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Abstract

Gravitational Lensing in an Exact Locally Inhomogeneous Cosmology

Allen Attard

Doctor of Philosophy

Graduate Department of Astronomy and Astrophysics

University of Toronto

2005

A Recursive Swiss-Cheese (RSC) cosmological model is an exact solution to Einstein’s

general relativistic field equations allowing for dramatic local density inhomogeneities

while maintaining global homogeneity and isotropy. It is constructed by replacing spher-

ical regions of an FRW background with higher density cores placed at the centre of a

Schwarzschild vacuum, with each core itself potentially being given the same treatment

and the process repeated to generate a range of multifractal structures.

Code was developed to tightly pack spheres into spaces of constant curvature in an

efficient manner, and was used to develop libraries of packings with positive, negative,

and zero curvature. Various projections are used to illustrate their structure, and means

of measuring its dimensionality are discussed. A method by which these packings can

be used as building blocks of an RSC model, along with a way of selecting parameters

to define the model, is described, and a coordinate system allowing a relativistically

consistent means of synchronizing its various components is developed.

Formulations of the optical scalar equations for the expansion and shear rates of a

beam are considered, and a set suitable for numerical integration selected. The forms

of the null geodesic beam trajectories in each region of the model are computed, and

a parallel propagated shadow plane basis that can be consistently followed between the

various model sections is established. This allowed the development of code using a fourth

order, variable step size Runge-Kutta integration routine to compute the gravitational
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lensing effect within an RSC model by tracking the amplification and distortion of a

series of beams that are propagated through it. The output generated allows the redshift

evolution of these quantities to be plotted for each beam, and enables maps to be made of

the “observed sky”. The amplification signature produced by a single lens in the model

is examined, and the form shown to be generally consistent with that found using a thin

lens approximation, particularly when the lensing is weak. Distortion values are likewise

shown to be reasonable, and results derived from propagating beams through a full RSC

model are also presented.
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Chapter 1

Introduction

The light we observe when we look out into the universe has travelled a great distance

to reach us and during this time, it is influenced by the space through which it travels.

Einstein’s general theory of relativity tells us that the shape of spacetime is determined

by the mass (or energy) it contains. One of the most interesting consequences of this

spectacular insight is that light propagating in this warped space appears to be bent and

distorted by the matter distribution it encounters. This gravitational lensing effect has

been verified experimentally and is now providing us with a powerful tool in our quest

to probe the structure of the universe, yielding data on matter that we can see directly,

as well as on that which is dark and whose existence can only be inferred through the

gravitational effect it produces.

If the mass in the universe were distributed smoothly at all scales, then the universe

would have a constant curvature. It would be homogeneous and isotropic, so each point

in it would be the same as any other point, and from a given vantage point, the ap-

pearance in any direction would be the same as it is in any other direction. These two

properties define the Cosmological Principle which underlies much of modern cosmology.

Observational evidence, such as that obtained through the investigation of the cosmic

microwave background, does indeed indicate that when examined on large enough scales,

1



2 Chapter 1. Introduction

the universe is largely homogeneous and isotropic. However, this is clearly not the case on

smaller scales. Filamentary structures and large voids become apparent in observational

data on scales of about 10 to 100 Mpc, and there is an abundance of structure at even

smaller scales, with galaxies grouping into clusters and clusters into super-clusters.

While the behaviour of a photon travelling through a smooth universe that adheres to

the Cosmological Principle at all scales can be determined fairly easily, the presence of all

of the structure in the real universe makes this task more daunting. With the increasingly

important role that gravitational lensing is playing in astrophysics, it is useful to have a

relativistically consistent model that can be used to investigate the lensing effect of this

structure. The Recursive Swiss-Cheese (RSC) model is one such model that lends itself

to the investigation of the potentially complicated photon trajectories that can arise due

to gravitational lensing in a universe with interesting matter distributions.

1.1 Notation and Conventions Adopted

Signature: A timelike signature is used so that temporal spacetime intervals are positive

while spatial ones are negative.

Tensor Indices: Unless otherwise indicated, lower case Latin letters will be used for tensor

index values running from 0 to 3, with 0 being used for the timelike component. Lower

case Greek letters will be used to denote the spacelike subset running from 1 to 3.

Spinors: Upper case Latin letters will be used for spinor indices, and can have the values

of 1© or 2©, where the numbers are circled as customary in order to distinguish them

from values of tensor indices. The complex conjugate of a spinor will be noted by a bar

over it and a dot over its index.

Derivatives: Unless otherwise noted, a quantity with a dot over it will represent the full

derivative of that quantity with respect to an affine parameter. The covariant derivative

will be indicated using a comma in the indices, so for instance, gab, c would be used to
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denote the covariant derivative of the metric tensor.

Summation Convention: The Einstein summation convention is assumed for repeated in-

dices so

xaya =
3∑

a=0

xaya

Coordinate Variables: In FRW regions, spacetime positions will be described using xa =

(cT, ω, θ, φ), where ω is a radial value, while θ and φ are the “latitude” and “longitude”

respectively of conventional spherical polar coordinates. These are all angular except

for ω which is linear when K = 0. Schwarzschild regions will use (ct, r, θ, φ). The

usual Cartesian coordinates (x, y, z) will be used for Euclidian spaces, and extended

to (x, y, z, w) when discussing spatial positions in an embedding space for curved 3-

manifolds.

Variables: Aside from the above, there are a number of variables that appear throughout

the thesis. These are summarized below for reference.

• K = 0,±1 is the curvature indicator.

• R is used for the FRW scale factor.

• ka is the tangent vector to the null geodesic followed by a beam.

• β is the phase of the tidal force.

• ϕ is the phase of the shear rate.

• λ and τ are used as affine parameters along null and timelike geodesics respectively.

They will be chosen to have units of length.

• A subscripted value of α denotes an angle.
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1.2 Swiss-Cheese Cosmology

As a result of the strong connection between the geometry of spacetime and the matter

that it contains, general relativity does not allow an arbitrary matter distribution to

be superimposed on a given spacetime structure. Einstein’s general relativistic field

equations can be written as:

Gmn = Rmn − 1

2
Rb

bgmn + Λgmn = −κTmn , (1.1)

where the Einstein tensor Gmn describing the shape of the universe is determined by

the energy momentum tensor Tmn. Here, gmn is the metric tensor, Rmn is the Ricci

tensor found via contraction of the Riemann Curvature tensor, Rab = Rc
acb , Λ is the

cosmological constant, and κ is the constant

κ =
8πG

c4
≈ 2.07× 10−43 kg−1m−1s2 .

Clearly, adding matter to a universe described by some Gmn will change Tmn and hence,

Gmn itself. Thus, to have a relativistically consistent model of the universe to work with,

the two sides must be specified simultaneously.

1.2.1 The Schwarzschild Solution

One of the simplest solutions to the field equations was found by Karl Schwarzschild

in 1916, shortly after Einstein published his field equations. It is known as the exterior

Schwarzschild solution and describes the vacuum that lies outside a spherically symmetric

distribution of matter. Generalized to include the cosmological constant, it has the line

element:

ds2 = f(r) d(ct)2 − dr2

f(r)
− r2 dΩ2, (1.2)

where

f(r) = 1− 2m

r
− Λr2

3
(1.3)
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and dΩ2 describes the line element on the surface of a sphere,

dΩ2 = dθ2 + sin2 θ dφ2 . (1.4)

The quantity m is the geometrized mass, which has units of length and is given by

m =
GM

c2
, (1.5)

where M is the total mass enclosed by the vacuum, a relationship found by considering

the Newtonian limit of the solution to the field equations (see for instance, Stephani,

1994).

This metric is manifestly static, in agreement with Birkhoff’s theorem which states

that every spherically symmetric vacuum solution to the field equations must be indepen-

dent of time. Note that the coordinate time t does not have any deep physical meaning.

It is simply the proper time for a hypothetical set of observers sitting in the vacuum at a

constant distance from the central mass. The spacelike r coordinate is defined such that

the surface area of a sphere specified by r = constant, t = constant is 4πr2.

Given the form of f(r) in equation (1.3), it is clear that the metric has a real singularity

at r = 0. However, this point is contained inside the central mass and so the singularity

will not present a problem when working inside the vacuum. The metric is also apparently

singular when f(r) = 0. In the case where Λ = 0, this occurs at r = 2m, known as

the gravitational or Schwarzschild radius of the source mass. Unlike the one at r = 0

though, this singularity is not fundamental, but only appears as a result of the choice of

coordinates and can be removed by a coordinate transformation.

1.2.2 The FRW Model

Another solution to the field equations that also satisfies the Cosmological Principal is

described by the Robertson-Walker (RW) line element:

ds2 = d(ct)2 −R2(ct)

(
dr2

1−Kr2
+ r2 dΩ2

)
, (1.6)
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where R is a scale factor, dΩ2 is the spherical line element given in (1.4), and K = 0,±1 is

a parameter often referred to as the curvature indicator. When ct = constant, the spatial

hypersurface is topologically flat in the case of zero curvature when K = 0, spherical

in shape and topologically closed in the case of positive curvature when K = 1, and

hyperbolic in shape and topologically open in the case of negative curvature when K =

−1. A coordinate transformation allows this metric to be written in a more symmetric

and convenient form:

ds2 = d(cT )2 −R2(cT )[ dω2 + S2
K(ω) dΩ2] , (1.7)

where

SK(ω) =
sin(

√
Kω)√
K

=





sinh(ω) : K = −1

ω : K = 0 .

sin(ω) : K = +1

(1.8)

The dynamics of the universe described by this line element are completely contained

in the evolution of the scale factor R(cT ). Any observers comoving with the universe

remain at fixed spatial coordinates (ω, θ, φ) and have a proper time measured by cT .

For RW metrics, the energy momentum tensor must be that of a perfect fluid (see for

instance, Stephani, 1994) so

Tmn = pgmn +
(
ρ− ucuc

p

c2

)
umun , (1.9)

where p and ρ are the pressure and density of the matter respectively, and ua is the

4-velocity. The expression for G00 in the field equations (1.1) is given by

R00 − 1

2
Ra

ag00 + Λg00 = −κT00 . (1.10)

When considering a matter dominated universe, pressure is typically negligible (see for

instance, Peebles, 1993). The only non-zero component of the energy momentum tensor

of the pressureless “dust” at rest in the coordinate system (1.7) is thus T 00 = ρc2, so

(1.10) gives

R00 − 1

2
Ra

a + Λ = −κρc2 (1.11)
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in this system. The 00 component of the Ricci tensor is given by

R00 =
3R̈

R
,

where for this derivation, Ṙ ≡ dR(cT )
d(cT )

, and the Ricci scalar is

Ra
a =

6
(
R̈R + Ṙ2 +K

)

R2
.

Using these in (1.11),

3R̈

R
− 3(R̈R + Ṙ2 +K)

R2
+ Λ = −κρc2

3

R2

[(
dR

d(cT )

)2

+K

]
=

8πGρ

c2
+ Λ . (1.12)

This equation is typically referred to as the Friedmann Equation, and cosmological models

that have a RW metric and satisfy the Friedmann Equation are collectively known as

Friedmann Robertson Walker (FRW) models.1

If Λ = 0, the dynamical behaviour of the universe is set by the value of K. In the

case that K = −1, the universe expands monotonically and in an unbounded fashion.

The situation where K = 0 is the critical case which also has the universe expanding

monotonically, though the expansion is bound, with the expansion velocity approaching

zero as the radius of the universe approaches infinity. When K = 1, the universe begins

by expanding, but reaches a maximum extent and recollapses again. If Λ > 0, then it is

possible to define a critical value,

Λc =
1

R2
0

=
ρ0c

2

4πG
,

which produces an unstable static model, the so-called Einstein universe. In general

though, the presence of a non-zero Λ term does lead to some interesting behaviour in the

dynamics of the universe when K = 1. For values of Λ < Λc, the universe still reaches

1Models with non-zero Λ terms should technically be referred to as Friedmann Lemâıtre Robertson
Walker (FLRW) models, though this practice seems far from universal.
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a maximum extent before turning around and recollapsing. In the case when Λ > Λc

though, the topologically closed universe experiences unbound expansion. Interestingly,

if Λ is only slightly greater than Λc , the universe initially experiences a slowing of its

expansion, reaching a quasi-stationary phase before accelerating to expand to infinity.

Both the K = 0 and K = −1 cases continue to expand to infinity with a positive Λ

term. Recollapse is possible if this constant were negative, but there is no observational

evidence for such an attractive force.

1.2.3 Combining the Solutions

A Swiss-Cheese (SC) universe has as its starting point, an FRW universe uniformly filled

with pressureless dust. This universe may be expanding, contracting, or static as desired.

Structure is added to the model by inscribing a sphere in this space and replacing the

matter it contains with a smaller, spherically-symmetric mass distribution with a higher

average density, placed at the centre of the hole created. This results in a model universe

that contains three distinct phases – the initial FRW region, a spherically-symmetric core

mass distribution, and a vacuum phase in the spherical shell separating the two (which

must be the exterior Schwarzschild solution according to Birkhoff’s theorem). Each of

these phases is still an exact solution and in fact, can be matched at their boundaries

so that the total solution still satisfies the field equations exactly (Einstein and Straus,

1945; Weinberg, 1972; Dyer, 1973). The gravitational field outside the vacuum is not

affected by the change made within the hole, and as a result, the solution will remain

exact under a uniform expansion (or contraction) of the background universe. Other

spheres can then be inscribed in the background FRW region and the mass contained

replaced in a similar fashion until some desired fraction of this region has been replaced

by a set of vacuum holes, each containing denser spheres at their centre. Though the

inscribed spheres may be tangent to one another, as long as they do not overlap, the

vacuum regions will remain distinct and the field equations will continue to be satisfied
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as the boundaries of the holes evolve with the background universe.

Notice that other than requiring the core to be spherically symmetric, the model does

not place any restriction on how the mass inside must be distributed. One may choose

to describe it using the Schwarzschild interior solution so that each hole contains the

complete Schwarzschild solution. Another option is to use a Tolman solution (Tolman,

1934), filling the core with the pressureless dust found in the background, but at a higher

average density. In fact, a uniform distribution of this dust will allow the core to be

described by a RW metric, and provided a suitable choice of dynamical parameters is

made, the core can itself be described by an FRW model that has been embedded in the

background one. This self-similarity gives rise to a natural way of creating substructure

in the holes that have already been defined and will indeed be applied later to generate

the RSC model used in this thesis.

While the construction as described thus far may seem contrived, with its sharp

transitions between matter and vacuum, one should bear in mind that this is only a

simplification to make the model easier to work with. Theoretically, there is nothing to

prevent one from smoothing the transitions by using thin spherical shells of gradually

varying dust density at the boundary of each vacuum region. These can be chosen so that,

for instance, the central cores have density profiles that approximate the King models

often used to describe galactic mass distributions.

From a general relativistic perspective, the SC model is quite unique in that it is

an exact solution to the field equations that can contain substantial inhomogeneities

and interesting matter distributions. It is a self-consistent theoretical construct that

provides a powerful way of gaining insight into the gravitational lensing described by

general relativity. The high degree of symmetry and the conceptual simplicity of its

construction make it very appealing from a geometrical standpoint too. As a cosmological

model, SC (and, as shall be seen, RSC) adheres to the cosmological principle. It is

clearly homogeneous and isotropic on large scales in that it contains no preferred point
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Figure 1.1: With a little deformation, an arbitrary surface placed in a simple SC model
(left side) can be made into a surface on which the Weyl tensor is zero (right side).

or direction. From a gravitational perspective, this is equivalent to requiring that one

be unable to orient oneself using a gravitational compass. That is to say there exists a

surface over which the components of the Weyl tensor vanish. Physically, this means that

there exist no tidal forces on this surface. As seen in Figure 1.1, with a little deformation,

the model allows one to define such a surface over the entire range of scales which is a

remarkable property for a model that can contain a high degree of local inhomogeneity.

1.3 Gravitational Lensing

1.3.1 The Thin Lens Approximation

To investigate the effect that some distribution of matter has on beams of light, one

ideally wants to follow these beams through the distribution, keeping track of their cross-

sectional area and shape in order to be able to determine what an observer of the beams

would measure. Linearized ray-tracing techniques are often used in this regard, com-
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monly projecting the mass distribution down into a plane and assuming all bending

takes place instantaneously when a ray hits the plane. While relatively straightforward

to compute, such a technique has limitations, which is not surprising since the propaga-

tion of light is an inherently non-linear process. Problems can arise trying to ensure that

flux is conserved, and one generally needs to assume an angular size distance relationship

a priori, even though this relationship is dependent on the structure encountered by each

individual beam. It also is not clear how best to deal with multiple lensing events with

this scheme. Nonetheless, it is worth briefly going over this method as it provides a

baseline to which other methods can be compared.

A ray of light passing outside a static, spherically symmetric mass M (a Schwarzschild

lens), with an impact parameter h, experiences a deflection by the angle

αE =
4GM

c2h
=

4m

h
,

which is referred to as the Einstein angle. This is valid in the weak field limit, where

m/h¿ 1 and hence, deflection angles are small. If the ray passes through the mass, then

M →M(h), representing the mass contained within a cylinder of radius h, with an axis

parallel to the ray and passing through the centre of the lens (see, for instance Dyer and

Roeder, 1981; Schneider et al., 1992). While the light would actually experience bending

due to the mass all along its trajectory, the entire bending is applied at the instant the

beam hits the plane onto which the lens has been collapsed (the lens plane).

Using simple trigonometry (refer to Figure 1.2 for a schematic), the angular separation

of the source and the lens, αs, can be related to the angular separation of the observed

source and the lens, αs′ , via the relation

αs = αs′ − α0

αs′
, (1.13)

which is often referred to as the lens equation, where

α0 ≡
√

4mDLS

DOLDOS

(1.14)
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O L

S

S′

αs

h
αs′

DLS

αE

DOS

DOL

Figure 1.2: The various quantities used in the ray tracing approach. The observer is at
O, the lens at L, and the actual source at S, with the apparent source lying at S′. The D
values are angular size distances, while αE is the Einstein angle, and αs and αs′ are the
respective angular offsets of the source and apparent source from the lens. The impact
parameter h is the distance from the lens where all the bending is assumed to happen.

is a “characteristic angle” of the system (Schneider et al., 1992). The quantities DLS,

DOL, and DOS are angular size distances, and can be computed via the Dyer-Roeder

relations (see section 5.2.2).

One can consider the lens equation to be a mapping that takes each point within

some source of photons (often referred to as the source plane) and relates it to one or

more points in the observed sky (the image plane). The number of images produced

from a given source depend on the symmetry and opacity of the lens, along with the

impact parameter of the beam under consideration. As a gravitational lens re-directs

rays of light and can allow rays that would otherwise never meet to converge, some of

these images may be brighter than they would have appeared were there no lens between

the source and observer.2 Considering the primary (brightest) image produced by the

2Of course the lenses cannot change the amount of radiation leaving a source, so the amplification of
a particular source point would only be experienced by a particular observer or set of observers – others
would experience a deamplification of the source, or even have photons from it diverted entirely.
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lens, the amplification can be written as

A =
1

4

(
α̃s√
α̃2

s + 4
+

√
α̃2

s + 4

α̃s

+ 2

)
, (1.15)

where α̃s ≡ αs/α0 (Schneider et al., 1992). This will be used in Chapter 6 to compare to

the amplification computed by following the cross-sectional area of a beam directly.

1.3.2 The Optical Scalar Approach

An alternative approach to investigating gravitational lensing (see, for instance, Dyer,

1973; Harper, 1991), which is the one that shall be adopted for this thesis, is to use the

optical scalar equations developed by Sachs (1961). Besides enabling a proper non-linear

treatment of the problem, this approach does not require one to specify an angular size

distance relation a priori, and is also automatically flux conserving and self consistent.

Further, as shall be seen below, when following the optical scalars, the geodesic deviation

along the path of the beam is explicitly considered. Hence, for beams that travel along

paths in regions of space where the geodesic divergence does not vary too radically from

neighbouring paths (which is most of the time), there are fewer beams that need to be

followed to get the same information out compared to a ray-tracing approach. The optical

scalar approach is also not restricted to small bending angles, and when combined with

the RSC model, allows for the treatment of dynamic lenses and beams that experience

encounters with multiple lenses during their propagation.

In conventional two or three-dimensional space, a geodesic is easily visualized as the

shortest possible curve connecting two points. In a four-dimensional pseudo-Riemannian

space things become more complicated as spacetime intervals can be positive (spacelike),

zero (null), or negative (timelike). However, while the intuitive notion of a geodesic must

be generalized through the use of the variational principle such that

∫
L dλ = extremum (1.16)
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for the Lagrangian L = ( ds/ dλ)2 of a curve parameterized by λ, the curves still remain

well-defined as the extremal paths between two points and are fundamentally connected

to the symmetry of the spacetime under consideration. Using a geometrical optics de-

scription, light propagates along null geodesics and can be described as a set of wavefronts

or contours of constant phase, everywhere normal to these geodesics. The optical scalar

approach involves following the path of a beam which can be thought of as an infinitesi-

mal but finite, bundle of light rays. Though in general there are three optical scalars that

can be used to describe the bundle, namely its rate of expansion, shear, and rotation, the

geometrical optics approach requires the use of an irrotational null geodesic congruence.

Physically, this means that the bundle (congruence) of rays is not twisted. If rotation

were allowed, then the axis of rotation would generate a caustic on the wavefront where

it would not be possible to uniquely specify a normal to the wave and consequently, one

would be unable to follow its propagation through space. A SC model does not induce

any twisting of the beam so this limitation will not restrict the analysis.

Hence, there are two optical scalars that need to be followed as a beam of light is

propagated through a SC model. The rate of expansion, ϑ, simply describes the change

in the scale of the beam and is thus a real quantity. The shear rate σ on the other hand,

is a complex quantity as it describes the rate of distortion of the beam which has both

a magnitude and direction. These two quantities propagate through space according to

two coupled, non-linear differential equations, the optical scalar equations (OSE):

ϑ̇+ ϑ2 + σσ = R (1.17a)

σ̇ + 2ϑσ = Feiβ. (1.17b)

Here, the dot denotes differentiation with respect to an affine parameter along the path

of the beam, while the bar indicates complex conjugation. R is the Ricci driving term

which describes the influence of matter that lies within the beam. It results in a uniform

expansion (or contraction) of the beam area and is depicted on the left side of Figure 1.3.
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r0

r0

r1

a e

be

Figure 1.3: In the diagram on the left, the effect of the expansion rate on an initially
circular beam is depicted. Here, r1 = r0 (1 + ϑdλ) for some affine parameter λ. The dia-
gram on the right demonstrates the effect of pure shear on an initially circular beam. The
semi-axes of the resultant ellipse are given by ae = r0 (1 + |σ|dλ) and be = r0 (1− |σ|dλ).

F is the Weyl driving term which describes the tidal force due to matter lying outside of

the beam. Its effect is shown on the right side of Figure 1.3. Notice that to first order,

shear alone does not change the area of the beam. To this order, the initially circular

beam is distorted to an ellipse and does not become banana-shaped, which is reasonable

for a beam with a small cross-section. When considered from a coordinate system that is

parallel propagated along the beam, the vector sum of all the tidal fields felt at a given

point has an orientation of β/2 (refer to Figure 1.4).

The terms R and F are defined as follows:

R ≡ 1

2
Rabk

akb (1.18)

Feiβ ≡ Rabcdk
akbt̄ct̄d , (1.19)

where Rabcd is the Riemann curvature tensor, Rab is the Ricci tensor, ka is a null tangent

vector to the beam path, and ta is a complex null vector (with t̄a its conjugate) that is

parallel propagated along with the beam such that for the metric signature of -2 chosen,

taka = 0 and tat̄a = −1 (1.20)

(Dyer, 1973). The quantities ta and t̄a span the shadow plane, which is the plane in which

the cross-section of the beam lies and the angle β is defined. The factor of a half in the
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/β 2
beam

hole centre

Figure 1.4: A graphical depiction of β as defined in the shadow plane of the beam. The
spot labelled “hole centre” is the perpendicular projection of the centre of a lens (the
core of a hole) onto this plane. In the RSC model, there is at most one mass distribution
providing a tidal force at any given time so the meaning of the angle β is unambiguous.
While the axes can have an arbitrary orientation, they must be consistent between holes
and can be written in terms of ta and t̄a.

orientation of the tidal force arises because the definition of Feiβ contains the square of

t̄ a. Since F , Rabcd, and ka are real quantities, it follows that the angle describing the

orientation of the complex vector t̄a must be half the value of β.

Equations (1.18) and (1.19) can be rearranged to make them easier to work with.

Since ka is tangent to the null geodesic followed by the beam, kaka = 0. Using this,

along with the field equations (1.1) inside (1.18), and replacing the Riemann tensor in

(1.19) with the relation

Rab
cd = Cab

cd +
1

2
(ga

cR
b
d + gb

dR
a
c − gb

cR
a
d − ga

dR
b
c)−

1

6
(ga

c g
b
d − ga

dg
b
c)R

n
n , (1.21)

where Cab
cd is the Weyl tensor, we get:

R = −κ
2
Tabk

akb (1.22)

F = Cabcdk
akbt̄ct̄d . (1.23)

In order to make the OSE suitable for numerical integration, some manipulation is re-

quired. There are various approaches that one can take, and three of these are presented

below.
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The (A, ξ, ϕ) Form

Perhaps the clearest way to restate the equations is that used by Dyer (1973) and Harper

(1991), which relates ϑ and σ to more intuitive physical quantities. Expressing ϑ in terms

of A, the cross-sectional area of the beam, and considering only the effect of the Ricci

driving term,

δA = A1 − A0 = π[r0(1 + ϑ dλ)]2 − πr2
0 (1.24)

δA = 2πr2
0ϑ dλ+ πr2

0ϑ
2 dλ2 , (1.25)

where λ is the affine parameter along the beam and r0 is the initial radius of the circular

beam cross-section. Dropping the higher order term in the limit of an infinitesimal beam

and rearranging,

ϑ =
Ȧ

2A
. (1.26)

Next, write σ as

σ = |σ|eiϕ =
ξ

A
eiϕ , (1.27)

where ξ is the “scaled” shear rate, a real, positive quantity, and ϕ is the phase of the shear

rate. Using these values in (1.17), and separating the real and imaginary components of

the shear rate results in the following system of differential equations:

Ä =
Ȧ2

2A
− 2ξ2

A
+ 2RA (1.28a)

ξ̇ = AF cos(β − ϕ) (1.28b)

ϕ̇ =
A

ξ
F sin(β − ϕ). (1.28c)

For an unsheared beam with a circular cross-section, ξ = 0 and ϕ is undefined. At the

first encounter with a lens, the beam starts to shear with an orientation imposed by the

lens so ϕ/2 becomes defined with an initial value of β/2.

The quantities A, ξ, and ϕ can be used for the numerical integration of the optical

scalars as they are well-behaved at caustics where the beam is reduced to a point or
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line of zero area (Harper, 1991). From the form of the OSE, it is clear that physically,

the behaviour of the system is the same over a caustic regardless of whether A is kept

positive and ϕ changes by π (to describe the rotation of the growing and shrinking axes

of the ellipse by π/2), or if A is allowed to change sign while ϕ remains continuous. This

latter description is preferable from a numerical standpoint since it means the derivative

Ȧ changes smoothly across the caustic. A negative area should not be of any concern.

In a sense, the beam is turned inside-out as it passes through a line caustic and one need

simply take the absolute value of A whenever a physical area is desired. Note that in this

case, equation (1.27) would need a slight modification as the ratio ξ/A would no longer

always be positive, with the change in sign for σ across a caustic now coming from the

area instead of the phase term.

The (C±, α±) Form

Another way of expressing the OSE that is suited to situations containing a high degree

of symmetry is due to Kantowski (1968), and has been used by Dyer and Roeder (1981)

and Dyer (1986) among others. He defines four real parameters, C± and α±, which are

related to the principal curvatures3 of the wavefront, and their directions respectively.

They can be written in terms of the optical scalars ϑ and σ via

ϑ± σ =
Ċ±
C±

+ iα̇± (1.29)

Using these in (1.17), with the restriction that the expansion rate ϑ be real, yields the

expressions

C̈±
C±

+ α̇2
± = R±F cos(β) (1.30a)

α̈± + 2α̇±
Ċ±
C±

− 2σrσi = ±F sin(β) (1.30b)

where σr and σi are the real and imaginary components of σ respectively. For a particular

choice of orientation of the system in which the directions are expressed, α̇+ = −α̇−.

3The principal curvatures are the extrema in curvature of the wavefront.
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Writing this quantity as simply α̇, equations (1.30) become

C̈±
C±

+ α̇2 = R±F cos(β) (1.31a)

α̈ + α̇

(
Ċ+

C+

+
Ċ−
C−

)
= F sin(β) (1.31b)

as found by Dyer (1977). Further, for an initial value of α̇ = 0 as would be the case for

a non-shearing beam, if the orientation of the driving term can be set such that β = 0,

then the system (1.31) reduces to the very simple form:

C̈± = (R±F)C± , (1.32)

which is valid for a single lens encounter.

The (ψ, η) Form4

This formulation, which is the one ultimately used to track the distortion of a beam

through the RSC model, follows the procedure outlined by Pineault (1975). As viewed

in the shadow plane, the location of a point on the wavefront of the beam being followed

(i.e. indicating a particular geodesic) can be described by a complex vector ζ. As shown

by Penrose (1968), when the basis used to span the shadow plane is parallel propagated

along with the beam, the evolution in ζ due to expansion and shear is given by

ζ̇ = ϑζ + σζ̄ , (1.33)

where the terms on the right hand side are positive instead of negative as Penrose had

them in order to be consistent with the sign conventions being used in this thesis.5

In order to describe the generally elliptical nature of the beam cross-section as opposed

to a single point on the wavefront, ζ can be written as

ζ = ψei$ + ηe−i$ , (1.34)

4This is commonly referred to as the (ξ, η) form, but a change from ξ to ψ has been made to avoid
confusion with the previous use of ξ for the OSE in this thesis.

5Strictly, Penrose was considering the convergence of a congruence of geodesics, as opposed to the
expansion which is of interest here, but the sign difference accounts for this.
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where ψ and η are complex values, and $ is a dummy variable ranging from 0 to 2π

to cover each point on the boundary of the ellipse. Substituting (1.34) into (1.33) and

equating the real and imaginary parts separately,

ψ̇ = ϑψ + ση̄ (1.35a)

η̇ = ϑη + σψ̄ (1.35b)

Taking the derivatives of these again and using the OSE (1.17) to simplify the results,

ψ̈ = Rψ + Feiβ η̄ (1.36a)

η̈ = Rη + Feiβψ̄ (1.36b)

Writing ψ and η in terms of real and imaginary components,

ψ = x+ iy and η = z + iw . (1.37)

Substituting them into (1.36) and separating the real and imaginary parts, we get

ẍ = Rx+ F (z cos β + w sin β) (1.38a)

ÿ = Ry + F (z sin β − w cos β) (1.38b)

z̈ = Rz + F (x cos β + y sin β) (1.38c)

ẅ = Rw + F (x sin β − y cos β) . (1.38d)

These equations are suitable for numerical integration and in agreement with the expres-

sions derived by Pineault (1975), though along with the vacuum regions he considered,

they are also applicable in regions with a non-zero Ricci driving term.

1.4 Previous Work

The Swiss-Cheese model of the universe was initially developed by Einstein and Straus

(1945) as a means of investigating the gravitational field of a mass well described by a
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Schwarzschild solution, but that exists in background universe that is not Minkowskian.

Kantowski (1969) used the optical scalar equations and an SC model to consider vari-

ations in the luminosity-redshift relationship caused by the introduction of clumps of

matter into FRW models. Dyer (1973, 1976, 1977), and Dyer and Roeder (1974, and

references therein) also used the optical scalars to consider the gravitational lensing ef-

fect of an opaque object at the centre of an SC hole, and analyzed the implications on

photon propagation by considering interactions with holes in a stochastic fashion. Oattes

(1987), and Dyer and Oattes (1988), performed similar calculations, but allowed the size

of the opaque region to vary in an arbitrary way, leading to the concept of a “fuzzy” past

null cone. As a beam of light propagates past a hole, a deformation is introduced into

the null cone it defines. The more encounters with inhomogeneities that there are, the

greater the net deformation becomes. Consequently, the null geodesics that describe the

boundary of the null cone are no longer simple straight lines, but can curve in an irreg-

ular fashion. If the exact geometry of the previous encounters is uncertain, one cannot

give a precise description of the null cone but can only compute a probability that these

geodesics will remain bound within a given vicinity of the unperturbed geodesics. The

region so defined can be interpreted as giving the past null cone a finite thickness (or

fuzziness). Harper (1991) did a proper thick-lens calculation to compute the propagation

of light through a hole in more detail. An analysis was done using both stochastic and

limited predetermined distributions of holes, but used a single SC level with non-evolving

cores.

This work describes the development of a Recursive Swiss-Cheese cosmological model

which has been used, along with the optical scalars, to develop software that allows for

the investigation of the gravitational lensing effects produced by evolving lenses in a

relativistically consistent manner. Chapter 2 describes SC packings and how they are

combined to generate the full RSC model. A description of the process used to follow

the beam trajectories through the various regions of the model is given in Chapter 3.



22 Chapter 1. Introduction

Particular care is taken to describe the procedure used to define the substructure in the

model, and to explain the matching at the interface between the FRW and Schwarzschild

sections. In Chapter 4, the relevant quantities necessary to propagate the optical scalars

through the RSC model are derived, and the means of extracting the observable quan-

tities is discussed. Chapter 5 describes some practical aspects of the implementation

of the lensing code, while Chapter 6 presents various results generated by the code to

demonstrate its capabilities and to establish that the output it produces is reasonable

and in agreement with what can be expected.



Chapter 2

The RSC Model

2.1 The SC Packings

As indicated previously, at its most basic level, generating an SC model involves taking

a region of space and inscribing spheres inside it in order to create structure. The model

itself does not specify where these spheres must be placed. The locations may be chosen

purely at random, or they may correspond to some predetermined mapping, to emulate

structure that is observed in the universe or found via processes such as N-body simu-

lations, for instance. For the current work, it was decided to create sphere distributions

based on an efficient volume-filling scheme that packed spheres into a spherical region

of space. By choosing the optimal sphere size to place in a given region, the packing

algorithm determines how much of the available mass in that region will be put into the

structure inside the sphere. While the efficient packing of spheres is is an interesting

problem in and of itself (with Apollonian packing being an active field of mathematical

study that dates back to the time of the ancient Greeks), and though the structure even-

tually created has some astrophysical relevance, one should bear in mind that there is

nothing special about such a choice and the SC model is flexible enough to accommodate

many different possibilities.

23
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Figure 2.1: The general flow of the code used to generate a single-level Swiss-Cheese
model.

2.1.1 Generating the Packings

The development of code to pack spheres into a three-dimensional region of space in a

random, yet efficient manner has been described in Attard (1997). A general outline of

the procedure is given in Figure 2.1. The program first defines a spherical region of

FRW space (U) extending out to some size ωmax from the origin. This space can be of

positive, negative, or zero curvature. In the cases of non-zero curvature, ω is an angular

measure, while in the flat case it is a dimensionless linear quantity. When K = +1, this

coordinate is cyclic and the space reaches a maximum extent at ω = π/2. Regardless of

the curvature, the size is given a physical dimension via the scale factor R.

The volume of U, which is the space available for packing (the free volume), is com-

puted and stored. Next, a sphere of random size is thrown down at an arbitrary point

inside U and placed at the first node of a “packed” list used to store all the spheres that

the program can fit into U. The volume of this sphere is computed and subtracted from
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the free volume. More spheres are then thrown down at random, subtracted from the

free volume, and added to the packed list, until one of them overlaps with another. At

this point, the overlapping sphere is removed and the actual packing begins.

The above procedure establishes random initial conditions inside U for the efficient

packing routine to work with. This routine first selects a random point within U. If this

point lies inside a sphere on the packed list, it is discarded and another is chosen. Once

a suitable “free” point has been found, it is “inflated” until it makes contact with the

boundary of U, or the boundary of one or more spheres on the packed list. In this way,

the new sphere is given the largest possible radius that it can have without overlapping

any of the other spheres present. This new sphere is then given a “push” away from

its point(s) of contact, and the maximum radius that it can have at the new location is

determined. If this turns out to be less than the value in the previous location, the old

location and radius are added to the next node on the packed list and the volume of the

sphere is subtracted from the free volume. Otherwise, the new location and larger radius

are adopted, and the process of inflating and pushing the sphere is repeated. Pushing

the sphere around in this way maximizes the volume used around every valid random

point, making the packing more efficient. The process terminates when the total volume

occupied by the packed spheres becomes larger than some predefined fraction of the total

volume of U. The use of a limiting packed volume fraction (PVF) is necessary to keep the

program running time reasonable since in practice, it is not possible to fill U completely.

The code developed was used to generate a library of sphere packings for each of the

spatial curvatures using a few different values for ωmax. Each packing is a simple list of

spheres, each of which is described by four numbers, the triple (ω, θ, φ) specifying the

location of the centre of the sphere, and a radius. These are all comoving quantities in

the FRW model and are thus valid regardless of the value of the scale factor. The library

generated is summarized in Table 2.1. The limiting PVF was chosen to be 80% for most

of the packings as beyond this the free space in U was found to be sufficiently fractured
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ωmax K Packings Spheres Contained (Mean) Radius Range PVF

-1 50 42 007 – 132 476 (68 973) 2.7e-8 – 0.21

π/10 0 69 34 654 – 140 564 (65 898) 9.4e-9 – 0.20 80.0

+1 51 14 026 – 146 172 (62 019) 4.0e-8 – 0.22

-1 6 77 144 – 131 874 (105 421) 8.3e-7 – 0.54

π/3 0 7 23 918 – 108 169 (70 485) 2.3e-7 – 0.70 80.0

+1 6 31 625 – 63 042 (42 805) 4.1e-6 – 0.51

-1 20 146 646 – 354 012 (227 109) 8.0e-9 – 0.87

0.49π 0 20 8762 – 121 953 (67 786) 1.3e-7 – 1.18 80.0

+1 20 12 504 – 44 506 (25 112) 3.7e-7 – 0.84

2π -1 20 189 938 – 242 822 (229 479) 3.3e-5 – 3.51 33.3

Table 2.1: A summary of the packing library generated. The first column indicates the
radial extent of the space filled. Next is the curvature indicator, which is followed by the
number of packings generated, then a range indicating the number of spheres contained
in the packings (with the average number in brackets), the size range of the spheres
packed, and finally the volume fraction of the space filled by the spheres is given in the
last column.

that the packing process continued very slowly. In the case of ωmax = 2π, the limit was

lowered to a third of U in order to maintain reasonable running times. While there is a

significant variation in sphere counts for individual packings with a particular curvature

and extent, the average varies in the expected way since a given ωmax implies the largest

volume when K = −1 and the smallest when K = +1 (refer to Appendix A).

While the packing algorithm discussed is effective, as the number of spheres placed in

U increases, so does the time required to place each additional sphere. This is particularly

noticeable in spaces with negative curvature, where a given increase in the radius of U

leads to a proportionally larger increase in volume than in the open and closed cases. To

address this issue, a modification was made to the way that the code tries to maximize

the volume of the spheres it is trying to pack for those packings with ωmax = 2π. It

still chooses a random free point for the centre of the new sphere and goes through all

the spheres that have already been packed to determine the non-overlapping contact

distance as was done before. In the process though, it also stores the distance required
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to contact the next closest sphere. The new sphere is then moved radially away from the

sphere it contacts by an amount equal to half the difference between these two distances,

thus ensuring that no overlap results. This move is very quick computationally as it

requires little more than placing the contacted sphere at the centre of the coordinate

system. Provided the centre of the new sphere is not in between, and collinear with, the

two closest spheres, the new sphere can be grown by more than the minimum amount

described so the process can be repeated to fill the space more effectively. Once the gain

in radius with each move falls below some threshold, the radius of the new sphere is fixed

and the process is repeated with a new free random point.

This simplified scheme is significantly quicker than the full one described previously,

with the speed increasing by about an order of magnitude initially. However, the dif-

ference decreases as the space becomes more filled and the determination of the contact

distance to each of the packed spheres becomes increasingly expensive. Furthermore,

the packings produced by the quicker method are less efficient than those created in

the original way, requiring 10-20 percent more spheres to fill a third of the space when

ωmax = 2π. As such, when working with large regions of negatively curved space, it may

be most effective to use the original packing scheme, but modified so that the code only

checks distances to all the packed spheres once, then considers just the subset of po-

tential contacts when moving the new sphere around. This subset might be determined

by comparing the distance of each sphere from the chosen random point with the total

distance that the new sphere has been moved in the maximization process.

2.1.2 Packing Structure

Projected Distributions

The easiest way to look at the distribution of the spheres in a packing is by representing

each one with a point placed at the angular coordinates corresponding to its centre.
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Figure 2.2 shows one such distribution, plotting the centres of 197 944 spheres packed

into a space of negative curvature with a maximum angular extent of ωmax = 0.49π. This

limiting angular extent explains the sharp cut-off in the distribution at this value of ω.

While the spheres span the range in θ at the cut-off, this is not the case at the other

end for small values of ω. The spheres do not extend down to ω = 0, and there are two

noticeable gaps appearing in the distribution, one a roughly triangular-shaped region in

the lower part of the graph, and the other an arc-shape at the top. This empty space

is due to a packed sphere that encompasses the origin of the coordinate system. It is

represented by the dot at (ω, θ) ≈ (0.27, 0.52), and has a radius of about 0.39 radians.

Recall that the region of space specified by each value of ω is spherical in shape since θ

and φ can vary over their full ranges there. The smaller the value of ω, the smaller the

region, which is why any sphere encompassing the origin would create such a significant

region of exclusion in a graph of this nature. This is also the reason that the density of

points increases on average as one moves to larger ω values – there is simply more space

available there. Similarly, as one scans across the range of θ values, one finds that the

density of points generally decreases towards the extrema since these also represent poles

in the coordinate system.1

The rapid increase in the density of points right near ωmax means that there have

been more smaller spheres packed into the region near the boundary of U. This is not

unexpected as larger spheres are forced away from the boundary in order to remain

within the space under consideration. While this edge effect breaks some of the complex

symmetry of the distribution, it does not create a preferential radial direction in the

packings and does not alter the validity of the model.

Figure 2.3 shows the same packing used in Figure 2.2, but plots the distribution in φ

over the angular extent of the packing. As happened with the previous figure, the point

1Though in this case, only the φ coordinate is degenerate as opposed to both θ and φ being degenerate
when ω = 0, thus explaining why spheres placed near these poles do not have such a dramatic impact
on the distribution.
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Figure 2.2: The distribution of sphere centres in ω and θ coordinates for a packing
containing 197 944 spheres in a negatively curved space with a maximum angular extent
of ωmax = 0.49π.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

φ

ω

Figure 2.3: The distribution of sphere centres in ω and φ coordinates for the same packing
displayed in Figure 2.2, with 197 944 spheres, K = −1, and ωmax = 0.49π.



30 Chapter 2. The RSC Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

θ

φ

Figure 2.4: The distribution of sphere centres in θ and φ coordinates for the same packing
displayed in Figures 2.2 and 2.3, with 197 944 spheres, K = −1, and ωmax = 0.49π.

density increases with ω. However, unlike the case with θ, there is no general trend over

the range in φ since this coordinate does not define any poles in the system. The sphere

that had such a large effect on the ω − θ distribution is located at (ω, φ) ≈ (0.27, 0.87)

in this graph. It still causes a gap in the distribution for ω <∼ 0.12, the extent to which

it completely surrounds the pole, but it is clear that smaller spheres were packed around

it where they could be fit in.

Perhaps the most interesting way of displaying the distribution in angular coordinates

is shown in Figure 2.4, which plots θ against φ to produce a “sky projection”. The most

striking feature apparent is that one now sees a number of spherical regions in the image

corresponding to the locations of some of the larger spheres in the packing. In fact, the

largest five spheres in the packing, all with a radius above 0.5 radians and with coordinates

given in Table 2.2, are clearly evident in the image. Fewer points appear in these regions
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ω θ φ Radius

0.9669866 1.7661134 2.3997707 0.5720132

0.9721713 1.1779552 5.3974663 0.5667388

1.0033324 0.9948801 3.1626609 0.5358855

1.0221059 2.6853885 1.0160040 0.5170304

1.0226814 1.9399560 6.0845352 0.5166990

Table 2.2: The radius and centre location of the five largest spheres in the packing used
to generate Figures 2.2 to 2.4.

because the large spheres create significant exclusion zones in that area of the “sky”.

They are well-defined in this projection because each point in the diagram2 represents a

unique line of sight, while previous figures provided only a rotationally-collapsed radial

profile, thus distorting and obscuring the distributions. The smaller spheres that are

squeezed into the spaces between the larger spheres creates a filamentary structure in

projection. There are fewer, more distorted spheres towards the poles in θ as can be

expected, and it is clear that the structure at φ = 0 is connected to that at φ = 2π as

must be the case.

Figure 2.5 shows the θ versus φ distribution for four other packings. Both depicted

in the top row were also made in a negatively curved space, though the one on the left

had a smaller angular extent than the one used previously, with ωmax = π/10, while

the other was larger with ωmax = 2π. The one on the left bears a greater resemblance

to Figure 2.4, showing much the same structure, though not as well defined on account

of the fact that it has only about a third the number of spheres of the other. On the

other hand, though the packing on the right contains almost as many spheres as that

in Figure 2.4, there is almost no structure apparent. There are a few small patches of

lower-density present, along with the expected general density gradient in θ, but no voids

have been clearly defined. There are two effects at work here. First of all, as is pointed

2Except for the poles at θ = 0, π of course.
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Figure 2.5: The distribution of sphere centres in θ and φ coordinates for four different
packings. The top row still deals with negatively curved spaces, but varies their angular
extent, while the bottom row uses ωmax = 0.49π as was done previously, but shows the
distribution for a packing in a positively curved space on the left side and a flat one on
the right.

out in Table 2.1, this packing only occupies 33.3% of the region of space it is contained

in, unlike all the other packings depicted which occupy 80% of the volume. As explained

in Section 2.1.1, the packing algorithm attempts to fill the given region of space with the

fewest spheres by maximizing the size of the sphere it can place in any section of free

space that it finds. With less than a third of the space having been filled, this means

that the packer is still able to place relatively large spheres which are more uniformly

distributed through the space than the smaller spheres which tend to cluster in the spaces

between the larger ones. The other factor is the larger angular extent itself. As seen in

Appendix A, when one increases the angular extent of a space with negative curvature,

the volume of the space grows exponentially quickly. Consequently, each line of sight
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contains a greater projected depth which serves to dilute the effect of a given void on the

projected distribution, further contributing to the reduction in apparent structure.

The two packings shown in the bottom row of Figure 2.5 were both made in spaces

that extended out to ωmax = 0.49π, but do so in different curvatures, with the one on the

left filling 80% of the volume of a positively curved space, while that on the right fills

this fraction of a flat space. Both display structure similar to that shown for the negative

space, though it is not as well defined due to the smaller number of spheres in each case

here.

An alternative way of visualizing the structure inside the packings is to view their

projection onto a two-dimensional flat surface. Refer to Appendix C.1 for details regard-

ing the conversion between angular and Cartesian coordinates. Note that in all cases

shown here, the values have been computed with R set to 1. Figure 2.6 contains a couple

of Cartesian projections for three different packings, each made in a space of different

curvature, though all of which extended out to ωmax = π/10. The projections in the

top row correspond to the packing for which K = +1 and involve the w axis, the fourth

spatial dimension required for the embedding. Neither the w − x, nor the w − z planes

plotted (and the same holds true for the w − y plane not displayed) show much in the

way of structure, though this is not surprising considering the distortion implied by the

axial scales. The only significant trend of note is that the points seem more densely clus-

tered along the strip at the smallest values of w, which is in agreement with the earlier

finding that there are more small spheres that are fit into the region near the boundary

of the space. The second row contains projections of a packing in a space where K = 0.

There is no artificial embedding dimension in this case so the projections are circular as

expected. The lack of distortion makes the structure easier to see, with the voids caused

by the larger spheres being quite apparent.

The packing in the bottom row was made in a negatively curved space. The projection

on the left is the same plane as the upper left one involving positive curvature, though
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Figure 2.6: Various Cartesian projections of three packings, all of which filled 80% of the
volume of a space with ωmax = π/10. The space in the top row had positive curvature,
that in the middle was flat, while the packing in the bottom row was made in a negatively
curved space.
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Figure 2.7: The distribution of sphere radii for the packing that was shown in the bottom
row of Figure 2.6 (i.e. 49 343 spheres, K = −1, ωmax = π/10).

in this case the volume extends up from the centre at w = 1. Again, the points are

distributed more densely along the boundary of the region. The projection onto the

x−y plane on the right is circular, as projections not involving w should be regardless of

the curvature, and also has structure apparent. In fact, the structure in such projections

for packings made with all three curvatures appears to be quite similar. Figure 2.7 shows

the distribution of radii for this packing, with the plot on the left showing the variation

along the w axis while the one on the right graphs the variation along the x axis. As

is apparent in either of them, most of the spheres in the packing are small. While the

majority of the spheres in the plot on the left seem to be fairly evenly distributed over the

region, there is a set that form a definite boundary running diagonally upward from the

bottom right side of the graph. These are the largest spheres that contact the boundary

of the region for a given value of w. Those near the outer limit in w are necessarily

small, but they get larger as one moves to smaller w and the centre of the space. The

distribution along the x axis is more random, though the largest spheres can still be seen

to fall near the centre of the range.

Instead of simply using a point to represent the location of the centre of each packed

sphere, it is also possible to portray each of them as an opaque ball and plot what an

observer looking at the packing from the outside would see. Figure 2.8 shows spheres
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Figure 2.8: In this diagram, opaque balls have been used to represent the spheres of the
packing shown in the middle row of Figure 2.6. The first 23 randomly placed spheres are
shown in the top image, while the bottom one contains the first 100 that were packed.
The view looking down onto the x− y plane is depicted.
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Figure 2.9: The x− y plane projection of the full packing that was shown in Figure 2.8.
The packing contains 45 539 spheres, though of course many are hidden in this projection.
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from the packing depicted in the middle row of Figure 2.6, as they would be viewed by an

observer looking onto the x− y plane. The upper image shows the first 23 spheres that

were placed randomly to “seed” the space for the packing algorithm, while the lower one

also contains the first 76 packed to show the first 100 spheres placed in the space, the

boundary of which is depicted by the thin black circle. Comparing this to the relevant

x − y plane plot in Figure 2.6, some of the same structure is apparent, particularly the

location of the largest sphere. All 45 539 spheres in the packing were used to generate

Figure 2.9, though most of them are hidden behind those at the surface closest to the

observer. One can still make out some of the spheres that were shown in the image of

the first 100 spheres, though the overall appearance of the packing is quite different with

a much wider range of sphere sizes included.

The Two-Point Correlation Function

A more quantitative way of looking at the structure inside the packings involves com-

puting the three-dimensional two-point spatial correlation function, ξ, for sphere centres.

This function, parameterized using the form

ξ(r) = (r0/r)
γ , (2.1)

was computed for the spheres in a number of packings, using various estimators developed

by Davis and Peebles (1983), Landy and Szalay (1993), and Hamilton (1993). These

correlation functions were all found to have power law behaviour as is the case with

observed matter distributions, though there were some indications that the functions

might best be fit using more than one power law. The Landy and Szalay and Hamilton

estimators produced very similar results, though the latter consistently gave larger values

of r0 and γ (i.e. less negative values of γ) than the Landy and Szalay estimator did. The

DD
DR

estimator was very close to the Landy and Szalay estimator over shorter distances

where the power was stronger, but diverged at larger separations. Refer to Figure 2.10

for a typical example. Though the correlation was found to be relatively weak for a
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Figure 2.10: A comparison of a portion of the computed correlation function for a
packing in positively curved space with 105 965 spheres.

single level packing, it should become stronger for the recursive model which will add a

lot more power on smaller scales. Regardless of the estimator used, as the number of

spheres in a packing increased, the slope of the correlation function became steeper and

the correlation length decreased as expected.

Multifractal Structure

A related but more comprehensive means of quantifying the structure in a packing is

via a multifractal analysis. A classical fractal (or monofractal) is an object with a self-

similar or scale-invariant structure. In large part, the sphere packing problem boils

down to trying to fit the largest spheres possible into spaces between other, still larger

spheres. Consequently, it is fairly straightforward to see how the packing algorithm used

can lead to self-similar structures appearing in the packings, with increasingly smaller

spheres being used to surround the previous “generations” of spheres as the space being

packed is filled. One would expect the fractal nature to be truncated – there is after
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all a maximum sphere radius of ωmax that can be used, and a lower limit to the size

of the spheres needed to achieve a PVF that is less than 1. However, as was indicated

by considering the correlation function, the packings are not simply truncated classical

fractals, a point that can be understood intuitively since there are factors that cause

the packing behaviour to vary as the space is filled. First of all, there is the random

placement of spheres to “seed” the space, a procedure which does not involve space-

filling optimization. Once the packing begins, the initial phase that involves fitting the

larger spheres into the voids between the randomly placed ones operates in a space

that looks quite different from that available when the smaller spheres are subsequently

packed into the gaps left between the tightly packed larger ones. Further, those spheres

packed next to the boundary of the space also experience conditions that differ from

those further within. Consequently, rather than purely fractal behaviour, the packings

exhibit structure that is multifractal in nature.

A monofractal has a single scaling dimension that is non-integer.3 A multifractal is

a composite of monofractals, each of which has its own characteristic scaling dimension.

There are a number of ways one can go about measuring the dimension of a fractal, with

the most common being the box-counting method. In its simplest form, this involves

placing a grid over the fractal, computing the fraction of cells occupied by the fractal,

then refining the box size and repeating until a trend can be established. This method

lends itself nicely to measuring the dimensionalities of multifractals.

Consider the factor pi(ε), the relative proportion of a fractal inside box i of linear

dimension ε,

pi(ε) =
ni(ε)

n
,

where ni(ε) can, for instance, be the number of pixels from an image of the fractal that

lie within box i, while n is the total number of pixels that define the fractal in the image.

3For instance, the area of a “flat” fractal does not increase in proportion to the square of its length,
and the volume of one that extends into three dimensions does not increase as length cubed.
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This can be used to define a partition function (Jensen et al., 1987),

Γ(q, %) =
∑

i

pq
i

ε%i
,

which, though strictly defined for balls of radius ε, is much easier in practice to compute

using box counting as described previously. For a given value4 of q, consider the set of all

partitions and find the supremum (q > 0) or infimum (q < 0) of Γ. In the limit εi → 0,

there exists a value %q such that Γ → 0 if % < %q and Γ →∞ if % > %q, while converging

to a constant at % = %q. The generalized dimension of the multifractal, Dq, is then given

as

Dq =
%q

q − 1
(2.2)

(Jensen et al., 1987). Note that for integer quantities of q ≥ 0, the dimension has physical

meaning, with D0 being the often used fractal dimension, D1 being the information

dimension, and D2 the correlation dimension which is related to the exponent γ in the

two-point correlation function. The set of allDq characterizes the multifractal completely,

with the measures all being equal for a monofractal, while

Dq > Dq′ for q′ > q

otherwise (Hentschel and Procaccia, 1983).

Mureika (2001) used the above method to estimate the dimensionality of the struc-

ture in a number of packings with ωmax = π/10 based on the locations of the packed

sphere centres. He considered the structure present inside the largest box that could be

completely contained within the spherical region of space that was packed, which makes

the computation significantly easier, though eliminates much of the distinctive structure

apparent at the boundary of the region. His results are summarized in Table 2.3. No

significant differences were found between spaces of different curvature which is not too

surprising considering that only packings with a small angular extent were considered.

4Not necessarily an integer value.
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q Dq Range

0 2.5 – 2.8

2 2.4 – 2.6

∞ 2.1 – 2.3

Table 2.3: A summary of the results found by Mureika (2001) when considering the
structure of a series of packings generated in a space defined by ωmax = π/10.

Note that D∞ was found by computing D60, a point where the dimension measure seemed

to have become virtually constant. The limit q → ∞ provides information about the

scaling behaviour for the most dense regions of the multifractal. The range given in the

table indicates that the densest structures in the packings considered tended towards

two-dimensional formations, which is understandable given the tendency of the packing

algorithm to form sheet-like collections of smaller spheres on the surface of larger ones.

While these results for single packings aren’t out of line with the wide ranges of values

that have been found using N-body simulations, they do not agree with what has been

found using Las Campanas Redshift Survey data where D∞ ≈ 0.6 − 1.0, though they

can vary a fair bit if projection effects and a crude biasing factor based simply on sphere

mass are introduced (Mureika, 2001, and references therein).

2.2 Generating an RSC Model

As indicated earlier, there are a variety of choices that can be made regarding the struc-

ture of the core at the centre of each SC hole. An obvious option is to choose the mass to

consist of the same pressureless dust as in the FRW background but at a higher density,

thus adding to the self-similar nature of the model. In fact, the self-similarity can be

further extended by embedding spherical vacuoles containing their own cores into this

higher density FRW phase, adding substructure to the lens in the process.

One way of accomplishing this would be to use the sphere packing code to fill each core
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with spheres as it is encountered by some beam propagating through the model. However,

as the sphere packing can take a significant amount of time to do, this would not be very

practical. Another option, and the one actually implemented, makes recursive use of

the library of SC packings available, taking advantage of the self-similar nature of the

packings. The first time a core is hit by a beam, the code decides whether it is to be given

substructure (refer to Section 3.3.3 for details). If so, then the chosen angular extent of

the core, ωc, is used to determine which of the available packings are suitable for use in

describing this structure. In general, ωc 6= ωmax for any of the packings in the library.

Given that they are stored using only angular values, it may seem that scaling a packing

up or down to the correct radius would be the obvious thing to do. However, for spaces

with non-zero curvature, a packing cannot be scaled correctly by simply multiplying

the radial ω coordinate and radius of each sphere by a constant factor as this does not

preserve the distribution of tightly packed and non-overlapping spheres required.

Instead, the code uses a subsection of a randomly chosen packing that was made

with the smallest value of ωmax larger than ωc. It picks a centre for the sub-packing by

randomly selecting a sphere from within the packing, ensuring that it has a centre at

least ωc from the boundary. A check is also made to ensure that this sphere has a radius

no larger than half ωc in order to avoid selecting one that is uncharacteristically large

for the region (i.e. that would not likely have been put in there by the packing code). If

no such sphere can be found, the one furthest from the boundary is chosen, or the code

can simply use the centre of the coordinate system that the packing is stored in. Next,

all spheres that lie entirely within ωc of the chosen sphere and which, when given the

appropriate physical scale, will remain larger than the preset minimum physical radius

to be considered, are selected. They are expressed in a coordinate system which has the

chosen sphere at the centre (refer to Section 3.1.1), and the system is given a random

orientation by spinning it by a random amount in a couple of planes. In the cases of non-

zero curvature, these planes do not include the w axis so as to preserve the radial distance
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of each sphere from the centre. The resultant sub-packing still has structure consistent

with what would be generated by the packing code, and is thus used to describe any

structure in the core.

2.2.1 Truncating the Model

Although in principle the recursive packing described above can continue ad infinitum

while still satisfying the field equations, for any physical model there will be a lower limit

below which it will no longer be reasonable to add structure. If the initial model density

represents the mean density of some region of the universe, then clearly the packing

cannot continue down to the point where the core of a sphere has a density equal to that

of the Earth. The universe cannot be approximated by the RSC model at such a small

scale so the recursion must be cut off at some appropriate level, such as at galaxy-mass

objects. Furthermore, there is only a range of length scales that the model needs to

account for. Suppose a typical galaxy has a radius of about 10 Kpc, about six orders

of magnitude smaller than that of the observable universe. Since a single packing can

have six orders of magnitude separating its smallest sphere from the size of its bounding

surface, even at the top level of the hierarchy there are going to be spheres which do not

need to be recursively filled. As one descends levels, the fraction of spheres that need to

be re-packed will drop off very quickly since the majority of spheres have a radius that

is less than a tenth the size of the sphere that they have been packed into. As a result,

after about four levels, all branches of the hierarchical tree should have ended in leaves.

The RSC model is thus truncated based on mass and size limits. If during beam

propagation, the mass of a potential lens is found to be below a predetermined mass

limit, the sphere is not given further structure but treated as a leaf and ignored (i.e. the

region occupied by the sphere is considered to be filled with dust at the same density as

the background the sphere is embedded in). Similarly, as indicated earlier, spheres in a

packing falling below a set length scale are not selected as candidates for substructure.
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There are also two additional situations that lead to the model being truncated. If,

when first hit by a beam, a sphere is found to have a radius that lies within the event

horizon of the mass enclosed, then it is designated as a leaf. Further, if the code finds

that the parameters describing the core need to be too finely tuned to be valid (refer

to Section 3.3.3 for details), then the sphere is also designated as a leaf. It should be

noted that the packing libraries typically have a small number of rather large spheres. If

these spheres were to be denoted as leaves, then it is possible that a significant volume

of the model universe will lack structure. If this proves to be a problem for some set

of parameters, structure can always be added in a consistent manner by replacing these

spheres with sub-packings as described above.

2.2.2 Storing the Model

Once an RSC model has been set up, light can be propagated through it from a variety

of directions and observed at any vantage point that one may wish to place an observer.

As such, it is important that the model remain self consistent. For instance, a beam

encountering a particular lens from one direction at a particular time, should find the

same lens (evolved by the appropriate amount) that a beam propagating through the

region from another direction at an earlier time would have detected. Due to the recursive

nature of the model, trying to initialize it by defining all possible lenses at the beginning

can easily lead to a large data structure that is unwieldy to work with on a typical

workstation. Furthermore, as most of the spheres are unlikely to be encountered by a

beam, they would add to the computational effort required to propagate a beam without

having any impact on the results produced. To address these issues, the RSC model

is developed on the fly as it is “observed”. As a beam encounters embedded spheres,

the lenses they contain are defined and enough information about them is stored so as

to permit the evolution of the lens to be tracked properly should it be encountered by

other beams. The result is an extensible model that only contains the data relevant for
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the investigations it is being used for. Refer to the end of Section 3.3.4 for a list of the

quantities actually stored to define the model.



Chapter 3

Propagating a Beam Through RSC

As indicated previously, a beam must follow a null geodesic of the spacetime through

which it travels. The evolution of the 4-vector xa(λ) describing each point along this

path is governed by the geodesic equations

d2xa

dλ2
+ Γa

bc

dxb

dλ

dxc

dλ
= 0 , (3.1)

where Γa
bc is a Christoffel symbol given by

Γa
bc =

1

2
gam (gbm,c + gcm,b − gbc,m) , (3.2)

and λ is an affine parameter along the path. An equivalent form that is more practical

to work with is that of the Euler-Lagrange equations1

d

dλ

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0 , (3.3)

where the Lagrangian, L, is given by

L =

(
ds

dλ

)2

, (3.4)

and the derivative · ≡ d
dλ

.

1Also known as the Lagrange equations of the second kind.

47
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3.1 The FRW Regions

To propagate a beam through an FRW region of the model, it is useful to know whether

it will encounter a packed sphere (lens), and if so, which one it will be. This will allow for

the determination of a coordinate system in which the equations of motion are simplified,

and will also avoid the code having to check for a sphere being hit after every step taken by

the integration routine, a process that would be prohibitively time consuming considering

the large number of spheres that can be present at a single level of the RSC model. The

desired coordinate system has the following properties:

1. the origin of the coordinate system is placed at the centre of the lens under con-

sideration

2. the beam starts at a location with θ = π
2

3. the direction (tangent) vector for the beam lies in the θ = π
2

plane – i.e. has a θ

component of zero

A coordinate system oriented in this manner will be referred to as being in propagation

orientation. Setting θ = π
2

and dθ = 0 in the RW line element (1.6),

ds2 = dcT 2 −R2(cT )[ dω2 + S2
K(ω) dφ2] .

Using this to define the Lagrangian via (3.4), the Euler-Lagrange equations (3.3) can be

solved to find the form of the tangent vector ka in this coordinate system:

dcT

dλ
=
p

R
(3.5a)

dω

dλ
=
εωp

R2

√
1− q2

S2
K(ω)

(3.5b)

dθ

dλ
= 0 (3.5c)

dφ

dλ
=

pq

R2S2
K(ω)

(3.5d)
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db

dca

dp

r

n

d

Tangent to lens at beam
contact point

Beam path
(with no bending)

α Dα B

xs

xB

��

��

Lens Centre

Initial Beam Location

Figure 3.1: The various quantities used in the derivations to set up the propagation of
a beam in FRW regions. Note that the beam path within the lens is shown as if there
was no bending taking place.

where the nullity of the geodesic (i.e. ds2 = 0) was used to find the ω component.

The quantities p and q are constants of integration related to the energy and angular

momentum of the beam respectively, and εω = ±1 indicates whether the beam is headed

towards or away from the lens. The constant p has units of length, while q is unit-less.

3.1.1 Orienting the System

As the conditions necessary to satisfy the propagation orientation described above only

require modification of the spatial components of the beam’s location and direction,

one way to perform the necessary setup is via a series of SO(2) rotations described

in a Euclidian embedding space. The embedding of the potentially curved manifold

into this space is described in Section 2.1.2 and Appendix C.1.1. When working in the

embedding space, care must be taken that all transformations leave the points on the

original manifold.

Consider, for instance, the case of positive curvature where the spatial sections take
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the form of a 3-sphere. This can be chosen to be a unit 3-sphere for simplicity as the

rotations to be performed will not involve the scale, so the embedding is described by

equations (C.3) with r = 1. The centre of the lens under consideration is given in this

system as

xs =




x
y
z
w


 , (3.6)

which must be mapped to the origin of the angular system, (ω, θ, φ) = (0, 0, 0), or

equivalently, to the pole at (x, y, z, w) = (0, 0, 0, 1). To do this, start with a rotation

in the xy plane to set the x component to zero,

m1 × xs =




cosα sinα 0 0
− sinα cosα 0 0

0 0 1 0
0 0 0 1







x
y
z
w


 =




0
y′

z
w


 . (3.7)

Now repeat the procedure, rotating in the yz and zw planes with matrices m2 and m3

to set the y and z components to zero respectively. Since xs lies on the surface of the

hypersphere, w′ = ±1. As the angular coordinates only describe the positive w portion

of the 4-space, if w′ = −1, a further rotation in the zw plane of 180◦ must be performed

to make w′ positive. Calling this rotation (which is just the identity matrix if w′ = 1

already) mflip, the transformation thus far is given by

mflip ×m3 ×m2 ×m1 × xs =




0
0
0
1


 . (3.8)

This takes care of the sphere centre. Next, rotations are needed to ensure that the beam at

xB has a θ value of π
2
, which is equivalent to having a z coordinate of zero. Performing the

transformation mflip×m3×m2×m1×xB expresses xB in the coordinate system centred

on the lens, and gives it a w coordinate value equal to cos d (i.e. the angular separation

between the sphere centre and xB is d). A further rotation in the yz plane, m5, allows

the z component to be set to zero as required without disturbing the w component, thus

placing the beam at (xtemp, ytemp, 0, cos d), while leaving the sphere centre at the origin.
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Finally, the coordinate system needs to be further manipulated so that the tangent

vector describing the beam propagation direction from xB lies in the θ = π
2

plane, that

is to say, it has a θ component of zero. To do this, start by applying a rotation in the

xy plane, m6, which sets the y component of xB to zero, and gives the beam a starting

location of the form:

xB =




xBf

0
0

cos d


 =




sin d
0
0

cos d


 , (3.9)

where the form of xBf is known since xB must remain on the unit 3-sphere. As before,

this rotation leaves the lens at the pole. Next, the components of the tangent vector

need to be expressed in the Cartesian embedding coordinates. This transformation is

given in equations (C.7), where r can again be set to 1 and v4 = 0 since any vector under

consideration will lie on the 3-sphere in question.

Formally, each rotation that has been performed on the system describes a linear co-

ordinate transformation. To express a vector in the new coordinate system, the Jacobian

of the transformation needs to be computed and applied to the vector appropriately. It

is straightforward to show that for each of the rotations, the Jacobian is in fact the same

as the rotation matrix, so in practice, the rotations can be applied to the components of

a direction in the same way that they are used with those of a location. Applying the

transformation used to re-orient the lens and xB to the tangent vector of the beam,

m6 ×m5 ×mflip ×m3 ×m2 ×m1 ×




k̃1

k̃2

k̃3

k̃4


 =




(k̃1)′

(k̃2)′

(k̃3)′

(k̃4)′


 , (3.10)

and the vector is expressed in the rotated system. The requirement that dθ = 0 at the

point with θ = π
2

is equivalent to requiring that k̃3 = 0. This can be accomplished by

performing a final rotation in the yz plane, m7, so

m7 ×




(k̃1)′

(k̃2)′

(k̃3)′

(k̃4)′


 =




(k̃1)′

(k̃2)′′

0

(k̃4)′


 . (3.11)
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Once more, the rotation leaves the lens unmoved, and with y = z = 0, point xB is also

unaffected. The result is now a system where the lens is at the origin, the beam starts

at a location that has θ = π
2
, and the tangent vector has k2 = 0 as required. The values

of the six rotation angles in m1 through m6 can be expressed completely in terms of the

coordinates xs and xB, while the angle used in m7 can be found since the values of the

components of the tangent vector at xB are known.

Using equations (C.3) to convert the position back to angular coordinates, xa now

has the form (ωf , θf , φf ) = (d, π
2
, 0). Similarly, equations (C.8) can be used to transform

the components of the tangent vector back to angular form, so

k1 = −(k̃4)′

sin d
(3.12a)

k2 = 0 (3.12b)

k3 =
(k̃2)′′

sin d
. (3.12c)

With the tangent vector now satisfying the conditions required to have the form given

by (3.5), the value of p can be set from the known dcT
dλ

, and q can then be computed by

using the value of k3 found above. These quantities must satisfy the expression for dω
dλ

since it was derived using the expressions for dcT
dλ

, dφ
dλ

, and the nullity condition. In fact,

note that from (3.5),

ka = gabk
b =

(
p

R
,− εωp

√
1− q2

S2
K(ω)

, 0,−pq
)

(3.13)

when θ = π
2
, and the inner product of ka is then

kak
a =

p2

R2
− p2

R2

(
1− q2

S2
K(ω)

)
− p2q2

R2S2
K(ω)

= 0 (3.14)

as expected for a null vector.

The procedure is analogous in the case of a negatively curved space, except that

equations (C.4) are used for the embedding, while (C.9) and (C.10) are used to convert the

direction vector. Further, while the rotations in the xy and yz planes in the embedding
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space do not change, the rotation matrix for the zw plane does. This is because under the

rotation, points must remain on the unit 3-hyperboloid, defined by w2−x2−y2−z2 = 1,

and not on the unit 3-sphere where w2 + x2 + y2 + z2 = 1. The new matrix describing a

rotation through an angle α in the zw plane that satisfies this condition has the form

m3 =




1 0 0 0
0 1 0 0
0 0 coshα sinhα
0 0 sinhα coshα


 . (3.15)

This matrix has a unit determinant and preserves inner products as required. Though a

rotation in the xw or yw planes would also require a suitably re-arranged matrix of this

form, these rotations aren’t necessary for the re-orientation described. The form of mflip

found before still satisfies the rotation properties necessary and can thus be used in this

case too, though it can only be derived from (3.15) using imaginary values of α.

For the case of a space with zero curvature, the calculations simplify considerably

as there is no need to introduce a fourth embedding dimension. In fact, a set of simple

translations are all that are required to have the lens at the origin. There is also no

potential flip to worry about, and the subsequent rotations are performed using only

3× 3 matrices. Again, refer to Appendix C.1.1 for conversion details.

3.1.2 Finding the Target

Find the First Lens Encountered

By assuming that no deviation from the FRW trajectory of the beam takes place (i.e.

that none of the packed spheres have the mass they contain replaced by a vacuum region

and dense core), the code can determine which spheres, if any, the beam will potentially

encounter by simply comparing the radius (r) of each sphere to dca , the distance of

closest approach to its centre that the beam would have. With the coordinate system

re-oriented as described above, the unlensed point of closest approach of the beam to a
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sphere placed at the origin occurs at ω̇ = 0. Thus, from (3.5b),

SK(ω) = ±q

at closest approach. Using the definition of SK(ω) in (1.8) and solving for ω,

dca = ω =





sinh−1(±q) : K = −1

±q : K = 0 .

sin−1(±q) : K = +1

(3.16)

In each case, the sign is chosen so that dca ≥ 0.

While the geodesic distance between the beam and boundary of a sphere (db in Fig-

ure 3.1) can be computed to determine which potential lens encounter occurs first, when-

ever a sphere is found to lie in the path of the beam, it turns out to be quicker and easier

to compute dp, the distance to the hypothetical point of closest approach instead. One

can quickly convince oneself that the sphere having the smallest such distance from the

beam location xB will also be the one that the beam path must intersect first.

To determine dp , it is first necessary to compute the geodesic distance d from xB to

the sphere centre. Finding an expression for this distance in flat space is straightforward.

Given two points in Cartesian coordinates, the distance between them is given by

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 ,

or, converting to spherical coordinates via (C.2) and re-arranging the terms,

d =
√
ω2

1 + ω2
2 − 2ω1ω2[sin θ1 sin θ2 cos(φ1 − φ2) + cos θ1 cos θ2] , (3.17)

where in this case, ω is a linear radial coordinate. For the equivalent expression in posi-

tively curved space, describe two points P1 and P2 on the unit 3-sphere, using 4-vectors

in the Euclidian embedding space, i.e. P1 = (x1, y1, z1, w1) and P2 = (x2, y2, z2, w2). In

the plane defined by the origin of the embedding space and these two points, the geodesic

connecting them along the 3-sphere will take the form of a circular segment (this must
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be the case by definition of a 3-sphere). If this segment has length d and subtends an

angle α at the origin, then

d = rα = α (3.18)

since r = 1. By definition,

P1 · P2 = |P1||P2| cosα . (3.19)

Using |P1| = |P2| = 1, and (3.18) in (3.19),

α = cos−1(P1 · P2) ,

or

d = cos−1(x1x2 + y1y2 + z1z2 + w1w2) .

Transforming to spherical coordinates via (C.3),

d = cos−1 (cosω1 cosω2 + sinω1 sinω2[sin θ1 sin θ2 cos(φ1 − φ2) + cos θ1 cos θ2]) , (3.20)

where this time ω is an angular radial coordinate as always in a space of non-zero cur-

vature. The procedure can be repeated for the case of negative curvature (or one can

simply allow α→ −iα, and ω → −iω), to find

d = cosh−1 (coshω1 coshω2 − sinhω1 sinhω2[sin θ1 sin θ2 cos(φ1 − φ2) + cos θ1 cos θ2]) .

(3.21)

Note that the geodesic distances (3.17), (3.20), and (3.21) are all unit-less in this form

and are only given a physical scale when multiplied by the scale factor R.

As is apparent from Figure 3.1, knowing d allows the distance dp to be computed

using trigonometry. Consider the triangle with sides d, dca, and dp (4dcadpd). In the

case of positive curvature, the Law of Cosines from spherical trigonometry relates these

values via:

cos(d) = cos(dca) cos(dp) + sin(ωm) sin(dp) cos
(π

2

)
,

so

dp = cos−1

(
cos d

cos dca

)
. (3.22)
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In the flat case, it is easy to see from the right angled triangle that

dp =
√
d2 − d2

ca , (3.23)

while in the case of negative curvature, the hyperbolic Law of Cosines shows

cosh(d) = cosh(dca) cosh(dp)− sinh(dca) sinh(dp) cos
(π

2

)
,

so

dp = cosh−1

(
cosh d

cosh dca

)
(3.24)

Note that each of these expressions for dp is monotonic, so to save computing time, when

trying to find the smallest value of dp in the curved spaces, only the fractions need to be

compared, while in the flat case, the comparison can be made using values of d2
p directly.

Computing the Distance to the Lens and the Angle of Intersection

For the first sphere that is intersected, it is possible to compute the distance db from xB

to the point of intersection, and the impact angle αD. Again, from Figure 3.1, it is clear

that trigonometry is needed.

Consider the triangle 4dcadpd. In the case of positive curvature, spherical trigonom-

etry gives:

cos(dca) = cos(dp) cos(d) + sin(dp) sin(d) cos(αB) ,

which can be rearranged to yield

αB = cos−1

(
cos dca − cos dp cos d

sin dp sin d

)
. (3.25)

Considering now 4rdbd, the spherical Law of Sines provides the relation:

sinαD

sin d
=

sinαB

sin r
,

which, solving for αD gives:

αD = sin−1

(
sin(d) sin(αB)

sin(r)

)
. (3.26)
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This is the angle between the beam and the radial vector of the sphere. To find the

distance to the point of intersection, the Law of Cosines can be used on 4dcarn to give

cos(r) = cos(n) cos(dca) + sin(n) sin(dca) cos
(π

2

)
,

which can be rearranged to give an expression for n,

n = cos−1

(
cos r

cos dca

)
.

Since db = dp − n, the distance from xB to the point of intersection is thus

db = dp − cos−1

(
cos r

cos dca

)
. (3.27)

The standard Euclidian space trigonometric relations can be used in the flat case

which results in significant simplification. Considering 4rdcan,

sin(π − αD) =
dca

r
,

so the angle αD is simply

αD = sin−1

(
dca

r

)
. (3.28)

To find the distance to the point of intersection, note that n is

n = r cos(π − αD) ,

which results in the expression for db,

db = dp − r cosαD . (3.29)

The case of negative curvature is very similar to the case of positive curvature, though

again, hyperbolic trigonometric relations must be used in place of spherical trigonometric

ones. Applying the hyperbolic Law of Cosines to 4dcadpd,

cosh(dca) = cosh(dp) cosh(d)− sinh(dp) sinh(d) cos(αB) ,
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so the angle αB is given by

αB = cos−1

(
cosh(dp) cosh(d)− cosh(dca)

sinh(dp) sinh(d)

)
. (3.30)

The hyperbolic Law of Sines can then be applied to 4rdbd to find

sinαD

sinh d
=

sinαB

sinh r
,

so αD, the angle of interest, is given by

αD = sin−1

(
sinh(d) sin(αB)

sinh(r)

)
. (3.31)

Considering now 4dcarn,

cosh(r) = cosh(n) cosh(dca)− sinh(n) sinh(dca) cos(
π

2
) ,

so

n = cosh−1

(
cosh r

cosh dca

)

and thus db, the distance from xB to the point of intersection with the sphere, is given

by

db = dp − cosh−1

(
cosh r

cosh dca

)
. (3.32)

Note that in each of the above cases, we require αD ≥ π
2

so that αD − π
2

gives the

incident angle with which the beam hits the sphere (i.e. the acute angle between the

beam and the tangent to the sphere at the point of contact).

Finding the Coordinates of Intersection

Using the form of ka given in (3.5), it is possible to analytically determine the location

that the beam ends up having on the surface of the embedded sphere that it encounters.

In this coordinate system, the value of ωf at the end of propagation is known and the

θ coordinate remains π
2
, leaving only φf to be computed. Using (3.5b) to replace dλ in

(3.5d), ∫ φf

φi

dφ = εωq

∫ ωf

ωi

dω

SK(ω)
√
S2

K(ω)− q2
,
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which can be solved for each value of the curvature indicator to get

φf =





φi − εω

[
tan−1

(
q cosh(ω)√
sinh2(ω)−q2

)]ωf

ωi

: K = −1

φi + εω
[
cos−1

(
q
ω

)]ωf

ωi
: K = 0 .

φi − εω

[
tan−1

(
q cos(ω)√
sin2(ω)−q2

)]ωf

ωi

: K = +1

(3.33)

Aside from the location of the beam, the code must also track the evolution in the

scale factor R during the propagation. Since the total amount of matter in the model is

constant, ρR3 = ρ0R
3
0, where the subscripted values are evaluated at some instant in time

such as at the beginning of the beam propagation. Then from the Friedmann Equation

(1.12),

dR

d(cT )
= εR

√
8πGρ0R3

0

3c2R
+

ΛR2

3
−K , (3.34)

where εR = ±1. Combining this with (3.5a),

dR

dλ
= εR p

√
8πGρ0R3

0

3c2R3
+

Λ

3
− K

R2
, (3.35)

which can be numerically integrated simultaneously with (3.5a) for the time cT , and

(3.5b) to determine the value of λ at the point of contact with the lens. At that instant,

the beam will thus have coordinate values (cTf , ωf ,
π
2
, φf ), and the FRW region a scale

factor of Rf , all of which can be determined.

The Case if no Sphere is Hit

If the beam is found not to encounter any spheres in the region it is to propagate through,

then the centre of the region is designated as the target “lens” and the orientation of the

coordinate system as described in Section 3.1 can still be carried out. If, once oriented,

the beam is found to have ω̇ > 0, it must be headed towards the boundary of the FRW

region so the target value of ωf is simply the comoving radius of the boundary and

propagation can continue as usual. If, on the other hand, the beam is found to be headed
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towards the centre of the region, the propagation is broken up into two steps to properly

deal with the closest approach. Refer to Section 5.3.2 for details.

3.2 The Schwarzschild Regions

For any single encounter with a spherical object, the beam is confined to motion in a

plane that contains the centre of this object. Hence, as was the case in the background

before, when the beam travels through a Schwarzschild vacuum in the RSC model, it

is possible to choose the coordinates to be oriented in such a way that they simplify

the equations of motion. In fact, the same propagation orientation defined for the FRW

regions in Section 3.1, with the lens at the centre of the coordinate system and the beam

propagating in the plane with θ = π/2, can also be used here.

With this orientation, the equations of motion of the beam can be determined in the

same way that they were for the FRW regions. The Schwarzschild line element becomes

ds2 = f(r) d(ct)2 − dr2

f(r)
− r2 dφ2 ,

which leads to a Lagrangian that can be used in the Euler-Lagrange equations (3.3).

Not surprisingly, ∂L
∂t

= 0 and ∂L
∂φ

= 0, which is reasonable since the beam is under the

influence of a central force so energy and angular momentum should be conserved. Using

rγ to represent the radial coordinate of the beam in the vacuum, ka, the null tangent

vector to the geodesic, has components:

dct

dλ
=

lγ
f(rγ)

(3.36a)

drγ

dλ
= εγ

√
l2γ −

h2
γ

r2
γ

f(rγ) (3.36b)

dθ

dλ
= 0 (3.36c)

dφ

dλ
=
hγ

r2
γ

(3.36d)
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The quantities lγ and hγ are constants of integration and εγ = ±1 indicates whether the

beam is headed towards or away from the core at the centre of the vacuum. lγ is related

to the energy of the beam and is unit-less, while hγ, with units of length, describes an

impact parameter and is thus related to the angular momentum of the beam.

Besides the motion of the beam in the vacuum, it will also be useful to determine the

4-velocity, ua, of a timelike observer in this region. In particular, we will be interested

in the motion of observers moving with the inner and outer boundaries of the vacuum.

Since these move in a radial fashion in the Schwarzschild coordinates, the observers will

have

u2 = u3 = 0 . (3.37)

Using the Euler-Lagrange equations again, but with an affine parameter τ , a timelike

observer moving with the outer boundary (the boundary observer) has

u0 =
dct

dτ
=

lb
f(rb)

, (3.38)

analogous to (3.36a), but with rb describing the radial coordinate of this observer and lb

being a constant describing the energy of their motion. Using (3.37) and (3.38) in the

Schwarzschild metric (1.2),

u1 =
drb

dτ
= εb

√
l2b − f(rb) , (3.39)

where εb = ±1 depending on whether the observer is moving away from the centre or

towards it, and this time, the relation ds2

dτ2 = 1 for a timelike observer was used, instead

of ds2

dτ2 = 0 as was the case for the beam. The same will hold true for a timelike observer

at the inner border of the vacuum on the edge of the core mass (the core observer who

will have quantities denoted by a subscript “c” rather than a “b”).

In an FRW region of the RSC model, the location and size of each embedded sphere

are fixed using comoving coordinates. These fixed targets allow the ultimate destination

of a beam being propagated thorough the region to be determined a priori. The situation
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at beam 2
entry
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exit
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at beam 2

entry

core radius
at beam 2

at beam 2
exit

radius of hole

t

r

boundaryboundary corecore

beam 1

beam 2

Figure 3.2: A spacetime diagram using vacuum (not comoving) coordinates to describe
the propagation of a couple of beams through an expanding hole with an expanding core.
Beam 1 enters the hole first but does not encounter the core, while beam 2 does travel
through it (shown as a dashed wavy line). Note that the wavy lines are used simply
as representations of the beams of light and do not imply varying propagation speeds.
Furthermore, for simplicity, the beams are shown travelling in straight lines (i.e. with no
lensing depicted).

is more complicated once a beam enters a vacuum region because the potential targets

at the inner and outer boundary are both moving. The radius of the core and of the

background region in which it is embedded are evolving at different rates, so in general,

it is not immediately apparent whether a beam with a given direction vector will hit the

core or simply propagate past it before returning to the outer boundary again.2 Refer to

Figure 3.2 for a spacetime diagram showing the two scenarios, with Figures 3.3 and 3.4

providing alternate graphical depictions.

2There is also the possibility that beams do not make it all the way through a hole, but this will be
dealt with in Section 3.4.
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Figure 3.3: A top view of Figure 3.2. The beams enter from the left side and propagate
to the right. Solid lines are used to depict the boundaries of the hole and core as relevant
to the propagation of the beam on the given half of the diagram. As before, the beams
are shown as heavy solid lines except where beam 2 propagates inside the core. There it
is displayed using a heavy dashed line. Once more, the wavy lines do not imply variations
in the path of a beam – they are simply used as a means of distinguishing the beams
from the boundaries. There is no lensing depicted in the diagram.

core at
beam exit
from hole

beam at
closest 
approach
to core

beam

core at closest
approach of 
beam

core when
beam enters hole

hole at beam entry hole at beam exit

Figure 3.4: This figure is similar to Figure 3.3, but it depicts the critical case where a
beam just grazes the core tangentially. Here, the beam is depicted as a heavy solid line,
and an attempt is made to depict the bent path that the beam would take as it travels
through the dynamic hole. The beam enters on the left and as it follows a curved path
through the vacuum, the core expands. At its point of closest approach to the core, the
beam just avoids contact and continues on to exit on the right side, travelling further
through the vacuum as the hole has expanded.
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3.2.1 Determining the Potential Closest Approach

The radial equation of motion of the beam in the vacuum (3.36b) has an overall sign, εγ,

that needs to be changed if the beam reaches a minimum radius without encountering

the core. As such, it is necessary for the code to determine this potential point of closest

approach when the beam enters a vacuum. The point is reached when drγ

dλ
= 0, which

implies

r3
γ −

rγ

Γ
+

2m

Γ
= 0 ,

where Γ ≡ l2γ
h2

γ
+ Λ

3
. A cubic of the form x3 + a1x

2 + a2x+ a3 = 0 has roots

x1 = S + T − 1

3
a1

x2 = −1

2
(S + T )− 1

3
a1 +

i
√

3

2
(S − T )

x3 = −1

2
(S + T )− 1

3
a1 − i

√
3

2
(S − T )

where

S =
3

√
V +

√
U3 + V 2 T =

3

√
V −

√
U3 + V 2

U =
3a2 − a2

1

9
V =

9a1a2 − 27a3 − 2a3
1

54

With Λ > 0

a1 = 0 a2 = − 1

Γ
< 0 a3 =

2m

Γ
> 0

so U = − 1
3Γ

, V = −m
Γ
, and the discriminant

D = U3 + V 2 =
27Γm2 − 1

27Γ3
.

If D > 0, there is one real root,

r = S + T =
3

√
V +

√
D +

3

√
V −

√
D . (3.40)

If D = 0, all roots are real and the last 2 are equal, with the positive one being given by

r =




−1

2
(S + T ) = − 3

√
V = 3

√
m
Γ

: V < 0

S + T = 2 3
√
V = −2 3

√
m
Γ

: V > 0
. (3.41)
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If D < 0, all roots are real and unequal, and the solutions can be written as:

x1 = 2
√
−U cos

(
θ

3

)
− a1

3
(3.42a)

x2 = 2
√
−U cos

(
θ

3
+

2π

3

)
− a1

3
(3.42b)

x3 = 2
√
−U cos

(
θ

3
+

4π

3

)
− a1

3
(3.42c)

where

cos(θ) ≡ V√−U3
= −3m

√
3Γ

in this case. This means π
2
≤ θ ≤ 3π

2
, or π

6
≤ θ

3
≤ 3π

6
, so cos( θ

3
), and hence x1, is positive.

Similarly, θ
3

+ 2π
3

lies between 5π
6

and 7π
6

, so x2 is negative. Finally, θ
3

+ 4π
3

lies between

9π
6

and 11π
6

, so x3 is positive. This means that the correct root is one of x1 or x3:

r1 =
2√
3Γ
cos

(
θ

3

)
(3.43)

r3 =
2√
3Γ
cos

(
θ + 4π

3

)
(3.44)

The valid one for the purpose at hand is the largest one less than the value of rγ upon

beam entry to the vacuum.

3.3 Connecting the Regions

3.3.1 FRW Background to Schwarzschild Vacuum

Matching the Location and Direction of the Beam

Consider the situation of a beam moving from an FRW region to a Schwarzschild vacuum

in the model. As indicated in Appendix C.1.2, the θ and φ coordinates used in each region

are identical, so the beam can remain at

θSch =
π

2
and φSch = φf (3.45)
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in the Schwarzschild coordinate system, where φf is the final φ value computed in the

FRW region via (3.33). Similarly, (C.11a) can be used to write

rb = R(cTf )SK(ωf ) , (3.46)

while the absolute value of the time coordinate in this system is not important so ct can

be set to zero initially. Hence, at the boundary to the vacuum, a beam that has travelled

through an FRW region in the propagation orientation (refer to Section 3.1) would have

Schwarzschild coordinates of (0, rb,
π
2
, φf ). In fact, as shall be seen below, trying to follow

the Schwarzschild coordinate time can lead to computational difficulties so as it is not

actually needed, it does not need to be followed.

Aside from the location of the beam, its direction of propagation described by the tan-

gent vector ka, also needs to be expressed using Schwarzschild coordinates. As the FRW

and Schwarzschild regions are matched at the boundaries between them, the null geodesic

trajectory must be smoothly continuous across these boundaries. In the propagation ori-

entation, the components of ka take the form given in equations (3.36). Considering the

case at the outer boundary where rγ = rb, all that remains is to determine the values of

hγ and lγ. Matching the components of ka at this boundary,

k3
FRW = k3

Sch

pq

S2(ωf )R2(cTf )
=
hγ

r2
b

∴ hγ = pq . (3.47)

To find the value of lγ, we consider the frequency scalar uaka, where ua is the 4-velocity of

a timelike observer. In the FRW region, the comoving boundary observer has a 4-velocity

of ua = (1, 0, 0, 0). From (3.13), k0 = p
R
, so at the boundary,

(uaka)FRW =
p

R(cTf )
. (3.48)

Using the expression for ka in the Schwarzschild region given in (3.36),

ka = gabk
b =

(
lγ,− ṙγ

f(rγ)
, 0,−hγ

)
, (3.49)
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which can be combined with the vacuum expression for the 4-velocity of the boundary

observer given in (3.37) to (3.39) to find the frequency scalar has the form

(uaka)Sch =
lb

f(rb)
lγ − εb

√
l2b − f(rb)

ṙγ

f(rγ)
(3.50)

there. Equating the scalars from the two coordinate systems at the boundary between

them,

pf(rb)

R
− lblγ = −εbεγ

√
l2b − f(rb)

√
l2γ −

h2
γ

r2
b

f(rb) , (3.51)

where R ≡ R(cTf ) and use was made of the fact that at the boundary, rγ = rb. Squaring

and re-arranging further yields a quadratic in lγ that can be solved to give

lγ =
p rblb ±

√(
p2r2

b − h2
γR

2
)
(l2b − f(rb))

rbR
. (3.52)

The choice of sign can be made by comparing this to similar expressions in Dyer (1973).

When a beam is being followed backwards from observer to source through an expanding

universe, dR
dcT

< 0 and the positive sign is the appropriate one to use when it enters a hole.

On the other hand, if the beam is leaving a core whose radius is evolving in the same

direction as that of the hole boundary, the negative sign should be chosen. In practice

then, this sign is given by the product εγεR, where the two factors are from (3.36b) and

(3.34) respectively.

Determining the Geometrized Mass

In order to evaluate f(r), the geometrized mass m needs to be computed via (1.5) using

the gravitating mass M . This quantity is determined by the matching condition at the

boundary of the FRW and Schwarzschild regions:

M =
4π

3
r3
bρb , (3.53)

where the Schwarzschild radius can be found from (3.46), and the background FRW mass

density can be evaluated using the relation R3ρb = R3
0ρ0 (Dyer, 1973). In the case of zero
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curvature, this mass is the same quantity one would get by taking the volume integral

over the hole were it filled with dust at the FRW background density,

Mvol = ρbR
3

∫ ωb

0

dV ,

since rb = Rωb. However, this is not the case in general. When the curvature is positive,

(3.53) can be written as

M =
4π

3
R3 sin3(ωb)ρb ,

while the volume integral (refer to Appendix A) gives

Mvol = 4πR3

(
ωb

2
− sin(2ωb)

4

)
ρb .

Here, M < Mvol as the binding energy present lowers the gravitational source term.

Correspondingly, when the curvature is negative, (3.53) becomes

M =
4π

3
R3 sinh3(ωb)ρb ,

which is larger than the volume integrated mass

Mvol = 4πR3

(
sinh(2ωb)

4
− ωb

2

)
ρb

as a consequence of the kinetic energy present increasing the gravitational source.

Determining lb

The only other unknown in (3.52) is lb. Using (C.11a), along with the definition of the

geometrized mass, the Friedmann equation (1.12) can be written as

drb

dcTb

= εb

√
2m

rb

+
Λr2

b

3
−KbS2

K(ωb) . (3.54)

Since the motion of the boundary observer can be described using their proper time, Tb,

(3.54) can be compared to u1 in (3.39), and the two are seen to agree provided that

lb = ±
√

1−KbS2
K(ωb) . (3.55)
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From (3.38), it is clear that the positive sign should be chosen for a beam outside an event

horizon to be travelling forward in coordinate time. Equation (3.55) is in agreement with

dct

dcTb

= ±
√

1−KbS2
K(ωb)

f(rb)
,

the connection condition at the boundary (Dyer, 1973).

3.3.2 Schwarzschild Vacuum to FRW Background

Once a beam has propagated through a hole and reached the boundary of the vacuum

again, its location and direction must be converted back into the RW coordinates describ-

ing the space outside. With the θ and φ coordinates being common to the two systems,

and the comoving angular size of the hole, ωb, remaining constant, the location of the

beam on the boundary is known. The scale parameter can be computed via (C.11a),

while the new value of the RW coordinate time can be set to zero since its absolute

value does not matter. The procedure to convert the beam direction between the two

coordinate systems as it leaves the hole is exactly analogous to that used when the beam

entered. In this case though, it is the constants p and q that need to be found, rather

than hγ and lγ. Since the frequency scalar uaka can be computed, (3.51) can be used to

find p, which in turn can be used in (3.47) to find q. With the location and direction

vector of the beam known, it can be rotated out of the propagation orientation it was

put into to travel to the lens. This is accomplished by inverting the rotations described

in Section 3.1.1, putting the beam back into unoriented background coordinates so the

search can begin for the next sphere encounter.

3.3.3 Core Dynamics

Slow Versus Lagging Cores

Though the RSC model itself does not impose any restriction on the dynamics of the

cores it contains, in this work, the choice was made to describe these cores as FRW
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regions. As such, their evolution is governed by the Friedmann equation (1.12). While

one should not attach too much significance to the early evolutionary behaviour of the

model, since shortly after the FRW “Big Bang”, the pressure is not negligible as has been

assumed, it is nonetheless useful to develop a consistent picture of how the cores might

have evolved.

Perhaps the simplest scenario envisions the cores as being spherical regions of matter

which started expanding in the Bang with the rest of the universe, but that had an

initial velocity that was slightly below that of the background, due, for instance, to a

slight density perturbation. These slow cores would continue to expand at a slower rate,

allowing vacuum regions to grow between their outermost dust shell and the innermost

shell of the background dust. While aesthetically pleasing due to its simplicity, this

picture ends up being rather restrictive in practice. As the model evolves, there is a

narrowing of the range of core properties that allows them to grow to a reasonable

fraction of the boundary size without recollapsing or remaining very close to the boundary

for most of their evolutionary history. This results in a model with few non-collapsed

regions of significantly higher density. An alternative picture which solves this problem

is to lift the restriction that the cores and background begin expanding simultaneously.

In this situation, the vacuum region around a singular core grows as the background

universe does, until the delayed or lagging core experiences its own bang and subsequent

expansion. Care must be taken in this case to ensure that the matter in the core does not

end up expanding into the matter in the background, but allowing the beginning of the

core expansion to be a free parameter results in an RSC model that displays interesting

structure over a wider timescale.

Following the Motion of the Hole Boundary and the Core

As was seen in Section 3.2, when expressed using Schwarzschild coordinates, the 4-velocity

of a timelike observer comoving with the FRW dust at the edge of a vacuum region takes
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the form:

ua =

(
l

f(r)
, ε

√
l2 − f(r) , 0 , 0

)
. (3.56)

This applies to both the boundary and core observers, though each of these measure

their 4-velocity with respect to their own proper time τ . In order to follow the motion

of these observers while at the same time tracking a beam whose trajectory is governed

by (3.36), a consistent way of synchronizing the different systems is required. The code

needs a common basis to work with in order to be able to determine by how much the

boundary and core have evolved each time the beam is stepped by some amount ∆λ.

The most obvious candidate for this basis may seem to be the Schwarzschild coor-

dinate time ct, which is what a Killing observer (an observer remaining at a constant

radius in the vacuum) would measure as their proper time. However, there are prob-

lems with this measure. Considering the case where Λ = 0 for simplicity, there is an

event horizon at r = 2m, and as this is approached, the value of ct becomes infinite as

is clear from the Kruskal diagram in Figure 3.5, or by considering u0 in the limit that

f(r) → 0. As can be seen from the metric (1.2), when r < 2m, t and r are no longer

properly defined as timelike and spacelike quantities respectively. Even if the code need

not be concerned with beams that fall inside an event horizon, it will need to follow the

motion of the boundary and cores from r = 0, and though it is possible to integrate over

the problematic point, this system does not easily lend itself to numerical integration.

As such, it is useful to establish a different coordinate system in which the quantities

of interest behave more reasonably and a relativistically valid synchronization over the

vacuum can be implemented.

The Infalling Coordinate System

To define this new system, consider a Killing observer located at some large value of

r = rK outside a core with geometrized mass m. This observer will actually lie inside

the background FRW region in the model, but this is not a problem as neither the beam,
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r = 0

r < 2m

t = 0

t = 0 r < 2mr = 0

r > 2m

r > 2m

r = 2m, t = ∞ r = 2m, t = −∞

Figure 3.5: A Kruskal diagram for Λ = 0. The solid lines represent curves of constant r,
with the heavy solid lines denoting r = 0, 2m. The dotted lines denote curves of constant
t, while the dashed line shows the motion of a timelike particle leaving the “white hole”
at the bottom of the diagram and eventually ending up in the “black hole” at the top.

nor the boundary, nor the core will need to travel through the vacuum to rK . At regular

intervals of their proper time, this observer releases an infalling radial “signal photon” and

a “pebble” (which is simply a test mass representing a freely-falling, timelike observer).

The photon and pebble fall at different rates, the former following a null geodesic while

the latter follows a timelike path, and events occurring in the vacuum radially inward

from r = rK can be described in terms of what photon and what pebble are at the

particular location of the event at the instant it happens.

This description can be generalized to have a group of Killing observers, one at each
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point of the spherical surface at r = rK , all behaving in the same way and releasing

photons and pebbles at regular intervals as measured by their clocks. Hence, instead

of having photons and pebbles falling along a single axis through the space, there exist

ingoing wavefronts and spherical shells of test masses. In this way, any event occurring

within the volume enclosed by the group of Killing observers can be described in terms

of the wavefront and shell that it occurs at. Since physically, the photons and pebbles

must pass through the coordinate singularity at f(r) = 0 without any difficulty, they can

be used to make measurements in any region of the Schwarzschild vacuum.

To formally establish this coordinate system, consider the motion of a signal photon.

Choosing it to be travelling in the plane with θ = π/2, from (3.36), the radial motion

means that hγ = 0, so the trajectory is described by:

dct

dλ
=

lγr

f(r)
(3.57a)

dr

dλ
= εγrlγr (3.57b)

where the γr subscripts on the constants are used to differentiate the signal photon from

a general one. Eliminating the affine parameter λ,

dct =
εγr

f(r)
dr , (3.58)

and the same can be done using (3.56), the 4-velocity for a timelike radial observer, to

get

dct =
εplp

f(r)
√
l2p − f(r)

dr , (3.59)

which applies to the pebble.

Taking Λ = 0 again for simplicity, f(r) = 1− 2m
r

. The signal photons have εγr = −1,

so from (3.58), ∫
dct = −

∫
dr

1− 2m
r

and hence,

ct+ r + 2m ln |r − 2m| = ν , (3.60)
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where ν is an integration constant. Using (3.59) to do the same for the pebbles,
∫

dct = −
∫

lp dr
(
1− 2m

r

) √
l2p − 1 + 2m

r

. (3.61)

If the Killing observer drops the pebbles with an initial velocity such that lp = 1, then
∫

dct =
1√
2m

∫
r
√
r

2m− r
dr

and as a result,

ct+ 2
√

2mr +
2r

3
2

3
√

2m
− 2m ln

∣∣∣∣∣
√
r +

√
2m√

r −√2m

∣∣∣∣∣ = µ (3.62)

for the integration constant µ. Note that when considering the motion of the pebbles,

the requirement that lp = 1 is equivalent to saying that they are released by the Killing

observer with the same velocity that they would have if they fell in from an initial zero

velocity at r = ∞. In fact, any value could have been chosen for lp and the expressions

would still be integrable analytically. The case chosen just results in equations that are

easier to work with.

Examining equations (3.60) and (3.62), it is clear that the Killing observers can use

the values of ν and µ to respectively label the photon and pebble that are released at

a given value of their proper time t. In other words, at time t0, each observer releases

photon ν0 and pebble µ0, with photon νn and pebble µn being released at time tn.

These equations allow us to take an event occurring at a given Schwarzschild (ct, r, θ, φ)

coordinate, and convert it to an “infalling” (ν, µ, θ, φ) coordinate. Though the system can

just as easily be constructed with outgoing beams and pebbles, taking care to manage the

signs properly will allow almost all situations to be covered using this infalling system.

Refer to Figure 3.6 to see this system depicted in a Kruskal diagram. Note that the

above procedure can still be followed for non-zero values of Λ. The only difference is that

(3.60) and (3.62) will involve elliptic integrals that need to be performed numerically in

order to get ν and µ from values of t and r.

As the angular θ and φ coordinates are common to the Schwarzschild and infalling

coordinate systems, the conversion of some tensorial quantity va between the two only
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r = 2m, t = ∞ r = 2m, t = −∞

r > 2m

r = 0

r = 0

r = rK

Figure 3.6: The infalling coordinates depicted in a Kruskal diagram. The dashed lines
represent constant values of ν for the ingoing beams, while the dotted lines denote con-
stant values of µ for the infalling pebbles. They all originate from a Killing observer at
r = rK À 2m.

involves the transformation between (ct, r) and (ν, µ). Using (3.60) and (3.62) in (C.1a),

ṽ0 = v0 +
r

r − 2m
v1

ṽ1 = v0 +
r
√
r√

2m(r − 2m)
v1 ,

where ṽa is expressed in the infalling system. Applying this to the 4-velocity (3.56),

dνb

dτb
=

r

r − 2m

(
lb + εb

√
l2b − f(rb)

)

dµb

dτb
=

r

r − 2m

(
lb + εb

√
(l2b − 1) r

2m
+ 1

)
,
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giving

dµb

dνb

=

√
rb

2m

(√
2mlb + εb

√
(l2b − 1) rb + 2m

√
rb lb + εb

√
(l2b − 1) rb + 2m

)
(3.63)

for the boundary observer. The same expression holds true for the core observer (sim-

ply replace each “b” subscript with a “c”). Note that in this expression, the quantity

(l2b − 1)rb + 2m cannot be negative as otherwise the u1 component of the 4-velocity will

be complex, which cannot happen for physical observers. Hence, all quantities in this

equation remain real.

Repeating the process for ka, the tangent vector to the null geodesic followed by the

beam given in (3.36),

dνγ

dλ
=
lγrγ

√
rγ + εγ

√
r3
γl

2
γ − h2

γ(rγ − 2m)
√
rγ(rγ − 2m)

(3.64a)

dµγ

dλ
=
lγrγ

√
2m+ εγ

√
r3
γl

2
γ − h2

γ(rγ − 2m)
√

2m(rγ − 2m)
(3.64b)

dθγ

dλ
= 0 (3.64c)

dφγ

dλ
=
hγ

r2
γ

(3.64d)

and eliminating the affine parameter λ,

dµγ

dνγ

=

√
rγ

2m


 lγrγ

√
2m+ εγ

√
r3
γl

2
γ − h2

γ(rγ − 2m)

lγrγ
√
rγ + εγ

√
r3
γl

2
γ − h2

γ(rγ − 2m)


 (3.65a)

dθγ

dνγ

= 0 (3.65b)

dφγ

dνγ

=
hγ(rγ − 2m)

rγ
√
rγ

(
lγrγ

√
rγ + εγ

√
r3
γl

2
γ − h2

γ(rγ − 2m)
) (3.65c)

Again, the quantity r3
γl

2
γ −h2

γ(rγ − 2m) must be greater than or equal to zero in order for

the k1 component of the tangent vector to remain real. Hence, the quantities in these ex-

pressions are all real. Since a given set of signal photons released by the Killing observers

is used to synchronize all events, νb = νc = νγ = ν, so the differential equations (3.65),
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along with (3.63) and a similar expression for the core, can be integrated simultaneously

to track the locations of the boundary observer, core observer, and beam, using ν as an

independent variable.

Note that for the boundary (or core) observer, if εb = −1 and lb = 1 as is the case

for the pebbles, dµ
dν

= 0 as expected since each test mass has a constant value of µ.

Furthermore, for the beam, if hγ = 0 and εγ = −1 as is true for the signal photons,

then dµγ

dν
= ∞ and L’Hopital’s rule shows that the same is true for dφγ

dν
as is expected

for these beams since they are defined by a constant value of ν. This does imply that a

purely radial ingoing beam cannot be treated properly in this coordinate system, but in

practice, this should not be a common occurrence.

In order to use the propagation equations above, the relevant values of r are still

needed for the computations. Combining (3.60) and (3.62) to eliminate ct, yields

ν − µ− r − 4m ln
(√

r +
√

2m
)

+ 2
√

2mr +
2r

3
2

3
√

2m
= 0 . (3.66)

Though this cannot be solved directly for r, given values of ν and µ, it can easily be

solved numerically as it is well defined for all positive r and is a monotonically decreasing

function.

While the infalling coordinate system (ν, µ, θ, φ) can be used to follow the evolution

of the system throughout the Schwarzschild vacuum, if our interest lies only outside the

event horizon at 2m, then things can be simplified considerably. In particular, there is

no longer any need for the µ coordinate, and the various values of r can be integrated

directly instead of being computed using (3.66) at every step.3 Converting (3.56) to the

(ν, r, θ, φ) system and eliminating the affine parameter, the equation of interest becomes

drbc

dν
= −

√
rbcl2bc − (rbc − 2m)

rbc

(√
rbcl2bc − (rbc − 2m)− εbclbc

√
rbc

)
, (3.67)

where the subscripts indicate that this can be used for both the boundary and core

3The system effectively becomes one described by Eddington-Finkelstein coordinates – see Ap-
pendix C.2.
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observers. This expression has been written in a form that is numerically stable, even as

an observer approaches 2m. Equation (3.64a) can be re-written as

dλ

dν
=

√
rγ

h2
γ

(
lγrγ

√
rγ − εγ

√
r3
γl

2
γ − h2

γ(rγ − 2m)
)
, (3.68)

which also has no problem near 2m. It can be used to convert the differential equa-

tions describing the trajectory of the beam and the optical scalars from using λ as an

independent parameter to using ν.

There is an interesting observation that should be made regarding the motion of the

core and boundary observers. If they are comoving with a dynamically closed FRW region

and they begin their trajectory moving outward from an initial singularity at r = 0, then

there is a minimum radius out to which they must travel before they can fall inward

again. Consider the radial component of their 4-velocity in the simple case where Λ = 0:

dr

dτ
= ε

√
l2 −

(
1− 2m

r

)
.

Initially, ε = +1 and the observer moves outward until dr
dτ

= 0, at which point ε changes

sign and the observer starts to fall inward. The maximum value of r attained is clearly

dependent on l, the constant of motion related to energy. For instance,

dr

dτ

∣∣∣∣
r=4m

= 0 =⇒ l =
√

0.5 ,

so a closed trajectory that turns around at 4m requires l =
√

0.5. As the turnaround

point is moved further and further out, l must increase, until in the limit,

dr

dτ

∣∣∣∣
r=∞

= 0 =⇒ l = 1 ,

which is the marginally bound case. As l is increased beyond 1, the derivative is never

zero so there is no turn-around and the observer simply has an increasing velocity at

r = ∞ corresponding to an increasingly unbound system as can be expected.

However, as l is reduced, the system becomes additionally bound until a turn-around

point of r = 2m is reached, in which case l = 0. Hence, any outgoing physical observer
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must reach a radial value of at least 2m before turning around. This is of course easy

to see in a Kruskal diagram (refer to Figure 3.5), where a timelike particle travelling

outward in the “white hole” region at the bottom of the diagram cannot return to r = 0

without at least reaching 2m and passing through to the “black hole” region at the top

of the diagram. Since the motion of these observers can also be described using the RW

metric, the turnaround point must also correspond to the extremum of the Friedmann

equation when dR
dcT

= 0, giving

Rmax =
8πGρ0R

3
0

3c2

for Λ = 0 and K = 1. On the surface, this may appear to exclude the possibility of a

uniform FRW region expanding then collapsing within a vacuum. However, if considered

from within a Schwarzschild coordinate system, the smaller the radial distance of an

FRW dust particle from the centre, the smaller the value of 2m it experiences, and the

smaller the minimum turnaround radius is, so there is actually nothing inconsistent with

the description given. As an interesting aside, the minimum time to live for an expanding

region is 2mπ, which, for a region with a galactic-type mass of 6× 1011M¯ , corresponds

to about 20 days.

3.3.4 Defining the Core

With the RSC model being constructed as it is observed, the first time that a sphere

is encountered by a beam, the code must choose the properties of the lens it contains

inside. Since the value of M , the mass inside the hole, is already determined, rc and

lc, the radius of the core and a constant related to its energy, are all that remain to be

selected. Care must be taken in choosing these values, to ensure that they do not allow

for the core to overlap with the boundary at any point in their evolution. At first pass,

we assume for simplicity that the cores, like the background universe, do not reach a

turn-around point during a beam propagation interval. Though this condition extends

the self-similarity of the model, it is not essential and dropping it will in fact add a bit
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more flexibility to the model.

Choosing rc

When the beam being propagated reaches the boundary observer, the radius of the core

will lie between 0 and rb, the radius of the boundary. To choose a value, a positive scale

factor s < 1 is picked at random. Currently, this factor is chosen from among a small

number of values, each of which is an inverse power of two. However, this procedure

can easily be made more sophisticated to produce results based on some predetermined

distribution. While the most straightforward choice would be to use rc = srb, as the

beam moves further back in redshift, it is to be expected that on average, the boundaries

and cores should be closer together as there has been less time elapsed for them to evolve

apart. To roughly account for this, rc is chosen via

rc =

(
s+ (1− s)

z

zmax

)
rb .

In this way, the full scale factor is applied when z = 0, while in the limit of the maximum

redshift that the beam will be propagated to, rc = rb and the hole has no core (it becomes

a leaf as described in Section 2.2.1). It should be emphasized that the value of rc chosen is

not the result of an instantaneous measurement at a distance. Rather, it is the radius that

the boundary observer would measure the core to have by communicating with the core

observer using radial light rays. In other words, it is not the size of the core as measured

on an acausal spacelike “sheet” across the vacuum region, as it takes into account signal

propagation time in order to ensure that the system is properly synchronized at the

location of the propagated beam.

Choosing lc

With rc chosen, a suitable value of lc needs to be selected. The larger the value of this

constant, the more energetic the core is and the quicker a given value of rc can be reached.
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From the conditions imposed above, the maximum value that could be used is lb. Any

larger, and over the course of its evolution, the core will expand into the boundary. In

general, the minimum value of lc for a dynamic core is anything greater than zero. In

the case where K = 1 though, the core will at some point reach a maximum extent and

hence, must be given enough energy to attain the designated value of rc before turning

around and collapsing. While a trial value of lc can be chosen at random to lie between

these limits, this scheme is not sufficient. Though the core may be given enough energy to

eventually reach the chosen radius, it may still expand too slowly, reaching the required

size only if it is allowed to start its expansion earlier than the boundary of the hole does,

an unreasonable proposition. As a result, before settling on the value of lc, the code must

ensure that evolution can occur in a sensible manner.

In the infalling coordinate system adopted, elapsed time can be measured in a con-

sistent way by considering intervals in ν. Applying (3.67) to the boundary observer and

rearranging,

∆ν =

∫ rbf

rbi

rb

rb − 2m

(
εblb
√
rb√

(l2b − 1)rb + 2m
+ 1

)
drb . (3.69)

As the elapsed interval in ν can always be computed by considering the boundary to be

infalling and setting the limits accordingly, we can set εb = −1. In the case where lb = 1,

that is, where the background FRW region is flat, the integral simplifies and

∆ν
∣∣∣
lb=1

=

[
rb + 4m ln

(√
rb +

√
2m

)
−
√

2mrb

3m

(
6m+ rb)

]rbf

rbi

, (3.70)

which is well behaved for all rb. For other values of lb, the analytic integral contains

complex values, but since these are constants that cancel out when considering differences

in ν, the result is

∆ν
∣∣∣
lb 6=1

=

[
rb − 2m ln

(
2m+ rb(2l

2
b − 1)− 2lb

√
(2m+ (l2b − 1)rb)rb

(r − 2m)2

)

+ F (lb,m, rb) − lb
l2b − 1

√
rb(2m+ (l2b − 1)rb)

]rbf

rbi

,

(3.71)
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where

F (lb,m, rb) =





2mlb(2l2b−3)√
(1−l2b)3

atan
(√

(1−l2b)rb

2m+(l2b−1)rb

)
: lb < 1

−mlb(2l2b−3)√
(l2b−1)3

ln

(
m+rb(l

2
b−1)+

√
rb(l

2
b−1)(2m+(l2b−1)rb)

m

)
: lb > 1

,

all of which is real. While the logarithm in (3.71) appears to be undefined when r = 2m,

a couple of applications of L’Hopital’s rule shows that it is indeed finite, with

[
2m+ rb(2l

2
b − 1)− 2lb

√
(2m+ (l2b − 1)rb)rb

(r − 2m)2

]

rb=2m

=
1

8ml2b
, (3.72)

so the expression for ∆ν is valid for all values of rb as expected from Figure 3.6. Whenever

the function needs to be evaluated at a value of rb close to 2m, the potentially problematic

argument can be expanded as a third order Taylor series about this point,

2m+ rb(2l
2
b − 1)− 2lb

√
(2m+ (l2b − 1)rb)rb

(r − 2m)2
≈

1

8ml2b

(
1 +

(1− 2l2b )(rb − 2m)

4ml2b
+

(16l2b (l
2
b − 1) + 5)(rb − 2m)2

64m2l4b

+
(−32l6b + 48l4b − 30l2b + 7)(rb − 2m)3

256m3l6b

)
, (3.73)

and used inside the logarithm instead. In practice, using the Taylor series when 1.98m ≤
rb ≤ 2.02m seems to avoid any numerical problems that can otherwise arise trying to

evaluate the analytic solution directly.

The above expressions allow ∆νb and ∆νc to be computed. If the values of rc and lc

chosen result in ∆νc > ∆νb, then lc is increased via lc = 0.5(lb + lc) until ∆νc drops below

∆νb, though if the increment in lc reaches floating point precision, then the core is simply

designated as a leaf since it would end up very near the boundary anyhow. Otherwise,

the combination of rc and lc obtained is valid, and the difference between the elapsed

intervals in ν is just the amount by which the core is delayed. M and rc can be used to

set ρc0 , the fiducial density of the core, while lc allows the curvature indicator of the core
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to be set via an expression analogous to that for the boundary in (3.55), so

Kc =





−1 : lc > 1

0 : lc = 1 .

+1 : lc < 1

Knowing Kc, the expression can then be solved for ωc to find the angular extent of the

core.

Subsequent Lens Encounters

If a beam hits a hole containing a lens that has already been defined by a previous beam

encounter, then a similar approach can be followed to find the appropriate value of rc

(lc , a constant of the motion of the core, would have already been fixed). It must lie

between zero and rb, or the radius of maximum extent if Kc = 1. This turn-around radius

can be found by following the same procedure described in Section 3.2.1, but using the

radial component of the core observer’s 4-velocity from (3.56) instead of the expression

for drγ/dλ used in that section. With the limits on rc known, the value that yields a νc

satisfying the expression

∆νb −
(
νc|(rc=0) − νc

)− core delay = 0

can be computed using a root-finding scheme based on the zbrent routine in Numerical

Recipes (Press et al., 1992). This is a bracketing method that uses quadratic interpola-

tion to make it quicker than a conventional Regula-Falsi method without requiring the

evaluation of derivatives.

There is a potential problem that can arise with the chosen method of defining lenses

if the first beam to hit a large lens only grazes it. Since this beam is used to set the core

size, the core delay that is subsequently implied may end up being too short to allow the

relation

∆νb = ∆νc + core delay (3.74)
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to hold for a later beam that hits the hole in a much more direct fashion. This more

direct beam, travelling from the final observer back to its source, will reach the hole when

it is much larger than it was when encountered by the grazing beam. Consequently, the

interval ∆νb that needs to elapse in order for the boundary to evolve to the larger size

may be longer than the combination of the core delay established earlier and the interval

needed by the core to reach its maximum extent. That is to say, the core should have

turned around by the time the direct beam reaches the boundary of the hole. If this

proves to be a significant problem in practice, the simplifying restriction that cores not

be allowed to turn around can be lifted, thereby allowing the model to continue following

the core as it re-contracts, either to remain a final collapsed object such as a black hole,

or even re-expanding again in a cyclic fashion.

Storing the Definition

As indicated earlier, the observed RSC model can be stored in memory as a hierarchical

tree structure, with each node in the structure describing a portion of the model at a

particular level. The uppermost node describes the background universe that the model

is embedded in, while the lowest levels represent holes that either contain a spherical lens

with no further substructure, or that are uniformly filled with matter at the same density

as the background in which they are inscribed (i.e. they are not holes at all, but the leaves

described in Section 2.2.1). Each node then, can contain the following information:

R0 : The scale factor of the core determined when it is first defined.

ρ0 : The density of the core determined when it is first defined.

ωc : The angular extent of the core.

lc : The constant of motion for the core.

Kc : The curvature indicator of the core.
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delay : The interval in ν that elapses between the beginning of the boundary expansion

and the beginning of the core expansion.

id : The sphere representing the boundary of the hole in the packing used to describe

the FRW region in which it is embedded.

pack : An identifier for the packing used to describe any substructure within the core.

num : The number of spheres loaded from pack (used as a check when a packing is

re-loaded).

centre : The sphere in pack chosen to be used as the centre of coordinates.

orientation : A set of 4 numbers describing the orientation chosen for pack, consist-

ing of the 2 planes and corresponding angles used for the random spins (refer to

Section 2.2 for more).

links : Two pointers that are used to connect the node to the rest of the model. One

pointer is used to connect to the next discovered hole at the same level as the current

node, while the other is used to connect to the nodes describing substructure within

the core of the current node.

Together, these values allow everything that needs to be known about the RSC model to

be computed as needed.

3.3.5 Moving Between the Vacuum and Core

Before a beam is propagated through a core that it has hit, its location and direction

must be converted to the RW coordinate system describing the region. As was the case

for the outside boundary of the vacuum, the boundary of the core lies at a constant

comoving radius when measured in these coordinates. In fact, with the appropriate
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choice of signs, the same procedure used to follow the beam across the outer boundary

can also be employed at this inner boundary.

As indicated above, when a beam passes from an FRW background region into a

Schwarzschild vacuum, the system is left in propagation orientation (i.e. with the lens

at the centre of coordinates and the beam having θ = π/2 and dθ = 0 as explained in

Section 3.1). However, once the core has been hit, this orientation cannot be maintained

as otherwise the structure inside would not be consistent for any subsequent beams that

enter with different orientations. As such, it is necessary to define a core coordinate

system that can be kept consistent for all beams. This is actually quite straightforward.

The transformation required to place a lens at the centre of coordinates (involving m1 to

m3 and mflip) is only dependent on the coordinates of the centre of the sphere containing

the lens, and thus will be identical for any beam. It is only the latter rotations (m5 to

m7), required to place the beam at θ = π/2 with dθ = 0, that vary. Hence, once a beam

hits the core, inverting these rotations will express its location and direction vector in the

desired coordinate system. The beam can then be propagated through the FRW region as

before, potentially recursing deeper into the model if substructure is encountered inside

the lens, repeating the transformations as required.

Once the beam has propagated through the core and is set to move back into the

vacuum, it will be propagated to the boundary with an orientation set by using the

centre of the lens (as opposed to the centre of some substructure within the lens) as the

centre of coordinates. This core propagation orientation can also be used to follow the

beam back through the vacuum as it satisfies the conditions needed for that purpose.

When the beam reaches the outer boundary of the vacuum, some care is needed to

ensure the correct re-orientation is performed there. First, the system needs to be taken

out of the core propagation orientation. Since the centre of the lens used to establish

this orientation was already at the centre of the coordinate system, this only involves the

inversion of rotations m5 to m7. Then, the system needs to be returned to the unoriented
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coordinate system of the background. This is done by inverting the transformations m1

to m3 and mflip that were originally used to place the lens at the centre of coordinates

before the beam was propagated to it. The other rotations required to establish the

background propagation orientation last used were inverted when the beam hit the core

as was described above.

If the core has a different curvature than the background in which it is embedded, it

may seem that an issue arises as to which value ofK to use to perform the transformations

required. Since the rotations m5 to m7 do not involve a change in the ω coordinate, they

are independent of K, and it is only the embedding necessary to perform them that is

affected by it. For this reason, when rotating coordinate systems, the code always uses

the curvature appropriate to the location of the beam (i.e. Kb at the boundary and Kc at

the core). In this way, while it is possible for the rotations m5 tom7 to be performed using

one curvature in the background and inverted using another at the core, the rotations

that do involve the curvature explicitly and not just in the embedding, are always applied

and reversed using the same value of K.

To find rb when the beam emerges from a core, virtually the same procedure that

was described in Section 3.3.4, to re-synchronize a core for the propagation of subsequent

beams hitting the hole boundary, can be followed. First, ∆νc is computed to determine

the interval that elapses for the core to go from the known radius rc to zero (remember

that the computation is always done assuming infall). This is then added to the stored

core delay, and the zbrent routine is used to find the value of rb that leads to a ∆νb

satisfying (3.74). In this case, the lower limit for rb is rc, while the upper limit is the

value of rb that was measured when the beam first entered the hole.

3.3.6 Tracking the Redshift

One of the parameters the code requires at run time is the specification of a maximum

redshift value that the beams are to be propagated back to – i.e. the redshift of their
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source. In order to compute the redshift at various points along the beam path, one

can compare the frequency of the beam measured by an observer at its source to that

measured by an observer at its destination. As each of these observers makes the mea-

surement in their own frame of reference, the frequency can be determined by taking

the inner product of their 4-velocity with the null tangent vector to the beam at their

location. Hence, using (3.48), the redshift factor between two observers comoving with

an FRW region can be written as

1 + z =
(uaka)emit

(uaka)obs

=
peRo

poRe

.

For a beam propagating through a single FRW region in the RSC model, such as from

the boundary of one hole to that of another, the propagation constant p does not change

so the redshift factor is simply

1 + z =
Ro

Re

, (3.75)

which is the standard form for an FRW universe with no holes. Since the beam is being

propagated backwards from the observer to the source in an expanding universe, the

scale factor at the end of the propagation (when the beam was emitted) is smaller than

at the beginning, giving z ≥ 0 as required. As the scale factor is already followed via

(3.35) in order to keep track of the null tangent vector ka, the redshift across such regions

can be computed at any point desired. Notice that equation (3.75) is only dependent

on the scale factor, emphasizing that the cosmological redshift between two comoving

observers in an FRW region is due simply to photons travelling through the expanding

space between them, and is not the result of a Doppler shift. In fact, it is not possible

to give an unambiguous meaning to the relative velocities of two objects separated by a

large distance in a non-Euclidian space (see Narlikar, 1993, for instance).

While it is easy to define a comoving observer at any point of an FRW region, the

situation is not as clear-cut in a Schwarzschild vacuum. The natural observers to use

there would probably be Killing observers that remain at constant r, though this is only
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valid outside 2m since there are no stationary observers inside. With this choice, the

beam would experience a potentially significant jump in redshift each time it passes from

an FRW region to a vacuum due to the relative motion between the comoving observers

at the FRW boundary and the Killing observers in the vacuum. This jump might then

be largely cancelled for the same reason once the beam makes the transition from the

vacuum to the core.

An alternate and more reasonable approach, given the lack of physical observers in

the vacuum, is to compute the change in redshift as it would be determined between two

comoving FRW observers at the edge of each vacuum that the beam is to pass through.

These would be the boundary observer and core observer if the beam propagates from

the boundary through the vacuum to the core, and two boundary observers if the beam

leaves the hole without hitting the core. The 4-velocities of these observers have the

same form, so the frequency they would measure is given by (3.50), with the appropriate

replacement of subscripts being made when dealing with the core observer. Taking the

ratio of these scalars as was done above, we find the redshift factor for the beam when

propagating between two comoving FRW observers separated by a Schwarzschild vacuum

is

1 + z =
rof(ro)

(
relelγ − εeεγe

√
(l2e − f(re))

(
r2
e l

2
γe − h2f(re)

))

ref(re)
(
rololγ − εoεγo

√
(l2o − f(ro))

(
r2
ol

2
γo − h2f(ro)

)) , (3.76)

where the “γe” and “γo” subscripts are used to describe quantities related to the beam

at the emitter and observer respectively, and use was made of the relation rbc = rγ at the

measurement location. Note that there can be a blueshift across the vacuum experienced

by a beam that hits a core that is expanding fast enough, but there will still be a net

redshift across the entire hole. Equation (3.76) is valid everywhere except possibly where

f(re) = 0, but since the code does not try to follow beams that are emitted at an event

horizon (see Section 3.4 below), this is not a problem in practice.

Hence, when propagating through the model, the code simply computes the redshift
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factor experienced by the beam as it passes through each region and determines the net

redshift via

(1 + z)net = (1 + z)1 × (1 + z)2 × · · · × (1 + z)n ,

where n is the total number of FRW and vacuum regions traversed.

3.4 Ending the Propagation

In most circumstances, propagation of the beam is expected to stop when it reaches

the specified source redshift zmax as described in the previous section. However, there

are three situations that can arise which will result in the propagation being terminated

sooner, with the beam being designated as invalid and its information discarded.

The first was mentioned earlier and involves those beams which are found to have

originated at an event horizon. Such beams must have come from within the core and

as such, do not contain information about background objects. They can only provide

information about possible substructure of the core, of which there is none since the

evolution of cores that lie within their own event horizon is not followed. In practice,

the propagation of a beam is ended if the beam is found to have approached an event

horizon to within some tolerance4 in order to avoid forcing the integrator to take many

small steps trying to reach the horizon exactly.

Finding that a beam hits an event horizon is the only reason that propagation is

stopped inside a vacuum region. Since redshifts are only computed between comoving

FRW observers, a beam will never be found to have reached zmax while in a vacuum region.

In this way, ingoing beams that would have been found to exceed the the redshift limit

as measured by a Killing observer, yet would fall back within the limit once measured

by the core observer (meaning they could physically have originated from within the

core) are not discarded prematurely. However, for the same reason given above, beam

4This is set to be the distance the code considers small enough to step linearly – refer to Section 5.3.1.
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propagation is also terminated if the beam is found to be trying to emerge from a core

that has fallen within its own event horizon.

A beam found to hit the boundary of the background FRW region in which the RSC

model is embedded is also rendered to be invalid and discarded. As the “real” observer

can be placed anywhere in the background of the model and be made to look in any

direction, it is possible to have them placed sufficiently close to the edge of the region

considered that the beams are unable to reach zmax before running out of a defined

universe to propagate through. It would be straightforward to rectify this by just having

the code assume that the smooth background extends as far as it needs to for the beam

propagation to finish, but this would make the region containing the embedded structure

a special part of the universe which goes against the cosmological principle.

Note that in practice, even valid beams will end up being propagated past the redshift

limit during the final step taken by the integrator. To correct for this, a linear step is

taken from the beginning or end of the interval, depending on which state is closer to

the redshift limit, to place the beam at the appropriate location so that all relevant final

quantities may be calculated there. Since the steps involved are small, this does not have

a significant impact on the results as can be seen in Section 6.2.1.
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Chapter 4

The Optical Scalars

4.1 The Driving Terms

In the FRW sections of the model, the Weyl tensor Cab
cd is identically zero, but the

presence of matter within beams passing through means that Ricci focusing still takes

place. As indicated earlier, for the comoving RW coordinates used, the only non-zero

component of the energy momentum tensor is T00 = ρc2. Hence, from (1.22) and (1.23),

the driving terms in the optical scalar equations take the form:

R = −4πGρp2

c2R2
(4.1)

F = 0 , (4.2)

where ρ is the mass density and p is the constant from (3.5a), not a pressure term. Since

F = 0, (1.28b) and (1.28c) imply that the quantities ξ and ϕ are constant here. If a

beam has been shearing, it will continue to do so, but its rate of shear will not change.

There is no Ricci focusing in the vacuum regions of the model as the energy momentum

tensor is equal to zero inside them. However, the dense spherical FRW cores at the

centre of these regions do produce tidal forces that cause beams in the vacuum to shear.

Computing the Riemann curvature tensor in this case and using it, along with the tangent

vector ka given in (3.36), the expressions for the OS driving terms (1.18) and (1.19) can

93
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be written as:

R = 0 (4.3)

F =
3mh2

γ

r5
γ

, (4.4)

where hγ is the constant defined in (3.36d), and m is the geometrized mass of the central

object (Dyer, 1973).

4.2 Analyzing the Beam Cross-Section

We have already found a set of equations that, when properly integrated and connected,

will allow the trajectory of a beam and the value of the optical scalars to be computed

everywhere in the RSC model. At any point though, we may wish to know the cumu-

lative effect that the expansion and shearing have had on the beam. The effect of the

expansion is determined by simply tracking the area of the beam’s cross-section, while

the shear requires information about the shape of this cross-section. As indicated in

Section 1.3.2, the shear distorts an initially circular cross-section to an elliptical one.

It will be compressed along an axis in the direction of the first lens it encounters and

stretched at an angle perpendicular to it. A subsequent lens with a different orientation

from the original one would continue to distort the beam, resulting in a rotation of the

cross-sectional ellipse as found by Dyer (1973) and Pineault (1975). Thus, the cumulative

effect of shear can be determined by computing the distortion of this ellipse, along with

the orientation it has. If the lengths of the semi-axes of the ellipse, ae and be, are known,

then the distortion, D, is given by

D =





1− ae

be
: ae < be

0 : ae = be .

1− be

ae
: ae > be

(4.5)

Hence, when the beam is unsheared, ae = be and D = 0, while at a line caustic, either

ae = 0 or be = 0 so D = 1, indicating maximum distortion.
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We now consider how these quantities can be followed using each of the OSE formu-

lations described in Section 1.3.2.

4.2.1 The (A, ξ, ϕ) Form

In this formulation, the area of the beam is tracked directly via equation (1.28a). While it

appears that numerically integrating this expression will be problematic when the beam

passes through a caustic, this is not the case. As demonstrated by Harper (1991), A can

be expanded in a Taylor Series about the caustic at λc :

A =
∞∑
i=0

ai(λ− λc)
i . (4.6)

Since A = 0 when λ = λc, a0 = 0, so to second order:

A = a1(λ− λc) + a2(λ− λc)
2 (4.7)

Ȧ = a1 + 2a2(λ− λc) (4.8)

Ä = 2a2 . (4.9)

Multiplying (1.28a) by A and using these series expansions,

2a2

[
a1(λ− λc) + a2(λ− λc)

2
]

=
[a1 + 2a2(λ− λc)]

2

2
− 2ξ2

− 2R [
a1(λ− λc) + a2(λ− λc)

2
]2
.

At the caustic, λ→ λc so

a2
1

2
− 2ξ2 = 0

and hence, a1 = ±2ξ . This means that at this point,

A = 0 (4.10)

Ȧ = ±2ξ (4.11)

Ä = 2a2 , (4.12)

where a2 is undetermined since the OSE is satisfied for all values. Thus, A, Ȧ, and Ä are

well defined even at caustic points.
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Considering now the quantities describing the shear, taking the quotient of (1.28b)

and (1.28c),

ξ̇

ξϕ̇
= cot(β − ϕ) ,

which upon integration yields:

ξ sin(β − ϕ) = C , (4.13)

where the constant C ≡ ξ0 sin(β − ϕ0) is set by the values of ξ, ϕ, and β when a beam

first enters a hole. Before encountering the first lens, a beam will be unsheared and so

β = ϕ0 (refer to Figure 1.4). After the initially circular beam starts shearing, it will in

general have an elliptical shape and Dyer (1973) has shown that the minor axis of this

ellipse has an orientation angle of ϕ/2.

While (1.28b) and (1.28c) can be used to compute ξ and ϕ respectively, it is possible

to reduce these two equations to a single one. Equations (1.26) and (1.27) can be used

to rewrite (1.17b) which, after some re-arranging, gives

[
ξ ei(ϕ−β)

]˙
= AF .

Considering the real part of this (as the imaginary part just gives back the definition of

C),

[ξ cos(β − ϕ)] ˙ = AF

or, using (4.13) to replace the cosine term,

[
ε∆

√
ξ2 − C2

]˙

= AF ,

where ε∆ = ±1 is determined by the sign of cos(β − ϕ). Defining a new variable

Y ≡ ε∆
√
ξ2 − C2 , (4.14)

then

dY

dλ
=

3mh2A

r5
, (4.15)

which can be integrated and used to find ξ and ϕ as necessary.
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To compute the distortion of the beam, the axial ratio of its elliptical cross-section is

required. In a Cartesian coordinate system (x, y) that is parallel propagated along with

the shadow plane, the beam ellipse must satisfy the equation

Aex
2 + 2Hexy +Bey

2 + Ce = 0 , (4.16)

where the coefficient of the rotation term is related to the others via

H2
e = AeBe + Ce .

The lengths of the semi-axes of the ellipse are given in terms of these coefficients by

ae =

√
1 + j2

Bej2 + 2Hej + Ae

(4.17a)

be =

√
1 + j2

Aej2 − 2Hej +Be

, (4.17b)

where

j =
(Be − Ae) +

√
(Be − Ae)2 + 4H2

e

2He

, (4.18)

and the orientation of the ellipse with respect to the x-axis is simply

αe = tan−1(j) (4.19)

(Harper, 1991). Note that j = 0 when He = 0. It should also be pointed out that αe

is in general different from the orientation of the shear rate, ϕ/2. The two are only the

same in the case of a single lens encounter for an initially unsheared beam.

As a beam is propagated through the model, the change in the ellipse coefficients can

be tracked via

dĀe

dλ
= −2ξ

(
Āe

A
cosϕ+

H̄e

A
sinϕ

)
+ 2

ȦĀe

A
(4.20a)

dB̄e

dλ
= 2ξ

(
B̄e

A
cosϕ− H̄e

A
sinϕ

)
+ 2

ȦB̄e

A
(4.20b)

dH̄e

dλ
= −ξ sinϕ

(
Āe + B̄e

)

A
+ 2

ȦH̄e

A
, (4.20c)
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where the barred variables are equal to the equivalent ellipse coefficient multiplied by the

square of the beam area (i.e. Āe ≡ AeA
2) in order to ensure the expressions are formally

well behaved at caustics.1 As A → 0, He approaches a constant so H̄e

A
→ 0. Similarly,

the quantity Āe

A
tends towards zero at the caustic if the ellipse is growing along the x-

axis, and towards a constant if it is shrinking in that direction. The same is true for

B̄e

A
, but depending on the growth or contraction along the y-axis. Unfortunately, though

the limits for the ratios in (4.20) are well defined at caustics in theory, attempting to

numerically integrate them in practice can lead to results that are overly sensitive to the

step size chosen by the integrator. In some situations, this can lead to invalid results when

calculating the axial ratio of the ellipse after a caustic has been passed through. Attempts

to track the semi-axes of the ellipse directly instead of through the ellipse coefficients also

lead to expressions involving ratios with A in the denominator, and hence, which could

potentially experience the same sensitivity.

4.2.2 The (C±, α±) Form

In the most simple case described in Section 1.3.2, where α̇+ = α̇− = 0, the principal

curvatures C+ and C− are proportional to the radial and tangential axes of the beam

respectively (Dyer, 1977). Hence, to within a constant, the area of the beam is just

A = C+C− , and the axial ratio can be found by taking the ratio of these curvatures.

Furthermore, the differential equations (1.32) are clearly well-behaved for all real curva-

ture values. However, this simple setup relies on the great deal of symmetry present in

the encounter with a single, spherically-symmetric lens, and cannot be used if multiple

lenses are encountered.

Moving to a more general case where α is allowed to vary, it is clear that while

the expressions for C̈± can easily be rewritten to be well-behaved everywhere, equation

1As shown by Harper (1991) using a power series expansion of these quantities about the caustic.
This is required because at least one of the coefficients of the ellipse will not be well defined when the
beam passes through a caustic.
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(1.31b) for α̈ does have potential problems at a caustic where one of the curvatures goes

to zero. Further, even if the expression can be made suitable for numerical integration,

it is not clear how α can be related to the orientation of the beam ellipse, which is

ultimately one of the quantities of interest.

4.2.3 The (ψ, η) Form

With this formulation, the semi-major and semi-minor axes of the elliptical cross-section

of a distorted beam are given by

ae = |ψ|+ |η| (4.21a)

be = |ψ| − |η| , (4.21b)

while the orientation of this distortion is given by

αe =
1

2
arg(ψη) =

1

2
tan−1

(
xw + yz

xz − yw

)
, (4.22)

as shown by Pineault (1975). In this case though, the sign conventions used result in αe

being offset by π
2

from the value determined by Pineault, implying that it describes the

orientation of the semi-minor axis instead of the semi-major one. With x, y, z, and w

known by integrating equations (1.38), ψ and η can be computed everywhere. Thus, ae

and be can be determined, allowing the area and distortion of the beam to be computed

as needed. Note that as was mentioned when discussing the (A, ξ, ϕ) formalism, it is also

possible in this case for the cross-sectional area to be negative when |η| > |ψ|, with the

beam turning “inside-out” in a sense. As was mentioned before, this simply means that an

absolute value needs to be taken whenever a physical area is desired. More importantly,

unlike the differential equations derived from the (A, ξ, ϕ) or (C±, α) formalisms, all the

relevant equations in this case are well behaved everywhere, including at caustics where

the beam cross-section has zero area. Consequently, it is this form that is ultimately

used by the lensing code to track the beam cross-section.
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In order to initialize the system at the focal point of the observer, we use the fact

that the beam has zero area there and choose it to start unsheared. Hence, ae = be = 0,

implying ψ = η = 0, and thus,

x = y = z = w = 0

to begin with. Considering the area of the beam and its derivatives at initialization,

A = πaebe = 0 (4.23)

Ȧ = π
(
ȧebe + aeḃe

)
= 0 (4.24)

Ä = 2πȧeḃe = 2πȧ2
e , (4.25)

where the fact that ȧe = ḃe for a non-shearing beam starting in an FRW region was

used in (4.25). These expressions are in agreement with equations (4.10) to (4.12) using

the (A, ξ, ϕ) formalism, which found a single free parameter related to the initial second

derivative of the beam area. This formalism makes it clear that this free parameter

is the initial rate of change of the radius of the circular beam cross-section. In order

to translate this into the remaining initial conditions to impose on the variables being

integrated, consider that |η| must remain zero while there is no shear being experienced.

Hence, we must set ż = ẇ = 0 initially, as along with equations (1.38c) and (1.38d), this

ensures that z and w will remain zero in the first FRW region. The initial values of ẋ

and ẏ can be set arbitrarily as they are related to the free parameter discussed above.

However, since the beam must begin evolving purely radially in the shadow plane, the

real and imaginary components of ψ must grow equally, so while they are arbitrary, the

initial values of ẋ and ẏ must be equal.

4.3 Spinor Properties

Adopting a spinor formalism when dealing with null vector fields often makes it more

convenient to work with them. A brief review of spinors and some of their properties is
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given here as these will be needed in order to determine how to follow the orientation of

a distorted beam through the model.

First-rank or 1-spinors are elements of a two-dimensional complex vector space, such

as that required to describe the null 4-vectors associated with the beam (refer to Fig-

ure 4.1). A capital letter will be used for spinor indices, which can have the value of

1© or 2©, where the numbers are circled as is customary in order to distinguish them

from values of tensor indices. The complex conjugate of a spinor will be noted by a bar

over it and a dot over its index, so the complex conjugate of KA appears as K̄Ȧ. Like

tensors, spinors can be written in covariant or contravariant notation and the indices can

be raised or lowered via the metric spinor εAB. This is an antisymmetric object so

εAB = −εBA , (4.26)

and the non-zero components are

ε 1© 2© = 1 and ε 2© 1© = −1 . (4.27)

When contracting indices, the order matters so

KAεAB = KB while εBAKA = −KB . (4.28)

In other words, when reading the expression from left to right, if the indices are being

contracted upward, a negative sign is introduced, while contraction downward behaves

as contraction of tensor indices does.

Taken with its inverse, the metric spinor can be used to form the two-dimensional

Kronecker delta symbol,

εACεBC = δA
B . (4.29)

Note that contraction of a spinor with the Kronecker delta does not introduce a negative
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sign regardless of the direction of the contraction:

KAδ
A
B = KAε

ACεBC

= −KCεBC

= KCεCB

∴ KAδ
A
B = KB

Another object that will prove to be useful is the Spinor Christoffel Symbol,

Γ B
a C =

1

2
σ BẊ

e

[
σb

CẊ
Γe

ab + ∂a

(
σe

CẊ

)]

(Dyer, 1973), which can be re-arranged to a more usable form,

Γ B
a C = −1

2
σ BẊ

e

[
gbf εCP σ

PQ̇
f εQ̇Ẋ Γe

ab + ∂a

(
geg εCP σ

PQ̇
g εQ̇Ẋ

)]
. (4.30)

The σ BĊ
a are spin connections, which are generalizations of the Pauli spin matrices.

These can be obtained via a coordinate transformation appropriate to the coordinate

system under consideration (Pirani, 1964).

4.4 A Parallel Propagated Shadow Plane Basis

4.4.1 The FRW Regions

As the quantities used to describe the distortion of a beam are defined in the shadow

plane, a set of basis vectors for this plane that are parallel propagated along with the

beam are needed in order to have a consistent means of following the quantities over

multiple lens encounters. If one extends the definition of ka, taking it from a null tangent

vector to single a beam, to a real null vector field describing the tangent vectors to a

congruence of beams, a 1-spinor, KA, can be defined to within an arbitrary phase via

KBK̄Ẋ = ±σ BẊ
a ka ,
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Beam Cross Section
(magnified)

t̄a

ta

ua

va

Shadow Plane

Flag Plane

Beam

ka

ma

Figure 4.1: A depiction of the flag and shadow planes associated with a beam, along
with the 4-vectors that span each of them.

or equivalently,

ka = ±σa
BẊ
KBK̄Ẋ (4.31)

(Pirani, 1964). The sign in these equations is determined by the time direction in which

the null tangent vectors being considered are pointing. As future-pointing null tangent

vectors are the ones of interest, the positive sign is appropriate so

KBK̄Ẋ = σ BẊ
a ka (4.32)

will be used.

The spin connections in an FRW region can be written in matrix form as:

σ AḂ
0 =

√
1

2

(
1 0
0 1

)

σ AḂ
2 =

iRS√
2

(
0 −1
1 0

)

σ AḂ
1 =

εωR√
2

(
0 1
1 0

)

σ AḂ
3 =

RS sin θ√
2

(
1 0
0 −1

) (4.33)

Here, the first spinor index specifies the row of the matrix and the second the column.

As the coordinate system will always be oriented in such a way that the propagation of
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a beam takes place in the θ = π/2 plane, k2 = 0. Since σ AḂ
2 is the only spin connection

with an imaginary component, this means that KBK̄Ẋ must be real. Writing KB with

explicit magnitude and phase terms,

KBK̄Ẋ = MBN Ẋei(αB−αẊ) ,

so for KBK̄Ẋ to be real, αB − αẊ = 0, which means that K 1© and K 2© must have the

same phase. This phase is arbitrary, so for convenience we can choose it in such a way

that KA is both real and positive.

Introducing a second 1-spinor, UA, a basis for spinors can be established if we require

KAUA = 1 (4.34)

(Dyer, 1973). Since KA is real, this implies that UA must also be real. This new spinor

can be related to a new null 4-vector, ma, though an analogous relation to (4.31),

ma = σa
BẊ
UBŪ Ẋ . (4.35)

The 4-vectors ka and ma form a basis for the flag plane, which is a plane that contains

the beam as it propagates. The shadow plane is normal to the flag plane and has a basis

described by a complex null 4-vector, ta, which is defined via an expression that is similar

to (4.31) and (4.35) but using both of the 1-spinors defined above:

ta = σa
BẊ
KBŪ Ẋ (4.36)

(Dyer, 1973). Refer to Figure 4.1 for a depiction of these quantities that make up a null

tetrad.

It is useful to consider a few scalar products between these basis vectors as they can

serve as a check for the components computed later on. Lowering the index of ka in



4.4. A Parallel Propagated Shadow Plane Basis 105

(4.31) gives an expression for ka using spinor quantities:

gabk
b = gabσ

b
BẊ
KBK̄Ẋ

ka = σaBẊKBK̄Ẋ

= −εBAσ
AẎ

a εẎ ẊKBK̄Ẋ

= εABKBσ AẎ
a εẎ ẊK̄Ẋ

∴ ka = KAσ
AẎ

a K̄Ẏ . (4.37)

Using this with (4.35),

kam
a = KAσ

AẎ
a K̄Ẏ σ

a
BẊ
UBŪ Ẋ

= KAδ
A
Bδ

Ẏ
Ẋ
K̄Ẏ UBŪ Ẋ

= KBK̄ẊUBŪ Ẋ

∴ kam
a = 1 , (4.38)

where the relation σ AẎ
a σa

BẊ
= δA

Bδ
Ẏ
Ẋ

(Pirani, 1964) was used. Similarly, it can be

determined that

kat
a = 0 , (4.39)

while

tat
a = 0 and t̄at

a = −1 . (4.40)

In order to be able to follow the orientation of a beam numerically, the components

of the 4-vectors listed above are needed in the coordinate system that is being used for

the propagation. While the values of ka in this region are given in (3.5), the form of UA

is required to determine ma and ta. To find this spinor, it is instructive to first consider

the form of KA. Using equation (4.32) and setting B=Ẋ= 1© ,

K 1©K̄ 1̇© = σ 1© 1̇©
a ka .

However, KA = K̄Ȧ and only σ AḂ
0 and σ AḂ

3 are symmetric in the spinor indices, so using
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(3.5) and (4.33),

(K 1©)2
= σ 1© 1̇©

0 k0 + σ 1© 1̇©
3 k3

K 1© = ±
√√

1

2

( p
R

)
+

(
RS√

2

) ( pq

R2S2

)

∴ K 1© = 2−
1
4

√
p

R

√
1 +

q

S . (4.41)

The positive sign was used for (4.41) due to the choice of phase for KA made previously.

In a similar way, setting B=Ẋ= 2© in (4.32) provides the relation

K 2© = 2−
1
4

√
p

R

√
1− q

S . (4.42)

For convenience, we can define two symbols, ¢ and ¯, so that expressions (4.41) and

(4.42) can be written as:

K 1© = 2−
1
4 ¢ and K 2© = 2−

1
4 ¯ , (4.43)

which is more compact.

In order to drag the shadow plane along with the beam, we require that ta undergo

parallel propagation, so using (4.36),

D t

Dλ

a

= σa
BẊ

(
DK
Dλ

B

Ū Ẋ +KB DŪ
Dλ

Ẋ
)

= 0 , (4.44)

where D
Dλ

is the covariant derivative along the affine parameter λ. Through (4.31), the

parallel propagation of ka implies the parallel propagation of KA, so for ta to be parallel

propagated, (4.44) implies that UA must also undergo parallel propagation. This requires

ka∇a UA = ka
(
∂a UA + Γ A

a B UB
)

= 0 (4.45)

(Dyer, 1973).
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In an FRW region, the non-vanishing Christoffel Symbols are2:

Γ0
11 = ṘR Γ0

22 = ṘRS2 Γ0
33 = ṘRS2 sin2 θ

Γ1
01 = Γ1

10 =
Ṙ

R
Γ1

22 = −S ′S Γ1
33 = −S ′S sin2 θ

Γ2
02 = Γ2

20 =
Ṙ

R
Γ2

12 = Γ2
21 =

S ′
S Γ2

33 = − sin θ cos θ

Γ3
03 = Γ3

30 =
Ṙ

R
Γ3

13 = Γ3
31 =

S ′
S Γ3

23 = Γ3
32 =

cos θ

sin θ

(4.46)

where for this section, the dot and prime represent derivatives with respect to cT and

ω respectively, so Ṙ ≡ dR
dcT

and S ′ ≡ dS
dω

. Using these values, along with the RW metric

(1.7) and the spin connections (4.33) in (4.30), the spinor Christoffel Symbols in the

FRW region can be computed to be:

Γ B
0 C =

(
0 0
0 0

)

Γ B
1 C =

εωṘ

2

(
0 1
1 0

)

Γ B
2 C = i

( −εωS ′ −1
4
ṘS

1
4
ṘS εωS ′

)

Γ B
3 C =

sin θ + 1

4

(
ṘS sin θ εωS ′ sin θ − i cos θ

−εωS ′ sin θ − i cos θ −ṘS sin θ

)

=
1

2

(
ṘS εω S ′

−εω S ′ −ṘS
)

for θ =
π

2

(4.47)

Note that again, the first spinor index of Γ B
a C refers to the row of the matrix while the

second refers to the column. Since KA is a function of R(cT ) and SK(ω), (4.34) implies

that UA must also be a function of only cT and ω. Hence, these are the only two non-zero

derivatives in (4.45), which simplifies to

k0U̇A + k1UA′ + kaΓ A
a B UB = 0 .

From (4.47), when A= 1© , the only non-zero components of this expression are

k0U̇ 1© + k1U 1©′
+ k3Γ 1©

3 1© U 1© +
(
k1Γ 1©

1 2© + k3Γ 1©
3 2©

)
U 2© = 0 , (4.48)

2Found using the REDTEN package of the REDUCE computer algebra programming system.
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and when A= 2© ,

k0U̇ 2© + k1U 2©′
+ k3Γ 2©

3 2© U 2© +
(
k1Γ 2©

1 1© + k3Γ 2©
3 1©

)
U 1© = 0 . (4.49)

Substituting in the values for ka and the components of the spinor Christoffel Symbols,

(4.48) and (4.49) become

p

R
U̇ 1© +

εωp

R2

√
1− q2

S2
U 1©′

+
pqṘ

2R2S U
1© +

(
pṘ

2R2

√
1− q2

S2
+
εωpqS ′

2R2S2

)
U 2© = 0 (4.50a)

and

p

R
U̇ 2© +

εωp

R2

√
1− q2

S2
U 2©′ − pqṘ

2R2S U
2© +

(
pṘ

2R2

√
1− q2

S2
− εωpqS ′

2R2S2

)
U 1© = 0 (4.50b)

respectively. Noticing that k1 = εω

R
¢ ¯, and using the relations

¢2 =
p

R

(
1 +

q

S
)

¯2 =
p

R

(
1− q

S
)

˙(¢ 2) = −pṘ
R2

(
1 +

q

S
)

˙(¯ 2) = −pṘ
R2

(
1− q

S
)

(
¢2

)′
= −pqS

′

S2

(
¯ 2

)′
=
pqS ′
S2

(4.51)

we can re-write (4.50a) and (4.50b) as

2p U̇ 1© + 2εω ¢ ¯U 1©′
+

[
R ˙(¯ 2) +

pṘ

R

]
U 1© +

[
Ṙ¢ ¯ + εω

(
¯ 2

)′]U 2© = 0 (4.52a)

and

2p U̇ 2© + 2εω ¢ ¯U 2©′
+

[
R ˙(¢ 2) +

pṘ

R

]
U 2© +

[
Ṙ¢ ¯ + εω

(
¢ 2

)′]U 1© = 0 . (4.52b)

The symmetry of these equations indicates that the definitions of U 1© and U 2© have

very similar forms, with one simply using ¢ where the other uses ¯. This suggests

solutions of the form

U 1© = A ¢ + B ¯ and U 2© = A ¯ + B ¢ (4.53)

be tried, where A and B are potentially functions of R(cT ) and S(ω). When used with

the expressions for KA inside the spinor inner product (4.34), these relations yield an
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expression for B:

KBεBA UA = 1

K 1© U 2© −K 2© U 1© = 1

2−
1
4 ¢

(
A ¯ +B ¢

)− 2−
1
4 ¯

(
A ¢ +B ¯

)
= 1

∴ B =
RS
2

3
4pq

. (4.54)

Using (4.53) in (4.52a) and grouping the terms involving a common derivative,
[
2p

(
˙A ¢ +A ¢̇ + Ḃ ¯ +B ˙̄

)
+ 2RA ¢ ¯ ˙̄ + 2RB ˙̄ ¯ 2

+
pṘA

R
¢ +

pṘB

R
¯ +ṘA ¢ ¯2 + ṘB ¯ ¢ 2

]

+

[
2εω ¢ ¯

(
A ′ ¢ +A ¢ ′ +B ′ ¯ +B ¯ ′

)

+ 2εω ¯ ¯ ′
(

A ¯ +B ¢
)]

= 0 .

(4.55)

Since it is unreasonable to expect terms containing an Ṙ to cancel with terms containing

an S ′, we can assume the dotted and primed terms in (4.55) go to zero separately.

Symmetry arguments can again be invoked to suggest that the form of A is similar to

that found for B. Setting the dotted part of (4.55) equal to zero, and using

A = C
RS
pq

(4.56)

along with (4.54) inside, produces the constraint

ṘS
qR

√
p

R

√
1 +

q

S

(
C + 2−

3
4

√
1− q2

S2

)
= 0 , (4.57)

where C is potentially a function of both R and S. For this to be true in general,

C = −2−
3
4

√
1− q2

S2
, (4.58)

so after some factoring,

A = −R
√
S2 − q2

2
3
4pq

. (4.59)
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Direct substitution of this into the primed portion of (4.55) shows that it also becomes

zero as needed. Similarly, substitution of (4.59) and (4.54) for A and B respectively

into (4.52b) shows that it is also satisfied, which means that these values can be used to

determine the components of a parallel propagated UA as required. Substituting them

into (4.53) yields the expressions:

U 1© = −2−
3
4 ¯ = −2−

3
4

√
R

p

√
1− q

S (4.60a)

U 2© = 2−
3
4 ¢ = 2−

3
4

√
R

p

√
1 +

q

S , (4.60b)

which only differ from K 2© and K 1© by constant factors.

Knowing UA, the 4-vector ma can now be computed. Expanding (4.35) to a more

convenient form,

ma = −gabεBAσ
AẎ

b εẎ ẊUBŪ Ẋ , (4.61)

and hence,

ma =

(
R

2p
, − εω

2p

√
1− q2

S2
K(ω)

, 0 , − q

2pS2
K(ω)

)
. (4.62)

Using (3.13) to take the inner product of this with ka,

kam
a =

1

2
+

1

2

(
1− q2

S2

)
+

q2

2S2
= 1 , (4.63)

in agreement with (4.38). Similarly, writing (4.36) as

ta = −gabεBAσ
AẎ

b εẎ ẊKBŪ Ẋ , (4.64)

the components of ta are

ta =

(
0 ,

εωq√
2RSK(ω)

,
i√

2RSK(ω)
, − 1√

2RSK(ω)

√
1− q2

S2
K(ω)

)
. (4.65)

As before, using (3.13) to take the inner product of this with ka,

kat
a =

εωq√
2RS

(
−εωp

√
1− q2

S2

)
− 1√

2RS

√
1− q2

S2
(−pq) = 0 , (4.66)
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in agreement with (4.39), while taking the inner product of ta with itself and its complex

conjugate can easily be seen to satisfy relations (4.40) as required.

Though ta and t̄a span the shadow plane, the fact that they are null makes them

inconvenient to use directly as a basis. However, ta can be written in terms of a real and

imaginary component, ua and va respectively:

ta =
1√
2

(ua + iva) , (4.67)

where the factor of 1√
2

is for normalization. Taking the complex conjugate, we see that

ua =
1√
2

(ta + t̄a) and va =
i√
2

(t̄a − ta) (4.68)

or, expanding them with (4.65),

ua =

(
0 ,

εωq

RSK(ω)
, 0 , − 1

RSK(ω)

√
1− q2

S2
K(ω)

)
(4.69)

va =

(
0 , 0 ,

1

RSK(ω)
, 0

)
. (4.70)

It is easy to confirm that ua and va are spacelike and normal to one another, with

uaua = vava = −1 and uava = 0 , (4.71)

so these two vectors, which are related to the orientation of the beam and also lie in the

shadow plane, can be used to establish a more practical basis there.

With the orientation of the coordinate system chosen, at any point in the propagation

of the beam through an FRW region, the normal to the lens of interest is given by

na = (0, εn, 0, 0) ,

which can be either inward or outward pointing. In order to establish the angle β (refer

to Figure 1.4), this vector needs to be projected into the shadow plane, an operation that

can be accomplished through the use of the projection tensor hab ,

hab = gab − kamb − kbma . (4.72)
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Using the nullity of ka and ma, along with relations (4.38) to (4.40), it is easy to see that

hab does what is expected:

habk
a = 0 habt

a = tb

habm
a = 0 habt̄

a = t̄b

acting like a metric tensor in the shadow plane. Using it to find the projected normal

vector,

ña = habn
b = εnga1 + εnεω

√
1− q2

S2

(
pma − R2

2p
ka

)
,

so

ña =

(
0 , −εnR

2q2

S2
K(ω)

, 0 , εnεωqR
2

√
1− q2

S2
K(ω)

)
. (4.73)

Writing the contravariant components of this,

ña =

(
0 ,

εnq
2

S2
K(ω)

, 0 , − εnεωq

S2
K(ω)

√
1− q2

S2
K(ω)

)
, (4.74)

and comparing it to the expression for ua in (4.69), we see that

ua =
εωS
εnqR

ña .

Hence, in the FRW regime, the vector ua always lies in the same direction as the projec-

tion of the normal to the lens onto the shadow plane. In fact, ua is the normalized value

of ña. It is straightforward to check that ñaka = ñama = 0 as is required.

4.4.2 The Schwarzschild Regions

Here we follow exactly the same procedure as was done for the FRW regime, but derive

the quantities needed to follow the orientation of a beam in the vacuum regions of the

model. The spin connections in the Schwarzschild region outside an event horizon can

be written as:

σ AḂ
0 =

√
f

2

(
1 0
0 1

)

σ AḂ
2 =

ir√
2

(
0 −1
1 0

)

σ AḂ
1 =

εγ√
2f

(
0 1
1 0

)

σ AḂ
3 =

r sin θ√
2

(
1 0
0 −1

) (4.75)
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where f is given in (1.3). As the coordinate system will again be oriented in such a

way that beam propagation takes place in the θ = π/2 plane and σ AḂ
2 is the only spin

connection with an imaginary component, we can once more use ka to define a spinor KA

that is both real and positive. Setting B=Ẋ= 1© in (4.32), and using the spin connections

above with the components of ka given in (3.36),

K 1©K̄ 1̇© = σ 1© 1̇©
a ka

(K 1©)2
= σ 1© 1̇©

0 k0 + σ 1© 1̇©
3 k3

K 1© = ±
√
lγ
f

√
f

2
+
hγ

r2

(
r√
2

)

K 1© = 2−
1
4

√
lγ√
f

+
hγ

r
, (4.76)

where the positive sign was used as before. Doing the same for B=Ẋ= 2© yields the other

component,

K 2© = 2−
1
4

√
lγ√
f
− hγ

r
, (4.77)

and introducing the symbols ⊕ and ª, these can be simplified to a more compact form:

K 1© = 2−
1
4 ⊕ and K 2© = 2−

1
4 ª . (4.78)

To find the components of the second 1-spinor UA, we again need to consider what is

required for it to undergo parallel propagation along a beam trajectory.

The non-vanishing Christoffel Symbols in the external Schwarzschild solution are:3

Γ0
01 = Γ0

10 =
f ′

2f

Γ1
00 =

f ′f
2

Γ1
11 = − f ′

2f
Γ1

22 = −fr Γ1
33 = −fr sin2 θ

Γ2
12 = Γ2

21 =
1

r
Γ2

33 = − sin θ cos θ

Γ3
13 = Γ3

31 =
1

r
Γ3

23 = Γ3
32 =

cos θ

sin θ

(4.79)

3Again found using REDUCE’s REDTEN package.
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where the prime represents a derivative with respect to the r coordinate in this section.

Using these values and the metric (1.2), along with the spin connections (4.75), the spinor

Christoffel Symbols (4.30) can be computed to be:

Γ B
0 C =

εγf
′

4

(
0 1
1 0

)

Γ B
1 C =

(
0 0
0 0

)

Γ B
2 C =

iεγ
√
f

2

( −1 0
0 1

)

Γ B
3 C =

1

2

(
0 εγ

√
f sin θ − i cos θ

−εγ
√
f sin θ − i cos θ 0

)

=
εγ
√
f

2

(
0 1

−1 0

)
for θ =

π

2

(4.80)

in the Schwarzschild vacuum regions. Unlike the FRW regime, KA is only a function of

f(r) here, which means that the same is true for UA, and so (4.45) can be written as

k1UA′ + kaΓ A
a B UB = 0 . (4.81)

Setting A= 1© and expanding this using known quantities,

k1U 1©′
+
εγ
√
f

2

(
lγf

′

2f
√
f

+
hγ

r2

)
U 2© = 0 . (4.82)

Using the relations

⊕2 =
lγ√
f

+
hγ

r
ª2 =

lγ√
f
− hγ

r
(⊕2

)′
= −

(
lγf

′

2f
√
f

+
hγ

r2

) (ª2
)′

= −
(

lγf
′

2f
√
f
− hγ

r2

) (4.83)

along with the expression k1 = εγ
√
f ⊕ª , (4.82) can be simplified to

ªU 1©′ −⊕′ U 2© = 0 . (4.84a)

Similarly, setting A= 2© in (4.81) and following through gives

⊕U 2©′ −ª′ U 1© = 0 . (4.84b)
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As was the case in the FRW regions, the symmetry of (4.84a) and (4.84b) suggests

that U 2© can be obtained by switching ⊕ and ª in the definition of U 1©, so solutions of

the form

U 1© = A ⊕ + B ª (4.85a)

U 2© = A ª + B ⊕ (4.85b)

can be tried, where this time A and B are potentially functions of f(r). Using these

inside the inner product (4.34) again yields an expression for B:

2−
1
4 ⊕ (

A ª+B ⊕ )− 2−
1
4 ª (

A ⊕+B ª )
= 1

∴ B =
r

2
3
4hγ

. (4.86)

Substituting (4.85) into (4.84),

A ′ ⊕ª+ B ′ ª2 +B
(ªª ′ −⊕⊕ ′ ) = 0 (4.87a)

and

A ′ ⊕ª+ B ′ ⊕2 +B
(⊕⊕ ′ −ªª ′ ) = 0 . (4.87b)

Solving for A ′ in (4.87a), and using the relations

⊕′ = − 1

2⊕
(

lγf
′

2f
√
f

+
hγ

r2

)
and ª′ = − 1

2ª
(

lγf
′

2f
√
f
− hγ

r2

)
, (4.88)

results in the expression

A ′ = − lγr

2
3
4hγ

√
l2γr

2 − h2
γf

. (4.89)

Direct substitution shows that this also satisfies (4.87b). Due to the way in which f

depends on r, this is in general an elliptic integral which does not have a simple analytic

solution. However, (3.36b) can be used to convert this to a derivative with respect to λ

instead of rγ,

dA

dλ
=
dA

drγ

drγ

dλ
= − εγlγ

2
3
4hγ

, (4.90)
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which can easily be solved to give

AFinal = A Initial +
εγlγ

2
3
4hγ

(λInitial − λFinal) . (4.91)

Consequently, as in the FRW case, it will be possible to compute the values of UA at any

point during the propagation of a beam.

Knowing the spinors KA and UA, (4.61) and (4.64) can be evaluated to give ma and

ta respectively:

m0 =
1√
2f

[(
A 2 + B 2

) (⊕2 +ª2
)

+ 4A B ⊕ª]

m1 = εγ
√

2f
[(

A 2 + B 2
)⊕ª+ A B

(⊕2 +ª2
)]

m2 = 0

m3 =
1

r
√

2

(
A 2 −B 2

) (⊕2 −ª2
)

(4.92)

and

t0 =
1

2
3
4

√
f

[
A

(⊕2 +ª2
)

+ 2B ⊕ª]
t2 =

i√
2 r

t1 =
εγ
√
f

2
3
4

[
2A ⊕ª+ B

(⊕2 +ª2
)]

t3 =
2

1
4hγA

r2

(4.93)

in the Schwarzschild exterior. It is straightforward to show that these expressions satisfy

the relations (4.38) to (4.40) as required. Knowing ta, (4.68) can be used to find the

components of the real spacelike vectors

u0 =
1√
f

[
r

hγ

⊕ª+
A

2
1
4

(⊕2 +ª2
)]

u2 = 0

u1 = εγ
√
f

[
r

2hγ

(⊕2 +ª2
)

+ 2
3
4 A ⊕ª

]
u3 =

2
3
4hγA

r2

(4.94)

and

va =

(
0 , 0 ,

1

r
, 0

)
(4.95)

which span the shadow plane in the vacuum regions of the model.

The normal to the lens in this regime is also given by na = (0, εn, 0, 0), so constructing

the projection tensor hab as in (4.72), the orientation of the lens in the shadow plane can
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be written in contravariant form:

ñ0 =
εγεn2

√
2

f

[
lγ√
f

(
A 2 + B 2

)⊕ª+ A B

(
2l2γ
f
− h2

r2

)]

ñ1 = εn

[
2
√

2
(
A 2 + B 2

)⊕2 ª2 +
4
√

2 lγ√
f

A B ⊕ª+ 1

]

ñ2 = 0

ñ3 =
εγεn2

√
2hγA

r2

(
A√
f
⊕ª+

lγ B

f

)
.

(4.96)

Comparing this to the components of ua in (4.94), it is possible to relate the two via

ua =
εγεnfhγlγr

2−
1
4

√
l2γr

2 − fh2
γ + fh2

γ

ña

provided that

A =
1− 2

1
4

√
l2γr

2 − fh2
γ

2hγlγ
.

However, this does not satisfy (4.89) which is required for the parallel propagation of UA.

Hence, unlike the relationship found in the FRW regions, the shadow-plane vector ua in

the Schwarzschild vacuum regions does not in general track the orientation of a lens as

a beam propagates past it.

4.5 Tracking the Beam Distortion

4.5.1 Initializing the Orientation

As described in Section 1.3.2, a beam propagated through the RSC model is initially

unsheared and has a distortion imposed on it by the first lens that it encounters. This

lens was described as having an orientation of β/2 as measured in the shadow plane (refer

to Figure 1.4). In order to allow comparisons to be made between beams, this angle can

be measured with respect to some fiducial direction chosen by the observer. Refer to this

direction as ja, a 4-vector expressed in the unoriented RW coordinate system describing

the uppermost level of the model (the background). While ja is arbitrary, it should not

be parallel to any of the beams that are going to be propagated through the model.
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In order to compute β/2, ja must first be projected into the shadow plane, which is

equivalent to making it a direction “on the sky” at the location of the observer, so that

the inner product can be taken with the projected normal vector of the first lens that the

beam will encounter. In the previous sections dealing with spinors, a parallel propagated

basis for the shadow plane was established using the vectors ua and va. As demonstrated

in Section 4.4.1, in the FRW regions, the projected normal vector is parallel to ua, so

using ̃a to represent the projection of ja,

̃au
a = habj

bua = (gab − kamb − kbma)j
bua , (4.97)

where (4.72) was used to expand the projection tensor hab. Recall that the null tetrad

spanning the flag and shadow planes was defined using the propagation orientation de-

scribed in Section 3.1. Hence, before projecting ja, the transformation needed to prepare

the system for propagation to the first lens must also be applied to it.

Since ua is normal to ka and ma, then from (4.97), ̃au
a = jau

a so
√∣∣̃b ̃b

∣∣ |uc uc| cos

(
β

2

)
= jau

a .

Re-arranging and using the fact that uaua = −1 yields
(
β

2

)

orig

= cos−1

(
jau

a

√
|jbjb − 2jbkbjcmc|

)
. (4.98)

Repeating this procedure, the inner product ̃ava can be used to find a similar expression

for αv , the angle between these two vectors. If αv < π/2, then ̃a lies in the half of the uv

plane containing the vector va. For a right-handed uv system, this can be interpreted as

ua being rotated by an angle of β/2 in a clockwise direction from ̃a. This situation can

be taken to imply a negative rotation angle, while αv > π/2 will imply counter-clockwise

rotation and hence, a positive value of β.

4.5.2 Following the Orientation Over Multiple Encounters

In order to properly account for the effect of multiple lens encounters on a single beam,

care is needed to ensure that orientations in the shadow plane are computed in a con-
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sistent manner. All angles are measured with respect to the projected fiducial vector

̃a, but this vector is not parallel propagated with the beam, so can only be used at the

location of the observer. For this reason, ̃a was expressed in the uv coordinate system

in the previous section since these vectors are parallel propagated. Their form has been

computed for both the FRW and Schwarzschild regions, so all that remains is to estab-

lish the connection between these quantities at the interface between the two coordinate

systems. As long as the change in orientation of ua and va can be computed between

coordinate systems, any direction expressed using these vectors can be related back to

the orientation of ̃a in the appropriate manner.

Once β has been computed using (4.98), the beam can be propagated from the ob-

server to the boundary of the first hole it encounters, where the system can be converted

to use Schwarzschild coordinates as described in Section 3.3.1. The value of β is still

valid in the vacuum coordinate system, and must also remain unchanged for the vacuum

propagation. This is because the beam must propagate in a plane containing the cen-

tre of the lens, so when viewed from the shadow plane, the lens centre can only move

towards or away from the origin in a radial manner (refer to Figure 1.4). The vectors

ua and va that were parallel propagated with the beam need to be converted to the new

system in order to allow A to be defined via (4.94). As described in Appendix C.1.2,

the conversion of an arbitrary vector from the RW coordinate system to Schwarzschild

coordinates is quite straightforward, but the conversion back needed at the end of the

vacuum propagation, is not as easy. Fortunately, this procedure, along with the need to

compute A at all, can be avoided with a judicious choice of where the uv vectors are

evaluated.

If the beam propagates past the core and reaches the boundary to the background

again, then while still in the propagation orientation, the beam location and direction

can be converted back to RW coordinates, and the basis vectors4 ua
(1) and va

(1) computed

4The bracketed subscripts are simply labels.
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in this system. Next, the transformations that were performed to place the system in

propagation orientation can be inverted, so all quantities are expressed in terms of the

unoriented background coordinates. The procedure described in Section 3.1 can then

be followed to again set the system up for propagation to the next lens (or through the

space to zmax if no other lenses are hit), and new values of the basis vectors, ua
(2) and va

(2),

can be computed in this orientation. The transformation required to establish this new

propagation orientation can then be applied to ua
(1) and va

(1) in order to allow them to be

compared to ua
(2) and va

(2). Recall that ua
(1) is oriented at an angle of β/2 as defined with

respect to the direction standard ̃a, and ua
(2) is parallel to the normal to the next lens to

be propagated to, defining a new but unknown value of β. Hence, the angle between ua
(1)

and ua
(2) is the change in β/2 required to have the orientation of the next lens measured

with respect to ̃a.

If the beam does hit the core, a similar procedure can be followed to that described

for the boundary. At the edge of the core, the location and direction of the beam can be

converted back to RW coordinates, and ua and va computed in the vacuum propagation

orientation. The rotations m5, m6, and m7, described in Section 3.1 to ensure the beam

propagates in the θ = π/2 plane can then be inverted in order to express the system in

“unoriented core coordinates”. As discussed in Section 3.3.5, the other transformations

which were required to put the lens at the origin of the coordinate system do not have

to be inverted as they depend only on the coordinates of the lens centre and can thus be

used to define the unoriented core coordinate system.

Propagation through the core can be treated just as the propagation through the

FRW background was, with the system being re-oriented as necessary and the change

in β being computed as described above. As the core propagation orientation is also

used to follow the beam back through the vacuum away from the core, the shadow plane

vectors need to be recomputed using it once the location and direction of the beam are

expressed using RW coordinates at the outer boundary of the hole. After the system
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is converted back to the unoriented background coordinates, then to the propagation

orientation for the next lens, new values for the shadow plane vectors can be computed.

The transformations can be applied to the old vectors to express them in the new system,

and the difference in the orientation of the two ua vectors is once again the change in

β/2 required.

Checking Coordinate System Handedness

While the inner product of the old and new ua values described above will allow the

magnitude of the change in β to be computed from lens to lens, it does not indicate

whether this change should make β grow larger or become smaller. As mentioned when

explaining the orientation of the uv system with respect to ̃a, this involves determining

whether the new ua value lies in the upper half of the old uv system (i.e. the half

containing the old va) or the lower one. Though it may seem that a cross product

with the old value of va is all that is required to resolve this issue, this is not the case

due to the potential handedness change of the coordinate system that can occur as a

result of the transformations applied to it. Instead, the inner product can be used to

compute the angle made by each of the new vectors with each of the old ones, and these

four angles employed to determine which quadrant of the old system the new vectors lie

in. Then, subtracting the quadrant of the new va from that of the new ua will indicate

whether the handedness of the two systems is the same (the quadrant difference is equal

to -1 or 3) or different (corresponding to a difference of 1 or -3). Refer to Figure 4.2

for an example. Note that care is needed to properly deal with the cases where the

new vectors are parallel (or anti-parallel) to the old ones. Propagation can continue as

usual whenever the handedness of the coordinate system does flip, but the meaning of

the new ua lying in the upper half of the old coordinate system changes. If the situation

previously implied an increase in β, it implies a decrease after the flip, while what used

to indicate a decrease before the flip implies an increase afterwards.
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ua

va

αuaũa

αuaṽa

Q1

Q4

αvaũa

ṽa

αvaṽa

ũa

Q2

Q3

Figure 4.2: Comparing the handedness of the old (ua, va) and new (ũa, ṽa) shadow plane
vectors. With αuaũa > π/2 and αvaũa > π/2, ũa is in quadrant 3, and for αuaṽa > π/2
and αvaṽa < π/2, ṽa is in quadrant 2. Hence, 3 − 2 = 1 implies the coordinate systems
have a different handedness as is clear from the figure.

Since changing the orientation of a lens by π has no impact on the shear, the restriction

|β/2| ≤ π/2 can be imposed. If, after a coordinate system change, β is found to have

exceeded this bound, it can be reset via

β

2
=





β
2
− π : π

2
< β

2
≤ 3π

2

β
2

+ π : −π
2
> β

2
≥ −3π

2

, (4.99)

then rotating the uv axes by π (multiplying the components by -1) to keep relative

orientations consistent.
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Computational Considerations

5.1 The Packing Code

The code used to generate the packing libraries summarized in Table 2.1 was written in

C. The time required for it to generate a packing varies dramatically depending on the

parameters it is given, with the smallest runs listed in the table taking on the order of

an hour on a P4 1-2 GHz or equivalent machine, while the larger ones involving regions

with ωmax = 2π took upward of two months to finish.

Before running the packing code itself, a utility program (also written in C) needs to be

used to generate a file containing the locations of random points that properly populate

the space to be packed (refer to Appendix D for details). These points are selected at

random by the packing algorithm to specify the initial location of each packed sphere.

The task of choosing the random locations was purposely separated from the packing

process in order to allow the random distributions to be analyzed before being accepted.

As the code uses a random point, or finds it to be invalid on account of it lying inside a

sphere that has already been packed, it is marked by being given a negative ω coordinate

(an impossible value). Once a packing has been completed, the random point file can

then easily be reset before being used to generate subsequent packings.

123
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Aside from the number of random points available to it in the data file described

above, and the value of ωmax for the space under consideration, the code also requires

the following values be specified in a parameter file:

MAX INIT and MIN INIT : The range of radii that can be used when initially seeding the

space with random spheres.

MIN RADIUS : If set to be non-zero, will limit the range of packed sphere sizes a priori by

specifying the minimum radius that they can have to be accepted.

MIN SEARCH : If set to be non-zero, specifies the threshold value by which a trial sphere

needs to change its radius while being packed in order for the optimization routine

to continue working with it.

Q THRESHOLD : The volume fraction of the space that is to be contained inside the packed

spheres (i.e. the PVF).

STEP : A stepping factor which effectively determines the strength of the “force” used to

move the spheres around in the effort to optimally fill a particular region of space.

While the code maintains a list of packed spheres in memory as it runs, it also

periodically dumps this data to disk and updates a checkpoint record in order to allow

runs to be stopped and restarted as necessary. Each line of the output file contains

four numbers that describe a packed sphere, with three specifying the coordinates of its

centre and the fourth indicating its radius. Once the packing is complete, another utility

is available to validate it, determining the range and distribution of the packed sphere

radii and ensuring that there is no overlap between them.

5.2 Using the Lensing Code

The code that propagates beams of light through an RSC universe that it constructs

is also written in C, though is designed to be used in conjunction with pre and post-
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processing scripts written in Python. It is function-based and contains on the order of ten

thousand lines which are well commented in order to aid in the process of adapting it as

necessary. While its runtime will obviously depend on the number of beams propagated,

the time required to follow a single beam can also vary significantly based on the number

of lenses potentially available (i.e. the number of spheres in the packings being used).

For instance, a 1.6 GHz P4 took a fraction of a second to propagate a single beam past a

single lens when only one was available, but about 10 seconds on average to do the same

in a model where there were 1400 potential lenses in the background and 85 000 at each

sub level.

The code requires a couple of parameter files to be passed to it when run, one contain-

ing the physical information and data that is used in the construction of the RSC model,

and the other describing the observer and beam(s) to propagate. The specific contents

of these files is expanded upon in Section 5.2.1 below. As the model is built, the code

stores details about it in a file that is separate from the lensing output discussed in Sec-

tion 5.2.2. The contents of this model file are virtually identical to the fields listed when

explaining how the model is stored in memory at the end of Section 3.3.4. In this case

though, rather than the pointers that are used to connect each node (lens) to the rest of

the model in memory, a field of integers contains this information instead. The number

of integers corresponds to the number of levels of recursion permitted in the model, with

the value of each integer indicating the position of the node at the particular recursion

level represented by the integer. For a model with six levels of recursion permitted, some

example entries may appear as follows:

Field Entry Description

0 0 0 0 0 0 reserved for definition of background universe

1 0 0 0 0 0 first lens defined in the background

2 3 0 0 0 0 third lens in the core of the second lens in the background

With this information, the file contains all that is needed for the lensing program to
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reconstruct the model as required, and it can be passed to the program in subsequent

runs to have it re-use and continue to expand on the model instead of generating a new

one.

5.2.1 Initialization

Cosmological Quantities

To set up the FRW background in which the RSC model is embedded, there are four

physical parameters that are specified:

• the matter density, Ωm = 8πGρ0

3H2
0

= 2σ0

• the cosmological constant density, ΩΛ = Λc2

3H2
0

• the Hubble parameter, H0

• the physical extent of the region under consideration, runiverse

Note that the deceleration parameter is given by q0 = 0.5Ωm−ΩΛ. The curvature of the

background space is then computed from the sum Ωm + ΩΛ. If it is equal to 1, the space

is flat, less than one and the space is open, greater than one and the space is closed. The

values of ρ0 and Λ are computed from Ωm and ΩΛ respectively.

To find the initial value of the scale factor, multiply the Friedmann equation (1.12)

through by c2

3
,

1

R2

(
dR

dT

)2

=
8πGρ

3
+

Λc2

3
− Kc2

R2
.

Evaluating this at the time of observation and rearranging,

Kc2

R2
0

= H2
0 (ΩM + ΩΛ − 1) ,

so

R0 =

√
Kc2

H2
0 (ΩM + ΩΛ − 1)

(5.1)
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for ΩM +ΩΛ 6= 1. This implies that choosing values for H0, ΩM , and ΩΛ sets the value of

R0 that must be used for non-flat FRW backgrounds. In the situation where K = 0, the

value of R0 is not constrained in the same way so to choose it, the code uses the relation

R0SK(ωmax) = runiverse , (5.2)

where in this flat case, SK(ωmax) = ωmax is a unit-less radial measure of the extent of the

background region being considered. It is randomly chosen to be equal to that of one of

the packings available, and the value of R0 is then set appropriately. When K 6= 0, the

value of ωmax is not arbitrary, but is computed using the value of R0 from (5.1) inside

(5.2). Note that the further ΩM + ΩΛ is from 1 (or the larger the value of H0 chosen),

the larger the value of ωmax will be.

Observer Description

The geodesic equation (3.1) is actually four second order differential equations for the four

components of xa, so a geodesic is uniquely determined locally by specifying a direction

at a particular location. Accordingly, to start a beam off, it is necessary to specify the

position 4-vector of the final observer, xa = (cT, ω, θ, φ), along with the direction in which

they are looking. This is given by the 4-vector ka =
(

dcT
dλ
, dω

dλ
, dθ

dλ
, dφ

dλ

)
that is tangent to

the null geodesic along which the light beam will travel. These eight components are

arbitrary quantities to the degree that the observer can be placed at any location within

the FRW background of the model and can look in any spatial direction desired. Without

loss of generality, cT can be chosen to be zero at the beginning of the beam propagation

but the spatial components xµ must be specified in one of the parameter files. The same

is true for the spatial components kµ, with the program setting the temporal component

k0 by imposing the restriction that ka be null. More than one direction vector can be

specified, in which case the code propagates a beam along each one in sequence. These

directions can either be set individually, or computed by specifying the number of beams

to place in a grid with a given angular spacing about a central direction. Finally, the
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spatial components of the fiducial direction vector ja referred to in Section 4.5.1 must

also be specified, with the temporal component being arbitrarily set to zero to ensure

the vector is spacelike.

Limiting Values and Other Quantities

As explained in Section 2.2.1, in order to be able to truncate the RSC model, the code

needs to be passed a minimum lens mass and radius that it can use. In order to know

when to stop beam propagation, it needs to be given a value for zmax , the redshift of the

beam source. As explained in Section 4.2, the initial radial rate of change of the circular

beam cross-section (which is related to the the value of Ä) is arbitrary, and thus, needs

to be specified. The actual value chosen is not physically important as it scales out of

the results, though it should be set to something that keeps the beam area numerically

reasonable. Finally, the code must be told about the packing libraries available for it to

use in generating the RSC model, so the parameter file needs to contain information on

the number of these libraries available for each curvature and angular size.

5.2.2 Processing the Output

For each beam it propagates through the model, the code produces information regarding

the initial direction of propagation, lenses encountered, caustics passed through, and the

ultimate fate of the beam if its propagation does not end at a valid source (see Section 3.4).

It also outputs the values of the beam area, distortion, and orientation at a number of

different redshifts in order to allow the evolution of the beam to be followed. The specific

redshift values used are determined by the step sizes taken by the integrator (refer to

Section 5.3.1), but the code generates at least a minimal level of output in order to make

it easier to plot the redshift evolution of the various quantities. In particular, it tries to

ensure that these quantities are stored at least once for each unit interval in z for z ≤ 10,

every 10 units of z for 10 < z < 100, and every hundred units for z up to 1000.
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The output file produced can then be processed by a script which summarizes the

results and provides for the interactive generation of data tables describing the various

“observables” in order to allow graphs of these quantities to be generated. The redshift

evolution of the distortion experienced by each beam, along with the evolution of the

orientation of this distortion, and the amplification experienced by the beam can all

be plotted. Furthermore, if an ensemble of beams have been propagated, the final (i.e.

source) values of each of these quantities can be displayed at once in a “sky view” (refer

to Section 6.2 for examples).

The distortion and orientation are generated directly by the lensing code as has been

described earlier (refer to Section 4.2), while the amplification must be determined using

the beam area that has been tracked. There are two types of amplification that can be

computed. The first is the geometric amplification

A =
Ah

A
, (5.3)

where A is the area of the beam as computed by the lensing code, and Ah is the homo-

geneous beam area, which is what the beam would have if it were to propagate to the

same redshift through a uniform FRW universe. This area is related to the angular size

distance D< via

A = D2
< δω ,

where δω is the solid angle covered by the beam. When Λ = 0 and hence, q0 = σ0, D<

can be computed via Mattig’s relation:

D< =
c

H0

(
1− q0(1− z)− (1− q0)

√
1 + 2q0z

q2
0(1 + z)2

)
(5.4)

(see, for instance, Weinberg, 1972).

Note that the amplification is formally infinite when the beam being followed through

the RSC model goes through a caustic that the comparison beam in the homogeneous

case does not experience (i.e. when A → 0 while Ah 6= 0). The output processing code
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can handle such cases by setting A to be a finite number, but one significantly larger than

the surrounding values to indicate the strong amplification being experienced. This is

reasonable since a real beam that is not governed by the geometric optics approximation

will experience interference effects that will serve to leave the amplification large, but

finite (Schneider et al., 1992).

It is also possible to compute an amplification by comparing the area of a beam

propagated through an RSC model with that of a beam travelling an equivalent distance

through an empty universe. The relevant angular size distance can be found in this

situation by integrating the Dyer-Roeder relation (Dyer and Roeder, 1973) once the

intergalactic mass fraction, α, has been set to zero:

D< =
c

H0

∫ z

0

dz′(
1 + z′

)3√
1 + 2q0z′

.

Hence, when q0 < 0.5,

D< =
3cq2

0

H0(1− 2q0)
5
2

[
sinh−1

√
1− 2q0

2q0
− sinh−1

√
1− 2q0

2q0(1 + z)

]

− 3cq0
2H0(1− 2q0)2

[
1−

√
1 + 2q0z

1 + z

]
+

c

2H0(1− 2q0)

[
1−

√
1 + 2q0z

(1 + z)2

]
,

when q0 = 0.5,

D< =
2c

5H0

[
1− 1

(1 + z)
5
2

]
,

and when q0 > 0.5,

D< =
3cq2

0

H0(2q0 − 1)
5
2

[
sin−1

√
2q0 − 1

2q0
− sin−1

√
2q0 − 1

2q0(1 + z)

]

− 3cq0
2H0(2q0 − 1)2

[
1−

√
1 + 2q0z

1 + z

]
− c

2H0(2q0 − 1)

[
1−

√
1 + 2q0z

(1 + z)2

]
,

In fact, Mattig’s relation (5.4) can be found in a similar way by integrating the Dyer-

Roeder relation after setting α = 1 to describe a universe with all matter distributed in

the homogeneous background.
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5.3 The Integrator

In order to follow the various quantities needed to propagate a beam through the RSC

model, a fourth-order Runge-Kutta integration scheme with adaptive step sizes was cho-

sen. As with any Runge-Kutta scheme, the routine provides results that are equivalent

to those which would be found by expanding the relevant system of differential equations

in a Taylor series of the same order. Instead of requiring higher order derivatives to

be computed at each step though, this method simply evaluates the given functions at

multiple points on the interval to be stepped over. A weighted sum of these evaluations

is then used to advance the system over the interval.

The adaptive step size is based on the Fehlberg technique, where a judicious choice of

weights and evaluation points allow both a fourth and fifth order Runge-Kutta step to be

computed with only six evaluations of each ODE (which is the minimum required for any

fifth order method). The routine advances the system using the fifth order calculation,

but compares the results to those obtained with the fourth order method. If the two sets

differ by more than some tolerance, the step is discarded and the process repeated with a

smaller step size. On the other hand, if the results agree to a significantly greater degree

than indicated by the tolerance, the incremented values are kept, but the step size is

increased for the subsequent step. In this way, fewer steps are taken when the functions

are slowly varying, while many small steps are used when the system is changing quickly.

Note that while the fifth order calculation is used to advance the system, the method is

still only considered to be valid to fourth order since it is to this order that the error is

controlled at each step.

The routine implemented is essentially a standard Runge-Kutta-Fehlberg scheme, but

with the Fehlberg parameters replaced by the Cash-Karp parameters (refer, for instance,

to Press et al., 1992, for more details). While the two schemes produce identical results

most of the time, the one using the Cash-Karp parameters seems to be better able to

handle integration close to critical points, such as when a beam nears the closest approach
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to a core while propagating through a vacuum. It also seems to converge to a solution a

little quicker than the other method does.

5.3.1 Setting Step Sizes

While the integration routine refines the step size it uses in order to remain within a

prescribed error tolerance, it must still be told how far to step a system. Consider first,

the FRW regions. As described earlier, the target value of the radial ω coordinate can

be determined analytically. In order to compute the increment in the affine parameter λ

that will be required to advance the system to this point, the expression for dω
dλ

in (3.5b)

can be rearranged to give:

dλ =
εωR

2

p
√

1− q2

S2
K(ω)

dω . (5.5)

Since it is undesirable for the integrator to exceed the target value of ω (for instance, if

propagating towards a point of closest approach, stepping to a value of ω that is too small

will result in k1 being imaginary), the code attempts to choose an underestimate for dλ

by using the larger of the initial and target values of ω in (5.5). However, the change

in R over the integration interval can still lead to the step size being overestimated.

Consequently, if the code finds that a quantity has been stepped beyond its reasonable

limit, the integration is repeated with a scaling factor of the form 2−n applied to the step

estimated. The integer n is initially one, but increases until the system can be advanced

successfully. If further steps are required in the region afterwards, n is reduced by one

following each successful step until it reaches zero. This scaling procedure is also employed

whenever the step sizes need to be reduced in order to have the code output results at

some desired redshift value. When a beam has almost reached the boundary of a region,

the attempts to systematically underestimate the step size can lead to a situation where

the integration routine is asked to take a step smaller than what it considers reasonable

for numerical precision. In such a case, a simple linear step is then employed to advance
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all quantities by the small amount remaining. This typically changes the values by little

more than roundoff errors and thus has little impact on the results.

Setting step sizes in the Schwarzschild regions is a little trickier, but can be accom-

plished in a similar fashion. The complication with the vacuum propagation is that the

target radius for a beam is not necessarily known in advance. If the beam is entering

a hole, the target may be the point of closest approach rca, which can be computed in

advance, but it may also be the radius of the core which changes with time. To be safe,

whenever a step size needs to be computed for an ingoing beam, the code chooses the

larger of these two possible targets, or the event horizon if they lie within it. The esti-

mated step interval is computed by using (3.68) to express equation (3.36b), describing

the radial motion of the beam, in terms of the affine parameter ν, and isolating dν to

get:

dν =
rγ

rγ − 2m


 εγlγrγ

√
rγ√

l2γr
3
γ − h2

γ(rγ − 2m)
+ 1


 dr . (5.6)

Whereas the interval dλ was estimated by simply subtracting the target value of ω from

the starting value in order to calculate dω, doing the same for dr does not provide

acceptable results for dν. Since (5.6) cannot be analytically solved for general hγ, it is

integrated numerically using a 10-point Gauss-Legendre quadrature scheme. If the beam

is outgoing, then using the radius of the boundary as the target will always lead to an

overestimate in the step size since the boundary of a hole that does not turn around

moves inward (for a beam propagated backwards). An attempt is made to compensate

for this by giving the Gaussian integrator a target radius that is half way between rγ and

rb in such a situation. As was the case in the FRW regions, the step size is further scaled

using a scheme employing inverse powers of two if any of the values being numerically

integrated are found to have overstepped their physical bounds.

While it appears that (5.6) will become problematic at some values of r, this is not

the case. There is a potential problem for the value of rγ that causes the root in the
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denominator to go to zero, but this only happens at the point of closest approach, and

as explained in Section 5.3.2 below, this never needs to be evaluated by the Runge-

Kutta integrator.1 The combination of rγ = 2m with εγ = 1 is not a problem since the

integrator will not need to follow a beam out from the event horizon, while an application

of L’Hopital’s rule shows that the expression remains finite when εγ = −1.

Again, as was the case in the FRW regions, once the beam has come to within some

small tolerance of the radius of the core or boundary, effectively having reached them, a

linear step is taken to advance all the quantities the small amount to the radius required.

5.3.2 Passing Closest Approach

In situations where the beam needs to propagate past the origin of the RW coordinate

system, the integration is performed in two stages; from the beam location to the point

of closest approach, then from the point of closest approach onward. In the first stage,

the integration stops when the ω coordinate of the beam, ωf1 , agrees with the computed

distance of closest approach to within some tolerance (currently 10−12). Before the beam

can continue away from the origin, εω is changed to +1 and the value of φ may need to be

adjusted due to the difference between ωf1 and dca (refer to Figure 5.1). At one extreme,

if the beam were to pass right through the origin, then φ would need to be changed by

π. On the other hand, if ωf1 = dca, then no change needs to be made to φ. In general

though, without this adjustment the beam would just propagate back in the direction

from which it came.

To find ∆φ, it is assumed that the path of of the beam is straight over the region of

interest2 so

∆φ = 2 cos−1

(
dca

ωf1

)
.

1Recall also that a Gaussian integrator using roots of Legendre polynomials as quadrature nodes
does not require evaluation at the endpoints of the integration, so rca is still a valid limit to give this
integrator.

2This makes the two triangles depicted in Figure 5.1 regular, right-angled triangles.
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Figure 5.1: The change that must be made to the φ coordinate of a beam when propa-
gating past the centre of coordinates in an FRW region.

Of course, this relationship is strictly only true for a Euclidian geometry, but given the

small differences between dca and ωf1 involved, the corrections for curved spaces are too

small to be numerically significant.

If the point of closest approach in a vacuum region lies outside the core, then as is

the case in an FRW region, the propagation has to be broken up into two parts since

the sign εr changes at this point, and the code cannot otherwise easily choose when to

make the change itself. Unfortunately, when trying to compute the initial change in

the radial location of the beam in the second part of the integration, it is possible for

the Runge-Kutta routine to try a value of rγ smaller than rca in (3.36b), leading to a

negative quantity under the square root. Since the integrator has no problems advancing

any of the other quantities at this point, the problem is resolved by employing a hybrid

integration routine that uses a fifth order Taylor series to advance rγ over the critical

region, while concurrently using the Runge-Kutta integrator to continue following the

other quantities.

When the beam gets close enough to rca (currently set to be within the empirically

determined distance of 1.0002 rca), the standard Runge-Kutta integration is stopped and

the hybrid routine is invoked. First, ∆ν, the affine parameter interval to the closest

approach, is computed from (5.6) using a 100-point Gauss-Legendre integration scheme.
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Next, the coefficients of a fifth order Taylor expansion of this equation are computed and

used to determine rγ at each of the Runge-Kutta “approximation” steps. These values

can then be employed as appropriate to compute the derivatives required to advance

the other variables by the “real” Runge-Kutta step. The coefficients are finally used to

advance rγ by the corresponding amount before being recomputed at the beginning of

the next real step. This procedure is repeated until all quantities have been advanced by

twice ∆ν, that is to the point of closest approach and an equal affine parameter interval

away from it. At this stage, the standard Runge-Kutta integrator can be used again

without running into the same problems with rγ due to the beam being too close to the

critical point.

5.4 Detecting Caustics

As a beam is propagated through the model universe, it is useful for the code to store

the location of any caustics that are experienced. The least likely way for a caustic to be

detected is to land directly on it. That is, the integration routine advances the system a

step and finds the beam area to be exactly zero at the end. If this does occur, the beam

location and optical scalar values can be dumped, and the propagation continued.

Far more likely is the situation where the beam steps over a caustic in the process

of being propagated. There are two ways to detect this has happened, depending on

whether a point or a line caustic has been crossed. For a beam that has started to shear,

it will most probably be a line caustic, where only one dimension of the cross-section

goes to zero. When this happens, there is a change in sign for the area of the beam, but

not the derivative of the area. For instance, if A > 0 and Ȧ < 0 initially, after passing

through a line caustic, A will become negative while Ȧ will not change sign since the

area of the beam becomes more negative as the cross-section grows again. On the other

hand, if a point caustic is encountered, both dimensions of the beam cross-section go to
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zero. In this case, there is no change of sign for the area3, but the sign of Ȧ does change.

A beam with an initially positive area will still have this be true after the caustic, but

would have gone from having a decreasing area to having it increasing. Hence, monitoring

changes in the sign of both A and Ȧ allows the code to determine when a caustic has

been encountered, and what type of caustic it is.

When using the (ψ, η) formalism, it may seem more reasonable to track the value of

the semi-minor axis be directly rather than its product with ae, since this axis must go to

zero when a caustic is encountered. However, recall that the values actually integrated are

(x, y, z, w) and their derivatives (ẋ, ẏ, ż, ẇ).4 When written in terms of these quantities

and expressed in units of π, the area of the beam and its derivative have the form

A = x2 + y2 − z2 − w2 (5.7)

Ȧ = 2 (xẋ+ yẏ − zż − wẇ) , (5.8)

while the semi-minor axis and its derivative are given by

be =
√
x2 + y2 −

√
z2 + w2 (5.9)

ḃe =
xẋ+ yẏ√
x2 + y2

− zż + wẇ√
z2 + w2

. (5.10)

The latter equations are more complicated to compute, and since the check for a caustic

must be made each time the integrator advances a step, it is more effective to monitor

A and Ȧ.

Once the code detects that a caustic has been stepped over, it then uses the change

in be to estimate where the caustic actually occurred. As the increment by which the

integrator advances the beam is small, it is sufficient to use linear interpolation within

the step for this task. Figure 5.2 shows the beam in profile as it passes through a caustic.

3In a sense, the change resulting from one dimension passing through zero is undone by the other
dimension doing the same thing.

4A Runge-Kutta integration scheme requires higher order differential equations to be broken down
into a system of coupled first order differential equations, so the second order equations for (x, y, z, w)
are written as first order equations for (ẋ, ẏ, ż, ẇ) coupled with four trivial first order equations of the
form dx

dλ = ẋ.
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beam

propagation direction

caustic

∆λ2∆λ1

h

b1
b2

Figure 5.2: A side view of a beam cross-section propagating through a caustic.

Using simple trigonometry,

∆λ1 =
b1h

b1 + b2
,

which can be used to determine the value of λ at the caustic and subsequently, the

quantities of interest can be computed at that point.

5.5 Consistency Checks

There are two general categories of checks applied to the code in order to validate the

results it produces. The first category involves those that are performed in order to

keep numerical errors under control, and do not necessarily have anything to do with the

physics being investigated. They consist mainly of the internal monitoring that the code

carries out while running, to ensure that various values remain within acceptable limits,

but also include checks that are made manually through the use of debug statements.

Some examples of these checks are as follows:

• Checks are made to prevent over/underflows in operations, particularly when ratios

are taken.
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• Checks are made to use alternate forms of some equations that could otherwise

cause problems in certain limits.

• There are some cases where redundant expressions are used to provide a check

on results that have been generated numerically. For instance, steps are taken to

correct the tangent vector to the beam if it is found to be deviating significantly

from being null.

• When critical values are computed, attempts are made to control the numerical

errors so that later computations involving these quantities do not have problems

with them being unphysical

• Checks are made to monitor the consistency of the coordinate rotations that are

performed.

• Taylor stepping past rca was checked and found to be working properly, with the

fifth order term typically being at least 8 orders of magnitude smaller than the first.

• The path that a beam takes through a packing which has not had its spheres

replaced by higher density cores reveals that the correct ones are hit in the appro-

priate order. Furthermore, even though each sphere is used in turn to orient the

propagation, the path taken is consistent with the case where the spheres are not

present and the centre of coordinates of the space is the only orientation reference.

• Regardless of which form of the optical scalar equations is used (refer to Section 4.2),

the variation in the beam area as it is propagated from the focus at the observer

to the first caustic encountered is the same.5

• The ratio of beam areas between any two given redshifts remains constant regardless

of the initial value chosen for the radial rate of change of the beam cross-section,

5The comparison is possible over this interval since it is the one where none of the forms are sensitive
to the step size used by the integrator.
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Figure 5.3: The variation with affine parameter of the radius of a hole, that of its core,
and the radial position of a beam propagating through the vacuum. Note that in this
case, the core has entered its event horizon before the beam has left the hole.

demonstrating that the results are not sensitive to this arbitrary choice.

• Analyzing the evolution of a beam using the (A, ξ, ϕ) form of the OSE, it can be

seen that when A = 0 at a caustic, Ȧ = ±2ξ in agreement with equation (4.11).

Further, the minimum value of Ȧ,

Ȧ = ±2

√
ξ2 +

4πGρ0R3
0p

2A2

c2R5
,

is indeed found numerically when Ä = 0, as is to be expected from equation (1.28a).

• Plotting the evolution of beams, boundary observers, and core observers though a

vacuum region show them to have reasonable trajectories as can be seen from the

sample shown in Figure 5.3. Note that the non-symmetric nature of the graph is

due to the timing “signals” that establish ν being radially infalling photons.

• When given an old model with the same initial conditions used for the beam that

“discovered” it, the code propagates a new beam along the same path, verifying
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that the re-use of a previously stored model works as it should.

The second category of checks involve analyzing the output produced by the code in

order to make sure that the results generated for various test cases agrees with what is

physically expected. These checks verify that the code does indeed generate meaningful

results, and are discussed in Chapter 6.
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Chapter 6

Sample Results and Discussion

This section will be used to display and analyze various data sets generated by the lensing

code. It is not meant to be an exhaustive survey of all the situations that can be treated

by the code, but rather, it serves as an illustration of the type of data that can be

produced, and a demonstration that the results generated are reasonable and physically

justified.

6.1 Trajectory Analysis

It has already been mentioned in the previous chapter that the path taken by a beam

through a region of FRW space is correct, regardless of the frame of reference used to

describe the propagation. Here we take a look at trajectories that involve one or more

lenses, where the beam needs to travel through vacuum regions of the model.

Figure 6.1 shows the effect that varying the core size of a lens has on the trajectory of

a beam. In the simplest case, the lens boundary is uniformly filled with FRW dust at the

same density as the background, so the trajectory taken by the beam from the observer

to point A is simply the geodesic of the FRW space. Point B indicates where the beam

ends up when the lens contains a core that starts with a radius equal to 90% that of

the boundary. The path does not deviate significantly from the pure FRW case because

143
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Figure 6.1: The effect that varying the core size has on the trajectory of a beam. The
solid line ending at point A is the path the beam would take if there were no lens present.
Propagation ends at point B if the core starts with a radius only about 10% smaller than
the boundary, at point C when it starts with a radius of half the boundary, and at point
D if the core is a small, dense object that the beam does not pass through. The inset
image shows the system in another orientation, demonstrating that the trajectories are
coplanar.

although the beam does spend a little time propagating in the vacuum region between

the background and the core, most time inside the boundary is spent within the core. If

the core of the lens starts with a radius that is half that of the boundary, then the beam

spends more time in the vacuum and is deviated more than in the previous case to end

up at point C. Finally, if the core is made small enough, the beam spends all of its time

within the lens boundary in the vacuum and is affected by the entire lens mass, resulting

in the greatest deviation from the original trajectory to end up at point D. Note that

the trajectories are the same between the observer and the lens boundary, reflecting the

fact that the direction of observation is the same in all cases. The inset image shows the

system in another orientation and demonstrates that the four trajectories are coplanar

as should be the case when the only difference between them is a radial variation in the

size of the core they pass through.
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Figure 6.2: These are similar to Figure 6.1, but instead of varying the core size, change
the number of lenses in the beam path. Point A again represents the location where the
undeviated beam ends up. The beam stops propagating at point B if it only experiences
the effect of Lens 1 (point D in Figure 6.1), at point C as a result of only passing Lens 2,
and at point D after encountering both lenses. Note that in each case, the lenses contained
small cores that were not hit by the beam in order to magnify the path differences.

Figure 6.2 is similar to Figure 6.1, but with the number of lenses encountered by the

beam being varied instead of the core size. Two different views of the same system are

shown. As was the case before, point A represents the end of the path taken by a beam

when the lens boundaries are filled to the density of the background universe. When

Lens 1 is given a small core and placed in the beam path, the beam ends up at point

B, deviated mainly in the vertical direction as would be expected given the alignment of

the undeviated beam and the centre of Lens 1. Placing only Lens 2 in the beam’s path

sends it to point C, a larger deviation than before which stands to reason since there is
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more mass contained in this lens than in the previous one. The direction of displacement

is also reasonable given the alignments. Finally, if both lenses are placed in the path

of the beam, it ends up at point D. This is less of a displacement than was experienced

with the second lens alone, but makes sense since the first lens deviates the trajectory of

the beam further from the core of the second one, resulting in less bending taking place

there.

6.2 The Optical Scalars

While it is important to ensure that the beams follow the correct trajectories as they are

propagated through the RSC model, the results of most interest lie in the analysis of the

amplification of the beams, along with the magnitude and orientation of the distortion

they experience. As was explained in Section 5.2.2, the data produced by the code

allows these quantities to be examined as they vary with redshift, and it is also possible

to plot their final values for a set of beams sent through the model to see how they

would vary over an observed patch of “sky”. This section will begin with a look at

these values as beams are propagated through a uniform FRW region to demonstrate

that the behaviour is reasonable in this simplest case. Next, trajectories that contain

an encounter with a single lens will be considered, with beams first avoiding the central

core, then later propagating through it. This is the situation that is easiest to assess

analytically, and comparisons will be made to what can be found using the thin-lens

approximation. Finally, a look will be taken at results generated using a general RSC

model where multiple lenses are encountered.

6.2.1 Propagation Through the FRW Background

When propagating through a homogeneous FRW universe, the beam does not experience

any distortion. Accordingly, when using the (ψ, η) form of the OSE, η remains zero,
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Figure 6.3: The upper line in the figure shows the geometric amplification experienced
by a set of 101 beams propagated through a plain FRW region, while the lower one shows
the amplification experienced when compared to propagation through an empty universe.
The x-axis simply indicates the position on the “sky” each beam is propagated in, with
the zero-point being directly ahead of the observer.

implying the distortion, D, must also remain zero and so the orientation, αe, is unde-

fined.1 Hence, in this situation, the only quantities of interest are the amplification of

the beam, and the area used to compute it. The geometric amplification, A, was defined

in Section 5.2.2 as the ratio of the area the beam would have if computed via Mattig’s

relation, to that determined by integrating the OSE. Figure 6.3 shows the value of A
computed for a set of 101 beams propagated through an RSC universe to a redshift of

1000 without hitting any holes (i.e. a plain FRW universe). The central beam, located

at the zero-point of the x-axis, was purely radial and sent directly away from the ob-

server, with dω being the only non-zero component of its direction vector. Each of the

1Equation (4.22) actually returns a value of 0 for it in this situation.
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Figure 6.4: The variation in geometric amplification with redshift for a set of 10 beams
propagated through an FRW region.

other beams, distributed at 100 arcsecond increments to either side of the central one,

followed a geodesic which also had a non-zero dφ component to its tangent vector. The

range of values for A are slightly offset from the expected result of 1.0, varying about

0.9999975 instead as a consequence of the linear interpolation indicated below, but this

is within an acceptable range of numerical variation. The other line plotted in the graph

shows the amplification computed using the Dyer-Roeder formula for an empty universe

as a reference value (refer to Section 5.2.2), and also contains small variations near the

floating point precision limit.2

The evolution ofA with redshift for a sample of 10 of the beams is shown in Figure 6.4.

While the values do fluctuate at the 10−6 level over the redshift interval, they are in line

with the expectation that they maintain a value of unity. The fact that they all seem to

2Though double precision variables are used throughout the code, the heavy use of trigonometric
function calls restricts the precision to the floating point limit for the most part.
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dip at the final data point is an artifact of the linear interpolation that is performed at

the end of the propagation, but differences on such a small scale are unimportant.

Aside from the amplification, it is also possible to look at the variation in the cross-

sectional area of the beam directly. Figure 6.5 plots the change in area experienced by

a beam propagating back to a redshift of 5 through three different FRW models. The

beam area increases away from the focal point at the observer until reaching a maximum

value and turning around as a consequence of the Ricci focusing that it experiences. In

the flat case (K = 0, Ωm = 1), the model describes an Einstein-de Sitter universe and the

beam area turns around at a redshift of 1.25 as is expected. In the open case (Ωm = 0.8),

the maximum occurs at z ≈ 1.35, while in the closed case (Ωm = 1.2), it happens at

z ≈ 1.18. With the lower matter density of the open universe comes a smaller Ricci

driving term, causing the beam to come to a focus more slowly than it does in a flat
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universe, so when the beam is propagated backwards away from the observer, it reaches

a maximum cross-sectional area at a higher redshift than happens in the flat case. The

opposite is true in the closed case, where the higher matter density leads to a more rapid

focus and hence, a turn around at a lower redshift.

6.2.2 Single Lens Without Core Encounter

With the results looking reasonable for the baseline case of a universe with no lenses, we

now turn to the case of a single lens placed in the path of the beams. For the moment,

we will consider a lens with a small, dense core, and the beams to be sufficiently offset

from the centre of the lens that none of them actually reach the core. As in the previous

section, we can first look at the variation in the geometric amplification experienced over

a scan across the lens.

Aside from analyzing the results generated by using the optical scalars to ensure that

they are physical and self-consistent, further reassurance that they are sensible can be

obtained by comparing them to what is found using the thin-lens approximation discussed

in Section 1.3.1. While this comparison can serve as a useful check though, one must bear

in mind that the thick and thin lens setups are fundamentally different constructions. In

the case of the thick lens, the beams must first pass through a section of the homogeneous

FRW background until reaching the boundary of the lens and entering the Schwarzschild

vacuum inside. It is only within this vacuum that the beams experience a non-zero Weyl

driving force, causing cross-sections to distort and paths to deviate from the homogeneous

case. Conversely, when a thin lens is used, its effect is felt by the beam immediately

upon leaving the observer, and continues to be felt until the propagation terminates at

the limiting redshift, though all bending is assumed to take place instantaneously at the

point of closest approach to the lens.

The way in which a lens is defined in the RSC model has been described at length in

earlier chapters. In order to set up a thin lens that is comparable to this, there are a few
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parameters that need to be specified. Since the core is not hit by any beams in this case,

the radius of the lens is unimportant (i.e. it can be considered to be a point mass), as is

the density of the lens, with the constant geometrized mass being all that is needed in

that regard. The only other values that need to be determined are the offset each beam

has from the centre of the lens, and the redshift of the lens. While the geometrized mass

is an unambiguous quantity, these two values are not as straightforward to set.

In the thin lens case, the offset angle is used in a simple way to determine the impact

parameter of the beam. This is not the same as in the thick lens case where the beam

must travel along geodesics of both the FRW and Schwarzschild regions before reaching

closest approach, and only the initial observation direction needs to be specified. The

redshift of the thin lens is required in order to compute the angular size distances shown

in Figure 1.2. With the current setup, there is only a single lens so one need not worry

about variations in angular size distances introduced due to earlier lenses. However, there

is still a range of redshifts which one may choose to place the thin lens at, starting at the

redshift that the boundary of the lens is found to be at when a beam enters the vacuum,

to that it is at when the beam exits. Of course taking into account the evolution of the

lens, varying the choice of beam used to make the measurement will lead to different

limits for this range.

Figure 6.6 shows the variation in geometric amplification across a lens, analogous

to Figure 6.3. Each line was generated using 101 beams separated horizontally by 300

arcseconds and propagated back to a redshift of 1000. The solid line showing the thick

lens result was produced using a single SC hole with a small core. The lens is centred

horizontally on the origin of the x-axis so the variation is symmetric about this point. Far

from the centre, the amplification approaches a constant (refer to the inset in Figure 6.6).

In the case of the thin lenses, this constant is unity, the value the amplification would

have if no lensing were to take place. In the thick lens case, this value drops below

one, indicating deamplified regions. This is a result of the flux conserving nature of the
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Figure 6.6: The variation in geometric amplification across a lens with no core hit. The
solid line shows the result computed using a thick lens in an RSC model, while the thin
lens results were generated using the method described in Section 1.3.1. The inset shows
more detail of the evolution of the thick lens and third thin lens curves away from the
centre. Refer to the text for more details.

optical scalar approach. Since the lens cannot add flux to a source, the amplification

caused along some lines of sight through the lens is the result of null geodesics being

diverted from other lines of sight, which correspond to regions of lower amplification.

The thick lens curve will return to a value of one once it extends far enough from the

centre of the lens that the beams used to generate it no longer hit the vacuum.

As the centre of the lens is approached, the lensing becomes stronger so the ampli-

fication increases until a maximum value is reached at a point where the beam passes

through a caustic near the limiting redshift. The amplification decreases closer to the lens

as those beams would have experienced stronger tidal forces, leading them to experience

a caustic at a lower redshift and thus allowing their area to increase again by the time
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Figure 6.7: This is similar to Figure 6.6, but this time the curves for the two thin lenses
were generated by varying both their redshift, as well as the offset angle of the central
beam.

the limiting redshift is reached. This is illustrated in Figure 6.8.

While the general shape of the thin lensing results is similar to the thick lensing

case, the details do differ which is not surprising given the difference between the two

systems. The first thin lens was placed at a redshift of z ≈ 0.42, which is about the

redshift measured when the most radial beam sent through the RSC model reached the

boundary of the lens. The second thin lens was placed at z ≈ 0.63, the redshift measured

when the same beam left the vacuum after passing by the lens. Placing the thin lens

somewhere in between the two limits brings the agreement of the results much closer, as

demonstrated by the line for the third lens which was placed at z = 0.54. Note that the

magnitude of the peak in each case is not overly significant as it lies close to a caustic

point and hence, is quite sensitive to slight changes in position. In each of these thin

lens cases, the offset angle used was about 0.031 radians (that found by taking the inner
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product of the direction vector of the central beam with the coordinate direction to the

centre of the lens). If this angle is instead calculated by requiring the central beam to

have the same impact parameter that it did when propagating past the thick lens, then a

similar graph results, though the agreement between the different cases is much closer as

can be seen in Figure 6.7. The thin lenses are the same as the first two used previously,

with the curve for the first thin lens (z ≈ 0.42) being generated with an offset of about

0.034 radians, while that for the second (z ≈ 0.63) used an offset of 0.029 radians.

Figure 6.8 shows the redshift evolution of the geometric amplification for a set of four

beams taken from those used to generate Figures 6.6 and 6.7. The upper plot shows the

behaviour at low redshift. As expected, the amplification is equal to unity in all cases

until the boundary of the hole is reached at a redshift of about 0.42. It then drops as the

beams pass through the vacuum where there is no Ricci driving term, with each beam

decreasing by a different amount.3 Note that there are no data points plotted for the

vacuum propagation over the redshift range 0.42 <∼ z <∼ 0.63 due to the lack of comoving

observers within this region. The net redshift experienced by each beam across the hole

is a little less than it would have been had the beam propagated the same distance

through the background universe, which is expected since the beams do not experience

any expansion of spacetime as they travel through this region. While their expansion rate

is constant in the vacuum, their cross-sectional area does continue to change. In the case

of beams 44 and 51, which pass closer to the core, when combined with the effects of an

increasing shear rate, this change is enough to cause a net increase in amplification across

the vacuum, with beam 51 experiencing more of an increase as one would expect. The

other two beams do not experience enough shearing to compensate for the lack of Ricci

driving, resulting in a decrease in amplification across the vacuum. Upon re-entering the

background, the amplification begins to increase once again for all but beam 1, with the

beams passing closer to the lens being more distorted (refer to Figure 6.11) and hence,

3Recall that to first order, the distortion caused by the Weyl driving generated by a Schwarzschild
lens does not change the area of the beam.
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Figure 6.8: The variation in the geometric amplification with redshift for a series of
four beams taken from the thick lens curve shown in Figure 6.6, with beam 1 passing
furthest from the centre and beam 51 being the central one. Beam 44 had the largest
final amplification, while beam 40 was offset a bit from that. The symbols in the upper
graph indicate the points where the amplification was actually measured.
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Figure 6.9: The variation in geometrical amplification across a lens for a set of five scans,
each of which was generated using 101 beams. Row 3 contains the thick lens plot shown
in Figure 6.6.

having their amplification grow more rapidly. While the rate of decline for beam 1 also

reverses in the background due to the matter now present within it, the distortion it

experiences in the vacuum is quite weak and as a result, it takes longer for the area

to start changing quickly enough for the amplification to increase. The lower plot in

Figure 6.8 shows the variation over a wider redshift range, with the caustic experienced

by the central beam clearly evident. As the amplification of this beam drops afterwards,

it is exceeded by that of beam 44 at a redshift of about 16, with the latter going on to

reach a maximum near a redshift of 180, leading to the higher final amplification evident

in Figure 6.6.

Figure 6.9 contains the same data as the thick lens plot of Figure 6.6, but also shows

two scans offset vertically by 300 arcseconds to either side of it. The scan on the bottom

left of the graph (row 5) is furthest from the centre of the lens, while that on the top

right (row 1) is closest to it. As before, the amplitude of the spikes in each case are not
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Figure 6.10: This plot is analogous to that in Figure 6.9, but shows the variation in the
distortion of the beams used in the five scans instead of their amplification.

particularly significant due to their proximity to a caustic. More important is the fact

that these points move further apart as one gets closer to the centre of the lens, and

vanish altogether if one moves far enough away from the centre, as is to be expected for

the circular caustic structure of a spherically symmetric lens.

Figures 6.10 and 6.11 are analogous to Figures 6.9 and 6.8 respectively, but deal with

beam distortion as opposed to geometric amplification. Evidence for the same circular

caustic structure is seen in Figure 6.10, with the distortion approaching the maximum

value of 1 at separations corresponding to those of the peaks in amplification shown in

Figure 6.9. In Figure 6.11, the initially circular beams have zero distortion until the

boundary of the vacuum is hit, at which point the distortion grows at a rate that varies

inversely with distance from the centre of the lens. The central beam has a cross-section

that collapses to a line at a redshift of about 7.5, after which its distortion decreases,

with beam 44 eventually becoming more distorted as it collapses down to a line later on
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Figure 6.11: The variation in distortion with redshift for the set of four beams depicted
in Figure 6.8.
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Figure 6.12: The variation in the orientation of the distortion of the beams in the first
and last horizontal scans shown in Figure 6.10. The cross-sectional shape of a few beams
in row 5 has been plotted along the bottom of the graph, with the semi-minor axis of
each ellipse being inclined at an angle αe from the horizontal.

in accordance with what was observed in the amplification plots.

Aside from the magnitude of the distortion, it is also possible to look at the orientation

of the distorted beams. Figure 6.12 plots this quantity for the beams in the first and

last scans shown in Figure 6.10. The fiducial vector to which the orientation is compared

(ja in Section 4.5.1), was chosen to lie in the horizontal direction. Since the scans are

offset vertically from the centre of the hole, the outermost beams have semi-minor axes

with non-zero orientation values, and these can be shown to be correct using simple

trigonometry. In both cases, as one scans across the hole, the orientation increases until

reaching a value of π/2 at the centre. This must be the case as in this alignment, the

lens causes the beam to be compressed vertically. It then jumps to negative values due

to αe being restricted to lie between ±π/2, and increases smoothly in a mirror image of
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the behaviour approaching the centre. Row 5 is further from the centre of the lens than

row 1, so accordingly, the magnitude of the orientations imposed on the beams in it are

larger than those of the corresponding beams in row 1.4

6.2.3 Single Lens With Core Encounter

We now consider the situation where the lens used in the previous section is given a core

that initially has a radius equal to a quarter that of the hole. This is large enough for

some of the beams to pass through it, though it is not yet given any substructure.

Once more, it can be useful to compare the amplification computed using the optical

scalars for beams passing through the thick lens, with the results found using a thin lens

of the same mass. It should again be stressed that the two systems are not identical

though, a fact which is even more relevant with the core being hit since the thick lens

evolves while the thin one used does not. However, the comparison can still provide some

reassurance that the two methods are in broad agreement. While the redshift of the lens

and the offset angle to use for the central beam still need to be set as they were in the

case of no core encounters, since some beams now travel through the core, its size and

density are also important and need to be specified.

Though the total mass of the core remains constant as it evolves, there is a range of

sizes and densities that can be selected for it, corresponding to the values found between

the time the beam enters the hole and the time it exits. In order to be used in the

thin lens computation, the chosen density needs to be converted to a mass profile that is

projected onto the plane of the lens. This is because as indicated in Section 1.3.1, when

a beam passes through the matter in the core of the lens, the only mass that affects it

tidally and contributes to the distortion it experiences is that lying interior to it, often

referred to as the cylindrical mass. For a sphere of uniform density ρ and radius a, the

4Other than the central beam, which must have the same orientation in both rows.
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Figure 6.13: The variation in geometric amplitude across a lens with a core large enough
to be encountered by some of the beams. As in Figure 6.6, the solid line was generated
using a thick lens in an RSC model, and this is compared to a set of lines computed using
three different thin lenses.

cylindrical mass lying within an impact parameter distance h is given by

m(h) =
4πρ

3

[
a3 − (

a2 − h2
) 3

2

]
,

which can be found by simply integrating up the mass contained within a series of

concentric cylinders out to a distance h (refer to Appendix B).

Figure 6.13 shows the variation in geometric amplitude as measured by a set of 101

beams propagated past the lens in 300 arcsecond increments. As was the case when

generating Figure 6.6 where none of the beams passed through the core, the central

beam is still offset from the centre of the lens. The reason this time is due to the

coordinate system being used not allowing for a purely radial ingoing beam to be treated,

as mentioned in Section 3.3.3 when discussing the dynamics of cores. This is because it

would be identical to the “timing beams” used to establish the ν coordinate, and hence,
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would remain at a constant value of ν, making this variable unsuitable for use as an affine

parameter.

In accordance with what was seen before, the further the beams pass from the centre

of the lens, the more the amplification they experience approaches a constant value.

This is undeviated from that of a pure FRW universe in the thin lens cases, while being

slightly under amplified when using the thick lens. In fact, the portion of the thick lens

curve generated by beams that only pass through the vacuum is identical to that shown

in Figure 6.6 as must be the case. While the amplification again increases towards the

centre, the peaks due to caustics seen before when the beams missed the core are not

present here. This is because once the beams hit the core, the Weyl shearing stops and

their distortion rate no longer increases, which means they take longer to collapse down

to a caustic line, and in fact, do not do so before reaching the limiting redshift imposed

at z = 1000. The sudden change apparent in the shape of the thick lens curve occurs

between beams 35 and 36, the last one to pass through the vacuum without striking the

core, and the first to spend some time propagating through it respectively. Thin lens 1

was defined using the density, radius, and redshift that the core had in the thick lens case

when the central beam first encountered it, while thin lens 3 used the values found when

the beam was close to exiting it.5 The second thin lens used the intermediate values

defined when the central beam passed the point of closest approach to the middle of the

core. In all three cases, the central beam offset was chosen so that the same number of

beams (31 out of the 101) hit the mass distribution. Note that while there is general

agreement between the forms of the thick and thin lens curves, the details of the shape

do vary as is to be expected when comparing an evolving core to a static one.

Figure 6.14 shows the variation in beam distortion for a series of scans across the lens

used to generate Figure 6.13. As with Figure 6.10, row 1 is closest to the centre of the

lens, while row 5 is the most distant. In each scan, the two peaks indicating the greatest

5Use of the values exactly at beam exit results in large amplifications which compress the relevant
range of interest for the other three curves.
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Figure 6.14: This plot is analogous to Figure 6.10 and shows the variation in the beam
distortion for a series of scans across the lens used to generate Figure 6.13.

distortion were produced by the last beams to propagate through the vacuum without

hitting the core. This makes sense as these beams spend longest in the vacuum and pass

closer to the central mass than the others that do not actually hit the core, hence being

exposed to the greatest amount of shear. As expected, these peaks get closer together

further from the centre of the core, with 37 beams passing through the core in row 1, but

only 25 doing so in row 5. Note that as the scans get closer to the centre of the core, a

broader peak starts to form in between the two maxima in distortion. While this may

at first seem counter-intuitive since the most central beams spend the least time in the

vacuum, one must also consider the strength of the tidal force experienced during the

time they do propagate through it. With the core evolving, the most central beam must

climb out of the potential well with the deepest bottom, and as a result experiences the

strongest tidal force of all beams when initially emerging from the core. The interplay

between this factor and the time spent in the vacuum can lead to the non-monotonic
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Figure 6.15: The variation in A with redshift for a set of three beams which were used
to generate the previous figures in this section. Beam 35 was the last to pass through
the lens without hitting the core, while beam 36 was the first to pass through a portion
of it. Beam 51 had the most radial trajectory of all the beams and hence, was the one
that spent the longest time propagating inside the core.

behaviour observed in the plot.

The evolution of the geometric amplification out to a redshift of 1 is shown for a set of

beams in Figure 6.15. The curve shown for beam 35 is in line with those seen for some of

the beams in the upper plot of Figure 6.8, with a jump taking place across the vacuum,

from A = 1 for the initial propagation through the FRW background, to a lower value

at the point of re-entry. There is a similar jump shown for beams 36 and 51, the first

to hit the core on one side, and the central beam respectively. However, in these cases,

there is also a subsequent jump when the beam leaves the core to propagate through the

vacuum back to the boundary. More details of this behaviour can be seen in Figure 6.16,

which looks at a narrower redshift range and shows the individual data points used to

define the amplification and distortion curves for beam 51. The amplification remains at
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Figure 6.16: The variation in geometric amplification and distortion with redshift for
beam 51 as it propagates from the FRW background, through a hole and its central core,
then back to the background.

unity and the beam undistorted until it strikes the boundary of the hole at a redshift of

about 0.42. It then propagates through the vacuum until encountering the edge of the

core, which is at z ≈ 0.50 when measured with respect to an observer comoving with this

edge.6 As the beam passes through the core, its amplification and distortion increase

until it emerges at a redshift of about 0.57. There is another jump in the data as the

beam again travels through the vacuum before re-entering the background at the other

end of the hole with a redshift of about 0.63, as measured by a comoving observer at

this boundary. The evolution then continues in the background, with the amplification

changing at roughly the same rate as it was in the core, but the distortion increasing

significantly more rapidly.

6Recall that no points are shown for the vacuum portions of the trajectory.
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Figure 6.17: The imposition of an orientation on the cross-section of the three beams
used in Figure 6.15. αe is set for each beam when it starts to distort, and remains
constant for the rest of the propagation.

The evolution of the orientation of the same three beams shown in Figure 6.15 is

plotted in Figure 6.17. Each of the beams initially has a circular cross-section and hence,

an undefined orientation7 until the boundary of the lens is reached around a redshift of

0.42 (the exact value varies for each beam). When beam 35 emerges from the vacuum at

a redshift of about 0.63 without having hit the core, its elliptical cross-section is seen to

have a semi-minor axis making an angle of about 0.93 radians with the projected fiducial

direction ̃a (see Section 4.5.1). This orientation remains fixed for the remainder of the

beam’s propagation since this is the only lens that it encounters. The curves for both

beams that pass through the core display the same behaviour, though in these instances,

the orientation has been imposed by the time they have hit the core at z ≈ 0.52 and

0.50 for beam 36 and 51 respectively. This must be the case since it is actually set as

7Recall that a value of αe = 0 is returned by equation (4.22) in such a case.
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soon as the vacuum is entered and the beams start to distort. It is constant during the

propagation through the core and the second trip across the vacuum, and remains the

same as the beams propagate through the background again. Note that beam 51, which

passes closest to the centre of the lens, has the largest final orientation, while beam 35,

which is the furthest of the three, has the smallest one, consistent with what is expected

from Figure 6.12. A similar scan of orientations in this case displays the same behaviour

shown there.

6.2.4 Multiple Lenses

We finish this section with a look at the lensing results generated by a full RSC model

containing multiple lenses, each of which can potentially have substructure of its own.

The background universe selected for the run was an open FRW model with Ωm = 0.28

and H0 = 70 km s−1 Mpc−1. The packing used to fill the background contained 190 078

spheres, while the two made available to describe substructure in the cores contained

a total of 187 007 spheres. There were 121 beams propagated from the observer to a

redshift of 1000 in an 11x11 grid with a 50 arcsecond spacing. The run took about three

seconds per beam on average on a P4 1.6 GHz machine, and resulted in a model where

10 lenses were found, 5 of which had cores that were hit.

Figure 6.18 shows the variation in the geometric amplification “observed” over the

patch described. The result is not as simple to interpret as it was for the specially con-

structed single lens systems depicted earlier. However, one can see how the structure

encountered seems to have caused an area of deamplification, with the decrease being

more prominent along a diagonal strip running across the graph. Figure 6.19 shows the

corresponding variation in distortion over the patch, indicating that the beams experi-

encing the least amplification have actually been distorted the most from their circular

cross-section. This suggests that they have not spent much time propagating through

high-density regions where they would be subject to more intense focusing, but may have
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Figure 6.18: The variation in geometric amplification over a 500x500 arcsecond patch
of “sky” in an RSC model. An 11x11 grid of beams was propagated back to a redshift
of 1000 to generate the values used to produce the surface shown.
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Figure 6.19: The changes in beam distortion over the patch depicted in Figure 6.18.
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passed close enough to a mass concentration to experience significant tidal forces.

The low redshift evolution of the geometric amplification that the central beam un-

dergoes is shown in the upper plot of Figure 6.20. As expected, this evolution is not

as clean as it was in the single lens cases. In order to help interpret it, the lower plot

displays the variation in the normalized cross-sectional area of the beam as a function

of redshift, alongside the variation in area that the beam would have experienced were

it to propagate the same distance through the homogeneous background. Note that the

smoothness of the curves in the lower plot is a result of re-integrating the system over the

redshift interval while forcing the integration routine to use a small and constant step

size in order for it to compute the state of the system more frequently.

The beam initially propagates through the FRW background until reaching the bound-

ary of the first lens at a redshift of about 0.64. It then propagates through the vacuum

and hits Core 1 at z ≈ 0.70 (as measured by an observer comoving with the edge of the

core) with an amplification larger than it would otherwise have had. This is reasonable

since the the lack of Ricci driving in the vacuum means that the area does not increase as

quickly over the interval as it does in the homogeneous case. While it propagates inside

this core though, the amplification drops as the increased Ricci driving from the higher

density matter causes the beam area to expand more quickly than in the homogeneous

case. Accordingly, the propagated beam area in the lower plot gets closer to that of the

homogeneous case until substructure is encountered within the core, with the boundary

of this second lens being reached at a redshift of about 0.78. The subsequent vacuum

leads to another jump up in amplification, though a smaller one since Core 1.1 is en-

countered soon afterwards at a redshift of about 0.79. The beam propagates through

this FRW region without encountering any additional substructure and the amplification

initially continues to decrease. However, the increased density in the core means that

the beam area starts to turn around more quickly than in the background, leading to

a divergence of the two area measurements and an increasing amplification by the time
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Figure 6.20: The upper plot shows the variation in A for the central beam propagated
through the model described earlier over a redshift range containing an encounter with
two lenses, one of which (Core 1.1) lies within the other (Core 1). The lower plot compares
the change in the normalized cross-sectional area of the beam over a narrower range in
redshift, to that it would experience if propagated through the homogeneous background
universe as computed via Mattig’s relation.
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Figure 6.21: The distortion experienced by beam 51 over the redshift range that was
used to illustrate the evolution of its amplification in the upper plot of Figure 6.20. Once
again, the gaps in the curve correspond to periods of vacuum propagation.

the beam leaves the core at a redshift of about 0.93. The trend continues as it returns

to Core 1 at z ≈ 0.95, propagating through until leaving at z ≈ 1.03 and re-entering the

FRW background at a redshift of about 1.09.

One can see the corresponding changes in distortion for this beam plotted in Fig-

ure 6.21. The jumps in redshift are the same, but the distortion of the beam increases

whenever it passes through a vacuum region. This must be the case since, when mea-

sured in the shadow plane, the first lens has an orientation of −47◦ while the second is

at −38◦, so each reinforces the impact that the other has on the shape of the beam. The

contour lines given in Figure 6.22 indicate how the orientation of the distortion experi-

enced by the beams used to probe the patch of “sky” depicted in Figures 6.18 and 6.19

is distributed.

Aside from the final distribution of orientations, it is also interesting to look at the
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Figure 6.22: Contour lines depicting the variation in the orientation of the beam distor-
tion over the patch of “sky” shown in Figure 6.19.

evolution of the orientation for a single beam as it passes through an RSC model. For

the sake of clarity, a beam propagating past two lenses without hitting their cores was

chosen.8 The boundary of the first lens was reached at a redshift of about 0.43 and it

had an orientation of about 0.107 radians, while the second was oriented at an angle of

about 0.572 radians and the vacuum surrounding it was first entered by the beam at

a redshift of about 0.68. The results are plotted in Figure 6.23. Note that while the

affine parameter scale was manipulated such that the propagation in each region could

be suitably ordered in a continuous manner, in reality, the affine parameter used for the

vacuum propagation was not the same as that used inside the FRW regions. Further,

bear in mind that redshift intervals do not scale in exactly the same way as the affine

parameter intervals do so the process of patching the evolution in the different regimes

8This was from a different RSC model than that used to generate the previous graphs since all beams
followed in that case hit the core of the first lens they encountered.
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Figure 6.23: The variation in the orientation of the distortion experienced by a beam
as it passes through the vacuum of two lenses. The affine parameter making up the
horizontal axis has been scaled so that the length of each of the four intervals shown is
proportional to the redshift range it covers.

together, while useful, is not perfect.

Once the beam enters the vacuum of the first lens at an affine parameter value of

about 43 in the graph, the orientation of that lens is immediately imposed on it as

expected. This orientation is maintained for the duration of the propagation through

the vacuum, as well as for the subsequent propagation through the FRW background.

The vacuum of the second lens is entered at an affine parameter value of about 68, at

which point the mass causes the orientation of the distortion to start rotating towards

it. Since the angular separation between the two lenses as measured in the shadow plane

is less than π/2, and with the orientation of the second lens being larger than that of

the first, it stands to reason that the value of αe must increase here. The orientation

continues to change once the vacuum propagation is complete and the beam re-enters

the FRW background at an affine parameter value of about 81. However, the rate of
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change decreases as it must since the rotation of the beam is no longer being driven. In

other words, the first lens starts the beam shearing, giving it an elliptical cross-section

with an orientation that is maintained until it experiences the tidal force of the second

lens. This then changes the shear rate and sets the ellipse rotating, a process which slows

but continues even after the Weyl driving stops. If the second lens is instead put at an

orientation of 2.784 or -0.358 radians,9 the same distance away from the first one but in

the opposite direction, then the results are the same but the variation is in the opposite

sense, with the value of αe starting to decrease as soon as the second vacuum is entered.

This decrease is also seen as expected if the orientation of the second lens is set to a

positive quantity slightly smaller than that of the first.

6.3 Comments On Thick Versus Thin Lenses

When investigating gravitational lensing, there is no question that the most relativisti-

cally correct approach is to treat matter distributions as the full multidimensional objects

that they are. As was discussed earlier in Section 1.3.1, using the thin lens approxima-

tion, which considers only the projection of these objects onto a plane lying between the

observer and source of light, limits the analysis to working in the limit of a weak gravita-

tional field causing small deflection angles, and requires the assumption of an angular size

distance relation a priori. We have already discussed how the thick and thin lens setups

are fundamentally different constructions, with beams passing through and experiencing

mass distributions in a different way in each case, and have already seen how there can

be variations in their computed effect as a result. Nonetheless, it is often argued that

when dealing with typical observed data, the thin lens approximation is sufficient even

when working in the strong lensing regime (see, for instance, Kochaneck et al., 2004).

Of course there are certainly a number of situations where the use of a single thin

9These are equivalent due to the degeneracy that arises with the restriction that −π/2 ≤ αe ≤ π/2.
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lens is not appropriate. The behaviour of a beam of light encountering two or more mass

distributions that are well spaced in redshift, a significant factor for high redshift sources,

is not well described using just one mass sheet (Wambsganss, 2004). Even if the line of

sight separation of the multiple distributions is not very large, a single lens plane will

not allow the rotation of images to be looked at. The linearized field equations adopted

for the weak field limit also cannot describe the giant arcs that are sometimes observed,

and the Born approximation used in this limit breaks down if the extent of the mass

distribution responsible for the lensing is not much smaller than the lens-source and lens-

observer distances (see, for instance, Schneider, 2003). This latter point is problematic

when one wishes to consider the impact of large scale structure, such as to compute the

cosmic shear, a topic of current interest in cosmology as it is used to map the distribution

of dark matter.

In situations such as these, the usual approach is to use multiple thin lens planes. For

instance, when trying to model the impact of large scale structure, n-body simulations

are used to construct a model of the structure, then this structure is divided up and

projected onto a number of different planes lying between the source and observer (see

Bartelmann, 2003, for a description). While this process may seem to be the obvious

thing to do, computing the properties of light paths that are altered by the presence of

multiple lenses is not a straightforward procedure. Unlike classical lenses, the focal length

of a gravitational lens is not unique, but varies depending on the impact parameter of the

light path considered. It should not come as a surprise that even in theory, using multiple

thin lenses does not necessarily produce the same result as a full thick lens calculation

would, and is not as generally applicable.10

Ultimately, the question on whether to use one or many thin lenses or a proper thick

lens should be addressed on a problem by problem basis as the answer depends on the

10For instance, multiple lens plane theory requires multiple lenses to be far enough apart for the beam
propagation to reach an asymptotic “straight line” regime between them (Schneider et al., 1992), which
is not the case for thick lenses.
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type of information one wishes to extract from the system.11 If one simply wants a

rough idea of the impact of a single, small, slowly evolving lens system on a background

source, then a single thin lens is likely appropriate. As the number of lenses gets larger,

the size of the lenses increases, the lenses acquire substructure, the lenses evolve more

rapidly, or if one is interested in greater levels of detail, then the projection of the matter

distribution onto one or even more planes can become increasingly restrictive. Certainly,

any work that plans to use lensing observations to test and constrain general relativity

should take particular care to consider the impact of the assumptions that are implicit

when carrying out an analysis based on mass sheets.

Even if one is fairly confident that the information one is interested in can be obtained

using a single thin lens or a set of them, it does not mean that carrying out a full thick

lens calculation is futile. The RSC model and associated lensing code is one example that

demonstrates the non-linear form of the field equations does not have to be impractical

or unreasonably cumbersome to work with numerically. While the linearization of these

equations may make them easier to work with,12 physics is full of examples where the

most interesting behaviour of a system arises from the non-linearities that it contains.

Always starting automatically with a linearized set of the equations can inadvertently

lead to something significant being overlooked.

6.4 Directions For Future Work

There are many aspects of the RSC model that provide the opportunity for further

investigation and development.

A more careful quantitative analysis can be performed on the SC packings which are

used to generate the RSC model in order to get a better measure of the structure they

11This should be obvious, though one sometimes gets the impression that the thin lens approximation
is just assumed to be relevant.

12Though some attempts at working within a linearized theory but trying to correct for its limitations
can lead one to wonder how appropriate the linearization was in the first place.
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contain, and to see what impact the choice of different spatial curvatures and angular

extents has on the packing process. This analysis, which can be based on multi-point

correlation function or multifractal methods, could then be applied to a larger RSC

model to reveal how the recursive construction affects the structure. This in turn might

indicate ways in which the construction paradigm can be adapted to provide structure

that is more closely associated with particular sets of observational data or the results of

specific n-body simulations.

In addition to examining the placement of objects inside the model, it would also

be a good idea to allow more flexibility in the way that they can evolve. As described

in Section 3.3.4, the cores of lenses are currently being restricted to experiencing an

expansion after a possible delay following the initial “bang” of the background universe.

Consequently, it is quite possible for the delay chosen when a beam first encounters a

particular lens to be too short to allow the radius of its core to be defined when the

lens is encountered by a subsequent beam whose trajectory is different enough from the

initial one to cause it to hit the lens boundary significantly sooner.13 This has at times

proven to be an issue in practice when considering an array of beams being sent through

a region of the model. As a first step, it may make sense to lift the restriction that the

cores not be allowed to turn around since allowing them to recollapse, or even to expand

and contract in a cyclic fashion, will mean that the size of a core can always be defined,

even if it is only a point mass. Further, while it will require more computations to be

carried out numerically instead of analytically, allowing non-zero values of Λ to be used

to describe the evolution of the structure will also add flexibility. Ultimately though, it

may be worth lifting the restriction that the cores be constrained to evolve as regions of

a dynamic FRW universe. This does introduce complications into the model since care

would need to be taken to ensure, for instance, that as the universe is evolved backwards,

13That is, later in the evolution of the lens since the beams are propagated backwards thorough the
model.
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the boundaries of such holes do not “pass through” their cores in the case where these

are essentially static mass distributions. However, removing this constraint will allow for

a broader range of structure to be modelled and make it easier to tune the structure to

behave in a particular way, rather than have its evolution be determined in a random

fashion.

One can also look into generalizing the coordinate system used to describe the prop-

agation of the beam and evolution of the model in vacuum regions. As was explained

earlier, the present form, using radially infalling beams as a means of synchronizing ob-

servers on the two sides of the vacuum, cannot be used to track an ingoing beam travelling

in a purely radial fashion. Further, it can potentially lead to numerical difficulties when

trying to follow one with a trajectory that is very nearly radial since the almost constant

value of ν for such a beam would render it ineffective for use as an affine parameter.

Allowing timing beams that travel radially in each direction, similar to the dual-null

Kruskal-Szekeres form of the Schwarzschild metric (see for instance, Misner et al., 1973),

is one possible solution, though the details of keeping the system synchronized when

switching from one set of beams to the other remain to be worked out.

On a more technical side, it may be worth going through the code and eliminating

all instances where a linear step is used to advance the system being integrated. While

this simplification has not proven to be a problem thus far, it is possible that it can start

to provide a limitation for more detailed analyses. Since many of the linear routines are

carried out rather infrequently overall, using a more sophisticated method should not

have a significant performance impact.

Once an RSC model has been constructed, it should be quite straightforward to

parallelize the code in order to allow multiple beams to be propagated through it at once,

something that can be of use when considering a large grid of beams with small inter-beam

separations. Since the trajectory of each beam is independent of any other, dividing the

work load over a series of processors should be very straightforward to accomplish. Each
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would simply need access to the packings and instructions necessary for it to construct

the parts of the model that are relevant to the beam it is propagating. The process

becomes less simple to do while the code is still allowed to randomly “discover” additional

structure in the model, as care must then be taken in order to avoid two or more processors

simultaneously discovering different structure in the same location. While this type of

issue commonly arises when trying to parallelize code, the communication overhead it

would add suggests that parallelization would not yield large benefits in the initial stages

of model construction while the “known structure” is increasing rapidly, unless the code

is modified to add the structure in a deterministic fashion. Alternatively, one might

choose to separate the process of model generation from the beam propagation entirely.

Even without implementing any modifications to the code, there are a number of

investigations that can be carried out with the capabilities it already has. One can

propagate beams through a number of models generated with the same background

cosmology and model construction parameters, in order to find a statistical measure of

some lensing effect their structure produces. These input parameters can then be varied

to see what impact, if any, this has on the lensing. It is also possible to bypass the

packing algorithm and construct a “packing” containing sphere positions and sizes that

are determined by observation or n-body simulation, perhaps representing a cluster of

galaxies, then using the code to investigate the lensing of a background source, such as

the CMB, that results. Being able to quantify the amount of distortion that beams from

this source typically experience as they pass through the universe can have interesting

implications when interpreting the extent of causally connected regions in the observed

background.

Beyond its value as a tool for gravitational lensing research, the RSC model can also

be used to examine the more general problem of trying to determine cosmological quan-

tities by making measurements in a universe containing inhomogeneities. A scientific

measurement is typically valid only over some range of scales, and implies an averaging
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of properties at scales smaller than this range. One can imagine that astrophysical mea-

surements, which can involve length scales that are non-trivial fractions of the Hubble

scale, might be particularly sensitive to the averaging process. Due to the non-linearity

of the gravitational field equations, averaging over inhomogeneities may cause the in-

terpretation of measurements used to establish observational and dynamical relations

to differ significantly from what would be understood when considered from within the

framework of a uniform FRW model (see Ellis and Buchert, 2005, for a recent review and

references). This smoothing effect can produce what looks like an extra curvature term

and/or contribution to the energy-momentum tensor when calculating the field equations.

Using an inhomogeneous Lemâıtre-Tolman-Bondi model, Moffat (2005) showed that by

accounting for the effect of averaging when trying to measure the deceleration parameter,

it is possible to find a region of accelerated expansion without a negative pressure dark

energy or cosmological constant. By following the detailed geodesic trajectories of beams

through the well defined structure contained in an RSC model, the software developed

can already be used to investigate the variation in the angular size-redshift relation in a

more comprehensive way than was possible before. It would be a natural extension to

add to the measurements that can be made by observers placed within the model, taking

advantage of the ease with which multiple observations can be made. This would enhance

the tool, providing a computational ability that may shed light on the implications of

averaging on the measurement of cosmological quantities and contribute to the current

debate over this issue.

6.5 Concluding Remarks

A tool has been developed to assemble and explore a Recursive Swiss Cheese cosmological

model. Though a rather simple construct, the RSC model is an exact solution to Ein-

stein’s field equations that allows significant density inhomogeneities to be placed within
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an evolving universe in a relativistically consistent way. It is built by making recursive

use of Swiss Cheese sphere packings that are created in a random yet efficient process

for spaces of arbitrary constant curvature. It is stored in a compact and extensible form

that makes it suitable for use with a wide range of computing hardware.

When used in conjunction with the optical scalar equations, the RSC model allows

for the investigation of gravitational lensing in a manner that is quite different from

the ray tracing techniques commonly used. It provides a powerful means of examining

lensing with an approach that is automatically flux conserving, and that does not require

an assumed angular size distance relationship to apply over the patch of “sky” being

observed. These advantages are particularly significant when the lensing effect becomes

stronger and the small angle approximation that is often relied upon breaks down. The

fact that the proper null geodesics are used to follow the beam trajectories past and

through the thick lenses present in the model implies that this technique also provides

an unambiguous way of considering the impact of multiple lenses on a single beam,

something that is not as straightforward to accomplish when considering thin lenses and

the instantaneous bending of beams.

The parameters describing the structure in the RSC model are chosen in a way that

allows this structure to experience significant evolution. By allowing the model’s struc-

ture to evolve as beams are propagated through it, large or rapidly evolving lenses can

be treated properly. The coordinate system selected to map the vacuum regions of the

model is numerically stable across Schwarzschild singularities, and led to the development

of a means of tracking spatially separate events in a synchronized fashion when following

beams through these regions. As a result, the model can be observed in a rational way

from multiple locations within it, with the appearance of the lenses it contains being

consistent over any time scale, even when they are observed from a variety of different

directions.

The form of the optical scalar equations that was developed makes them stable
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through the caustics beams can experience as they propagate through the RSC model.

When used in conjunction with the parallel propagated basis that was established to

describe the shadow plane of the beams, these equations permit the area, shape, and

orientation of a distorted beam to be tracked in a coherent manner over encounters with

multiple lenses, through and between all regions of the model. As a result, it is possible

to directly compare the quantities describing the evolution of a large set of propagated

beams in a consistent fashion.

The software produced over the course of this work was designed to run efficiently, and

given the ability to track and control various sources of numerical error. The source code

is thoroughly commented and will be made freely available for those who are interested in

using it to further their own research. While the examination of the structure generated

by the packing algorithm and the gravitational lensing effects it produces are interesting

problems in and of themselves, the applicability of the methods developed go beyond this.

The intention is for the code to be modified and adapted as necessary, being combined

with input derived from various other sources and contrasted with results generated by

other means in order to help lend insight into a broader range of gravitational lensing

and cosmological research.



Appendix A

RW Volume Computation

From the Robertson-Walker line element (1.7), the differential volume element is given

by

dV = R3S2
K(ω) sin(θ) dω dθ dφ ,

where strictly there should be a negative sign out front due to the signature chosen.

Hence, a region of the FRW model defined out to some radius ωmax has a volume given

by

V =

∫ 2π

φ=0

∫ π

θ=0

∫ ωmax

ω=0

R3S2
K(ω) sin(θ) dω dθ dφ

∴ V = 4πR3

∫ ωmax

ω=0

S2
K(ω) dω . (A.1)

The comoving volume can be computed by dropping the scale factor R and using (1.8)

to replace SK(ω), resulting in

V =





2π
[
sinh(ωmax) cosh(ωmax)− ωmax

]
: K = −1

4π
3
ω3

max : K = 0 ,

2π
[
ωmax − sin(ωmax) cos(ωmax)

]
: K = +1

(A.2)

with the flat case having the familiar Euclidian form as is to be expected.
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Appendix B

Computing the Cylindrical Mass

As explained in Section 1.3.1 when discussing thin lenses, a ray of light passing through

a spherical mass distribution has a deflection angle that is determined by the mass con-

tained within a cylinder of radius h, the distance of closest approach that the ray has to

the centre of the projected lens. In order to derive an expression for this mass applica-

ble to the uniform density spherical cores at the centre of the lenses in an RSC model,

consider the ball of uniform density ρ and radius a shown in Figure B.1. Inscribe within

it, a thin cylindrical shell of radius r and thickness dr as shown in the diagram. If this

shell has height 2z, then its mass, given by the product of its volume and the density of

z

r

a

dr

Figure B.1: Quantities used for cylindrical mass derivation.
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the sphere, is

Mshell = ρ2πr(2z) dr ,

so

Mshell(r) = 4πrρ
√
a2 − r2 dr . (B.1)

Hence, the total mass enclosed within a similar cylinder of radius h can be found by

integrating the mass given by (B.1) for all such cylinders with r ≤ h,

Mc =

∫ h

0

4πrρ
√
a2 − r2 dr

= −4πρ

3

(
a2 − r2

) 3
2

∣∣∣∣
h

0

∴ Mc(h) =
4πρ

3

[
a3 − (

a2 − h2
) 3

2

]
. (B.2)

This expression can be used to compute the cylindrical mass that affects a ray with an

impact parameter h, as it propagates past a thin lens representing an RSC core of density

ρ and radius a.



Appendix C

Coordinate Systems

C.1 Coordinate Conversions

When working with the RSC model, it is frequently necessary to convert between var-

ious coordinate systems. If one can write the components of a point expressed in one

coordinate system in terms of another, i.e.

x̃a = x̃a(xb) ,

then the components of a rank-1 tensorial quantity in one system can be expressed in

terms of the other via the relationships

ṽa = vb∂x̃
a

∂xb
(C.1a)

ṽa = vb
∂x̃b

∂xa
. (C.1b)

These are applied below to a couple of coordinate systems of interest.

C.1.1 Angular and Cartesian Coordinates

In order to generate some of the projections used in Section 2.1.2, or to orient the sys-

tem for propagation in the FRW regions as described in Section 3.1.1, it is necessary
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to convert from the comoving angular RW coordinates used to a Cartesian system. In

the case of the packings generated in flat space, this is a simple task as the (ω, θ, φ)

coordinates can be converted to and from the usual (x, y, z) Cartesian coordinates via:

x = ω sin(θ) cos(φ) ω =
√
x2 + y2 + z2

y = ω sin(θ) sin(φ) θ = cos−1
( z
ω

)

z = ω cos(θ) φ = tan−1
(y
x

)
(C.2)

recalling that in this situation, ω is a linear (though unit-less) radial measure. When the

curvature of the packings is non-zero, the curved 3-space can be embedded into a flat

4-dimensional Euclidian space spanned by the four mutually orthogonal axes x, y, z, and

w. In the case of positive curvature, the conversions are given by

x = r sin(ω) sin(θ) cos(φ) ω = cos−1
(w
r

)

y = r sin(ω) sin(θ) sin(φ) θ = cos−1

(
z

r sin(ω)

)

z = r sin(ω) cos(θ) φ = tan−1
(y
x

)

w = r cos(ω) r =
√
x2 + y2 + z2 + w2

(C.3)

which is very similar to the case of negative curvature where

x = r sinh(ω) sin(θ) cos(φ) ω = cosh−1
(w
r

)

y = r sinh(ω) sin(θ) sin(φ) θ = cos−1

(
z

r sinh(ω)

)

z = r sinh(ω) cos(θ) φ = tan−1
(y
x

)

w = r cosh(ω) r =
√
w2 − x2 − y2 − z2

(C.4)

Note that in both curved cases, the linear radial variable r has been used for the conver-

sions to be formally correct. In the case of the packings, this is simply set to unity as it

is the scale factor R that gives a physical dimension to the coordinates, just as it does in

the flat case.
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Using the above expressions in equations (C.1), with xa referring to angular coordi-

nates and x̃a representing Cartesian coordinates, the conversions of rank-1 tensors are

given below for each curvature value. Note that the indices on v and ṽ in this section

run from 1 to 4 (1 to 3 in the flat case), covering the non-indexed variables (x, y, z, w) or

(ω, θ, φ, r) as appropriate.

K = 0

Angular to Cartesian:

ṽ1 = v1 sin(θ) cos(φ) + v2ω cos(θ) cos(φ)− v3ω sin(θ) sin(φ)

ṽ2 = v1 sin(θ) sin(φ) + v2ω cos(θ) sin(φ) + v3ω sin(θ) cos(φ)

ṽ3 = v1 cos(θ)− v2ω sin(θ)

(C.5)

ṽ1 = v1 sin(θ) cos(φ) +
v2

ω
cos(θ) cos(φ)− v3 sin(φ)

ω sin(θ)

ṽ2 = v1 sin(θ) sin(φ) +
v2

ω
cos(θ) sin(φ) +

v3 cos(φ)

ω sin(θ)

ṽ3 = v1 cos(θ)− v2

ω
sin(θ)

Cartesian to Angular:

v1 =
1

ω
(ṽ1x+ ṽ2y + ṽ3z) v1 =

1

ω
(ṽ1x+ ṽ2y + ṽ3z)

v2 =
v1 z

ω
− ṽ3

√
ω2 − z2

v2 =
v1zω − ṽ3ω

2

√
x2 + y2

(C.6)

v3 =
ṽ2x− ṽ1y

x2 + y2
v3 = ṽ2x− ṽ1y

K = +1

When applying these conversions to the embeddings in the RSC model, note that any

vector of interest must have v4 = v4 = 0 in order to remain within the curved space

under consideration.
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Angular to Cartesian:

ṽ1 = v1r cos(ω) sin(θ) cos(φ) + v2r sin(ω) cos(θ) cos(φ)− v3r sin(ω) sin(θ) sin(φ) + v4x

r

ṽ2 = v1r cos(ω) sin(θ) sin(φ) + v2r sin(ω) cos(θ) sin(φ) + v3r sin(ω) sin(θ) cos(φ) + v4y

r

ṽ3 = v1r cos(ω) cos(θ)− v2r sin(ω) sin(θ) + v4 z

r

ṽ4 = −v1r sin(ω) + v4w

r

(C.7)

ṽ1 =
v1

r
cos(ω) sin(θ) cos(φ) +

v2 cos(θ) cos(φ)

r sin(ω)
− v3 sin(φ)

r sin(ω) sin(θ)
+ v4

x

r

ṽ2 =
v1

r
cos(ω) sin(θ) sin(φ) +

v2 cos(θ) sin(φ)

r sin(ω)
+

v3 cos(φ)

r sin(ω) sin(θ)
+ v4

y

r

ṽ3 =
v1

r
cos(ω) cos(θ)− v2 sin(θ)

r sin(ω)
+ v4

z

r

ṽ4 = −v1

r
sin(ω) + v4

w

r

Cartesian to Angular:

v1 =
1√

r2 − w2

(
v4w

r
− ṽ4

)
v1 =

v4rw − ṽ4r
2

√
r2 − w2

v2 =
1√

x2 + y2

(
v4rz − ṽ4zw

r2 − w2
− ṽ3

)
v2 =

z(ṽ1x+ ṽ2y)√
x2 + y2

− ṽ3

√
x2 + y2

(C.8)

v3 =
ṽ2x− ṽ1y

x2 + y2
v3 = ṽ2x− ṽ1y

v4 =
1

r

(
ṽ1x+ ṽ2y + ṽ3z + ṽ4w

)
v4 =

1

r
(ṽ1x+ ṽ2y + ṽ3z + ṽ4w)

K = -1

As in the positively curved case, any vector in the RSC model to which these conversions

may be applied must have v4 = v4 = 0 in order to remain within the curved space under

consideration.
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Angular to Cartesian:

ṽ1 = v1r cosh(ω) sin(θ) cos(φ) + v2r sinh(ω) cos(θ) cos(φ)− v3r sinh(ω) sin(θ) sin(φ) + v4x

r

ṽ2 = v1r cosh(ω) sin(θ) sin(φ) + v2r sinh(ω) cos(θ) sin(φ) + v3r sinh(ω) sin(θ) cos(φ) + v4y

r

ṽ3 = v1r cosh(ω) cos(θ)− v2r sinh(ω) sin(θ) + v4 z

r

ṽ4 = v1r sinh(ω) + v4w

r

(C.9)

ṽ1 =
v1

r
cosh(ω) sin(θ) cos(φ) +

v2 cos(θ) cos(φ)

r sinh(ω)
− v3 sin(φ)

r sinh(ω) sin(θ)
− v4

x

r

ṽ2 =
v1

r
cosh(ω) sin(θ) sin(φ) +

v2 cos(θ) sin(φ)

r sinh(ω)
+

v3 cos(φ)

r sinh(ω) sin(θ)
− v4

y

r

ṽ3 =
v1

r
cosh(ω) cos(θ)− v2 sin(θ)

r sinh(ω)
− v4

z

r

ṽ4 = −v1

r
sinh(ω) + v4

w

r

Cartesian to Angular:

v1 =
ṽ4r − v4w

r
√
w2 − r2

v1 =
v4rw − ṽ4r

2

√
w2 − r2

v2 =
1√

x2 + y2

(
ṽ4zw − v4rz

w2 − r2
− ṽ3

)
v2 =

z(ṽ1x+ ṽ2y)√
x2 + y2

− ṽ3

√
x2 + y2

(C.10)

v3 =
ṽ2x− ṽ1y

x2 + y2
v3 = ṽ2x− ṽ1y

v4 =
1

r

(
ṽ4w − ṽ1x− ṽ2y − ṽ3z

)
v4 =

1

r
(ṽ1x+ ṽ2y + ṽ3z + ṽ4w)

C.1.2 RW and Schwarzschild Coordinates

When following a beam from a matter-filled region to a vacuum and back, it is necessary

to convert the components of its position, along with those of those of the various vectors

being propagated along with it, between the RW and Schwarzschild coordinate systems

used. Consider first the transition from propagation in an FRW region to a vacuum.

Comparing the RW metric (1.7) to that of the exterior Schwarzschild solution (1.2), it
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is apparent that at the point of contact between the two regions, the following relations

must hold:

r = R(cT )SK(ω) (C.11a)

θS = θR (C.11b)

φS = φR , (C.11c)

where the subscript S and R refer to a Schwarzschild and RW coordinate respectively.

There is no simple way to write the Schwarzschild time in terms of RW parameters, but

since its absolute value is arbitrary, this is not significant at this point.

Using equation (C.1a), it is easy to show that

v1
S = v0

RSK(ω)
∂R

∂(cT )
+ v1

RR
∂SK(ω)

∂ω
(C.12a)

v2
S = v2

R (C.12b)

v3
S = v3

R . (C.12c)

Due to the lack of an expression for the conversion of the temporal components, the same

procedure cannot be followed to find a similar equation for v0
S. However, the coordinate

conversion cannot change the inner product of the vector with itself, so if

vava = gabv
avb = N

in both coordinate systems, then expanding the metric and isolating for the relevant

term,

v0
S = ±

√√√√N +
v1

Sv1
S

f(r)
+ r2 (v2

Sv
2
S + v3

Sv
3
S)

f(r)
, (C.13)

where use has been made of the fact that θ = π/2 whenever the coordinate conversion

needs to be made due to the propagation orientation employed. Technically, this still

leaves a sign uncertainty, but one that can be resolved in practice since it is either ka,

the direction vector of the beam, that needs to be converted, or a vector that lies in the
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shadow plane. As explained in Section 3.3, matching ka across the boundary does not

require the formal transformation to be carried out so there is no ambiguity there. The

fact that ka must be normal to the shadow plane means that its inner product with any

vector lying in this plane must be zero, a constraint that can be used to set the sign of

v0
S accordingly when dealing with such vectors.

When returning to an FRW region from a vacuum, (C.11a) can be inverted to yield

ω = S−1
K

(
r

R(cT )

)
,

so the spatial location of the beam being followed can be determined. However, the

lack of an expression for the RW time in terms of Schwarzschild parameters means that

the conversion of the components of a vector from Schwarzschild to RW coordinates

is a more complicated process. One could potentially derive the relevant equations by

inverting (C.12) and (C.13), but as explained in Section 4.5.2, it turns out that these

conversions are not necessary for the propagation of the beam.

C.2 Alternate Coordinates for Vacuum Regions

When developing the (ν, µ, θ, φ) vacuum coordinate system described in Section 3.3.3,

the original intent was to be able to follow a beam beyond the Schwarzschild coordinate

singularity for an arbitrary value of the cosmological constant Λ. This turned out to

be less than straightforward to implement in practice. A scan through a reference, such

as Misner et al. (1973) or Stephani (1994), will quickly reveal a variety of alternate

coordinate systems that have been developed to try and address the complications arising

with conventional Schwarzschild coordinates.

The Lemâıtre metric adapts the coordinate system to that of freely falling timelike

observers. Using T to represent the proper time of these observers, and R as a label for
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each of them,1 the metric can be written as

ds2 = d(cT )2 − 2m

r
dR2 − r2 dΩ2

when Λ = 0, where

r =

[
(R− cT )

3
√

2m

2

] 2
3

is now simply a parameter, and dΩ is the line element on a spherical surface given in

(1.4).

Eddington-Finkelstein coordinates introduce an advanced or delayed time, u or v

respectively, to produce the metrics

ds2 = f(r) d(cu)2 + 2 dcu dr − r2 dΩ2

and

ds2 = f(r) d(cv)2 − 2 dcv dr − r2 dΩ2 ,

where f(r) is the same as that used in the Schwarzschild metric and defined in (1.3). The

transformation is valid regardless of the value of Λ, with the change effectively replacing

the Schwarzschild time coordinate by a label describing radially outgoing (advanced) or

ingoing (delayed) null observers. These two coordinate systems can be combined into the

dual-null Kruskal-Szekeres system, which has a metric of the form

ds2 =
32m3

r
e−r/2m dU dV − r2 dΩ2

when Λ = 0, where U and V are functions of u and v respectively, and r = r(U, V ) is no

longer an independent variable.

None of these coordinate systems has a problem at r = 2m (or equivalently, at

f(r) = 0 for Λ 6= 0). In fact, the (ν, µ, θ, φ) system derived is in some sense a combination

of the Lemâıtre and delayed Eddington-Finkelstein systems. However, in all cases, even

with the cosmological constant set to zero, trying to solve the Euler-Lagrange equations

1In other words, a freely-falling timelike observer has dR = 0.
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of motion directly is no simple task, and leaving them expressed as a set of coupled

differential equations makes working with them in the RSC model significantly more

complicated. It is of course possible to use equations (C.1) to derive expressions for the

various quantities of interest from their Schwarzschild form, but this process will typically

require Schwarzschild values to be computed, at least as an intermediate step, leading

to potential difficulties with the coordinate singularity that led to the investigation of

alternate systems for the vacuum to begin with.
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Appendix D

Random Point Generation

As discussed in Sections 2.1.1 and 5.1, in order to generate the SC packings with which

the RSC model is constructed, a means of choosing points that are randomly distributed

within the space being packed is needed. Simply selecting random values of ω, θ, and φ

does not lead to a suitable random volume distribution of points as they would tend to

cluster near the poles of the coordinate system. The Cartesian embedding described in

Appendix C.1.1 can be used to get around this problem.

A flat region with K = 0 is the most straightforward space to deal with. Imagine a

cube of side length 2ωmax surrounding the spherical region of radius ωmax that needs to be

packed. Choosing three random values between −ωmax and ωmax allows a location inside

this cube to be specified using Cartesian (x, y, z) coordinates. If this point lies outside

the inscribed sphere, it is rejected. Otherwise, equations (C.2) are used to convert it

to the appropriate angular coordinate system and it is saved. The process is repeated

until a sufficient number of points have been stored, with these now having an equal

probability of lying anywhere1 within the region to be packed as required.

The situation is similar in the case where K = +1, though this time equations (C.3)

are used for the embedding, and a unit hypersphere defined by r = 1 is inscribed within

1To within floating point tolerance.

197
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a four-dimensional hypercube of side length 2. Sets of three random numbers in the

interval [-1,1] are selected to represent x, y, and z coordinates, while values in the range

[0,1] are chosen randomly for w, defining points effectively populating the “upper” half

of the hypercube. Any points lying outside the hypersphere are rejected, while those

within it are projected onto its three-dimensional surface by dividing each coordinate

component by r. These points are then converted to angular coordinates, and any found

to be lying outside the region defined by the boundary at ω = ωmax are also rejected.

The remaining points can be used as suitable random locations within the portion of

the hypersurface to be packed, and the process is repeated until a sufficient number of

positions have been accumulated.

The hyperbolic shape of a K = −1 space makes random point selection a bit more

complicated for it. If the limiting value of ωmax is small, one can take an approach that

is analogous to the K = +1 case. That is, using equations (C.4) for the embedding,

choose random values of (x, y, z, w) to populate the “upper” half of a four-dimensional

hypercube of side length 2 cosh(ωmax), and discard any points with r > 1. Scale the

coordinate components of any location satisfying this criteria by r to place it onto the

unit three-dimensional hyperbolic surface, then convert to angular coordinates and retain

any point remaining within the boundary defined by ω = ωmax. Unfortunately, the high

degree of rejection inherent in this method makes it quite impractical to use as ωmax grows.

As a result, an alternative technique was employed to generate most of the packings that

have ωmax = 2π. Under this new scheme, θ and φ are chosen in the same way that they

are in the K = 0 case, from points populating the interior of a unit sphere. However,

the value of ω is determined by picking a random location along the length of the radial

hyperbolic curve describing the extent of the surface of interest. Considering the curve

resulting from the projection of this surface onto the w− z plane when r = 1 and θ = 0,

the parametric equations of the hyperbola are

z = sinh(ω) and w = cosh(ω) ,
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and its arc-length over the range of interest in ω is given by the integral

l(ω) =

∫ ω

0

√
(z′)2 + (w′)2 dω̃ =

∫ ω

0

√
cosh(2ω̃) dω̃ ,

where the prime indicates a derivative with respect to ω̃. This is an elliptic integral

of the second kind which has no general analytic solution, but for larger values of ω,

cosh(ω) ≈ 0.5eω, so for the curves of interest in this case,

l(ω) ≈ 1√
2

(eω − 1) .

This equation can be inverted so that a randomly selected value of l lying between 0 and

l(ωmax) can be converted to a corresponding value of ω, yielding the final component of

the random point required. With no rejection involved when choosing the ω coordinate,

this method is orders of magnitude quicker than the previously described one, and can

be effectively used when ωmax is large and the other becomes impractical.

The random point population schemes described above were used to generate random

data sets that were analyzed separately before being used to generate packings. Refer to

Attard (1997) for more details on how these random point files are actually used by the

packing code.

Before concluding this section, it is worth emphasizing the importance of ensuring

that the random number generator being used by the code is indeed valid. Initial efforts

at generating packings used rand(), the default C random number generator. While

this worked properly on some architecture/OS/compiler combinations, others produced

results that were decidedly non-random, as illustrated in Figure D.1. Further analysis

revealed that the generator used in these cases had a small dynamic range, which lead to

the points chosen in the Cartesian embedding space being distributed in widely spaced

planes, an effect that translates into the sinusoidal gaps apparent in the two distributions

shown. Use of a more appropriate random number generator showed no such structure

in either the random points chosen or the packings produced with them.
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Figure D.1: The upper plot shows the “sky” projection of a million “random” points
chosen using an ineffective random number generator to populate a positively curved
space with ωmax = π/10. The lower one shows the distribution of 77 682 sphere centres
from a packing generated using these points.
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