowski can be transformed with the

same conformal factor to obtain cosmological counterparts that are asymptotically

Einstein-de Sitter. Previously, Thakurta (1981) and Sultana & Dyer (2005) used this

approach to yield cosmological Kerr and Schwarzschild black holes (although solutions

for the source only exist in the Schwarzschild case).
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2.1.2 Kerr-Schild Transformations

Kerr-Schild transformations (Kerr & Schild 1965; see also Stephani et al. 2003)

ḡab = gab + 2Hlalb (2.7)

can be used to generate new metrics by taking a known metric and adding a com-

ponent based on a scalar field H and null geodesic vector field la. The scalar field is

undetermined and is only subject to the constraint that it result in a physical energy-

momentum tensor. The null geodesic field used in the transformation will remain a

null geodesic field of the transformed metric since

ḡabl
a = gabl

a, (2.8)

but this relation won’t generally be obeyed by other null vectors, so the causal struc-

ture isn’t totally preserved. The energy-momentum tensor transforms according to

laT̄ab = laTab + F lb, (2.9)

where F is a scalar field, so the transformation adds a component that can be localized

in spacetime via the scope of the scalar field.

Most notably, this transformation can be used to obtain the Kerr metric (for a

rotating black hole) from the Minkowski metric with

2H =
2mr3

r4 + a2z2
(2.10)

and

la =
(

1,
rx + ay

a2 + r2
,
ry − ax

a2 + r2
,
z

r

)

, (2.11)

which means the Schwarzschild metric (a = 0) is also a Kerr-Schild transformation

of Minkowski space with

2H =
2m

r
(2.12)

and

la =
(

1,
x

r
,
y

r
,
z

r

)

, (2.13)

or in spherical coordinates with la = (1, 1, 0, 0). Thus, the Schwarzschild metric can

be written as

ds2 = −dt2 + dr2 + r2(dθ2 + sin2θ dφ2) +
2m

r
(dt + dr)2. (2.14)
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This is equivalent to the Eddington-Finkelstein form of the Schwarzschild metric,

which is obtained by taking the standard form of the Schwarzschild metric

ds2 = −
(

1 − 2m

r

)

dt̄2 +
(

1 − 2m

r

)−1

dr2 + r2(dθ2 + sin2θ dφ2) (2.15)

and performing the transformation

dt̄ = dt − 2m

r − 2m
dr. (2.16)

Analogous to the Kerr-Schild transformation used to obtain the Schwarzschild metric,

the Reissner-Nordström metric (for a charged black hole) can be obtained with

2H =
2m

r
− e2

r2
(2.17)

and the same null vector field la to yield

ds2 = −dt2 + dr2 + r2(dθ2 + sin2θ dφ2) +

(

2m

r
− e2

r2

)

(dt + dr)2. (2.18)

If the null vector field is changed to (1,−1, 0, 0) or (−1, 1, 0, 0), the dtdr cross term

will change sign (all the other terms stay the same), so it is equivalent to doing a time

inversion, which will yield white hole spacetimes instead of black hole spacetimes.

It is possible to introduce vorticity, shear, and Weyl curvature with a Kerr-Schild

transformation, so Kerr-Schild transformations are useful for adding inhomogeneities

into homogeneous spacetimes. If one is interested in obtaining cosmological models

with Weyl curvature or shear, then Kerr-Schild transformations could be performed

on FRW spacetimes to introduce inhomogeneities. Previously, Vaidya (1977) and

Patel & Trivedi (1982) used this approach to obtain cosmological Kerr and Kerr-

Newman black holes (although solutions for the source only exist in the Schwarzschild

or Reissner-Nordström limits).

2.1.3 Spacetime Matchings

Another way to generate new spacetimes is to cut and paste known spacetimes to-

gether to create spacetimes with more complex mass-energy distributions. A com-

mon example is the Swiss cheese universe (Einstein & Straus 1945), which is con-

structed by cutting out spheres from an FRW universe and collapsing the matter
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down into Schwarzschild stars or black holes. Not just any spacetimes can be joined

together: there are junction conditions that need to be satisfied for the spacetimes to

be matched. The junction conditions commonly used to match spacetimes are those

of O’Brien & Synge (1952), Lichnerowicz (1955), or Darmois (1927).

The Darmois conditions require that the first and second fundamental forms match

across the junction, and are generally the most useful junction conditions because they

can be used on spacetimes where different co-ordinates are used on opposite sides of

the junction. The first fundamental form is

Ωαβ = gab
∂xa

∂uα

∂xb

∂uβ
, (2.19)

which is the 3-space metric inherited from the spacetime the matching surface, as-

sumed non-null, is embedded in, and the second fundamental form is

Υαβ = −na||b
∂xa

∂uα

∂xb

∂uβ
, (2.20)

which describes the derivative of the unit normal vector to the hypersurface. The uα

co-ordinates are the co-ordinates of the 3-space of the hypersurface. The normal is

given by

na =
f|a

|gbcf|bf|c|1/2
, (2.21)

where f is a function of the co-ordinates such that it is zero on the junction.

The O’Brien & Synge and Lichnerowicz conditions require the co-ordinates to be

the same on both sides of the junction. The Lichnerowicz conditions require merely

that the metric gab and its derivatives gab|c match across the junction. While satisfying

the O’Brien & Synge conditions is sufficient for satisfying the Lichnerowicz or Darmois

conditions, the O’Brien & Synge conditions require that gab, gαβ|0, and T 0
a all match

across the junction, which is unnecessarily restrictive since x0 need not be a temporal

co-ordinate, and in general we wouldn’t expect that energy-momentum distributions

need to be continuous in space in the same way that we expect continuity in time.

Thus, the Lichnerowicz conditions are preferable to the O’Brien & Synge conditions

and are useful when the co-ordinates are the same on both sides of the junction so

that the Darmois conditions aren’t needed.
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2.2 Previous Work on Cosmological Black Holes

2.2.1 Swiss Cheese Black Holes

The most basic cosmological black holes are Swiss cheese (Einstein & Straus 1945)

black holes that are constructed by matching a Schwarzschild exterior onto a sur-

rounding dust-filled FRW universe. The Lemâıtre-Tolman-Bondi spacetimes (Lemâıtre

1933; Tolman 1934; Bondi 1947) describe more general spherically-symmetric space-

times, and could be used to match a Schwarzschild black hole onto FRW via an

underdense intermediate region that smoothly matches onto an FRW region, which

seems more realistic than a pure vacuum region that abruptly matches onto FRW.

In some sense, the Swiss cheese black holes are too perfect because the overdense

and underdense regions are balanced exactly such that the external FRW universe is

completely uninfluenced by them, which makes them uninteresting if one is interested

in the possible influence of inhomogeneities on the universe. Because the FRW region

of the universe is totally uninfluenced by the black holes, it does make it possible

to cut out many Swiss cheese holes and construct an exact model of a universe with

multiple black holes though, which would practically be impossible to achieve in a

spacetime where the influence of a black hole extends throughout the universe.

2.2.2 Kerr-Schild Cosmological Black Holes

Vaidya (1977) and Patel & Trivedi (1982) have obtained metrics corresponding to

Kerr and Kerr-Newman black holes superimposed with FRW universes by performing

Kerr-Schild transformations on closed FRW universes. Thakurta (1981) and Sultana

& Dyer (2005) have obtained metrics corresponding to Kerr and Schwarzschild black

holes superimposed with Einstein-de Sitter universes by performing conformal trans-

formations of black hole spacetimes (Thakurta doesn’t perform the transformation

on the Kerr-Schild form of the black hole spacetime as Sultana & Dyer do, however).

Since a black hole is a Kerr-Schild transformation of Minkowski space, and FRW

is a conformal transformation of Minkowski space, it is clear one can start with

Minkowski space, do a Kerr-Schild transformation to get a black hole, and then

perform a conformal transformation to get a black hole in an FRW background.
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Alternatively, one can start with Minkowski space, do a conformal transformation to

get an FRW universe, and then perform a Kerr-Schild transformation to get a black

hole in an FRW background. Thus, both approaches are similar, the only difference

being whether the Kerr-Schild part of the metric contains the conformal factor or

not. The same solution can be obtained either way if the scalar field H contains the

conformal factor when performing the Kerr-Schild transformation after the conformal

transformation.

Comparing the Vaidya-type solutions with the Thakurta-type solutions, the Kerr-

Schild part of the metric for the Vaidya-type black holes doesn’t contain the conformal

factor, so the Vaidya-type solutions differ in that the Kerr-Schild scalar field isn’t

time-dependent. Thus, in the Vaidya-type solutions, the component of the metric

corresponding to the black hole doesn’t participate in the expansion of the background

universe.

In a practical sense, a Vaidya-type solution would be a good representation of

a cosmological black hole that has collapsed out of an evolving mass overdensity in

the universe such that the black hole no longer participates in the expansion of the

universe (the drive toward finding Kerr solutions seems to in fact be motivated by the

expectation that overdensities will realistically collapse down into rotating systems).

However, the metric actually represents a black hole that has existed from the time

of the Big Bang, so it really represents a black hole that was born not participating

in the universe’s expansion, which seems perhaps unlikely.

A Thakurta-type cosmological black hole seems more reasonable in that the uni-

verse simply starts with an inhomogeneity such that the black hole exists at time

zero while it still participates in the expansion like the rest of the universe. However,

these black holes will be less interesting to people who want solutions they can apply

to black holes that have collapsed out of an initially homogeneous mass-energy dis-

tribution for the universe, and if Penrose’s Weyl Curvature Hypothesis (1979) were

true for some reason, then it wouldn’t be realistic to expect that black holes could

immediately exist from the moment of the Big Bang.

It should be noted that there is no interpretation of the energy-momentum tensor

for the rotating cases of cosmological black holes. With the exception of Sultana &

Dyer (2005), people have generally been content to speak on the basis of the metric
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looking like the superposition of a black hole with FRW, and have been somewhat

remiss about carefully interpreting the energy-momentum tensor, which is important

because a solution can’t be considered a valid solution of Einstein’s Field Equations

unless the energy-momentum tensor has been interpreted as physically corresponding

to something and the energy conditions are satisfied.

Interestingly, while it has been shown by Nayak, MacCallum, & Vishveshwara

(2000) that it is possible to match the metric for a Schwarzschild black hole onto the

surrounding cosmological Schwarzschild black hole spacetime of Vaidya at the sta-

tionary limit surface, Cox (2003) has shown that it isn’t possible to match the metric

for a Kerr black hole onto the surrounding cosmological Kerr black hole spacetime of

Vaidya, suggesting Vaidya’s cosmological Kerr metric isn’t truly Kerr-like. Thakurta

(1981) pointed out that the failure to obtain solutions for cosmological Kerr black

holes isn’t surprising considering there is no exact solution for a Kerr interior. Since

a non-isolated Kerr black hole would tend to swirl the contents of the surrounding

universe, then like a Kerr interior, it would require having a solution for an extended

rotating source, rather than just a rotating singularity. The failure to obtain solutions

for cosmological Kerr black holes and the failure to obtain a Kerr interior solution

seem to be related: what exactly the difficulty is remains undetermined.

While solutions don’t appear to exist for cosmological Kerr black holes, that still

leaves the problem of obtaining cosmological Reissner-Nordström black hole solutions

of the Thakurta-type. Also, while Sultana (2003) claimed to find a Schwarzschild solu-

tion for a black hole in a dust-filled Einstein-de Sitter universe, the metric considered

was actually the white hole spacetime (the Kerr-Schild null-vector field was reversed),

so the black hole case needs to be revisited. Solutions for radiation-dominated uni-

verses would also be of interest if one is interested in using these spacetimes as mod-

els of primordial black holes. Vaidya-type black holes in Einstein-de Sitter universes

haven’t yet been studied: the Vaidya-type black holes were all obtained in closed

FRW universes, which although the radius of curvature can be set to infinity to ob-

tain the metric for the flat case, the problem of interpreting the energy-momentum

tensor in that case needs to be considered. Thus, Chapter 3 of this thesis will focus

on interpretations of Kerr-Schild cosmological Schwarzschild and Reissner-Nordström

black holes that are either comoving with the universe’s expansion or not and exist
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in both radiation-dominated and matter-dominated Einstein-de Sitter universes.

2.2.3 Isotropic Cosmological Black Holes

The first cosmological black holes ever obtained were the Schwarzschild black holes of

McVittie (1933), which were eventually generalized to the Reissner-Nordström case

by Gao & Zhang (2004). McVittie’s spacetime is similar to Thakurta’s in that it

is essentially a conformal transformation of the Schwarzschild metric, but written in

isotropic form. The major difference from the Thakurta black holes is that the mass

is a function of time such that it gets scaled down by the scale factor as the universe

expands, so in that sense the McVittie black holes look more like the Vaidya black

holes, since the McVittie black holes don’t expand along with the universe either.

However, the McVittie spacetime is physically very different from that of Vaidya.

Whereas Vaidya’s solution yields an inhomogeneous energy density along with heat

conduction, the McVittie solution yields a homogeneous energy density and no heat

conduction.

While McVittie found that the pressure is isotropic, he neglected to consider

whether it is physically reasonable or not, as Gao & Zhang (2004) also neglected to

do in considering the charged case. Thus, new work analyzing where the McVittie

cosmological black holes satisfy the energy conditions will appear in Chapter 4 of this

thesis. Also, new isotropic cosmological black hole spacetimes will be given for the

case where the Schwarzschild mass isn’t scaled down by the scale factor, and which

yield different energy-momentum tensors than the Thakurta-type black holes.

2.3 Universes Containing

both Radiation and Matter

To appropriately model the universe, a two-fluid model containing both radiation and

matter is needed, as radiation governed the evolution for most of the first 100,000

years of the universe before it became matter dominated. In the radiation era the

scale factor should have evolved with cosmological time like tc
1/2, and in the matter

era the scale factor should be evolving with cosmological time like tc
2/3, assuming the
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universe can be approximated by an Einstein-de Sitter model.

Previously, two-fluid models that continuously vary between radiation domination

and matter domination have been studied. This has been achieved either by speci-

fying equations of state for the radiation and matter separately, and then solving an

ordinary differential equation to obtain how the scale factor for the universe evolves

with time, or by specifying a scale factor that changes its evolution with time and

seeing what sort of variation between radiation domination and matter domination

it physically corresponds to. As an example of the first approach, Jacobs (1967) ob-

tained a simple model of a universe that smoothly evolves from radiation domination

to matter domination by taking the energy density of the radiation to evolve with

the scale factor R as R−4 while the energy density of the matter evolves as R−3. This

realistically models the way the universe would have evolved from radiation domina-

tion to matter domination, although it also never allows for any interchange of energy

between radiation and matter whatsoever. As an example of the second approach,

Coley (1985) suggested a scale factor that evolves with time as

R(tc) = tc
1/2(1 + htc

1/(6b))b (2.22)

so that at small times it evolves like tc
1/2 and at later times like hbtc

2/3. Using

this scale factor in the Robertson-Walker metric and then interpreting the energy-

momentum tensor, depending on the value of b, Coley found that the rate of energy

transfer between radiation and matter varies and can change sign, so different models

of energy transfer between radiation and matter can be obtained by adjusting b.

In the case of cosmological black holes, the energy-momentum tensors become

complicated, and it would be difficult to deal with a two-fluid background universe;

yet at the same time, in order to devise solutions for primordial black holes, it ne-

cessitates having spacetimes that evolve from being radiation dominated to matter

dominated. Ideally, it would be possible to match radiation-dominated spacetimes

directly onto matter-dominated spacetimes across hypersurfaces of constant time,

rather than having to bridge from one domain to the other and having a brief period

of time when both components would simultaneously be significant. However, it is

unknown whether it is possible to match regions of spacetime that suddenly change

between radiation domination and matter domination, instantly changing from evolv-
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ing as tc
1/2 to tc

2/3. Apparently no one has attempted to do this, most likely because

homogeneous cosmologies are usually studied for which it is easily possible to use two-

fluid models, and people would be more interested in modelling the gradual change

from radiation domination to matter domination that the CMB suggests occurred in

the real universe. Thus, the conditions for matching radiation domination to mat-

ter domination will be studied in Chapter 5 in the aim of generating solutions for

primordial black holes that began in the radiation-dominated era.

2.4 The Backreaction of Inhomogeneities

on the Universe’s Expansion

As mentioned previously in Chapter 1, spatially averaging the energy-momentum

tensor and using the metric that corresponds to the equivalent homogeneous energy-

momentum tensor to represent the spatial average of the spacetime for the inho-

mogeneous mass-energy distribution isn’t strictly correct, since looking at Einstein’s

Equations

Gab = Rab −
1

2
Rgab = −κTab (2.23)

it wouldn’t be a spatially-averaged metric that corresponds to a spatially-averaged

energy-momentum tensor. Expecting an inhomogeneous universe to evolve according

to the spacetime for a homogeneous universe will generally yield a difference between

the two sides of Einstein’s Equations, which will appear to act like a cosmological

constant and accelerate or decelerate the universe’s expansion.

Several researchers have considered the problem of spatial averaging and the im-

pact inhomogeneities may have on the evolution of the universe. Bildhauer (1990)

used a pancake model, with structure formation occurring in only one dimension, and

found that while the expansion is slowed in the direction of structure formation, the

averaged scale factor actually grows faster. Further to Bildhauer (1990), Bildhauer &

Futamase (1991) discussed the age problem and how an accelerating universe could

account for the age discrepancy by making the true age of the universe older. Fu-

tamase (1996) used a different spatial averaging and also found that the universe

is accelerated by inhomogeneities. Bene, Czinner, & Vasúth (2003) also attempted
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to use spatial averaging to show that the universe’s acceleration may be caused by

the backreaction of inhomogeneities on the background universe. However, Russ et

al. (1997) corrected several errors of Bildhauer and Futamase and found that the

influence of the inhomogeneities is very small, making the age of the universe less

than 10−3 smaller than inferred (and smaller than expected implies inhomogeneities

actually lead to deceleration, not acceleration of the expansion). Nambu (2000, 2002)

found that with spatial averaging inhomogeneities can either accelerate or decelerate

the universe’s expansion. Kozaki & Nakao (2002) explored Lemâıtre-Tolman-Bondi

models that either contract onto a central singularity or expand to form a dense shell

of matter, and found that in both instances the expansion of the universe is decreased.

Since approximation techniques are used to perform spatial averaging, the effect

of the inhomogeneities appears to vary drastically depending on the methods and

order of approximation used. Also, that the acceleration found by Bildhauer and

Futamase only results when structure formation is allowed to occur in one dimen-

sion and that the expansion is actually slowed in the direction of structure formation

suggests the other dimensions wouldn’t be able to compensate by accelerating if struc-

ture formation occurred in all dimensions, so it seems unlikely their spatial averaging

could be used to explain the acceleration of the universe. Considering Raychaudhuri’s

equation, inhomogeneities would most simply be expected to introduce shear, which

would decrease the volume expansion, and this would be the result even in Newtonian

gravity (since tidal forces would still introduce shear and diminish the volume). The

spatial averaging schemes all assume no vorticity, so it wouldn’t be expected that the

volume expansion could increase, unless the relativistic effect of spatial averaging is

more significant than the non-relativistic effect of shear, which seems unlikely.

In Chapter 6 the influence of cosmological black holes on the expansion of the

universe will be evaluated. Since Weyl curvature represents the relativistic equivalent

of tidal forces, calculating the Weyl curvature should reveal whether cosmological

black holes would tend to shear the expansion of the universe. The volume expansion

will also be calculated, and finally the velocity field, shear, and acceleration will

be determined to see whether shear exists and slows the volume expansion of the

universe.
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2.5 Computer Algebra

The calculation of the metric connections, Einstein’s Equations, the Weyl curvature,

etc. isn’t a trivial task. These calculations will be performed in this thesis using the

REDUCE 3.5 computer algebra program (Hearn 1993) along with the Redten 4.1e

package (Harper & Dyer 1994) for calculating relativistic quantities. Without the use

of computer algebra, many of these quantities would take too long to be humanly

possible to determine, especially without error.

It should be noted that while advances in computing have led many into the field

of numerical relativity, those same advances have also made it possible to calculate

more complicated exact solutions using computer algebra. Many researchers have

abandoned the search for exact solutions, believing that no exact solutions remain

to be found, or at least no solutions bearing any resemblance to physical reality.

However, this belief is fictitious, as computer algebra makes it possible to determine

exact solutions for more complicated scenarios, which need not be physically bizarre.



Chapter 3

Kerr-Schild Cosmological

Black Holes

In this chapter interpretations will be provided for new Kerr-Schild cosmological

Schwarzschild and Reissner-Nordström black holes (and white holes) that are either

comoving with the universe’s expansion or not and that exist in both radiation-

dominated and matter-dominated Einstein-de Sitter universes. Previously, the Schwarzschild

white hole comoving with the expansion of a matter-dominated universe was inter-

preted by Sultana (2003). All of the other solutions presented here are new.

3.1 Radiation-Dominated Universes

A radiation-dominated Einstein-de Sitter universe

ds2 = t2
(

−dt2 + dr2 + r2(dθ2 + sin2θ dφ2)
)

(3.1)

(with scale factor R = Hot expressed as R = t for simplicity) has non-zero Einstein

tensor components

G0
0 =

3

t4

G1
1 = G2

2 = G3
3 = − 1

t4
, (3.2)

which represent the energy density and the negative of the pressure of the radiation

as both fall off with R4 = t4 (where the cosmological time tc goes as t2, consistent

with R going as tc
1/2).

33
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3.1.1 Schwarzschild Black Holes

A time-dependent Kerr-Schild transformation (Equation 2.7) of the Einstein-de Sitter

universe (Equation 2.5)

ds2 = t2
(

−dt2 + dr2 + r2(dθ2 + sin2θ dφ2) +
2m

r
(dt ± dr)2

)

(3.3)

yields an Einstein-de Sitter-like universe with a Schwarzschild-like black hole (or white

hole, depending on the null vector field). Since this metric is equivalent to a conformal

transformation of a Schwarzschild black hole, the causal structure is preserved and the

event horizon remains at r = 2m, but since the r co-ordinate gets scaled by the scale

factor, this means the black hole expands with the universe. In co-ordinates comoving

with the expansion, the effective mass of the black hole will remain constant, while

in non-comoving co-ordinates, the effective mass of the black hole will appear to

increase. The transformed metric has non-zero Einstein tensor components

G0
0 =

3

t4
∓ 4m

r2t3
+

6m

rt4

G0
1 =

2m

r2t3

G1
0 = − 2m

r2t3
∓ 8m

rt4

G1
1 = − 1

t4
∓ 8m

r2t3
− 2m

rt4

G2
2 = G3

3 = − 1

t4
− 2m

rt4
. (3.4)

Searching for a solution that consists of a perfect fluid component and a heat-

conducting component, the Einstein tensor will be given by

Ga
b = −κT a

b = −κ ((µ + p)uaub + pδa
b + qaub + uaqb) , (3.5)

where µ is the energy density, p is the pressure, and qa is the heat flow vector.

Since the solution should be spherically symmetric, then u2 = u3 = 0, and since

G0
2 = G2

0 = G0
3 = G3

0 = 0, then there should be no q2, q2, q3, or q3 heat conduction

components, so that G2
2 = G3

3 represents only pressure. Since u0u1 = u1u0 = 0, G1
0

and G0
1 represent only heat conduction, so the Einstein tensor should correspond to

G0
0 = −κ

(

(µ + p)u0u0 + p + q0u0 + u0q0

)
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G0
1 = −κ(q0u1 + u0q1)

G1
0 = −κ(q1u0 + u1q0)

G1
1 = −κ

(

(µ + p)u1u1 + p + q1u1 + u1q1

)

G2
2 = G3

3 = −κp. (3.6)

Since uaqa = qaua = 0 for heat conduction and uaua = −1, taking the traces of both

of the above forms of the Einstein tensor and comparing them yields

Ga
a = κ(µ − 3p) = ∓12m

r2t3
, (3.7)

which gives the equation of state

p =
1

3
µ ± 4m

κr2t3
. (3.8)

Since G2
2 = G3

3 = −κp,

p =
1

κt4

(

1 +
2m

r

)

, (3.9)

so the pressure is in fact always positive. Knowing the equation of state and expression

for the pressure, then

µ = 3p ∓ 12m

κr2t3
=

3

κt4

(

1 +
2m

r
∓ 4mt

r2

)

, (3.10)

so in the limit as r goes to infinity (or t goes to zero), the energy density is simply

three times the pressure, as expected for a radiation-dominated universe.

The energy density will only be positive everywhere in the white hole case. For

the black hole, the energy density will become negative and the solution will not be

valid for

t >
r

2

(

1 +
r

2m

)

. (3.11)

Since an ever-increasing region of spacetime becomes invalid at larger times, it is

important to know whether any exterior regions causally related to interior regions

are actually physical; otherwise, the solution would not be very meaningful if the

universe were only able to have a black hole in it only so long as the universe were

uninfluenced by it. For the critical case where the energy density is zero

dt =
(

1

2
+

r

2m

)

dr. (3.12)



Chapter 3. Kerr-Schild Cosmological Black Holes 36

The critical curve (independent of θ and φ) will be null when

0 = g00dt2 + 2g01dtdr + g11dr2 (3.13)

0 = g00

(

1

2
+

r

2m

)2

dr2 + 2g01

(

1

2
+

r

2m

)

dr2 + g11dr2

0 =
(

−1 +
2m

r

)(

1

2
+

r

2m

)2

+
4m

r

(

1

2
+

r

2m

)

+
(

1 +
2m

r

)

0 =
15

4
+

9m

2r
− r2

4m2
.

The only positive zero is for

r

2m
=

√
33 + 3

4
.
= 2.186. (3.14)

Outside of r
.
= 4.37m, the critical curve will be timelike, so it becomes possible for

inner regions with positive energy density to be causally related to outer regions with

positive energy density.

Since the pressure isn’t just one third of the energy density, the negative con-

tribution to the energy density term will cause the pressure to become greater in

magnitude than the energy density and violate the dominant energy condition even

before the energy density becomes negative. Solving for when the pressure becomes

greater than the energy density as above (Equation 3.13), this occurs within

r

2m
= (

√
3 + 1)

.
= 2.732. (3.15)

Thus, outside this radius, it becomes possible for inner regions of physical mass-energy

to be causally related to outer regions with physical mass-energy, so the solution does

have regions of physical interest.

A time-independent Kerr-Schild transformation

ds2 = t2
(

−dt2 + dr2 + r2(dθ2 + sin2θ dφ2)
)

+
2m

r
(dt ± dr)2 (3.16)

yields an Einstein-de Sitter-like universe with a Schwarzschild-like black hole that

doesn’t expand with the rest of the universe.

Vaidya (1977) claimed an event horizon existed when g11 = 0 for the closed-FRW

versions of these black holes, which would suggest the existence of an event horizon

at r = 2mt−2. However, the radial null curves satisfy

dr

dt
=

t2 − 2m/r

t2 + 2m/r
, (3.17)
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which suggests that while photons are instantaneously motionless in r at r = 2m/t2,

the radius of the surface where dr/dt = 0 is shrinking to smaller r with time, so that

outgoing photons should only momentarily be held at fixed r and not remain trapped

as r = 2m/t2 shrinks inward with time. By calculating the normal vector to the

surface given by r = 2m/t2, it can be verified that it is null only for 4m = t3, which

can not remain null for all time. Thus, while this surface implies the inhomogeneity

appears to decrease in mass and shrink in radius in time (in both comoving co-

ordinates and an observer’s non-comoving co-ordinates), it does not appear to be an

event horizon. Thus, the definition g11 = 0 for an event horizon does not appear to

be adequate when the radius is not constant with time, so it is unclear whether this

spacetime and the Vaidya spacetime actually represent black holes.

The transformed metric has non-zero Einstein tensor components

G0
0 =

3

t4
∓ 4m

r2t5
+

2m

rt6

G0
1 = − 2m

r2t5

G1
0 =

2m

r2t5
∓ 8m

rt6

G1
1 = − 1

t4
− 6m

rt6

G2
2 = G3

3 = − 1

t4
− 4m

rt6
. (3.18)

Looking for a solution that consists of a perfect fluid plus heat conduction (Equa-

tion 3.5), then once again, taking the trace of the Einstein tensor reveals

Ga
a = κ(µ − 3p) = ∓ 4m

r2t5
− 12m

rt6
, (3.19)

which gives the equation of state

p =
1

3
µ ± 4m

3κr2t5
+

4m

κrt6
. (3.20)

Since G2
2 = G3

3 = −κp,

p =
1

κt4

(

1 +
4m

rt2

)

, (3.21)

so the pressure is always positive. Knowing the equation of state and expression for

the pressure, then

µ = 3p ∓ 4m

κr2t5
− 12m

κrt6
=

3

κt4

(

1 +
4m

rt2

)

∓ 4m

κr2t5
− 12m

κrt6
=

1

κt4

(

3 ∓ 4m

r2t

)

, (3.22)
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so in the limit as r goes to infinity (or t goes to infinity), the energy density is

simply three times the pressure, as expected for a radiation-dominated universe. In

the white hole case, the energy density is positive everywhere. For the black hole

case, the energy density will become negative and the weak energy condition will be

violated for

t <
4m

3r2
, (3.23)

which unlike the case of the expanding black hole is less of a problem at large times,

but creates problems in the past for ever-increasing values of r as t goes to zero

and the Big Bang is approached. As before with the expanding black holes, the

requirement that the pressure be smaller in magnitude than the energy density will

cause the dominant energy condition to be violated even before the energy density

goes negative.

3.1.2 Reissner-Nordström Black Holes

The Reissner-Nordström metric

ds2 = −dt2 + dr2 + r2(dθ2 + sin2θ dφ2) +

(

2m

r
− e2

r2

)

(dt ± dr)2 (3.24)

has non-zero Einstein tensor components

G0
0 = G1

1 = −G2
2 = −G3

3 =
e2

r4
, (3.25)

which stem from the electromagnetic field tensor F ab (which just contains radial

electric e/r2 terms).

A time-dependent Kerr-Schild transformation of the Einstein-de Sitter universe

ds2 = t2
(

−dt2 + dr2 + r2(dθ2 + sin2θ dφ2) +

(

2m

r
− e2

r2

)

(dt ± dr)2

)

(3.26)

yields an Einstein-de Sitter-like universe with a Reissner-Nordström-like black hole

that expands with the rest of the universe. The transformed metric has non-zero

Einstein tensor components

G0
0 =

3

t4
∓ 4m

r2t3
+

6m

rt4
+

e2

r4t2
− 3e2

r2t4
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G0
1 =

2m

r2t3
− 2e2

r3t3

G1
0 = − 2m

r2t3
∓ 8m

rt4
+

2e2

r3t3
± 4e2

r2t4

G1
1 = − 1

t4
∓ 8m

r2t3
− 2m

rt4
+

e2

r4t2
± 4e2

r3t3
+

e2

r2t4

G2
2 = G3

3 = − 1

t4
− 2m

rt4
− e2

r4t2
∓ 2e2

r3t3
+

e2

r2t4
. (3.27)

Searching for a solution that consists of a perfect fluid component, a heat-conducting

component, and an electromagnetic field component, the Einstein tensor will be given

by

Ga
b = −κ

(

(µ + p)uaub + pδa
b + qaub + uaqb +

1

4π

(

F amFmb +
1

4
δa
b FmnF mn

))

.

(3.28)

Taking the trace of the electromagnetic field component yields

1

4π

(

F amFma +
1

4
δa
aFmnF mn

)

=
1

4π
(−F maFma + FmnF mn) = 0 (3.29)

since the electromagnetic tensor is always antisymmetric. Thus, taking the trace of

the Einstein tensor yields

Ga
a = κ(µ − 3p) = ∓12m

r2t3
. (3.30)

Looking at G2
2 = G3

3, the e2/(r4t2) terms are apparently the time-dependent version

of the electric terms that appear in the source for the standard Reissner-Nordström

spacetime, while the 1/t4, 2m/(rt4), and e2/(r2t4) terms stand out as being −1/3 of

the corresponding terms in G0
0, suggesting these are pressure terms since normally

G0
0 = κµ and G1

1 = G2
2 = G3

3 = −κp = −κµ/3 for a radiation-dominated universe.

Since it isn’t possible to modify the electromagnetic tensor to generate the e2/(r3t3)

terms, and since the term in G1
1 cancels the terms in G2

2 = G3
3, these terms appear to

modify the average pressure in the radial and angular directions such that the average

pressure remains unchanged. Thus, the average pressure and energy density should

be given by

p =
1

κt4

(

1 +
2m

r
− e2

r2

)

=
1

3
µ ± 4m

κr2t3
(3.31)
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and

µ = 3p ∓ 12m

κr2t3
=

3

κt4

(

1 +
2m

r
− e2

r2
∓ 4mt

r2

)

, (3.32)

analogous to the Schwarzschild case (cf. Equations 3.9 and 3.10). The electric field

can now make the pressure and energy density go negative; however, the highest

charge-to-mass ratio that exists is that of an electron, for which the magnitude of

the electric term is only greater than that of the mass term for r < 1.41 x 10−15 m,

which is also the scale where the Strong force should come into play (and perhaps

also quantum mechanics), so the magnitude of the electric term should always be

less than that of the mass term except at scales where the physics isn’t expected to

be accurately represented in the first place. As with the uncharged black hole, the

negative term in the expression for the energy density can cause the energy density

to go negative and violate the weak energy condition, as well as allow the pressure

to become greater in magnitude than the energy density and violate the dominant

energy condition.

A time-independent Kerr-Schild transformation

ds2 = t2
(

−dt2 + dr2 + r2(dθ2 + sin2θ dφ2)
)

+

(

2m

r
− e2

r2

)

(dt ± dr)2 (3.33)

yields an Einstein-de Sitter-like universe with a Reissner-Nordström-like black hole

that doesn’t expand with the rest of the universe (once again, it should be noted

that since the black hole is shrinking, there may not be a true event horizon, so it

might not actually be a black hole in the ordinary sense). The transformed metric

has non-zero Einstein tensor components

G0
0 =

3

t4
∓ 4m

r2t5
+

2m

rt6
+

e2

r4t4
− e2

r2t6

G0
1 = − 2m

r2t5

G1
0 =

2m

r2t5
∓ 8m

rt6
± 4e2

r2t6

G1
1 = − 1

t4
− 6m

rt6
+

e2

r4t4
+

3e2

r2t6

G2
2 = G3

3 = − 1

t4
− 4m

rt6
− e2

r4t4
+

2e2

r2t6
. (3.34)
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Once again, taking the trace of the Einstein tensor (Equation 3.28) reveals

Ga
a = κ(µ − 3p) = ∓ 4m

r2t5
− 12m

rt6
+

6e2

r2t6
, (3.35)

which gives the pressure and energy density as

p =
1

κt4

(

1 +
4m

rt2
− 2e2

r2t2

)

=
1

3
µ ± 4m

3κr2t5
+

4m

κrt6
− 2e2

κr2t6
(3.36)

and

µ = 3p ∓ 4m

κr2t5
− 12m

κrt6
+

6e2

κr2t6
=

1

κt4

(

3 ∓ 4m

r2t

)

, (3.37)

analogous to the corresponding Schwarzschild case (cf. Equations 3.21 and 3.22).

Interestingly, the charge decreases the pressure such that the energy density is un-

modified by the charge.

3.2 Matter-Dominated Universes

A matter-dominated Einstein-de Sitter universe

ds2 = t4
(

−dt2 + dr2 + r2(dθ2 + sin2θ dφ2)
)

(3.38)

(with scale factor R = (Hot/2)2 expressed as R = t2 for simplicity) has one non-zero

Einstein tensor component

G0
0 =

12

t6
, (3.39)

which represents the energy density as it falls off with R3 = t6 (where the cosmological

time tc goes as t3, consistent with R going as tc
2/3).

3.2.1 Schwarzschild Black Holes

A time-dependent Kerr-Schild transformation of the Einstein-de Sitter universe

ds2 = t4
(

−dt2 + dr2 + r2(dθ2 + sin2θ dφ2) +
2m

r
(dt ± dr)2

)

(3.40)

yields an Einstein-de Sitter-like universe with a Schwarzschild-like feature that ex-

pands with the rest of the universe. The white hole case was previously interpreted

by Sultana (2003). The transformed metric has non-zero Einstein tensor components

G0
0 =

12

t6
∓ 8m

r2t5
+

24m

rt6
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G0
1 =

4m

r2t5

G1
0 = − 4m

r2t5
∓ 24m

rt6

G1
1 = ∓16m

r2t5
. (3.41)

Looking for a solution that consists of a pressureless dust (since G2
2 = G3

3 = 0 suggests

p = 0, as would be expected for a matter-dominated universe) with heat conduction,

analogous to the radiation-dominated case (Equation 3.5), then taking the trace of

the Einstein tensor yields

Ga
a = κµ =

12

t6
∓ 24m

r2t5
+

24m

rt6
. (3.42)

The energy density is

µ =
12

κt6

(

1 +
2m

r
∓ 2mt

r2

)

. (3.43)

In the limit as r goes to infinity, the energy density becomes identical to that of the

plain Einstein-de Sitter universe. For the white hole case, the energy density will be

positive everywhere (as previously shown by Sultana 2003). For the black hole case,

the energy density will become negative and violate the weak energy condition, so

the solution will be invalid for

t > r +
r2

2m
. (3.44)

Performing the calculation as in the radiation-dominated case (Equation 3.13), the

critical curve for zero energy density is null when

0 = 8 +
8m

r
− r2

m2
, (3.45)

which has a positive zero only for

r

2m
=

√
5 + 1

2
.
= 1.618 (3.46)

(which interestingly is the Golden Ratio). Outside of r
.
= 3.24m, the critical curve

will be timelike, so it becomes possible for inner regions with physical energy density

to be causally related to outer regions with physical energy density.

A time-independent Kerr-Schild transformation

ds2 = t4
(

−dt2 + dr2 + r2(dθ2 + sin2θ dφ2)
)

+
2m

r
(dt ± dr)2 (3.47)
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yields an Einstein-de Sitter-like universe with a Schwarzschild-like black hole that

doesn’t expand with the rest of the universe. The transformed metric has non-zero

Einstein tensor components

G0
0 =

12

t6
∓ 8m

r2t9
+

8m

rt10

G0
1 = − 4m

r2t9

G1
0 =

4m

r2t9
∓ 24m

rt10

G1
1 = −16m

rt10

G2
2 = G3

3 = −12m

rt10
. (3.48)

Looking for a perfect fluid (since G2
2 = G3

3 6= 0 suggests the pressure is only asymp-

totically zero as r goes to infinity) plus heat conduction source (Equation 3.5), then

once again, taking the trace of the Einstein tensor yields

Ga
a = κ(µ − 3p) =

12

t6
∓ 8m

r2t9
− 32m

rt10
. (3.49)

Looking at G2
2 = G3

3, assuming the m/(rt10) terms represent a modification to the

normally zero pressure of a matter-dominated universe, then the pressure and energy

density will be given by

p =
12m

κrt10
=

1

3
µ − 4

κt6
± 8m

3κr2t9
+

32m

3κrt10
(3.50)

and

µ = 3p +
12

κt6
∓ 8m

κr2t9
− 32m

κrt10
=

4

κt6

(

3 +
m

rt4
∓ 2m

r2t3

)

. (3.51)

In the limit as r goes to infinity (or t goes to infinity) the pressure and energy density

approach that of the plain Einstein-de Sitter universe. In the black hole case, the

energy density will become negative and violate the weak energy condition for

t >
r

2
+

3r2t4

2m
, (3.52)

which is problematic at small values of r, but unlike the radiation-dominated case

(cf. Equation 3.23) doesn’t extend to all r as t goes to zero and the Big Bang is

approached. Since the pressure isn’t zero, the dominant energy condition will also be

violated even before the energy density becomes negative.
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3.2.2 Reissner-Nordström Black Holes

A time-dependent Kerr-Schild transformation of the Einstein-de Sitter universe

ds2 = t4
(

−dt2 + dr2 + r2(dθ2 + sin2θ dφ2) +

(

2m

r
− e2

r2

)

(dt ± dr)2

)

(3.53)

yields an Einstein-de Sitter-like universe with a Reissner-Nordström-like black hole

that expands with the rest of the universe. The transformed metric has non-zero

Einstein tensor components

G0
0 =

12

t6
∓ 8m

r2t5
+

24m

rt6
+

e2

r4t4
− 12e2

r2t6

G0
1 =

4m

r2t5
− 4e2

r3t5

G1
0 = − 4m

r2t5
∓ 24m

rt6
± 12e2

r2t6
+

4e2

r3t5

G1
1 = ∓16m

r2t5
+

e2

r4t4
± 8e2

r3t5

G2
2 = G3

3 = − e2

r4t4
∓ 4e2

r3t5
. (3.54)

Looking for a solution that consists of a dust with heat conduction plus electric field,

analogous to the radiation-dominated case (Equation 3.28) taking the trace of the

Einstein tensor yields

Ga
a = κµ =

12

t6
∓ 24m

r2t5
+

24m

rt6
− 12e2

r2t6
. (3.55)

Looking at G2
2 = G3

3, the e2/(r4t4) terms are apparently the time-dependent versions

of the electric terms that appear in the source for the standard Reissner-Nordström

spacetime, while the e2/(r3t5) terms cancel the corresponding term in G1
1 and appear

to modify the average pressure from zero in the radial and angular directions (such

that the average pressure remains zero). Thus, the average pressure is zero and the

energy density is given by

µ =
12

κt6

(

1 +
2m

r
− e2

r2
∓ 2mt

r2

)

, (3.56)
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analogous to the corresponding Schwarzschild case (cf. Equation 3.43). As discussed

previously for Reissner-Nordström black holes in radiation-dominated Einstein-de Sit-

ter universes, the mass term should dominate the electric term to prevent the electric

term from making the energy density become negative.

A time-independent Kerr-Schild transformation

ds2 = t4
(

−dt2 + dr2 + r2(dθ2 + sin2θ dφ2)
)

+

(

2m

r
− e2

r2

)

(dt ± dr)2 (3.57)

yields an Einstein-de Sitter-like universe with a Reissner-Nordström-like black hole

that doesn’t expand with the rest of the universe. The transformed metric has non-

zero Einstein tensor components

G0
0 =

12

t6
∓ 8m

r2t9
+

8m

rt10
+

e2

r4t8
− 4e2

r2t10

G0
1 = − 4m

r2t9

G1
0 =

4m

r2t9
∓ 24m

rt10
± 12e2

r2t10

G1
1 = −16m

rt10
+

e2

r4t8
+

8e2

r2t10

G2
2 = G3

3 = −12m

rt10
− e2

r4t8
+

6e2

r2t10
. (3.58)

Looking for a perfect fluid (since G2
2 = G3

3 6= 0 suggests that the black hole modifies

the pressure from zero except asymptotically as r goes to infinity) with heat conduc-

tion plus electric field source (Equation 3.28), taking the trace of the Einstein tensor

yields

Ga
a = κ(µ − 3p) =

12

t6
∓ 8m

r2t9
− 32m

rt10
+

16e2

r2t10
. (3.59)

Looking at G2
2 = G3

3 as before, the e2/(r4t8) terms are apparently the time-dependent

versions of the electric terms that appear in the source for the standard Reissner-

Nordström spacetime, so assuming the m/(rt10) and e2/(r2t10) terms represent a

modification to the normally zero pressure of a matter-dominated universe, then the

pressure and energy density will be given by

p =
6

κt10

(

2m

r
− e2

r2

)

=
1

3
µ − 4

κt6
± 8m

3κr2t9
+

32m

3κrt10
− 16e2

3κr2t10
(3.60)
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and

µ = 3p +
12

κt6
∓ 8m

κr2t9
− 32m

κrt10
+

16e2

κr2t10
=

2

κt6

(

6 +
2m

rt4
− e2

r2t4
∓ 4m

r2t3

)

, (3.61)

analogous to the corresponding Schwarzschild case (cf. Equations 3.50 and 3.51).



Chapter 4

Isotropic Cosmological Black Holes

In this chapter interpretations will be provided for new isotropic cosmological black

hole solutions that will be obtained by performing conformal transformations on

isotropic black hole spacetimes. The McVittie cosmological black hole spacetimes

will also be reinterpreted to determine where they are physical to see where they are

valid solutions of the Field Equations, since this does not appear to have been done

previously. The Schwarzschild cases will be examined in the first section, and the

Reissner-Nordström cases will be examined in the second section.

4.1 Schwarzschild Black Holes

4.1.1 Conformal Transformation

of an Isotropic Black Hole

In this section, a metric analogous to the Thakurta (1981) metric or Sultana (2003)

metric (e.g. Equation 3.40) will be obtained by starting with a Schwarzschild black

hole in isotropic co-ordinates prior to performing the conformal transformation.

A Schwarzschild black hole

ds2 = −
(

1 − 2m

r̄

)

dt2 +
(

1 − 2m

r̄

)−1

dr̄2 + r̄2(dθ2 + sin2θ dφ2) (4.1)

can be written in isotropic co-ordinates

ds2 = −
(

1 − m
2r

1 + m
2r

)2

dt2 +
(

1 +
m

2r

)4

(dr2 + r2(dθ2 + sin2θ dφ2)) (4.2)

47
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via a transformation of the areal co-ordinate r̄

r̄ = r
(

1 +
m

2r

)2

, (4.3)

such that the event horizon r̄ = 2m is at r = m/2 in the new radial co-ordinate.

Performing a conformal transformation to obtain a cosmological black hole

ds2 = [R(t)]2



−
(

1 − m
2r

1 + m
2r

)2

dt2 +
(

1 +
m

2r

)4 (

dr2 + r2(dθ2 + sin2θ dφ2)
)



 (4.4)

and then making the transformation dtc = R(t)dt, the following metric is obtained,

which in the limit as r goes to infinity looks like the standard form of the Robertson-

Walker metric for an Einstein-de Sitter universe,

ds2 = −
(

1 − m
2r

1 + m
2r

)2

dtc
2 + [R(tc)]

2
(

1 +
m

2r

)4 (

dr2 + r2(dθ2 + sin2θ dφ2)
)

. (4.5)

The event horizon remains at r = m/2, since the conformal transformation pre-

serves the causal structure of the original isotropic black hole spacetime. The ex-

pansion of the universe scales the r dimension such that objects comoving with the

expansion (remaining at fixed r) have their spatial separation increase with R, so the

event horizon of the black hole grows with the expansion of the universe such that it

appears to remain fixed in size in co-ordinates comoving with the universe’s expan-

sion. Thus, this metric appears to represent a cosmological black hole that expands

with the universe, with the effective mass of the black hole appearing to remain the

same in comoving co-ordinates or grow according to the expansion of the universe in

non-comoving co-ordinates.

This metric has non-zero Einstein tensor components

G0
0 =

3(m + 2r)2Ṙ2

(m − 2r)2R2

G0
1 = −8m(m + 2r)Ṙ

(m − 2r)3R

G1
0 =

128mr4Ṙ

(m + 2r)5(m − 2r)R3

G1
1 = G2

2 = G3
3 =

(

2 R̈
R

+ Ṙ2

R2

)

(m + 2r)2

(m − 2r)2
. (4.6)
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Looking for a solution that consists of a perfect fluid plus a heat conduction compo-

nent, the Einstein tensor (Equation 3.5) should correspond to

G0
0 = −κ

(

(µ + p)u0u0 + p + q0u0 + u0q0

)

G0
1 = −κ(q0u1 + u0q1)

G1
0 = −κ(q1u0 + u1q0)

G1
1 = −κ

(

(µ + p)u1u1 + p + q1u1 + u1q1

)

G2
2 = G3

3 = −κp. (4.7)

Since uaqa = qaua = 0 for heat conduction and uaua = −1, taking the traces of both

of the above Einstein tensors and comparing them yields

Ga
a = κ(µ − 3p) =

(

6 R̈
R

+ 6 Ṙ2

R2

)

(m + 2r)2

(m − 2r)2
, (4.8)

which gives the equation of state

p =
1

3
µ −

(

2 R̈
R

+ 2 Ṙ2

R2

)

(m + 2r)2

κ(m − 2r)2
. (4.9)

Since G2
2 = G3

3 = −κp,

p = −
(

2 R̈
R

+ Ṙ2

R2

)

(m + 2r)2

κ(m − 2r)2
. (4.10)

Thus, the energy density is given by

µ = 3p +

(

6 R̈
R

+ 6 Ṙ2

R2

)

(m + 2r)2

κ(m − 2r)2
=

(

3 Ṙ2

R2

)

(m + 2r)2

κ(m − 2r)2
. (4.11)

For a radiation-dominated universe, R goes as tc
1/2, which yields

µ =
3(m + 2r)2

κ4tc2(m − 2r)2
(4.12)

and

p =
(m + 2r)2

κ4tc
2(m − 2r)2

. (4.13)

Thus, the energy density is always positive and the pressure is one third of the energy

density everywhere, just as it is for a radiation-dominated FRW universe, and the
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energy conditions are satisfied everywhere. In the limit as r goes to zero or r goes to

infinity, the energy density and pressure become that of the standard FRW universe.

As the event horizon r = m/2 is approached from either side, the energy density and

pressure both approach infinity.

For a matter-dominated universe, R goes as tc
2/3, which yields

µ =
4(m + 2r)2

κ3tc
2(m − 2r)2

(4.14)

and p = 0. Thus, the energy density is positive everywhere, becoming infinite at

the event horizon and approaching the energy density of a matter-dominated FRW

universe as r goes to zero or infinity, just as in the radiation-dominated case. The

pressure is zero everywhere, just as it is for a matter-dominated FRW universe. Since

the energy density is always positive and the pressure is zero, the energy conditions

are satisfied everywhere.

4.1.2 McVittie’s Point Mass in an Expanding Universe

The metric derived in the previous section is similar to McVittie’s (1933) metric,

except that McVittie’s metric (in the case of an asymptotically flat universe) is

ds2 = −




1 − m/R
2r

1 + m/R
2r





2

dtc
2 + [R(tc)]

2

(

1 +
m/R

2r

)4
(

dr2 + r2(dθ2 + sin2θ dφ2)
)

.

(4.15)

so that the mass m/R varies and is scaled down by the expansion of the universe. In

co-ordinates comoving with the universe’s expansion the surface r = m/(2R) shrinks

according to the scale factor as the universe expands, but since the scale factor is

scaling the r dimension according to R, then the net effect is that the spatial extent

of this surface in non-comoving co-ordinates stays constant (rR = m/2).

It should be noted that the radial null curves satisfy

R
dr

dtc
= ± 1 − m/(2rR)

(1 + m/(2rR))3
, (4.16)

which suggests that while photons remain instantaneously motionless in r at rR =

m/2 (since dr/dtc = 0 there), they do not remain motionless in rR since it is not the

case that d(rR)/dtc = 0 there. It appears that as the radius r = m/(2R) decreases
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with time, the photons will only momentarily be held at fixed r and will eventually

be able to move outward as the surface r = m/(2R) moves inward. Thus, it is not

clear that the surface rR = m/2 acts as a event horizon, so as with the Vaidya-type

black holes the McVittie spacetime may not actually be a black hole, despite its

resemblance to one.

Looking at the Einstein tensor as in the previous section, the only non-zero com-

ponents are

G0
0 =

3Ṙ2

R2

G1
1 = G2

2 = G3
3 =

2(2rR + m) R̈
R

+ (2rR − 5m) Ṙ2

R2

2rR − m
, (4.17)

which yield the energy density and pressure as

µ =
3Ṙ2

κR2
(4.18)

and

p = −2(2rR + m) R̈
R

+ (2rR − 5m) Ṙ2

R2

κ(2rR − m)
(4.19)

with no heat conduction. Thus, the energy density is spatially homogeneous, taking

on the usual FRW value, while the pressure is infinite at r = m/(2R) and asymptot-

ically approaches the usual FRW pressure only as r goes to infinity.

In the case of a radiation-dominated background universe, the energy density and

pressure will be given by

µ =
3

4κtc
2 (4.20)

and

p =
2rR + 7m

4κtc
2(2rR − m)

. (4.21)

Thus, it is apparent that inside r = m/(2R), the pressure is negative, ranging from

p = − 7

4κtc
2

(4.22)

as r approaches zero, to negative infinity as r approaches m/(2R) from within. Out-

side r = m/(2R), the pressure falls off from positive infinity at r = m/(2R) to

p =
1

4κtc
2 (4.23)
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as r approaches infinity. Since the pressure is negative and greater in magnitude

than the energy density everywhere inside r = m/(2R), it violates all of the energy

conditions there. Outside r = m/(2R), the magnitude of the pressure is greater than

that of the energy density for r < 5m/(2R), so the dominant energy condition is also

violated in that region.

In the case of a matter-dominated background universe, the energy density and

pressure will be given by

µ =
4

3κtc
2 (4.24)

and

p =
8m

3κtc
2(2rR − m)

. (4.25)

Thus, it is apparent that inside r = m/(2R), the pressure is negative, ranging from

p = − 8

3κtc
2 (4.26)

as r approaches zero, to negative infinity as r approaches m/(2R) from within. Out-

side r = m/(2R), the pressure falls off from positive infinity at r = m/(2R), falling

off as 1/r for large r and approaching zero as r goes to infinity. Since the pres-

sure is negative and greater in magnitude than the energy density everywhere inside

r = m/(2R), it violates all of the energy conditions there. Outside r = m/(2R), the

magnitude of the pressure is greater than that of the energy density for r < 3m/(2R),

so the dominant energy condition is also violated in that region.

4.2 Reissner-Nordström Black Holes

4.2.1 Conformal Transformation

of an Isotropic Reissner-Nordström Black Hole

The metric for a Reissner-Nordström black hole in isotropic co-ordinates, originally

given by Prasanna (1968), is

ds2 = −







1 − m2

4r2 + e2

4r2

(

1 + m
2r

)2 − e2

4r2







2

dt2 +

(

(

1 +
m

2r

)2

− e2

4r2

)2

(dr2 + r2(dθ2 + sin2θ dφ2)),

(4.27)
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so performing a conformal transformation and then making the transformation dtc =

R(t)dt yields

ds2 = −







1 − m2

4r2 + e2

4r2

(

1 + m
2r

)2 − e2

4r2







2

dtc
2+

[R(tc)]
2

(

(

1 +
m

2r

)2

− e2

4r2

)2

(dr2 +r2(dθ2 +sin2θ dφ2)) (4.28)

for a charged black hole that expands along with an asymptotically Einstein-de Sitter

universe.

This metric has non-zero Einstein tensor components

G0
0 =

3(e + m + 2r)2(e − m − 2r)2

(e2 − m2 + 4r2)2

Ṙ2

R2
+

256e2r4

(e + m + 2r)4(e − m − 2r)4R2

G0
1 = −8(e2(m + 4r) − m(m + 2r)2)(e + m + 2r)(e − m − 2r)

(e2 − m2 + 4r2)3

Ṙ

R

G1
0 =

128r4(e2(m + 4r) − m(m + 2r)2)

(e2 − m2 + 4r2)2(e + m + 2r)3(e − m − 2r)3

Ṙ

R3

G1
1 =

(e + m + 2r)2(e − m − 2r)2

(e2 − m2 + 4r2)2

(

2
R̈

R
+

Ṙ2

R2

)

+
256e2r4

(e + m + 2r)4(e − m − 2r)4R2

G2
2 = G3

3 =
(e + m + 2r)2(e − m − 2r)2

(e2 − m2 + 4r2)2

(

2
R̈

R
+

Ṙ2

R2

)

− 256e2r4

(e + m + 2r)4(e − m − 2r)4R2
.

(4.29)

Looking for a solution that consists of a perfect fluid plus heat conduction component

plus electric field (Equation 3.28), the terms that depend on the scale factor as 1/R2

correspond to the usual electric field components of an isolated Reissner-Nordström

black hole

G0
0 = G1

1 = −G2
2 = −G3

3 =
256e2r4

(e + m + 2r)4(e − m − 2r)4
, (4.30)

so these simply represent the electric field. Thus, the pressure is given by

p = −(e + m + 2r)2(e − m − 2r)2

κ(e2 − m2 + 4r2)2

(

2
R̈

R
+

Ṙ2

R2

)

(4.31)

and the energy density is given by

µ =
3(e + m + 2r)2(e − m − 2r)2

κ(e2 − m2 + 4r2)2

Ṙ2

R2
. (4.32)
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In the case of a radiation-dominated universe, the pressure and energy density are

given by

p =
(e + m + 2r)2(e − m − 2r)2

κ(e2 − m2 + 4r2)2

1

4t2c
(4.33)

and

µ =
(e + m + 2r)2(e − m − 2r)2

κ(e2 − m2 + 4r2)2

3

4t2c
, (4.34)

and in the case of a matter-dominated universe, the pressure is zero and the energy

density is given by

µ =
(e + m + 2r)2(e − m − 2r)2

κ(e2 − m2 + 4r2)2

4

3t2c
. (4.35)

The energy density is always positive, and in the case of a radiation-dominated uni-

verse the pressure is always one third of the energy density, or in the case of a matter-

dominated universe the pressure is always zero (just as in the case of the isotropic

Schwarzschild cosmological black hole). Thus, the energy conditions are everywhere

satisfied by this solution.

4.2.2 Charged McVittie Black Holes

Gao & Zhang (2004) generalized McVittie’s solution to include charge. In the case of

a flat universe, the metric is given by

ds2 = −







1 − m2/R2

4r2 + e2/R2

4r2

(

1 + m/R
2r

)2 − e2/R2

4r2







2

dtc
2+

[R(tc)]
2





(

1 +
m/R

2r

)2

− e2/R2

4r2





2

(dr2 + r2(dθ2 + sin2θ dφ2)),

(4.36)

so the mass m/R and charge e/R both vary and get scaled down by the expansion of

the universe and the surface r =
√

m2 − e2/(2R) shrinks in comoving co-ordinates,

although they will all appear constant in non-comoving co-ordinates. As with the

McVittie spacetime, it should be noted that the surface r =
√

m2 − e2/(2R) does not

appear to actually be an event horizon.

The non-zero Einstein tensor components are

G0
0 =

3Ṙ2

R2
+

256e2r4R4

(e + m + 2r)4(e − m − 2r)4
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G1
1 =

2(4r2R2 + 4rmR − e2 + m2) R̈
R

+ (4r2R2 − 8mrR + 5e2 − 5m2) Ṙ2

R2

4r2R2 + e2 − m2

+
256e2r4R4

(e + m + 2r)4(e − m − 2r)4

G2
2 = G3

3 =
2(4r2R2 + 4rmR − e2 + m2) R̈

R
+ (4r2R2 − 8mrR + 5e2 − 5m2) Ṙ2

R2

4r2R2 + e2 − m2

− 256e2r4R4

(e + m + 2r)4(e − m − 2r)4
. (4.37)

Looking for a solution that consists of a perfect fluid plus electric field (Equation 3.28

without heat conduction), the terms that go as R4 clearly correspond to the electric

field terms for the isolated isotropic Reissner-Nordström black hole (Equation 4.30),

so the energy density and pressure are given by

µ =
3Ṙ2

κR2
(4.38)

and

p = −2(4r2R2 + 4rmR − e2 + m2) R̈
R

+ (4r2R2 − 8mrR + 5e2 − 5m2) Ṙ2

R2

κ(4r2R2 + e2 − m2)
. (4.39)

In the radiation-dominated case the energy density

µ =
3

4κt2c
(4.40)

is spatially uniform, as with the McVittie spacetime (cf. Equation 4.20), and the

pressure is

p =
4r2R2 + 16mrR − 7e2 + 7m2

4κ(4r2R2 + e2 − m2)t2c
, (4.41)

which becomes negative inside r =
√

m2 − e2/(2R) where the denominator changes

signs (the numerator can be considered positive since m2 should dominate e2). Thus,

inside r =
√

m2 − e2/(2R) the pressure goes from

p = − 7

4κtc
2 (4.42)

as r approaches zero, to negative infinity as r approaches
√

m2 − e2/(2R) from within.

Outside r =
√

m2 − e2/(2R), the pressure falls off from positive infinity at r =
√

m2 − e2/(2R) to

p =
1

4κtc
2 (4.43)
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as r approaches infinity. Since the pressure is negative and greater in magnitude

than the energy density everywhere inside r =
√

m2 − e2/(2R), it violates all of the

energy conditions there, and outside r =
√

m2 − e2/(2R), since the magnitude of

the pressure will be greater than that of the energy density within some radius, the

dominant energy condition is violated in that region.

In the matter-dominated case the energy density is given by

µ =
4

3κtc
2
, (4.44)

which is also uniform (cf. Equation 4.24), and the pressure is given by

p =
8(2mrR − e2 + m2)

3κ(4r2R2 + e2 − m2)t2c
, (4.45)

so the pressure varies from

p = − 8

3κtc
2 (4.46)

as r approaches zero, to negative infinity as r approaches
√

m2 − e2/(2R) from within,

and from positive infinity as r approaches
√

m2 − e2/(2R) from outside to zero as r

approaches infinity. As with the uncharged McVittie black holes, all the energy

conditions are violated inside r =
√

m2 − e2/(2R), and the dominant energy condition

is violated within some radius beyond r =
√

m2 − e2/(2R).



Chapter 5

Matching Radiation Universes

to Dust Universes

In this chapter it will be shown that a radiation-dominated universe can be directly

matched onto a matter-dominated universe across a hypersurface of constant time,

allowing for the possibility of a universe that instantaneously converts its radiation

into matter or converts its matter into radiation. This will then be applied to the

Kerr-Schild and isotropic cosmological black hole spacetimes to create simple solutions

for primordial black holes that evolve from being in radiation-dominated universes to

being in matter-dominated universes.

5.1 Matching Einstein-de Sitter Universes

The Robertson-Walker metric for the Einstein-de Sitter universe is

ds2 = −dtc
2 + [R(tc)]

2(dr2 + r2(dθ2 + sin2 θ dφ2)), (5.1)

where the solution of the Friedmann equations yields that R(tc) will be given by

(2Hotc)
1/2 when the universe starts off radiation dominated, and by (3Ho(tc+C)/2)2/3

when it later becomes matter dominated (the constant of integration C being gener-

ally non-zero in the matter-dominated phase to account for the difference in the time

it would take the universe to reach a given scale in the radiation-dominated phase

from the time it would have taken to reach that scale in the matter-dominated phase).

57
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To show that the spacetimes for the different scale factors can be matched, the

Lichnerowicz conditions will be used. The Lichnerowicz conditions require that both

the metric gab and its derivatives gab|c be continuous across the junction. Equivalently,

since the derivatives of the metric are given by

gab|c = gdaΓ
d
bc + gdbΓ

d
ac, (5.2)

then if the metric is continuous, the derivatives of the metric will be continuous if the

metric connections are continuous.

The metric will be continuous if the scale factor is continuous, which requires

(2Hotc)
1/2 =

(

3

2
Ho(tc + C)

)2/3

(5.3)

at the junction. For any hypersurface of constant time tc this matching can be

achieved with a suitable constant C.

For the radiation-dominated case, the non-zero metric connections are given by

Γ0
11 = 1

Γ0
22 = r2

Γ0
33 = r2 sin2 θ

Γ1
01 = Γ1

10 = Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
1

2Hotc

Γ1
22 = −r

Γ1
33 = −r sin2 θ

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r

Γ2
33 = − cos θ sin θ

Γ3
23 = Γ3

32 = cot θ, (5.4)

and for the matter-dominated case, the non-zero metric connections are given by

Γ0
11 =

(

3

2
Ho(tc + C)

)1/3

Γ0
22 = r2

(

3

2
Ho(tc + C)

)1/3
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Γ0
33 = r2 sin2 θ

(

3

2
Ho(tc + C)

)1/3

Γ1
01 = Γ1

10 = Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
2

3Ho(tc + C)

Γ1
22 = −r

Γ1
33 = −r sin2 θ

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r

Γ2
33 = − cos θ sin θ

Γ3
23 = Γ3

32 = cot θ. (5.5)

Thus, the derivatives of the metric will match across the boundary if the conditions

1 =
(

3

2
Ho(tc + C)

)1/3

(5.6)

and
1

2Hotc
=

2

3Ho(tc + C)
(5.7)

are satisfied simultaneously with the condition that the metric be continuous. It

can be seen that the Lichnerowicz conditions will be satisfied if Hotc = 1/2 and

HoC = 1/6. However, it is already known that Hoto = 1/2 for a radiation-dominated

universe for any choice of time to at which Ho is evaluated and the scale factor is set

equal to 1. So the Lichnerowicz conditions only require that R = 1 at the junction,

which can arbitrarily be specified to be true at any time, which means the matching

may in fact occur at any time. In theory it should be allowed for energy to be

converted between radiation and matter, so it makes sense that this instantaneous

matching works. In Figure 5.1 it can be seen that both the scale factor and its slope

match at Hotc = 1/2 with HoC = 1/6, allowing the radiation-dominated universe

to smoothly match onto the matter-dominated universe. It should also be apparent

that one could do the converse and match an initially matter-dominated universe

onto a radiation-dominated universe at Hotc = 2/3 with HoC = −1/6, which could

be used to realistically model the situation of a universe initially filled with matter

and antimatter that annihilates to leave radiation.
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Figure 5.1: Evolution of the scale factor versus time, with the thin line representing

the curve for a radiation-dominated universe, R = (2Hotc)
1/2, and the thick line

representing the curve for a matter-dominated universe, R = (3Ho(tc + 1/6)/2)2/3.

The scale factor and its slope both match when R = 1 at Hotc = 1/2.

The Robertson-Walker metric for the Einstein-de Sitter universe in conformal form

is

ds2 = [R(t)]2(−dt2 + dr2 + r2(dθ2 + sin2 θ dφ2)), (5.8)

where R(t)dt = dtc. The scale factor will be given by Hot when the universe starts off

radiation dominated, and by (Ho(t+C)/2)2 when it later becomes matter dominated.

It can be shown that the Lichnerowicz conditions for matching across a constant t

hypersurface that correspond to Hotc = 1/2 and HoC = 1/6 are that Hot = HoC = 1.
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5.2 Matching Kerr-Schild Cosmological Black Hole

Backgrounds

The metric for an asymptotically-Einstein-de Sitter Reissner-Nordström black hole

that expands with the universe is given by

ds2 = [R(t)]2
(

−dt2 + dr2 + r2(dθ2 + sin2 θ dφ2) +

(

2m

r
− e2

r2

)

(dt + dr)2

)

, (5.9)

where R(t) will be given by Hot when the universe starts off radiation dominated,

and by (Ho(t + C)/2)2 when it later becomes matter dominated.

The condition for the metric to match across the junction is that

Hot =
(

1

2
Ho(t + C)

)2

. (5.10)

The non-zero metric connections are given by

Γ0
00 =

(e4 − 4e2mr + 4m2r2 + r4)Ṙr + (e2 − mr)(e2 − 2mr)R

Rr5

Γ0
01 = Γ0

10 =
((e2 − mr)R + (e2 − 2mr)Ṙr)(e2 − 2mr − r2)

Rr5

Γ0
11 =

(e2 − mr)(e2 − 2mr − 2r2)R + (e2 − 2mr − r2)2Ṙr

Rr5

Γ0
22 = −(e2 − 2mr − r2)Ṙr − (e2 − 2mr)R

Rr

Γ0
33 = − sin2 θ

(e2 − 2mr − r2)Ṙr − (e2 − 2mr)R

Rr

Γ1
00 = −((e2 − mr)R + (e2 − 2mr)Ṙr)(e2 − 2mr + r2)

Rr5

Γ1
01 = Γ1

10 = −(e2 − mr)(e2 − 2mr)R + (e2 − 2mr + r2)(e2 − 2mr − r2)Ṙr)

Rr5

Γ1
11 = −((e2 − mr)R + (e2 − 2mr)Ṙr)(e2 − 2mr − r2)

Rr5

Γ1
22 = −(e2 − 2mr + r2)R − (e2 − 2mr)Ṙr

Rr

Γ1
33 = − sin2 θ

(e2 − 2mr + r2)R − (e2 − 2mr)Ṙr

Rr
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Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
Ṙ

R

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r

Γ2
33 = − cos θ sin θ

Γ3
23 = Γ3

32 = cot θ, (5.11)

so to satisfy the Lichnerowicz conditions, the only additional condition is that Ṙ

match at the junction. This requires that

Ho =
(

1

2
Ho

)2

2(t + C), (5.12)

which together with the condition that R match will be satisfied for Hot = HoC = 1,

and since Hoto = 1 for any time to in the radiation-dominated era that Ho is measured

and R is set equal to 1, then the matching may take place at any time.

The metric for an asymptotically Einstein-de Sitter Reissner-Nordström black hole

that doesn’t expand with the universe is given by

ds2 = [R(t)]2
(

−dt2 + dr2 + r2(dθ2 + sin2 θ dφ2)
)

+

(

2m

r
− e2

r2

)

(dt + dr)2. (5.13)

Once again, the metric will match across the junction with

Hot =
(

1

2
Ho(t + C)

)2

. (5.14)

The non-zero metric connections are given by

Γ0
00 = −((e2 − 2mr) − R2r2) ṘRr3 − e4 + 3e2mr − 2m2r2

R4r5

Γ0
01 = Γ0

10 = −(e2 − mr)R2r2 + (e2 − 2mr)ṘRr3 − e4 + 3e2mr − 2m2r2

R4r5

Γ0
11 = −((e2 − 2mr) − R2r2) ṘRr3 + 2(e2 − mr)R2r2 − e4 + 3e2mr − 2m2r2

R4r5

Γ0
22 =

(R2r2 − e2 + 2mr)Ṙr + (e2 − 2mr)R

R3r

Γ0
33 = sin2 θ

(R2r2 − e2 + 2mr)Ṙr + (e2 − 2mr)R

R3r
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Γ1
00 = −(e2 − mr)R2r2 − (e2 − 2mr)ṘRr3 + e4 − 3e2mr + 2m2r2

R4r5

Γ1
01 = Γ1

10 =
((e2 − 2mr) + R2r2) ṘRr3 − e4 + 3e2mr − 2m2r2

R4r5

Γ1
11 =

(e2 − mr)R2r2 + (e2 − 2mr)ṘRr3 − e4 + 3e2mr − 2m2r2

R4r5

Γ1
22 =

(Ṙr − R)(e2 − 2mr) − R3r2

R3r

Γ1
33 = − sin2 θ

((e2 − 2mr) + R2r2) R − (e2 − 2mr)Ṙr

R3r

Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
Ṙ

R

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r

Γ2
33 = − cos θ sin θ

Γ3
23 = Γ3

32 = cot θ, (5.15)

so the only additional constraint needed to satisfy the Lichnerowicz conditions is that

Ṙ match at the junction. As with the expanding black holes, Ṙ will match with

Ho =
(

1

2
Ho

)2

2(t + C), (5.16)

which together with the condition that R match, will occur for Hot = HoC = 1. As

before, this can arbitrarily be satisfied at any time.

5.3 Matching Isotropic Cosmological Black Hole

Backgrounds

The metric for the case of an expanding isotropic Reissner-Nordström black hole in

an asymptotically Einstein-de Sitter universe is given by
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ds2 = −







1 − m2

4r2 + e2

4r2

(

1 + m
2r

)2 − e2

4r2







2

dtc
2+

[R(tc)]
2

(

(

1 +
m

2r

)2

− e2

4r2

)2
(

dr2 + r2(dθ2 + sin2 θ dφ2)
)

.

(5.17)

The non-zero metric connections are given by

Γ0
01 = Γ0

10 =
4(e2m + 4e2r − m3 − 4m2r − 4mr2)

(e2 − m2 + 4r2)(e + m + 2r)(e − m − 2r)

Γ0
11 =

(e + m + 2r)4(e − m − 2r)4ṘR

16(e2 − m2 + 4r2)2r4

Γ0
22 =

(e + m + 2r)4(e − m − 2r)4ṘR

16(e2 − m2 + 4r2)2r2

Γ0
33 = sin2 θ

(e + m + 2r)4(e − m − 2r)4ṘR

16(e2 − m2 + 4r2)2r2

Γ1
00 =

64(e2m + 4e2r − m3 − 4m2r − 4mr2)(e2 − m2 + 4r2)r4

(e + m + 2r)5(e − m − 2r)5R2

Γ1
01 = Γ1

10 = Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
Ṙ

R

Γ1
11 = − 2(e2 − m2 − 2mr)

(e + m + 2r)(e − m − 2r)r

Γ1
22 =

(e2 − m2 + 4r2)r

(e + m + 2r)(e − m − 2r)

Γ1
33 = sin2 θ

(e2 − m2 + 4r2)r

(e + m + 2r)(e − m − 2r)

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 = − (e2 − m2 + 4r2)

(e + m + 2r)(e − m − 2r)r

Γ2
33 = − cos θ sin θ

Γ3
23 = Γ3

32 = cot θ. (5.18)

For the Lichnerowicz conditions to be satisfied, then R must match and Ṙ must

match at the junction, which requires that

(2Hotc)
1/2 =

(

3

2
Ho(tc + C)

)2/3

(5.19)
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and

(2Ho)
1/2 tc

−1/2

2
=
(

3

2
Ho

)2/3 2(tc + C)−1/3

3
. (5.20)

These conditions will be satisfied for Hotc = 1/2 and HoC = 1/6, just as for the

standard Einstein-de Sitter universe.

McVittie’s metric for a non-expanding isotropic black hole in an asymptotically

Einstein-de Sitter universe (generalized by Gao & Zhang 2004 to the charged case) is

given by

ds2 = −







1 − m2/R2

4r2 + e2/R2

4r2

(

1 + m/R
2r

)2 − e2/R2

4r2







2

dtc
2+

[R(tc)]
2





(

1 +
m/R

2r

)2

− e2/R2

4r2





2

(dr2 + r2(dθ2 + sin2θ dφ2)).

(5.21)

The non-zero metric connections are

Γ0
00 =

4(4R2mr2 − 4Re2r + 4Rm2r − e2m + m3)Ṙr

(4R2r2 + e2 − m2)(2Rr + e + m)(2Rr − e + m)

Γ0
01 = Γ0

10 =
4(4R2mr2 − 4Re2r + 4Rm2r − e2m + m3)R

(4R2r2 + e2 − m2)(2Rr + e + m)(2Rr − e + m)

Γ0
11 =

(2Rr + e + m)3(2Rr − e + m)3Ṙ

16(4R2r2 + e2 − m2)R3r4

Γ0
22 =

(2Rr + e + m)3(2Rr − e + m)3Ṙ

16(4R2r2 + e2 − m2)R3r2

Γ0
33 = sin2 θ

(2Rr + e + m)3(2Rr − e + m)3Ṙ

16(4R2r2 + e2 − m2)R3r2

Γ1
00 =

64(4R2mr2 − 4Re2r + 4Rm2r − e2m + m3)(4R2r2 + e2 − m2)R3r4

(2Rr + e + m)5(2Rr − e + m)5

Γ1
01 = Γ1

10 = Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
(4R2r2 + e2 − m2)Ṙ

(2Rr + e + m)(2Rr − e + m)R

Γ1
11 = − 2(2Rmr − e2 + m2)

(2Rr + e + m)(2Rr − e + m)r

Γ1
22 = − (4R2r2 + e2 − m2)r

(2Rr + e + m)(2Rr − e + m)
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Γ1
33 = − sin2 θ

(4R2r2 + e2 − m2)r

(2Rr + e + m)(2Rr − e + m)

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
4R2r2 + e2 − m2

(2Rr + e + m)(2Rr − e + m)r

Γ2
33 = − cos θ sin θ

Γ3
23 = Γ3

32 = cot θ. (5.22)

Thus, the Lichnerowicz conditions for matching the radiation-dominated and

matter-dominated cases simply require that R match and Ṙ match at the bound-

ary, so

(2Hotc)
1/2 =

(

3

2
Ho(tc + C)

)2/3

(5.23)

and

(2Ho)
1/2 tc

−1/2

2
=
(

3

2
Ho

)2/3 2(tc + C)−1/3

3
, (5.24)

which will once again be satisfied for Hotc = 1/2 and HoC = 1/6, just as for the stan-

dard Einstein-de Sitter universe. Looking at the metrics for the cosmological black

hole spacetimes, the time derivatives should just yield Ṙ in the metric connections as

with the standard Einstein-de Sitter universe, so it makes sense that the cosmological

black holes can be matched just as easily as the standard Einstein-de Sitter universe

can.



Chapter 6

The Influence of Cosmological

Black Holes on the Universe’s

Expansion

In this chapter the Weyl curvature will be calculated for the cosmological black holes,

since Weyl curvature should lead to shear that could influence the volume expansion

of the universe. The volume expansion will then be calculated for co-ordinate volumes

and independently by calculating the velocity field of the matter (since the matter

may be flowing rather than tied to the co-ordinates), and the independent calculations

will be compared to ensure they are consistent with each other. The calculation of

the velocity field will enable the shear and acceleration to be determined to see how

they influence the volume expansion.

6.1 Weyl Curvature

Since Weyl curvature is the relativistic equivalent of tidal force, then the Weyl curva-

ture in the cosmological black hole spacetimes should be expected to introduce shear

in the velocity field. Thus, the Weyl curvature of the cosmological black holes will be

calculated in this section.

The Weyl scalar for the expanding Kerr-Schild cosmological black holes (Equa-

67
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tions 3.26 and 3.53) is

CabcdCabcd =
48(e2 − mr)2

R4r8
, (6.1)

so it is like the Weyl scalar for an isolated black hole

CabcdCabcd =
48(e2 − mr)2

r8
, (6.2)

but scaled down by R4, so that not only does the Weyl curvature fall off from infinity

at r = 0 to zero at r = ∞ (or if e2 = mr), it falls off from infinity at t = 0 to zero at

t = ∞.

The Weyl scalar for the non-expanding Kerr-Schild cosmological black holes (Equa-

tions 3.33 and 3.57) is

CabcdCabcd =
16

3

(

(R̈R − 5Ṙ2)(e2r2 − 2mr3) + 2ṘR(3e2r − 4mr2) − 3R2(e2 − mr)
)2

R20r8
,

(6.3)

which in the case of a radiation-dominated universe is

CabcdCabcd =
16

3

((10r2 − 8rR + 3R2)mr − (5r2 − 6rR + 3R2)e2)
2

r8R20
(6.4)

and in the case of a matter-dominated universe is

CabcdCabcd =
16

3

(

(36r2 − 16rR1/2 + 3R)mr − 3(6r2 − 4rR1/2 + R)e2
)2

r8R18
, (6.5)

so the influence of the scale factor causes the Weyl curvature to approach zero even

more quickly for the non-expanding black holes.

The Weyl scalar for the constant-mass isotropic cosmological black holes (Equa-

tion 4.28) is

CabcdCabcd =
196608 ((m + 4r)e2 − m(m + 2r)2)

2
r6

(e + m + 2r)8(e − m − 2r)8R4
, (6.6)

which simplifies to

CabcdCabcd =
196608(m + 2r)4r6

(m + 2r)16R4
=

48m2

r6R4(1 + m
2r

)12
(6.7)

in the uncharged case. While this resembles the Weyl curvature for a Schwarzschild

black hole, the presence of the (1+m/(2r))12 term in the denominator means that as
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r approaches zero, the denominator approaches infinity so that the Weyl curvature is

zero at the origin instead of infinite, which makes sense because the region inside the

event horizon in the isotropic black hole spacetime is a remapping of the region outside

the event horizon in the standard Schwarzschild spacetime so there should be zero

Weyl curvature at the origin. While the pressure (in the radiation-dominated case)

and energy density become infinite at the event horizon, the event horizon doesn’t

take on the role of a curvature singularity like the singularity at the origin of an

isolated Schwarzschild black hole. The Weyl curvature is finite at the event horizon

and is infinite only at the Big Bang.

The Weyl scalar for the McVittie, or more generally the Gao & Zhang black holes

(Equation 4.36) is

CabcdCabcd =
196608 ((m + 4rR)e2 − m(m + 2r)2)

2
r6R6

(e + m + 2rR)8(e − m − 2rR)8
, (6.8)

which simplifies to

CabcdCabcd =
196608m2(m + 2rR)4r6R6

(m + 2rR)16
=

48m2

r6R6
(

1 + m
2rR

)12 (6.9)

in the uncharged case, analogous to the constant-mass isotropic black holes (cf. Equa-

tion 6.7). As with the case of the constant-mass black holes, the Weyl curvature is

zero at the origin, but unlike the constant-mass black holes, the Weyl curvature is

zero at the Big Bang.

6.2 Volume Expansion

The volume in some comoving region Ω is given by

V =
∫

Ω

√
γ d3x, (6.10)

where γ is the determinant of the spatial part of the metric tensor.

The volume integrated over a given radius range ra to rb for the expanding Kerr-

Schild black holes (Equations 3.26 and 3.53) will be

V =
∫ rb

ra

∫ π

0

∫ 2π

0

√

√

√

√R6

(

1 +
2m

r
− e2

r2

)

r4 sin2 θ dr dθ dφ, (6.11)
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which simplifies to

V = 4πR3
∫ rb

ra

√

1 +
2m

r
− e2

r2
r2 dr. (6.12)

Taking the derivative of the volume with respect to the co-ordinate time yields

V̇

V
=

4π3R2Ṙ
∫ rb

ra

√

1 + 2m
r
− e2

r2 r2 dr

4πR3
∫ rb

ra

√

1 + 2m
r
− e2

r2 r2 dr
= 3

Ṙ

R
. (6.13)

Thus, for the expanding Kerr-Schild black holes, the volume goes as the cube of the

scale factor, so the volume expansion is unaffected by the black hole and is the same

as it is for the plain FRW universe.

For the non-expanding Kerr-Schild cosmological black holes (Equations 3.33 and

3.57), the volume will be

V =
∫ rb

ra

∫ π

0

∫ 2π

0

√

√

√

√R6

(

1 +
1

R2

(

2m

r
− e2

r2

))

r4 sin2 θ dr dθ dφ, (6.14)

which simplifies to

V = 4πR3
∫ rb

ra

√

√

√

√1 +
1

R2

(

2m

r
− e2

r2

)

r2 dr. (6.15)

Taking the time derivative in this case yields

V̇

V
=

4π3R2Ṙ
∫ rb

ra

√

1 + 1
R2

(

2m
r
− e2

r2

)

r2 dr + 4πR3
∫ rb

ra

d
dt

(√

1 + 1
R2

(

2m
r
− e2

r2

)

)

r2 dr

4πR3
∫ rb

ra

√

1 + 1
R2

(

2m
r
− e2

r2

)

r2 dr

= 3
Ṙ

R
− Ṙ

R3

∫ rb

ra

2m

r
− e

2

r2
√

1+ 1

R2
( 2m

r
− e2

r2
)
r2 dr

∫ rb

ra

√

1 + 1
R2

(

2m
r
− e2

r2

)

r2 dr
. (6.16)

Thus, the volume expansion appears to be smaller than what is expected for an FRW

universe, suggesting the volume may be sheared by the black hole.

In the case where the charge is set to zero

V̇

V
= 3

Ṙ

R
− 2mṘ

R3

∫ rb

ra

(√

1 + 2m
R2r

)−1
r dr

∫ rb

ra

√

1 + 2m
R2r

r2 dr
, (6.17)
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which integrates to

V̇

V
= 3

Ṙ

R
−2mṘ

R3

1
8





(

4r − 62m
R2

)√

r2 + 2mr
R2 + 3

(

2m
R2

)2
log

√

r+ 2m

R2
+
√

r
√

r+ 2m

R2
−√

r





rb

ra

1
48





(

16r2 + 4r 2m
R2 − 6

(

2m
R2

)2
)

√

r2 + 2mr
R2 + 3

(

2m
R2

)3
log

√

r+ 2m

R2
+
√

r
√

r+ 2m

R2
−√

r





rb

ra

.

(6.18)

Evaluating from ra = 0 to rb = r yields

V̇

V
= 3

Ṙ

R
−6

Ṙ

R

(

4r 2m
R2 − 6

(

2m
R2

)2
)

√

r2 + 2mr
R2 + 3

(

2m
R2

)3
log

√

r+ 2m

R2
+
√

r
√

r+ 2m

R2
−√

r

(

16r2 + 4r 2m
R2 − 6

(

2m
R2

)2
)

√

r2 + 2mr
R2 + 3

(

2m
R2

)3
log

√

r+ 2m

R2
+
√

r
√

r+ 2m

R2
−√

r

, (6.19)

which is found to vary monotonically from V̇ /V = 2Ṙ/R to V̇ /V = 3Ṙ/R as r goes

from zero to infinity. Thus as r approaches zero, the volume goes as the square of

the scale factor, unlike normal FRW, but as r approaches infinity the volume goes

as the cube of the scale factor, approaching the usual FRW volume expansion. In

the vicinity of the black hole the volume expansion will be decreased, but the volume

expansion of the universe as a whole will not be affected.

Considering a thin shell of infinitesimal thickness ∆r, then based on Equation 6.16

the volume expansion as a function of radius is given by

V̇

V
= 3

Ṙ

R
− Ṙ

R3

2m

r
− e

2

r2
√

1+ 1

R2
( 2m

r
− e2

r2
)
r2 ∆r

√

1 + 1
R2

(

2m
r
− e2

r2

)

r2 ∆r
= 3

Ṙ

R
− Ṙ

R3

2m
r
− e2

r2

1 + 1
R2

(

2m
r
− e2

r2

) , (6.20)

which neglecting charge (and with m and R both finite), yields V̇ /V = 2Ṙ/R for

small r or
V̇

V
= 3

Ṙ

R

(

1 − 2m

3rR2

)

(6.21)

for large r, so that V̇ /V = 3Ṙ/R as r goes to infinity. This is consistent with the

volume expansion found for a sphere of radius r above.

For the constant-mass isotropic cosmological black holes (Equation 4.28) the vol-
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ume will be

V =
∫ rb

ra

∫ π

0

∫ 2π

0

√

√

√

√R6

(

(

1 +
m

2r

)2

− e2

4r2

)6

r4 sin2 θ dr dθ dφ, (6.22)

which simplifies to

V = 4πR3
∫ rb

ra

(

(

1 +
m

2r

)2

− e2

4r2

)3

r2 dr. (6.23)

As before with the expanding Kerr-Schild black holes this leads to

V̇

V
=

4π3R2Ṙ
∫ rb

ra

(

(

1 + m
2r

)2 − e2

4r2

)3

r2 dr

4πR3
∫ rb

ra

(

(

1 + m
2r

)2 − e2

4r2

)3

r2 dr

= 3
Ṙ

R
(6.24)

so that the volume goes as the cube of the scale factor, and the volume expansion is

unaffected by the black hole.

For the McVittie (Gao & Zhang) black holes (Equation 4.36), the volume will be

V =
∫ rb

ra

∫ π

0

∫ 2π

0

√

√

√

√R6

(

(

1 +
m

2rR

)2

− e2

4r2R2

)6

r4 sin2 θ dr dθ dφ, (6.25)

which simplifies to

V = 4πR3
∫ rb

ra

(

(

1 +
m

2rR

)2

− e2

4r2R2

)3

r2 dr. (6.26)

Thus,

V̇

V
=

4π3R2Ṙ
∫ rb

ra

(

(

1 + m
2rR

)2 − e2

4r2R2

)3

r2 dr

4πR3
∫ rb

ra

(

(

1 + m
2rR

)2 − e2

4r2R2

)3

r2 dr

+

4πR3
∫ rb

ra

d
dtc

[

(

(

1 + m
2rR

)2 − e2

4r2R2

)3
]

r2 dr

4πR3
∫ rb

ra

(

(

1 + m
2rR

)2 − e2

4r2R2

)3

r2 dr

= 3
Ṙ

R
+

6Ṙ
∫ rb

ra

(

(

1 + m
2rR

)2 − e2

4r2R2

)2 (

− m
2rR2

(

1 + m
2rR

)

+ e2

4r2R3

)

r2 dr

∫ rb

ra

(

(

1 + m
2rR

)2 − e2

4r2R2

)3

r2 dr

. (6.27)
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For the uncharged case this is simply

V̇

V
= 3

Ṙ

R
− 3mṘ

R2

∫ rb

ra

(

1 + m
2rR

)5
r dr

∫ rb

ra

(

1 + m
2rR

)6
r2 dr

, (6.28)

which integrates to yield
V̇

V
= 3

Ṙ

R

(

1 − m

R

[A]rb

ra

[B]rb

ra

)

, (6.29)

where A and B are given by

A =
240 log(r)R3m2r3 + 48R5r5 + 240R4mr4 − 120R2m3r2 − 15Rm4r − m5

96R5r3
(6.30)

and

B =
480 log(r)R3m3r3 + 64R6r6 + 288R5mr5 + 720R4m2r4

192R6r3

−180R2m4r2 + 18Rm5r + m6

192R6r3
. (6.31)

The volume expansion can’t be evaluated starting from ra = 0, so evaluating from

ra = m/(2R) to rb = r yields

V̇

V
= 3

Ṙ

R









1 − m

R

A −
(

5
2
log

(

m
2R

) (

m
R

)2 − 11
6

(

m
R

)2
)

B − 5
2
log

(

m
2R

) (

m
R

)3









. (6.32)

For large values of r (with m and R both finite), this goes as

V̇

V
= 3

Ṙ

R

(

1 − 3m

2rR

)

, (6.33)

which in the limit as r goes to infinity approaches V̇ /V = 3Ṙ/R, so the volume

expansion only asymptotically approaches that of FRW as r goes to infinity.

Considering a thin shell of infinitesimal thickness ∆r, then based on Equation 6.27

the volume expansion as a function of radius is given by

V̇

V
= 3

Ṙ

R
+

6Ṙ
(

(

1 + m
2rR

)2 − e2

4r2R2

)2 (

− m
2rR2

(

1 + m
2rR

)

+ e2

4r2R3

)

r2 ∆r
(

(

1 + m
2rR

)2 − e2

4r2R2

)3

r2 ∆r

= 3
Ṙ

R
+

6Ṙ
(

− m
2rR2

(

1 + m
2rR

)

+ e2

4r2R3

)

(

(

1 + m
2rR

)2 − e2

4r2R2

) , (6.34)
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which neglecting charge yields V̇ /V = −3Ṙ/R in the limit of small r and

V̇

V
= 3

Ṙ

R

(

1 − m

rR

)

(6.35)

for large r, which as r goes to infinity approaches V̇ /V = 3Ṙ/R. The decrease in

the volume expansion of the shell is slightly less than that of the essentially spherical

volume of radius r (Equation 6.33), which makes sense if the volume expansion is

being affected more near the black hole than at the boundary of the sphere.

While the decrease in the volume expansion compared with FRW suggests there

may be shear in the expanding Kerr-Schild and McVittie cosmological black holes

and not in the non-expanding Kerr-Schild and constant-mass isotropic cosmological

black holes, these calculations only show what happens to a volume defined by a

constant value of the co-ordinate r and in terms of the co-ordinate time rather than

the proper time. If matter is streaming in or out of the volume, then considering

a region defined by r doesn’t really specify what is happening in terms of what an

observer would see the matter doing. Also, considering Raychaudhuri’s equation, the

volume expansion may be decreased (or increased) relative to FRW by an increase

(or decrease) in the mass-energy, rather than just the shear due to the inhomogeneity,

and if the flow of the velocity field isn’t geodesic, then there may also be acceleration

(or deceleration) that may increase (or decrease) the volume expansion. Thus, it is

necessary to determine the velocity field of the matter to determine whether shear

exists that slows the volume expansion.

6.3 The Velocity Field

The approach used to solve for the velocity field in this section is based on the ap-

proach of Sultana (2003), which was used to obtain the velocity field of a cosmological

white hole in the case of pressureless dust.

For a perfect fluid plus heat conduction and an electric field, the total energy

momentum tensor is

T ab = (µ + p)uaub + pgab + qaub + uaqb + T ab
(e), (6.36)
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where T ab
(e) is the energy-momentum tensor component corresponding to the electric

field. Since
(

(µ + p)(u0)2 + 2q0u0
)

(u1)2 +
(

(µ + p)(u1)2 + 2q1u1
)

(u0)2

= 2
(

(µ + p)u0u1 + q0u1 + u0q1
)

u0u1, (6.37)

then

(T 00 − pg00 − T 00
(e))(u

1)2 + (T 11 − pg11 − T 11
(e))(u

0)2 = 2(T 01 − pg01 − T 01
(e))u

0u1. (6.38)

Since there is no vorticity, the velocity field ua should only contain a temporal com-

ponent u0 and a radial component u1, and since uaua = −1,

gabu
aub = g00(u

0)2 + 2g01u
0u1 + g11(u

1)2 = −1. (6.39)

Multiplying Equation 6.39 by (T 01 − pg01 − T 01
(e)) gives

(T 01 − pg01 − T 01
(e))g00(u

0)2 + 2(T 01 − pg01 − T 01
(e))g01u

0u1+

(T 01−pg01−T 01
(e))g11(u

1)2 = −(T 01−pg01−T 01
(e)), (6.40)

and multiplying Equation 6.38 by g01 gives

(T 00 − pg00 − T 00
(e))(u

1)2g01 + (T 11 − pg11 − T 11
(e))(u

0)2g01 = 2(T 01 − pg01 − T 01
(e))u

0u1g01.

(6.41)

Summing Equations 6.40 and 6.41 yields

(

(T 00 − pg00 − T 00
(e))g01 + (T 01 − pg01 − T 01

(e))g11

)

(u1)2+

(

(T 11 − pg11 − T 11
(e))g01 + (T 01 + pg01 − T 01

(e))g00

)

(u0)2 = −(T 01−pg01−T 01
(e)), (6.42)

so

(u1)2 =
−(T 01 − pg01 − T 01

(e)) −
(

(T 00 − pg00 − T 00
(e))g01 + (T 01 − pg01 − T 01

(e))g11

)

(u0)2

(T 00 − pg00 − T 00
(e))g01 + (T 01 − pg01 − T 01

(e))g11
.

(6.43)

Defining α and β as

α = −
T 01 − pg01 − T 01

(e)

(T 00 − pg00 − T 00
(e))g01 + (T 01 − pg01 − T 01

(e))g11

(6.44)
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and

β = −
(

(T 00 − pg00 − T 00
(e))g01 + (T 01 − pg01 − T 01

(e))g11

)

(T 00 − pg00 − T 00
(e))g01 + (T 01 − pg01 − T 01

(e))g11
, (6.45)

then Equation 6.43 can be written more simply as

(u1)2 = α + β(u0)2. (6.46)

Substituting Equation 6.46 into Equation 6.39, rearranging, and squaring yields

4(g01)
2(u0)2(α + β(u0)2) = (−1 − g00(u

0)2 − g11(α + β(u0)2))2. (6.47)

Solving Equation 6.47 for (u0)2 yields

(u0)2 =
−((1 + αg11)(βg11 + g00) − 2α(g01)

2)

(g00 + βg11)2 − 4(g01)2β
±

√

((1 + αg11)(βg11 + g00) − 2α(g01)2)2 − (αg11 + 1)2((g00 + βg11)2 − 4(g01)2β)

(g00 + βg11)2 − 4(g01)2β
,

(6.48)

which can then be used to determine (u1)2 via Equation 6.46.

For the expanding Kerr-Schild Schwarzschild black holes (Equations 3.3 and 3.40)

the velocity field in the case of a matter-dominated universe (with R = (Hot/2)2

defined just as R = t2 for simplicity) is

(u0)2 =
36(2r − t)m3 + 6(18r2 − 3rt − t2)m2 + 54r3m + 9r4

3(4(3r + t)m + 12m2 + 3r2)r2t4

±
2
√

3tm
√

−3(2r − t)m − 4r2tm

3(4(3r + t)m + 12m2 + 3r2)r2t4

(u1)2 =
36(2r − t)m3 + 6(6r2 + 3rt − t2)m2 − 12r2tm

3(4(3r + t)m + 12m2 + 3r2)r2t4

∓
2
√

3tm
√

−3(2r − t)m − 4r2(6r + t)m

3(4(3r + t)m + 12m2 + 3r2)r2t4
, (6.49)

and the velocity field in the case of a radiation-dominated universe (with R = t for

simplicity) is
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(u0)2 =
4(4r − 3t)m3 + 3(8r2 − 2rt − t2)m2 + 12r3m + 2r4

2(2(2r + t)m + 4m2 + r2)r2t2

±
√

tm
√

−3(4r − 3t)m − 8r2tm

2(2(2r + t)m + 4m2 + r2)r2t2

(u1)2 =
4(4r − 3t)m3 + (8r2 + 6rt − 3t2)m2 − 4r2tm

2(2(2r + t)m + 4m2 + r2)r2t2

∓
√

tm
√

−3(4r − 3t)m − 8r2(4r + t)m

2(2(2r + t)m + 4m2 + r2)r2t2
. (6.50)

For the non-expanding Kerr-Schild cosmological Schwarzschild black holes (Equa-

tions 3.16 and 3.47) the velocity field in the case of a matter-dominated universe

is

(u0)2 =
6(7r − 2t)r2t8m + 2(30r2 − 11rt + t2)t4m2 + 12(2r − t)m3 + 9r4t12

3(4(3r − t)t4m + 12m2 + 3r2t8)r2t8

±2

√
m
√

−(8r2 − 2rt − t2)m − 12r3t4t5m

3(4(3r − t)t4m + 12m2 + 3r2t8)r2t8

(u1)2 =
−12r3t8m + 2(18r2 − 5rt + t2)t4m2 + 12(2r − t)m3

3(4(3r − t)t4m + 12m2 + 3r2t8)r2t8

∓
2
√

m
√

−(8r2 − 2rt − t2)m − 12r3t4(6r − t)t4m2

3(4(3r − t)t4m + 12m2 + 3r2t8)r2t8
, (6.51)

and the velocity field in the case of a radiation-dominated universe is

(u0)2 =
(11r − 4t)r2t4m + (20r2 − 9rt + t2)t2m2 + 4(3r − t)m3 + 2r4t6

(2(2(2r − t)t2m + 4m2 + r2t4)r2t4

±
√

m
√

−(3r2 + 2rt − t2)m − 2r3t2t3m

(2(2(2r − t)t2m + 4m2 + r2t4)r2t4

(u1)2 =
−r3t4m + (8r2 − 5rt + t2)t2m2 + 4(3r − t)m3

2(2(2r − t)t2m + 4m2 + r2t4)r2t4

∓
√

m
√

−(3r2 + 2rt − t2)m − 2r3t2(4r − t)t2m

2(2(2r − t)t2m + 4m2 + r2t4)r2t4
. (6.52)

For the isotropic Schwarzschild black holes (Equations 4.5 and 4.15), the velocity

field should just consist of u0 and no spatial component so that the matter is comoving
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with the expansion of the spatial co-ordinates, since G0
0 = κµ and G1

1 = −κp suggest

that u0u0 = −1 and u1u1 = 0. Calculating (u0)2 with Equation 6.48 yields something

of the form 0/0, so u1 = 0 must be verified by other means to allow u0 to then be

calculated via Equation 6.46. To prove u1 = 0, T 0
0 = −µ can be multiplied by u1u1

(µ + p)u0u0u
1u1 + pu1u1 + q0u0u

1u1 + u0q0u
1u1 = −µu1u1 (6.53)

to show that

pu1u1 = −µu1u1, (6.54)

but it isn’t the case that p = −µ for either the isotropic constant-mass or McVittie

cosmological black holes, so u1 = g11u1 = 0, which means the velocity field must just

have a u0 component. Then u0 can be calculated using Equation 6.46 to yield

u0 = ±
√

−α

β
. (6.55)

For the isotropic constant-mass Schwarzschild black holes (Equation 4.5), Equa-

tion 6.55 yields

u0 = ±2r + m

2r − m
, (6.56)

and for the McVittie black holes (Equation 4.15), Equation 6.55 yields

u0 = ±2rR + m

2rR − m
. (6.57)

6.4 Shear and Acceleration

The shear tensor is given by

σab = u(a||b) −
1

3
θhab + a(aub), (6.58)

where

u(a||b) =
1

2
(ua|b + ub|a) − Γc

abuc, (6.59)

θ = ua
||a = ua

|a + Γa
acu

c, (6.60)

hab = gab + uaub, (6.61)

and

aa = ua||cu
c = (ua|c − Γd

acud)u
c. (6.62)
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For all cases of the cosmological black holes, there are only u0, u1, g00, g01, g10,

g11, g22, and g33 terms, so the shear tensor looks like

σ00 = u0|0−(Γ0
00u0+Γ1

00u1)−
1

3
(u0

|0+u1
|1+Γa

a0u
0+Γa

a1u
1)(g00+u0u0)+(u0|0−Γ0

00u0)u
0u0

σ01 = σ10 =
1

2
(u0|1 +u1|0)−(Γ0

01u0 +Γ1
01u1)−

1

3
(u0

|0 +u1
|1 +Γa

a0u
0 +Γa

a1u
1)(g01 +u0u1)

+
1

2
((u0|1 − Γ1

01u1)u
1u1 + (u1|0 − Γ0

10u0)u
0u0)

σ02 = σ20 = −(Γ0
02u0 + Γ1

02u1) −
1

2
Γ0

20u0u
0u0

σ03 = σ30 = −(Γ0
03u0 + Γ1

03u1) −
1

2
Γ0

30u0u
0u0

σ11 = u1|1−(Γ0
11u0+Γ1

11u1)−
1

3
(u0

|0+u1
|1+Γa

a0u
0+Γa

a1u
1)(g11+u1u1)+(u1|1−Γ1

11u1)u
1u1

σ12 = σ21 = −(Γ0
12u0 + Γ1

12u1) −
1

2
Γ1

21u1u
1u1

σ13 = σ31 = −(Γ0
13u0 + Γ1

13u1) −
1

2
Γ1

31u1u
1u1

σ22 = −(Γ0
22u0 + Γ1

22u1) −
1

3
(u0

|0 + u1
|1 + Γa

a0u
0 + Γa

a1u
1)g22

σ23 = σ32 = −(Γ0
23u0 + Γ1

23u1)

σ33 = −(Γ0
33u0 + Γ1

33u1) −
1

3
(u0

|0 + u1
|1 + Γa

a0u
0 + Γa

a1u
1)g33. (6.63)

For the Kerr-Schild cosmological black holes, cancelling out the metric connections

(cf. Equations 5.11 and 5.15) that are zero reduces the shear tensor to

σ00 = u0|0−(Γ0
00u0+Γ1

00u1)−
1

3
(u0

|0+u1
|1+Γa

a0u
0+Γa

a1u
1)(g00+u0u0)+(u0|0−Γ0

00u0)u
0u0

σ01 = σ10 =
1

2
(u0|1 +u1|0)−(Γ0

01u0 +Γ1
01u1)−

1

3
(u0

|0 +u1
|1 +Γa

a0u
0 +Γa

a1u
1)(g01 +u0u1)

+
1

2
((u0|1 − Γ1

01u1)u
1u1 + (u1|0 − Γ0

10u0)u
0u0)

σ11 = u1|1−(Γ0
11u0+Γ1

11u1)−
1

3
(u0

|0+u1
|1+Γa

a0u
0+Γa

a1u
1)(g11+u1u1)+(u1|1−Γ1

11u1)u
1u1

σ22 = −(Γ0
22u0 + Γ1

22u1) −
1

3
(u0

|0 + u1
|1 + Γa

a0u
0 + Γa

a1u
1)g22

σ33 = −(Γ0
33u0 + Γ1

33u1) −
1

3
(u0

|0 + u1
|1 + Γa

a0u
0 + Γa

a1u
1)g33, (6.64)
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where the expansion is

θ = u0
|0 + u1

|1 + Γa
a0u

0 + Γa
a1u

1 = u0
|0 + u1

|1 +

(

2Ṙ

R

)

u0 +
(

2

r

)

u1. (6.65)

These shear matrices are of the form


















a c 0 0

c b 0 0

0 0 d 0

0 0 0 e



















, (6.66)

which can be diagonalized as



















a+b±
√

(a−b)2+4c2

2
0 0 0

0
a+b∓

√
(a−b)2+4c2

2
0 0

0 0 d 0

0 0 0 e



















. (6.67)

Since the expressions for the velocity field aren’t simple, the terms in the shear ma-

trix are extremely long and cannot be reproduced here. However, by substituting

numerical values for m, r, and t and tweaking them, it can be verified that the terms

in the shear matrix are non-zero and are not due to numerical noise, so shear does in

fact exist. Likewise, it can be verified that the acceleration is also non-zero.

For the isotropic black holes, there are no u1, g01, or g10 terms, and the non-zero

metric connections (cf. Equations 5.18 and 5.22) are the same components as for the

Kerr-Schild black holes (other than that Γ0
00 = 0 for the constant-mass isotropic black

holes), so this reduces the shear tensor to

σ00 = u0|0 − Γ0
00u0 −

1

3
(u0

|0 + Γa
a0u

0)(g00 + u0u0) + (u0|0 − Γ0
00u0)u

0u0

σ01 = σ10 =
1

2
u0|1 − Γ0

01u0 −
1

2
Γ0

10u0u
0u0

σ11 = −Γ0
11u0 −

1

3
(u0

|0 + Γa
a0u

0)g11

σ22 = −Γ0
22u0 −

1

3
(u0

|0 + Γa
a0u

0)g22

σ33 = −Γ0
33u0 −

1

3
(u0

|0 + Γa
a0u

0)g33, (6.68)
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where the expansion (in the case of zero charge) is

θ = u0
|0 + Γa

a0u
0 = 0 + 3

Ṙ

R

2r + m

2r − m
(6.69)

for the constant-mass isotropic black holes and

θ = u0
|0 + Γa

a0u
0

= − 4mrṘ

(2Rr − m)2
+

(

4Ṙmr

(2Rr − m)(2rR + m)
+

3(2Rr − m)Ṙ

(2Rr + m)R

)

2Rr + m

2Rr − m
= 3

Ṙ

R
(6.70)

for the McVittie black holes. Unlike the volume expansion calculated in terms of

the co-ordinate volume and time (Equations 6.24 and 6.34), the volume expansion

appears to be changed for the constant-mass black holes and not for the McVittie

black holes. Since

θ =
1

V

dV

dτ
, (6.71)

where τ is the proper time, and
V̇

V
=

1

V

dV

dtc
(6.72)

and

u0 =
dtc
dτ

, (6.73)

then the different calculations of the volume expansion are related by

θ =
V̇

V
u0, (6.74)

so Equations 6.69 and 6.70 are in fact consistent with the previous calculations of

V̇ /V = 3Ṙ/R for the constant-mass black holes and

V̇

V
= 3

Ṙ

R

(

1 − m

rR

)

≈ 3
Ṙ

R

(

2rR − m

2rR + m

)

(6.75)

for a thin shell as a function of r for the McVittie black holes.

Since Raychaudhuri’s equation (Equation 1.1) is for θ|au
a, then this is

θ̇u0 =
dθ

dτ
= 3

(

R̈

R
− Ṙ2

R

)

(

2r + m

2r − m

)2

(6.76)

for the constant-mass black holes and

θ̇u0 =
dθ

dτ
= 3

(

R̈

R
− Ṙ2

R

)

(

2rR + m

2rR − m

)

(6.77)
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for the McVittie black holes. Compared with

dθ

dτ
= 3

(

R̈

R
− Ṙ2

R

)

(6.78)

for the standard FRW universe—which is negative—then the modification due to the

cosmological black holes will lead to a greater slowing of the expansion than that in

an FRW universe (and in the case of the McVittie black holes will lead to a change

of sign inside r = m/(2R) so that the expansion actually increases there rather than

decreases, most likely due to the pressure being negative there). The extra decrease in

the volume expansion may be due to either excess mass-energy, shear, or deceleration.

For the constant-mass isotropic black holes, Γ0
00 and u0

|0 are both zero, so the

shear tensor components (in the case of zero charge) are

σ00 = −1

3
θ(g00 + u0u0) = −Ṙ

R

2r + m

2r − m

(

−(1 − m
2r

)2

(1 + m
2r

)2
+

(2r − m)2

(2r + m)2

)

= 0

σ01 = σ10 =
1

2
u0|1 −

1

2
Γ0

01u0 =
−4m

2(2r + m)2
− 4m

2(2r + m)(2r − m)

(

−2r − m

2r + m

)

= 0

σ11 = −Γ0
11u0−

1

3
θg11 = − (2r + m)6

16r4(2r − m)2

(

−2r − m

2r + m

)

ṘR−Ṙ

R

2r + m

2r − m
R2
(

1 +
m

2r

)4

= 0

σ22 = −Γ0
22u0 −

1

3
θg22 = r2σ11 = 0

σ33 = −Γ0
33u0 −

1

3
θg33 = r2 sin2 θσ11 = 0. (6.79)

For the McVittie black holes the shear tensor components are

σ00 = u0|0 − Γ0
00u0 −

1

3
θ(g00 + u0u0) =

−4rmṘ

(2Rr + m)2
−

4rmṘ

(2Rr + m)(2Rr − m)

(

−2rR − m

2rR + m

)

− Ṙ

R





−
(

1 − m
2Rr

)2

(

1 + m
2Rr

)2 +
(2Rr − m)2

(2Rr + m)2





 = 0

σ01 = σ10 =
1

2
u0|1−

1

2
Γ0

01u0 =
−4mR

2(2Rr + m)2
− 4mR

2(2Rr + m)(2Rr − m)

(

−2r − m

2r + m

)

= 0

σ11 = −Γ0
11u0 −

1

3
θg11 = − (2Rr + m)5Ṙ

16r4R3(2Rr − m)

(

−2r − m

2r + m

)

− Ṙ

R
R2
(

1 +
m

2rR

)4

= 0

σ22 = −Γ0
22u0 −

1

3
θg22 = r2σ11 = 0



Chapter 6. The Influence of Black Holes on the Universe 83

σ33 = −Γ0
22u0 −

1

3
θg22 = r2 sin2 θσ11 = 0. (6.80)

Thus, the isotropic cosmological black holes are shear-free, which isn’t surprising

considering the metrics are composed in terms of isotropic spatial co-ordinates. They

do however have radial acceleration

a1 = Γ1
00(u

0)2, (6.81)

which is

a1 = − 64mr4

R2(2r + m)5(2r − m)
(6.82)

in the case of the constant-mass black holes and

a1 =
64mr4R3

(2rR + m)5(2rR − m)
(6.83)

in the case of the McVittie black holes. Note that the acceleration has opposite

signs for the different cosmological black holes, which might be related to the greater

decrease in the volume expansion for the constant-mass black holes than for the

McVittie black holes (cf. Equations 6.76 and 6.77). The acceleration is most likely

due to the pressure gradient exerting a force on the mass-energy.



Chapter 7

Summary and Discussion

New cosmological black hole solutions were obtained in this thesis by generalizing the

expanding Kerr-Schild cosmological black holes to obtain the charged case (Equa-

tions 3.26 and 3.53), by performing a Kerr-Schild transformation of the Einstein-de

Sitter universe instead of a closed universe to obtain non-expanding Kerr-Schild cos-

mological black holes in asymptotically-flat universes (Equations 3.16, 3.33, 3.47, and

3.57), and by performing a conformal transformation on the isotropic forms of the

metric for isolated black holes to obtain cosmological black holes that have com-

pletely physical spacetimes (Equations 4.5 and 4.28). The expanding Kerr-Schild

Schwarzschild black holes were studied more comprehensively to specifically yield the

black hole case (Equation 3.40) instead of just the white hole, and also for the case

of a radiation-dominated background universe (Equation 3.3) instead of just dust.

All the Kerr-Schild black holes, as well as the McVittie (Equation 4.15) and Gao &

Zhang (Equation 4.36) black holes were examined to see where they are physical and

are solutions of Einstein’s Field Equations.

While the inclusion of charge generally doesn’t significantly change the metric from

that of a Schwarzschild black hole, simply knowing that the exact solutions exist is

worthwhile, since there are no exact solutions for rotating cosmological black holes

for instance. Also, the non-expanding Kerr-Schild cosmological black holes previously

obtained were only in closed universes—it is possible to generalize these metrics to

flat or open universes by setting the radius of curvature to infinity or multiplying it

by i (as noted by Krasiński 1997); however, that still leaves the problem of physically

84
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interpreting the energy-momentum tensor before solutions can actually be said to

exist for these cases. Thus, the flat cases were interpreted to yield solutions.

Eardley (1974) found that white holes are unstable and will be converted into

black holes (which could have homogenized the early universe), so the cosmological

white holes presented in Chapter 3 may not be physically relevant. However, FRW

is itself unstable to perturbations, so even the cosmological black hole solutions are

probably unstable. Thus, stability was not an issue considered in this thesis, although

in the future it would be interesting to examine the influence of instabilities in the

background universe on black holes. It also may not be that likely to form Reissner-

Nordström black holes, although no explanation of their formation is needed any

more so than for Schwarzschild black holes or a perfectly homogeneous Big Bang if

they just happen to exist from the moment of the Big Bang, but quantum mechanics

should allow for Reissner-Nordström black holes to destroy themselves much more

easily than Schwarzschild black holes, so it would be unlikely they would remain

around long. However, no adequate theory of quantum gravity exists, so this thesis

was written simply within the context of General Relativity and such issues were not

considered.

Since expanding Kerr-Schild cosmological black holes are obtained by performing

a conformal transformation on isolated black hole spacetimes in Kerr-Schild form, it

might not be expected that performing the conformal transformation on isolated black

hole spacetimes in isotropic form would lead to a physically different solution being

as the different forms of the isolated black hole spacetimes are all simply related by

co-ordinate transformations. Yet whereas all other cosmological black hole solutions

(aside from Swiss cheese black holes) violate the energy conditions in some region

of spacetime, the isotropic expanding cosmological black holes were found to have

a physical energy-momentum tensor throughout spacetime. Although the pressure

(in the radiation-dominated case) and density become infinite at the event horizon,

the energy conditions are never violated, and it might not be that unrealistic to

have infinite pressure and density, since the universe would have began that way and

would simply need to maintain the original density and pressure at the event horizon.

The difference in outcome with the conformal transformation is more than can be

explained by the original co-ordinate transformation between different forms of the
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black hole metrics, as a co-ordinate transformation to the resultant spacetime can’t

make the unphysical spacetime look like the physical one. Thus, it must be the act of

performing the conformal transformation and the non-conformally-invariant nature

of the energy-momentum tensor that makes it possible to bring about completely

different physical scenarios depending on the original form of the black hole metric.

It is interesting to note that while Thakurta (1981) performed a conformal trans-

formation on the Boyer-Lindquist form of the Kerr metric (which without rotation

is the standard Schwarzschild form, Equation 2.15), Sultana (2003) performed a

conformal transformation on the Eddington-Finkelstein (Kerr-Schild) form of the

Schwarzschild metric. Had Thakurta interpreted the energy-momentum tensor to

study the density and pressure (rather than only so far as to say it is a perfect fluid

with heat conduction, which in that respect is the same result as Sultana’s), the pres-

sure and density would have been found to be negative inside the event horizon (much

like the McVittie solution), so in fact the very structure of interest in the spacetime

isn’t a valid part of the spacetime.

Generally, people appear to have been somewhat careless as far as actually in-

terpreting energy-momentum tensors and seeing whether they are physical, being

more content to simply examine the metrics and be satisfied that they look like the

superposition of an FRW universe and a black hole. Without the existence of a phys-

ical energy-momentum tensor, a metric doesn’t correspond to anything physically

possible, so it is fruitless to study metrics that have no corresponding mass-energy

distribution that could give rise to them, and it isn’t valid to refer to them as “solu-

tions”; otherwise, any random metric should be called a solution, since any random

metric will yield an energy-momentum tensor, just not necessarily a physical one.

If people wish to speak about the cosmological black holes as being models of pri-

mordial black holes that could exist in our own universe, it is clearly necessary to have

solutions for cosmological black holes that evolve from being in radiation-dominated

to matter-dominated background universes since the universe hasn’t been matter-

dominated forever. Thus, in this thesis it was shown that it is possible to match

radiation-dominated and matter-dominated Einstein-de Sitter universes directly to-

gether across a hypersurface of constant time. This isn’t the most realistic model of

a universe that evolves from radiation domination to matter domination, but it does
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provide a simple means to create primordial black hole solutions by matching the

cosmological black holes in radiation-dominated backgrounds to cosmological black

holes in matter-dominated backgrounds. Unrelated to the problem of cosmological

black holes, while it is possible to obtain better models of homogeneous cosmological

models that gradually evolve from radiation-domination to matter-domination, it is

still interesting to know that radiation-dominated and matter-dominated universes

can be directly matched, and the matching of a matter-dominated universe onto a

subsequently radiation-dominated universe would be useful as a realistic model for a

universe full of matter and antimatter that suddenly annihilates to leave radiation.

The primary motivation behind this thesis was to see how cosmological inhomo-

geneities can influence the expansion of the universe, not any specific interest in black

holes themselves. In fact, based on the considerations of event horizons in this the-

sis, the Vaidya-type and McVittie-type cosmological black holes may not actually

be black holes in the conventional sense: these spacetimes are not just conformal

transformations of black holes, so they don’t have to preserve the causal structure

at their event horizons, and the shrinkage of these surfaces in comoving co-ordinates

appears to allow photons to actually escape. The cosmological black holes do make

good models of inhomogeneities though because they are simple exact solutions, yet

unlike the isolated black hole spacetimes that contain any mass, charge, or rotation

at a singularity in the spacetime such that the energy-momentum tensor is simply

a vacuum, the cosmological black holes actually modify the background universe so

that the density and pressure need not be homogeneous and heat conduction may

be introduced. While the cosmological black holes may be obtained from the sim-

ple spacetimes for isolated black holes, the cosmological black hole spacetimes don’t

merely introduce a singularity in an otherwise homogeneous universe. This makes

them interesting models of cosmological inhomogeneities.

The cosmological black holes were found to decrease the universe’s volume expan-

sion, which must either be due to excess mass-energy associated with them, shear

they introduce, or deceleration (from a pressure gradient). Since the influence of

the cosmological black holes only falls off asymptotically with radius (unlike Swiss

cheese black holes) exact solutions for universes with more than one black hole would

be practically impossible to devise; however, it seems intuitive that a universe con-
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taining many such inhomogeneities would contain many such volumes of decreased

expansion. While a single black hole in an infinite universe has no effect on the vol-

ume expansion of the universe as a whole, if a universe were composed of a network of

volumes of decreased expansion, then the volume expansion of the universe as a whole

could be impacted. Also, it isn’t just the existence of excess mass-energy in the inho-

mogeneity that decreases the volume expansion: the fact that shear or deceleration

exists in certain cases means that according to Raychaudhuri’s equation the volume

expansion of the universe is decreased even without any extra mass-energy in the

inhomogeneity. Thus, for a more realistic model of an inhomogeneous universe that

contained several overdensities and underdensities, even if the redistribution of mass-

energy were such that it had no overall impact on the universe’s expansion, and even

if acceleration tended to cancel deceleration, any shear due to the inhomogeneities

would always tend to decrease the universe’s expansion.

Much of the previous work examining the impact of inhomogeneities on the uni-

verse’s expansion has attempted to show that the backreaction of inhomogeneities

on the background universe would actually lead to the universe accelerating; how-

ever, much of this work appears to have been biased toward trying to explain the

cosmological constant as being due to the universe’s structure formation. Also, this

work depends on spatial-averaging approximations, which depending on how they

are handled, may lead to completely different results, so it doesn’t yield exact results

that can be easily trusted. Raychaudhuri’s equation applies even in the Newtonian

case though, so shear will decrease the volume expansion regardless of the spatial-

averaging problem in General Relativity. Thus, it seems likely that shear (assuming

vorticity and acceleration are insignificant) should be more significant than any purely

relativistic effects due to spatial averaging, so that inhomogeneities should generally

be expected to decrease the universe’s volume expansion.

Assuming inhomogeneities wouldn’t tend to introduce acceleration in the velocity

field (with regions of acceleration only being relevant locally for pressure-supporting

inhomogeneities against collapse), if the expansion of the universe were to be acceler-

ated, then according to Raychaudhuri’s equation, it would have to be due to vorticity,

yet vorticity is generally assumed to be zero in studying the backreaction of inhomo-

geneities on the universe. If the expansion of our universe is accelerating, and if this
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acceleration isn’t due to a cosmological constant, vorticity would seem to be the best

explanation, although it appears that rotation in the universe only operates at the

level of individual objects to prevent them from collapsing, rather than there being

any rotation of the universe as a whole. For the sake of speculation, if frame dragging

due to the Lense-Thirring effect were to cause the universe to be assigned some slight

rotation from each rotating object within it, then macroscopically it could behave like

it had some slight rotation. This can be understood by comparing with the Gödel

(1949) universe. In the Gödel universe, the individual rotation of the matter at each

point in the manifold is able to maintain the universe against collapse because the

inertial compass rotates along with each point such that inertially the matter at each

point is at rest and sees the rest of the universe revolving around it. Normally when

we think of rotation, we think of an object rotating with respect to the inertial com-

pass without affecting it, but according to General Relativity, frame dragging causes

the inertial compass to be rotated slightly in the sense of a rotating object. Since the

complete rotation of the inertial compass along with the matter at each point in the

Gödel universe is able to give rise to the universe supporting itself with rotation, then

the slight rotation of the inertial compass along with each of the rotating objects in

our universe could conceivably give rise to the universe being partially rotationally

supported.

It is interesting that no one has been able to obtain solutions for Kerr cosmological

black holes. As discussed by Thakurta (1981), this isn’t surprising since no one has

obtained an exact solution for a Kerr interior either. A solution exists only for an

isolated rotating ring singularity, not an extended rotating object. Because the ring

singularity isn’t a part of the spacetime, in the sense that its mass and angular

momentum don’t show up in the energy-momentum tensor, the Kerr solution isn’t

really a solution for a rotating object. Trying to obtain a cosmological Kerr black

hole is similar to the problem of trying to find a Kerr interior solution for a rotating

body, since embedding a Kerr black hole in a cosmological model would require it to

swirl the surrounding mass-energy via the Lense-Thirring effect. Either the physics

involved in rotation is simply too complicated (tending to deform a sphere into a

Maclaurin spheroid etc.) for us to interpret the energy-momentum tensors, or General

Relativity may not be compatible with the existence of absolute rotation. The only
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real solutions with rotation are homogeneous spacetimes like the Gödel universe, yet

in the Gödel universe the matter at every point is individually in rotation relative to

the matter at other points, so there really is no absolute rotation (although due to

the fact that the inertial compass rotates along with the matter at each point, every

inertial observer will infer that the rest of the universe is in absolute rotation about

it). While the existence of absolute rotation is generally assumed, it should be kept

in mind that this may not be valid.

To summarize, several new cosmological black hole solutions have been obtained,

most notably the expanding isotropic black holes, which have completely physical

energy-momentum tensors. Previous solutions for Kerr-Schild and isotropic cosmo-

logical black holes have been interpreted more carefully and analyzed to determine

what regions of spacetime satisfy the energy conditions and can be deemed valid. Pri-

mordial black holes have been obtained via direct matchings of radiation-dominated

cosmological black hole backgrounds onto dust backgrounds. Finally, it has been con-

cluded that the most likely impact of inhomogeneities in a universe with overdense

and underdense regions would be to introduce shear, increasing the deceleration of

the universe’s expansion compared with that of a homogeneous universe.
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Krasiński, A. 1997, Inhomogeneous Cosmological Models (Cambridge: Cambridge U.

Press)

Lauer, T. R., & Postman, M. 1994, ApJ, 425, 418
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(Paris: Masson)

McClure, M. L., & Dyer, C. C. 2004, in Carnegie Observatories Astrophysics Se-

ries, Vol. 2: Measuring and Modeling the Universe, ed. W. L. Freedman (Pasadena:

OCIW), http://www.ociw.edu/ociw/symposia/series/symposium2/proceedings.html

McVittie, G. C. 1933, MNRAS, 93, 325

Moffat, J. W., & Tatarski, D. C. 1995, ApJ, 453, 17

Mould, J. R., et al. 2000, ApJ, 529, 786

Nambu, Y. 2000, Phys. Rev. D, 62, 104010

Nambu, Y. 2002, Phys. Rev. D, 65, 104013

Nayak, K. R., MacCallum, M. A. H., & Vishveshwara, C. V. 2000, Phys. Rev. D, 63,

024020

O’Brien, S., & Synge, J. L. 1952, Jump Conditions at Discontinuities in General

Relativity, Report A9 (Dublin: Dublin Institute for Advanced Studies)

Parnovsky, S. L., Kudrya, Y. N., Karachentseva, V. E., & Karachentsev, I. D. 2001,

Ast. L., 27, 765

Patel, L. K., & Trivedi, H. B. 1982, J. Ap. A., 3, 63

Penrose, R. 1979, in General Relativity: An Einstein Centenary Survey, eds. S. W. Hawk-

ing & W. Israel (Cambridge: Cambridge U. Press), 581

93



Perlmutter, S., et al. 1999, ApJ, 517, 565

Prasanna, A. R. 1968, Current Sci., 37, 430

Raychaudhuri, A. 1955, Phys. Rev., 98, 1123

Reichenbach, H. 1956, The Direction of Time (New York: Dover)

Russ, H., Soffel, M. H., Kasai, M., & Börner, G. 1997, Phys. Rev. D, 56, 2044

Sakai, S., et al. 2000, ApJ, 529, 698

Sklar, L. 1974, Space, Time, and Spacetime (Berkeley: U. of California Press)

Stephani, H. 1990, General Relativity: An Introduction to the Theory of the Gravita-

tional Field (2nd ed.; New York: Cambridge U. Press)

Stephani, H., Kramer, D., MacCallum, M. A. H., Hoenselaers, C., & Herlt, E. 2003,

Exact Solutions to Einstein’s Field Equations (2nd ed.; Cambridge: Cambridge U.

Press)

Sultana, J. 2003, Ph.D. Thesis, U. of Toronto

Sultana, J., & Dyer, C. C., 2005, Gen. Relativ. Gravit., 37, 1349

Tegmark, M., de Oliveira-Costa, A., & Hamilton, A. J. 2003, Phys. Rev. D, 68, 123523

Thakurta, S. N. G. 1981, Indian J. Phys., 55B, 304

Tolman, R. C. 1934, Proc. Nat. Acad. Sci. U.S., 20, 169

Vaidya, P. C. 1977, Pramana, 8, 512

Wald, R. M. 1984, General Relativity (Chicago: U. of Chicago Press)

Wheeler, J. A. 1964, in Gravitation and Relativity, eds. H.-Y. Chiu & W. F. Hoffman

(New York: W. A. Benjamin, Inc.), 303

Willick, J. A. 1999, ApJ, 522, 647

Zaroubi, S. 2002, preprint (astro-ph/0206052 v2)

Zehavi, I., Riess, A. G., Kirshner, R. P., & Dekel, A. 1998, ApJ, 503, 483

94


