### PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3 NUMBER 6

## A THIRD CATALOGUE OF VARIABLE STARS IN GLOBULAR CLUSTERS COMPRISING 2119 ENTRIES

BY

HELEN SAWYER HOGG

#### INTRODUCTION

This is the third in the series of catalogues of variable stars in globular clusters published by the David Dunlap Observatory. The first appeared in 1939 (David Dunlap Publications, vol. 1, no. 4) and the second in 1955 (vol. 2, no. 2). In addition, a catalogue of variables in globular clusters south of  $-29^{\circ}$  declination was published in 1966 at Cordoba by C. R. Fourcade and J. R. Laborde, along with a splendid atlas of photographic prints of clusters prepared by J. Albarracin.

A preliminary edition of this Third Catalogue, in manuscript form, comprising 2057 entries, was circulated at the IAU Colloquium no. 21, "Variable Stars in Globular Clusters and in Related Systems," in August 1972. Investigators were invited to send corrections and additions to the author of the manuscript by October 2, 1972. The cut-off date for material included in this publication is November 1, 1972. Considerable new material was received, much of it from the Colloquium itself. This led to extensive revisions in the manuscript and some delay in its publication. Some of the conclusions drawn from the material of the Third Catalogue are in press in the Colloquium volume edited by J. D. Fernie.

#### SUMMARY OF DATA ON VARIABLES IN GLOBULAR CLUSTERS

At present a recorded search for variables in 108 of the approximately 130 globular clusters belonging to our galaxy has been made. This search has yielded 2119 variables. Certainly variables do not abound in most globular clusters. Of the 108 clusters that have been examined, only 10 contain more than 50 variables each, and 81 contain fewer than 20 variables each. At the time of compilation of the Second Catalogue, from the distribution it appeared that the most frequent number of variables found in a globular cluster was one. Now, from the data in the Third Catalogue, the most frequent number is zero. There are effectively 13 clusters with no variables, if one includes NGC 6397, whose three variables are considered field stars. One variable alone is found in each of 10 clusters.

Figure 1 shows the frequency distribution of the number of variables per cluster. More than 60 per cent of the clusters examined, 65 in all, have 10 variables or fewer; exactly 25 per cent, 26 clusters, have more than 20 variables; and 5 clusters have approximately 100 or more. The richest cluster still remains NGC 5272, Messier 3, with 212 variables. The second richest is Omega Centauri, NGC 5139, with 179. Next in order of richness is IC 4499, a newcomer in this catalogue, less than 10° from the southern celestial pole, with 129 discovered by Fourcade and Laborde, and 41 suspected. Messier 15, NGC 7078, with 111 and Messier 5, NGC 5904, with 97 complete this list of exceptionally rich clusters.

One of the problems faced in compiling this catalogue was to decide whether to include or exclude field variables. In general my policy has been to number those variables which lie within the obvious confines of a cluster, even though some of them are manifestly field stars. To omit them would ultimately lead to confusion. On the other hand, work of recent years in the surroundings of globular clusters has shown that



Figure 1 Distribution of the known, published variables per cluster.

some of the RR Lyrae stars well beyond their confines are likely members, or were so in the past. These stars are not included among the numbered variables of a cluster, except in a few cases.

#### NUMBERS OF TYPES OF VARIABLES AND KNOWN PERIODS

Of the known variables, periods have now been determined for 1313 in 55 clusters, compared with 843 in 38 clusters in 1955. In many clusters some periods have been revised or redetermined. In some cases there are only minor changes in the fifth or higher decimal places, but in others the change is major, even in the first decimal, giving an alternate period. In addition, many determinations of period changes have now been made. An effective summary of such changes in a concise catalogue is not possible, and the reader is referred to the original papers for pertinent data.

Table I gives a summary of the numbers and types of variables and numbers of periods known in the 108 globular clusters for which there is a record of search. For further particulars about these stars, such as cluster membership, the reader is referred to the catalogue itself.

The first column of the table gives the customary designation of the cluster, usually the NGC number. The second gives the total number of variables, and the third the total number of known periods. Periods for RR Lyrae stars are counted as known even when the published value is questionable or there is an alternate period, providing at least two decimals are given; and for semiregular variables if a numerical value of the cycle has been published. The fourth column gives the number of RR Lyrae periods

TABLE I Summary of Variable Stars in Globular Clusters

| NGC   | Total<br>variables | Total periods | RR Lyr<br>periods | 1-30<br>days | 31-99<br>days | 100-220<br>days | >220<br>days | lrr<br>SR | Others        |
|-------|--------------------|---------------|-------------------|--------------|---------------|-----------------|--------------|-----------|---------------|
| 104   | 28                 | 10            | 2                 |              | 3             | 5               |              | 4         |               |
| 288   | 1                  | 1             |                   |              |               | 1               |              |           |               |
| 362   | 15                 | 10            | 7                 | 2            | 1             |                 |              |           |               |
| 1261  | 15                 | 0             |                   |              |               |                 |              |           |               |
| Pal 1 | 0                  |               |                   |              |               |                 |              |           |               |
| Pal 2 | 0                  |               |                   |              |               |                 |              |           |               |
| 1851  | 10                 | 0             |                   |              |               |                 |              |           |               |
| 1904  | 7                  | 3             | 3                 |              |               |                 |              | 1         |               |
| 2298  | 2                  | 0             |                   |              |               |                 |              |           |               |
| 2419  | 36                 | 0             |                   |              |               |                 |              | 5         |               |
| 2808  | 9                  | 0             |                   |              |               |                 |              | -         |               |
| Pal 3 | 1                  | 0             |                   |              |               |                 |              |           |               |
| 3201  | 88                 | 84            | 83                |              |               |                 |              |           | EA, mem?      |
| Pal 4 | 2                  | 2             | 0.5               |              |               | 2               |              |           | D/1, IIICIII. |
| 4147  | 16                 | 15            | 15                |              |               | 2               |              |           |               |
|       | 2                  | 0             | 13                |              |               |                 |              |           |               |
| 4372  |                    |               | 2.7               |              |               |                 | 1 F          |           |               |
| 4590  | 42                 | 38            | 37                |              | 1             |                 | 2 F          | 1         |               |
| 4833  | 16                 | 9             | 6                 |              | 1             | 1               | 2 F          | 1         |               |
| 5024  | 47                 | 36            | 33                | 1            | 1             | 1               |              |           |               |
| 5053  | 11                 | 10            | 10                | _            |               |                 |              |           |               |
| 5139  | 179                | 159           | 142               | 7            | 5             | 2               | 1 F          | 3         | 3 E, 1 RRs    |
| 5272  | 212                | 186           | 182               | 1            | 2             | 1               |              |           | 1 EW          |
| 5286  | 8                  | 0             |                   |              |               |                 |              |           |               |
| 5466  | 23                 | 21            | 21                |              |               |                 |              |           |               |
| 5634  | 7                  | 1             | 1                 |              |               |                 |              |           |               |
| 5694  | 0                  |               |                   |              |               |                 |              |           |               |
| 14499 | 129                | 0             |                   |              |               |                 |              |           |               |
| 5824  | 27                 | 9             | 9                 |              |               |                 | 1            |           |               |
| Pal 5 | 5                  | 5             | 5                 |              |               |                 |              |           |               |
| 5897  | 7                  | 7             | 6                 |              | 1             |                 |              |           |               |
| 5904  | 97                 | 92            | 90                | 2            |               |                 |              | 1         | 1 UG          |
| 5927  | 11                 | 1             |                   |              |               |                 | 1            |           |               |
| 5946  | 3                  | 0             |                   |              |               |                 |              |           |               |
| 5986  | 5                  | 0             |                   |              |               |                 |              |           |               |
| 6093  | 8                  | 3             |                   | 1            |               | 1 F             | 14           |           | 1 N           |
| 6101  | 0                  |               |                   |              |               |                 |              |           |               |
| 6121  | 43                 | 42            | 40                |              | 2             |                 |              |           |               |
| 6139  | 0                  |               |                   |              |               |                 |              |           |               |
| 6144  | 1                  | 0             |                   |              |               |                 |              |           |               |
| 6171  | 25                 | 23            | 22                |              |               |                 | 1 F          |           |               |
| 6205  | 11                 | 7             | 3                 | 3 M          | 1 M           |                 |              | 2 M       | 1 F           |
| 6218  | 1                  | 1             | J                 | 1            | 1 171         |                 |              | 2 171     |               |
| 6229  | 22                 | 15            | 14                | 1            |               |                 |              |           |               |
| 0227  | 2                  | 0             | 14                | 1            |               |                 |              |           |               |

| NGC    | Total<br>variables | Total periods | RR Lyr<br>periods | 1-30<br>days | 31-99<br>days | 100-220<br>days | >220<br>days | lrr<br>SR | Others            |
|--------|--------------------|---------------|-------------------|--------------|---------------|-----------------|--------------|-----------|-------------------|
| Table  | I (continue        | ed)           |                   |              |               |                 |              |           |                   |
| 6254   | 4                  | 2             |                   | 2            |               |                 |              | 1         |                   |
| Pal 15 |                    |               |                   |              |               |                 |              |           |                   |
| 6266   | 89                 | 74            | 74                |              |               |                 |              |           |                   |
| 6273   | 4                  | 0             |                   |              |               |                 |              |           |                   |
| 5284   | 6                  | 0             |                   |              |               |                 |              |           |                   |
| 5287   | 3                  | 0             |                   |              |               |                 |              |           |                   |
| 5293   | 5                  | 0             |                   |              |               |                 |              |           |                   |
| 5304   | 21                 | 0             |                   |              |               |                 |              |           |                   |
| 5333   | 13                 | 11            | 11                |              |               |                 |              |           |                   |
| 5341   | 15                 | 13            | 12                |              |               |                 |              |           | 1 EW F            |
| 5352   | 4                  | 0             |                   |              |               |                 |              |           |                   |
| 6356   | 10                 | 1             |                   |              |               | 1               |              |           |                   |
| 5362   | 33                 | 15            | 15                |              |               |                 |              |           |                   |
| 6366   | 2                  | 0             |                   |              |               |                 |              |           |                   |
| HP 1   | 15                 | 0             |                   |              |               |                 |              |           |                   |
| 6380   | 1                  | 0             |                   |              |               |                 |              |           |                   |
| 6388   | 9                  |               |                   |              |               |                 |              |           |                   |
| Ton 2  |                    | 0             |                   |              |               |                 |              |           |                   |
| 5397   | 3                  | 3             | 1 F               |              | 1 F           |                 | 1 F          |           |                   |
| 5401   | 3                  | 0             |                   |              |               |                 |              |           |                   |
| 6402   | 77                 | 40            | 34                | 5            |               |                 | 1 F          |           | 1 N               |
| Pal 6  | 0                  |               |                   |              |               |                 |              |           |                   |
| 5426   | 13                 | 11            | 11                |              |               |                 |              |           |                   |
| 6441   | 10                 | 0             |                   |              |               |                 |              |           |                   |
| 6453   | 0                  | _             |                   |              |               |                 |              |           |                   |
| 6496   | 0                  |               |                   |              |               |                 |              |           |                   |
| 6522   | 10                 | 9             | 8                 | 1 F          |               |                 |              | 1 F       |                   |
| 6528   | 0                  |               |                   |              |               |                 |              |           |                   |
| 6535   | 1                  | 0             |                   |              |               |                 |              |           |                   |
| 5539   | 1u                 | 0             |                   |              |               |                 |              |           |                   |
| 6541   | 1                  | 0             |                   |              |               |                 |              |           | Slow, prob. men   |
| 5553   | 18                 | 4             | 3                 |              |               |                 | 1            |           | 2 slow, 1 N       |
| 6558   | 9                  | 0             |                   |              |               |                 |              |           |                   |
| 1276   |                    | 1             | 1                 |              |               |                 |              | 4?        |                   |
| 5569   | 5                  | 0             |                   |              |               |                 |              |           |                   |
| 5584   | 1                  | 0             |                   |              |               |                 |              |           |                   |
| 5624   | 4                  | 0             |                   |              |               |                 |              |           |                   |
| 6626   | 18                 | 10            | 7                 | 2            | 1             |                 |              |           |                   |
| 6637   | 8                  | 2             |                   |              |               | 2 M             |              |           | 1 RR F, 2 red gia |
| 6638   | 3                  | 0             |                   |              |               |                 |              |           |                   |
| 6642   | 2                  | 0             |                   |              |               |                 |              |           |                   |
| 6652   | 0                  |               |                   |              |               |                 |              |           |                   |
| 6656   | 32                 | 27            | 18                | 1 M          | 2             | 2 F?            | 4 F?         | 1 M       |                   |
| 6681   | 2                  | 0             |                   |              |               |                 |              |           |                   |
| 6712   | 21                 | 16            | 10                |              |               | 6               |              |           | 1 UG, 2 E F?      |
| 6715   | 80                 | 37            | 34                | 1            | 1             | 1               |              |           | 2 E, 2 SR, 3 F    |

| NGC    | Total<br>variables | Total periods | RR Lyr<br>periods | 1-30<br>days | 31-99<br>days | 100-220<br>days | >220<br>days | Irr<br>SR | Others    |
|--------|--------------------|---------------|-------------------|--------------|---------------|-----------------|--------------|-----------|-----------|
| Table  | I (continue        | ed)           |                   |              |               |                 |              |           |           |
| 6723   | 25                 | 19            | 19                |              |               |                 |              |           |           |
| 6752   | 2                  | 0             |                   |              |               |                 |              |           |           |
| 6760   | 4                  | 0             |                   |              |               |                 |              |           |           |
| 6779   | 12                 | 4             | 1 F               | 1            | 1             |                 |              | 6         | 1 RRs F?  |
| Pal 10 | 1                  | 0             |                   |              |               |                 |              |           |           |
| 6809   | 6                  | 5             | 5                 |              |               |                 |              |           |           |
| Pal 11 | 0                  |               |                   |              |               |                 |              |           |           |
| 6838   | 4                  | . 2           |                   |              |               | 1               |              | 1         | 1 EA, mem |
| 6864   | 11                 | 0             |                   |              |               |                 |              |           |           |
| 6934   | 51                 | 30            | 30                |              |               |                 |              |           | 1 slow    |
| 6981   | 40                 | 28            | 28                |              |               |                 |              |           |           |
| 7006   | 71                 | 58            | 57                |              | 1             |                 |              |           |           |
| 7078   | 111                | 68            | 65                | 3            |               |                 |              |           |           |
| 7089   | 21                 | 21            | 17                | 3            | 1             |                 |              |           | 1 110     |
| 7099   | 12                 | 4             | 3                 |              |               |                 |              |           | 1 UG      |
| Pal 12 |                    | 0             |                   |              |               |                 |              |           |           |
| Pal 13 |                    | 4             | 4                 |              |               |                 |              |           |           |
| 7492   | 4                  | 4             | 3                 | 1            |               |                 |              |           |           |

determined. The next three columns cover the period interval between the RR Lyrae and the Mira stars with periods greater than 220 days. The totals in this period interval are broken down arbitrarily into three groups. The shorter group is made up mainly of W Vir stars, and the longer of short-period Mira stars, with semiregular or RV Tauri types in between. Only those variables technically in the pulsating variable group are included in the above-mentioned columns. Others, mainly eclipsing, are noted in the last column of the table. Mira stars with periods over 220 days are in the eighth column. These are mainly field stars. The ninth column contains those variables with no period given, mainly red ones, with irregular or semiregular fluctuations.

About 8 per cent of the stars in the catalogue, 169 in all, are definitely designated as other than RR Lyrae. There are 39 in the 1-30 day group, 26 in the 31-99, 26 in the 100-219, and 15 with a period of over 220 days. A conspicuous difference between the Third and Second Catalogues is the increase in the number of red irregular variables, many with small ranges.

#### DISTRIBUTIONS OF RR LYRAE PERIODS

There are 1202 definite RR Lyrae periods known in 46 clusters. The importance of the difference in most frequent length of period in individual clusters has been widely discussed since Oosterhoff first called attention to it. Figure 2 shows the distribution of all RR Lyrae periods in globular clusters for period intervals of 0.01 day. The double maximum of this distribution, conspicuous in the Second Catalogue, is further en-



Figure 2 Numbers of RR Lyrae periods at intervals of 0.01 days.

hanced by the new material. Certainly in globular clusters variables of the RRab type have a strong preference for periods around 0.55 day, and of the RRc type, around 0.35 day.

#### DESCRIPTION OF THE CATALOGUE

The catalogue contains every globular cluster considered as belonging to our galaxy for which there is now a published record of search for variables. These clusters number 108, and 11 others are mentioned in brief references.

For the material of the catalogue an attempt has been made to select the most recent or the best determined data. This means that in some clusters for even a single variable the data in different columns may be drawn from different sources. When the Second Catalogue was prepared in 1955, every effort was made to obtain from the authors, or their respective institutions, information sufficient to identify variables listed many years earlier as unpublished. Despite this attempt, much of the unpublished material had to be left in relatively useless form. Now, 17 years later, it seems unlikely that any more of this material can ever be salvaged, and in most cases it is not mentioned in the Third Catalogue.

The system of references has been put on a different basis from that used in the First and Second Catalogues. As the literature proliferates with the years, it becomes no longer feasible to reprint all the references for a cluster in each catalogue. Accordingly

only references since the publication of the Second Catalogue are included for the most part, along with a few overlooked earlier. However, for some clusters on which there has been no key work since then, an occasional early reference has been repeated to aid the reader.

The format of the reference system has also been altered from that used in the earlier catalogues. References are now printed under each cluster. The abbreviations of publications have been chosen to conform to the system of H. Schneller in *Geschichte und Literatur des Lichtwechsels der Veränderlichen Sterne* (Berlin), which seems to convey the necessary information in as concise a manner as possible. An index of the abbreviations used is given at the end of the catalogue. Photo or chart is shown by (p) or (c).

The principal papers on variables in any cluster are listed by author and abbreviated reference. However, there are some papers (23 in all) with remarks about many clusters. These more frequently mentioned papers are abbreviated to initials and the year of publication in this century, the key to these abbreviations being also given at the end, with the title of the paper. For clusters for which the Atlas and Catalogue of Fourcade, Laborde, and Albarracin contains new material, this reference is listed with the main references; otherwise it appears among the highly abbreviated ones.

Anyone actually investigating a cluster is strongly urged to consult the full list of references given in the Second Catalogue.

The clusters are listed in order of NGC number, which does not always correspond to the order in right ascension. Those lacking an NGC number are placed in order of right ascension, which, along with declination, is given for the equinox of 1950. If the cluster has a Messier number, that is given.

The variables are numbered according to the previous catalogues, and new numbers are usually assigned in order of discovery. The policy is to try to restrict the new numbers to those variables within the apparent physical area of the cluster, but it is not feasible to follow this rule rigidly.

The x and y coordinates are given in seconds of arc and correspond in direction to right ascension and declination. For a given cluster, they are usually those published by the first investigator, or reduced to his selected centre. In some cases, these coordinates unfortunately are not yet available.

The magnitudes are usually the latest that have been obtained, which are hopefully the best determined for maximum and minimum. Most of the magnitudes are photographic, but there is a gradual shift to the use of B magnitudes.

The epoch of maximum is usually, but not always, chosen as the one accompanying the period selected. Individual papers should be consulted to determine whether the time is heliocentric or geocentric.

The period is generally that most recently published. Stars with periods less than a day are assumed to be of RR Lyrae type unless otherwise indicated in the remarks. For stars with periods between one and thirty days the type is assumed to be Cepheid.

The "remarks" column contains a miscellany of information. An increase or decrease in period is indicated by + or - respectively, a constant period by "cst" or 0. "Alt" means an alternate period has been published, "var" signifies a variable period, and "B\ell" is a variable period.

the Blashko effect. An available spectral type is indicated by "Sp" sometimes followed by the type without subdivision, and an available radial velocity by "V." Stars which have been shown to be definitely or very probably field stars are indicated by "f" and proven cluster stars by "mem." The abbreviation used for the type of variable is that in the Third Edition of the *General Catalogue of Variable Stars* by B. V. Kukarkin *et al.* (1969). For variables found since publication of the Second Catalogue, the discoverer is usually indicated.

#### **ACKNOWLEDGMENTS**

It is a pleasure to acknowledge the help I have received in the construction of this catalogue. This has come from many astronomers who have sent unpublished or explanatory data, as indicated in the references under individual clusters. I am particularly grateful to Professor Dr. B. V. Kukarkin of Moscow University, who, in the midst of his great task of recording all galactic system variables, has taken time to keep me briefed on Soviet work in globular clusters and to send me corrections to some of my previous papers. Also Dr. H. Wilkens of Argentina has been a constructive reader of my past works, and Dr. Steven van Agt of Nijmegen has straightened out the material on NGC 6362.

My thanks go also to the two directors of this observatory under which the Third Catalogue has been compiled, Dr. John F. Heard and Dr. Donald A. MacRae; to the National Research Council of Canada for their generous support of my cluster program; to my colleagues Dr. Amelia Wehlau of the University of Western Ontario and Dr. Christine Coutts; to the two librarians who assiduously tracked down elusive references, Mrs. Jean Lehmann and Mrs. Sheila Smolkin; to Mrs. Jennie Fabian, who prepared the preliminary version for distribution at IAU Colloquium no. 21 in August 1972; and last but not least to my daughter, Mrs. Sally MacDonald, who searched references and tabulated data.

June 30, 1973 Richmond Hill, Ontario

# THIRD CATALOGUE OF VARIABLE STARS IN GLOBULAR CLUSTERS

| No.   | x''          | y''                    | Max.                  | Min.      | Epoch     | Period  | Remarks    |
|-------|--------------|------------------------|-----------------------|-----------|-----------|---------|------------|
| NGC 1 | 104 (47 Tuca | nae) a 00 <sup>h</sup> | 21 <sup>m</sup> .9, 8 | S -72°21′ |           |         |            |
| 1     | + 36.8       | -112.6                 | 11.60                 | 15.63     | 35487     | 212     | Sp M, V    |
| 2     | + 64.7       | -193.9                 | 11.70                 | 14.48     | 35645     | 203     | Sp M, V    |
| 3     | + 328.4      | + 52.8                 | 11.70                 | 15.85     | 35468     | 192     | Sp M, V    |
| 4     | - 18.8       | -160.4                 | 12.50                 | 14.0      | 35490     | 165     |            |
| 5     | + 271.9      | -284.6                 | 13.0                  | 13.7      | 36158     | 45      | Sp M, V    |
| 6     | + 97.3       | -103.8                 | 13.0                  | 13.6      | 36159     | 47      |            |
| 7     | + 349.2      | -113.0                 | 13.0                  | 13.7      | 36162     | 58      | Sp M, V    |
| 8     | + 16.0       | + 57.0                 | 12.4                  | 14.0      | 35524     | 155     | Sp M, V    |
| 9     | - 108        | - 78                   | 13.6                  | 14.7      | 36163.240 | 0.73652 | mem, Sp, V |
| 10    | + 72         | +702                   | 13.1                  | 13.6      |           | irr     |            |
| 11    | + 306        | +138                   | 13.2                  | 14.0      |           | irr     |            |
| 12    | +1254        | -348                   | 13.89                 | 14.45     | 36046.614 | 0.37143 | f, Sp, V   |
| 13    | - 301.95     | -139.92                |                       |           |           |         | Wilkens    |
| 14    | + 8.25       | + 66.83                |                       |           |           |         | F&L        |
| 15    |              |                        |                       |           |           | irr     | W300       |
| 16    |              |                        |                       |           |           |         | R18        |
| 17    |              |                        |                       |           |           |         | W81        |
| 18    |              |                        | 12.0                  | 12.3      |           |         | L168       |
| 19    |              |                        | 11.0                  | 11.6      |           |         | R10        |
| 20    |              |                        | 11.7                  | 12.5      |           |         | A 1        |
| 21    |              |                        | 12.0                  | 13.0      |           |         | A 2        |
| 22    |              |                        | 11.7                  | 12.2      |           |         | A4         |
| 23    |              |                        | 11.7                  | 12.2      |           |         | A6         |
| 24    |              |                        | 11.6                  | 11.9      |           |         | A8         |
| 25    |              |                        | 11.6                  | 11.9      |           |         | A9         |
| 26    |              |                        | 11.8:                 | 12.1:     |           |         | A13        |
| 27    |              |                        | 11.9                  | 12.2      |           |         | A18        |
| 28    |              |                        | 11.8                  | 12.2      |           |         | LR5        |

V15 found by Eggen, 1961; V17 Eggen, 1972; V16 Brooke, 1969. Unpublished V magnitudes given for vars. 18-28, discovered by Lloyd Evans and Menzics, marked on print (1973); their identifying numbers are given in the remarks column. W = Wildey (1961), R = Feast and Thackeray (1960). A field variable, HV 809, is shown by Jones (1973) to be a non-member.

Feast, Thackeray and Wesselink, MN 120.64 (1960); Feast and Thackeray, MN 120.463 (1960); Eggen, Royal Obs Bull 29.E86 (1961); Kurochkin, VS 13.248 (1961); Wildey, ApJ 133.430 (p) (1961); Rosino and Sawyer Hogg, IAU Trans 11B.301 (1962); Arp, Brueckel and Lourens, ApJ 137.228 (1963); Feast, ApJ 137.342 (1963); Tifft, MN 126.210 (1963); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Brooke, Doctoral Thesis, Australian Nat'l Univ (1969); Eggen, ApJ 172.639 (1972); Lloyd Evans, Letter (1972); Jones, IAU Coll 21 (1973); Lloyd Evans and Menzics, IAU Coll 21 (p) (1973)

S55a, S57, S59, S61, A62, R62a, S62, P64, S64, R65, S69, F72

7

9

10

11

12

13

14

15

+131.1

+ 33.4

-400.4

+282.8

-136.1

-30.4

+ 14.5

-23.8

+151.3

| No.    | х"                      | у"                        | Max.  | Min.       | Epoch                   | Period    | Remarks |
|--------|-------------------------|---------------------------|-------|------------|-------------------------|-----------|---------|
| NGC    | 288 a 00 <sup>h</sup> . | 50 <sup>m</sup> .2, δ – 2 | 6°52′ |            |                         |           |         |
| 1      | -55                     | +79                       | 13.5  | 14.1       | 25576                   | 103       |         |
| \$55a, | S59, R62c,              | 7 4                       |       | osterhoff. | , BAN <b>9.</b> 397 (19 | 43)       |         |
| 1      | -246.2                  | - 67.6                    | 14.9  | 16.1       | 23751.558               | 0.5850512 |         |
| 2      | + 41.4                  | -204.4                    | 13.0  | 14.5       | 24391.8                 | 90 var    |         |
| 3      | + 93.6                  | -143.2                    | 14.6  | 16.1       | 23604.806               | 0.4744151 |         |
| 4      | - 50.2                  | - 27.3                    | 14.0  | 15.8       |                         |           |         |
| 5      | - 79.2                  | - 31.9                    | 15.1  | 16.4       | 24025.729               | 0.4900846 |         |
| 6      | + 82.4                  | + 15.5                    | 14.9  | 16.3       | 24461.642               | 0.5146080 |         |

24468.687

24433.677

24404.670

23315.643

24391.839

0.5285492

3.901447

0.5476126

0.65254518

F&L

4.20519

Bailey, HA 38.237 (p) (1902); Sawyer, HC 366 (1931), HC 374 (p) (1932); Kurochkin, VS 13.248 (1961); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Eggen, ApJ 172.639 (1972)

\$55a, \$59, \$62, \$64, L65, R65, \$69

-21.2

-308.5

+224.4

-381.8

-26.0

-115.4

+ 38.8

-66.8

-210.7

14.8

15.0

14.7

14.9

15.1

15.2

14.6

14.8

16.0

16.5

16.0

16.4

16.0

16.1

16.3

16.2

| NGC | 1261 a 13 <sup>1</sup> | <sup>h</sup> 10 <sup>m</sup> .9, δ – | 55° 25′ |       |           |
|-----|------------------------|--------------------------------------|---------|-------|-----------|
| 1   | - 29.8                 | - 28.4                               |         |       | L&F       |
| 2   | - 39.8                 | + 34.9                               | 16.05   | 17.25 | L&F       |
| 3   | + 49.6                 | - 54.6                               | 15.88   | 16.67 | L&F       |
| 4   | + 31.8                 | - 36.1                               |         |       | L&F       |
| 5   | - 34.5                 | - 5.0                                | 16.1    | 17.0  | L&F       |
| 6   | + 78.1                 | - 12.3                               | 16.32   | 17.32 | L&F       |
| 7   | -149.3                 | +140.2                               | 16.85   | 17.3  | L&F       |
| 8   | -133.7                 | -139.0                               | 16.13   | 17.48 | L&F       |
| 9   | + 37.9                 | - 38.8                               | 16.85   | 17.15 | L&F       |
| 10  | + 52.3                 | + 70.6                               | 16.17   | 17.43 | L&F       |
| 11  | - 89.0                 | + 89.5                               | 16.85   | 17.29 | L&F       |
| 12  | + 87.1                 | - 10.5                               | 16.35   | 17.42 | Bartolini |
| 13  | - 77.1                 | - 96.0                               | 16.79   | 17.35 | Bartolini |
| 14  | - 53.5                 | - 70.7                               | 16.22   | 17.23 | Bartolini |
| 15  | -114.5                 | +129.1                               | 15.21   | 15.86 | Bartolini |
|     |                        |                                      |         |       |           |

Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Laborde and Fourcade, Cordoba Repr 127 (1966); Bartolini, Grilli and Robertson, IBVS 594 (1971); Bartolini, Grilli and Morisi, IBVS 649 (1972); Bartolini, Letter (1972)

S55b, R62b, S67, S69

| No.      | x''                | у′′                       | Max.         | Min.         | Epoch | Period | Remarks |
|----------|--------------------|---------------------------|--------------|--------------|-------|--------|---------|
| Palomai  | 1 a 03h2           | 25 <sup>m</sup> .7, δ+7   | 9° 28′       |              |       |        |         |
|          |                    | l.<br>o, ASP <b>74</b> .4 | 99 (196      | 2)           |       |        |         |
| Palomai  | 2 a 04h4           | 3 <sup>m</sup> .1, δ +3   | 1°23′        |              |       |        |         |
| No varia | bles found         |                           |              |              |       |        |         |
| Rosino   | and Pinto,         | 1AU Coll 21               | (1973)       |              |       |        |         |
| R61      |                    |                           |              |              |       |        |         |
|          |                    | 12 <sup>m</sup> .4, δ -   |              | 1.5.5        |       |        |         |
|          | +258.50<br>- 41.25 |                           | 14.0<br>14.0 | 15.5<br>15.5 |       |        |         |
|          | - 41.23<br>- 38.50 |                           | 14.0         | 13.3         |       |        |         |
|          | + 24.75            |                           |              |              |       |        |         |
| 5        | + 41.25            | + 41.25                   |              |              |       |        |         |
|          | - 74.25            |                           |              |              |       |        |         |
|          | + 4.13             | - 8.35                    |              |              |       |        |         |
|          | + 28.88            | + 24.75                   | var?         |              |       |        |         |
|          | - 57.75            | + 49.50                   |              |              |       |        |         |

Small change in coordinates of vars. 1 and 2 discovered by Bailey. Variable formerly noted as unpublished is considered to be included in above list of new vars. 3-10 discovered by Laborde and Fourcade.

Bailey, HB 802 (1924); Shapley, Star Clusters, p. 45 (1930); Laborde and Fourcade, Cordoba Repr 138 (p) (1966)

S55a, S59, R62c, S62, F&L63, FLA66, S69

-196.63

10

+ 46.75

| NGC 1 | 904 (Messic | er 79) a 05 | h22m.2, | $\delta-24^{\circ}34$ | ,        |         |             |
|-------|-------------|-------------|---------|-----------------------|----------|---------|-------------|
| 1     | +29.6       | -199.6      | var?    |                       |          |         | med 16.0    |
| 2     | +78.3       | - 68.3      | 14.2    | 14.80                 |          | SR      |             |
| 3     | +34.8       | - 64.4      | 15.9    | 16.7                  | 34032.40 | 0.73602 |             |
| 4     | +93.4       | -50.1       | 15.6    | 16.7                  | 32877.50 | 0.63492 |             |
| 5     | -11.6       | + 20,2      |         |                       |          |         |             |
| 6     | -70.8       | +115.6      | 16.0    | 16.6                  | 32940.25 | 0.33522 |             |
| 7     | +22.5       | - 15.2      |         |                       |          |         | Tsoo Yu-hua |
| 8     | + 7.1       | - 11.7      |         |                       |          |         | Tsoo Yu-hua |

Pickering, HC 18 (1897); Bailey, HA 38. 238 (p) (1902); Rosino, Bologna Pubbl 5, 20 (p) (1952); Tsoo Yu-hua, Letter (p) (1965)

S55a, S59, S62, L65, R65, S67, S69

| No.      | x''          | y''          | Max.           | Min.            | Epoch       | Period   | Remarks |
|----------|--------------|--------------|----------------|-----------------|-------------|----------|---------|
| NGC :    | 2298 a 06    | h47m.2, δ =  | 35°57′         |                 |             |          |         |
| 1        | +119.35      | -37.40       |                |                 |             |          | F&L     |
| 2        | - 30.53      | -22.28       |                |                 |             |          | F&L     |
| Fourc    | ade. Labor   | de and Albar | racin. Atla    | as v Catal      | ogo, Cordob | a (1966) |         |
|          |              | , S62, F&L6  |                | , , , , , , , , | -6-, -      | (,       |         |
| NGC      | 2419 a 07    | h34m.8, δ+   | 39° 00′        |                 |             |          |         |
| 1        | + 40         | - 52         | 17.59          | 18.32           |             | irr      |         |
| 2        | - 4          | - 19         |                |                 |             |          |         |
| 3        | + 52         | - 24         | 18.66          | 19.96           |             |          |         |
| 4        | + 80         | - 15         | 18.84          | 19.65           |             |          |         |
| 5        | + 33         | + 47         | 18.75          | 19.72           |             |          |         |
| 6        | + 56         | -127         | 18.86          | 19.64           |             |          |         |
| 7        | + 91         | + 87         | 18.69          | 19.77           |             |          |         |
| 8        | - 17         | + 41         | 17.50          | 18.10           |             | irr      |         |
| 9        | - 32         | + 88         | 18.59          | 19.76           |             |          |         |
| 10       | + 20         | - 51         | 17.31          | 17.93           |             | irr      |         |
| 11       | + 95         | - 8          | 18.55          | 19.81           |             |          |         |
| 12       | +133         | +111         | 18.69          | 19.71           |             |          |         |
| 13       | +101         | - 10         | 18.55          | 19.75           |             |          |         |
| 14       | -115         | - 13         | 18.81          | 19.62           |             |          |         |
| 15       | + 62         | + 40         | 18.62          | 19.76           |             |          |         |
| 16       | + 47         | + 72         | 18.77          | 19.85           |             |          |         |
| 17       | +109         | +111         | 18.65          | 19.75           |             |          |         |
| 18       | - 15         | +114         | 17.84          | 18.53           |             | irr      |         |
| 19       | -107         | - 40         | 18.77          | 19.86           |             |          |         |
| 20       | - 28         | + 45         | 17.65          | 18.16           |             | irr      |         |
| 21       | - 55         | + 30         | 18.76          | 19.74           |             |          |         |
| 22       | +109         | - 5          | 18.60          | 19.84           |             |          |         |
| 23       | + 27         | + 79         | 10.07          | 10.50           |             |          |         |
| 24       | -147         | - 10         | 18.94          | 19.58           |             |          |         |
| 25       | - 59         | + 38         | 18.78          | 19.70           |             |          |         |
| 26       | - 70         | - 50         | 10.10          | 10.55           |             |          |         |
| 27       | + 19         | -103         | 19.10          | 19.55           |             |          |         |
| 28       | -192         | + 59         | 18.72          | 19.78           |             |          |         |
| 29       | - 58         | - 7          | 19.01          | 19.92           |             |          |         |
| 30       | - 26         | + 23         | 10.00          | 10.52           |             |          |         |
| 31       | +154         | -146         | 19.08          | 19.53           |             |          |         |
| 32       | - 19<br>- 47 | + 48         | 18.60          | 19.71           |             |          |         |
| 33       | + 47         | - 17         | 19.11          | 20.13           |             |          |         |
| 34<br>35 | + 21<br>+ 43 | +157<br>+ 8  | 19.00<br>18.88 | 19.66<br>20.00  |             |          |         |
| 36       | + 43 + 23    | + 8<br>+ 44  | 19.10          | 19.83           |             |          |         |
| 30       | T 23         | T 44         | 13.10          | 17.03           |             |          |         |

Kinman has two RR Lyrae periods, 0.37 and 0.63 days. Baade, ApJ 82.396 (p) (1935); Rosino and Sawyer Hogg, IAU Trans 11B.301 (1962) S55a, S59, S62, R65, S69

|                                                                                                                                                                                                                       | x''                                                                                                                                                                                            | у′′                                                                                                                            | Max.                                                                                                                                                                                       | Min.                                                                                                                                                                             | Epoch                                                                                                                                                                                                                                                                        | Period                                                                                                                                                                                                                                                                       | Remarks                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| NGC                                                                                                                                                                                                                   | 2808 a 09h                                                                                                                                                                                     | 10 <sup>m</sup> .9, δ-6                                                                                                        | 4° 39′                                                                                                                                                                                     |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              |                                |
| 1                                                                                                                                                                                                                     | +107.25                                                                                                                                                                                        | - 35.20                                                                                                                        |                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              | F&L                            |
| 2                                                                                                                                                                                                                     | - 48.13                                                                                                                                                                                        | + 34.10                                                                                                                        |                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              | F&L                            |
| 3                                                                                                                                                                                                                     | + 31.63                                                                                                                                                                                        | - 61.33                                                                                                                        |                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              | F&L                            |
| 4                                                                                                                                                                                                                     | -191.13                                                                                                                                                                                        | + 60.50                                                                                                                        |                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              | F&L                            |
| 5                                                                                                                                                                                                                     | + 39.05                                                                                                                                                                                        | - 66.00                                                                                                                        |                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              | F&L                            |
| 6                                                                                                                                                                                                                     | +168.58                                                                                                                                                                                        | -291.50                                                                                                                        |                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              | F&L                            |
| 7                                                                                                                                                                                                                     | + 63.25                                                                                                                                                                                        | + 60.50                                                                                                                        |                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              | F&L                            |
| 8                                                                                                                                                                                                                     |                                                                                                                                                                                                |                                                                                                                                | 14.87                                                                                                                                                                                      | 15.92                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              | Alcaino 27                     |
| 9                                                                                                                                                                                                                     |                                                                                                                                                                                                |                                                                                                                                | 15.68                                                                                                                                                                                      | 16.96                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              | Alcaino 35                     |
| p) (1                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                                                | acin, Atia                                                                                                                                                                                 | s y Cataic                                                                                                                                                                       | ego, Cordoba (1                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              | Astr and Ap 15.30              |
|                                                                                                                                                                                                                       | ar 3 a 10 <sup>h</sup> (                                                                                                                                                                       | 3 <sup>m</sup> .0, δ+00                                                                                                        | 0°18′                                                                                                                                                                                      |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              |                                |
| /1 on                                                                                                                                                                                                                 | print                                                                                                                                                                                          |                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              | prob RR                                                                                                                                                                                                                                                                      | B&S                            |
|                                                                                                                                                                                                                       | dge and Sand                                                                                                                                                                                   | age, ApJ 12                                                                                                                    | .7.527 (p)                                                                                                                                                                                 | (1958)                                                                                                                                                                           |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              |                                |
| 01, 2                                                                                                                                                                                                                 | S62, S69                                                                                                                                                                                       |                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              |                                |
| TCC.                                                                                                                                                                                                                  | 3201 a 10h                                                                                                                                                                                     | 15m.5, δ –                                                                                                                     | 46°09′                                                                                                                                                                                     |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              |                                |
| NGC.                                                                                                                                                                                                                  | J201 0010                                                                                                                                                                                      | 10 .0, 0                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              |                                |
| 1                                                                                                                                                                                                                     | + 59                                                                                                                                                                                           | - 118                                                                                                                          | 14.56                                                                                                                                                                                      | 15.66                                                                                                                                                                            | 39505.858                                                                                                                                                                                                                                                                    | 0.6048761                                                                                                                                                                                                                                                                    | +                              |
|                                                                                                                                                                                                                       |                                                                                                                                                                                                |                                                                                                                                |                                                                                                                                                                                            | 15.66<br>15.60                                                                                                                                                                   | 39505.858<br>28272.352                                                                                                                                                                                                                                                       | 0.6048761<br>0.5326722                                                                                                                                                                                                                                                       | +                              |
| 1                                                                                                                                                                                                                     | + 59                                                                                                                                                                                           | - 118                                                                                                                          | 14.56                                                                                                                                                                                      |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              | +                              |
| 1 2                                                                                                                                                                                                                   | + 59<br>+ 29                                                                                                                                                                                   | - 118<br>- 117                                                                                                                 | 14.56<br>14.61                                                                                                                                                                             | 15.60                                                                                                                                                                            | 28272.352                                                                                                                                                                                                                                                                    | 0.5326722                                                                                                                                                                                                                                                                    |                                |
| 1<br>2<br>3                                                                                                                                                                                                           | + 59<br>+ 29<br>+ 182                                                                                                                                                                          | - 118<br>- 117<br>- 43                                                                                                         | 14.56<br>14.61<br>14.84                                                                                                                                                                    | 15.60<br>15.52                                                                                                                                                                   | 28272.352<br>39504.76:                                                                                                                                                                                                                                                       | 0.5326722<br>0.5994093                                                                                                                                                                                                                                                       |                                |
| 1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                            | + 59<br>+ 29<br>+ 182<br>+ 155                                                                                                                                                                 | - 118<br>- 117<br>- 43<br>+ 3                                                                                                  | 14.56<br>14.61<br>14.84<br>14.76                                                                                                                                                           | 15.60<br>15.52<br>15.60                                                                                                                                                          | 28272.352<br>39504.76:<br>23198.539                                                                                                                                                                                                                                          | 0.5326722<br>0.5994093<br>0.6300006                                                                                                                                                                                                                                          |                                |
| 1<br>2<br>3<br>4<br>5                                                                                                                                                                                                 | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42                                                                                                                                                         | - 118<br>- 117<br>- 43<br>+ 3<br>- 24<br>- 143<br>- 189                                                                        | 14.56<br>14.61<br>14.84<br>14.76<br>14.40                                                                                                                                                  | 15.60<br>15.52<br>15.60<br>15.54                                                                                                                                                 | 28272.352<br>39504.76:<br>23198.539<br>39504.853                                                                                                                                                                                                                             | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359                                                                                                                                                                                                                             |                                |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                                  | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69                                                                                                                                | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99                                                                                     | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06                                                                                                                       | 15.60<br>15.52<br>15.60<br>15.54<br>15.42                                                                                                                                        | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796                                                                                                                                                                                                                | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131                                                                                                                                                                                                                | +                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                                  | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51                                                                                                                        | - 118<br>- 117<br>- 43<br>+ 3<br>- 24<br>- 143<br>- 189<br>- 99<br>- 91                                                        | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86                                                                                                              | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.40<br>15.57                                                                                                             | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605                                                                                                                                                                         | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322                                                                                                                                                                                                   | +<br>-<br>+                    |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                                             | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181                                                                                                               | - 118<br>- 117<br>- 43<br>+ 3<br>- 24<br>- 143<br>- 189<br>- 99<br>- 91<br>+ 235                                               | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86<br>14.66                                                                                                     | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.40<br>15.57<br>15.59                                                                                                    | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597                                                                                                                                                            | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571                                                                                                                                                            | +<br>-<br>+                    |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                                                       | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181<br>- 104                                                                                                      | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99 - 91 + 235 + 112                                                                    | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86<br>14.66<br>14.82                                                                                            | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.40<br>15.57<br>15.59<br>15.36                                                                                           | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597<br>39506.804                                                                                                                                               | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571<br>0.2990471                                                                                                                                               | +<br>-<br>+                    |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                                                                                                                 | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181<br>- 104<br>- 86                                                                                              | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99 - 91 + 235 + 112 + 108                                                              | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86<br>14.66<br>14.82<br>14.50                                                                                   | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.57<br>15.59<br>15.36<br>15.53                                                                                           | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597<br>39506.804<br>23547.577                                                                                                                                  | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571<br>0.2990471<br>0.4955583                                                                                                                                  | <br>+<br>-<br>+<br>+           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                                                                                                     | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181<br>- 104<br>- 86<br>- 160                                                                                     | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99 - 91 + 235 + 112 + 108 + 92                                                         | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86<br>14.66<br>14.82<br>14.50<br>14.66                                                                          | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.57<br>15.59<br>15.36<br>15.53<br>15.56                                                                                  | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597<br>39506.804<br>23547.577<br>39506.720                                                                                                                     | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571<br>0.2990471<br>0.4955583<br>0.5752145                                                                                                                     | +<br>-<br>+<br>+               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                                                                               | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181<br>- 104<br>- 86<br>- 160<br>- 156                                                                            | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99 - 91 + 235 + 112 + 108 + 92 + 133                                                   | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86<br>14.66<br>14.82<br>14.50<br>14.66<br>14.61                                                                 | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.57<br>15.59<br>15.36<br>15.53<br>15.56<br>15.67                                                                         | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597<br>39506.804<br>23547.577                                                                                                                                  | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571<br>0.2990471<br>0.4955583                                                                                                                                  | <br>+<br>-<br>+<br>+           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>15                                                                                                                                   | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181<br>- 104<br>- 86<br>- 160<br>- 156<br>- 279                                                                   | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99 - 91 + 235 + 112 + 108 + 92 + 133 - 173                                             | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86<br>14.66<br>14.82<br>14.50<br>14.66<br>14.61                                                                 | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.57<br>15.59<br>15.36<br>15.53<br>15.56<br>15.67<br>15.43                                                                | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597<br>39506.804<br>23547.577<br>39506.720                                                                                                                     | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571<br>0.2990471<br>0.4955583<br>0.5752145<br>0.5092897<br>0.5346644                                                                                           | <br>+<br>-<br>+<br>+           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                                                                                   | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181<br>- 104<br>- 86<br>- 160<br>- 156<br>- 279<br>- 197                                                          | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99 - 91 + 235 + 112 + 108 + 92 + 133 - 173 - 238                                       | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86<br>14.66<br>14.82<br>14.50<br>14.66<br>14.61<br>14.34<br>14.83                                               | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.57<br>15.59<br>15.36<br>15.53<br>15.56<br>15.67<br>15.43<br>15.21                                                       | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597<br>39506.804<br>23547.577<br>39506.720<br>23961.495<br>23164.572<br>39504.819                                                                              | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571<br>0.2990471<br>0.4955583<br>0.5752145<br>0.5092897<br>0.5346644<br>0.365                                                                                  | <br>+<br>-<br>+<br>+           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                                                                             | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181<br>- 104<br>- 86<br>- 160<br>- 156<br>- 279<br>- 197<br>+ 11                                                  | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99 - 91 + 235 + 112 + 108 + 92 + 133 - 173 - 238 - 25                                  | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86<br>14.66<br>14.82<br>14.50<br>14.66<br>14.61<br>14.34<br>14.83<br>14.83                                      | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.57<br>15.59<br>15.36<br>15.53<br>15.56<br>15.67<br>15.43<br>15.21<br>15.52                                              | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597<br>39506.804<br>23547.577<br>39506.720<br>23961.495<br>23164.572<br>39504.819<br>39506.874                                                                 | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571<br>0.2990471<br>0.4955583<br>0.5752145<br>0.5092897<br>0.5346644<br>0.365<br>0.5655773                                                                     | <br>+<br>-<br>+<br>+           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                                                                                                 | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181<br>- 104<br>- 86<br>- 160<br>- 156<br>- 279<br>- 197<br>+ 11<br>+ 23                                          | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99 - 91 + 235 + 112 + 108 + 92 + 133 - 173 - 238 - 25 - 24                             | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86<br>14.66<br>14.82<br>14.50<br>14.66<br>14.61<br>14.34<br>14.83<br>14.80<br>14.73                             | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.57<br>15.59<br>15.36<br>15.53<br>15.56<br>15.67<br>15.43<br>15.21<br>15.52<br>15.54                                     | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597<br>39506.804<br>23547.577<br>39506.720<br>23961.495<br>23164.572<br>39504.819<br>39506.874<br>39504.872                                                    | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571<br>0.2990471<br>0.4955583<br>0.5752145<br>0.5092897<br>0.5346644<br>0.365<br>0.5655773<br>0.53                                                             | <br>+<br>-<br>+<br>+           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19                                                                                                           | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181<br>- 104<br>- 86<br>- 160<br>- 156<br>- 279<br>- 197<br>+ 11<br>+ 23<br>+ 23                                  | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99 - 91 + 235 + 112 + 108 + 92 + 133 - 173 - 238 - 25 - 24 + 317                       | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86<br>14.66<br>14.82<br>14.50<br>14.66<br>14.61<br>14.34<br>14.83<br>14.80<br>14.73<br>14.40                    | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.57<br>15.59<br>15.36<br>15.53<br>15.56<br>15.67<br>15.43<br>15.21<br>15.52<br>15.54<br>15.50                            | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597<br>39506.804<br>23547.577<br>39506.720<br>23961.495<br>23164.572<br>39504.819<br>39506.874<br>39506.821                                                    | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571<br>0.2990471<br>0.4955583<br>0.5752145<br>0.5092897<br>0.5346644<br>0.365<br>0.5655773<br>0.53                                                             | <br>+<br>+<br>+<br>+           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                                                                                                     | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181<br>- 104<br>- 86<br>- 160<br>- 156<br>- 279<br>- 197<br>+ 11<br>+ 23<br>+ 23<br>+ 39                          | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99 - 91 + 235 + 112 + 108 + 92 + 133 - 173 - 238 - 25 - 24 + 317 + 284                 | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86<br>14.86<br>14.82<br>14.50<br>14.66<br>14.81<br>14.83<br>14.83<br>14.80<br>14.73<br>14.40<br>14.40           | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.57<br>15.59<br>15.36<br>15.53<br>15.56<br>15.67<br>15.43<br>15.21<br>15.52<br>15.54<br>15.50<br>15.52                   | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597<br>39506.804<br>23547.577<br>39506.720<br>23961.495<br>23164.572<br>39504.819<br>39506.874<br>39506.821<br>39505.816                                       | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571<br>0.2990471<br>0.4955583<br>0.5752145<br>0.5092897<br>0.5346644<br>0.365<br>0.5655773<br>0.53<br>0.5250201<br>0.5291064                                   | <br>+<br>-<br>+<br>+<br>+      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>8<br>9<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>20<br>20<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181<br>- 104<br>- 86<br>- 160<br>- 156<br>- 279<br>- 197<br>+ 11<br>+ 23<br>+ 23<br>+ 39<br>+ 94                  | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99 - 91 + 235 + 112 + 108 + 92 + 133 - 173 - 238 - 25 - 24 + 317 + 284 + 135           | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86<br>14.86<br>14.82<br>14.50<br>14.66<br>14.81<br>14.34<br>14.83<br>14.83<br>14.80<br>14.73<br>14.40<br>14.40  | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.57<br>15.59<br>15.36<br>15.53<br>15.56<br>15.67<br>15.43<br>15.21<br>15.52<br>15.54<br>15.50<br>15.52                   | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597<br>39506.804<br>23547.577<br>39506.720<br>23961.495<br>23164.572<br>39504.819<br>39506.874<br>39506.821<br>39505.816<br>39506.763                          | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571<br>0.2990471<br>0.4955583<br>0.5752145<br>0.5092897<br>0.5346644<br>0.365<br>0.5655773<br>0.53<br>0.5250201<br>0.5291064<br>0.5666509                      | <br>+<br>+<br>+<br>+<br>+<br>+ |
| 1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>8<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>20<br>21<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22       | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181<br>- 104<br>- 86<br>- 160<br>- 156<br>- 279<br>- 197<br>+ 11<br>+ 23<br>+ 23<br>+ 39<br>+ 94<br>- 100         | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99 - 91 + 235 + 112 + 108 + 92 + 133 - 173 - 238 - 25 - 24 + 317 + 284 + 135 - 56      | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86<br>14.86<br>14.82<br>14.50<br>14.66<br>14.83<br>14.83<br>14.80<br>14.73<br>14.40<br>14.40<br>14.74           | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.57<br>15.59<br>15.36<br>15.53<br>15.56<br>15.67<br>15.43<br>15.21<br>15.52<br>15.54<br>15.50<br>15.52<br>15.52          | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597<br>39506.804<br>23547.577<br>39506.720<br>23961.495<br>23164.572<br>39504.819<br>39506.874<br>39506.821<br>39505.816<br>39506.763<br>39506.825             | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571<br>0.2990471<br>0.4955583<br>0.5752145<br>0.5092897<br>0.5346644<br>0.365<br>0.5655773<br>0.53<br>0.5250201<br>0.5291064<br>0.5666509<br>0.6059842         | <br>+<br>+<br>+<br>+<br>+<br>+ |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23                                                                                   | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181<br>- 104<br>- 86<br>- 160<br>- 156<br>- 279<br>- 197<br>+ 11<br>+ 23<br>+ 23<br>+ 39<br>+ 94<br>- 100<br>- 49 | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99 - 91 + 235 + 112 + 108 + 92 + 133 - 173 - 238 - 25 - 24 + 317 + 284 + 135 - 56 - 50 | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.66<br>14.82<br>14.50<br>14.66<br>14.61<br>14.34<br>14.83<br>14.80<br>14.73<br>14.40<br>14.74<br>14.66<br>14.75: | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.57<br>15.59<br>15.36<br>15.53<br>15.56<br>15.67<br>15.43<br>15.21<br>15.52<br>15.54<br>15.50<br>15.52<br>15.52<br>15.52 | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597<br>39506.804<br>23547.577<br>39506.720<br>23961.495<br>23164.572<br>39504.819<br>39506.874<br>39506.821<br>39505.816<br>39506.763<br>39506.825<br>39504.81 | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571<br>0.2990471<br>0.4955583<br>0.5752145<br>0.5092897<br>0.5346644<br>0.365<br>0.5655773<br>0.53<br>0.5250201<br>0.5291064<br>0.5666509<br>0.6059842<br>0.61 | <br>+<br>+<br>+<br>+<br>+<br>+ |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22                                                                                         | + 59<br>+ 29<br>+ 182<br>+ 155<br>+ 42<br>- 116<br>- 91<br>- 69<br>- 51<br>- 181<br>- 104<br>- 86<br>- 160<br>- 156<br>- 279<br>- 197<br>+ 11<br>+ 23<br>+ 23<br>+ 39<br>+ 94<br>- 100         | - 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99 - 91 + 235 + 112 + 108 + 92 + 133 - 173 - 238 - 25 - 24 + 317 + 284 + 135 - 56      | 14.56<br>14.61<br>14.84<br>14.76<br>14.40<br>14.42<br>14.88<br>15.06<br>14.86<br>14.86<br>14.82<br>14.50<br>14.66<br>14.83<br>14.83<br>14.80<br>14.73<br>14.40<br>14.40<br>14.74           | 15.60<br>15.52<br>15.60<br>15.54<br>15.42<br>15.40<br>15.57<br>15.59<br>15.36<br>15.53<br>15.56<br>15.67<br>15.43<br>15.21<br>15.52<br>15.54<br>15.50<br>15.52<br>15.52          | 28272.352<br>39504.76:<br>23198.539<br>39504.853<br>39506.796<br>39505.823<br>39504.816<br>23506.605<br>22429.597<br>39506.804<br>23547.577<br>39506.720<br>23961.495<br>23164.572<br>39504.819<br>39506.874<br>39506.821<br>39505.816<br>39506.763<br>39506.825             | 0.5326722<br>0.5994093<br>0.6300006<br>0.5015359<br>0.5256131<br>0.6303322<br>0.6286280<br>0.5266970<br>0.5351571<br>0.2990471<br>0.4955583<br>0.5752145<br>0.5092897<br>0.5346644<br>0.365<br>0.5655773<br>0.53<br>0.5250201<br>0.5291064<br>0.5666509<br>0.6059842         | <br>+<br>+<br>+<br>+<br>+<br>+ |

| No.   | х′′         | y''   | Max.    | Min.   | Epoch     | Period    | Remarks       |
|-------|-------------|-------|---------|--------|-----------|-----------|---------------|
| NGC 3 | 3201 (conti | nued) |         |        |           |           |               |
| 26    | + 219       | - 140 | 14.87   | 15.70  | 39505.878 | 0.5689949 | _             |
| 27    | + 58        | - 323 | 14.08   | 15.32  | 39505.790 | 0.4842943 | +             |
| 28    | + 66        | - 48  | 14.70   | 15.60  | 39505.760 | 0.5786766 | _             |
| 29    | - 256       | + 113 | 15.12   | 15.48  | 39506.74: | 0.343     |               |
| 30    | - 289       | + 272 | 14.29   | 15.49  | 39504.814 | 0.5158559 | +             |
| 31    | + 182       | + 131 | 14.65   | 15.51  | 23505.620 | 0.5194894 |               |
| 32    | + 195       | + 199 | 14.30   | 15.54  | 39504.900 | 0.5611656 | +             |
| 33    | + 48        | - 40  | not var |        |           |           |               |
| 34    | + 296       | + 285 | 14.37   | 15.62  | 23547.577 | 0.4678883 |               |
| 35    | - 11        | + 121 | 14.90   | 15.45  | 22484.504 | 0.6155244 |               |
| 36    | - 108       | - 11  | 14.68   | 15.2:  | 39505.794 | 0.242     | Alt 0.323     |
| 37    | - 68        | - 74  | 15.04   | 15.40  | 39504.77  | 0.273     | Alt 0.382     |
| 38    | - 61        | - 60  | 14.70   | 15.60  | 23877.612 | 0.5091616 |               |
| 39    | + 41        | + 54  | 14.83   | 15.80  | 23181.537 | 0.4832092 |               |
| 40    | - 96        | + 68  | 15.10   | 15.56: | 39504.90  | 0.642     | Alt 0.385     |
| 41    | + 291       | + 28  |         | 15.55  |           | 0.66      |               |
| 42    | - 301       | + 197 | 14.26   | 15.40  | 39504.840 | 0.5382490 | +             |
| 43    | - 377       | + 15  | 14.80   | 15.39  | 23166.665 | 0.6761289 |               |
| 44    | + 31        | + 67  | 15.01   | 15.66  | 23190.635 | 0.6107344 |               |
| 45    | + 127       | - 32  | 14.56   | 15.60  | 39505.859 | 0.5374165 | +             |
| 46    | - 396       | - 510 | 14.56   | 15.35  | 23167.570 | 0.5431990 |               |
| 47    | + 108       | + 245 | 14.78   | 15.42  | 39504.903 | 0.342:    | Be, Alt 0.51  |
| 48    | - 252       | + 12  | 14.96:  | 15.36  | 39506.67: | 0.336     | Alt 0.252     |
| 49    | - 38        | + 151 | 14.72:  | 15.46  | 39504.76: | 0.5814870 | +             |
| 50    | - 13        | + 27  | 14.80   | 15.72  | 39506.88  | 0.565     |               |
| 51    | - 205       | - 26  | 14.50   | 15.30  | 39506.813 | 0.5205454 | +             |
| 52    | + 14        | - 812 | 14.90   | 15.30  | 39505.78: | 0.38:     |               |
| 53    | - 873       | - 758 | 14.57   | 15.38  | 23191.540 | 0.5334705 |               |
| 54    | + 671       | - 804 | 14.71   | 15.8:  | 39506.776 | 0.5558721 | +             |
| 55    | - 338       | + 767 | 14.47   | 15.43  | 39504.915 | 0.607     |               |
| 56    | + 246       | + 94  | 14.95   | 15.62  | 23164.591 | 0.5903376 |               |
| 57    | + 288       | - 72  | 14.74   | 15.58  | 39506.762 | 0.5934373 | +             |
| 58    | + 346       | - 80  | 14.94   | 15.45  | 23164.538 | 0.6220418 |               |
| 59    | - 490       | - 70  | 14.28   | 15.28  | 39506.813 | 0.5177106 | +             |
| 60    | - 850       | + 95  | 14.08   | 15.38  | 39505.798 | 0.5035723 |               |
| 61    | -1125       | + 175 | 14.12   | 15.59  | 39504.91  | 0.54      |               |
| 62    | -1060       | - 186 | 14.29   | 15.49  | 39505.798 | 0.5697558 | _             |
| 63    | -1000       | + 59  | 14.36   | 15,39  | 23914.582 | 0.5680998 |               |
| 64    | - 646       | + 863 | 14.32   | 15.54  | 39504.815 | 0.5224218 | +             |
| 65    | - 544       | + 797 | 14.01   | 15.03  | 39506.71  | 1.660024  | EA, Min, mem? |
| 66    | - 398       | + 289 | 14.90   | 15.27  | 39506.78  | 0.284     | ,,            |
| 67    | - 374       | - 120 | 14.75:  | 15.31  | 39506.70: | 0.329     | Alt 0.494     |
| 68    | - 283       | + 846 |         |        |           | long      |               |
| 69    | - 221       | + 995 | 14.34   | 15.50  | 23914.575 | 0.5122704 |               |
| 70    | - 221       | - 13  | not var |        |           |           |               |
| 71    | - 182       | - 117 | 14.35   | 15.39  | 39506.765 | 0.6011859 | +             |
|       | - 161       | + 596 | 15.00   | 15.24  | 2-2-01100 | 0.36?     |               |

| No. | x''        | y''    | Max.    | Min.  | Epoch     | Period    | Remarks   |
|-----|------------|--------|---------|-------|-----------|-----------|-----------|
| NGC | 3201 (cont | inued) |         |       |           |           |           |
| 73  | - 128      | + 86   | 14.40   | 15.60 | 39504.860 | 0.5199500 | +         |
| 74  | - 94       | + 36   | not var |       |           |           |           |
| 75  | - 81       | + 147  | not var |       |           |           |           |
| 76  | - 62       | - 42   | 15.16   | 15.72 | 39506.74  | 0.343     | Alt 0.52  |
| 77  | - 10       | - 52   | 14.64   | 15.50 | 22429.592 | 0.5676648 | _         |
| 78  | - 8        | - 143  | 14.48   | 15.48 | 39504.83  | 0.514     |           |
| 79  | + 10       | - 101  | not var |       |           |           |           |
| 80  | + 60       | + 23   | 14.82   | 15.60 | 39505.79  | 0.58      |           |
| 81  | + 96       | - 153  |         |       |           |           |           |
| 82  | + 161      | - 166  | not var |       |           |           |           |
| 83  | + 177      | + 172  | 14.44   | 15.62 | 23190.624 | 0.5451918 |           |
| 84  | + 358      | + 703  | 14.65   | 15.43 | 22077.566 | 0.5136787 |           |
| 85  | + 569      | - 403  | not var |       |           |           |           |
| 86  | + 611      | - 315  | not var |       |           |           |           |
| 87  | +1013      | - 460  | 14.65   | 15.30 | 23164.633 | 0.6038866 |           |
| 88  | + 234      | +1086  | 14.48   | 15.61 | 39504.86  | 0.57      | Wilkens 1 |
| 89  | +1404      | - 180  | 14.90   | 15.38 | 39505.83  | 0.369     | Wilkens 2 |
| 90  | - 24       | + 06   | 14.8:   | 15.65 | 39504.73: | 0.61      | Wilkens 3 |
| 91  | -1524      | +1170  | 14.64   | 15.10 | 39504.98  | 0.345     | Wilkens 4 |
| 92  | - 150      | - 30   | 14.48   | 15.50 | 39506.80  | 0.523     | Wilkens 5 |
| 93  | +1986      | - 192  |         |       |           | 0.48?     | Wilkens 6 |
| 94  | -2862      | +1824  |         |       |           | RR        | Wilkens 7 |
| 95  | +1860      | +2580  |         |       |           | RR        | Wilkens 8 |
| 96  | -2790      | - 468  | 14.50   | 15.50 | 39506.86  | 0.59      | Wilkens 9 |

Wilkens no. 10 = V39. Kukarkin considers Wilkens' new variables are cluster members, forming a large corona, and says identifications of vars. 6, 11, 45, 52, 57, 68 and 81 are erroneous in FLA66. Wilkens, MVS 3.75 (1965); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Kukarkin, AC 426.4 (1967), AC 428.1 (1967), AC 637.4 (1971), VS 17.610 (1971), Letter (1971) S55a, S57, S59, S61, R62a, S62, S64, L65, R65, St66, S67, S69, S70

| Paloma | r 4 a 11h | 26 <sup>m</sup> .6, δ+ | 29° 15′ |      |       |        |        |  |
|--------|-----------|------------------------|---------|------|-------|--------|--------|--|
| 1      | -12       | -4                     | 17.7    | 20   | 35922 | 130.50 | Rosino |  |
| 2      | -43       | -3                     | 17.6    | 19.3 | 35938 | 109.30 | Rosino |  |

Rosino, Asiago Contr 85 (1957); Burbidge and Sandage, ApJ 127.527 (1958); Rosino and Pinto, IAU Coll 21 (1973)

R57, S59, R61, S61, S62, S69

| NGC 4 | 1147 a 12h | 107m.6, δ+1 | 8°49′ |       |           |           |         |
|-------|------------|-------------|-------|-------|-----------|-----------|---------|
| 1     | -100.1     | - 45.7      | 16.36 | 17.76 | 35546.544 | 0.5003860 |         |
| 2     | - 20.2     | - 28.8      | 16.46 | 17.64 | 35538.485 | 0.49306   |         |
| 3     | - 28.5     | - 35.3      | 16.68 | 17.24 | 35538.591 | 0.280542  |         |
| 4     | + 1        | + 18        | 16.27 | 17.29 | 34805.859 | 0.30097   |         |
| 5     | + 14.9     | + 2.7       | 17.0  | 17.4  |           | 0.34125:  | Newburn |
| 6     | + 31.2     | + 28.4      | 16.29 | 17.67 | 34805.675 | 0.61860   | S&W     |

| No. | x''        | у′′    | Max.    | Min.   | Epoch     | Period   | Remarks   |
|-----|------------|--------|---------|--------|-----------|----------|-----------|
| NGC | 4147 (cont | inued) |         |        |           |          |           |
| 7   | + 4.6      | + 7.4  | 16.4    | 17.6   | 34805.924 | 0.51294  | S&W       |
| 8   | + 8.6      | + 2.3  | 16.9    | 17.5   |           | 0.3897:  | S&W       |
| 9   |            |        | prob no | ot var |           |          | S&W print |
| 10  | - 47.8     | - 45.6 | 16.96   | 17.54  | 35538.528 | 0.352314 | S&W       |
| 11  | - 12.2     | - 41.9 | 16.72   | 17.30  | 35538.670 | 0.38739  | S&W       |
| 12  | + 5.1      | - 4.2  | 16.6    | 17.6   |           | 0.5:     | S&W       |
| 13  | + 0.1      | - 19.0 | 16.8    | 17.3   |           | 0.3759:  | S&W       |
| 14  | + 8.4      | - 0.2  | 16.9    | 17.5   |           | 0.5255:  | Newburn   |
| 15  | + 9.2      | - 7.8  | 16.8    | 17.3   |           | 0.3354:  | Newburn   |
| 16  | + 14.5     | + 7.7  | 16.8    | 17.1   |           | 0.2775:  | Newburn   |
| 17  | + 63.7     | +143.3 | 16.72   | 17.34  | 35538,430 | 0.37473  | Newburn   |

Five field variables, Baade.

Baade, AN 244.153 (1931); Sandage and Walker, AJ 60.230 (p) (1955); Newburn, AJ 62.197 (1957); Mannino, Asiago Contr 87 (1958)

S55a, S57, S59, S61, R62a, S62, L65, R65, S69

**NGC 4590** (Messier 68)  $a 12^{h}36^{m}.8$ ,  $\delta - 26^{\circ}29'$ 

NGC 4372  $a 12^{h}23^{m}.0, \delta -72^{\circ}24'$ 

Wilkens, Letter (1961); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966) S55a, S57, S59, S61, R62e, S62, F&L63, S69

|    |      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       |       |           |          |
|----|------|-----------------------------------------|-------|-------|-----------|----------|
| 1  | -283 | +109                                    | 15.55 | 16.11 | 33421.357 | 0.349604 |
| 2  | -168 | - 44                                    | 15.05 | 16.29 | 33661.66  | 0.578169 |
| 3  | -140 | + 91                                    | 15.40 | 16.15 | 33661.66  | 0.4158   |
| 4  | -118 | -132                                    | 15.65 | 16.20 | 33423.273 | 0.396367 |
| 5  | - 53 | +169                                    | 15.47 | 16.11 | 33423.297 | 0.282116 |
| 6  | - 54 | + 17                                    | 15.75 | 16.07 | 33422.413 | 0.368523 |
| 7  | - 51 | - 78                                    | 15.71 | 16.07 | 33423.478 | 0.387945 |
| 8  | - 35 | -134                                    | 15.74 | 16.13 | 33422.359 | 0.390402 |
| 9  | - 30 | + 40                                    | 15.43 | 16.28 | 33422.257 | 0.57900  |
| 10 | - 24 | - 14                                    | 15.28 | 16.62 | 33423.224 | 0.55112  |
| 11 | - 17 | -113                                    | 15.65 | 16.16 | 33423.295 | 0.36489  |
| 12 | - 12 | 00                                      | 15.07 | 16.23 | 33423.333 | 0.6162   |
| 13 | - 4  | - 57                                    | 15.72 | 16.11 | 33423.385 | 0.361740 |
| 14 | - 2  | +218                                    | 15.02 | 16.25 | 33421.437 | 0.55679  |
| 15 | + 10 | + 59                                    | 15.65 | 16.36 | 33423.360 | 0.37220  |
| 16 | + 10 | + 78                                    | 15.65 | 16.22 | 33423.289 | 0.381967 |
| 17 | + 17 | - 74                                    | 15.65 | 16.60 | 33418.293 | 0.66693  |
| 18 | + 18 | - 96                                    | 15.69 | 16.19 | 33423.327 | 0.367346 |
| 19 | + 32 | + 70                                    | 15.65 | 16.20 | 33421.404 | 0.39206  |
| 20 | + 33 | -114                                    | 15.69 | 16.14 | 33421.293 | 0.385764 |
| 21 | + 46 | + 8                                     | 15.82 | 16.60 | 33423.358 | 0.37241  |
| 22 | + 61 | - 22                                    | 15.30 | 16.52 | 33421.424 | 0.563469 |
|    |      |                                         |       |       |           |          |

23 + 65 +380 14.85 16.13 33423.198 0.6588799

| No. | x"        | y''     | Max.  | Min.  | Epoch     | Period    | Remarks   |
|-----|-----------|---------|-------|-------|-----------|-----------|-----------|
| NGC | 4590 (con | tinued) |       |       |           |           |           |
| 24  | + 72      | - 8     | 15.64 | 16.13 | 33422.268 | 0.376500  |           |
| 25  | +140      | +123    | 15.00 | 16.15 | 33423.328 | 0.641556  |           |
| 26  | +157      | - 45    | 15.63 | 16.11 | 33799.370 | 0.413217  |           |
| 27  | +381      | +263    | 10.2  | 17.4  | 33661.    | 320       | F1 Hya, f |
| 28  | +439      | +159    | 14.81 | 16.18 | 33423.292 | 0.6067750 |           |
| 29  | +283      | -153    | 15.65 | 16.15 | 33419.416 | 0.395253  |           |
| 30  | +112      | - 77    | 15.60 | 16.20 | 33422.442 | 0.73362   |           |
| 31  | -109      | + 96    | 15.49 | 16.10 | 33423.310 | 0.399658  |           |
| 32  | -330      | 639     |       |       | 33422.362 | 0.58692   | van Agt   |
| 33  | + 89      | + 59    |       |       | 33422.317 | 0.38523   | van Agt   |
| 34  | +268      | +216    |       |       | 33422.314 | 0.39696   | van Agt   |
| 35  | - 35      | - 52    |       |       | 33421.340 | 0.71608   | van Agt   |
| 36  | - 38      | - 52    |       |       | 33422.374 | 0.6998    | van Agt   |
| 37  | - 21      | + 20    |       |       | 33423.317 | 0.38553   | van Agt   |
| 38  | - 22      | - 29    |       |       | 33423.251 | 0.3826    | van Agt   |
| 39  | - 50      | - 8     |       |       |           |           | T,R&O     |
| 40  | - 1       | - 52    |       |       |           |           | T,R&O     |
| 41  | + 4       | + 80    |       |       |           |           | T,R&O     |
| 42  | - 3       | + 37    |       |       |           |           | T,R&O     |

Five new field variables, Terzan et al. (1973)

Rosino and Pietra, Bologna Pubbl 6, 5 (1954); van Agt and Oosterhoff, Leiden Ann 21.253 (p) (1959); Terzan, Rutily and Ounnas, IAU Coll 21 (p) (1973)

S55a, S57, S59, S61, R62a, L65, R65, S69

| NGC 4 | 4833 a 12h | 156 <sup>m</sup> .0, δ – 7 | 70° 36′ |        |           |          |              |
|-------|------------|----------------------------|---------|--------|-----------|----------|--------------|
| 1     | -264       | +468                       | 15.32   | 15.86  | 29375.251 | 0.750101 | RY Mus       |
| 2     | +378       | -354                       | 13.0    | 16.2:  | 26166     | 333.7    | RZ Mus, V, f |
| 3     | 0          | + 6                        | 15.46   | 15.9   | 29363.248 | 0.744526 |              |
| 4     | 0          | + 24                       | 15.24   | 15.88  | 29381.249 | 0.655536 |              |
| 5     | +132       | - 66                       | 15.4    | 16.0   | 29381.240 | 0.629414 |              |
| 6     | +120       | +120                       | 15.3    | 15.9   | 29381.297 | 0.653967 |              |
| 7     | + 72       | - 6                        | 15.49   | 16.05: | 29374.256 | 0.668422 |              |
| 8     | -168       | +498                       | 15.59   | 15.79  |           |          |              |
| 9     | - 42       | - 6                        | 14.5    | 15.16  | 28035     | 87.7:    |              |
| 10    | + 72       | +414                       | 15.14   | 15.9   |           |          |              |
| 11    | -336       | -828                       | 14.5    | 16.0:  | 24320     | 303.8    |              |
| 12    | + 19.2     | + 13.7                     |         |        |           |          | F&L, RR?     |
| 13    | +272.2     | - 30.2                     |         |        |           |          | F&L, RR?     |
| 14    | - 13.7     | - 38.5                     |         |        |           |          | F&L, RR?     |
| 15    | - 15.1     | - 57.7                     |         |        |           |          | F&L, RR?     |
| 16    | - 76.5     | +151.2                     |         |        |           | irr      | F&L, red     |

Menzies confirms variability of all these stars, with small variation for V16. He lists eight new suspected variables, Menzies B57, B84, B105, B121, B193, C80, C308 (all appear to be RR 1\_yr), and D199 (perhaps Pop II Cepheid), identified on print.

Feast, Obs 86.120 (1966); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Menzies, MN 156.207 (p) (1972)

S55a, S59, R62a, S62, L65, R65, S67, S69

| No.   | x''         | у′′                     | Max.      | Min.    | Epoch             | Period     | Remarks |
|-------|-------------|-------------------------|-----------|---------|-------------------|------------|---------|
| IGC 5 | 024 (Messie | er 53) a13 <sup>1</sup> | 110m.5, & | +18°26′ |                   |            |         |
| 1     | + 9.6       | -171.0                  | 15.75     | 17.20   | 23083.408         | 0.6098240  | +       |
| 2     | - 78.0      | -183.6                  | 16.30     | 16.90   | 22787.498         | 0.3861005  |         |
| 3     | - 60.6      | -138.0                  | 16.10     | 17.10   | 23113.388         | 0.6306134  | 0       |
| 4     | -169.5      | -156.6                  | 16.41     | 16.84   | 23113.482         | 0.3851900  | +       |
| 5     | -237.0      | -258.0                  | 15.75     | 17.10   | 23143.336         | 0.6394247  | _       |
| 6     | +123.6      | + 13.5                  | 16.00     | 17.20   | 23083.457         | 0.66401573 | _       |
| 7     | + 79.5      | + 83.5                  | 15.85     | 17.15   | 23145.418         | 0.5448396  | +       |
| 8     | + 72.0      | + 60.0                  | 16.10     | 17.10   | 22762.553         | 0.61553333 | _       |
| 9     | + 67.5      | 40.5                    | 15.90     | 17.10   | 23145.523         | 0.6003694  | _       |
| 10    | -138.6      | + 54.0                  | 15.85     | 17.05   | 23143.446         | 0.6082562  | 0       |
| 11    | -143.4      | - 58.5                  | 15.85     | 17.0    | 23113.525         | 0.6299592  | +       |
| 12    | +409.5      | +187.5                  | 15.90     | 17.15   | 23113.579         | 0.61258094 | -       |
| 13    | +462.0      | -299.7                  | 15.75     | 17.10   | 23143.419         | 0.6274424  | -       |
| 14    | +354.6      | -207.0                  | 15.80     | 17.10   | 23143.363         | 0.5454029  |         |
| 15    | +248.4      | +228.0                  | 16.39     | 16.67   | 23113.361         | 0.3087107  | +       |
| 16    | -136.5      | -202.5                  | 16.43     | 16.90   | 23113.402         | 0.3031728  |         |
| 17    | -214.5      | +114.0                  | 16.29     | 16.80   | 22762.612         | 0.3814992  |         |
| 18    | - 96.0      | + 12.6                  | 15.83     | 16.42   |                   |            |         |
| 19    | +165.6      | - 42.0                  | 16.34     | 16.85   | 22789.465         | 0.3918418  |         |
| 20    | +188.4      | - 351.6                 | 16.32     | 16.81   | 23113.615         | 0.3844212  |         |
| 21    | +437.4      | - 27.0                  | 16.32     | 16.81   | 22790.410         | 0.3384650  |         |
| 22    | - 53.4      | -288.0                  | 16.56     | 16.85   | var?              |            |         |
| 23    | + 96.0      | - 89.7                  | 16.34     | 16.88   | 23113.460         | 0.3658077  |         |
| 24    | -118.5      | - 29.2                  | 15.71     | 16.43   | 20110.100         | 3.?        |         |
| 25    | +130.3      | + 31.7                  | 16.05     | 17.0    | 23113.392         | 0.70516256 |         |
| 26    | -288.0      | -279.9                  | 16.20     | 16.85   | 23113.343         | 0.3911166  |         |
| 27    | -203.8      | -157.9                  | 16.0      | 17.10   | 23083.620         | 0.6710599  | 0       |
| 28    | -181.4      | +459.0                  | 15.65     | 17.05   | 23113.183         | 0.63279704 | +       |
| 29    | +125.4      | - 79.5                  | 16.56     | 17.04   | 22808.305         | 0.8232463  | +       |
| 30    | + 57.7      | -482.8                  | 15.6      | 17.6    | 31223.384         | 0.53548466 | Bg. 37d |
| 31    | + 60.6      | - 0.1                   | 15.0      | 17.0    | J 1 4 4 J , J U T | 0.0000     | D., 31  |
| 32    | -111.9      | - 86.6                  | 16.26     | 16.65   | 22790.475         | 0.3901324  |         |
| 33    | -165.0      | + 12.2                  | 10.20     | 10.00   | 22170,713         | 0.5701527  |         |
| 34    | -144.0      | -216.7                  | 16.48     | 16.70   | not var           |            |         |
| 35    | +104.1      | +153.2                  | 16.25     | 16.95   | 23113.327         | 0.3726739  | 0       |
| 36    | +120.3      | +306.5                  | 16.33     | 16.71   | 23113.698         | 0.3732511  | U       |
| 37    | - 44.0      | + 62.2                  | 15.68     | 16.48   | 23113.070         | 0.5752511  |         |
| 38    | + 21.3      | -143.2                  | 16.0      | 17.0    | 23083.773         | 0.7057873  | +       |
| 39    | -234.0      | +212.5                  | 16.84     | 17.26   | not var           | 0.7037073  |         |
| 40    | + 8.9       | +111.5                  | 10.07     | 17.20   | not var           |            |         |
| 41    | + 19        | + 66                    |           |         |                   |            |         |
| 42    | - 67        | + 17                    | 15.54     | 16.33   |                   |            |         |
| 43    | - 34        | + 53                    | 10.07     | 10.55   |                   |            |         |
| 44    | + 53        | - 2                     | 15.20     | 15.99   |                   |            |         |
| 45    | - 5         | - 36                    | 10.40     | 10.77   |                   |            |         |
| 46    | - 3<br>- 12 | + 34                    |           |         |                   |            |         |
|       | 12          | ⊤ J¬                    |           |         |                   |            |         |

| No.   | x'     | ,       | у"    |      | Max.  | Min.  | Epoch    | Period    | Remarks   |
|-------|--------|---------|-------|------|-------|-------|----------|-----------|-----------|
| NGC 5 | 5024 ( | (contir | nued) |      |       |       |          |           |           |
| 48    | +      | 4.68    | + 1   | 1.58 | 16.63 | 17.53 | 34480.91 | 0.3327660 | Cuffey 47 |
| 49    | +      | 1.05    | +     | 4.39 | 15.25 | 15.65 | 34478.5  | 111.6     | Cuffey 48 |
| 50    |        | 2.28    | -     | 1.34 | 15.22 | 15.52 | 34482.0  | 55.4      | Cuffey 49 |

Catalogue

Cuffey, AJ 67.574 (1962); Margoni, Asiago Contr 150 (1964); Cuffey, AJ 70.732 (1965); Margoni, Asiago Contr 170 (1965), Bamb K1 Veröff 4.40.249 (1965); Wachmann, Astr Abh Hoffmeister p. 121 (1965); Cuffey, AJ 71.514 (1966); Margoni, Asiago Contr 198 (1967); Wachmann, Berg Abh 8.114 (1968)

S55a, S57, S59, S61, R62a, S62, S64, L65, R65, S67, C&S69, S69, S70

| NGC : | 50 <b>5</b> 3 a 13 | 3h <sub>1</sub> 3m.9, δ + | 17°57′ |       |           |           |        |
|-------|--------------------|---------------------------|--------|-------|-----------|-----------|--------|
| 1     | -380               | +158                      | 15.8   | 16.5  | 37343.456 | 0.6471748 |        |
| 2     | -193               | - 3                       | 15.9   | 16.6  | 37370.575 | 0.3789561 | +      |
| 3     | +140               | +138                      | 15.8   | 16.6  | 37370.470 | 0.5929430 |        |
| 4     | + 31               | -114                      | 15.8   | 16.5  | 37371.454 | 0.6670627 |        |
| 5     | +220               | -220                      | 16.0   | 16.6  | 37370.641 | 0.7148605 |        |
| 6     | +126               | + 77                      | 16.0   | 16.5  | 37370.556 | 0.2921978 |        |
| 7     | - 87               | +169                      | 15.9   | 16.5  | 37370.469 | 0.3519300 | +      |
| 8     | +117               | + 50                      | 15.9   | 16.5  | 37371.452 | 0.3628410 | _      |
| 9     | -199               | +382                      | 16.0   | 16.6  | 37371.407 | 0.7402201 |        |
| 10    | + 94               | + 56                      | 16.10  | 16.45 | 37370.427 | 0.4373803 | Alt P? |
| 11    |                    |                           | 16.01  | 16.47 |           |           | Perova |

Perova's var., V11, is Baade's comparison star c.

Perova, VS 14.255 (1962); Mannino, Bologna Pubbl 8, 12 (1963)

S55a, S59, R62a, S62, S64, L65, R65, C&S69, S69

| NGC: | 5139 ( $\omega$ Cent | auri) a 13 | 3h23m.8, | $\delta - 47^{\circ}13$ | 3'       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|----------------------|------------|----------|-------------------------|----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | - 416.16             | +298.89    | 11.05    | 12.45                   | 30027.0  | 29.3479*  | 0, Sp, F, V, mem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2    | - 340.00             | +238.51    | ]13.06   | 16.12                   | 30139.4  | 235.74    | 0, f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3    | - 507.93             | +167.43    | 14.11    | 15.14                   | 27000.42 | 0.8412403 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4    | 337.61               | +262.10    | 14.96    | 15.25                   | 27000.32 | 0.6273172 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5    | - 282.75             | +328.29    | 14.48    | 15.49                   | 27000.44 | 0.5152823 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6    | - 162.43             | +252.95    | 13.84    | 15.24                   | 27010.1  | 73.513    | 0, prob f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7    | + 153.19             | +879.15    | 14.15    | 15.33                   | 27000.20 | 0.7130181 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8    | + 629.43             | + 16.20    | 14.03    | 15.35                   | 27000.31 | 0.5212859 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9    | - 473.17             | +137.14    | 14.31    | 15.28                   | 30000.04 | 0.5233301 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10   | - 397.76             | +244.48    | 14.43    | 14.95                   | 27000.06 | 0.374956  | Name of the State |
| 11   | - 158.63             | +338.73    | 13.90    | 15.04                   | 27000.19 | 0.5648246 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12   | - 193.16             | +274.34    | 14.43    | 14.95                   | 27000.08 | 0.3867639 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13   | - 487.26             | +199.54    | 13.96    | 15.14                   | 30000.50 | 0.6690507 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14   | - 473.51             | -627.56    | 14.56    | 15.17                   | 30000.29 | 0.3771102 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15   | - 194.09             | +242.62    | 13.70    | 14.39                   | 27000.40 | 0.8106152 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 16   | + 517.05             | -536.81    | 14.46    | 15.04                   | 27000.07 | 0.3301802 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 17   | + 522.24             | +200.00    | 14.18    | 14.61                   | 30062.2  | 64.725    | irr, prob f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 18   | + 596.64             | +220.15    | 14.06    | 15.35                   | 30000.42 | 0.6216671 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| No. | х''          | у′′     | Max.    | Min.    | Epoch     | Period     | Remarks     |
|-----|--------------|---------|---------|---------|-----------|------------|-------------|
| NGC | 5139 (contin | nued)   |         |         |           |            |             |
| 19  | + 444.14     | + 32.44 | 14.76   | 15.30   | 30000.11  | 0.2995525  | 0           |
| 20  | + 280.88     | + 32.06 | 14.09   | 15.28   | 27000.61  | 0.6155528  | +           |
| 21  | - 355.75     | +162.07 | 14.20   | 14.81   | 30000.10  | 0.380810   |             |
| 22  | + 552.18     | -330.22 | 14.63   | 15.17   | 27000.22  | 0.3965212  |             |
| 23  | + 2.54       | +240.71 | 14.26   | 15.39   | 27000.17  | 0.5108653  | +           |
| 24  | + 524.71     | -336.96 | 14.57   | 15.04   | 27000.08  | 0.4622076  | +           |
| 25  | - 210.77     | + 17.48 | 13.98   | 15.07   | 30000.50  | 0.5885146  | 0           |
| 26  | - 229.58     | +101.21 | 14.36   | 15.06   | 27000.15  | 0.7847138  | +           |
| 27  | - 205.47     | + 24.11 | 14.50   | 15.19   | 30000.02  | 0.6157067  | 0           |
| 28  |              |         | not var |         |           |            |             |
| 29  | - 193.25     | - 6.45  | 12.39   | 13.50   | 30008.98  | 14.73383   | 0, Cep, mem |
| 30  | - 307.92     | - 75.01 |         |         | 30000.21  | 0.403988   | 0           |
| 31  |              |         | not var |         |           |            |             |
| 32  | + 174.39     | +420.01 | 13.87   | 15.20   | 27000.39  | 0.6204298  | _           |
| 33  | - 554.54     | - 24.00 | 14.16:  | 15.25:  | 27000.52  | 0.6023334  | -           |
| 34  | - 396.87     | -269.04 | 14.10:  | 15.00:: | 27000.55  | 0.7339428  | +           |
| 35  | + 71.70      | +365.07 | 14.43   | 15.00   | 27000.00  | 0.3868382  | _           |
| 36  | + 246.11     | +789.42 | 14.62   | 15.17   | 30000.26  | 0.379846   | 0           |
| 37  |              |         | not var |         |           |            |             |
| 38  | + 169.10     | -470.37 | 14.45   | 15.20   | 27000.01  | 0.7790474  | +           |
| 39  | + 741.86     | -365.80 | 14.48   | 15.08   | 30000.21  | 0.3933505  | 0           |
| 40  | - 220.99     | -125.30 | 13.95   | 15.15   | 30000.11  | 0.6340925  | 0           |
| 41  | + 151.80     | -142.18 | 14.03   | 15.06   | 27000.53  | 0.6629590  | +           |
| 42  | + 0.21       | = 50.21 | 12.5    | 14.9    |           | 149.4      |             |
| 43  | + 119.23     | +103.16 | 13.27   | 14.29   | 30000.65  | 1.156706   | 0, Cep, mem |
| 44  | - 243.40     | -354.05 | 13.67:  | 14.65:  | 30000.48  | 0.5675440  | 0           |
| 45  | - 764.48     | + 80.97 | 14.18   | 15.37   | 27000.09  | 0.5891301  | +           |
| 46  | - 770.61     | +170.11 | 14.43   | 15.44   | 27000.60  | 0.6869406  | +           |
| 47  | - 504.32     | +269.26 | 14.07   | 14.60   | 27000.15  | 0.4851319  | _           |
| 18  | - 86.54      | -104.54 | 12.95   | 13.80   | 30003.6   | 4.47227    | 0, Cep, mem |
| 49  | - 391.98     | -553.77 | 14.40   | 15.52   | 30000.36  | 0.6046505  | 0           |
| 50  | - 530.75     | + 65.40 | 14.32   | 14.90   | 30000.20  | 0.3861960  | 0           |
| 51  | - 36.85      | +258.73 | 13.86   | 15.16   | 27000.08  | 0.5741332  | +           |
| 52  | - 112.85     | + 36.47 | 13.60   | 14.22   | 30000.28  | 0.6603703  | 0           |
| 53  | - 482.79     | -447.74 | 13.30   | 13.87   |           | 32.7       | irr, Alt 70 |
| 54  | - 229.39     | +592.76 | 14.33   | 15.22   | 27000.30  | 0.7728973  | +           |
| 55  | - 617.73     | -816.68 | 14.50   | 15.50   | 27000.11  | 0.5817244  | -           |
| 56  | - 515.93     | -541.96 | 14.56   | 15.57   | 27000.42  | 0.5680098  | _           |
| 57  | + 635.72     | -493.26 | 14.52   | 15.16   | 27000.44  | 0.7944181  | +           |
| 58  | - 335.44     | +277.68 | 14.49   | 14.74   | 30000.28  | 0.3699124  | 0           |
| 59  | - 282.90     | - 65.84 | 14.20   | 15.18   | 30000.41  | 0.5185122  | 0           |
| 60  | - 108.42     | -247.33 | 13.24   | 14.47   | 30001.00  | 1.349464   | 0, Cep, mem |
| 51  | + 280.44     | + 68.07 | 13.65   | 14.42   | 30001.59  | 2.273564   | 0, Cep, mem |
| 62  | - 199.80     | + 45.28 | 13.88   | 15.10   | 27000.31  | 0.6197945  | +           |
| 63  | - 996.82     | -491.46 | 14.59   | 15.17   | 27000,24  | 0.8259432  | +           |
| 54  | - 448.01     | -457.49 | 14.54   | 15.14   | 30000.24  | 0.344621   | +           |
| 65  | - 454.49     | -474.32 | 14.72:  | 15.17:  | 30000.022 | 0.06272267 | 0, f, RRs   |

| No. | х′′          | y''                | Max.    | Min.   | Epoch     | Period     | Remarks         |
|-----|--------------|--------------------|---------|--------|-----------|------------|-----------------|
| NGC | 5139 (contin | ued)               |         |        |           |            |                 |
| 66  | - 133.37     | +375.15            | 14.46   | 14.95  | 27000.24  | 0.4074100  | +               |
| 67  | - 178.11     | +593.57            | 14.18   | 15.28  | 27000.41  | 0.5644510  | +               |
| 68  | - 338.18     | +545.12            | 14.15   | 14.67  | 30000.1   | 0.534708   | 0               |
| 69  | - 965.76     | +530.94            | 14.14   | 15.35  | 27000.24  | 0.6532208  | +               |
| 70  | + 417.83     | -304.65            | 14.62   | 15.11  | 30000.2   | 0.390596   | 0               |
| 71  | + 220.39     | + 47.13            | 14.38   | 14.92  | 30000.2   | 0.3574826  | 0               |
| 72  | + 477.85     | +734.87            | 14.44   | 15.10  | 27000.17  | 0.3845221  | +               |
| 73  | - 532.49     | +750.76            | 14.00   | 15.32  | 27000.42  | 0.5752151  | +               |
| 74  | + 215.47     | +664.83            | 14.10:  | 15.29: | 27000.43  | 0.5032480  | +               |
| 75  | + 341.44     | +591.55            | 14.52   | 15.07  | 30000.16  | 0.4283681  | 0               |
| 76  | + 113.31     | +511.81            | 14.21:  | 14.72: | 27000.17  | 0.3378487  | +               |
| 77  | + 352.29     | +392.42            | 14.39   | 14.85  | 30000.10  | 0.4260045  | 0               |
| 78  | + 586.10     | +146.68            | 14.17   | 14.84  | 33929.972 | 1.16812901 | -, EA, Min, men |
| 79  | +1000.12     | - 51.02            | 14.26   | 15.39  | 27000.23  | 0.6082758  | +               |
| 80  | +1304:       | 108:               | 14.1:   | 14.8   |           | 0.45       | Alt 0.31        |
| 81  | + 511.36     | +228.72            | 14.39   | 14.93  | 27000.14  | 0.3894005  | +               |
| 82  | + 499.94     | +126.98            | 14.47   | 15.00  | 30000.12  | 0.335931   | 0               |
| 83  | + 226.09     | +424.66            | 14.50   | 15.07  | 27000.29  | 0.3566071  | +               |
| 84  | -1202.81     | - 74.70            | 14.37:  | 15.10: | 30000.33  | 0.5798732  | 0               |
| 85  | -1010.51     | +307.98            | 14.33   | 15.13: | 27000.10  | 0.7427583  | +               |
| 86  | + 293.14     | +147.26            | 13.96   | 15.18  | 27000.32  | 0.6478337  | +               |
| 87  | + 113.68     | +184.13            | 14.40   | 14.90  | 30000.04  | 0.3965978  | 0               |
| 88  | + 98.13      | +203.28            | 14.01   | 14.81  | 27000.22  | 0.6901959  | +               |
| 89  | - 2.95       | +159.29            | 14.47   | 14.97  | 30000.29  | 0.374948   | 0               |
| 90  | - 5.30       | +137.09            | 13.81   | 14.73  | 27000.48  | 0.6034020  | +               |
| 91  | + 43.72      | +144.35            | 14.25   | 14.91  | 27000.18  | 0.8951197  |                 |
| 92  | - 317.86     | +446.38            | 14.10:  | 14.68: | 30000.00  | 1.345044   | 0, Cep, mem     |
| 93  | 317.00       | 1110.50            | not var |        | 30000.00  | 1,5 150 14 | o, cop, mem     |
| 94  | - 504.09     | +355.09            | 14.58:  | 14.99: | 30000.20  | 0.2539334  | 0               |
| 95  | - 824.80     | - 11.05            | 14.51   | 15.02  | 27000.39  | 0.4050201  | +               |
| 96  | - 71.20      | + 97.06            | 13.93   | 14.82  | 27000.08  | 0.6245320  | +               |
| 97  | + 225,50     | +187.93            | 14.11   | 15.16  | 27000.65  | 0.6918907  | +               |
| 98  | + 198.25     | +102.38            | 14.57   | 15.09  | 30000.19  | 0.2805649  | 0               |
| 99  | + 160.35     | + 50.36            | 13.77   | 14.90  | 37000.59  | 0.766140   | +               |
| 100 | + 179.49     | + 65.68            | 14.05   | 15.05  | 27000.48  | 0.5527119  | +               |
| 101 | + 444.11     | - 73.28            | 14.46   | 14.90  | 26523.291 | 0.3408843  | '               |
| 102 | + 361.83     | - 94.10            | 14.16   | 15.22  | 27000.13  | 0.6913899  | +               |
| 103 | + 283.14     | + 2.35             | 14.46   | 14.80  | 30000.02  | 0.3288489  | 0               |
| 104 | + 822.98     | -309.01            | 14.52   | 14.94  | 37000.51  | 0.867280   | _               |
| 105 | + 603.23     | -246.92            | 14.70   | 15.25  | 27000.14  | 0.3353345  | +               |
| 106 | + 130.35     | + 26.92            | 13.88   | 15.02  | 27000.14  | 0.5699061  | _               |
| 107 | + 279.83     | -139.13            | 14.07   | 15.39  | 27000.22  | 0.5141002  | +               |
| 108 | + 185.66     | - 46.36            | 13.84   | 14.81  | 27000.07  | 0.5944554  | +               |
| 109 | + 153.00     | - 40.36<br>- 57.13 | 13.99   | 15.03  | 27000.24  | 0.7440615  | T               |
| 110 | + 158.94     | - 87.08            |         |        |           |            |                 |
| 111 |              |                    | 14.41   | 14.96  | 26524.256 | 0.322102   |                 |
|     |              |                    | 14.18   | 14.80  | 27000.02  | 0.7629005  | +               |
| 112 | + 79.83      | -103.36            | 13.92   | 14.92  | 30000.07  | 0.4743558  | 0               |

| No. | X''          | у′′      | Max.  | Min.  | Epoch     | Period     | Remarks    |
|-----|--------------|----------|-------|-------|-----------|------------|------------|
| NGC | 5139 (contin | nued)    |       |       |           |            |            |
| 113 | + 99.99      | -187.65  | 13.94 | 15.22 | 27000.39  | 0.5733636  | +          |
| 114 | + 38.08      | -101.15  | 14.00 | 14.75 | 26470.416 | 0.6753065  |            |
| 115 | - 345.49     | -336.14  | 14.12 | 15.30 | 27000.14  | 0.6304638  | _          |
| 116 | - 109.66     | + 33.71  | 14.12 | 14.77 | 30000.37  | 0.7201327  | 0          |
| 117 | - 267.73     | - 40.22  | 14.40 | 14.92 | 30000.17  | 0.4216616  | 0          |
| 118 | - 58.87      | - 98.67  | 13.88 | 15.02 | 30000.03  | 0.6116283  | 0          |
| 119 | - 82.04      | -157.45  | 14.51 | 14.83 | 26472.319 | 0.3058774  |            |
| 120 | - 211.29     | -247.61  | 14.26 | 15.23 | 27000.51  | 0.5485746  | _          |
| 21  | - 184.36     | -189.58  | 14.48 | 14.81 | 27000.00  | 0.3041811  | +          |
| 122 | - 162.92     | -261.41  | 13.99 | 15.17 | 27000.06  | 0.6349267  | +          |
| 23  | + 46.11      | -512.55  | 14.42 | 14.91 | 26473.331 | 0.4739051  |            |
| 24  | + 78.88      | -626.81  | 14.37 | 14.97 | 30000.02  | 0.3318607  | 0          |
| 125 | + 23.74      | -742.59  | 14.04 | 15.33 | 27000.26  | 0.5928884  | +          |
| 126 | + 822.95     | -730.44  | 14.45 | 14.97 | 30000.17  | 0.3418905  | 0          |
| 27  | - 880.16     | + 4.31   | 14.60 | 15.12 | 30000.03  | 0.3052736  | 0          |
| 28  | - 289.77     | - 92.09  | 14.25 | 14.86 | 27000.43  | 0.8349478  | +          |
| 129 | + 192.02     | - 25.83  | 14.18 | 14.74 |           |            | f          |
| 130 | - 366.17     | +900.99  | 14.13 | 15.49 | 30000.38  | 0.4932499  | 0          |
| 131 | - 165.05     | - 59.95  | 14.40 | 14.86 | 27000.19  | 0.3921558  | _          |
| 132 | - 72.44      | - 29.31  | 13.97 | 14.96 | 26469.386 | 0.6556410  |            |
| 133 | -1914.22     | +1053.78 | 13.74 | 14.53 | 30000.07  | 0.31709593 | 0, EW, Min |
| 134 | - 942.87     | + 972.72 | 14.12 | 15.32 | 30000.57  | 0.6529026  | 0          |
| 135 | - 184.88     | - 37.25  | 13.87 | 14.85 | 26470.314 | 0.6325795  |            |
| 136 | - 154.26     | + 60.08  | 14.22 | 14.64 | 30000.0   | 0.3919136  | 0          |
| 137 | - 149.54     | + 96.23  | 14.38 | 14.90 | 30000.29  | 0.3342179  | 0          |
| 138 | - 111.12     | - 187.55 | 12.5  | 13.6  |           | 74.6: irr. |            |
| 139 | - 86.94      | + 65.18  | 14.00 | 14.90 | 26462.404 | 0.6768666  |            |
| 140 | - 42.65      | - 86.80  |       |       |           | short      |            |
| 141 | - 55.47      | - 47.46  | 14.05 | 14.75 | irr       | 0.6975651  |            |
| 142 | - 37.35      | - 2.56   | 14.2  | 14.8  |           | short      |            |
| 143 | - 37.45      | + 71.40  | 14.24 | 14.77 | 26470.394 | 0.8207020  |            |
| 144 | - 33.28      | + 22,44  | 14.33 | 14.81 | 26454.329 | 0.8353054  |            |
| 145 | + 49.07      | - 148.51 | 14.40 | 14.87 | 30000.15  | 0.373139   | 0          |
| 146 | + 65.96      | - 48.03  | 13.87 | 14.77 | 26469.386 | 0.6331021  |            |
| 147 | + 298.70     | - 151.04 | 14.35 | 14.80 | 30000.34  | 0.4226989  | 0          |
| 148 | + 299.20     | + 44.21  | 12.9  | 13.8  |           | 90: irr.   |            |
| 149 | + 477.33     | + 894.18 | 14.03 | 15.11 | 30000.42  | 0.6827281  | 0          |
| 150 | + 543.18     | - 442.23 | 14.07 | 14.94 | 30000.7   | 0.8991997  | 0          |
| 151 | +1010.06     | + 753.35 | 14.42 | 14.84 | 30000.1   | 0.4077838  | 0          |
| 52  | + 13.84      | - 48.83  | 12.8  | 13.7  |           | 124:       | irr        |
| 53  | + 34.46      | + 136.32 | 14.48 | 14.88 | 30000.23  | 0.386445   | 0          |
| 54  | + 169.59     | - 113.20 | 14.55 | 14.72 | 30000.10  | 0.322407   | 0          |
| 155 | + 75.25      | + 237.31 | 14.43 | 14.88 | 30000.3   | 0.413919   | 0          |
| 156 | + 15.06      | - 191.94 | 14.41 | 14.83 | 30000.34  | 0.3591887  | 0          |
| 157 | + 1.77       | + 82.58  | 14.42 | 14.79 | 26523.370 | 0.4064970  |            |
| 158 | - 10.58      | - 119.80 | 14.32 | 14.74 | 26472.442 | 0.3673350  |            |
| 159 | -2039.94     | - 891.45 | 14.39 | 14.96 | 30000.0   | 0.343101   | 0          |

| No. | x''          | y''      | Max.  | Min.  | Epoch    | Period    | Remarks         |
|-----|--------------|----------|-------|-------|----------|-----------|-----------------|
| NGC | 5139 (contin | nued)    |       |       |          |           |                 |
| 160 | - 711.13     | + 969.21 | 14.51 | 15.15 | 30000.1  | 0.397276  | 0               |
| 161 | - 96.81      | - 129.27 | 13.3  | 13.8  |          | irr       |                 |
| 162 | - 392.40     | - 252.39 | 12.9  | 13.6  |          | irr       | cst now         |
| 163 | - 575.24     | + 499.91 | 14.59 | 14.88 | 30000.0  | 0.3132294 | 0               |
| 164 | + 152.75     | + 478.38 | 13.7  | 14.0  |          | 37: †     | Red             |
| 165 | - 69.92      | + 104.59 |       |       |          |           |                 |
| 166 | - 2.89       | + 144.71 |       |       |          |           |                 |
| 167 | - 352.63     | - 321.43 |       |       |          |           |                 |
| 168 | - 543.66     | = 201.42 | 14.96 | 15.46 | 30000.1  | 0.321295  | 0               |
| 169 | + 347.5      | + 278.7  | 14.61 | 14.85 | 32323.35 | 0.46926   | Belserene       |
| 170 |              |          |       |       |          | irr       | Eggen, Herst 53 |
| 171 | -2280        | +2520    |       |       |          | RRa       | Wilkens 1       |
| 172 | + 720        | +1440    |       |       |          | RRa       | Wilkens 2       |
| 173 | +1800        | + 660    |       |       |          | RRa       | Wilkens 3       |
| 174 | + 780        | -2040    |       |       |          | 1.8984    | Wilkens 4, E    |
| 175 | -2640        | -3000    |       |       |          |           | Wilkens 5       |
| 176 | + 144        | - 66     |       |       |          | RRc       | Wilkens 6       |
| 177 | +1380        | - 480    |       |       |          | RRb       | Wilkens 7       |
| 178 | +3120        | + 600    |       |       |          | RRb       | Wilkens 8       |
| 179 | -1800        | -2940    |       |       |          | RRb       | Wilkens 9       |
| 180 | -1500        | - 720    |       |       |          | RRc       | Wilkens 10      |
| 181 | +1925        | -1216    |       |       |          | 0.58836   | Wess 2          |
| 182 | +3355        | +1292    |       |       |          | 0.54539   | Wess 12         |
| 183 | +1744        | - 116    |       |       |          | 0.29605   | Wess 13         |

<sup>\*</sup> This variable appears intermediate between W Vir and RV Tau types, with alternate P 58<sup>d</sup>.7. † Period from Dickens (1972).

Wilkens now considers his vars. 1, 5, 8, 9 also members (Letter, 1972), nos. 11–15 suspected. Wesselink has one field EW.

Belserene, Rutherfurd Contr 33.1, 43 (1956), AJ 64.58 (1959); Thackeray, Obs 80.226 (1960); Eggen, Royal Obs Bull 29.E73 (1961); Kurochkin, VS 13.248 (1961); Belserene, AJ 69.475 (1964); Dickens and Saunders, Royal Obs Bull 101.E101 (1965); Geyer, AG Mitt p.96 (1965); Geyer and Szeidl, Bamb K1 Veröff 4, 40.63 (1965); Harding, Royal Obs Bull 99.E65 (1965); Wilkens, MVS 3.72 (1965); Oosterhoff and Walraven, BAN 18.387 (1966); Ponsen and Oosterhoff, BAN Suppl 1.3 (1966); Woolley, Royal Obs Ann 2 (1966); Dickens and Carey, Royal Obs Bull 129 (1967); Geyer, ZAp 66.16 (1967); Wilkens, MVS 4.93 (1967); Jones, MN 140.265 (1968); Sistero, IBVS 316 (1968); Wilkens, La Plata Bol 12 (1968); van Albada, AAS Bull 1.366 (1969); Sistero, Fourcade and Laborde, IBVS 402 (1969); Wesselink, Letter (1969); Geyer and Szeidl, Astr and Ap 4.40 (1970); Geyer, IAU Coll 15.235 (1971); Dickens, Letter (1972); Dickens, Feast and Lloyd Evans, MN 159.337 (1972); Eggen, ApJ 172.639 (1972); Feast, Preprint (1972); Geyer, AG Mitt 31.168 (1972); Wesselink, unpub (1972); Wilkens, Letter (1972)

S55a, S57, S59, S61, A62, R62a, S62, P64, S64, L65, R65, FLA66, St66, S67, C&S69, S69, S70

| NGC | 527 | 2 (Messi | er 3) | a 13h | 39m.9, δ | +28°38′ |           |           |  |
|-----|-----|----------|-------|-------|----------|---------|-----------|-----------|--|
| 1   | _   | 5.2      | _     | 128.5 | 14.68    | 15.92   | 36692.336 | 0.5206250 |  |
| 2   | +   | 15.8     | +     | 52.6  |          |         |           |           |  |
| 3   | +   | 57.9     | _     | 66.0  | 14.75    | 16.00   | 15021.225 | 0.5582053 |  |

| No.      | x''                | у′′                | Max.  | Min.  | Epoch     | Period    | Remarks     |
|----------|--------------------|--------------------|-------|-------|-----------|-----------|-------------|
| NGC      | 5272 (cont         | inued)             |       |       |           |           |             |
| 4        | - 43.5             | - 8.8              | 14.9  | 16.0  |           |           |             |
| 5        | + 261.0            | - 22.3             | 14.71 | 16.15 | 15021.239 | 0.5058940 | Вδ          |
| 6        | - 123.9            | + 60.1             | 14.87 | 16.21 | 36669.320 | 0.5143228 | +           |
| 7        | - 4.8              | + 87.2             | 14.69 | 16.25 | 15021.064 | 0.4974290 |             |
| 8        | - 81.7             | - 23.4             | 14.37 | 15.4  |           |           | Confirmed   |
| 9        | - 291.4            | - 207.8            | 14.95 | 16.28 | 36668.502 | 0.5415641 | _           |
| 10       | + 153.6            | + 138.0            | 15.06 | 16.15 | 36658.470 | 0.5695185 | _           |
| 11       | - 152.6            | - 209.7            | 14.75 | 16.17 | 36699.491 | 0.5078918 | cst         |
| 12       | - 3.8              | - 145.4            | 15.23 | 15.83 | 36687.336 | 0.3178890 |             |
| 13       | - 26.0             | - 137.5            | 14.79 | 15.96 | 36702.398 | 0.4830302 | - RR Binary |
| 14       | - 49.0             | - 161.0            | 14.95 | 16.19 | 36668.549 | 0.6359019 | +           |
| 15       | - 90.8             | - 273.2            | 14.87 | 16.26 | 36666.565 | 0.5300794 | +           |
| 16       | - 301.4            | - 93.1             | 14.93 | 16.31 | 36687.369 | 0.5115075 | _           |
| 17       | + 142.4            | - 440.4            | 15.20 | 16.20 | 36668.543 | 0.5761417 | +, BQ       |
| 18       | + 97.6             | - 295.3            | 14.86 | 16.30 | 36661.578 | 0.5163623 | Bg          |
| 19       | + 350.5            | - 245.6            | 15.56 | 16.15 | 36639.520 | 0.6319796 |             |
| 20       | + 333.5            | - 271.6            | 14.85 | 16.25 | 36668.555 | 0.4912411 |             |
| 21       | + 346.9            | + 17.9             | 14.81 | 16.27 | 30000,415 | 0.5157336 | +           |
| 22       | + 190.2            | - 10.7             | 14.98 | 16.20 | 36660,536 | 0.4814208 |             |
| 23       | - 113.0            | + 279.2            | 15.07 | 15.80 | 15021.082 | 0.5953756 |             |
| 24       | - 147.6            | + 10.4             | 15.06 | 16.07 | 15021.563 | 0.6633494 | cst         |
| 25       | - 124.4            | - 31.4             | 14.66 | 16.07 | 15021.089 | 0.4800510 | +           |
| 26       | - 177.4            | - 43.0             | 14.88 | 16.04 | 15021.239 | 0.5977452 | _           |
| 27       | - 110.2            | - 102.8            | 15.07 | 16.11 | 15021.566 | 0.5790912 |             |
| 28       | - 25.0             | - 105.8            | 14.92 | 15.88 | 24290.335 | 0.4706364 |             |
| 29       | - 65.2             | - 73.6             |       |       |           |           |             |
| 30       | - 36.5             | + 58.0             | 15.18 | 15.92 | 22760.635 | 0.5120902 |             |
| 31       | + 33.1             | + 65.1             | 14.43 | 15.65 | 15021.542 | 0.5807216 | _           |
| 32       | + 11.8             | + 60.1             | 14.58 | 15.68 | 15021.108 | 0.4953518 | _           |
| 33       | + 70.5             | - 89.1             | 14.78 | 15.90 | 15021.217 | 0.5252237 | -, BQ       |
| 34       | + 135.4            | + 170.2            | 15.08 | 16.16 | 36668.467 | 0.5591012 | BQ          |
| 35       | - 107.3            | - 278.2            | 15.04 | 16.10 | 15021.032 | 0.5306059 | Bg          |
| 36       | + 172.0            | - 35.4             | 14.78 | 16.26 | 36692.525 | 0.5455855 | +           |
| 37       | - 236.7            | + 164.7            | 15.34 | 16.12 | 30000.241 | 0.3266384 | _           |
| 38       | - 203.0            | + 127.7            | 14.74 | 16.16 | 24290.304 | 0.5580276 | -, BQ       |
| 39       | - 243.6            | + 121.4            | 15.14 | 16.23 | 15021.073 | 0.5870766 | Be          |
| 10       | - 271.2            | + 112.4            | 15.01 | 16.32 | 30000.397 | 0.5515416 |             |
| 41       | - 93.3             | + 54.0             | 15.22 | 16.23 | 15021.441 | 0.4850462 |             |
| 42       | - 78.6             | + 41.0             | 14.40 | 15.68 | 15021.515 | 0.5901852 |             |
| 43       | + 99.9             | + 24.7             | 14.40 | 15.80 | 15021.191 | 0.5405790 | Вθ          |
| +3<br>44 | + 170.0            | + 99.4             | 14.40 | 16.04 | 15021.191 | 0.5063961 | Bℓ          |
| 45       | - 241.2            | - 129.9            | 14.94 | 16.23 | 15021.349 | 0.5368966 | D.C.        |
| 45<br>46 | - 241.2<br>- 128.1 | - 129.9<br>- 51.5  | 15.32 | 15.96 | 15021.264 | 0.6133669 |             |
|          | - 128.1<br>- 117.5 | - 31.3<br>- 73.2   | 14.74 | 15.90 | 15021.459 | 0.5409923 | Вΰ          |
| 47<br>18 |                    | - 102.7            | 15.23 | 15.97 | 36669.346 | 0.5409923 | Dx          |
| 48<br>49 | + 126.9<br>+ 140.0 | - 102.7<br>- 100.7 | 13.23 | 16.11 | 36715.388 | 0.5482196 | Вΰ          |
|          |                    | - 100.7<br>- 234.0 | 14.71 | 16.09 | 36669.560 | 0.5130879 | Be<br>Be    |
| 50       | + 8.8              |                    |       |       |           |           | DX          |
| 51       | + 30.8             | - 226.4            | 15.16 | 16.18 | 36702.392 | 0.5839818 |             |
|          |                    |                    |       |       |           |           |             |

| No.      | x''                | у′′                | Max.           | Min.           | Epoch                  | Period                 | Remarks |
|----------|--------------------|--------------------|----------------|----------------|------------------------|------------------------|---------|
| NGC      | 5272 (cont         | inued)             |                |                |                        |                        |         |
| 52       | - 76.8             | + 152.0            | 14.92          | 16.06          | 15021.485              | 0.5162250              | Вδ      |
| 53       | - 7.4              | + 122.8            | 14.68          | 15.93          | 15021.006              | 0.5048878              |         |
| 54       | - 32.6             | + 106.4            | 14.92          | 15.94          | 15021.193              | 0.5063150              |         |
| 5 5      | - 204.2            | + 324.4            | 14.88          | 16.31          | 30000.032              | 0.5298136              |         |
| 6        | - 141.1            | + 358.6            | 15.38          | 16.02          | 22760.623              | 0.3295986              |         |
| 7        | + 155.2            | - 0.2              | 14.84          | 16.23          | 15021.618              | 0.5122223              |         |
| 8        | - 86.2             | + 46.2             | 14.58          | 15.91          | 22760.621              | 0.5170617              |         |
| 9        | - 109.8            | - 228,4            | 15.23          | 16.20          | 36699.425              | 0.5888053              |         |
| 0        | - 297.8            | - 315.4            | 15.24          | 16.15          | 15021.389              | 0.7077228              |         |
| 1        | + 190.2            | + 363.0            | 14.96          | 16.21          | 15021.076              | 0.5209312              | В٤      |
| 2        | + 90.2             | + 417.0            | 15.42          | 16.16          | 15021.331              | 0.6524077              | D.      |
| 3        | + 37.2             | + 341.9            | 14.96          | 16.22          | 15021.094              | 0.5704164              | Вθ      |
| 4        | + 114.8            | + 330.4            | 15.32          | 16.26          | 30000.382              | 0.6054590              | 5.      |
| 5        | + 125.4            | + 327.5            | 14.79          | 16.22          | 30000.332              | 0.6683394              |         |
| 6        | - 101.4            | + 121.4            | 15.20          | 15.93          | 15021.323              | 0.6201827              |         |
| 7        | - 101.4<br>- 131.4 | + 121.4            | 14.95          | 16.07          | 15021.323              | 0.5683609              | ВΫ      |
| 8        | + 21.9             | + 174.8            | 15.0           | 16.0           | 13021,411              | 0.3559732              | Bé      |
| 9        | + 80.6             | + 141.0            | 15.15          | 16.05          | 36692.851:             | 0.5665878              | ВС      |
| 0        | + 37.6             | + 152.2            | 15.13          | 15.75          | 15021.315              | 0.486:                 | Вб      |
| 1        | + 160.6            | - 2.0              | 15.22          | 16.04          | 15021.313              | 0.5490517              | В       |
| 2        | + 445.5            | - 2.0              | 14.80          | 16.30          | 15021.108              | 0.4560739              |         |
| 3        | + 438.5            | + 62.2             | 15.0           | 16.30          | 13021.327              | 0.4300733              |         |
| 4        | + 436.3            | + 151.0            | 14.80          | 16.20          | 26669 290              | 0.4021441              |         |
| 5        |                    |                    |                |                | 36668.389              | 0.4921441              |         |
| 6        |                    | + 159.5<br>- 88.2  | 15.38<br>14.90 | 15.98<br>16.46 | 36668.411              | 0.3140790              |         |
| 7        |                    |                    |                |                | 15021.293              | 0.5017544              |         |
|          | - 94.4             |                    | 14.63          | 16.07          | 15021.451              | 0.4593425              |         |
| 8        | + 47.5             | + 66.4             | 14.92          | 15.70          | 15021.249              | 0.6119254              | DO      |
| 0        | + 43.4             | + 349.4            | 14.72          | 16.31          | 15021.229              | 0.4833275              | B6      |
|          | + 416.8<br>+ 342.8 | + 284.6            | 14.80          | 16.17          | 15021.433              | 0.5384827              | B6      |
| 1        |                    | + 351.1            | 14.86          | 16.30          | 30000.461              | 0.5291108              |         |
| 2        | - 102.6            | - 601.8            | 14.96          | 16.31          | 36668.477              | 0.5245061              |         |
| 3        | - 441.6<br>+ 64.0  | + 113.4<br>+ 165.2 | 14.87          | 16.32<br>16.12 | 15021.046              | 0.5012408              |         |
| 4<br>5   | + 64.0 + 306.2     |                    | 15.26          |                | 36666.463              | 0.5957289              |         |
|          | + 513.0            | + 225.8<br>- 114.2 | 15.32<br>15.42 | 15.92<br>16.06 | 22760.517<br>15021.016 | 0.3558189<br>0.2926601 |         |
| 7        | + 110.6            | + 60.2             | 15.42          | 15.68          | 22760.535              | 0.3574814              |         |
| 8        |                    | - 70.2             | 15.15          | 15.67          |                        | 0.3374814              |         |
| 9        | - 35.0<br>+ 28.0   | - 110.8            | 14.85          | 15.93          | 24290.324              | 0.5484779              |         |
| 0        | + 20.0             | - 110.8            | 14.85          |                | 15021.507              |                        |         |
| I        | + 97.2<br>= 14.3   | = 188.2<br>= 550.0 |                | 16.25          | 36692.397              | 0.5170334              |         |
|          |                    |                    | 14.95          | 16.26          | 36669.366              | 0.5301630              |         |
| 3        | 29.0               | = 408.4            |                | 16.30          | 15021.083              | 0.5035553              |         |
|          | = 319.4            | - 396.6            | 15.24          | 16.27          | 30000.420              | 0.6023007              |         |
| 14       | 488.4              | = 224.6            | 14.90          | 16.33          | 30000,304              | 0.5236936              |         |
| 16       | = 154.7            | + 15.4             | 13.73          | 14.42          | 26602.470              | 0.4004467              |         |
| 7        | 164.2              | = 234.0            | 14.74          | 16.10          | 36692.470              | 0.4994467              |         |
|          | + 132.4            | - 196.7<br>- 3.2   | 15.53          | 16.04          | 9 61.581               | 0.3349289              |         |
| )8<br>)9 | + 132.4 + 201.8    |                    | not var        | 15.0           |                        |                        |         |
| 7        | + 201.0            | 55.0               | 14.8           | 15.8           |                        |                        |         |

| No.        | x''               | у′′              | Max.          | Min.           | Epoch     | Period             | Remarks        |
|------------|-------------------|------------------|---------------|----------------|-----------|--------------------|----------------|
| NGC        | 5272 (conti       | nued)            |               |                |           |                    |                |
| 100        | + 69.9            | + 97.3           | 15.31         | 15.96          |           | 0.6188126          |                |
| 101        | + 46.4            | + 83.7           | 15.29         | 15.78          | 15021.101 | 0.6438975          |                |
| 102        | + 58.4            | + 114.9          | 15.2          | 15.9           | var?      |                    |                |
| 103        | + 58.1            | + 120.4          | not var       |                |           |                    |                |
| 104        | - 25.8            | + 145.5          | 14.73         | 15.99          | 15021.288 | 0.5699231          |                |
| 105        | - 20.9            | + 191.6          | 15.33         | 15.72          | 36668.548 | 0.2877427          |                |
| 106        | - 48.0            | + 168.0          | 15.18         | 16.04          | 36666.372 | 0.5471593          |                |
| 107        | - 75.8            | + 335.0          | 15.40         | 16.14          | 30000.039 | 0.3090348          |                |
| 108        | - 219.0           | + 310.9          | 14.94         | 16.30          | 30000.250 | 0.5196047          |                |
| 109        | - 89.3            | + 2.7            | 14.56         | 15.64          | 15021.033 | 0.5339239          |                |
| 110        | - 99.4            | - 15.8           | 15.02         | 15.88          | 15021.397 | 0.5353569          |                |
| 111        | - 92.7            | + 21.9           | 15.06         | 16.02          | 15021.402 | 0.5102469          | Вΰ             |
| 112        | - 144.6           | - 719.4          | not var       |                |           |                    |                |
| 113        | + 199.8           | - 689.8          | 14.90         | 16.25          | 15021.241 | 0.5130066          |                |
| 114        | + 11.8            | + 622.0          | 15.18         | 16.24          | 15021.515 | 0.5977270          |                |
| 115        | + 445.0           | + 664.7          | 14.98         | 16.34          | 15021.297 | 0.5133529          |                |
| 116        | - 491.8           | + 465.2          | 14.89         | 16.32          | 15021.441 | 0.5148088          |                |
| 117        | + 89.6            | - 467.6          | 15.22         | 16.22          | 15021.579 | 0.6005164          |                |
| 118        | + 144.4           | - 292.2          | 14.90         | 16.36          | 15021.272 | 0.4993807          |                |
| 119        | + 253.4           | + 106.2          | 14.76         | 16.25          | 30000.192 | 0.5177411          |                |
| 120        | - 295.8           | + 231.4          | 15.56         | 16.07          | 15021.284 | 0.6401387          |                |
| 121        | - 43.6            | + 56.1           | 14.84         | 15.54          | 22760.550 | 0.5351882          |                |
| 122        | - 33.5            | - 46.4           | 14.6          | 16.1           |           | 0.5017             |                |
| 123        | - 259             | - 985            | 14.92         | 16.31          | 15021.395 | 0.5454472          |                |
| 124        | - 66.4            | - 201.4          | 15.50         | 15.96          | 36685.349 | 0.7524328          |                |
| 125        | + 186.3           | - 132.8          | 15.48         | 16.00          | 36666.585 | 0.3498206          |                |
| 126        | - 15.4            | - 146.4          | 15.42         | 15.96          | 15021.208 | 0.3484043          |                |
| 127        | + 95.6            | - 63.6           | not var       |                |           |                    |                |
| 128        | + 114.6           | + 131.4          | 15.40         | 15.86          |           | 0.2922710          | Bβ             |
| 129        | - 43.6            | + 77.2           | 15.2          | 16.1           | 22562245  | 0.305471           | 70.0           |
| 130        | + 4.2             | + 84.6           | 15.27         | 16.00          | 22760.347 | 0.5688172          | B6             |
| 131        | - 73.2            | + 27.4           | 15.04         | 15.56          | 15021.318 | 0.2976919          |                |
| 132        | - 53.6            | - 22.0           | 15.3          | 16.4           | 24290.387 | 0.3398479          |                |
| 133        | - 58.6            | + 43.5           | 14.89         | 15.96          | 15021.482 | 0.5507230          |                |
| 134        | - 22.4            | + 52.4           | 14.9          | 16.3           | 24290.282 | 0.6190             |                |
| 135        | - 27.0            | + 38.0           | 15.0          | 16.5           |           | 0.56843            |                |
| 136        | - 25.4            | + 33.4           | 15.6          | 16.2           | 15021.155 | 0.5751464          |                |
| 137<br>138 | + 53.0<br>- 263.6 | - 18.8<br>+ 41.9 | 15.30<br>14.0 | 16.04<br>14.46 | 35608.96  | 0.5751464<br>80.98 |                |
| 139        | + 34.5            | + 41.9 + 28.0    | 15.25         | 16.12          | 22760.465 | 0.560004           |                |
| 140        | - 15.7            | + 108.9          | 15.23         | 15.51          | 22760.216 | 0.3331304          |                |
| 141        | -13.7 $-1497.5$   | - 249.9          | 14.98         | 15.97          | 22100.210 | 0.2695671          | RV CVn, EW, f  |
| 142        | - 1497.3<br>- 30  | - 249.9<br>- 59  | 14.79         | 15.72          | 24290.397 | 0.5686256          | KY CYII, LW, I |
| 143        | - 30<br>- 34      | + 16             | 15.4          | 16.4           | 24290.337 | 0.51111            |                |
| 143        | + 54              | - 100            | 15.27         | 15.99          | 24290.565 | 0.5967843          |                |
| 145        | + 34 + 29         | + 8              | 14.9          | 16.5           | 24290.528 | 0.514456           |                |
| 146        | + 96              | - 59             | 14.6          | 16.5           | 24290.563 | 0.596740           |                |
| 140        | 70                | 5)               | 1 7.0         | 10.0           | 27270.003 | 0.070770           |                |

| No. |     | x''    | у''          | Max.         | Min.  | Epoch      | Period             | Remarks |
|-----|-----|--------|--------------|--------------|-------|------------|--------------------|---------|
| NGC | 527 | 2 (cor | ntinued)     |              |       |            |                    |         |
| 48  |     | 7      | + 37         | 15.3         | 16.4  | 24290.170  | 0.467246           |         |
| 49  | +   | 34     | + 52         | 14.7         | 16.5  | 24290.228  | 0.54985            |         |
| 50  | +   | 69     | + 37         | 14.8         | 16.7  | 24290.359  | 0.52397            |         |
| 51  | +   | 4      | - 40         | 14.9         | 16.3  | 24290.191  | 0.51705            |         |
| 52  | +   | 77     | + 50         | 15.42        | 15.76 | 24290.355  | 0.3261217          |         |
| 53  | _   | 38     | + 60         | not var      | 13.70 | 24270.333  | 0.5201217          |         |
| 54  | +   | 2      | - 29         | 12.1         | 13.7  | 38873.53   | 15.290             |         |
| 55  | _   | 64     | - 74         | 12.1         | 13.7  | 30073.33   | 13.270             |         |
| 56  | _   | 21     | - 74<br>- 42 | 15.0         | 15.9  | 38872.331  | 0.531979           |         |
| 57  |     | 17     | + 35         | 14.2         | 15.7  | 24647.650: | 0.5283             |         |
|     | -   |        |              |              |       |            | 0.50809?           |         |
| 8   |     | 16     | - 41         | 15.2         | 16.5  | 24647.564: |                    |         |
| 9   |     | 15     | + 16         | 14.9         | 16.6  | 24647.602: | 0.5337             |         |
| 50  | _   | 9      | - 44<br>- 58 | 14.9<br>15.4 | 16.1  | 24647.446  | 0.64792<br>0.49874 |         |
| 1   | +   | 17     |              |              | 16.4  | 24647.567: | 0.478/4            |         |
| 52  | +   | 28     | - 32<br>- 32 | not var      |       |            |                    |         |
| 53  |     | 16     |              | not var      | 15.0  |            |                    |         |
| 4   | +   | 21     | - 36         | 15.3         | 15.9  | 24647.544  | 0.402620           |         |
| 5   | +   | 73     | - 20         | 14.7         | 16.5  | 24647.544  | 0.483638           |         |
| 6   | -   | 97     | 8            | 15.4         | 16.1  | 38867.364  | 0.485622           |         |
| 7   |     | 78     | - 37         | 15.62        | 16.00 | 24647.448  | 0.6439839          |         |
| 8   | _   | 45     | + 7          | 14.9         | 16.0  | 24647.617  | 0.3770             |         |
| 59  |     | 29     | - 35         | not var      | 1.6.1 | 24645516   | 0.42725            |         |
| 70  | _   | 28     | + 32         | 15.1         | 16.1  | 24647.716: | 0.43725            |         |
| 71  | _   | 27     | + 16         | 15.0         | 16.1  | 24647.864  | 0.4303             |         |
| 12  | _   | 21     | + 25         | 14.9         | 16.5  | 24647.700  | 0.59400            |         |
| 13  | _   | 13     | + 39         | 15.2         | 16.6  | 24647.670: | 0.606990           |         |
| 74  | -   | 9      | - 34         | 15.1         | 16.1  | 24647.710  | 0.4082             |         |
| 15  | +   | 42     | + 26         | 14.9         | 16.2  | 24647.914  | 0.60780            |         |
| 16  | +   | 46     | + 32         | 14.8         | 16.4  | 24647.621  | 0.55599            |         |
| 7   | +   | 63     | - 29         | 15.52        | 15.90 | 24647.953  | 0.3483438          |         |
| 8   | +   | 79     | + 46         | 15.51        | 15.81 | 24647.755  | 0.2650805          |         |
| 9   | +   | 39     | - 774        | not var      |       |            |                    |         |
| 0   | _   | 19     | - 27         | not var      |       |            |                    |         |
| 1   | _   | 30     | - 14         | not var      |       |            |                    |         |
| 2   | _   | 19     | + 60         | not var      |       |            |                    |         |
| 13  | +   | 29     | + 7          | not var      |       |            |                    |         |
| 34  |     | 25     | - 14         | 14.9         | 16.4  | 24647.841  | 0.517              |         |
| 35  | _   | 15     | + 32         | 15.2         | 16.1  |            |                    |         |
| 36  | +   | 12     | 64           | 15.1         | 16.1  | 24647.670  | 0.675              |         |
| 37  | _   | 23     | + 9          | 14.9         | 16.2  | 24647.961  | 0.3927             |         |
| 8   | _   | 27     | + 24         | 15.0         | 16.0  | 24647.615: | 0.3677             |         |
| 39  | _   | 25     | - 21         | 15.2         | 16.0  | 24647.964  | 0.668              |         |
| 0.0 | _   | 8      | + 28         | 14.8         | 16.5  | 24647.936  | 0.501              |         |
| 91  |     | 0      | + 24         | 15.1         | 16.1  | 24647.981  | 0.512              |         |
| 92  | _   | 2      | + 3          | 15.0         | 16.1  | 24647.933: | 0.525              |         |
| 93  | +   | 15     | - 7          | 14.8         | 16.3  | 24647.777  | 0.630              |         |
| 94  | +   | 17     | - 13         | 15.1         | 16.4  | 24647.758  | 0.549              |         |
| 95  | _   | 13     | - 29         | 15.0         | 16.2  | 24647.470: | 0.600              |         |

| No. | x''        | y''    | Max.  | Min.  | Epoch      | Period    | Remarks  |
|-----|------------|--------|-------|-------|------------|-----------|----------|
| NGC | 5272 (cont | inued) |       |       |            |           |          |
| 196 | + 47       | + 1    |       |       |            |           |          |
| 197 | + 58       | + 10   | 15.1  | 16.5  | 24647.689  | 0.500075  |          |
| 198 | - 23       | + 15   | 15.2  | 16.0  | 24647.923: | 0.3617    |          |
| 199 | - 19       | + 13   | 14.8  | 16.3  | 24647.699: | 0.488     |          |
| 200 | - 4        | + 21   |       |       |            |           |          |
| 201 | + 4        | - 9    | 15.1  | 16.1  | 39964.391  | 0.541333  |          |
| 202 | - 379.7    | + 101  | 15.4  | 15.8  |            | 0.9987:   |          |
| 203 | - 30.2     | - 308  | 15.56 | 15.72 |            | 0.28719   |          |
| 204 | -106.4     | - 18   | 15.76 | 15.90 |            | 0.9170:   |          |
| 205 | - 780      | + 720  | 15.4  | 16.2  | 35600.38   | 0.6369126 | vZ 89    |
| 206 | 0          | -1680  | 14.8  | 16.1  | 35601.41   | 0.5093832 | vZ 1221  |
| 207 | + 36.0     | - 30.8 | 14.8  | 15.4  |            |           | vZ 991   |
| 208 | + 2.5      | - 57.9 | 14.8  | 15.4  |            |           | vZ 800   |
| 209 | - 68.2     | - 99.1 | 14.3  | 15.1  |            |           | vZ 472   |
| 210 | - 85.7     | - 9.9  | 14.6  | 15.4  |            |           | vZ 420   |
| 211 | - 54.1     | + 6.6  | 14.6  | 15.7  | 41061.438  | 0.557798  | vZ 519   |
| 212 | - 21.6     | - 38.0 | 15.2  | 16.2  | 38867.356  | 0.542196  | SVS 1365 |
| 213 | - 25.4     | - 29.7 | 15.0  | 15.4  |            |           | vZ 648?  |
| 214 | + 32.0     | + 5.8  | 14.6  | 15.6  | 41061.447  | 0.539493  | vZ 971   |
| 215 | - 13.9     | - 0.9  | 14.8  | 15.6  |            |           | vZ 717   |
| 216 | + 27.9     | - 10.8 | 15.2  | 15.8  |            |           | vZ 951   |
| 217 | 0.0        | - 26.4 | 14.5  | 15.4  |            |           | SVS 1370 |
| 218 | + 28.1     | - 29.4 | 14.5  | 15.7  | 38867.304  | 0.543774  | vZ 950   |
| 219 | - 57.9     | + 15.7 | 14.6  | 15.8  |            |           | vZ 509   |
| 220 | + 33.1     | - 15.2 | 14.2  | 14.8  |            |           | vZ 978   |
| 221 | - 16.6     | - 13.5 | 14.6  | 15.1  |            |           | vZ 692   |
| 222 | + 96.3     | - 63.3 | 14.9  | 15.9  | 38859.416  | 0.596764  | vZ 1198  |
| 223 | + 23.9     | - 5.8  | 14.8  | 15.4  |            |           | vZ 930   |
| 224 | - 22.1     | + 5.0  | 13.7  | 14.6  |            |           | vZ 668   |
| 225 | + 8.8      | + 225  | 13.86 | 14.26 | 35651.38   | 89.59     | vZ 837   |

Vars. 205. 206 found by Kurochkin, identified by Kukarkin; 207-224 by Kholopov; 225 by Russev. Variability of V8 and V156 reconfirmed by Kholopov, and of V138 by Russev. 11 suspected variables, Kholopov (1963). Identification of variables in this cluster is difficult. See von Zeipel numbers in S55a, with revisions by Kholopov (1963), and above for the new variables.

Arp, AJ 60.1 (1955); Roberts and Sandage, AJ 60.185 (1955); Osváth, Budapest Mitt 42 (1957); Kukarkin and Kukarkina, VS 12.291 (1958); Wallerstein, ApJ 127.583 (1958); Kurochkin, AC 205 (1959); Sandage, ApJ 129.596 (1959); Kraft, Camp and Hughes, ApJ 130.90 (1959); Kukarkin, AC 216.29 (1960); Kurochkin, VS 13.84 (1960); Thackeray, Obs 80.226 (1960); Kurochkin, VS 13.248 (1961); Kukarkina and Kukarkin, VS 13.309 (1961); Kurochkin, VS 14.196 (1962); Breckinridge, ASP 75.22 (1963); Kholopov, VS 14.275 (1963); Fernic, ApJ 141.1411 (1965); Feast, ApJ 142.796 (1965); Szeidl, Budapest Mitt 58 (1965); Kheylo, 1BVS 171 (1966); Sturch, ApJ 143.774 (1966), AJ 72.321 (1967), ApJ 148.477 (1967); Kheylo, Problems in Astrophysics, Kiev, p. 62 (1968), NASA Tech Tr F598.57 (1971); van Albada, AAS Bull 1.366 (1969); Zhukov, Soviet Astr AJ 13.306 (1969); Kukarkin and Kukarkina, VS 17.157 (1970); Coutts, Bamb Veröff 9, 100.238 (1971); Kholopov, AC 640.3 (1971), AC 651.7 (1971), AC 652.7 (1971); Russev, VS 18.171 (1971); Kholopov, AC 676.7 (1972), Letter (1972); Szeidl, Letter (1972)

S55a, S57, S59, S61, A62, R62a, S62, P64, S64, L65, R65, St66, S67, C&S69, S69, S70, F72

| No.   | x''        | у"                      | Max.   | Min. | Epoch | Period | Remarks |
|-------|------------|-------------------------|--------|------|-------|--------|---------|
| NGC : | 5286 a 13h | 43 <sup>m</sup> .0, δ – | 51°07′ |      |       |        |         |
| 1     | - 46.20    | +145.48                 |        |      |       |        |         |
| 2     | + 78.10    | - 42.63                 |        |      |       |        |         |
| 3     | +256.58    | - 39.60                 |        |      |       |        |         |
| 4     | - 69.30    | - 70.95                 |        |      |       |        |         |
| 5     | + 64.63    | + 27.78                 |        |      |       |        |         |
| 6     | + 60.23    | - 33.00                 |        |      |       |        |         |
| 7     | + 24.48    | - 60.23                 |        |      |       |        |         |
| 8     | + 16.50    | - 35.75                 |        |      |       |        |         |

All above variables found by Fourcade and Laborde. One field variable, Bailey.

Bailey, HB 801 (1924); Fourcade and Laborde, Cordoba Repr 117 (1964), Cordoba Repr 126 (1965); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966)

S55a, S59, R62c, S62, F&L63, S67, S69

| NGC 5 | 5466 a 14 | $h_{03}m_{.2}, \delta + 2$ | 28°46′ |       |           |           |              |
|-------|-----------|----------------------------|--------|-------|-----------|-----------|--------------|
| 1     | +858      | - 95                       | 15.80  | 16.80 | 40706.387 | 0.5774192 | +            |
| 2     | - 62      | -110                       | 15.77  | 16.77 | 40683.342 | 0.5885020 | −, Bℓ        |
| 3     | - 31      | - 8                        | 15.90  | 16.76 | 40704.319 | 0.5780638 | cst          |
| 4     | - 80      | + 9                        | 15.69  | 17.03 | 40704.461 | 0.5120111 | +, −, B₽     |
| 5     | - 64      | +112                       | 15.85  | 17.10 | 39945.659 | 0.6152674 |              |
| 6     | +122      | - 24                       | 15.60  | 16.60 | 40705.408 | 0.6206610 | Mask         |
| 7     | -210      | -225                       | 15.94  | 16.90 | 40702.398 | 0.7034205 | cst          |
| 8     | + 23      | - 6                        | 15.81  | 16.70 | 40705.358 | 0.6291182 | cst          |
| 9     | + 31      | + 15                       | 15.74  | 16.77 | 39947.328 | 0.6850240 | -            |
| 10    | + 85      | + 46                       | 15.87  | 16.90 | 40705.468 | 0.7092735 | cst          |
| 11    | +117      | + 68                       | 16.09  | 16.70 | 40705.285 | 0.3779938 | cst          |
| 12    | + 17      | - 88                       | 16.09  | 16.66 | 39945.210 | 0.2942387 | cst          |
| 13    | - 49      | - 73                       | 16.10  | 16.80 | 40736.379 | 0.3415476 | +            |
| 14    | - 47      | + 52                       | 15.86  | 16.70 | 39947.568 | 0.7858598 | _            |
| 15    | +223      | + 20                       | 16.31  | 16.69 | 40705.223 | 0.4015471 | -,+          |
| 16    | -149      | -175                       | 16.04  | 16.74 | 39945.372 | 0.2966414 | -            |
| 17    | - 60      | - 30                       | 16.05  | 16.58 | 40706.394 | 0.3701037 | +            |
| 18    | + 44      | + 41                       | 16.0   | 16.7  | 30519.697 | 0.37406   |              |
| 19    | +157      | -166                       | 14.40  | 14.95 | 40705.737 | 0.8212879 | Hop 216, f   |
| 20    | -228      | + 45                       | 16.42  | 16.72 |           |           | Cuffey       |
| 21    | + 47      | - 10                       | 16.53  | 16.74 |           |           | Cuffey       |
| 22    | -153      | - 80                       | 16.08  | 16.65 | 40705.364 | 0.265687  | Hop 35       |
| 23    | +329      | + 15                       | 16.50  | 16.73 | 40705.126 | 0.2321607 | Hop 235, cst |

Baade nos. 3, 4, 5 in corona considered probable members by Kukarkin and Kholopov. Cuffey 3-5-2-72 is considered field variable.

Kukarkin, VS 12.50 (1959); Cuffey, AJ 66.71 (1961), Letters (1961); Kurochkin, VS 13.248 (1961), VS 13.331 (1961); Kholopov, VS 14.71 (1962); Kurochkin, VS 14.196 (1962); Bartolini, Biolchini and Mannino, Bologna Pubbl 9, 4 (1965); Gryzunova, AC 526.8 (1969), VS Suppl 1.253 (1972)

S55a, S57, S59, S61, R62a, S62, S64, L65, R65, S67, C&S69, S69

| No.   | χ''      | у′′       | Max.   | Min.   | Epoch | Period  | Remarks |
|-------|----------|-----------|--------|--------|-------|---------|---------|
| NGC 5 | 634 a 14 | h27m.0, δ | 05°45′ |        |       |         |         |
| 1     | -56.5    | - 19.5    | 16.41  | 17.39  |       | 0.65872 |         |
| 2     | -25.4    | + 83.1    | 16.19  | 17.38  |       |         |         |
| 3     | -45.1    | + 41.9    | 16.48  | 17.47  |       |         |         |
| 4     | +54.2    | - 65.2    | 16.55  | 17.39  |       |         |         |
| 5     | -11.6    | 162.9     | 16.72: | 17.19  |       |         |         |
| 6     | +43.4    | - 52.6    | 16.69  | 17.05: |       |         |         |
| 7     | -0.4     | - 4.0     |        |        |       |         |         |

NGC 5694  $a 14^{h}36^{m}.7$ ,  $\delta = 26^{\circ}19'$ 

No variables found. Baade, ASP 46.52 (1934) S55a, S59, R62c, S62, S69

```
IC 4499 α 14h52m.7, δ = 82°02'
  1
               - 3.03
      + 84.15
               = 96.25
  2
      + 41.53
  3
     90.75
              104.50
      -33.55
               -14.03
 4
  5
      -38.23
                =47.58
      - 2.75
               + 34.38
  6
  7
     + 24.75
               +203.50
  8
     + 88.00
               + 97.08
  9
     + 72.60
              +105.60
 10
     + 11.00
               + 68.75
 1.1
     + 95.15
               - 29.98
     +112.75
               + 62.15
 12
 13
      + 44.28
                 17.33
     + 22.83
               - 19.25
 14
      - 6.88
               - 9.08
 15
              + 52.25
      - 66.00
 16
 17
      - 22.00
               + 14.58
               - 22.28
 18
     62.15
 19
     -159.50
                - 21.73
      22.27
               +159.23
 20
     + 85.53
               +145.75
 21
 22
     +270.33
               + 64.35
                - 38.50
 23
      + 93.50
                 31.63
 24
     35.75
 25
      -118.25
                - 6.32
 26
      -168.58
               +159.50
 27
     + 19.53
               +111.38
      - 11.55
               -44.28
 28
```

| No.      | x"                | у"                 | Max. Min. | Epoch | Period | Remarks |
|----------|-------------------|--------------------|-----------|-------|--------|---------|
| IC 44    | 99 (continu       | ed)                |           |       |        |         |
| 29       | + 41.25           | - 13.75            |           |       |        |         |
| 30       | + 85.25           | - 33.55            |           |       |        |         |
| 31       | + 35.75           | + 95.70            |           |       |        |         |
| 32       | + 77.00           | - 11.28            |           |       |        |         |
| 33       | + 59.12           | -273.35            |           |       |        |         |
| 34       | + 88.00           | -123.75            |           |       |        |         |
| 35       | + 73.98           | +101.75            |           |       |        |         |
| 36       | +159.78           | + 6.33             |           |       |        |         |
| 37       | + 15.95           | _ 56.10            |           |       |        |         |
| 38       | - 85.25           | + 56.38            |           |       |        |         |
| 39       | + 1.10            | + 39.05            |           |       |        |         |
| 40       | +128.98           | +280.50            |           |       |        |         |
| 41       | + 40.43           | +178.75            |           |       |        |         |
| 42       | +115.50           | - 22.83            |           |       |        |         |
| 43       | + 64.90           | -233.75            |           |       |        |         |
| 44       | - 62.98           | + 61.88            |           |       |        |         |
| 45       | +105.33           | +250.53            |           |       |        |         |
| 46       | -133.10           | -236.50            |           |       |        |         |
| 47       | + 37.40           | - 93.50            |           |       |        |         |
| 48       | + 64.90           | - 2.75             |           |       |        |         |
| 49       | + 11.55           | - 99.28            |           |       |        |         |
| 50       | +102.03           | - 46.75            |           |       |        |         |
| 51       | + 68.20           | + 9.90             |           |       |        |         |
| 52       | + 63.53           | +178.20            |           |       |        |         |
| 53       | +121.55           | -110.00            |           |       |        |         |
| 54       | + 93.78           | -237.33            |           |       |        |         |
| 55       | - 46.75           | - 31.08            |           |       |        |         |
| 56       | - 31.63           | - 9.63             |           |       |        |         |
| 57       | - 6.05            | + 55.00            |           |       |        |         |
| 58       | - 58.30           | - 67.65            |           |       |        |         |
| 59       | + 71.23           | - 42.08            |           |       |        |         |
| 60       | + 2.75            | + 54.45            |           |       |        |         |
| 61<br>62 | + 1.93<br>+258.23 | + 57.48<br>- 88.23 |           |       |        |         |
| 63       | - 99.00           | - 68.20            |           |       |        |         |
| 64       | + 94.60           | + 57.20            |           |       |        |         |
| 65       | + 30.25           | - 93.50            |           |       |        |         |
| 66       | +132.00           | + 79.48            |           |       |        |         |
| 67       | + 51.70           | - 13.75            |           |       |        |         |
| 68       | - 25.03           | +221.10            |           |       |        |         |
| 69       | -113.30           | + 19.25            |           |       |        |         |
| 70       | + 66.28           | - 18.15            |           |       |        |         |
| 71       | - 30.80           | - 25.03            |           |       |        |         |
| 72       | - 8.25            | - 69.03            |           |       |        |         |
| 73       | +234.58           | -280.50            |           |       |        |         |
| 74       | + 22.00           | + 66.28            |           |       |        |         |
| 75       | + 16.50           | - 63.25            |           |       |        |         |

| No.    | x"           | у′′     | Max. | Min. | Epoch | Period | Remarks |
|--------|--------------|---------|------|------|-------|--------|---------|
| 1C 449 | 99 (continue | ed)     |      |      |       |        |         |
| 76     | +333.30      | +293.15 |      |      |       |        |         |
| 77     | + 79.20      | + 52.25 |      |      |       |        |         |
| 78     | -187.00      | +104.50 |      |      |       |        |         |
| 79     | -159.50      | +316.25 |      |      |       |        |         |
| 80     | + 33.00      | -283.80 |      |      |       |        |         |
| 81     | + 45.10      | - 11.00 |      |      |       |        |         |
| 82     | + 22.55      | + 8.25  |      |      |       |        |         |
| 83     | + 19.53      | + 31.08 |      |      |       |        |         |
| 84     | - 24.48      | - 41.53 |      |      |       |        |         |
| 85     | - 91.30      | +309.93 |      |      |       |        |         |
| 86     | + 69.85      | + 13.20 |      |      |       |        |         |
| 87     | + 34.93      | + 73.98 |      |      |       |        |         |
| 88     | + 85.25      | + 50.60 |      |      |       |        |         |
| 89     | - 68.75      | - 0.83  |      |      |       |        |         |
| 90     | + 3.30       | - 19.25 |      |      |       |        |         |
| 91     | - 61.05      | - 24.75 |      |      |       |        |         |
| 92     | +123.48      | +138.05 |      |      |       |        |         |
| 93     | + 35.75      | - 32.18 |      |      |       |        |         |
| 94     | + 15.50      | + 55.83 |      |      |       |        |         |
| 95     | - 37.40      | + 38.78 |      |      |       |        |         |
| 96     | - 8.53       | + 29.98 |      |      |       |        |         |
| 97     | - 45.93      | - 88.28 |      |      |       |        |         |
| 98     | +251.08      | - 44.55 |      |      |       |        |         |
| 99     | -292.05      | + 4.68  |      |      |       |        |         |
| 100    | + 72.60      | -266.20 |      |      |       |        |         |
| 101    | + 35.75      | - 20.35 |      |      |       |        |         |
| 102    | + 36.03      | + 7.15  |      |      |       |        |         |
| 103    | + 35.48      | + 52.25 |      |      |       |        |         |
| 104    | + 63.80      | + 30.53 |      |      |       |        |         |
| 105    | + 72.60      | - 3.30  |      |      |       |        |         |
| 106    | + 30.25      | +133.93 |      |      |       |        |         |
| 107    | +159.23      | - 81.68 |      |      |       |        |         |
| 108    | +121.28      | + 6.33  |      |      |       |        |         |
| 109    | - 96.53      | + 97.63 |      |      |       |        |         |
| 110    | + 38.50      | + 82.23 |      |      |       |        |         |
| 111    | + 49.50      | -158.13 |      |      |       |        |         |
| 112    | - 30.25      | + 63.25 |      |      |       |        |         |
| 113    | +156.75      | +226.88 |      |      |       |        |         |
| 114    | - 7.98       | - 13.75 |      |      |       |        |         |
| 115    | + 33.28      | +119.08 |      |      |       |        |         |
| 116    | + 30.25      | - 31.90 |      |      |       |        |         |
| 117    | -242.28      | +234.85 |      |      |       |        |         |
| 118    | +168.03      | +181.50 |      |      |       |        |         |
| 119    | - 71.50      | + 13.50 |      |      |       |        |         |
| 120    | + 85.53      | -220.00 |      |      |       |        |         |
| 121    | - 96.25      | - 31.63 |      |      |       |        |         |
| 122    | + 11.00      | - 20.63 |      |      |       |        |         |
|        | . 11.00      | 20.03   |      |      |       |        |         |

| No.    | x"           | y"      | Max. | Min. | Epoch | Period | Remarks |
|--------|--------------|---------|------|------|-------|--------|---------|
| IC 449 | 99 (continue | d)      |      |      |       |        |         |
| 123    | +164.45      | + 17.33 |      |      |       |        |         |
| 124    | + 10.73      | +197.73 |      |      |       |        |         |
| 125    | +130.35      | +131.18 |      |      |       |        |         |
| 126    | + 18.98      | - 59.95 |      |      |       |        |         |
| 127    | + 49.50      | - 10.45 |      |      |       |        |         |
| 128    | + 77.00      | - 38.78 |      |      |       |        |         |
| 129    | - 13.20      | - 39.60 |      |      |       |        |         |

All variables found by Fourcade and Laborde, who also have suspected variables nos. 130-169 with coordinates, and no. 170.

Fourcade and Laborde, Cordoba Repr 126 (1965); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Fourcade and Laborde, Cordoba Repr 173 (p) (1969)

S55b, R62b, F&L63, S67, S69, S70

| NGC 5824 α 15h00m.9, δ – 32°53' |                               |          |       |      |          |        |      |  |  |  |
|---------------------------------|-------------------------------|----------|-------|------|----------|--------|------|--|--|--|
| 1100.                           | 7024 W 13                     | 00 .5, 0 | 52 55 |      |          |        |      |  |  |  |
| 1                               | - 72.8                        | + 35.5   | 16.8  | 18.3 | 35638.20 | 0.597  |      |  |  |  |
| 2                               | + 11.3                        | +113.1   | 17.1  | 18.2 | 35635.48 | 0.651  |      |  |  |  |
| 3                               | +124.7                        | + 32.0   | 17.1  | 18.2 | 35636.42 | 0.641  |      |  |  |  |
| 4                               | +186.5                        | + 74.0   | 17.1  | 18.0 |          |        | RRc? |  |  |  |
| 5                               | - 9.5                         | +108.0   | 17.0  | 18.1 | 35638.21 | 0.634  |      |  |  |  |
| 6                               | + 98.6                        | - 34.2   | 17.2  | 18.1 |          |        | RRc  |  |  |  |
| 7                               | - 36.9                        | - 71.6   | 17.4  | 18.0 |          |        | RR   |  |  |  |
| 8                               | - 8.7                         | 69.4     | 17.7  | 18.3 |          |        | RR   |  |  |  |
| 9                               | + 75.8                        | + 72.2   | 16.9  | 18.3 |          |        | RRa  |  |  |  |
| 10                              | +155.9                        | -113.0   | 17.3  | 18.0 |          |        | RR   |  |  |  |
| 11                              | - 10.1                        | - 50.8   | 16.9  | 17.9 |          |        |      |  |  |  |
| 12                              | - 73.3                        | - 40.0   | 17.0  | 18.2 | 35661.30 | 0.592  |      |  |  |  |
| 13                              | + 14.0                        | -106.1   | 17.4  | 18.0 |          |        | RR   |  |  |  |
| 14                              | + 19.0                        | + 51.0   | 17.1  | 17.9 |          | 0.35?  | RRc  |  |  |  |
| 15                              | + 82.5                        | - 58.1   | 17.2  | 18.3 |          |        | RR   |  |  |  |
| 16                              | + 4.1                         | - 63.4   | 17.5  | 18.3 |          |        | RR   |  |  |  |
| 17                              | + 33.7                        | - 90.3   | 17.3  | 18.2 |          |        | RRc  |  |  |  |
| 18                              | +132.9                        | - 3.6    | 17.1  | 18.2 |          |        | RR   |  |  |  |
| 19                              | - 29.1                        | - 42.6   | 17.0  | 18.3 | 35636.22 | 0.635  | RRa  |  |  |  |
| 20                              | - 82.1                        | - 19.8   | 17.5  | 18.1 |          |        |      |  |  |  |
| 21                              | + 45.2                        | + 71.1   | 17.6  | 18.2 |          |        | RR   |  |  |  |
| 22                              | + 48.5                        | - 15.9   | 17.1  | 18.0 |          | 0.6    | RRa  |  |  |  |
| 23                              | -125.6                        | -243.2   | 17.0  | 18.1 | 35630.23 | 0.618  |      |  |  |  |
| 24                              | + 96.3                        | -305.6   | 17.2  | 18.0 |          |        | RRc  |  |  |  |
| 25                              | -333.4                        | + 6.5    | 17.3  | 18.1 |          |        | RR   |  |  |  |
| 26                              | +401.5                        | +362.9   | 17.0  | 18.1 | 35635.45 | 0.744? | RRa  |  |  |  |
| 27                              | +326.1                        | - 24.5   | 17.2  | 18.1 |          |        | RR   |  |  |  |
| A 11 va                         | All variables found by Rosino |          |       |      |          |        |      |  |  |  |

All variables found by Rosino.

Rosino, ASP 73.309 (1961)

\$55b, R57, S61, S62, S64, R65, FLA66, S69

| No.   | x''                    | y''                                   | Max.    | Min.  | Epoch     | Period   | Remarks |
|-------|------------------------|---------------------------------------|---------|-------|-----------|----------|---------|
| Palom | ar 5 α 15 <sup>h</sup> | n <sub>13</sub> m <sub>.5</sub> , δ + | 00° 05′ |       |           |          |         |
| 1     | - 97                   | + 25                                  | 17.50   | 17.92 | 33741.651 | 0.293230 |         |
| 2     | - 85                   | -246                                  | 17.61   | 18.01 | 34456.084 | 0.332467 |         |
| 3     | +143                   | -166                                  | 17.45   | 17.95 | 34182.801 | 0.329953 |         |
| 4     | + 35                   | -238                                  | 17.45   | 17.93 | 34234.522 | 0.286362 |         |
| 5     | - 84                   | + 94                                  | 17.55   | 17.85 | 34833.520 | 0.252395 |         |

Pietra, Bologna Pubbl 6, 16 (1956); Mannino, Bologna Pubbl 6, 17 (1956); Kinman and Rosino, ASP 74.500 (1962); Rosino and Pinto, IAU Coll 21 (1973)

S55a, R57, S59, R61, S62, S64, R65, S69

| NGC 5897 $a_{15}^{h_{14}m}.5$ , $\delta = 20^{\circ}50'$ |      |      |       |      |           |           |           |  |  |
|----------------------------------------------------------|------|------|-------|------|-----------|-----------|-----------|--|--|
| 1                                                        | -109 | -201 | 16.15 | 17.1 | 41100.695 | 0.4430685 |           |  |  |
| 2                                                        | - 57 | - 97 | 16.25 | 16.9 | 36752.627 | 0.454149  | var       |  |  |
| 3                                                        | - 40 | - 4  | 16.3  | 17.1 | 33481.615 | 0.419455  | +         |  |  |
| 4                                                        | + 71 | + 20 | 15.7  | 16.2 | 40807.611 | 0.42      |           |  |  |
| 5                                                        | -136 | +215 | 14.85 | 15.2 | 40807.611 | 64.5 irr  |           |  |  |
| 6                                                        | + 16 | + 59 | 16.4  | 16.9 | 41124.663 | 0.3325?   | Alt 0.485 |  |  |
| 7                                                        | + 20 | + 58 | 16.2  | 16.8 | 40803.536 | 0.511710  |           |  |  |

Vars. 5-7 found by Sandage and Katem. Two suspected variables.

Sandage and Katem, ApJ 153,569 (1968); Eggen, ApJ 172.639 (1972); Wehlau, Sawyer Hogg and Potts, JRASC 66.72 (1972), unpub (1972)

\$55a, \$57, \$59, \$62, \$69, \$70

| NGC | 5904 (Messi | er5) a 15 <sup>h</sup> | 16m.0, δ | +02°16′ |           |           |       |
|-----|-------------|------------------------|----------|---------|-----------|-----------|-------|
| 1   | + 27.7      | +161.1                 | 14.66    | 15.69   | 13715.588 | 0.5217865 | +     |
| 2   | - 343.5     | - 31.5                 | 14.17    | 15.57   | 39256.416 | 0.5262679 | Β¢    |
| 3   | + 160.1     | +113.7                 | 14.62    | 15.47   | 36762.676 | 0.6001888 | +     |
| 4   | - 12.3      | + 73.8                 | 14.65    | 15.89   | 27627.708 | 0.4496402 |       |
| 5   | - 7.8       | + 51.6                 | 14.83    | 16.06   | 27567.929 | 0.545903  |       |
| 6   | + 27.2      | - 46.6                 | 14.55    | 15.61   | 27567.856 | 0.5488311 | -     |
| 7   | - 5.1       | -191.3                 | 14.03    | 15.69   | 27601.730 | 0.494396  | +     |
| 8   | + 134.0     | -133.2                 | 14.67    | 15.75   | 39942.309 | 0.5462306 | +     |
| 9   | + 195.0     | + 88.0                 | 14.57    | 15.50   | 27610.686 | 0.6988972 | +     |
| 10  | + 107.4     | +382.0                 | 14.23    | 15.45   | 36762.591 | 0.5306602 | _     |
| 11  | - 154.5     | + 84.5                 | 14.27    | 15.60   | 36762.605 | 0.5958939 | +     |
| 12  | - 175.5     | - 17.3                 | 14.20    | 15.78   | 27601.762 | 0.467716  | _     |
| 13  | + 11.0      | - 65.4                 | 14.75    | 15.64   | 27567.800 | 0.5131223 | +     |
| 14  | - 145.6     | +103.7                 | 14.30    | 15.62   | 27610.358 | 0.4871724 | −, Bℓ |
| 15  | + 192.0     | + 3.6                  | 14.70    | 15.28   | 27567.908 | 0.336763  | +     |
| 16  | + 91.0      | + 83.9                 | 14.29    | 15.53   | 27567.781 | 0.6476223 | +     |
| 17  | - 26.1      | + 44.3                 | 14.80    | 15.91   | 27567.723 | 0.601354  |       |
| 18  | + 151.7     | -107.7                 | 14.33    | 15.55   | 38911.175 | 0.464098  | +     |
| 19  | + 233.7     | -129.9                 | 14.38    | 15.57   | 27601.706 | 0.469965  | +     |
| 20  | - 255.5     | - 25.0                 | 14.38    | 15.56   | 36762.787 | 0.6094778 | +     |
| 21  | + 322.6     | + 74.0                 | 14.38    | 15.38   | 13715.505 | 0.6048947 | +     |
| 22  | - 205.7     | +383.5                 | not var  |         |           |           |       |

| No.            | x''                | у′′    | Max.    | Min.   | Epoch     | Period     | Remarks    |
|----------------|--------------------|--------|---------|--------|-----------|------------|------------|
| IGC            | 5904 (conti        | nued)  |         |        |           |            |            |
| 23             | - 253.4            | - 10.9 | not var |        |           |            |            |
| 24             | - 46.8             | - 71.7 | 14.77   | 15.65  | 27567.821 | 0.4783771  |            |
| 25             | - 28.9             | -128.0 | 13.83   | 14.73  | 27567.766 | 0.508      |            |
| 26             | + 21.8             | +101.5 | 14.42   | 15.46  | 27601.761 | 0.6225642  |            |
| 27             | - 6.7              | - 59.2 | 14.37   | 15.74  | 27888.894 | 0.4703     |            |
| 8              | + 132.2            | -121.1 | 14.49   | 15.59  | 36762.271 | 0.5439272  | _          |
| 9              | - 374.7            | - 76.6 | 14.42   | 15.53  | 27567.700 | 0.451433   | -, Sp F    |
| 0              | + 22.8             | -212.8 | 14.55   | 15.55  | 39942.454 | 0.5921739  |            |
| 1              | + 151.7            | -141.7 | 14.77   | 15.48  | 13715.209 | 0.30058294 | cst        |
| 2              | + 201.9            | -150.6 | 14.10   | 15.67  | 13715.596 | 0.45778654 | cst        |
| 3              | - 21.1             | +127.5 | 14.57   | 15.63  | 27610.270 | 0.5014750  | +          |
| 4              | + 84.3             | + 59.5 | 14.65   | 15.52  | 27567.727 | 0.5681431  | est        |
| 5              | - 12.2             | -114.7 | 14.80   | 15.39  | 27610.406 | 0.3081255  | +          |
| 6              | - 8.4              | - 52.2 | 14.96   | 15.91  | 27563.868 | 0.6277229  | cst        |
| 7              | + 44.7             | - 67.0 | 14.49   | 15.60  | 27605.762 | 0.4887941  |            |
| 8              | - 44.2             | +117.2 | 14.49   | 15.90  | 27889.937 | 0.470441   |            |
| 9              | - 125.3            | -205.2 | 14.08   | 15.63  | 27610.368 | 0.5890374  | +          |
| 0              | + 124.8            | +113.5 | 14.84   | 15.45  | 27610.461 | 0.3173299  | +          |
| 1              | + 19.3             | +231.4 | 14.19   | 15.57  | 27567.879 | 0.488572   | _          |
| 2              | - 123.2            | -120.8 | 11.20   | 12.24  | 27567.8   | 25.738     | Sp, V, mem |
| 3              | - 201.8            | +154.3 | 14.70   | 15.43  | 27610.364 | 0.6602289  | +          |
| 4              | - 102.5            | + 31.1 | 14.97   | 15.61  | 27610.125 | 0.3296024  | +          |
| 5              | - 116.7            | + 65.7 | 14.74   | 15.90  | 27567.774 | 0.6166364  | cst        |
| 6              | - 80.0             | + 69.1 | not var |        |           |            |            |
| 7              | - 75.3             | + 58.1 | 14.84   | 15.96  | 27563.861 | 0.5397295  | _          |
| 8              | - 62.5             | +106.3 | not var |        |           |            |            |
| 9              | + 52.7             | +177.5 | not var |        |           |            |            |
| 0              | + 38.0             | +109.1 | 14.00:  | 14.54: |           | irr?       | Sp         |
| 1              | + 0.3              | +135.5 | var?    |        |           |            | -1         |
| 2              | + 107.9            | + 35.3 | 14.49   | 15.57  | 27563.804 | 0.5017848  | Be         |
| 3              | + 68.9             | + 19.2 | 14.98   | 15.28  | 27601.70  | 0.37360    |            |
| 4              | + 30.3             | + 57.2 | 14.62   | 15.68  |           |            |            |
| 55             | + 80.1             | -163.2 | 14.87   | 15.39  | 36762.219 | 0.3289013  | +          |
| 6              | - 68.9             | + 96.5 | 14.75   | 15.86  | 27889.931 | 0.5346903  |            |
| 7              | - 30.6             | + 99.7 | 14.94   | 15.43  | 27567.897 | 0.28467869 |            |
| 8              | - 605.1            | +168.2 | 14.86   | 15.52  | 36762.274 | 0.4912489  | +          |
| 59             | - 150.0            | - 35.5 | 14.70   | 15.67  | 13715.490 | 0.5420257  | +          |
| 50             | - 109.7            | + 8.2  | 15.04   | 15.74  | 27567.75  | 0.285218?  |            |
| 51             | - 254.9            | - 31.4 | 14.42   | 15.62  | 27610.472 | 0.5686267  | +          |
| 52             | + 166.8            | -216.8 | 14.78   | 15.36  | 36762.543 | 0.2814154  | +          |
| 3              | + 212.9            | + 51.8 | 14.10   | 15.50  | 13384.553 | 0.4976783  | +, BQ      |
| 54             | - 51.2             | -248.9 | 14.43   | 15.55  | 27610.553 | 0.5445006  |            |
| 55             | - 159.9            | - 93.8 | 14.07   | 15.02  | 36385.522 | 0.4806936  | +          |
| 56             | + 218.3            | +406.8 | 14.83   | 15.42  | 27610.242 | 0.3507086  | +          |
|                | -1028.2            | - 59.8 | 14.36   | 15.13  | 13715.314 | 0.3490944  | _          |
| 57             |                    | + 47.6 | 14.87   | 15.47  | 27610.347 | 0.3342667  |            |
|                | + 897 5            | + 4/6  |         |        |           |            |            |
| 57<br>58<br>59 | + 897.5<br>+ 653.3 | + 47.6 | 14.10   | 15.68  | 27610.320 | 0.4948729  | ****       |

| No. | x''         | y''    | Max.  | Min.  | Epoch      | Period     | Remarks    |
|-----|-------------|--------|-------|-------|------------|------------|------------|
| NGC | 5904 (conti | nued)  |       |       |            |            |            |
| 71  | + 664.1     | +290.3 | 14.25 | 15.86 | 27610.357  | 0.5024724  |            |
| 72  | + 689.7     | + 38.3 | 14.66 | 15.71 | 27610.318  | 0.5622722  | -, Sp F    |
| 73  | + 17.3      | +604.7 | 14.66 | 15.23 | 19533.289  | 0.3401261  | +          |
| 74  | + 202.8     | +162.8 | 14.83 | 15.18 | 36762.379  | 0.4539887  | _          |
| 75  | + 78.6      | -412.8 | 14.80 | 15.38 | 27610.523  | 0.6854171  | +, Sp F    |
| 76  | + 80.5      | -309.2 | 14.69 | 15.18 | 13524.125  | 0.3018963  | _          |
| 77  | - 171.5     | -184.8 | 14.39 | 15.25 | 36762.596  | 0.845146   | +          |
| 78  | + 65.5      | +159.7 | 14.90 | 15.46 | 39942.389  | 0.26481739 | cst        |
| 79  | - 133.5     | - 32.2 | 14.88 | 15.42 | 39942.316: | 0.33313838 | cst        |
| 80  | - 48.6      | +111.6 | 15.05 | 15.54 | 27562.986  | 0.3365424  | _          |
| 81  | - 72.2      | -121.7 | 14.61 | 15.58 | 34131.439  | 0.5572965  | _          |
| 82  | - 67.8      | + 12.4 | 14.86 | 15.72 | 27563.798  | 0.5584455  |            |
| 83  | - 84.7      | - 87.8 | 14.80 | 15.66 | 27567.783  | 0.5533073  | cst        |
| 84  | + 43.7      | - 31.9 | 11.54 | 12.61 | 27602      | 26.42 ±    | Sp, V, mem |
| 85  | + 38.3      | - 34.4 | 14.80 | 15.70 | 27567.970  | 0.52741    |            |
| 86  | + 34.6      | - 33.0 | 14.50 | 15.83 | 27567.856  | 0.56733    |            |
| 87  | + 122.0     | - 1.8  | 15.00 | 15.38 | 21350.182  | 0.7383992  | +          |
| 88  | + 65.2      | + 61.8 | 15.08 | 15.48 | 27563.832  | 0.32808270 |            |
| 89  | + 60.0      | + 64.7 | 14.79 | 15.69 | 27626.707  | 0.55844189 |            |
| 90  | - 44.7      | + 15.3 | 14.67 | 15.88 | 27540.828  | 0.5571527  |            |
| 91  | - 36.0      | + 35.0 | 15.04 | 15.96 | 27567.927  | 0.584944   |            |
| 92  | - 56.6      | -123.5 | 14.28 | 15.58 | 27567.963  | 0.4635789  |            |
| 93  | + 44.0      | - 35.7 | 14.54 | 15.81 | 27567.771  | 0.55231    |            |
| 94  | - 23.5      | + 17.4 | 15.26 | 16.11 | 27601.728  | 0.53141    |            |
| 95  | - 47.2      | +102.8 | 15.13 | 15.80 | 27626.689  | 0.29082    |            |
| 96  | - 12.4      | + 32.9 | 14.96 | 16.15 | 27563.778  | 0.51225    |            |
| 97  | + 48.9      | - 92.5 | 14.18 | 15.61 | 27601.754  | 0.54466    |            |
| 98  | + 37.3      | + 20.0 | 15.26 | 15.71 | 27605.737  | 0.3063857  | -          |
| 99  | + 34.4      | - 0.1  | 15.32 | 15.89 | 27567.739  | 0.32134    |            |
| 100 | + 2.8       | + 48.7 | 15.30 | 16.01 | 27628.710  | 0.29434    |            |
| 101 | - 281.6     | + 36.0 | 17.15 | 22    |            |            | UG?        |
| 102 | + 14.8      | - 14.8 |       |       |            |            | prob RR    |
| 103 | + 20.5      | - 8.8  |       |       |            |            | prob RR    |

Five suspected variables, Voroshilov (1971); one suspected, Osborn (1971).

Arp, AJ 60.1 (1955), AJ 62.129 (1957); Wallerstein, ApJ 127.583 (p) (1958), ApJ 129.356 (1959); Kraft, Camp and Hughes. ApJ 130.90 (1959); Preston, ApJ 134.651 (1961); Williams, AJ 71.615 (1966); Coutts, Doctoral Thesis, Toronto (1967); Sturch, ApJ 148.477 (1967); Wilkens, Inf Bull So Hemis 12.17 (1968); Coutts, Non-Periodic Phenomena in Variable Stars. ed. L. Detre, Budapest, p. 313 (1969); Coutts, Margoni and Stagni, AAS Bull 1.238 (1969); Coutts and Sawyer Hogg, Toronto Publ 3, 1 (1969); Kukarkin and Kukarkina, AC 541.1 (1969); Sturch, AJ 74.82 (1969); Zhukov, Soviet Astr AJ 13.306 (1969); Coutts Toronto Publ 3.81 (1971), IBVS 572 (1971); Kukarkin, AC 646 (1971); Kukarkin and Kukarkina, VS Suppl 1, 1 (1971); Osborn, IBVS 598 (1971): Voroshilov, AC 623.7 (1971); Coutts, Bamb Veröff 9, 100.238 (1972); Coutts and Sawyer Hogg, AAS Bull 4.217 (1972); Eggen, ApJ 172.639 (1972)

S55a, R57, S57, S59, S61, A62, R62a, S62, P64, S64, L65, R65, S166, S67, S69, S70, F72

| No.   | х′′        | у′′                     | Max.    | Min. | Epoch | Period | Remarks       |
|-------|------------|-------------------------|---------|------|-------|--------|---------------|
| NGC 5 | 5927 a 15h | 24 <sup>m</sup> .4, δ – | 50° 29′ |      |       |        |               |
| 1     | +141.90    | +129.25                 |         |      |       |        | L&F 4, f?     |
| 2     | - 45.38    | 0.0                     |         |      |       |        | L&F 14        |
| 3     | - 4.6      | - 4.1                   |         |      |       | 300:   | Osborn        |
| 4     |            |                         | 14.6    | 15.3 |       |        | V3, LE&M      |
| 5     |            |                         | 14.7    | 15.2 |       |        | V6, LE&M      |
| 6     |            |                         | 14.7    | 15.3 |       |        | V7, LE&M      |
| 7     |            |                         | 14.7    | 15.3 |       |        | V8, LE&M      |
| 8     |            |                         | 15.0    | 15.6 |       |        | V9, LE&M      |
| 9     |            |                         | 15.1    | 16.0 |       |        | V10, LE&M     |
| 10    |            |                         | 14.7    | 15.1 |       |        | L43, LE&M     |
| 11    |            |                         | 14.7    | 15.1 |       |        | L17, LE&M, f? |

V mags. for vars. 4-11, Lloyd Evans and Menzies, unpub. (1972). 13 field variables, Laborde and Fourcade.

Laborde and Fourcade, Cordoba Repr 138 (p) (1966); Osborn, Obs 88.26 (p) (1968), Letter (1968); Lloyd Evans, Letter, V3 (1972); Lloyd Evans and Menzies, IAU Coll 21 (1973) S55b, R62b, FLA66, S69, S70

## NGC 5946 a $15^{h}31^{m}.8$ , $\delta -50^{\circ}30'$

Five field variables, Fourcade and Laborde.

Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966) S55b, R62b

# NGC 5986 a $15^{h}42^{m}.8$ , $\delta -37^{\circ}37'$

| 1 | +60.0      | - 8.3  | 15.2 | 16.9 | RR?  |
|---|------------|--------|------|------|------|
| 2 | - 8.0      | - 2.1  | 16.1 | 17.2 | RR   |
| 3 | $\pm 23.2$ | +110.5 | 16.0 | 17.0 | RR   |
| 4 | -82.5      | + 18.7 | 13.6 | 14.3 | Slow |
| 5 | +58.6      | - 2.8  | 16.1 | 17.1 | RR   |
|   |            |        |      |      |      |

All variables found by Rosino.

Rosino, Asiago Contr 132 (p) (1962)

S55a, R57, S59, S61, R62c, S62, F&L63, S64, FLA66, S69

# NGC 6093 (Messier 80) $a 16^{h}14^{m}.1$ , $\delta -22^{\circ}52'$

| 1 | -137 | + 49 | 13.1 | 14.6  | 32356.718 | 16.304 | Sp F-G   |
|---|------|------|------|-------|-----------|--------|----------|
| 2 | + 22 | - 19 | 13.7 | 14.8  | 34889.704 | 24.9?  |          |
| 3 | +104 | + 56 | 15.5 | 16.15 |           |        | Short P  |
| 4 | - 85 | + 61 | 15.5 | 16.1  |           |        | Short P  |
| 5 | + 14 | - 67 | 15.4 | 16.3  |           |        | Short P  |
| 6 | +520 | +296 | 12.1 | 16.1  | 32741.67  | 177.90 | S Sco. f |

| No.       | x''           | у′′           | Max.        | Min. | Epoch             | Period | Remarks           |
|-----------|---------------|---------------|-------------|------|-------------------|--------|-------------------|
| NGC       | 6093 (conti   | nued)         |             |      |                   |        |                   |
| 7<br>Nova | +502<br>+ 4.0 | +112<br>+ 2.7 | 11.9<br>6.8 | 16.3 | 32770.60<br>00551 | 223.50 | R Sco, f<br>T Sco |

Sawyer, Toronto Pubi 1, 12 (1942); Joy, ApJ 110.105 (1949); Eggen, Royal Obs Bull 29.E73 (1961); Kukarkin, Letter (1972); Sawyer Hogg and Wehlau, unpub (1972)

Nova bibliography: Sawyer, Toronto Comm 1 (1938) S55a, S57, R57, S59, S62, R65, S166, S67, S69, S70

## **NGC 6101** $\alpha$ 16<sup>h</sup>20<sup>m</sup>.0, $\delta$ -72°06′

Searched by Fourcade and Laborde, but no variables found. Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966) S55b, R62b

| NCC | 6121 (Mass | sier 4) a 16 <sup>1</sup> | 120m 6 8 | 26° 24' |          |           |           |
|-----|------------|---------------------------|----------|---------|----------|-----------|-----------|
| NGC | 0121 (Mess | (iei 4) (i 10-            | -200, 0  | -20 24  |          |           |           |
| 1   | - 281      | + 42                      | 13.46    | 13.97   | 30000.08 | 0.2888545 | 0         |
| 2   | - 248      | -195                      | 13.05    | 14.10   | 30000.03 | 0.5356832 | 0         |
| 3   | - 208      | -507                      | 12.92    | 14.08   | 38500.16 | 0.506651  | +         |
| 4   | - 185      | -340                      | 11.0     | 12.5    |          | 50-70     | Sp G, V   |
| 5   | - 185      | - 93                      | 13.57    | 13.99   | 30000.05 | 0.622398  | 0         |
| 6   | - 115      | +318                      | 13.54    | 14.09   | 30000.27 | 0.320516  | 0         |
| 7   | - 113      | +231                      | 12.99    | 14.28   | 30000.13 | 0.4987743 | 0         |
| 8   | - 110      | +111                      | 12.88    | 14.22   | 30000.18 | 0.508187  | +         |
| 9   | - 104      | +105                      | 12.75    | 14.16   | 30000.04 | 0.5718975 | 0         |
| 10  | - 68       | +159                      | 12.68    | 14.18   | 30000.07 | 0.4907173 | 0         |
| 11  | - 64       | -297                      | 13.32    | 14.14   | 33500.25 | 0.4930721 | _         |
| 12  | - 53       | -207                      | 13.04    | 14.38   | 33000.40 | 0.4461239 | _         |
| 13  | - 47       | +270                      | 12.37    | 13.08   |          | 40:       | Sp G-K, V |
| 14  | - 47       | -244                      | 12.96    | 14.40   | 32500.35 | 0.4635338 | +         |
| 15  | - 32       | +436                      | 12.98    | 14.25   | 27500.35 | 0.4437857 | _         |
| 16  | - 29       | + 69                      | 13.05    | 14.18   | 30000.02 | 0.5425421 | 0         |
| 17  | - 8        | + 20                      | 13.40    | 13.74   |          |           |           |
| 18  | + 4        | + 27                      | 12.84    | 14.20   | 30000.14 | 0.4787924 | 0         |
| 19  | + 11       | +358                      | 12.76    | 14.18   | 30000.41 | 0.4678111 | 0         |
| 20  | + 13       | - 63                      | 13.24    | 13.60   | 30000.27 | 0.309383  | 0         |
| 21  | + 19       | - 4                       | 12.73    | 14.10   | 29500.11 | 0.4719831 | +         |
| 22  | + 34       | + 80                      | 13.40    | 13.98   | 31000.43 | 0.6029436 | +         |
| 23  | + 38       | - 26                      | 13.26    | 13.77   | 30000.02 | 0.2985502 | +         |
| 24  | + 49       | + 48                      | 13.12    | 14.06   | 31500.53 | 0.5467797 | +         |
| 25  | + 70       | + 70                      | 13.08    | 14.08   | 30000.25 | 0.6127346 |           |
| 26  | + 94       | - 72                      | 12.80    | 14.14   | 35000.45 | 0.5412163 |           |
| 27  | + 118      | +255                      | 12.90    | 14.09   | 30000.52 | 0.6120191 | 0         |
| 28  | + 259      | + 84                      | 12.60    | 14.02   | 31000.05 | 0.5223405 | _         |
| 29  | + 326      | +598                      | 12.88    | 14.02   | 34000.19 | 0.5224824 | _         |
| 30  | + 340      | - 69                      | 13.29    | 13.87   | 31000.12 | 0.2697490 | _         |
| 31  | + 353      | + 45                      | 12.72    | 14.03   | 31000.18 | 0.5053039 | _         |
|     |            |                           |          |         |          |           |           |

| No. | x''        | у′′    | Max.  | Min.  | Epoch     | Period    | Remarks |
|-----|------------|--------|-------|-------|-----------|-----------|---------|
| GC  | 6121 (cont | inued) |       |       |           |           |         |
| 32  | + 746      | - 40   | 12.98 | 13.96 | 30000.21  | 0.5791092 | 0       |
| 33  | + 805      | +630   | 12.70 | 13.96 | 30000.39  | 0.6148303 | 0       |
| 34  | - 820      | +416   | 13.16 | 14.36 | 29723.338 | 0.554843  |         |
| 35  | - 377      | + 62   | 13.44 | 14.15 | 29705.441 | 0.627042  |         |
| 36  | - 208      | -259   | 13.26 | 14.18 | 29676.370 | 0.541310  |         |
| 37  | - 39       | + 2    | 13.46 | 13.76 | 29522.064 | 0.247352  |         |
| 38  | - 23       | + 49   | 13.38 | 14.09 | 29496.053 | 0.577848  |         |
| 39  | + 1        | - 80   | 13.62 | 14.06 | 29676.463 | 0.623980  |         |
| 40  | + 25       | + 49   |       |       |           | 0.40151   |         |
| 41  | + 65       | -150   | 13.53 | 13.97 | 29676.402 | 0.2517311 |         |
| 42  | + 377      | +558   | 13.33 | 13.78 | 29526.164 | 0.303708  |         |
| 43  | +1263      | +332   | 12.92 | 13.48 | 29748.245 | 0.320637  |         |

Joy, ApJ 110.105 (1949); Hoffmeister, Sonn Veröff 6, 1 (1963); Wilkens, La Plata Bol 7.14 (1964), MVS 2.101 (1964); Oosterhoff and Walraven, BAN 18.387 (1966); Ponsen and Oosterhoff, BAN Suppl 1.3 (1966); Eggen, ApJ 172.639 (1972)

\$55a, \$57, \$59, \$61, \$62a, \$62, \$64, \$L65, \$R65, \$67, \$C\$\$\$69, \$69, \$70

### NGC 6139 α 16h24m.3, δ –38°44′

Observed by Fourcade and Laborde. No variables found. Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966) S55b, R62b

NGC 6144  $a 16^{h}24^{m}.2$ ,  $\delta -25^{\circ}56'$ 

1 +481 -117 15.3 16.3

Sawyer, JRASC 47.229 (1953) S55a, S57, S59, S62, S69

NGC 6171 (Messier 107)  $a 16^{h}29^{m}.7, \delta -12^{\circ}57'$ 

|      | 0    | (1.2000101 | ,      | ,     |       |           |           |                |
|------|------|------------|--------|-------|-------|-----------|-----------|----------------|
| 1    | - 11 | 12.8       | -522.0 | 14.0  | 17.0  | 40504.    | 332       | V720 Oph, V, f |
| 2    | + 14 | 48.8       | -388.8 | 15.6  | 16.4  | 40389.502 | 0.5710205 |                |
| 3    | - 22 | 24.4       | -183.6 | 15.55 | 16.25 | 40389.595 | 0.566343  |                |
| 4    | _ 9  | 99.6       | -156.6 | 15.5  | 16.15 | 40389.628 | 0.2821317 |                |
| 5    | + 23 | 31.0       | -161.4 | 15.7  | 16.25 | 40389.709 | 0.70238   | +              |
| 6    | - :  | 10.8       | - 67.2 | 15.7  | 16.25 | 40389.740 | 0.2602558 |                |
| 7    | + 4  | 42.0       | - 61.2 | 15.6  | 16.55 | 40389.696 | 0.499728  | +              |
| 8    | +    | 12.0       | - 42.0 | 15.4  | 16.45 | 40389.957 | 0.559921  | _              |
| 9    | - 2  | 26.4       | - 19.8 | 15.95 | 16.35 | 40389.583 | 0.3206025 | + ?            |
| 10   | - :  | 57.0       | + 8.4  | 15.4  | 16.6  | 40389.532 | 0.4155329 | +              |
| . 11 | +    | 9.6        | + 33.0 | 15.8  | 16.45 | 40389.611 | 0.592835  | - ?            |
| 12   | + ;  | 58.8       | + 61.2 | 15.25 | 16.5  | 40389.593 | 0.4729722 | deal-156       |
| 13   | - :  | 27.0       | + 72.0 | 15.35 | 16.6  | 40389.596 | 0.466797  |                |
| 14   | +    | 17.4       | + 82.2 | 15.4  | 16.5  | 40389.763 | 0.4816129 | +              |
| 15   | +    | 19.2       | +120.0 | 15.6  | 16.25 | 40389.687 | 0.2885895 |                |
|      |      |            |        |       |       |           |           |                |

| No. | x''         | у"     | Max.  | Min.  | Epoch      | Period    | Remarks    |
|-----|-------------|--------|-------|-------|------------|-----------|------------|
| NGC | 6171 (conti | nued)  |       |       |            |           |            |
| 16  | - 67.2      | +113.4 | 15.65 | 16.5  | 40389.853  | 0.5228709 | _          |
| 17  | - 99.0      | + 71.4 | 15.4  | 16.45 | 40389.761  | 0.561154  |            |
| 18  | + 77.4      | +215.4 | 15.75 | 16.5  | 40389.898  | 0.564378  |            |
| 19  | + 232.8     | +162.6 | 15.75 | 16.3  | 40389.822? | 0.2787622 |            |
| 20  | + 31.2      | + 51.0 | 15.65 | 16.4  | 40389.653  | 0.578113  |            |
| 21  | + 81.0      | -144.6 | 16.3  | 16.6  | 40389.704  | 0.258125  |            |
| 22  | -1354.2     | -183.0 |       |       |            |           | prob f     |
| 23  | - 263.4     | + 19.2 | 15.5  | 16.2  | 40389.725  | 0.3233436 |            |
| 24  | 0.0         | + 8.4  | 15.65 | 16.45 | 40389.615  | 0.3462153 |            |
| 25  |             |        | 14.8  |       |            | red       | SK217, L&M |

Kukarkin, AC 216.17 (1960); van Agt, BAN 508.327 (1961); Kukarkin, VS 13.384 (1961); Mannino, Bologna Pubbl 7, 18 (1961); Kurochkin, VS 14.15 (1962); Kukarkin, VS 14.21 (1962); Coutts, Master's Thesis, Toronto (1964); Kurochkin, VS 15.164 (1964); Sandage and Katem, ApJ 139.1088 (1964); Sturch, ApJ 148.477, Abs. AJ 72.321 (1967); Dickens, ApJ Suppl 22.249 (1970); Coutts and Sawyer Hogg, Toronto Publ 3.61, Abs. AAS Bull 3.242 (1971); Dickens, Letter, VI (1972); Lloyd Evans, Letter, V25 (1972); Lloyd Evans and Menzies. IAU Coll 21 (1973) S55a, S57, S59, S61, R62a, S62, S64, L65, R65, S67, S69, S70, F72

| NGC 6 | 5205 (Messie | r 13) a 16 <sup>1</sup> | 139m.9, | δ +36°33′ |              |           |                |
|-------|--------------|-------------------------|---------|-----------|--------------|-----------|----------------|
| 1     | + 73.06      | - 24.86                 | 13.6    | 15.1      | 39691.720    | 1.458997  | Sp A-F, V, mem |
| 2     | - 54.10      | - 3.04                  | 12.8    | 14.3      | 39672.177    | 5.110939  | +, Sp, V, mem  |
| 3     | -127.70      | + 16.52                 | 15.58   | 15.79     | prob not var |           |                |
| 4     | - 47.34      | + 58.18                 | 15.04   | 15.23     | prob not var |           |                |
| 5     | + 71.62      | - 14.06                 | 14.33   | 14.94     | 40046.7820   | 0.38177   |                |
| 6     | + 92.68      | +76.60                  | 14.0    | 15.1      | 39664.923    | 2.112867  | Sp F, V, mem   |
| 7     | - 39.78      | - 82.72                 | 14.72   | 15.17     |              |           | f              |
| 8     | - 93.02      | + 11.29                 | 14.2    | 15.6      | 39679.821    | 0.7503158 | meni           |
| 9     | + 71.62      | - 14.06                 | 14.0    | 15.1      | 40038.8121   | 0.39265   |                |
| 10    | - 5.40       | - 70.73                 | 13.1    | 14.0      |              | SR        | Sp, V, mem     |
| 11    | - 45.78      | - 75.88                 | 12.9    | 13.8      |              | 92.5      | Sp, V, mem     |
| 12    | -105.88      | + 53.46                 | 15.0    | 15.35     | prob not var |           |                |
| 13    | - 45.37      | - 31.30                 | 14.26   | 14.50     | prob not var |           |                |
| 14    | + 3.18       | +207.64                 | 16.16   | 16.45     | prob not var |           |                |
| 15    | + 79.03      | -115.34                 | 13.32   | 13.67     |              | irr       | mem            |
| 16    | +349.40      | +207.90                 |         |           |              |           | Tsoo Yu-liua   |

Variable 16 = Savedoff A 18, probably Ludendorff 1113. One field variable, Tsoo Yu-hua.

Joy, ApJ 110.105 (1949); Arp, AJ 60.1 (1955); Brown, ApJ 122.146 (1955); Savedoff, AJ 61. 254 (1956); Wallerstein, ApJ 127.583 (1958); Kraft, Camp and Hughes, ApJ 130.90 (1959); Kurochkin, VS 13.248 (1961); Arp, La Plata Symp p. 87 (1962); Tsoo Yu-hua, Letter (p) (1964); Kadla, Pulk Mitt (1sw) 24.93 (1966); Osborn, Letter (1968), AJ 74.108 (1969), 1BVS 350 (1969); Demers, AJ 76.445 (1971); Osborn, Letter (1972)

S55a, S57, S59, S61, R62a, S62, P64, S64, L65, R65, S67, S69, S70

| No. | x"                         | у''         | Max.     | Min.      | Epoch       | Period    | Remarks   |
|-----|----------------------------|-------------|----------|-----------|-------------|-----------|-----------|
| NGC | 6218 (Messi                | er 12) a 10 | 5h44m.6, | δ 01°52   | 2'          |           |           |
| 1   | +34                        | -62         | 11.9     | 13.2      | 27306.708   | 15.508    | Sp F-G, V |
|     | er, Toronto<br>S57, S59, R |             |          | , АрЈ 110 | .105 (1949) |           |           |
| NGC | 6229 a 16 <sup>1</sup>     | n45m.6, δ + | 47°37′   |           |             |           |           |
| 1   | - 24.6                     | -105.5      | 16.78    | 17.94     | 35630.542   | 0.5856908 |           |
| 2   | - 71.9                     | + 4.9       | 16.95    | 17.93     | 35631.521   | 0.5552380 |           |
| 3   | -195.7                     | + 41.3      | 17.21    | 17.82     |             |           |           |
| 4   | - 56.8                     | - 14.3      | 17.36:   | 17.89     |             |           |           |
| 5   | + 14.5                     | + 44.1      | 17.25    | 17.95     | 35633.555   | 0.5336051 |           |
| 6   | + 44.1                     | + 41.5      | 17.28:   | 17.96     | 27953.930   | 0.559385  |           |
| 7   | - 41.7                     | - 49.9      | 16.84    | 18.01     | 27978.840   | 0.506980  |           |
| 8   | - 4.1                      | - 42.1      | 15.47    | 16.51     | 35573.461   | 14.845093 | Сер       |
| 9   | - 38.9                     | + 38.3      | 17.08    | 17.88     | 35629.516   | 0.5428497 |           |
| 10  | - 29.5                     | + 72.7      | 17.20    | 18.00     | 35629.535   | 0.5547785 |           |
| 11  | + 23.9                     | - 25.0      | ]17.44   | 18.01     |             |           |           |
| 12  | + 34.2                     | - 23.6      | 17.12    | 18.02     |             |           |           |
| 13  | +140.2                     | + 61.3      | 17.20    | 17.96     | 35630.552   | 0.5473432 |           |
| 14  | - 15.5                     | - 50.7      | 16.76    | 17.86     | 35631.565   | 0.4659161 |           |
| 15  | + 34.2                     | + 27.5      | 17.39    | 17.92     | 35611.460   | 0.2713783 |           |
| 16  | + 47.0                     | - 24.2      | 17.31    | 17.94     | 35637.500   | 0.322784  |           |
| 17  | - 96.3                     | - 75.0      | 17.08    | 17.72     | 27979.830   | 0.324880  |           |
| 18  | - 36.1                     | + 32.2      | 17.34    | 18.00     |             |           |           |
| 19  | + 53.4                     | - 44.4      | 16.96    | 18.00     | 35629.546   | 0.4759609 |           |
| 20  | - 27.5                     | - 36.1      | 16.91    | 18.05     | 35631.524   | 0.4659728 |           |
| 21  | +117.3                     | - 61.6      | 17.12    | 17.94     |             |           |           |
| 22  | + 4                        | - 7         | 15.2     | 16.3      |             |           | prob slow |

For variables with periods by both Mannino and Mayer, those of Mannino are tabulated because they are based on more observations.

Baade, ApJ 102.17 (p) (1945); Sawyer, JRASC 47.229 (1953); Mannino, Bologna Pubbl 7, 13 (1960); Mayer, BAC 12.167 (1961)

S55a, S57, S59, R62a, S62, S64, L65, R65, S69

Sawyer, JRASC 47.229 (p) (1953) S55a, S57, S59, S62, S69

NGC 6254 (Messier 10)  $a \cdot 16^{h} 54^{m} \cdot 5$ ,  $\delta = 04^{\circ} 02'$ 

| No. | x"         | у′′    | Max.  | Min.  | Epoch    | Period | Remarks                        |
|-----|------------|--------|-------|-------|----------|--------|--------------------------------|
| NGC | 6254 (cont | inued) |       |       |          |        |                                |
| 3 4 | -209       | +106   | 13.10 | 13.82 | 34905.64 | 7.908  | Min<br>Voroshilov<br>Arp 1V-37 |

Joy, ApJ 110.105 (1948); Arp, AJ 60.1,320 (1955), AJ 62.129 (1957); Wallerstein, ApJ 127.583 (1958); Voroshilov, AC 623.7 (1971) S55a, S57, S59, R62a, S62, R65, S69

Palomar 15 a  $16^{h}57^{m}.6$ ,  $\delta -00^{\circ}28'$ 

No variables found.

Kinman and Rosino, ASP 74.499 (1962)

R61

| NGC | 6266 (Messi | er 62) a 16 | h58m.1. | δ -30°03 | ,1       |         |               |
|-----|-------------|-------------|---------|----------|----------|---------|---------------|
| 1   | + 41.0      | + 6.1       |         |          |          |         |               |
| 2   | - 26.6      | - 68.9      |         |          |          |         | Sp F-G        |
| 3   | - 88.9      | - 6.8       |         |          | 33421.41 | 0.49158 |               |
| 4   | - 93.9      | - 39.3      | 15.68   | 16.85    | 33419.49 | 0.54113 |               |
| 5   | -163.2      | +123.5      | 15.50   | 16.53    | 33417.51 | 0.46049 |               |
| 6   | - 81.7      | + 34.0      |         |          | 33419.30 | 0.49191 |               |
| 7   | + 22.1      | +169.4      | 15.86   | 17.06    | 33419.38 | 0.56389 |               |
| 8   | - 93.2      | +162.4      |         |          | 33423.44 | 0.53200 |               |
| 9   | - 92.6      | +213.1      | 15.40   | 16.68    | 33423.48 | 0.55662 |               |
| 10  | -454.0      | +157.7      | 15.58   | 16.93    | 33418.45 | 0.53259 |               |
| 11  | -457.1      | +126.7      | 16.06   | 16.85    | 33421.56 | 0.59823 |               |
| 12  | -204.4      | +268.9      |         |          | 33421.39 | 0.48799 |               |
| 13  | + 1.6       | + 30.2      |         |          |          |         |               |
| 14  | = 92.2      | +265.8      | 15.27   | 16.83    | 33421.41 | 0.44216 |               |
| 15  | +123.0      | +303.4      | 16.01   | 16.91    | 33423.60 | 0.63024 |               |
| 16  | - 74.5      | + 93.9      | 15.35   | 16.51    | 33421.55 | 0.59591 |               |
| 17  | - 22.1      | +102.4      |         |          | 33423.51 | 0.5251  |               |
| 18  | - 33.3      | + 92.3      | 15.90   | 16.80    | 33423.58 | 0.52616 |               |
| 19  | - 14.5      | + 65.5      |         |          | 33421.53 | 0.52271 |               |
| 20  | +131.6      | +159.4      | 15.68   | 17.00    | 33423.52 | 0.47201 |               |
| 21  | +105.9      | + 79.7      | 15.75   | 17.14    | 33421.42 | 0.45045 |               |
| 22  | + 61.9      | + 11.9      |         |          | 33421.48 | 0.49925 |               |
| 23  | - 73.2      | - 37.4      |         |          | 33417.56 | 0.44821 |               |
| 24  | + 58.1      | - 38.6      |         |          | 33417.59 | 0.52267 |               |
| 25  | +152.5      | - 72.8      | 16.35   | 17.71    | 33421.45 | 0.44584 |               |
| 26  | -182.9      | -303.1      |         |          |          |         |               |
| 27  | - 6.8       | - 59.8      |         |          | 33423.40 | 0.44916 | Vars. 27-42   |
| 28  | +154.0      | + 19.3      | 16.81   | 17.45    | 33423.52 | 0.49749 | discovered by |
| 29  | +153.4      | + 14.5      | 15.96   | 17.35    | 33423.44 | 0.56    | van Agt       |
| 30  | - 61.7      | -181.9      | 16.69   | 17.36    | 33418.54 | 0.30440 |               |
| 31  | - 46.4      | -143.0      |         |          | 33419.37 | 0.48500 |               |
| 32  | - 1.0       | -136.4      |         |          | 33423.51 | 0.5468  |               |

| No. | x''        | у′′     | Max.   | Min.  | Epoch     | Period  | Remarks       |
|-----|------------|---------|--------|-------|-----------|---------|---------------|
| NGC | 6266 (cont | inued)  |        |       |           |         |               |
| 33  | - 13.7     | -117.9  | 16.79  | 17.71 | 33422.51  | 0.57438 |               |
| 34  | - 61.0     | - 4.9   |        |       | 33422.54  | 0.58372 |               |
| 35  | -113.2     | + 14.1  | 15.56  | 16.82 | 33418.48  | 0.5288  |               |
| 36  | - 41.2     | +125.6  | 15.84  | 16.66 | 33423.49  | 0.6530  |               |
| 37  | - 53.2     | + 6.5   |        |       | 33423.38  | 0.5852  |               |
| 38  | - 22.1     | - 44.8  |        |       | 33421.56  | 0.77083 |               |
| 39  | -121.4     | + 59.0  | 16.02  | 16.89 | 33421.51  | 0.64020 |               |
| 40  | -122.0     | .+ 45.6 |        |       | 33423.52  | 0.30131 |               |
| 41  | -118.4     | + 40.7  |        |       | 33423.46  | 0.55848 |               |
| 42  | -130.0     | + 50.0  | 16.00  | 16.35 | 33421.56  | 0.24765 |               |
| 43  | - 62.8     | -223.1  | 16.36  | 17.40 | 33423.37  | 0.56356 | Vars. 43-82   |
| 44  | - 47.6     | -122.7  | 16.48  | 17.99 | 33423.54  | 0.44575 | discovered by |
| 45  | + 59.0     | -187.7  | 16.72  | 17.95 | 33417.60  | 0.51688 | Oosterhoff    |
| 46  | +130.9     | +477.9  | 16.65  | 17.63 | 33418.45  | 0.53874 |               |
| 47  | - 22.0     | +241.6  | 16.34  | 16.93 | 33422.39  | 0.61211 |               |
| 48  | - 86.1     | -130.8  | 16.35  | 17.29 | 33421.49  | 0.74360 |               |
| 49  | +139.0     | -104.7  |        |       | 33423.35  | 0.54360 |               |
| 50  | +281.7     | - 34.4  | 16.38  | 17.65 | 33421.56  | 0.50264 |               |
| 51  | +294.3     | +193.7  | 16.40  | 17.01 | 33421.50  | 0.26181 |               |
| 52  | + 75.9     | -181.5  | 16.58  | 17.87 | 33423.59  | 0.50538 |               |
| 53  | -111.8     | -101.0  |        |       |           |         |               |
| 54  | -150.5     | -671.7  |        |       | 33423.51  | 0.38591 |               |
| 5.5 | +422.7     | +278.4  | 16.07  | 17.11 | 33417.50  | 0.47872 |               |
| 56  | + 37.1     | +118.9  | 16.22  | 17.00 | 33423.47  | 0.5654  |               |
| 57  | + 51.1     | +121.1  | 16.00  | 17.03 | 33423.61  | 0.55636 |               |
| 58  | - 98.6     | + 32.2  |        |       | 33423.40  | 0.48100 |               |
| 59  | +122.1     | + 94.1  | 16.15  | 17.23 | 33421.46  | 0.57931 |               |
| 60  | +308.8     | +395.5  | 15.99  | 16.53 | 33423.63  | 0.28662 |               |
| 61  | +215.9     | +190.7  | 16.57  | 17.25 | 33421.48  | 0.26602 |               |
| 62  | +238.5     | +104.9  | 15.99  | 17.26 | 33419.45  | 0.54807 |               |
| 63  | +105.4     | -102.4  | 16.75  | 17.55 | 33418.59  | 0.64313 |               |
| 64  | -124.6     | -266.4  | 16.10  | 17.08 | 33422.37  | 0.47299 |               |
| 65  | - 86.6     | +137.5  | 10.10  | 17,00 | 33 (22.37 | 0.17277 |               |
| 66  | -316.8     | + 17.5  | 16.19  | 16.74 | 33423.60  | 0.33383 |               |
| 67  | +399.1     | +621.4  | 16.12  | 17.14 | 33421.44  | 0.56488 |               |
| 68  | +146.5     | +417.6  | 16.05  | 16.57 | 33419.50  | 0.23529 |               |
| 69  | +122.3     | +109.9  | 16.39  | 16.94 | 33423.55  | 0.31369 |               |
| 70  | -725.2     | - 86.9  | 10.07  | 10.7  | 33423.55  | 0.54546 |               |
| 71  | - 87.6     | -482.4  |        |       | 33422.34  | 0.70452 |               |
| 72  | -182.7     | -104.5  | 16.09  | 17.29 | 33421.43  | 0.46751 |               |
| 73  | -203.5     | -105.5  | , 0.07 | . ,   | 55.21.75  | 0.40731 |               |
| 74  | - 21.4     | - 53.6  |        |       | 33423.60  | 0.46646 |               |
| 75  | +396.5     | +237.5  | 16.57  | 17.10 | 33423.43  | 0.33429 |               |
| 76  | +178.1     | +629.6  | 15.81  | 16.55 | 33421.50  | 0.61523 |               |
| 77  | +275.3     | + 33.1  | 16.82  | 17.30 | 33721.30  | 0.01323 |               |
| 78  | +338.4     | +174.1  | 16.78  | 17.45 | 33421.49  | 0.62170 |               |
| 79  | +694.3     | - 81.0  | 10.70  | 17.43 | 33421.49  |         |               |
| , , | 10/4.3     | - 01.0  |        |       | 33423.40  | 0.31896 |               |

| No. | X''         | у′′    | Max.  | Min.  | Epoch    | Period  | Remarks |
|-----|-------------|--------|-------|-------|----------|---------|---------|
| GC  | 6266 (conti | nued)  |       |       |          |         |         |
| 80  | - 85.3      | + 90.4 | 15.90 | 16.74 | 33422.54 | 0.58858 |         |
| 81  | -110.5      | + 97.3 | 15.65 | 16.95 | 33419.39 | 0.53093 |         |
| 82  | - 39.4      | - 68.0 |       |       | 33421.58 | 0.56481 |         |
| 83  | - 38.3      | - 9.9  |       |       |          |         | van Agt |
| 84  |             |        | 16.55 | 17.53 |          |         | G&F     |
| 85  |             |        | 16.68 | 17.55 |          |         | G&F     |
| 86  |             |        | 16.38 | 17.69 |          |         | G&F     |
| 87  |             |        | 15.80 | 16.70 |          |         | G&F     |
| 88  |             |        | 16.04 | 16.75 |          |         | G&F     |
| 89  |             |        | 16.45 | 17.66 |          |         | G&F     |

Wallerstein, ApJ 127.583 (1958); van Agt and Oosterhoff, Leiden Ann 21.253 (p) (1959); Gascoigne and Ford, Proc Astr Soc Aust 1.16 (1967); van Agt, Priv comm (1971); Gascoigne, Letter (1971)

Cep?

\$55a, \$57, \$59, \$61, \$62a, \$62, \$R65, \$FLA66, \$69, \$70

## NGC 6273 (Messier 19) $a 16^{h}59^{m}.5$ , $\delta -26^{\circ}11'$

| 1 | + 4 | + 48 | 14.1 | 15.1 |
|---|-----|------|------|------|
| 2 | +14 | +123 | 13.4 | 14.7 |
| 3 | -28 | - 6  | 14.2 | 15.2 |
| 4 | - 2 | - 24 | 15.1 | 15.7 |

Two field variables, Sawyer.

Sawyer, Toronto Publ 1, 14 (p) (1943)

S55a, S57, S59, S61, R62a, S62, S69

#### NGC 6284 a $17^{h}01^{m}.5$ , $\delta - 24^{\circ}41'$

Four field variables, Sawyer.

Sawyer, Toronto Publ 1, 14 (p) (1943)

\$55a, \$59, \$62, \$69

#### NGC 6287 $a 17^{h}02^{m}.1, \delta -22^{\circ}38'$

| 1 | -152 | -40 | 16.2 | 17.1 |
|---|------|-----|------|------|
| 2 | + 46 | -26 | 15.7 | 15.9 |
| 3 | + 26 | +44 | 16.1 | 16.8 |

Three field variables, Sawyer.

Sawyer, Toronto Publ 1, 14 (p) (1943)

\$55a, \$59, \$62, \$69

| No.   | x''        | у′′      | Max.    | Min. | Epoch | Period | Remarks |
|-------|------------|----------|---------|------|-------|--------|---------|
| NGC ( | 6293 a 17h | 07m.1,δ- | 26° 30′ |      |       |        |         |
| 1     | + 81.0     | +49.5    | 15.9    | 16.6 |       |        |         |
| 2     | -135.6     | +64.5    | 15.8    | 16.7 |       |        |         |
| 3     | + 48.6     | +18.6    | 15.5    | 15.8 |       |        |         |
| 4     | + 92       | -81      | 16.1    | 17.1 |       |        |         |
| 5     | + 78       | -83      | 15.7    | 16.5 |       |        |         |

Three field variables, Sawyer.

Shapley, Mt Wils Contr 190 (1920); Sawyer, Toronto Publ 1, 14 (p) (1943) S55a, S59, S62, S69

| NGC | 6304 a 17 <sup>h</sup> | 11m.4, δ – | 29°24′ |        |           |
|-----|------------------------|------------|--------|--------|-----------|
| 1   | +102.0                 | -114.4     | 16.5   | 18.0   |           |
| 2   | -168.9                 | +169.6     | 15.7   | 17.5   | RR?       |
| 3   | +200.5                 | + 60.2     | 16.5   | 17.5   | RR        |
| 4   | -272.4                 | -154.9     | 16.0   | 16.9   |           |
| 5   | +235.5                 | - 7.8      | 16.7   | 17.6   | RR        |
| 6   | +304.7                 | -191.7     | 16.6   | 17.8   | RR        |
| 7   | + 0.8                  | -293.5     | 17.5   | 18.3   |           |
| 8   | +486.7                 | + 49.9     | 16.7   | 17.7   | RR        |
| 9   | +587.1                 | +230.2     | 16.8   | 17.8   | RR        |
| 10  | -591.2                 | -247.6     | 16.2   | 17.9   | RR        |
| 11  | -244.8                 | -534.6     | 16.4   | 17.2   |           |
| 12  |                        |            | 13.95  | 14.30  | Terzan 28 |
| 13  |                        |            | 11.00  | 12.52  | Terzan 29 |
| 14  |                        |            | 10.75  | 13.25  | Terzan 30 |
| 15  |                        |            | 12.90  | 13.88  | Terzan 32 |
| 16  |                        |            | 13.70  | 13.80  | Terzan 33 |
| 17  |                        |            | 15.25  | 15.40  | Terzan 40 |
| 18  |                        |            | 13.60  | [14.60 | Terzan 43 |
| 19  |                        |            | 13.38  | 13.78  | Terzan 68 |
| 20  |                        |            | 13.91  | 14.15  | Terzan 69 |
| 21  |                        |            | 13.87  | 14.40  | Terzan 72 |

Vars. 1-11 found by Rosino, 12-21 by Terzan on red plates. Many field variables by Terzan. Rosino, Asiago Contr 132 (p) (1962); Terzan, Haute Prov Publ 9, 1 (1966), Haute Prov Publ 9, 24 (1968)

S55b, R57, S61, R62c, S62, F&L63, S64, FLA66, S69, S70

NGC 6316 a 17<sup>h</sup>13<sup>m</sup>.4,  $\delta$  –28°05′ S55b, R62b

NGC 6325 a 17<sup>h</sup>15<sup>m</sup>.0,  $\delta$  -23°42′ S55b, R62b

|                                                                                    | x''                                                                                                                                                               | y''                                                                                                                                                                                                                                                      | Max.                                                                                                                            | Min.                                                                                                     | Epoch                                                                                                                                       | Period                                                                                                                                   | Remarks                                       |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                                    |                                                                                                                                                                   | oab                                                                                                                                                                                                                                                      |                                                                                                                                 | 100 201                                                                                                  |                                                                                                                                             |                                                                                                                                          |                                               |
| NGC 6                                                                              | 333 (Messi                                                                                                                                                        | er 9) a 17h                                                                                                                                                                                                                                              |                                                                                                                                 |                                                                                                          |                                                                                                                                             |                                                                                                                                          |                                               |
| 1                                                                                  | + 91                                                                                                                                                              | - 76                                                                                                                                                                                                                                                     | 15.6                                                                                                                            | 16.9                                                                                                     | 29427.886                                                                                                                                   | 0.585727                                                                                                                                 |                                               |
| 2                                                                                  | + 40                                                                                                                                                              | - 31                                                                                                                                                                                                                                                     | 15.6                                                                                                                            | 16.4                                                                                                     | 29436.854                                                                                                                                   | 0.628191                                                                                                                                 |                                               |
| 3                                                                                  | +207                                                                                                                                                              | -210                                                                                                                                                                                                                                                     | 15.7                                                                                                                            | 16.85                                                                                                    | 32000.735                                                                                                                                   | 0.605397                                                                                                                                 |                                               |
| 4                                                                                  | + 23                                                                                                                                                              | - 35                                                                                                                                                                                                                                                     | 15.8                                                                                                                            | 16.95                                                                                                    | 30520.749                                                                                                                                   | 0.670076                                                                                                                                 |                                               |
| 5                                                                                  | + 34                                                                                                                                                              | - 7                                                                                                                                                                                                                                                      | 16.0                                                                                                                            | 16.8                                                                                                     | 29435.870                                                                                                                                   | 0.274708                                                                                                                                 |                                               |
| 6                                                                                  | - 70                                                                                                                                                              | - 14                                                                                                                                                                                                                                                     | 15.7                                                                                                                            | 16.95                                                                                                    | 29435.870                                                                                                                                   | 0.607795                                                                                                                                 |                                               |
| 7                                                                                  | -111                                                                                                                                                              | - 80                                                                                                                                                                                                                                                     | 15.95                                                                                                                           | 17.2                                                                                                     | 29434.860                                                                                                                                   | 0.628456                                                                                                                                 |                                               |
| 8                                                                                  | - 73                                                                                                                                                              | - 99                                                                                                                                                                                                                                                     | 16.05                                                                                                                           | 16.9                                                                                                     |                                                                                                                                             |                                                                                                                                          |                                               |
| 9                                                                                  | +334                                                                                                                                                              | -191                                                                                                                                                                                                                                                     | 16.0                                                                                                                            | 16.75                                                                                                    | 30933.704                                                                                                                                   | 0.322990                                                                                                                                 |                                               |
| 10                                                                                 | + 37                                                                                                                                                              | + 26                                                                                                                                                                                                                                                     | 16.2                                                                                                                            | 16.9                                                                                                     | 30553.653                                                                                                                                   | 0.242322                                                                                                                                 |                                               |
| 11                                                                                 | - 4                                                                                                                                                               | - 7                                                                                                                                                                                                                                                      | 15.7                                                                                                                            | 16.8                                                                                                     |                                                                                                                                             |                                                                                                                                          |                                               |
| 12                                                                                 | -275                                                                                                                                                              | -136                                                                                                                                                                                                                                                     | 15.85                                                                                                                           | 16.95                                                                                                    | 29408.951                                                                                                                                   | 0.571784                                                                                                                                 |                                               |
|                                                                                    | 2.50                                                                                                                                                              | . 1.1                                                                                                                                                                                                                                                    | 16.7                                                                                                                            | 17.8                                                                                                     | 30554.694                                                                                                                                   | 0.47985                                                                                                                                  | f                                             |
| S55a,                                                                              | S59, R62a,                                                                                                                                                        | + 11<br>Publ 1, 24 ()<br>S62, L65, R                                                                                                                                                                                                                     | p) (1951)<br>865, S69                                                                                                           |                                                                                                          |                                                                                                                                             |                                                                                                                                          |                                               |
| Sawye<br>S55a,                                                                     | er, Toronto<br>S59, R62a,                                                                                                                                         | Publ 1, 24 (                                                                                                                                                                                                                                             | p) (1951)<br>865, S69                                                                                                           | δ +43°12'                                                                                                |                                                                                                                                             |                                                                                                                                          |                                               |
| Sawye<br>S55a,<br>NGC (                                                            | er, Toronto<br>S59, R62a,                                                                                                                                         | Publ 1, 24 ()<br>S62, L65, R<br>er 92) a 17<br>+ 41.3                                                                                                                                                                                                    | p) (1951)<br>865, 869<br>h <sub>15</sub> m <sub>.6</sub> ,<br>14.35                                                             | 15.30                                                                                                    | 24410.198                                                                                                                                   | 0.7028015                                                                                                                                |                                               |
| Sawye<br>S55a,<br>NGC 0<br>1<br>2                                                  | er, Toronto<br>S59, R62a,                                                                                                                                         | Publ 1, 24 ()<br>S62, L65, R<br>er 92) a 17<br>+ 41.3<br>+ 69.2                                                                                                                                                                                          | p) (1951)<br>265, S69<br>2h <sub>1</sub> 5m <sub>.6</sub> ,<br>14.35<br>14.55                                                   | 15.30<br>15.25                                                                                           | 24410.198<br>24409.347                                                                                                                      | 0.6438829                                                                                                                                | Bg                                            |
| Sawye<br>S55a,<br>NGC (                                                            | er, Toronto<br>S59, R62a,<br>6341 (Messi<br>+127.5                                                                                                                | Publ 1, 24 ()<br>S62, L65, R<br>er 92) a 17<br>+ 41.3<br>+ 69.2<br>+252.7                                                                                                                                                                                | p) (1951)<br>865, 869<br>7h15m.6.<br>14.35<br>14.55<br>14.20                                                                    | 15.30<br>15.25<br>15.35                                                                                  | 24410.198<br>24409.347<br>24410.377                                                                                                         | 0.6438829<br>0.6375010                                                                                                                   | B¢<br>, Sp                                    |
| Sawye<br>S55a,<br>NGC 0<br>1<br>2<br>3<br>4                                        | er, Toronto<br>S59, R62a,<br>6341 (Messi<br>+127.5<br>+ 91.2<br>+ 53.7<br>- 76.0                                                                                  | Publ 1, 24 ()<br>\$62, L65, R<br>er 92) \(\alpha\) 17<br>+ 41.3<br>+ 69.2<br>+252.7<br>+ 58.0                                                                                                                                                            | (h15m.6,<br>14.35<br>14.55<br>14.20<br>14.45                                                                                    | 15.30<br>15.25<br>15.35<br>15.20                                                                         | 24410.198<br>24409.347<br>24410.377<br>24433.262                                                                                            | 0.6438829<br>0.6375010<br>0.6289128                                                                                                      | –, Sp                                         |
| Sawye<br>S555a,<br>NGC (1<br>2<br>3<br>4<br>5                                      | er, Toronto<br>S59, R62a,<br>6341 (Messi<br>+127.5<br>+ 91.2<br>+ 53.7<br>- 76.0<br>+ 81.6                                                                        | Publ 1, 24 ()<br>\$62, L65, R<br>er 92) \(\alpha\) 17<br>+ 41.3<br>+ 69.2<br>+252.7<br>+ 58.0<br>- 53.7                                                                                                                                                  | p) (1951)<br>265, 869<br>2h <sub>1</sub> 5m.6,<br>14.35<br>14.55<br>14.20<br>14.45<br>14.50                                     | 15.30<br>15.25<br>15.35<br>15.20<br>15.25                                                                | 24410.198<br>24409.347<br>24410.377<br>24433.262<br>24428.315                                                                               | 0.6438829<br>0.6375010<br>0.6289128<br>0.6196963                                                                                         |                                               |
| Sawye<br>S55a,<br>NGC 0<br>1<br>2<br>3<br>4<br>5<br>6                              | er, Toronto<br>S59, R62a,<br>6341 (Messi<br>+127.5<br>+ 91.2<br>+ 53.7<br>- 76.0<br>+ 81.6<br>+ 38.7                                                              | Publ 1, 24 ()<br>\$62, L65, R<br>er 92) \(\alpha\) 17<br>+ 41.3<br>+ 69.2<br>+252.7<br>+ 58.0<br>- 53.7<br>+ 43.3                                                                                                                                        | p) (1951)<br>265, 869<br>2h <sub>1</sub> 5m.6,<br>14.35<br>14.55<br>14.20<br>14.45<br>14.50<br>14.53                            | 15.30<br>15.25<br>15.35<br>15.20<br>15.25<br>15.40                                                       | 24410.198<br>24409.347<br>24410.377<br>24433.262<br>24428.315<br>27340.360                                                                  | 0.6438829<br>0.6375010<br>0.6289128<br>0.6196963<br>0.600001                                                                             | –, Sp                                         |
| Sawye<br>S55a,<br>NGC 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7                         | er, Toronto<br>S59, R62a,<br>6341 (Messi<br>+127.5<br>+ 91.2<br>+ 53.7<br>- 76.0<br>+ 81.6<br>+ 38.7<br>+ 1.6                                                     | Publ 1, 24 ()<br>S62, L65, R<br>er 92) \(\alpha\) 17<br>+ 41.3<br>+ 69.2<br>+252.7<br>+ 58.0<br>- 53.7<br>+ 43.3<br>- 50.5                                                                                                                               | p) (1951)<br>265, 869<br>2h <sub>1</sub> 5m.6,<br>14.35<br>14.55<br>14.20<br>14.45<br>14.50<br>14.53<br>14.45                   | 15.30<br>15.25<br>15.35<br>15.20<br>15.25<br>15.40<br>15.70                                              | 24410.198<br>24409.347<br>24410.377<br>24433.262<br>24428.315<br>27340.360<br>37871.517                                                     | 0.6438829<br>0.6375010<br>0.6289128<br>0.6196963<br>0.600001<br>0.5149114                                                                | −, Sp<br>Bℓ                                   |
| Sawye<br>S55a,<br>NGC 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                    | er, Toronto<br>S59, R62a,<br>6341 (Messi<br>+127.5<br>+ 91.2<br>+ 53.7<br>- 76.0<br>+ 81.6<br>+ 38.7<br>+ 1.6<br>+208.9                                           | Publ 1, 24 () S62, L65, R er 92) a 17 + 41.3 + 69.2 +252.7 + 58.0 - 53.7 + 43.3 - 50.5 +208.0                                                                                                                                                            | p) (1951)<br>265, S69<br>2h15m.6,<br>14.35<br>14.55<br>14.20<br>14.45<br>14.50<br>14.53<br>14.45<br>14.50                       | 15.30<br>15.25<br>15.35<br>15.20<br>15.25<br>15.40<br>15.70<br>15.20                                     | 24410.198<br>24409.347<br>24410.377<br>24433.262<br>24428.315<br>27340.360                                                                  | 0.6438829<br>0.6375010<br>0.6289128<br>0.6196963<br>0.600001<br>0.5149114<br>0.6732769                                                   | –, Sp                                         |
| Sawye<br>S55a,<br>NGC 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                    | er, Toronto<br>S59, R62a,<br>6341 (Messi<br>+127.5<br>+ 91.2<br>+ 53.7<br>- 76.0<br>+ 81.6<br>+ 38.7<br>+ 1.6<br>+208.9<br>+ 18.0                                 | Publ 1, 24 () S62, L65, R  er 92) a 17 + 41.3 + 69.2 +252.7 + 58.0 - 53.7 + 43.3 - 50.5 +208.0 - 48.1                                                                                                                                                    | p) (1951)<br>265, S69<br>2h <sub>1</sub> 5m.6,<br>14.35<br>14.55<br>14.20<br>14.45<br>14.50<br>14.53<br>14.45<br>14.50<br>14.80 | 15.30<br>15.25<br>15.35<br>15.20<br>15.25<br>15.40<br>15.70<br>15.20<br>15.60                            | 24410.198<br>24409.347<br>24410.377<br>24433.262<br>24428.315<br>27340.360<br>37871.517<br>24410.289                                        | 0.6438829<br>0.6375010<br>0.6289128<br>0.6196963<br>0.600001<br>0.5149114<br>0.6732769<br>0.61 var                                       | −, Sp<br>Bℓ                                   |
| Sawye<br>S55a,<br>NGC 6<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9               | er, Toronto<br>S59, R62a,<br>6341 (Messi<br>+127.5<br>+ 91.2<br>+ 53.7<br>- 76.0<br>+ 81.6<br>+ 38.7<br>+ 1.6<br>+208.9<br>+ 18.0<br>+ 83.0                       | Publ 1, 24 (g<br>S62, L65, R<br>er 92) \( \alpha \) 17<br>+ 41.3<br>+ 69.2<br>+ 252.7<br>+ 58.0<br>- 53.7<br>+ 43.3<br>- 50.5<br>+ 208.0<br>- 48.1<br>+ 36.3                                                                                             | 14.35<br>14.35<br>14.55<br>14.50<br>14.45<br>14.50<br>14.53<br>14.45<br>14.50<br>14.50<br>14.50<br>14.75                        | 15.30<br>15.25<br>15.35<br>15.20<br>15.25<br>15.40<br>15.70<br>15.20<br>15.60<br>15.20                   | 24410.198<br>24409.347<br>24410.377<br>24433.262<br>24428.315<br>27340.360<br>37871.517<br>24410.289                                        | 0.6438829<br>0.6375010<br>0.6289128<br>0.6196963<br>0.600001<br>0.5149114<br>0.6732769<br>0.61 var<br>0.3773182                          | -, Sp<br>B0<br>Sp, B0                         |
| Sawye<br>\$555a,<br>NGC 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | er, Toronto<br>S59, R62a,<br>6341 (Messi<br>+127.5<br>+ 91.2<br>+ 53.7<br>- 76.0<br>+ 81.6<br>+ 38.7<br>+ 1.6<br>+ 208.9<br>+ 18.0<br>+ 83.0<br>+ 71.2            | Publ 1, 24 (g<br>S62, L65, R<br>er 92) \(\alpha\) 17<br>+ 41.3<br>+ 69.2<br>+252.7<br>+ 58.0<br>- 53.7<br>+ 43.3<br>- 50.5<br>+208.0<br>- 48.1<br>+ 36.3<br>- 67.1                                                                                       | 14.35<br>14.35<br>14.45<br>14.50<br>14.53<br>14.45<br>14.50<br>14.50<br>14.50<br>14.80<br>14.75<br>14.80                        | 15.30<br>15.25<br>15.35<br>15.20<br>15.25<br>15.40<br>15.70<br>15.20<br>15.60<br>15.20<br>15.20          | 24410.198<br>24409.347<br>24410.377<br>24433.262<br>24428.315<br>27340.360<br>37871.517<br>24410.289<br>24410.454<br>24466.213              | 0.6438829<br>0.6375010<br>0.6289128<br>0.6196963<br>0.600001<br>0.5149114<br>0.6732769<br>0.61 var<br>0.3773182<br>0.3084409             | −, Sp<br>Bℓ                                   |
| Sawyee  NGC ( )  1  2  3  4  5  6  7  8  9  10  11  12                             | er, Toronto<br>S59, R62a,<br>6341 (Messi<br>+127.5<br>+ 91.2<br>+ 53.7<br>- 76.0<br>+ 81.6<br>+ 38.7<br>+ 1.6<br>+ 208.9<br>+ 18.0<br>+ 83.0<br>+ 71.2<br>- 29.9  | Publ 1, 24 (g<br>S62, L65, R<br>er 92) \( \alpha \) 17<br>\( + \) 41.3<br>\( + \) 69.2<br>\( + \) 252.7<br>\( + \) 58.0<br>\( - \) 53.7<br>\( + \) 43.3<br>\( - \) 50.5<br>\( + \) 208.0<br>\( - \) 48.1<br>\( + \) 36.3<br>\( - \) 67.1<br>\( - \) 97.8 | 14.35<br>14.35<br>14.55<br>14.50<br>14.45<br>14.50<br>14.53<br>14.45<br>14.50<br>14.50<br>14.50<br>14.75                        | 15.30<br>15.25<br>15.35<br>15.20<br>15.25<br>15.40<br>15.70<br>15.20<br>15.60<br>15.20                   | 24410.198<br>24409.347<br>24410.377<br>24433.262<br>24428.315<br>27340.360<br>37871.517<br>24410.289                                        | 0.6438829<br>0.6375010<br>0.6289128<br>0.6196963<br>0.600001<br>0.5149114<br>0.6732769<br>0.61 var<br>0.3773182                          | -, Sp<br>B <sup>Q</sup><br>Sp, B <sup>Q</sup> |
| Sawyee  1 2 3 4 5 6 7 8 8 9 10 11 12 13                                            | er, Toronto<br>\$59, R62a,<br>6341 (Messi<br>+127.5<br>+ 91.2<br>+ 53.7<br>- 76.0<br>+ 81.6<br>+ 38.7<br>+ 1.6<br>+ 208.9<br>+ 18.0<br>+ 71.2<br>- 29.9<br>+153.4 | Publ 1, 24 (g<br>S62, L65, R<br>er 92) a 17<br>+ 41.3<br>+ 69.2<br>+ 252.7<br>+ 58.0<br>- 53.7<br>+ 43.3<br>- 50.5<br>+ 208.0<br>- 48.1<br>+ 36.3<br>- 67.1<br>- 97.8<br>- 60.1                                                                          | (h1951)<br>(465, S69)<br>(h15m.6,<br>14.35<br>14.55<br>14.20<br>14.45<br>14.50<br>14.53<br>14.45<br>14.50<br>14.80<br>14.75     | 15.30<br>15.25<br>15.35<br>15.20<br>15.25<br>15.40<br>15.70<br>15.20<br>15.60<br>15.20<br>15.20<br>15.10 | 24410.198<br>24409.347<br>24410.377<br>24433.262<br>24428.315<br>27340.360<br>37871.517<br>24410.289<br>24410.454<br>24466.213<br>38905.364 | 0.6438829<br>0.6375010<br>0.6289128<br>0.6196963<br>0.600001<br>0.5149114<br>0.6732769<br>0.61 var<br>0.3773182<br>0.3084409<br>0.409939 | , Sp<br>Bℓ<br>Sp, Bℓ<br>Bℓ                    |
| Sawyee  NGC ( )  1  2  3  4  5  6  7  8  9  10  11  12                             | er, Toronto<br>S59, R62a,<br>6341 (Messi<br>+127.5<br>+ 91.2<br>+ 53.7<br>- 76.0<br>+ 81.6<br>+ 38.7<br>+ 1.6<br>+ 208.9<br>+ 18.0<br>+ 83.0<br>+ 71.2<br>- 29.9  | Publ 1, 24 (g<br>S62, L65, R<br>er 92) \( \alpha \) 17<br>\( + \) 41.3<br>\( + \) 69.2<br>\( + \) 252.7<br>\( + \) 58.0<br>\( - \) 53.7<br>\( + \) 43.3<br>\( - \) 50.5<br>\( + \) 208.0<br>\( - \) 48.1<br>\( + \) 36.3<br>\( - \) 67.1<br>\( - \) 97.8 | 14.35<br>14.35<br>14.45<br>14.50<br>14.53<br>14.45<br>14.50<br>14.50<br>14.50<br>14.80<br>14.75<br>14.80                        | 15.30<br>15.25<br>15.35<br>15.20<br>15.25<br>15.40<br>15.70<br>15.20<br>15.60<br>15.20<br>15.20          | 24410.198<br>24409.347<br>24410.377<br>24433.262<br>24428.315<br>27340.360<br>37871.517<br>24410.289<br>24410.454<br>24466.213              | 0.6438829<br>0.6375010<br>0.6289128<br>0.6196963<br>0.600001<br>0.5149114<br>0.6732769<br>0.61 var<br>0.3773182<br>0.3084409             | -, Sp<br>B <sup>Q</sup><br>Sp, B <sup>Q</sup> |

Walker, AJ 60.197 (1955); Preston, ApJ 134.651 (1961); Kheylo, IBVS 43 (1964), IBVS 104 (1965), Voprosy Astrofiziki, Kiev, p.124 (1966), VS 16.213 (1967); Sturch, AJ 72.321, ApJ 148.477 (1967); Bartolini, Battistini and Nasi, Bologna Pubbl 9, 15 (1968); Mnatsakanian and Sahakian, AC 528.5 (1969); Eggen, ApJ 172.639 (1972); Kukarkin, AC 707.7 (c) (1972) S55a, S57, S59, S61, R62a, S62, P64, S64, L65, R65, St66, S67, C&S69, S69, S70

NGC 6342  $\alpha$  17<sup>h</sup>18<sup>m</sup>.2,  $\delta$  –19°32′

S55b, R62b

| No.   | x"         | у′′                       | Max.   | Min. | Epoch | Period | Remarks   |
|-------|------------|---------------------------|--------|------|-------|--------|-----------|
| NGC 6 | 6352 a 17h | 21 <sup>m</sup> .6, δ = 4 | 18°26′ |      |       |        |           |
| 1     | +226.33    | -158.13                   |        |      |       |        | F&L1      |
| 2     | +130.63    | + 58.30                   |        |      |       |        | F&L 4, f? |
| 3     | -286.00    | +139.91                   |        |      |       |        | F&L 8     |
| 4     |            |                           | 12.7   | 13.4 |       |        | HH 113    |

Fourcade and Laborde nos. 2, 3, 5, 6, 7, 9-12 considered field. V4 found by Lloyd Evans and Menzies (1973), who also have one field variable.

Four cade and Laborde, Cordoba Repr 117 (1964), Cordoba Repr 126 (1965); Four cade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Hartwick and Hesser, ApJ 175.77 (1972); Lloyd Evans, Letter (1972); Lloyd Evans and Menzies, IAU Coll 21 (1973)

S55b, R62b, F&L63, S67, S69

NGC 6355  $a 17^{h}20^{m}.9$ ,  $\delta - 26^{\circ}19'$ 

S55b, R62b

| NGC 6                 | 356 al                              | 7h20m.7, δ - 1                       | 7° 46′                                   |                                          |        |      |                                  |
|-----------------------|-------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|--------|------|----------------------------------|
| 1<br>2<br>3<br>4<br>5 | - 15<br>+101<br>- 24<br>+187<br>255 | = 24<br>-110<br>+ 45<br>+ 47<br>+152 | 16.3<br>16.8<br>16.0<br>15.9             | 17.2<br>17.1<br>[17.5<br>[17.5<br>[17.5  | 32328. | 208: |                                  |
| 6*<br>7<br>8<br>9     | 575                                 | +114                                 | 15.6<br>15.4V<br>15.6V<br>15.3V<br>15.4V | 17.3<br>15.6V<br>16.0V<br>15.7V<br>15.7V |        |      | SW 34<br>SW 72<br>SW 30<br>SW 46 |

<sup>\*</sup>Formerly Sawyer L1, which Wilkens says should be included in the cluster. Vars. 7-10 discovered by Lloyd Evans and Menzies (unpub).

Sawyer, JRASC 47.229 (p) (1953); Sandage and Wallerstein, ApJ 131.598 (p) (1960); Lloyd Evans, Letter (1972); Sawyer Hogg, unpub (1972); Wilkens, Letter (1972); Lloyd Evans and Menzies, IAU Coll 21 (1973)

\$55a, \$57, \$59, R62c, \$62, P64, R65, \$69, F72

| NGC 6 | 362 a 17 | h <sub>26</sub> m.6, δ | 67°01′ |      |           |           |        |  |
|-------|----------|------------------------|--------|------|-----------|-----------|--------|--|
| 1     | 00       | 00                     |        |      |           |           |        |  |
| 2     | 26       | 100                    |        |      |           |           |        |  |
| 3     | 83       | 90                     |        |      |           |           |        |  |
| 4     | - 79     | 88                     |        |      |           |           |        |  |
| 5     | + 81     | 1.5                    |        |      |           |           |        |  |
| 6     | - 54     | +174                   | 14.9   | 15.3 | 36565.999 | 0.2628878 | VII 15 |  |
| 7     | + 22     | + 1()4                 | 13.7   | 14.5 | 36565.724 | 0.5215674 | VH 6   |  |
| 8     | 263      | +108                   | 14.8   | 15.3 | 36566.080 | 0.3810811 | VH 17  |  |
| 9     | 207      | +138                   |        |      |           |           |        |  |

|     |             |        | Max. | Min. | Epoch     | Period    | Remarks |
|-----|-------------|--------|------|------|-----------|-----------|---------|
| NGC | 6362 (conti | inued) |      |      |           |           |         |
| 10  | +186        | +353   | 14.5 | 14.9 | 36566.024 | 0.3617240 | VH 10   |
| 11  | - 29        | + 48   |      |      |           |           |         |
| 12  | -246        | -103   | 14.5 | 15.5 | 36565.817 | 0.5328711 | VH 3    |
| 13  | -234        | -120   | 14.4 | 15.4 | 36565.811 | 0.5800254 | VH 1    |
| 14  | + 369       | + 28   | 15.0 | 15.3 | 36565.865 | 0.2463744 | VH 16   |
| 15  | + 49        | 00     |      |      |           |           |         |
| 16  | + 16        | -270   | 14.2 | 15.5 | 36565.939 | 0.5256730 | VH 4    |
| 17  | +201        | - 68   | 14.9 | 15.3 | 36566.026 | 0.3149808 | VH W1   |
| 18  | +110        | + 72   | 14.2 | 15.2 | 36566.074 | 0.5128892 | VH 13   |
| 19  | +123        | - 25   |      |      |           |           |         |
| 20  | + 45        | - 15   |      |      |           |           |         |
| 21  | +160        | -108   |      |      |           |           |         |
| 22  | +182        | -313   | 14.8 | 15.3 | 36566.058 | 0.3639867 | VH 14   |
| 23  | + 30        | - 23   |      |      |           |           |         |
| 24  | + 71        | - 36   |      |      |           |           |         |
| 25  | -356        | -212   | 14.0 | 15.5 | 36566.150 | 0.4558950 | VH 2    |
| 26  | + 22        | - 38   |      |      |           |           |         |
| 27  | -193*       | +384   | 14.7 | 15.4 | 36566.061 | 0.3860821 | VH 9    |
| 28  | + 24        | + 37   |      |      |           |           |         |
| 29  | - 15        | - 35   |      |      |           |           |         |
| 30  | - 89        | + 74   | 14.2 | 15.4 | 36566.162 | 0.6133787 | VH 5    |
| 31  | - 33        | + 80   |      |      |           |           |         |
| 32  | + 40        | + 31   |      |      |           |           | L&F     |
| 33  | +316        | +364   | 14.7 | 15.3 | 36566.028 | 0.4412499 | VH 11   |

<sup>\*</sup> Coordinate corrected.

Vars. 16-31 found by van Agt (1961) seven of them independently by Van Hoof. One field variable, 58' from centre, Shapley.

Shapley, HB 777 (1922); van Agt, BAN 508.329 (1961); Van Hoof, Louv Publ 14, 131 (1961); Rosino and Sawyer Hogg, IAU Trans 11B.301 (1962); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Laborde and Fourcade, Cordoba Repr 138 (1966); van Agt, Priv comm (1971)

S55a, S59, R62c, S62, F&L63, S64, L65, R65, S69

NGC 6366 a 17h25m.1, δ –05°02'

Sawyer, Toronto Publ 1, 5 (p) (1940) S55a, S59, S62, S69, S70

Haute Provence 1  $\alpha$  17<sup>h</sup>28<sup>m</sup>.5,  $\delta$  -29°57′

| 1 | T248, 1964 |
|---|------------|
| 2 | T249, 1964 |
| 3 | T361, 1965 |
| 4 | T362, 1965 |
|   |            |

| No.    | x''        | y'' | Max. | Min. | Epoch | Period | Remarks    |
|--------|------------|-----|------|------|-------|--------|------------|
| HP 1 ( | continued) | )   |      |      |       |        |            |
| 5      |            |     |      |      |       |        | T363, 1965 |
| 6      |            |     |      |      |       |        | T364, 1965 |
| 7      |            |     |      |      |       |        | T126, 1966 |
| 8      |            |     |      |      |       |        | T130, 1966 |
| 9      |            |     |      |      |       |        | T247, 1966 |
| 10     |            |     |      |      |       |        | T251, 1966 |
| 11     |            |     |      |      |       |        | T136, 1966 |
| 12     |            |     |      |      |       |        | T137, 1966 |
| 13     |            |     |      |      |       |        | T139, 1966 |
| 14     |            |     |      |      |       |        | T142, 1966 |
| 15     |            |     |      |      |       |        | T143, 1966 |

Identification of new variables only on prints, as indicated.

Cailliatte, Lyon Publ 5, 33 (1962), Haute Prov Publ 7, 2 (1964); Terzan, Haute Prov Publ 7, 3, 38 (p) (1964), Haute Prov Publ 8, 11 (p), 12 (1965), Haute Prov Publ 8, 12 bis (p) (1966) R62b, S67, S69

NGC 6380  $a 17^{h}31^{m}.9$ ,  $\delta - 39^{\circ}02'$ 

1 -14.85 + 131.45

F&L

Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966) S55b, R62b

| NGC 6388 a 17 <sup>h</sup> 32 <sup>m</sup> .6, | , δ –44°43' |       |
|------------------------------------------------|-------------|-------|
| 1                                              |             | V1, M |
| 2                                              |             | V2, M |
| 3                                              |             | V3    |
| 4                                              |             | V4, M |
| 5                                              |             | V6    |
| 6                                              |             | V7    |
| 7                                              |             | V8    |
| 8                                              |             | V10   |
| 9                                              |             | V11   |
|                                                |             |       |

All variables found by Lloyd Evans and Menzies, identified on print.

Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Feast, Quart JRAS 13.191 (1972); Lloyd Evans and Menzies, IAU Coll 21 (c) (1973)

S55b, R62b, F72

Tonantzintla 2  $\alpha$  17<sup>h</sup>32<sup>m</sup>.7,  $\delta$  -38°32′

1 +71.78 +63.25

F&L

2 +80.85 +49.50

F&L

Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966)

| No.   | x"                             | y"          | Max.   | Min.  | Epoch     | Period    | Remarks     |
|-------|--------------------------------|-------------|--------|-------|-----------|-----------|-------------|
| NGC ( | 63 <b>97</b> a 17 <sup>h</sup> | 136m.8, δ – | 53°39′ |       |           |           |             |
| 1     | +210.7                         | +448.4      | 12.73  | 17.53 | 13727.6   | 314.6     | Sp, M, V, f |
| 2     | -279.0                         | -424.6      | 14.30  | 15.24 |           | 45 or 60? | prob f      |
| 3     | -220.0                         | - 33.5      | 15.51  | 16.65 | 33119.320 | 0.330667  | f           |

Bamberg var. 866 in environs.

Swope and Greenbaum, AJ 57.83 (1952); Woolley, Alexander, Mather and Epps, Royal Obs Bull 43 (1961); Feast, Obs 86.120 (1966); Strohmeier. Bauernfeind and Ott, Bamb Veröff 6.9 (1966); Swope, Letter (1969)

S55a, S57, S59, A62, S62, P64, S64, R65, FLA66, S67, S69

| NGC 6401 | α 17 <sup>h</sup> 35 <sup>m</sup> .6, δ –23°53' |       |         |
|----------|-------------------------------------------------|-------|---------|
| 1        | 14.8r                                           | 15.2r | T&R 41  |
| 2        | 15.9r                                           | 16.5r | T&R 157 |
| 3        | 15.2r                                           | 15.9r | T&R 164 |

Terzan and Rutily have more than a hundred field variables. Terzan and Rutily, Astr and Ap 16.408 (p) (1972), IAU Coll 21 (1973) S55b, R62b

| NGC | 6402 (Mess      | sier 14) a 1 | 7h35m.0, | δ -03°13 | ı         |          |              |
|-----|-----------------|--------------|----------|----------|-----------|----------|--------------|
| 1   | + 17            | + 47         | 14.65    | 16.1     | 38191.8   | 18.734   | Sp G. V      |
| 2   | 116             | -119         |          | 17.0     |           |          | Sp F, V      |
| 3   | - 3             |              | 16.65    |          |           | 0.522455 | * '          |
| 4   | +169            | + 73         | 17.2     | 18.6     | 38199.23  | 0.651313 |              |
| 5   | -136            | + 90         | 17.1     | 18.7     | 38199.61  | 0.548796 |              |
| 6   | + 34            | - 77         | 15.8     | 16.4     |           |          |              |
| 7   | + 62            |              | 15.4     | 16.5     | 38189.56  | 13.603   | +, Sp F-G, V |
| 8   | + 96            | + 35         | 17.8     | 18.6     | 38199.496 | 0.686071 |              |
| 9   | +151            | - 39         | 17.0     | 18.4     | 38199.47  | 0.538831 |              |
| 10  | - 51            | -205         | 17.1     | 18.5     | 38199.34  | 0.585914 |              |
| 11  | +196            | -223         | 16.4     | 18.0     | 38199.59  | 0.604417 |              |
| 12  | +224            | -177         | 17.1     | 18.6     | 38199.918 | 0.503952 |              |
| 13  | - 29            | -118         | 17.0     | 18.6     | 38199.690 | 0.535215 | +            |
| 14  | + 54            | + 1          | 17.2     | 18.1     | 38199.931 | 0.471857 |              |
| 15  | =135            | +147         | 16.9     | 18.6     | 38199.51  | 0.557727 |              |
| 16  | <del>- 79</del> | - 36         | 16.8     | 18.2     | 38199.40  | 0.600617 |              |
| 17  | -228            | +122         | 15.5     | 16.15    | 38204.72  | 12.085   | +, Sp, V, f? |
| 18  | + 61            | - 22         | 16.9     | 18.15    | 38199.885 | 0.479065 |              |
| 19  | -128            | + 2          | 17.0     | 18.6     | 38199.34  | 0.545671 |              |
| 20  | -145            | + 98         | 17.9     | 18.55    | 38198.734 | 0.263721 |              |
| 21  | + 72            | +125         | 16.3     | 17.4     |           |          |              |
| 22  | + 70            | + 95         | 17.3     | 18.5     | 38199.23  | 0.655916 |              |
| 23  | + 74            | +281         | 17.1     | 18.5     | 38199.72  | 0.552342 |              |
| 24  | - 2             | + 75         | 17.0     | 18.7     | 38199.64  | 0.519901 |              |
| 25  | - 28            | -312         | 17.65    | 18.4     | 38199.48  | 0.360707 |              |
| 26  | - 85            | + 27         | 16.5     | 17.5     |           |          |              |
| 27  | -421            | +151         | 16.45    | 17.6     | 349 36    | 308.0    | f?           |

| No.      | x''         | у''          | Max.  | Min.  | Epoch     | Period   | Remarks |
|----------|-------------|--------------|-------|-------|-----------|----------|---------|
| IGC      | 6402 (con   | tinued)      |       |       |           |          |         |
| 28       | -465        | +372         | 15.0  | 16.0  |           |          | E, f?   |
| 29       | - 68        | -152         | 15.7  | 16.2  |           |          |         |
| 30       | + 76        | - 12         | 16.9  | 18.3  | 38199.72  | 0.534226 |         |
| 31       | - 41        | + 32         | 16.8  | 17.7  | 38199.383 | 0.619636 |         |
| 32       | + 36        | +147         | 17.0  | 18.1  | 38199.55  | 0.655975 |         |
| 33       | -138        | + 12         | 17.3  | 18.3  | 38199.59  | 0.479946 |         |
| 34       | - 70        | + 26         | 17.8  | 18.8  | 38199.854 | 0.606627 | +       |
| 35       | -112        | - 49         | 16.2  | 17.4  |           | 0.00000  |         |
| 36       | +204        | -346         | 17.2  | 18.3  | 38199.33  | 0.677990 |         |
| 37       | + 5         | + 18         | 17.65 | 18.9  | 38199.654 | 0.489060 |         |
| 38       | + 11        | - 17         | 16.0  | 17.0  | 30177.001 | 0.107000 |         |
| 39       | + 46        | - 2          | 16.1  | 17.6  |           |          |         |
| 10       | +253        | +310         | 16.4  | 17.1  |           |          |         |
| 11       | - 13        | - 3          | 16.0  | 17.1  |           |          |         |
| 12       | + 36        | + 12         | 15.9  | 17.1  |           |          |         |
| 13       | + 68        | + 23         | 17.0  | 18.2  | 38199.46  | 0.521747 |         |
| 44       | + 20        | +116         | 16.3  | 17.5  | 30177.70  | 0.321747 |         |
| 15       | - 90        | + 94         | 15.7  | 16.4  |           |          |         |
| 46<br>46 | + 91        | - 66         | 16.4  | 17.4  |           |          |         |
|          | - 89        |              | 16.4  | 17.4  |           |          |         |
| 17       | - 69<br>- 4 | + 26<br>+ 40 |       |       |           |          |         |
| 18       |             |              | 16.3  | 17.7  |           |          |         |
| 19       | - 98<br>15  | - 19         | 16.0  | 16.9  |           |          |         |
| 0        | - 15        | - 38         | 16.1  | 17.0  | 20100 700 | 0.267606 |         |
| 1        | +104        | -305         | 17.6  | 18.15 | 38198.709 | 0.367606 |         |
| 52       | + 82        | + 39         | 16.5  | 17.0  |           |          |         |
| 3        | +134        | +129         | 16.4  | 17.3  |           |          |         |
| 54       | +121        | +113         | 16.6  | 17.6  |           |          |         |
| 55       | + 33        | +106         | 16.5  | 17.5  |           |          |         |
| 56       | - 68        | -184         | 16.4  | 17.4  |           |          |         |
| 7        | +134        | -116         | 16.3  | 17.6  |           |          |         |
| 58       | -123        | - 34         | 16.4  | 17.3  |           |          |         |
| 59       | - 32        | + 30         | 17.4  | 18.75 | 38199.561 | 0.555634 |         |
| 50       | + 41        | + 54         | 16.2  | 17.7  | 20100 (12 | 0.55000  |         |
| 51       | + 12        | - 43         | 16.6  | 17.7  | 38199.610 | 0.569824 |         |
| 52       | -232        | -154         | 18.0  | 18.5  | 38235.444 | 0.638460 |         |
| 53       | +122        | - 63         | 16.5  | 17.4  |           |          |         |
| 54       | - 51        | -169         | 16.5  | 17.5  |           |          |         |
| 55       | -125        | + 13         | 16.4  | 17.2  |           |          |         |
| 66       | -133        | + 37         | 16.6  | 17.4  |           |          |         |
| 67       | + 34        | + 14         | 16.1  | 17.5  |           |          |         |
| 8        | + 10        | - 19         | 17.1  | 18.7  | 38199.958 | 0.507217 |         |
| 59       | +140        | + 26         | 16.6  | 17.3  |           |          |         |
| 70       | + 43        | - 23         | 16.0  | 17.2  |           |          |         |
| 71       | -116        | - 50         | 17.05 | 18.3  | 38199.602 | 0.525925 |         |
| 72       | +122        | -119         | 16.5  | 17.5  |           |          |         |
| 73       | + 05        | + 07         | 16.5  | 18.0  |           | irr?     |         |
| 74<br>75 | + 07        | + 91         | 16.5  | 17.2  |           | irr?     |         |
|          | + 35        | - 12         | 16.7  | 18.5  | 38199.737 | 0.545281 |         |

| No.  | x"         | у"     | Max.  | Min.  | Epoch     | Period  | Remarks                |
|------|------------|--------|-------|-------|-----------|---------|------------------------|
| NGC  | 6402 (cont | inued) |       |       |           |         |                        |
| 76   | 105        | + 03   | 16.1  | 17.0  | 38199.466 | 1.89003 |                        |
| 77   | 110        | + 55   | 17.55 | 18.10 |           |         |                        |
| 78   | -137       | 5      | 17.50 | 18.50 |           |         |                        |
| 79   | 1.2        | 18     | 17.40 | 18.50 |           |         |                        |
| 80   | 35         | 145    | 17.50 | 18.45 |           |         |                        |
| 81   | 38         | 138    | 17.65 | 18.10 |           |         |                        |
| 82   | 79         | -122   | 17.65 | 18.20 |           |         |                        |
| 83   | - 65       | 34     | 17.70 | 18 50 |           |         |                        |
| 84   | . 44       | - 38   | 17.80 | 18.60 |           |         |                        |
| 85   | 21         | + 48   | 17.65 | 18.25 |           |         |                        |
| 86   | + 64       | + 22   | 17.85 | 18.75 |           |         |                        |
| 87   | 74         | + 11   | 17.60 | 18.60 |           |         |                        |
| 88   | - 78       | + 10   | 17.55 | 18.55 |           |         |                        |
| lova | + 30       | + 04   | 16    |       | 29071     |         | Only on plates of 1938 |

Vars. 73-77 and Nova, Sawyer Hogg and Wehlau; 77-88, Wehlau and Potts.

Joy, ApJ 110.105 (1949); Sawyer Hogg and Wehlau, AJ 69.141, Toronto Comm 97 (p) (1964); Rep, Sky Tel 27.147 (p) (1964); Sawyer Hogg and Wehlau, AJ 70.678 (1965), Toronto Publ 2, 17 (1966), Toronto Publ 2, 19 (1968); Demers and Wehlau, AJ 76.916 (1971); Wehlau and Sawyer Hogg, unpub (1972); Wehlau and Potts, unpub (1972)

\$55a, \$57, \$59, \$61, \$62a, \$64, \$65, \$67, \$C\$\$69, \$69, \$70

Palomar 6  $\alpha 17^{h}40^{m}.6, \delta 26^{\circ}12'$ 

28 variables found in environs by Terzan, who says none is a probable cluster member. Terzan, Haute Prov Publ 9, 1 (1966), Priv comm (1969) \$70

| NGC | 6426 a 17 | h42m.4, δ +0 | 3'12' |       |           |         |             |
|-----|-----------|--------------|-------|-------|-----------|---------|-------------|
| 1   | 170       | + 44         | 17.30 | 18.25 | 35638.528 | 0.61784 |             |
| 2   | 204       | 53           | 17.60 | 18.10 | 35638.475 | 0.35545 | Alt P 0.262 |
| 3   | 94        | 33           | 17.10 | 17.50 | 35660.484 | 0.40385 |             |
| 4   | - 77      | = 74         | 17.70 | 18.15 | 35640.468 | 0.42586 |             |
| 5   | 68        | 22           | 17.25 | 18.15 | 35638.460 | 0.70906 |             |
| 6   | 46        | + 52         | 17.30 | 18.25 | 35638.449 | 0.68197 |             |
| 7   | + 10      | 4            | 17.4: | 18.1: |           |         | RRa?        |
| 8   | - 15      | - 53         | 17.4: | 18.2: |           |         | RRa?        |
| 9   | 39        | 85           | 17.55 | 18.05 | 35638.460 | 0.29009 |             |
| 10  | + 46      | + 11         | 17.55 | 18.05 | 35638.430 | 0.36503 |             |
| 1.1 | +285      | = 7          | 15.40 | 16.30 | 35638.506 | 0.46164 | V979 Oph, f |
| 12  | + 33      | 2            | 17.60 | 18.00 | 35640.550 | 0.23679 | Alt P 0.191 |
| 13  | +137      | 215          | 17.20 | 18.10 | 35634.437 | 0.65190 |             |

Three field variables also.

Boyce and Hurahata, 31A 109.19 (1932) (HV 11037); Grubissich, Asiago Contr 94 (p) (1958) S55a, S59, S61, S62, L65, R65, S69

| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x"                                                                                                                                                                      | У"                                                                                                                                                                                               | Max.                                                                                                       | Min.                                                        | Epoch                                                                             | Period                                                              | Remarks                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|
| NGC (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5440 a 17h4                                                                                                                                                             | 15m,9,δ-                                                                                                                                                                                         | 20°21′                                                                                                     |                                                             |                                                                                   |                                                                     |                                                                   |
| S55b,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R62b                                                                                                                                                                    |                                                                                                                                                                                                  |                                                                                                            |                                                             |                                                                                   |                                                                     |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         | ıcm o S                                                                                                                                                                                          | 27902/                                                                                                     |                                                             |                                                                                   |                                                                     |                                                                   |
| NGC 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         | 16m.8, δ = 1                                                                                                                                                                                     | 3/02                                                                                                       |                                                             |                                                                                   |                                                                     |                                                                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + 46.20                                                                                                                                                                 | - 44.83                                                                                                                                                                                          |                                                                                                            |                                                             |                                                                                   |                                                                     |                                                                   |
| 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + 36.85<br>+350.63                                                                                                                                                      | + 23.93<br>- 90.75                                                                                                                                                                               |                                                                                                            |                                                             |                                                                                   |                                                                     |                                                                   |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + 58.85                                                                                                                                                                 | - 70.75<br>-176                                                                                                                                                                                  |                                                                                                            |                                                             |                                                                                   |                                                                     |                                                                   |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +206.25                                                                                                                                                                 | +225.50                                                                                                                                                                                          |                                                                                                            |                                                             |                                                                                   |                                                                     |                                                                   |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + 30.53                                                                                                                                                                 | + 48.68                                                                                                                                                                                          |                                                                                                            |                                                             |                                                                                   |                                                                     |                                                                   |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 38.50                                                                                                                                                                 | +485.10                                                                                                                                                                                          |                                                                                                            |                                                             |                                                                                   |                                                                     | f?                                                                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -243.10                                                                                                                                                                 | -444.68                                                                                                                                                                                          |                                                                                                            |                                                             |                                                                                   |                                                                     | f?                                                                |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 27.50                                                                                                                                                                 | - 47.30                                                                                                                                                                                          |                                                                                                            |                                                             |                                                                                   |                                                                     |                                                                   |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + 74.25                                                                                                                                                                 | 60.50                                                                                                                                                                                            |                                                                                                            |                                                             |                                                                                   |                                                                     |                                                                   |
| NGC 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5453 a 17h4                                                                                                                                                             | 18 <sup>m</sup> .0, δ –                                                                                                                                                                          | 34°37′                                                                                                     |                                                             |                                                                                   |                                                                     |                                                                   |
| Observ<br>Fourc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ved by Fourca<br>ade, Laborde                                                                                                                                           | ade and Lat                                                                                                                                                                                      | oorde. No                                                                                                  |                                                             | found.<br>ogo, Cordoba (1                                                         | 966)                                                                |                                                                   |
| Observ<br>Fource<br>S55b,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ved by Fourca<br>ade, Laborde                                                                                                                                           | ade and Lab<br>and Albarr                                                                                                                                                                        | oorde. No<br>acin, Atla                                                                                    |                                                             |                                                                                   | 966)                                                                |                                                                   |
| Observe S55b, NGC (Observe Fource                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ved by Fource<br>ade, Laborde<br>R62b<br>6496 a 17 <sup>h</sup> 5<br>ved by Fource<br>ade, Laborde                                                                      | ade and Labarr and Albarr $65^{\rm m}.5, \delta=4$ ade and Lab                                                                                                                                   | oorde. No<br>acin, Atla<br>44°15′<br>oorde. No                                                             | s y Catalo                                                  | ogo, Cordoba (1                                                                   |                                                                     |                                                                   |
| Observ<br>Fource<br>S55b,<br>NGC (Observ<br>Fource<br>S55b,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ved by Fource<br>ade, Laborde<br>R62b<br>6496 a 17 <sup>h</sup> 5<br>ved by Fource<br>ade, Laborde                                                                      | ade and Lat<br>and Albarr<br>55m.5, δ – 2<br>ade and Lat<br>and Albarr                                                                                                                           | oorde. No<br>acin, Atla<br>44°15′<br>oorde. No<br>acin, Atla                                               | s y Catalo                                                  | ogo, Cordoba (1                                                                   |                                                                     |                                                                   |
| Observed S55b,  NGC 6 Observed S55b,  NGC 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ved by Fource ade, Laborde R62b  6496 a 17hs ved by Fource ade, Laborde R62b                                                                                            | ade and Lat<br>and Albarr<br>55m.5, δ – 2<br>ade and Lat<br>and Albarr                                                                                                                           | oorde. No<br>acin, Atla<br>44°15′<br>oorde. No<br>acin, Atla                                               | s y Catalo                                                  | ogo, Cordoba (1                                                                   |                                                                     |                                                                   |
| Observ<br>Fource<br>S55b,<br>NGC (Observ<br>Fource<br>S55b,<br>NGC (S55b,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | yed by Fource<br>ade, Laborde<br>R62b<br>6496 a 17h5<br>yed by Fource<br>ade, Laborde<br>R62b<br>6517 a 17h5                                                            | ade and Labarr $65$ m.5, $\delta$ = 2 ade and Labarr and Albarr $69$ m.1, $\delta$ = 6                                                                                                           | oorde. No<br>acin, Atla<br>44°15′<br>oorde. No<br>acin, Atla<br>08°57′                                     | s y Catalo                                                  | ogo, Cordoba (1                                                                   |                                                                     |                                                                   |
| Observed S55b,  NGC 6 Observed S55b,  NGC 6 S55b,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | yed by Fource ade, Laborde R62b  6496 a 17h5 yed by Fource ade, Laborde R62b  6517 a 17h5 R62c                                                                          | ade and Labarr $65$ m.5, $\delta$ = 2 ade and Labarr and Albarr $69$ m.1, $\delta$ = 6                                                                                                           | oorde. No<br>acin, Atla<br>44°15′<br>oorde. No<br>acin, Atla<br>08°57′                                     | s y Catalo                                                  | ogo, Cordoba (1                                                                   |                                                                     |                                                                   |
| Observe<br>S55b,<br>NGC 6<br>Observe<br>Fource<br>S55b,<br>NGC 6<br>NGC 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ved by Fource ade, Laborde R62b  6496 a 17h5 ved by Fource ade, Laborde R62b  6517 a 17h5 R62c  6522 a 18h6 -67.5                                                       | ade and Lab<br>and Albarr<br>$65$ m.5, $\delta$ = 2<br>ade and Lab<br>and Albarr<br>$69$ m.1, $\delta$ = 0<br>$00$ m.4, $\delta$ = $+34.4$                                                       | oorde. No<br>acin, Atla<br>44°15′<br>borde. No<br>acin, Atla<br>08°57′<br>30°02′<br>17.08                  | o variables as y Catalo                                     | found.<br>ogo, Cordoba (1                                                         | 0.270                                                               | G222, mem                                                         |
| Observe<br>Fource<br>S55b,<br>NGC (Observe<br>Fource<br>S55b,<br>NGC (OS55b,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ved by Fource ade, Laborde R62b  6496 a 17h5 ved by Fource ade, Laborde R62b  6517 a 17h5 R62c  6522 a 18h0  -67.5 + 0.5                                                | ade and Lab<br>and Albarr<br>$65$ m.5, $\delta$ = 2<br>ade and Lab<br>and Albarr<br>$69$ m.1, $\delta$ = 0<br>$00$ m.4, $\delta$ = +34.4<br>+39.7                                                | oorde. No<br>acin, Atla<br>44°15′<br>borde. No<br>acin, Atla<br>08°57′<br>17.08<br>16.79                   | o variables s y Catalo                                      | go, Cordoba (1<br>found.<br>go, Cordoba (1<br>32416.672<br>32740.861              | 0.270<br>0.47398                                                    | G133                                                              |
| Observer Cobserver Cobserv | yed by Fource ade, Laborde R62b  6496 α17h5 yed by Fource ade, Laborde R62b  6517 α17h5  R62c  6522 α18h0  -67.5 + 0.5 + 14.7                                           | ade and Lab<br>and Albarr<br>$65$ m.5, $\delta$ = 2<br>ade and Lab<br>and Albarr<br>$69$ m.1, $\delta$ = 0<br>00m.4, $\delta$<br>+34.4<br>+39.7<br>+37.2                                         | 08°57′ 17.08 16.79 17.24                                                                                   | o variables s y Catalo                                      | go, Cordoba (1<br>found.<br>go, Cordoba (1<br>32416.672<br>32740.861<br>32705.874 | 0.270<br>0.47398<br>0.289                                           | G133<br>G44, mem                                                  |
| Observer Cobserver Cobserv | ved by Fource ade, Laborde R62b  6496 \( a \) 17h5  ved by Fource ade, Laborde R62b  6517 \( \alpha \) 17h5  R62c  6522 \( \alpha \) 18h0  -67.5  + 0.5  + 14.7  + 25.6 | ade and Lab<br>and Albarr<br>$65$ m.5, $\delta$ = 2<br>ade and Lab<br>and Albarr<br>$69$ m.1, $\delta$ = 0<br>00m.4, $\delta$<br>+34.4<br>+39.7<br>+37.2<br>+ 8.3                                | oorde. No<br>acin, Atla<br>44°15′<br>borde. No<br>acin, Atla<br>08°57′<br>17.08<br>16.79<br>17.24<br>17.27 | 17.74<br>17.74<br>18.59                                     | 32416.672<br>32740.861<br>32705.874<br>32387.747                                  | 0.270<br>0.47398<br>0.289<br>0.563826                               | G133<br>G44, mem<br>G170, mem                                     |
| Observer Cource SS55b, Cource SS5b, Cou | ved by Fource ade, Laborde R62b  6496 a 17h5 ved by Fource ade, Laborde R62b  6517 a 17h5  R62c  6522 a 18h0  -67.5 + 0.5 + 14.7 + 25.6 + 66.0                          | ade and Lab<br>and Albarr<br>$65$ m.5, $\delta$ = 2<br>ade and Lab<br>and Albarr<br>$69$ m.1, $\delta$ = 0<br>00m.4, $\delta$<br>+34.4<br>+39.7<br>+37.2<br>+ 8.3<br>-42.6                       | 08°57′  17.08 16.79 17.24 17.27 17.41                                                                      | 17.74<br>17.77<br>17.74<br>18.59<br>18.19                   | 32416.672<br>32740.861<br>32705.874<br>32349.871                                  | 0.270<br>0.47398<br>0.289<br>0.563826<br>0.28684                    | G133<br>G44, mem<br>G170, mem<br>G37, mem                         |
| Observerson NGC (Construction of the NGC (Cons | ved by Fource ade, Laborde R62b  6496 a 17h5 ved by Fource ade, Laborde R62b  6517 a 17h5  R62c  6522 a 18h0  -67.5 + 0.5 + 14.7 + 25.6 + 66.0 + 96.5                   | ade and Lab<br>and Albarr<br>$65\text{m.}5, \delta = 2$<br>ade and Lab<br>and Albarr<br>$69\text{m.}1, \delta = 0$<br>$00\text{m.}4, \delta = +34.4$<br>+39.7<br>+37.2<br>+8.3<br>-42.6<br>+30.5 | 08°57′  17.08 16.79 17.24 17.27 17.41 17.77                                                                | 17.74<br>17.74<br>17.74<br>18.59<br>18.19                   | 32416.672<br>32740.861<br>32705.874<br>32387.747                                  | 0.270<br>0.47398<br>0.289<br>0.563826<br>0.28684<br>0.192392        | G133<br>G44, mem<br>G170, mem<br>G37, mem<br>G247, mem            |
| Observers S55b, Observers S55b | ved by Fource ade, Laborde R62b  6496 a 17h5 ved by Fource ade, Laborde R62b  6517 a 17h5  R62c  6522 a 18h0  -67.5 + 0.5 +14.7 +25.6 +66.0 +96.5 -51.5                 | ade and Lab<br>and Albarr<br>$65$ m.5, $\delta$ = 2<br>ade and Lab<br>and Albarr<br>$69$ m.1, $\delta$ = 0<br>$00$ m.4, $\delta$<br>+34.4<br>+39.7<br>+37.2<br>+8.3<br>-42.6<br>+30.5<br>+62.7   | 08°57′  17.08 16.79 17.24 17.27 17.02                                                                      | 17.74<br>17.77<br>17.74<br>18.59<br>18.19<br>18.23<br>17.61 | 32416.672<br>32740.861<br>32705.874<br>32387.747<br>32349.871<br>32416.753        | 0.270<br>0.47398<br>0.289<br>0.563826<br>0.28684<br>0.192392<br>irr | G133<br>G44, mem<br>G170, mem<br>G37, mem<br>G247, mem<br>G172, f |
| Observerson NGC (Construction of the NGC (Cons | ved by Fource ade, Laborde R62b  6496 a 17h5 ved by Fource ade, Laborde R62b  6517 a 17h5  R62c  6522 a 18h0  -67.5 + 0.5 + 14.7 + 25.6 + 66.0 + 96.5                   | ade and Lab<br>and Albarr<br>$65\text{m.}5, \delta = 2$<br>ade and Lab<br>and Albarr<br>$69\text{m.}1, \delta = 0$<br>$00\text{m.}4, \delta = +34.4$<br>+39.7<br>+37.2<br>+8.3<br>-42.6<br>+30.5 | 08°57′  17.08 16.79 17.24 17.27 17.41 17.77                                                                | 17.74<br>17.74<br>17.74<br>18.59<br>18.19                   | 32416.672<br>32740.861<br>32705.874<br>32349.871                                  | 0.270<br>0.47398<br>0.289<br>0.563826<br>0.28684<br>0.192392        | G133<br>G44, mem<br>G170, mem<br>G37, mem<br>G247, mem            |

| e other kin, VS er Roya erzan, H9, S61, a 18 hables fr ster me kin, VS, R62a a 18 hables a 18 hables a 18 hables fr ster me kin, VS, R62a | assigned by numbers d 10.337 (p ld (1964); A laute Province R62a, S62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1955);<br>Alexander,<br>Publ 8, 12<br>2, P64, L6:<br>-30°04'<br>lactic field<br>a.<br>955)<br>66, S69                                             | Nassau, Spi<br>Obs 80.11<br>(p) (1965)<br>5, R65, FL                                       | th text. Memb<br>ec Vat Ric 5.1<br>0 (1965); Clu<br>i; Clube, Lette<br>A66, S67, S69                                                                                                                                                         | ership comme<br>71 (1958); Wo<br>be, Royal Obs<br>r (1972); Kuk<br>, F72                                                                                                                                                                            | on Plate 2 (1965)<br>ents from Clube<br>colley, Report of th<br>Bull 95.E383 (p)<br>carkin, Letter (1972)<br>de considered none                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e other kin, VS er Roya erzan, H9, S61, a 18 hables fr ster me kin, VS, R62a a 18 hables a 18 hables a 18 hables fr ster me kin, VS, R62a | numbers d<br>3 10.337 (p<br>11 (1964); A<br>laute Prov 1<br>R62a, S62<br>n01m.6, δ<br>om rich gal<br>mber. S55:<br>3 10.337 (1<br>, S62, FLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1955);<br>Alexander,<br>Publ 8, 12<br>2, P64, L6:<br>-30°04'<br>lactic field<br>a.<br>955)<br>66, S69                                             | Nassau, Spi<br>Obs 80.11<br>(p) (1965)<br>5, R65, FL                                       | th text. Memb<br>ec Vat Ric 5.1<br>0 (1965); Clu<br>i; Clube, Lette<br>A66, S67, S69                                                                                                                                                         | ership comme<br>71 (1958); Wo<br>be, Royal Obs<br>r (1972); Kuk<br>, F72                                                                                                                                                                            | ents from Clube<br>coolley, Report of th<br>Bull 95.E383 (p)<br>carkin, Letter (1972                                                                                                                                                                      |
| ables fr<br>ster me<br>kin, VS<br>, R62a<br>a 18 <sup>1</sup>                                                                             | om rich gal<br>mber. S55:<br>3 10.337 (1<br>, S62, FLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lactic field<br>a.<br>955)<br>66, S69                                                                                                              | l projected                                                                                | against this ch                                                                                                                                                                                                                              | aster, but Baac                                                                                                                                                                                                                                     | de considered none                                                                                                                                                                                                                                        |
| ster me<br>kin, VS<br>, R62a<br>a 18 <sup>1</sup>                                                                                         | mber. S55:<br>3 10.337 (1<br>, S62, FLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a.<br>955)<br>66, \$69                                                                                                                             | l projected                                                                                | against this ch                                                                                                                                                                                                                              | uster, but Baad                                                                                                                                                                                                                                     | de considered none                                                                                                                                                                                                                                        |
|                                                                                                                                           | n <sub>01</sub> m <sub>.3</sub> , δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =00°18′                                                                                                                                            |                                                                                            |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                    |                                                                                            |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |
| 97                                                                                                                                        | +65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.3                                                                                                                                               | 17.3                                                                                       |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                    |                                                                                            |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |
| a 18 <sup>1</sup>                                                                                                                         | n <sub>02</sub> m.1, δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -07°35′                                                                                                                                            |                                                                                            |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aade. S55a                                                                                                                                         | à.                                                                                         |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |
| a 18 <sup>1</sup>                                                                                                                         | n04m.4, δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -43°44′                                                                                                                                            |                                                                                            |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |
| 18.0                                                                                                                                      | -126.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.5                                                                                                                                               | [16                                                                                        |                                                                                                                                                                                                                                              | long                                                                                                                                                                                                                                                | Alcaino 127, prob mem                                                                                                                                                                                                                                     |
|                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    | LA66, S69                                                                                  |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |
|                                                                                                                                           | a 18 <sup>1</sup> | 859, R62c, S62,<br>α 18h02m.1, δ<br>blished variable, B:<br>R62c, S62, S69<br>α 18h04m.4, δ<br>18.0 –126.0<br>str and Ap 13.399<br>S59, R62c, S62, | $a 18^{h}04^{m}.4, \delta = 43^{\circ}44'$ $18.0 = -126.0 = 12.5$ str and Ap 13.399 (1971) | S59, R62c, S62, S69 $a 18h02m.1$ , $\delta = 07^{\circ}35'$ Solished variable, Baade. S55a.  R62c, S62, S69 $a 18h04m.4$ , $\delta = 43^{\circ}44'$ $18.0 = -126.0 = 12.5 = [16]$ str and Ap 13.399 (1971) S59, R62c, S62, F&L63, FLA66, S69 | S59, R62c, S62, S69 $a 18^{h}02^{m}.1$ , $\delta = 07^{\circ}35'$ Solished variable, Baade, S55a.  R62c, S62, S69 $a 18^{h}04^{m}.4$ , $\delta = 43^{\circ}44'$ $18.0 -126.0 12.5 [16]$ str and Ap 13.399 (1971)  S59, R62c, S62, F&L63, FLA66, S69 | S59, R62c, S62, S69 $a 18^{h}02^{m}.1$ , $\delta - 07^{\circ}35'$ Solished variable, Baade. S55a.  R62c, S62, S69 $a 18^{h}04^{m}.4$ , $\delta - 43^{\circ}44'$ $18.0 - 126.0 12.5 [16 long]$ str and Ap 13.399 (1971)  S59, R62c, S62, F&L63, FLA66, S69 |

NGC 6553 α 18h06m.3, δ –25°56′

| 4      | +186<br>+ 75<br>- 23<br>+ 16<br>- 71 | + 20<br>-152<br>- 38<br>- 2<br>- 12 | 0.5642<br>0.5818<br>0.4886<br>270: | prob f             |
|--------|--------------------------------------|-------------------------------------|------------------------------------|--------------------|
| 6<br>7 | 7.1                                  | 12                                  | 1100                               | LE&M A1<br>LE&M A2 |

| No.   | x"          | у"    | Max. | Min. | Epoch | Period | Remarks    |
|-------|-------------|-------|------|------|-------|--------|------------|
| NGC 6 | 553 (contin | ued)  |      |      |       |        |            |
| 8     |             |       |      |      |       |        | LE&M 3     |
| 9     |             |       |      |      |       |        | LE&M 6     |
| 10    |             |       |      |      |       |        | LE&M 7     |
| 11    |             |       |      |      |       |        | LE&M 13    |
| 12    |             |       |      |      |       |        | LE&M 14    |
| 13    |             |       |      |      |       |        | LE&M 24    |
| 14    |             |       |      |      |       |        | LE&M 33    |
| lova  | -131:       | -281: | 8    | [12  | 30955 |        | N Sgr 1943 |

Vars. 1-5 found by Thackeray, 6-14 and one suspected by Lloyd Evans and Menzies (1973). Shapley's two suspected variables are doubtful, Thackeray, Letter (1956).

Lloyd Evans and Menzies, IAU Coll 21 (p) (1973). Nova: Mayall, AJ 54.191 (1949) S55a, R57, S59, R62a, S62, R65, St66, S69

| NGC 6 | 5558 a 18h | no7m.0, δ – | 31°47′ |      |     |        |  |
|-------|------------|-------------|--------|------|-----|--------|--|
| 1     | - 24.9     | - 3.2       | 16.1   | 17.5 | RR  | Rosino |  |
| 2     | - 15.6     | + 46.6      | 15.0   | 15.8 |     | Rosino |  |
| 3     | + 52.1     | + 32.2      | 16.2   | 17.5 | RR  | Rosino |  |
| 4     | - 55.5     | - 24.2      | 16.6   | 17.7 | RR  | Rosino |  |
| 5     | - 48.1     | +124.7      | 17.0   | 17.6 | RR? | Rosino |  |
| 6     | - 23.3     | - 50.2      | 16.8   | 17.5 |     | Rosino |  |
| 7     | +113.5     | +132.4      | 14.4   | 15.4 |     | Rosino |  |
| 8     | - 2.2      | -183.6      | 16.3   | 17.4 | RR  | Rosino |  |
| 9     | -339.2     | - 36.6      | 16.3   | 17.8 |     | Rosino |  |
|       |            |             |        |      |     |        |  |

Fourteen variables in field, Rosino.

Rosino, Asiago Contr 52 (1954), Asiago Contr 132 (p) (1962) S55b, S57, R57, S59, S61, R62c, S62, S64, FLA66, S69

| IC 127 | 76 a 18h08 | $8m.0, \delta -07$ | °14′  |      |          |       |     |
|--------|------------|--------------------|-------|------|----------|-------|-----|
| 1      | + 86.9     | +115.0             | ]20.2 | 22   |          | SR?   | SH  |
| 2      | - 15.2     | + 23.7             | 18.9  | 20.0 | 37468.96 | 0.548 | K&R |
| 3      | + 74.2     | - 51.4             | 17.8  | 22   |          | SR?   | K&R |
| 4      | + 41.7     | +136.1             | 18.8  | 19.5 |          | SR?   | K&R |
| 5      | -204.4     | +230.3             | 18.8  | 19.6 |          | SR?   | K&R |

Sawyer Hogg, JRASC 53.97 (p) (1959); Kinman and Rosino, ASP 74.501 (1962); Rosino and Sawyer Hogg, IAU Trans 11B.301 (1962)

S55b, S57, S62, S64, S69

| NGC | 6569 a 18h | 110m.4, δ | 31°50′ |      |       |        |
|-----|------------|-----------|--------|------|-------|--------|
| 1   | - 95.1     | + 28.9    | 17.3   | 18.1 |       | Rosino |
| 2   | - 91.9     | + 0.3     | 17.0   | 18.0 | short | Rosino |
| 3   | + 43.7     | + 12.4    | 16.6   | 17.5 | slow  | Rosino |
| 4   | +116.5     | +202.1    | 15.3   | 17.3 |       | Rosino |
| 5   | - 20.7     | - 2.5     | 17.0   | 17.8 |       | Rosino |

| No.    | x''        | y′′        | Max. | Min. | Epoch | Period | Remarks |
|--------|------------|------------|------|------|-------|--------|---------|
| NGC 6  | 5569 (con  | linued)    |      |      |       |        |         |
| Three  |            | oles Rosin |      |      |       |        |         |
| Rosino | , Asiago ( | ontr 1320  |      |      |       |        |         |

NGC 0304 W 10-14-1.0, 0 32 1-

-82.5 24.75

F&L

Nine field variables, Bailey
Bailey, HB 801 (1924): Fourcade, Laborde and Albarracia, Atlas y Catalogo, Cordoba (1966)

**NGC** 6624  $\alpha$  18<sup>h</sup>20<sup>m</sup>.5,  $\delta$  = 30°23′

\$55a, \$59, R62c, \$62, F&L63 \$69

Only four of the variables in F1 A 66 are listed here. The other 29 are considered field stars.

Laborde and Fourcade, Cordoba Repr 127 (p) (1966): Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966)

S55b, R62b, S67, S69

| NGC | 6626 (Messi | er 28) a 18 | h21m.5, | δ 24°54′ |           |           |              |
|-----|-------------|-------------|---------|----------|-----------|-----------|--------------|
| 1   | +174.0      | +188.5      | 15.1    | 16.4     |           |           |              |
| 2   | - 47.3      | + 63.1      | 14.3    | 14.8     |           |           |              |
| 3   | 32.9        | +111.0      | 14.6    | 15.4     |           |           |              |
| 4   | 34.5        | + 33.6      | 13.6    | 14.8     | 32759.765 | 12.937    | Sp F-G       |
| 5   | = 44.8      | + 16.4      | 14.8    | 15.6     | 36040.674 | 0.644360  |              |
| 6   | + 34.1      | + 50.4      | 14.3    | 15.2     |           |           |              |
| 7   | +172.2      | +102.7      | 15.9    | 17.0     |           |           |              |
| 8   | +227.3      | 222.3       | 15.6    | 16.6     | 25474.346 | 0.56600   | Hoff 63c     |
| 9   | -158.6      | 252.4       | 14.75   | 15.7     | 35696.652 | 1.965     | Alt 0.6627   |
| 10  | + 96        | 79          | 13.5    | 14.6     |           |           |              |
| 11  | - 14        | + 35        | 15.0    | 16.3     |           |           |              |
| 12  | +148        | - 49        | 15.0    | 16.1     | 35373.660 | 0.578254  |              |
| 13  | 92          | - 24        | 15.1    | 16.7     | 34893.807 | 0.504027  |              |
| 14  | -131        | - 100       | 15.6    | 16.1     |           | 0.330918  |              |
| 15  | -472        | -186        | 15.8    | 17.0     |           |           |              |
| 16  | +432        | -372        | 15.9    | 17.0     | 36067.656 | 0.5220278 |              |
| 17  |             |             | 12.8    | 14.8     | 38620     | 92.8      | RV, Hoff 63a |
| 18  |             |             | 15.4    | 16.6     | 28022.400 | 0.5782670 | +, Hoff 63b  |
|     |             |             |         |          |           |           |              |

Joy, ApJ 110.105 (1949); Sawyer, AJ 54.193 (1949); Hoffleit, AJ 70.307 (1965); Deery, AAVSO Abstr Oct. p. 3 (1968); Hoffleit, IBVS 312 (1968), IBVS 387 (1969), IBVS 660 (1972); Sawyer Hogg and Moorhead, unpub (1972)

\$55a, \$57, \$59, \$62, \$67, \$69, \$70

| No.                                  | x"                                        | y''                                      | Max.                                 | Min.                                 | Epoch | Period     | Remarks                                                                         |
|--------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|-------|------------|---------------------------------------------------------------------------------|
| NGC                                  | 6637 (Messi                               | er 69) a 18                              | h28m.1,                              | δ 32°23                              | 3′    |            |                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | - 20<br>-228.8<br>- 36.6<br>- 17.5<br>+ 8 | - 9<br>+201.3<br>- 78.5<br>- 90.7<br>+ 7 | 13.0<br>15.9<br>14.6<br>14.3<br>13.0 | 15.0<br>17.3<br>15.8<br>17.2<br>14.5 | 28433 | 196<br>195 | red, mem<br>RR, f<br>red, mem<br>mem<br>il 37, red<br>ill 43, red<br>IV 11, red |

Vars. 1, 2, 3, 5 found by Rosino. V5 is Rosino 10, V4 is Ponson V1894. Rosino considers his variables 5-9 as field stars. Wilkens (Letter) suggests they may be cluster members. Identifications of new vars. 6-8, Lloyd Evans and Menzies (1973) from Hartwick and Sandage (1968).

Ponson, Leiden Ann 20.431 (Star 69) (1957); Rosino, Asiago Contr 132 (p) (1962); Hartwick and Sandage, ApJ 153.715 (p) (1968); Catchpole, Feast and Menzies, Obs 90.63 (1970); Lloyd Evans and Menzies, Obs 91.35 (1971); Wilkens, Letter (1972); Lloyd Evans and Menzies, 1AU Coll 21 (1973)

\$55b, \$57, \$61, \$62c, \$463, \$64, \$65, \$466, \$69, \$70, \$72

## NGC 6638 $\alpha$ 18<sup>h</sup>27<sup>m</sup>.9, $\delta$ -25° 32′

| 1 | Terzan 9  |
|---|-----------|
| 2 | Terzan 10 |
| 3 | Terzan 11 |

Terzan's new variables identified on print. Six unpublished variables, Sawyer Hogg and Terzan (1972).

Terzan, Haute Prov Publ 9, 24 (p) (1968) S55b, S57, R62b, S70

### NGC 6642 $a_{18}^{h_{28}m_{.4}}$ , $\delta_{-23}^{\circ}30'$

| 1 | 14.5 | 16.0 | Hoff 145a, M |
|---|------|------|--------------|
| 2 | 14.9 | 16.0 | Hoff 145b    |

Two field variables, Hoffleit 137a and 137b. Hoffleit, 1BVS 660 (c) (1972) S55b, R62b

NGC 6652  $a 18^{h}32^{m}.5$ ,  $\delta -33^{\circ}02'$ 

Observed by Fourcade and Laborde, 1966; no variables found. Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966) S55b, R62b

| No. | x"          | у"          | Max.    | Min.     | Epoch        | Period    | Remarks           |
|-----|-------------|-------------|---------|----------|--------------|-----------|-------------------|
| NGC | 6656 (Messi | er 22) a 18 | h33m.3, | δ -23°58 | ,            |           |                   |
| 1   | - 54.0      | - 10.0      | 14.2    | 15.4     | 36070.678    | 0.615543  |                   |
| 2   | + 158.6     | + 69.2      | 13.45   | 14.25    | 37113.784    | 0.641717  |                   |
| 3   | + 214.7     | +420.2      | 15.4    | 16.6     | 40063.702    | 0.515485  | f                 |
| 4   | - 4.0       | - 68.0      | 13.9    | 15.1     | 40058.727    | 0.716393  |                   |
| 5   | - 178.2     | - 33.8      | 12.5    | 13.4     | 40027.818    | 92.6      | Sp G, V, mem      |
| 6   | - 74.4      | -100.0      | 13.65   | 14.5     | 35279.755    | 0.638548  |                   |
| 7   | - 342.4     | +411.2      | 13.65   | 15.0     | 35279.755    | 0.649520  |                   |
| 8   | - 39.5      | - 64.8      | 12.0    | 13.0     |              | irr.      | Sp G, V, mem      |
| 9   | - 211.2     | - 35.0      | 12.8    | 13.8     | 32740.781    | 87.71     | Sp G, V, mem      |
| 10  | - 39.0      | -125.0      | 13.75   | 14.7     | 36069.643    | 0.646018  |                   |
| 11  | - 14.4      | + 14.0      | 13.1    | 13.9     | 36073.656    | 1.69049   | Sp, V, mem        |
| 12  | + 0.8       | 77.8        | 14.2    | 14.6     | Prob. not va | Ι.        | . ,               |
| 13  | + 76.4      | +158.9      | 13.9    | 14.85    | 35 309 .7 30 | 0.672523  |                   |
| 14  | + 250.8     | +486.4      | 14.5    | 17.5     | 34983.6      | 199.7     | Sp M, V, f        |
| 15  | + 115.3     | - 83.2      | 14.25   | 14.75    | 35279.755    | 0.373248  | -1 - 1, ,         |
| 16  | + 185.0     | - 17.8      | 14.25   | 14.85    | 35335.645    | 0.325348  |                   |
| 17  | - 438.0     | +126.0      | 15.3    | 16.7     | 35338.7      | 113.2     | f?                |
| 18  | - 86        | +433        | 14.3    | 14.7     | 34927.766    | 0.324960  |                   |
| 19  | - 33        | +130        | 14.3    | 14.8     | 35313.669    | 0.384009  |                   |
| 20  | - 120       | -123        | 13.9    | 14.6     | 34927.766    | 0.430060  |                   |
| 21  | + 36        | + 88        | 14.0    | 14.5     | 34922.732    | 0.327530  |                   |
| 22  | -1089       | +213        | 14.1    | 15.8     | 34927.766    | 0.6245374 |                   |
| 23  | - 5         | - 14        | 13.9    | 14.65    | 35341.635    | 0.355195  | +                 |
| 24  | - 26        | + 10        | 14.4    | 15.5     |              |           |                   |
| 25  | + 326       | +375        | 14.35   | 14.85    | 32006.740    | 0.402367  | +                 |
| 26  |             |             | 15.6    | 17.6     | 36051.7      | 309.0     | Hoff 8, 181a, f?  |
| 27  |             |             | 14.0    | 15.1     | 35280.720    | 0.342811  | Hoff 10, 181b, f  |
| 28  |             |             | 13.8    | 14.8     | 34920.7      | 424.5     | Hoff 16, 173a, f3 |
| 29  |             |             | 14.5    | 15.3     |              |           | Hoff 187b         |
| 30  |             |             | 12.8    | 13.4     |              |           | Hoff 191          |
| 31  |             |             | 12.8    | 13.5     |              |           | Hoff 185          |
| 32  | - 631       | -331        | 15.4    | 18.0     | 34932.7      | 233.35    | Watt, f?          |
| 33  | - 149       | -794        | 14.4    | 17.0     | 35308.8      | 250.3     | Watt, f?          |

Sawyer, Toronto Publ 1, 15 (p) (1944); Joy, ApJ 110.105 (1949); Hoffleit, AJ 69.301 (1964), Sky Tel 27.274 (1964), AJ 70.307 (1965), AJ 72.711 (1967); Eggen, ApJ 172.639 (1972); Hoffleit, IBVS 660 (c) (1972); Sawyer Hogg and Wehlau, unpub (1972) S55a, S57, S59, R62a, S62, L65, R65, S67, S69, S70

NGC 6681 (Messier 70)  $a \ 18^{h}40^{m}.0$ ,  $\delta \ -32^{\circ}21'$   $1 + 46.1 - 113.0 \ 16.2 \ 17.2$  RR? Rosino 1  $2 - 104.5 - 581.3 \ 16.1 \ 17.1$  RR? Rosino 3

Four field variables, Rosino (1962). Rosino, Asiago Contr 132 (p) (1962) S55b, S61, R62c, F&L63, S64, FLA66, S69

| No.   | х′′       | у′′                                 | Max.    | Min.  | Epoch     | Period   | Remarks        |
|-------|-----------|-------------------------------------|---------|-------|-----------|----------|----------------|
| NGC ( | 6712 a 18 | h <sub>50</sub> m <sub>.3</sub> , δ | -08°47′ |       |           |          |                |
| 1     | - 63      | - 17                                | 16.18   | 17.32 | 35284.988 | 0.512030 |                |
| 2     | + 69      | + 15                                | 14.70   | 16.00 | 35007.4   | 104.6    | AP Sct, mem    |
| 3     | - 28      | - 93                                | 16.66   | 17.34 | 35285.235 | 0.655680 |                |
| 4     | +179      | - 27                                | 16.96   | 17.62 | 35285.082 | 0.611741 |                |
| 5     | + 67      | - 71                                | 16.00   | 17.40 | 35285.350 | 0.545390 |                |
| 6     | + 18      | - 41                                | 16.10   | 17.62 | 35285.344 | 0.510849 |                |
| 7     | -129      | - 18                                | 13.10   | 18.20 | 35327     | 190.48   | CH Sct, V, mem |
| 8     | + 24      | + 60                                | 14.55   | 16.20 | 35400     | 117.0    |                |
| 9     | - 4       | +285                                | 16.80   | 19:   |           |          | UG?, f         |
| 10    | - 99      | + 30                                | 15.45   | 15.95 | 35287     | 174      |                |
| 11    | -116      | -333                                | 16.7    | 17.5  |           |          | E, f           |
| 12    | + 29      | + 39                                | 16.00   | 17.54 | 35285.298 | 0.502776 |                |
| 13    | - 93      | + 25                                | 15.98   | 17.36 | 35285.193 | 0.562651 | Ros, San       |
| 14    | -426      | + 31                                | 15.30   | 17.90 | 35690.5   | 202.2    | Sawyer F1      |
| 15    | +247      | - 38                                | 15.60   | 16.60 |           | 100?     | Har 160        |
| 16    | -138      | +175                                | 16.8    | 17.5  |           |          | Har 141, E     |
| 17    | + 27      | + 49                                | 15.5    |       |           |          | Har 151        |
| 18    | - 25      | - 1                                 | 16.64   | 17.26 | 35285.123 | 0.345044 | Sandage        |
| 19    | - 13      | + 34                                | 16.50   | 16.92 | 35285.162 | 0.423900 | Sandage        |
| 20    | + 1       | + 9                                 | 16.60   | 17.14 | 35285.031 | 0.330870 | Sandage        |
| 21    |           |                                     | 13.5    | 13.8  |           |          | LE&M           |

Sawyer, JRASC 47.229 (1953); Harwood, Priv comm (1956), Leiden Ann 21.387 (1962); Smith, Sandage, Lynden-Bell and Norton, AJ 68.293 (1963); Rosino, Bamb Kl Veröff 4, 40.202 (1965); Sandage, Smith and Norton, ApJ 144.894 (1966); Rosino, ApJ 144.903 (1966); Feast, Obs 87.35 (1967); Lloyd Evans, Letter (1972); Lloyd Evans and Menzies, IAU Coll 21 (1973) S55a, S57, S59, S61, R62a, S62, S64, R65, S67, S69, F72

| NGC | 6715 (Mes | sier 54) a 1 | 8h52m.0, | δ -30°3 | 2'       |         |        |
|-----|-----------|--------------|----------|---------|----------|---------|--------|
| 1   | + 83      | + 10         | 15.8     | 16.9    | 35661.45 | 1.34956 | Сер    |
| 2   | - 6       | + 90         | 16.3     | 17.3    | 35635.60 | 0.5111  |        |
| 3   | - 14      | + 179        | 16.5     | 17.6    | 35630.44 | 0.5010  |        |
| 4   | - 38      | + 311        | 16.6     | 17.8    | 35630.40 | 0.4803  |        |
| 5   | - 129     | + 45         | 16.5     | 17.8    | 35636.34 | 0.5780  |        |
| 6   | + 194     | - 188        | 16.6     | 17.8    | 35630.50 | 0.5417  |        |
| 7   | + 54      | - 165        | 16.6     | 17.5    |          | 0.46?   | RR     |
| 8   | + 365     | - 330        | 15.7     | 16.7    |          |         | E? f?  |
| 9   | - 67      | - 637        | 16.8     | 17.7    |          |         | RR     |
| 10  | + 115     | - 530        | 16.9     | 17.6    |          |         | RR?    |
| 11  | - 106     | -1086        |          |         |          |         | f      |
| 12  | - 220     | - 248        | 15.4     | 16.4    | 35630.64 | 0.3220  | prob f |
| 13. | - 238     | + 451        | 16.5     | 17.5    |          |         | RR     |
| 14  | + 240     | + 213        | 16.2     | 17.4    | 35630.44 | 0.6892  |        |
| 15  | + 124     | - 63         | 16.6     | 17.5    | 35639.64 | 0.5869  |        |
| 16  | + 87      | - 917        |          |         |          |         | f      |
| 17  | + 697     | - 435        | 16.6     | 17.6    | 35665.30 | 0.4660? |        |
|     |           |              |          |         |          |         |        |

| Vo.    | х′′            | у′′            | Max.    | Min.  | Epoch     | Period | Remarks |
|--------|----------------|----------------|---------|-------|-----------|--------|---------|
| iGC    | 6715 (cor      | ntinued)       |         |       |           |        |         |
| 8      | + 511          | + 382          | 16.5    | 17.2  |           |        | RR?     |
| 9      | -1260          | - 190          |         |       |           |        | f       |
| 20     | + 106          | + 95           | 16.8    | 17.2  |           |        |         |
| 1      | + 85           | - 231          |         | 17.8  | var'?     |        |         |
| .2     | - 21           | - 167          | 16.4    | 16.7  |           |        |         |
| 3      | + 362          | + 170          | 16.8    | 17.6  | 35638.60  | 0.5286 |         |
| 4      | + 453          | + 55           | 16.5:   |       | var?      |        |         |
| 5      | - 65           | + 74           | 15.4    | 17.2  | 35628     | 101±   | SR      |
| 6      | + 201          | - 159          | 16.8    | 17.4  |           |        | RR?     |
| 7      | + 209          | - 306          | 16.75 r |       |           |        |         |
| 8      | + 68           | + 161          | 16.3    | 17.6  | 35630.45  | 0.5128 |         |
| 9      | - 134          | 43             | 16.6    | 17.7  | 35638.44  | 0.5893 |         |
| )      | + 2            | + 80           | 16.6    | 17.7  |           |        | RR      |
| 1      | - 104          | - 66           | 16.8    | 17.7  |           |        | RR      |
| 2      | - 181          | + 69           | 16.5    | 17.7  | 35636.36  | 0.5210 |         |
| 3      | + 72           | - 112          | 16.3    | 17.5  | 35629.58  | 0.4922 |         |
| 4      | - 61           | - 153          | 16.4    | 17.6  | 35636.32  | 0.5053 |         |
| 5      | - 83           | + 54           | 16.6    | 17.6  | 35665.36  | 0.5266 |         |
| 6      | + 129          | + 51           | 16.5    | 17.6  | 35629.58  | 0.5977 |         |
| 7      | + 41           | - 44           | 17.3    | 17.9  |           |        |         |
| 8      | - 69           | + 37           | 17.1    | 17.8  |           |        |         |
| 9      | 105            | - 63           | 16.7    | 17.7  |           |        | RRa     |
| 0      | - 56           | = 112          | 16.5    | 17.5  | 35630.44  | 0.586  |         |
| 1      | + 128          | + 45           | 16.4    | 17.6  | 35630.45  | 0.6187 |         |
| 2      | + 70           | + 57           | 16.8    | 17.8  | 55050110  | 0.0.07 | RR      |
| 3      | = 154          | + 54           | 16.8    | 17.5  | 35630.44  | 0.3913 |         |
| 4      | + 10           | - 81           | 16.6    | 17.8  | 20000     | 0.07.0 | RRa     |
| 5      | + 117          | - 109          | 16.25   | 17.6  | 35630.62  | 0.4889 | 1444    |
| 6      | - 38           | - 39           | 17      | 17.8? | 30030.02  | 0.1007 |         |
| 7      | - 29           | + 96           | 16.7    | 17.7  | 35635.60  | 0.5069 |         |
| 8      | + 254          | - 47           | 16.7    | 17.6  | 35635.58  | 0.6849 |         |
| 9      | - 101          | - 134          | 16.8    | 17.4  | 220000    | 0.00 . | RR      |
| 0      | + 104          | + 61           | 16.7    | 17.5  | 35630.64  | 0.5635 |         |
| 1      | + 222          | + 208          | 16.85   | 17.55 | 30030.01  | 0.0000 | RR?     |
| 2      | + 90           | - 50           | 16.85   | 17.55 |           |        | RR      |
| 3      | - 66           | - 76           | 16.83   | 17.6  |           |        | RR      |
| 4      | - 113          | + 327          | 16.5    | 17.6  | 35629.57  | 0.5713 | 1414    |
| 5      | + 146          | - 205          | 16.6    | 17.6  | 35629.58  | 0.4259 |         |
| 6      | - 336          | - 203<br>- 124 | 16.65   | 17.4  | 55027.50  | 0.7237 | RRc     |
| 7      | + 293          | - 31           | 16.03   | 17.7  |           | 0.64?  | RRa     |
| 8      | + 293          | + 282          | 16.7    | 17.5  | 35630.50  | 0.6148 | IXIXA   |
| 9      | - 218          | - 254          | 16.8    | 17.75 | 35630.63  | 0.5993 |         |
| 0      | - 218<br>- 269 | = 234<br>= 247 | 16.8    | 17.73 | 35629.57  | 0.570? | RR      |
| 1      | - 43           | + 107          | 17.05   | 17.85 | 330 47.31 | 0.570. | RR      |
| 2      | - 43<br>- 92   | + 107          | 17.03   | 17.83 |           |        | RRc?    |
| 3      | - 92<br>- 40   | + 102<br>- 133 | 16.9    | 17.6  |           |        | RR R    |
| 3<br>4 | + 259          | - 133<br>- 498 |         | 17.5  |           |        | SR      |
| 4      | T 239          | - 498          | 16.7    | 17.3  |           |        | NC.     |

| No.   | x"        | у′′             | Max.    | Min.  | Epoch      | Period | Remarks |
|-------|-----------|-----------------|---------|-------|------------|--------|---------|
| NGC   | 6715 (con | itinued)        |         |       |            |        |         |
| 65    | + 243     | + 165           | 16.25   | 17.05 | 35638.36   | 0.4481 | f       |
| 66    | + 234     | + 207           | 15.6    | 17.1  |            |        | SR      |
| 67    | 0         | + 69            | 16.85   | 17.55 |            |        | RR      |
| 68    | - 643     | + 337           | 16.8    | 17.7  | 35630.65   | 0.5414 |         |
| 69    | - 328     | + 283           | 16.45   | 17.25 |            |        | RR?     |
| 70    | + 128     | - 426           | 16.8    | 17.4  |            |        | RR      |
| 71    | - 32      | + 106           | 14.8    | 16.2  |            | 77:    | SR      |
| 72    | - 61      | + 149           | 15.6    | 16.7  |            |        | E?      |
| 73    | + 26      | + 62            | 17.0    | 17.5  |            |        |         |
| 74    | + 113     | - 141           | 16.7    | 17.5  |            |        | RR      |
| 75    | + 18      | + 79            | 16.5    | 17.7  | 35638.36   | 0.5797 |         |
| 76    | - 106     | - 22            | 16.5?   | 17.5? |            |        | RR      |
| 77    | - 112     | - 42            | 16.5    | 17.5  |            |        | RR      |
| 78    | + 73      | - 13            |         |       |            |        |         |
| 79    | + 30      | - 46            | 16.9    | 17.5  |            |        | RR?     |
| 80    | + 51      | - 25            | 16.7?   | 17.5  |            |        |         |
| 81    | + 45      | + 12            |         |       |            |        |         |
| 82    | - 49      | - 46            | 16.7?   | 17.5? |            |        |         |
| Vars. | 29-82 fou | and by Rosino   | and Nob | ili.  |            |        |         |
|       |           | bili, Asiago Co |         |       |            |        |         |
|       |           |                 |         |       | FLA66, S69 |        |         |

NGC 6717 a 18<sup>h</sup>52<sup>m</sup>.1,  $\delta$  -22°47′

S55b, S61

| NGC 6 | 723 a 18 <sup>n</sup> | 156m.2, δ – | 36°42′ |       |           |          |
|-------|-----------------------|-------------|--------|-------|-----------|----------|
| 1     | + 75.1                | -199.5      | 15.76  | 16.25 | 38993.793 | 0.538177 |
| 2     | +135.7                | - 78.3      | 14.71  | 16.47 | 38993.951 | 0.503539 |
| 3     | -244.4                | + 7.5       | 14.78  | 16.57 | 38994.131 | 0.494097 |
| 4     | + 16.8                | + 77.4      | 14.55  | 15.90 | 38993.855 | 0.451060 |
| 5     | - 4.7                 | + 51.0      | 15.20  | 16.00 |           | 0.57264  |
| 6     | + 7.2                 | + 48.3      | 14.90  | 16.05 | 23618.80  | 0.4814   |
| 7     | +197.5                | - 71.3      | 15.53  | 16.14 | 38994.037 | 0.307672 |
| 8     | + 15.9                | + 10.8      | 14.75  | 15.60 |           | 0.53     |
| 9     | + 74.0                | + 15.7      | 14.70  | 15.80 | 38994.101 | 0.575803 |
| 10    | +148.6                | + 83.9      | 15.39  | 16.03 | 38993.996 | 0.252325 |
| 11    | +133.3                | +228.8      | 14.85  | 15.65 | 38993.922 | 0.534283 |
| 12    | + 43.2                | - 45.7      | 14.95  | 15.85 | 23618.53  | 0.4694   |
| 13    | - 46.2                | - 71.3      | 14.69  | 16.22 | 38993.930 | 0.507867 |
| 14    | + 38.2                | - 43.2      | 14.95  | 15.80 | 23618.91  | 0.6190   |
| 15.   | - 93.4                | +167.5      | 14.72  | 16.43 | 38993.847 | 0.435439 |
| 16    | - 46.5                | + 93.3      | 14.55  | 15.69 | 38994.104 | 0.696273 |
| 17    | + 43.1                | -102.5      | 15.27  | 16.66 | 38994.135 | 0.530179 |
| 18    | -137.8                | - 18.2      | 15.40  | 16.27 | 38994.091 | 0.526455 |
| 19    | -169.4                | -112.5      | 15.24  | 16.63 | 38994.018 | 0.534111 |

| No. | x"          | у''    | Max.  | Min.  | Epoch     | Period   | Remarks |
|-----|-------------|--------|-------|-------|-----------|----------|---------|
| NGC | 6723 (conti | nued)  |       |       |           |          |         |
| 20  | + 3.5       | + 39.9 |       |       |           | 0.49293  | F&L     |
| 21  | - 79.0      | - 28.2 | 14.50 | 15.72 | 38993.760 | 0.594863 |         |
| 22  | - 70.8      | + 38.1 | 15.18 | 15.72 | 38994.19  | 0.30844  |         |
| 23  | + 53.4      | - 10.0 |       |       | 38994.08  | 0.6259   |         |
| 24  | +117.5      | -112.0 | 15.50 | 16.11 | 38993.999 | 0.300143 |         |
| 25  | + 98.6      | +203.1 | 12.1V | 13.0V |           | SR?      |         |
| 26  | -197.0      | +155.9 | 12.2V | 13.1V |           | SR?      |         |
| 27  | -219.1      | +101.6 | 15.50 | 16.33 | 38994.093 | 0.619249 |         |
| 28  | + 10.8      | - 79.0 |       |       |           | 0.4863   |         |
| 29  | + 12.4      | + 63.6 |       |       |           | 0.53:    |         |

New coordinates for all variables, Menzies (1973), who discovered vars. 21-29.

Innes, UOC 37.300 (UY Cr A) (1917); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Menzies, Proc Astr Soc Aust 1.16 (1967), Doctoral Thesis, Australian Nat'l Univ (1967); Lloyd Evans, Letter (1972); Lloyd Evans and Menzies, 1AU Coll 21 (1973); Menzies, 1AU Coll 21 (1973)

S55a, S59, S62, L65, R65, S69

### **NGC 6752** $a 19^{h}06^{m}.4$ , $\delta = 60^{\circ}04'$

F&L F&L

V1 considered the same as that mentioned in S55a.

Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Eggen, ApJ 172.639 (1972)

S55a, S57, S59, R62c, S62, F&L63, S69

#### NGC 6760 $a 19^{h}08^{m}.6$ , $\delta +00^{\circ}57'$

| 1 | +57  | - 57 | 15.7 | 17.0  |
|---|------|------|------|-------|
| 2 | - 6  | -100 | 16.7 | 17.2  |
| 3 | + 31 | - 10 | 15.5 | [17.4 |
| 4 | +42  | + 39 | 15.4 | [17.5 |

Taffara has new eclipsing variable in field, and gives periods for it and two other field eclipsers. Sawyer Hogg, IAU Agenda and Draft Reports, p. 560 (1967); Taffara, SA1 43.481 (1972) S55a, S57, S59, R62a, S62, S69

NGC 6779 (Messier 56)  $a 19^{h}14^{m}.6$ ,  $\delta +30^{\circ}05'$ 

| 1 | + 44.69 | + 74.10 | 15.0 | 16.2 | 30899.341 | 1.510019 | Cep, Sp, V, mem |
|---|---------|---------|------|------|-----------|----------|-----------------|
| 2 | + 18.16 | + 33.09 | 15.1 | 15.6 |           | SR       |                 |
| 3 | + 25.10 | + 91.69 | 14.4 | 15.1 |           | SR       | Sp, V, mem      |
| 4 | -112.13 | -159.46 | 15.9 | 16.4 |           |          |                 |
| 5 | + 6.79  | -134.78 | 14.4 | 15.2 |           | SR       |                 |
| 6 | - 2.02  | + 37.06 | 12.9 | 14.8 | 30172.7   | 90.02    | RV, Sp, V, mem  |
| 7 | +293 48 | -213.24 | 15.6 | 16.3 |           | irr      |                 |

| No.      | x''               | y''              | Max.         | Min.         | Epoch     | Period    | Remarks |
|----------|-------------------|------------------|--------------|--------------|-----------|-----------|---------|
| NGC      | 6779 (contin      | nued)            |              |              |           |           |         |
| 8        | = 97.63           | -335.90          |              | 16.7         |           | SR<br>SR  |         |
| 9<br>10  | +177<br>-431.53   | +525<br>+ 88.33  | 15.6<br>16.4 | 16.1<br>17.4 | 30967.473 | 0.5988948 | RR, f?  |
| 11<br>12 | -415.58 $=243.96$ | +283.80 $-95.41$ | 15.5<br>15.6 | 16.3<br>16.4 | 34239.516 | 0.0756252 | RRs, f? |

Field variables found by Kurochkin, 20 (1968), 21 (1970), 30 (1971).

Joy, ApJ 110.105 (1949); Sawyer, JRASC 43.38 (1949); Balázs, Budapest Mitt 30 (1952); Rosino, Asiago Contr 117 (1961); Preston, Krzeminski and Smak, ApJ 137.401 (p) (1963); Barbon, Asiago Contr 175 (p) (1965); Kurochkin, VS 16.460 (c) (1968), VS 17.186 (c) (1970), VS 17.620 (c) (1971)

S55a, S57, S59, R62a, S62, S64, R65, S67, S69, S70

### Palomar 10 a 19h16m.0, δ +18°28'

V1 found by Rosino (1972) on red plates, centre of cluster, large amplitude.

Rosino, Letter (1972)

R61, S61

## NGC 6809 (Messier 55) $\alpha 19^{h}36^{m}.9$ , $\delta -31^{\circ}03'$

| 1 | +304.2 | - 55.6 | 32413.39 | 0.57997286 |
|---|--------|--------|----------|------------|
| 2 | -214.9 | - 26.0 | 32467.18 | 0.4061601  |
| 3 | + 78   | -304   | 32413.22 | 0.6619023  |
| 4 | +108   | + 59   | 32413.34 | 0.3841702  |
| 5 | - 41   | - 74   |          | 0.2?       |
| 6 | +111   | - 20   | 32413.32 | 0.388904   |

Bailey, HA 38.243 (p) (1902); King, HB 920 (1951) S55a, S57, S59, S61, R62a, S62, R65, FLA66, S69

### Palomar 11 $\alpha 19^{h}42^{m}.6$ , $\delta -08^{\circ}09'$

No variables found. Abell suggests this may be very rich open cluster. Kinman and Rosino, ASP 74.499 (1962)

R61, S61

NGC 6838 (Messier 71)  $a 19^{h}51^{m}.5$ ,  $\delta +18^{\circ}39'$ 

| 1 | +140 | + 24 | 13.5 | 14.9 |          | 193    | Z Sge, SR   |
|---|------|------|------|------|----------|--------|-------------|
| 2 | + 44 | -146 | 13.8 | 14.7 |          |        | Slow        |
| 3 | + 44 | - 70 | 15.2 | 17.0 | 33481.78 | 3.7907 | E, Min, mem |
| 4 | +266 | + 31 | 14.7 | 15.3 |          |        | RR?         |

Silbernagel, AN 192.450 (1912); Sawyer, JRASC 47.229 (1953); Prochazka, Letter (1967); Hartwick, Priv comm (1972); Kukarkin, Letter (1972); Sawyer, unpub (1972)

S55a, S57, S59, S61, R62a, S62, P64, R65, St66, S69

| No.   | x''          | у′′         | Max.                              | Min.      | Epoch | Period | Remarks |
|-------|--------------|-------------|-----------------------------------|-----------|-------|--------|---------|
| NGC 6 | 5864 (Messie | er 75) a 20 | h <sub>0</sub> 3m <sub>.2</sub> , | δ -22°04′ |       |        |         |
| 1     | + 15.6       | -83.4       |                                   |           |       |        |         |
| 2     | - 9.0        | +54.0       |                                   |           |       |        |         |
| 3     | + 18.0       | +85.5       |                                   |           |       |        |         |
| 4     | - 18.0       | -84.6       |                                   |           |       |        |         |
| 5     | +108.0       | -36.0       |                                   |           |       |        |         |
| 6     | + 8.4        | 81.0        |                                   |           |       |        |         |
| 7     | - 24.6       | +780        |                                   |           |       |        |         |
| 8     | - 13.5       | -41.4       |                                   |           |       |        |         |
| 9     | + 45.6       | -24.0       |                                   |           |       |        |         |
| 10    | - 43.5       | +50.4       |                                   |           |       |        |         |
| 11    | +121.2       | +84.0       |                                   |           |       |        |         |
| 12    | + 39.6       | +75.0       |                                   |           |       |        |         |

<sup>\*</sup>Suspected. Four additional suspected variables, numbered 13-16, are omitted. Shapley, Mt Wils Contr 190 (p) (1920)

\$55a, \$57, \$57, \$59, \$61, \$62, \$64, \$69, \$70

| NGC | 6934 a 20 | h31m.7, δ+6 | 07°14′ |       |           |           |        |
|-----|-----------|-------------|--------|-------|-----------|-----------|--------|
| 1   | - 45      | - 39        | 16.5   | 17.7  | 27307.968 | 0.568099  |        |
| 2   | - 40      | - 14        | 16.4   | 17.9  | 27658.930 | 0.48195   | +      |
| 3   | 0         | + 58        | 16.6   | 17.8  | 27275.882 | 0.539806  |        |
| 4   | + 39      | + 58        | 16.3   | 17.8  | 27275.882 | 0.616422  |        |
| 5   | + 59      | +221        | 16.7   | 17.8  | 26923.943 | 0.564560  |        |
| 6   | - 27      | - 33        | 16.7   | 18.0  | 27275.941 | 0.5558418 |        |
| 7   | + 92      | + 59        | 16.65  | 17.7  | 28038.833 | 0.644049  |        |
| 8   | +100      | + 50        | 16.75  | 17.5  | 27715.760 | 0.623989  |        |
| 9   | + 63      | + 18        | 16.5   | 17.8  | 27308.844 | 0.549156  |        |
| 10  | -135      | + 72        | 16.4   | 17.8  | 27275.882 | 0.519959  |        |
| 11  | + 17      | + 28        | 17.1   | 18.15 |           |           |        |
| 12  | + 29      | - 44        | 16.3   | 17.4  | 27309.955 | 0.464215  |        |
| 13  | - 47      | + 25        | 16.55  | 17.8  | 26915.956 | 0.551334  |        |
| 14  | - 7       | - 90        | 16.5   | 17.8  | 27659.902 | 0.52199   |        |
| 15  | + 10      | - 53        | 15.65  | 16.3  |           |           | not RR |
| 16  | + 36      | + 18        | 16.7   | 17.9  | 26915.956 | 0.604853  |        |
| 17  | - 73      | -107        | 16.7   | 17.9  | 27309.955 | 0.598272  |        |
| 18  | + 49      | - 8         | 16.6   | 17.7  |           |           | RR     |
| 19  | + 30      | + 1         | 16.4   | 17.9  | 21515.710 | 0.480550  |        |
| 20  | - 26      | + 17        | 16.5   | 17.6  | 27307.886 | 0.548225  |        |
| 21  | - 35      | - 3         | 16.6   | 18.15 |           |           | RR     |
| 22  | -240      | -173        | 16.5   | 17.8  |           |           | RR     |
| 23  | - 31      | - 16        | 16.85  | 18.05 |           |           | RR     |
| 24  | + 37      | - 53        | 16.8   | 17.95 |           |           | RR     |
| 25  | + 50      | + 37        | 16.5   | 17.9  | 27275.795 | 0.509086  | _      |
| 26  | + 31      | -196        | 16.9   | 17.8  |           |           | RR     |
| 27  | -148      | +180        | 16.7   | 17.8  | 27272.914 | 0.592204  |        |
| 28  | -234      | +100        | 16.3   | 17.8  | 27715.760 | 0.485151  | +      |
|     |           |             |        |       |           |           |        |

| No. | x''       | у'′     | Max.  | Min.  | Epoch     | Period   | Remarks |
|-----|-----------|---------|-------|-------|-----------|----------|---------|
| NGC | 6934 (con | tinued) |       |       |           |          |         |
| 29  | - 85      | -183    | 16.4  | 17.8  | 26628.689 | 0.454818 |         |
| 30  | +161      | +127    | 16.6  | 17.65 | 27714.745 | 0.589853 |         |
| 31  | +146      | -101    | 16.5  | 17.8  | 21481.825 | 0.505070 |         |
| 32  | - 10      | + 51    | 16.4  | 17.7  | 21481.825 | 0.511948 |         |
| 33  | + 37      | + 12    | 16.5  | 17.7  | 27309.920 | 0.518445 |         |
| 34  | - 21      | + 16    | 16.6  | 18.05 |           |          | RR      |
| 35  | +157      | -142    | 16.6  | 17.85 | 27664.870 | 0.544222 |         |
| 36  | + 10      | - 35    | 16.05 | 17.55 |           |          | RR      |
| 37  | + 23      | + 10    | 16.5  | 17.95 |           |          | RR      |
| 38  | + 12      | - 18    | 16.6  | 18.0  | 21543.702 | 0.523562 |         |
| 39  | + 8       | - 16    | 16.6  | 17.95 |           |          |         |
| 40  | - 8       | + 26    | 16.15 | 16.8  |           |          | RR      |
| 41  | + 30      | - 39    | 16.6  | 17.9  | 27275.882 | 0.520404 |         |
| 42  | + 55      | + 20    | 16.5  | 17.9  | 27659.975 | 0.524251 |         |
| 43  | + 21      | + 27    | 16.4  | 17.4  |           |          |         |
| 44  | - 43      | - 30    | 17.0  | 17.9  | 26925.933 | 0.630384 |         |
| 45  | - 32      | - 9     | 16.3  | 17.8  |           |          |         |
| 46  | + 14      | - 24    | 16.9  | 18.05 |           |          |         |
| 47  | + 10      | - 26    | 16.8  | 17.95 |           |          | RR      |
| 48  | + 33      | + 52    | 16.5  | 18.05 |           |          | RR      |
| 49  | + 13      | - 55    | 16.7  | 17.95 |           |          | RR      |
| 50  | + 15      | - 37    | 16.9  | 17.95 |           |          |         |
| 51  | + 7       | - 25    | 15.85 | 16.6  |           |          | RR      |

Sawyer, Toronto Publ 7, 5 (p) (1938); Sawyer Hogg and Wehlau, unpub (1972); Harris, AJ 78, in press (1973)

\$55a, \$57, \$59, \$61, \$62, \$64, \$R65, \$67, \$69, \$70

| IGC | 6981 (Messi | er 72) a 20 | )h50m.7, | δ -12°4 | 4′        |            |    |
|-----|-------------|-------------|----------|---------|-----------|------------|----|
| 1   | + 43.5      | - 54.0      | 16.45    | 17.25   | 33129.400 | 0.619818   |    |
| 2   | + 99.0      | +194.4      | 16.29    | 17.95   | 33126.405 | 0.46526213 | _  |
| 3   | - 52.5      | - 58.5      | 16.16    | 17.74   | 33809.553 | 0.4976052  | _  |
| 4   | -106.5      | + 37.5      | 16.56    | 17.74   | 33147.462 | 0.5524863  | _  |
| 5   | - 38.4      | - 21.6      | 16.40    | 17.43   | 22163.738 | 0.4991     |    |
| 6   | + 78.0      | + 78.6      | 16.70    | 17.10   |           |            |    |
| 7   | - 3.6       | + 55.5      | 16.36    | 17.53   | 39318.997 | 0.524630   |    |
| 8   | - 6.6       | + 89.4      | 16.73    | 17.74   | 33145.372 | 0.5683752  | -  |
| 9   | + 11.4      | + 50.4      | 16.73    | 17.54   | 39319.660 | 0.60296    |    |
| 10  | - 48.6      | - 73.5      | 16.69    | 17.77   | 33857.504 | 0.5581814  | +  |
| 11  | + 57.0      | - 36.6      | 16.81    | 17.72   | 39319.478 | 0.51997    |    |
| 12  | + 9.0       | - 21.6      | 16.31    | 17.17   | 22163.90  | 0.4111     |    |
| 13  | + 13.5      | + 17.4      | 15.77    | 16.85   | 39319.330 | 0.55114    | f? |
| 14  | - 13.5      | + 36.0      | 16.40    | 17.06   | 22163.90  | 0.5904     |    |
| 15  | - 64.5      | - 21.0      | 16.63    | 17.56   | 39318.917 | 0.55044    |    |
| 16  | 4.5         | - 19.5      | 16.31    | 17.21   | 39319.490 | 0.585497   |    |
| 17  | + 3.6       | - 43.5      | 16.57    | 17.62   | 33215.483 | 0.5735404  | +  |
| 18  | -26.4       | - 37.5      | 15.70    | 16.28   | 22162.88  | 0.52016    |    |

| No.   | x''         | у′′    | Max.  | Min.  | Epoch     | Period     | Remarks |
|-------|-------------|--------|-------|-------|-----------|------------|---------|
| NGC ( | 6981 (conti | nued)  |       |       |           |            |         |
| 19    | + 3.0       | +112.5 | 17.15 | 17.30 | not var   |            |         |
| 20    | - 54.6      | + 15.0 | 16.50 | 17.40 | 33857.420 | 0.595046   |         |
| 21    | - 82.5      | + 12.6 | 16.56 | 17.86 | 33145.370 | 0.5311636  | +       |
| 22    | -113.4      | + 1.5  | 17.10 | 17.25 | not var   |            |         |
| 23    | - 99.0      | +116.4 | 16.95 | 17.73 | 39319.437 | 0.585083   | irr     |
| 24    | - 15.6      | - 24.0 | 16.20 | 16.55 | 22161.92  | 0.4973:    |         |
| 25    | -133.5      | + 67.5 | 16.92 | 17.48 | 33481.810 | 0.3533739  | +       |
| 26    | - 91.5      | - 45.0 | 16.90 | 17.20 |           |            |         |
| 27    | +209.4      | -234.0 | 16.30 | 17.78 | 39319.557 | 0.673774   | f?      |
| 28    | + 65.4      | + 81.0 | 16.83 | 17.64 | 33853.437 | 0.56724873 | _       |
| 29    | + 36.0      | - 52.5 | 16.68 | 17.48 | 39319.295 | 0.605497   |         |
| 30    | + 71.4      | - 97.5 | 16.50 | 16.90 |           |            |         |
| 31    | + 5.4       | + 36.6 | 16.44 | 17.36 | 39319.110 | 0.53249    |         |
| 32    | -138.0      | - 42.0 | 16.84 | 17.78 | 39319.440 | 0.52834    |         |
| 33    | + 2.4       | = 60.6 | 16.95 | 17.25 |           |            |         |
| 34    | - 6.0       | + 7.5  | 16.06 | 16.73 |           |            |         |
| 35    | +231        | + 27   | 16.78 | 17.75 | 39319.772 | 0.543771   |         |
| 36    | - 12        | 0      | 16.0  | 16.8  |           |            |         |
| 37    | + 7         | - 8    | 15.5  | 16.5  |           |            |         |
| 38    | + 5         | - 9    | 16.6  | 17.3  |           |            |         |
| 39    | +195        | +243   | 16.8  | 17.6  |           |            |         |
| 40    | + 18        | + 16   | 16.4  | 17.4  |           |            |         |
| 41    | - 15        | - 20   | 16.7  | 17.5  |           |            |         |
| 42    | + 12        | + 3    |       |       |           |            | red     |

Nobili, Asiago Contr 83 (1957); Dickens and Flinn, MN 158.99 (1972); Dickens, Preprint (p) (1972), Letter, V42 unpub (1972)

S55a, S57, S59, R62a, S62, S64, L65, R65, S67, S69

| NGC | 7006 a 20 <sup>1</sup> | h59m.1,δ+ | 16° 00′ |       |            |          |  |
|-----|------------------------|-----------|---------|-------|------------|----------|--|
| 1   | -177.9                 | +114.8    | 18.20   | 19.60 | 26918.939  | 0.492729 |  |
| 2   | - 35.3                 | - 37.3    | 18.25   | 19.50 | 35453.245  | 0.586986 |  |
| 3   | = 24.4                 | + 34.2    | 18.55   | 19.65 | 27209.945  | 0.560557 |  |
| 4   | - 21.0                 | - 41.1    | not var |       |            |          |  |
| 5   | - 20.9                 | + 38.4    | 18.45   | 19.50 | 35419.240  | 0.534713 |  |
| 6   | - 13.5                 | - 44.5    | 18.40   | 19.60 | 27039.626  | 0.498030 |  |
| 7   | + 3.2                  | - 36.9    | not var |       |            |          |  |
| 8   | + 34.4                 | + 13.5    | 18.70:  | 19.50 | 35 342.700 | 0.608289 |  |
| 9   | + 39.4                 | + 16.6    | not var |       |            |          |  |
| 10  | + 42.8                 | - 11.8    | 18.45   | 19.80 | 35403.638  | 0.542907 |  |
| 11  | +148                   | + 50      | 18.35   | 19.65 | 35428.232  | 0.576036 |  |
| 12  | +122.0                 | - 64.0    | 18.35   | 19.55 | 35419.410  | 0.574039 |  |
| 13  | +102.7                 | + 40.2    | 18.30   | 19.60 | 35453.274  | 0.551647 |  |
| 14  | + 35.3                 | +128.3    | 18.35   | 19.55 | 35459.269  | 0.560358 |  |
| 15  | - 11.5                 | +114.8    | 18.40   | 19.50 | 35429.250  | 0.588067 |  |
| 16  | - 39.6                 | +135.5    | 18.35   | 19.55 | 35429.240  | 0.537582 |  |
|     |                        |           |         |       |            |          |  |

| No. | x''        | У′′    | Max.   | Min.   | Epoch        | Period    | Remarks    |
|-----|------------|--------|--------|--------|--------------|-----------|------------|
| NGC | 7006 (cont | inued) |        |        |              |           |            |
| 17  | - 99.3     | + 85.5 | 18.35  | 19.60  | 35429.201    | 0.511494  |            |
| 18  | - 29.6     | - 89.5 | 18.55  | 19.65  | 35034.330    | 0.603706  |            |
| 19  | - 0.6      | - 25.3 | 16.70  | 17.90  | 35630.93     | 92.17     | red SR     |
| 20  | - 21.2     | - 24.4 | 18.70  | 19.45  | 35003.270    | 0.577476  |            |
| 21  | - 21.5     | - 18.4 | 18.60  | 19.50  | 34978.700    | 0.568968  | 2 Alt Ps   |
| 22  | - 12.6     | - 15.8 | 18.40  | 19.60  | 35727.400    | 0.526927  |            |
| 23  | - 27.6     | - 7.5  | 18.50  | 19.60  | 27274.873    | 0.608042  |            |
| 24  | - 25.8     | - 2.9  |        |        |              |           | blended    |
| 25  | - 19.2     | + 5.2  | 18.80  | 19.60  | 26975.580    | 0.532792  |            |
| 26  | - 10.6     | - 2.9  | 18.55  | 19.60  | 34978.710    | 0.607364  | Alt 0.540  |
| 27  | - 11.8     | + 0.3  | 18.30  | 19.25  | 26975.650    | 0.522321  |            |
| 8.8 | - 15.8     | + 4.3  | 18.75  | 19.60  | 35657.925    | 0.560987  | Alt 0.5619 |
| 9   | + 35.0     | + 31.6 | 18.40  | 19.60  | 27033.640    | 0.559195  |            |
| 30  | + 5.2      | + 16.6 | 18.70  | 19.70  |              |           |            |
| 31  | + 10.0     | + 11.2 | 18.65  | 19.55  | 26891.945    | 0.563126  |            |
| 32  | + 20.9     | + 13.8 | 18.50  | 19.50  | 36376.920    | 0.585572  |            |
| 33  | + 31.9     | + 22.4 | 18.50  | 19.50  | 34978.735    | 0.556812  |            |
| 34  | + 26.4     | + 9.2  | 18.75  | 19.30  | prob not var |           |            |
| 35  | + 36.2     | - 2.0  | 18.60  | 19.55  | 35419.260    | 0.596309  | P var?     |
| 6   | + 25.5     | - 3.7  | 18.75: | 19.35  | 27274.850    | 0.437847  | 2 Alt Ps   |
| 37  | + 18.9     | - 3.4  | 18.40: | 19.45  | 37274.860    | 0.567920  | blended    |
| 88  | + 21.5     | - 18.4 | 18.70  | 19.50  | 26919.700    | 0.608599  | Alt 0.622  |
| 19  | + 11.5     | - 25.3 | 18.50: | 19.55  | 36426.865    | 0.577261  | Alt 0.565  |
| 0   | + 9.7      | - 14.3 | 19.15: | 19.60: |              |           | not RR     |
| 11  | + 1.4      | - 11.2 | 18.70  | 19.60  | 34978.725    | 0.495330  | Alt 0.499  |
| 12  | + 9.5      | - 7.5  | 18.80: | 19.30: |              |           |            |
| 13  | - 4.0      | -28.7  | 18.75  | 19.50  | 26975.650    | 0.596656  |            |
| 14  | +133.9     | -174.0 | 18.55  | 19.41  | 35017.632    | 0.58779   |            |
| 5   | -190.0     | - 74.4 | 18.70  | 19.38  | 35419.398    | 0.583858  |            |
| 6   | -125.6     | - 54.7 | 18.85  | 19.31  | 35719.429    | 0.666320  | Alt P?     |
| 7   | -183.4     | - 22.1 | 18.60  | 19.35  | 35428.253    | 0.568294  |            |
| 8   | -100.0     | + 90.3 | 18.70  | 19.28  | 35428.240    | 0.611975  |            |
| 9   | + 4.8      | + 40.5 | 18.65  | 19.60  | 26891.947    | 0.581897  |            |
| 0   | - 42.9     | - 7.6  | 18.60  | 19.45  | 35034.300    | 0.590428  |            |
| 1   | + 54.3     | + 46.0 | 18.90  | 19.35  | 26918.700    | 0.642709  |            |
| 2   | - 1.0      | + 85.5 | 18.60  | 19.34  | 35419.290    | 0.621746  |            |
| 3   | + 47.5     | - 9.1  | 18.75  | 19.25  |              |           |            |
| 4   | + 3.2      | - 30.0 | 16.95  | 17.75  |              |           | red SR     |
| 5   | -254.4     | +304.4 | 18.40  | 19.60  | 35017.663    | 0.537740  |            |
| 6   | - 10.7     | - 11.8 | 18.75  | 19.55  | 36376.920    | 0.520202  | Alt 0.549  |
| 7   | - 6.2      | - 12.1 | 18.65  | 19.45  | 26918.890    | 0.637235? |            |
| 8   | + 14.8     | + 16.2 | 18.85  | 19.45  | 26920.735    | 0.514982  | Alt 0.525  |
| 9   | + 26.2     | + 9.6  | 18.55  | 19.50  | 35657.875    | 0.463454  | Alt 0.480  |
| 0   | - 10.9     | + 7.7  | 18.85: | 19.50  |              |           |            |
| 1   | 36.2       | + 18.8 | 18.45  | 19.50  | 26918.865    | 0.589141  |            |
| 2   | - 21.6     | + 3.0  | 18.75  | 19.55  | 26975.650    | 0.495233  |            |
|     |            | + 22.2 | 18.65  |        |              |           |            |

| No.   | x"           | y"     | Max.   | Min.   | Epoch     | Period    | Remarks   |
|-------|--------------|--------|--------|--------|-----------|-----------|-----------|
| NGC 7 | 7006 (contin | nued)  |        |        |           |           |           |
| 64    | + 21.4       | + 6.2  | 18.80  | 19.45  |           |           |           |
| 65    | - 8.7        | + 9.9  | 18.70  | 19.50  | 36376.920 | 0.544081  | Alt 0.515 |
| 66    | + 28.1       | - 2.5  | 18.75  | 19.50  | 26918.730 | 0.617159  | Alt 0.603 |
| 67    | -14.1        | - 1.1  | 18.85  | 19.45  |           |           |           |
| 68    | + 12.7       | + 5.8  | 18.60  | 19.50  |           |           |           |
| 69    | + 10.0       | + 3.9  | 18.90: | 19.30: |           |           |           |
| 70    | + 8.7        | 0.0    | 18.40  | 18.85: |           |           |           |
| 71    | - 3.2        | - 13.6 | 18.80  | 19.40  |           |           |           |
| 72    | + 26.0       | - 0.5  | 18.80  | 19.40  | 26919.675 | 0.2610439 | Alt 0.318 |
| 73    | - 15.5       | 0.0    | 18.40  | 19.30  | 35456.600 | 0.577966  |           |
| 74    | + 1.2        | - 10.8 | 18.40  | 19.60  | 27033.635 | 0.566850  |           |
| 75    | +152.2       | 156.7  | 18.40  | 19.00: | 27300.600 | 0.518750  |           |

New vars. 44-52 Rosino and Mannino, 53, 54, Sandage and Wildey, 55-75 Rosino and Ciatti. Sandage, ASP 66.324 (p) (1954); Rosino and Mannino, Asiago Contr 59 (p) (1955); Mannino, Asiago Contr 84 (1957); Rosino and Ciatti, Asiago Contr 199 (p) (1967); Sandage and Wildey, ApJ 150.469 (p) (1967); Pinto, Priv comm (1972) S55a, S57, S59, S61, R62a, S62, L65, R65, S67, S69, S70

| NGC | 7078 (Messi | er 15) a 21 | h27m.6, 8 | S +11°57 | 1         |           |        |
|-----|-------------|-------------|-----------|----------|-----------|-----------|--------|
| 1   | -118.6      | + 24.4      | 14.48     | 15.52    | 20724.394 | 1.437523  | +, Sp  |
| 2   | -171.7      | + 6.0       | 15.44     | 16.00    | 40442.58  | 0.6842736 |        |
| 3   | -248.0      | - 46.8      | 15.70     | 16.29    | 40072,500 | 0.3887407 |        |
| 4   | -112.6      | -163.6      | 15.58     | 16.24    | 40442.553 | 0.3135758 |        |
| 5   | - 100.3     | -212.5      | 15.66     | 16.24    | 40442.510 | 0.3842142 |        |
| 6   | + 24.4      | + 76.5      | 14.93     | 15.68    | 25900.190 | 0.6659671 |        |
| 7   | + 10.1      | + 73.2      | 15.56     | 15.98    | 25900.102 | 0.3675643 |        |
| 8   | - 0.6       | +126.8      | 15.18     | 16.01    | 20725.103 | 0.6462446 |        |
| 9   | + 15.6      | +138.7      | 15.18     | 16.09    | 20724.993 | 0.7152819 |        |
| 10  | +125.6      | + 1.7       | 15.61     | 16.18    | 20724.967 | 0.3863931 |        |
| 11  | +172.3      | - 21.8      | 15.52     | 16.22    | 20725.008 | 0.3432527 |        |
| 12  | +163.0      | - 50.7      | 15.35     | 16.12    | 20724.930 | 0.5928844 | Вΰ     |
| 13  | +126.6      | - 68.8      | 15.25     | 16.36    | 20725.068 | 0.5749536 |        |
| 14  | + 84.1      | -256.2      | 15.76     | 16.35    | 20725.167 | 0.3820024 |        |
| 15  | + 81.7      | -304.1      | 15.26     | 16.50    | 20724.991 | 0.5835687 | Bõ     |
| 16  | +101.9      | +129.8      | 15.50     | 15.97    |           |           |        |
| 17  | + 83.7      | +110.6      | 15.62     | 16.17    | 20725.001 | 0.4288924 | +, B0  |
| 18  | + 77.3      | +100.4      | 15.47     | 16.05    | 20725.101 | 0.3677379 |        |
| 19  | +111.3      | +160.4      | 15.11     | 16.42    | 20725.038 | 0.5723030 | Bő     |
| 20  | + 81.2      | - 9.8       | 15.04     | 16.07    | 25900.236 | 0.6969598 |        |
| 21  | + 34.4      | - 57.5      | 15.25     | 16.20    |           |           |        |
| 22  | -330.8      | - 45.8      | 15.35     | 16.36    | 20724.719 | 0.7201510 |        |
| 23  | +192.0      | +256.1      | 15.53     | 16.33    | 20724.891 | 0.6326959 | Sp, Bl |
| 24  | -106.7      | - 6.1       | 15.38     | 15.96    | 25900.534 | 0.3696955 |        |
| 25  | +302.9      | - 10.7      | 15.49     | 16.52    | 20724.674 | 0.6653286 |        |
| 26  | + 23.5      | + 331.9     | 15.83     | 16.37    | 20725.058 | 0.4022695 | _      |
| 27  | +222.5      | +248.2      | not var   |          |           |           |        |

| No. | x''         | у′′    | Max.    | Min.  | Epoch     | Period     | Remarks |
|-----|-------------|--------|---------|-------|-----------|------------|---------|
| NGC | 7078 (conti | nued)  |         |       |           |            |         |
| 28  | +309.9      | +534.2 | 15.53   | 16.53 | 20724.739 | 0.6706464  |         |
| 29  | +163.3      | +212.2 | 15.52   | 16.37 | 20725.128 | 0.5749761  | +       |
| 30  | -165.0      | - 3.4  | 15.55   | 16.01 | 40442.479 | 0.4059796  | B6      |
| 31  | -112.6      | +245.6 | 15.74   | 16.30 | 20725.044 | 0.4081781  |         |
| 32  | - 50.4      | +107.8 | 15.01   | 15.93 | 25900.589 | 0.6054003  |         |
| 33  | - 41.2      | - 29.4 | 15.15   | 15.95 | 24409.065 | 0.5839452  |         |
| 34  | - 55.4      | - 54.5 | prob va | r     |           |            |         |
| 35  | - 34.0      | -163.6 | 15.70   | 16.32 | 20725.143 | 0.3839986  |         |
| 36  | - 27.7      | - 81.6 | 15.12   | 16.31 | 25900.141 | 0.6241424  |         |
| 37  | - 25.2      | - 77.4 |         |       |           |            |         |
| 38  | + 7.6       | -146.2 | 15.47   | 16.09 | 20725.100 | 0.3752769  |         |
| 39  | + 20.5      | -124.8 | 15.58   | 15.98 | 20725.184 | 0.3895696  | Вδ      |
| 40  | +131.8      | -116.7 | 15.46   | 16.32 | 20724.834 | 0.3773302  |         |
| 41  | + 62.9      | - 55.4 | 15.50   | 16.15 | 24409.010 | 0.6452282  |         |
| 42  | +227.5      | - 36.8 | 15.68   | 16.36 | 20725.086 | 0.3601745  |         |
| 43  | +416.7      | +103.2 | 15.74   | 16.40 | 20725.808 | 0.3959928  |         |
| 44  | + 91.3      | + 3.0  | 15.00   | 16.02 | 20725.128 | 0.5955547  | _       |
| 45  | + 66.9      | - 31.0 | 15.20   | 16.15 | 24409.224 | 0.6773992  |         |
| 46  | + 56.0      | + 33.2 | 15.40   | 16.32 |           |            |         |
| 47  | + 45.7      | - 4.3  | 15.0    | 16.2  | 25900.380 | 0.602799   |         |
| 48  | + 59.7      | +150.6 | 15.4    | 15.9  | 25900.346 | 0.3649762  |         |
| 49  | + 40.3      | +166.6 | 14.83   | 15.42 |           | 0.6552054  |         |
| 50  | +165.0      | +100.0 | 15.52   | 16.12 | 25900.173 | 0.2980583  | +       |
| 51  | + 6.2       | + 91.4 | 15.56   | 16.10 | 25900.280 | 0.3969565  |         |
| 52  | +192.4      | - 22.6 | 15.36   | 16.44 | 20724.800 | 0.5756132  | +       |
| 53  | - 92.6      | -111.0 | 15.60   | 16.07 | 20725.202 | 0.4141270  |         |
| 54  | + 10.8      | + 88.4 | 15.55   | 16.05 | 25900.078 | 0.3995683  |         |
| 55  | + 65.3      | - 18.8 | 15.49   | 16.30 |           |            |         |
| 56  | + 57.4      | 0.0    | 15.19   | 16.11 |           |            |         |
| 57  | + 75.2      | - 56.4 | 15.51   | 16.06 | 20724.891 | 0.3492988  |         |
| 58  | - 55.6      | + 8.8  | 15.5:   | 16.10 |           |            |         |
| 59  | + 41.3      | + 41.5 | 15.10   | 15.95 | 24409.520 | 0.5547922  |         |
| 60  | + 53.4      | - 59.3 | 15.29   | 16.00 |           |            |         |
| 61  | - 67.3      | - 40.2 | 15.2:   | 15.8: |           |            |         |
| 62  | - 71.6      | + 39.6 | 15.3:   | 15.8: |           | 0.3882:    |         |
| 63  | + 49.8      | + 31.0 | 15.54   | 16.44 |           |            |         |
| 64  | - 46.2      | + 19.1 | 15.5    | 16.0  | 25900.211 | 0.355624   |         |
| 65  | -102.4      | - 38.7 | 15.55   | 16.05 | 24409.366 | 0.7183491: |         |
| 66  | - 68.4      | -112.4 | 15.61   | 16.13 | 20725.179 | 0.3793488  |         |
| 67  | - 86.6      | - 10.4 | 15.5:   | 16.2: |           |            |         |
| 68  | - 31.8      | + 12.6 |         |       |           |            |         |
| 69  | - 37.0      | - 25.2 |         |       |           |            |         |
| 70  | - 34.0      | - 19.2 |         |       |           |            |         |
| 71  | - 34.8      | - 12.6 |         |       |           |            |         |
| 72  | - 2.2       | + 34.8 | 15.0:   | 15.8: | 24409.042 | 1.1386:    |         |
| 73  | - 3.7       | + 20.0 |         |       |           |            |         |
| 74  | + 36.3      | 85.8   | 15.45   | 16.30 | 24409.188 | 0.296071   |         |
| 75  | + 2.2       | - 30.3 |         |       |           |            |         |

| No.   | x"                    | y''    | Max.  | Min.  | Epoch     | Period    | Remarks |
|-------|-----------------------|--------|-------|-------|-----------|-----------|---------|
| NGC 7 | 7 <b>0</b> 78 (contir | nued)  |       |       |           |           |         |
| 76    | + 0.7                 | - 28.9 |       |       |           |           |         |
| 77    | - 11.8                | - 22.9 |       |       |           |           |         |
| 78    | - 6.7                 | + 47.4 | 15.15 | 15.8: | 24409.421 | 0.398879  |         |
| 79    | + 21.5                | - 23.7 |       |       |           |           |         |
| 80    | - 47.4                | - 26.6 | 15.1: | 15.8: |           |           |         |
| 81    | - 21.5                | - 5.9  |       |       |           |           |         |
| 82    | - 20.7                | + 1.5  |       |       |           |           |         |
| 83    | + 16.3                | - 7.4  |       |       |           |           |         |
| 84    | + 18.5                | - 16.3 |       |       |           |           |         |
| 85    | + 20.7                | + 2.2  |       |       |           |           |         |
| 86    | + 12.6                | + 4.4  | 13.9  | 14.8  | 24410.62  | 17.109    |         |
| 87    | + 23.7                | - 23.7 |       |       |           |           |         |
| 88    | + 2.2                 | + 26.6 |       |       |           |           |         |
| 89    | - 23.7                | - 6.7  |       |       |           |           |         |
| 90    | + 31.1                | + 4.4  |       |       |           |           |         |
| 91    | + 67.3                | + 28.9 | 15.3: | 16.0: |           |           |         |
| 92    | + 9.6                 | - 25.2 |       |       |           |           |         |
| 93    | + 27.4                | - 33.3 | 15.5: | 16.0: |           |           |         |
| 94    | + 3.7                 | + 28.9 |       |       |           |           |         |
| 95    | + 5.2                 | - 40.0 |       |       |           |           |         |
| 96    | +165.6                | +215.0 | 15.85 | 16.30 | 24409.242 | 0.396046  |         |
| 97    | - 79.5                | + 29.3 | 15.50 | 16.25 | 24409.548 | 0.696333  |         |
| 98    | - 67.1                | + 46.1 | 15.4: | 15.95 | 24409.07  | 0.4701:   |         |
| 99    | + 29.2                | +195.4 | 15.70 | 16.10 | 24410.435 | 0.277995: |         |
| 100   | + 12.5                | - 35.8 | 15.5  | 16.3  | 24409.058 | 0.406114  |         |
| 101   | -104                  | +540   | 15.75 | 16.30 | 24409.292 | 0.400360  |         |
| 102   | + 68.8                | + 31.5 | 15.70 | 16.15 | 24409.119 | 0.7589:   |         |
| 103   | -251.5                | -273.3 | 15.7  | 16.4  | 36070.16  | 0.368126  |         |
| 104   | -151.6                | -642.5 | 15.6  | 16.4  | 36070.22  | 0.414124  | 60      |
| 105   | -376.4                | -737.3 | 15.6  | 17.1  | 36070.11  | 0.571155  | f?      |
| 106   | - 30.3                | + 12.8 | 15.5  | 16.0  |           |           | RRc     |
| 107   | - 32.5                | - 21.8 | 15.5  | 15.9  |           |           | RRc     |
| 108   | - 32.4                | - 51.1 | 15.5  | 15.9  |           |           | RRc     |
| 109   | + 12.7                | - 31.3 | 15.5  | 16.1  |           |           | RRc     |
| 110   | + 31.7                | - 37.4 | 15.5  | 16.0  |           |           | RRc     |
| 111   | + 41.7                | - 0.7  | 15.3  | 16.2  |           |           | RR      |
| 112   | + 55.5                | + 35.0 | 15.3  | 16.3  |           |           | RR      |

New vars. 96-98 Izsák, 99 Mannino, 100-102 Notni and Oleak, 103-105 Tsoo Yu-hua, 106-112 Rosino. Three of the corona stars of Kurochkin (1963) are similar to cluster members.

Izsák, Budapest Mitt 28 (1952); Arp, AJ 60.1 (1955); Kholopov, VS 10.253 (1955); Grubissich, Asiago Contr 76 (1956); Mannino, Asiago Contr 74, 75 (1956); Izsák, Budapest Mitt 42.63 (1957); Nobili, Asiago Contr 81 (1957); Notni and Oleak, AN 284.49 (1958); Bachmann, AN 284.191 (1958); Mannino, Asiago Contr 110 (1959); Bronkalla, AN 285.181 (1960); Preston, ApJ 134.651 (1961); Yu-hua, Acta Astr Sinica 9.65 (1961); Fritze, AN 287.79 (1963); Kurochkin, VS 14.457 (1963); Makarova and Akimova, VS 15.350 (1965); Rosino, 1BVS 327 (1969); Mironov, AC 637.1 (1971); Barlai, Priv comm (1972)

S55a, S57, S59, S61, A62, R62a, S62, P64, S64, L65, R65, St66, S67, C&S69, S69, S70

| No.   | х′′         | y''        | Max.      | Min.      | Epoch     | Period    | Remarks     |
|-------|-------------|------------|-----------|-----------|-----------|-----------|-------------|
| NGC 1 | 7089 (Messi | er 2) a 21 | h30m.9, 8 | 6 -01°03′ |           |           |             |
| 1     | + 25.6      | + 79.4     | 13.2      | 14.8      | 26607.800 | 15.583    | Sp F-G      |
| 2     | - 45.8      | + 71.1     | 14.6      | 16.1      | 21454.971 | 0.527858  |             |
| 3     | +222.9      | - 39.6     | 15.1      | 16.4      | 26921.952 | 0.6197006 |             |
| 4     | - 26.8      | + 31.5     | 15.2      | 16.6      | 26628.644 | 0.564247  |             |
| 5     | - 44.4      | + 2.1      | 13.2      | 14.9      | 26628.644 | 17.606    | Sp F-G      |
| 6     | + 11.8      | - 45.4     | 13.2      | 14.9      | 22162.928 | 19.295    | Sp F-G      |
| 7     | +153.0      | -189.2     | 15.1      | 16.4      | 27274.901 | 0.594609  |             |
| 8     | - 66.9      | - 56.8     | 15.1      | 16.4      | 27273.896 | 0.643677  |             |
| 9     | -173.2      | -128.2     | 15.2      | 16.4      | 27274.901 | 0.609291  |             |
| 10    | + 90.6      | + 38.8     | 15.2      | 16.4      | 27275.909 | 0.466910  | Sp          |
| 11    | + 85        | + 8        | 12.5      | 14.0      | 31259.8   | 67.0      | Sp F-G, Min |
| 12    | - 62        | + 43       | 15.1      | 16.5      | 26628.776 | 0.665616  |             |
| 13    | - 77        | + 73       | 15.1      | 16.4      | 26924.972 | 0.706616  |             |
| 14    | + 83        | - 68       | 15.4      | 16.4      | 20749.843 | 0.693785  |             |
| 15    | + 80        | - 76       | 15.7      | 16.4      | 26944.880 | 0.430152  |             |
| 16    | - 31        | - 27       | 15.3      | 16.5      | 27275.950 | 0.655917  |             |
| 17    | + 2         | - 63       | 15.2      | 16.3      | 27274.901 | 0.636434  |             |
| 18    | -189        | -707       | 15.95     | 16.85     | 40088.467 | 0.36226   | P var       |
| 19    | +235        | -502       | 16.00     | 17.05     | 39089.384 | 0.319403  | P var       |
| 20    | +400        | + 74       | 16.00     | 16.75     | 37162.281 | 0.2863224 |             |
| 21    | +315        | +208       | 15.75     | 16.85     | 39789.516 | 0.712178  | P var       |

New vars. 18-21, Margoni and Stagni.

Arp, AJ 60.1 (1955); Arp and Wallerstein, AJ 61.272 (1956); Wallerstein, AJ 62.168 (1957), ApJ 127.583 (1958); Kulikov, VS 13.400 (1961); Mantegazza, Bologna Pubbl 8, 5 (1961); Preston, Krzeminski and Smak, ApJ 137.401 (p) (1963); Margoni and Stagni, IBVS 239 (1967); Kukarkin, IBVS 253, 254 (1968); Poole, Master's Thesis, Toronto (1968); Demers, AJ 74.925 (1969); Margoni and Stagni, Asiago Contr 213 (1969); Kukarkin, IBVS 422 (1970); Voroshilov, AC 623.7 (1971); Eggen, ApJ 172.639 (1972)

\$55a, \$57, \$59, \$61, \$62a, \$62, \$P64, \$64, \$R65, \$67, \$C\$\$\$59, \$69, \$70

|    |        |        |       | $\delta$ –23°25 |           |           |          |
|----|--------|--------|-------|-----------------|-----------|-----------|----------|
| 1  | + 30.0 | - 60.6 | 15.0  | 16.5            | 32060.525 | 0.743608  |          |
| 2  | + 58.6 | -126.2 | 14.92 | 16.04           | 32060.46  | 0.6535049 |          |
| 3  | - 96.7 | - 39.6 | 14.91 | 16.06           | 32039.59  | 0.69632   |          |
| 4  | -339:  | - 51:  | 16.1  | [18             | 32450     | 9-10      | UG       |
| 5  |        |        |       |                 |           |           | Terzan 1 |
| 6  |        |        |       |                 |           |           | Terzan 2 |
| 7  |        |        |       |                 |           |           | Terzan 3 |
| 8  |        |        |       |                 |           |           | Terzan 4 |
| 9  |        |        |       |                 |           |           | Terzan 5 |
| 10 |        |        |       |                 |           |           | Terzan 6 |
| 11 |        |        |       |                 |           |           | Terzan 7 |
| 2  |        |        |       |                 |           |           | Terzan 8 |

| No. | х′′ | y'' | Max. | Min. | Epoch | Period | Remarks |  |
|-----|-----|-----|------|------|-------|--------|---------|--|
|     |     |     |      |      |       |        |         |  |

### NGC 7099 (continued)

Variables of Terzan (1968) identified on print.

Rosino, Asiago Contr 117 (1961); Terzan, Haute Prov Publ 9, 24 (p) (1968); Dickens, Preprint (1972)

S55a, R57, S57, S59, R62a, S62, S64, R65, St66, S69, S70

#### Palomar 12 $\alpha 21^{h}43^{m}.7, \delta -21^{\circ}28'$

| 1 | -97.4 | +129.8 | 20.3 | 21.1 |
|---|-------|--------|------|------|
| 2 | -80.8 | +136.8 | 20.3 | 21.5 |
| 3 | -51.2 | +102.0 | 18.5 | 22   |

Zwicky, RR RR, K&R 103a-D plate K&R

Zwicky, Morphological Astronomy, p. 205 (p) (1957); Kinman and Rosino, ASP 74.503 (p) (1962) R61, S61, S64, S69

#### Palomar 13 $\alpha 23^{h}04^{m}.2, \delta +12^{\circ}28'$

| 1 | 32  | + 32 | 17.35 | 18.55 | 35759.505 | 0.538158 | P var |
|---|-----|------|-------|-------|-----------|----------|-------|
| 2 | +11 | - 10 | 17.45 | 18.60 | 35782.381 | 0.597111 |       |
| 3 | - 8 | + 21 | 17.35 | 18.55 | 36455.770 | 0.578168 |       |
| 4 | +76 | -300 | 17.55 | 18.65 | 35721.615 | 0.575340 |       |
|   |     |      |       |       |           |          |       |

All four new variables, Rosino

Rosino, Asiago Contr 85 (p) (1957); Ciatti, Rosino and Sussi, Bamb K1 Veröff 4, 40.228 (1965) R57, S59, R61, S61, S62, S67, S69

#### **NGC** 7492 $a 23^{h}05^{m}.7, \delta -15^{\circ}54'$

| 1 |       | + 96.0<br>+ 49.5           |       |       | 37499.603 | 0.804873 |     |
|---|-------|----------------------------|-------|-------|-----------|----------|-----|
| 3 | +30.0 | + 49.3<br>-253.5<br>-116.0 | 17.39 | 17.79 |           | 0.270998 | red |

Three suspected variables, Barnes (1968), who found variables 2-4.

Kinman and Rosino, ASP 74.503 (1962); Barnes, Priv comm (1966), AJ 72.291 (1967), AJ 73.579 (1968)

S55a, S57, S59, S61, S62, S64, S67, S69, S70

## INDEX OF ABBREVIATIONS USED IN REFERENCES, LISTED CHRONOLOGICALLY

- S55a Sawyer, H., Toronto Publ 2, 2: A Second Catalogue of Variable Stars in Globular Clusters, Table 1I, Summary of Variable Stars in 72 Globular Clusters (1955)
- S55b Sawyer, H., Toronto Publ 2, 2: Table I, Thirty-Four Globular Clusters Not Searched for Variables (1955)
- R57 Rosino, L., Budapest Mitt 42: Problems of Variable Stars in Globular Clusters (1957)
- Sawyer Hogg, H., IAU Trans 9.548, Table 3a: Fifty-Nine Globular Clusters (1957)
- S59 Sawyer Hogg, H., Handbuch der Physik, ed. S. Flügge (Berlin: Springer Verlag), p. 181; Star Clusters (1959)
- R61 Rosino, L., IAU Trans 11B.300: Work Being Carried Out at the Asiago Observatory (1962)
- S61 Sawyer Hogg, H., IAU Trans 11A.271: Report of Sub-Commission 27b, Variable Stars in Clusters (1962)
- A62 Arp, H.C., Symposium on Stellar Evolution, 1960, La Plata (1962)
- R62a Rosino, L., Pad Com 29, Tables 3 and 4: Clusters Observed for Variables (1962)
- R62b Rosino, L., Pad Com 29, Table 1: Clusters Never Observed for Variables (1962)
- R62c Rosino, L., Pad Com 29, Table 2: Clusters Insufficiently Observed for Variables (1962)
- S62 Sawyer Hogg, H., Bamb Kl Veröff 34.8: Numbers and Kinds of Variables in Globular Clusters (1962)
- F&L63 Fourcade, C. R., and Laborde, J. R., La Plata Bol 6.111: Estrellas variables en cumulos globulares (1963)
- P64 Preston, G., Ann Rev Astr Ap 2.23: The RR Lyrae Stars (1964)
- Sawyer Hogg, H., 1AU Trans 12A.390: Variable Stars in Star Clusters (1965)
- L65 Lohmann, W., AN 289.99; Perioden-Helligkeits-Beziehungen von RR Lyrae-Sternen in Kugelförmigen Sternhaufen (1965)
- R65 Rosino, L., Bamb KI Veröff 4.40.98: Characteristics and Absolute Magnitudes of the RR Lyrae Variables in Globular Clusters (1965)
- FLA66 Fourcade, C. R., Laborde, J. R., and Albarracin, J., Atlas y Catalogo de estrellas variables en cumulos globulares al sur de -29°, Cordoba (1966)
- Stothers, R., AJ 71.943: The Ultraviolet Dwarfs: A New Class of Degenerate Stars (1966)
- S67 Sawyer Hogg, H., IAU Trans 13A.555: Report of the Committee on Variable Stars in Clusters (1967)
- C&S69 Coutts, C., and Sawyer Hogg, H., Toronto Publ 3.1: Period Changes of RR Lyrae Variables in the Globular Cluster Messier 5 (1969)
- S69 Sawyer Hogg, H., Non-Periodic Phenomena in Variable Stars, ed. L. Detre, p. 475: The Third Catalogue of Variable Stars in Globular Clusters (1969)
- S70 Sawyer Hogg, H., IAU Trans 14A.291: Report of the Committee on Variable Stars in Clusters (1970)
- F72 Feast, M., Preprint: Red Variables in Globular Clusters, in the Galactic Centre and in the Solar Neighbourhood (1972)

#### INDEX OF ABBREVIATIONS OF PUBLICATIONS

AAS Bull Bulletin of the American Astronomical Society

AAVSO Abstr Abstract of the American Association of Variable Star Observers

Astronomical Circular, Bureau of Astronomical Information of the Academy AC

of Sciences of USSR, Moscow

Acta Astr Sinica Acta Astronomica Sinica

AG Mitt Mitteilungen der Astronomischen Gesellschaft

AJThe Astronomical Journal. Published by the American Astronomical Society

Astronomische Nachrichten. Akademie-Verlag, Berlin AN Ann Aph Annales d'Astrophysique. Revue Internationale trimestrielle Annual Review of Astronomy and Astrophysics, Palo Alto Ann Rev Astr Ap

ApJ The Astrophysical Journal, An International Review of Spectroscopy and

Astronomical Physics, Chicago

The Astrophysical Journal. Supplement Series ApJ Suppl

Contributi dell' Osservatorio Astrofisico dell' Università di Padova in Asiago Asiago Contr

ASP Publications of the Astronomical Society of the Pacific. San Francisco Astr Abh Hoffmeister

Astronomische Abhandlungen Prof. Dr. C. Hoffmeister zum 70. Geburtstag

Gewidmet. Leipzig

Astronomy and Astrophysics Astr and Ap

Bulletin of the Astronomical Institutes of Czechoslovakia. Prague BAC Bamb KI Veroff Kleine Veröffentlichungen der Remeis-Sternwarte zu Bamberg Veroffentlichungen der Remeis-Sternwarte zu Bamberg Bamb Veroff

BAN Bulletin of the Astronomical Institutes of the Netherlands, Haarlem Bulletin of the Astronomical Institutes of the Netherlands, Supplement BAN Suppl

Abhandlungen aus der Hamburger Sternwarte. Hamburg-Bergedorf Berg Abh Pubblicazzioni dell' Osservatorio astronomico universitario di Bologna Bologna Pubbl

Budapest Mitt Mitteilungen der Konkoly-Sternwarte zu Budapest-Svåbhegy

Observatorio de Cordoba. Reprint Series Cordoba Repr

Annals of the Astronomical Observatory of Harvard College. Cambridge, HA

Haute Prov Publ Publications de l'Observatoire de Haute Provence

Bulletin of the Harvard College Observatory. Cambridge, USA HB Harvard College Observatory, Circular, Cambridge, USA HC

IAU Coll International Astronomical Union, Colloquium

International Astronomical Union. Agenda and Draft Reports **IAU Draft Reports** IAU Trans Transactions of the International Astronomical Union

**IBVS** Information Bulletin on Variable Stars of Commission 27 of the Inter-

national Astronomical Union. Budapest

Inf Bull So Hemis Information Bulletin for the Southern Hemisphere. La Plata The Journal of the Royal Astronomical Society of Canada **JRASC** 

JO Journal des Observateurs. Marseilles

Asociacion Argentina de Astronomia, Boletin, La Plata La Plata Bol La Plata Symp Symposium on Stellar Evolution, 1960. La Plata

Publications of the Astronomical Society of the Pacific. Leaflet. San Fran-Leaflet

cisco

Leiden Ann Annalen van de Sterrewacht te Leiden Louv Publ Publications du Laboratoire d'Astronomie et de Géodésie de l'Université de

Louvain

Lyon Publications de l'Observatoire de Lyon. Série I. Astronomie

MN Monthly Notices of the Royal Astronomical Society. London
Mt Wils Contr. Contributions from the Mount Wilson Observatory

Mt Wils Contr

Contributions from the Mount Wilson Observatory

MVS

Mitteilungen über veränderliche Sterne. Herausgegeben von der Sternwarte

Mitteilungen über veränderliche Sterne. Herausgegebe Sonneberg

NASA Tech Tr National Aeronautics and Space Administration, USA. Technical Translation

Obs The Observatory. Monthly Review of Astronomy. Oxford

Pad Com Osservatorio Astronomico di Padova. Comunicazioni

Proc Astr Soc Aust
Proceedings of the Astronomical Society of Australia, Sydney
Mitteilungen (Istwestija) der russischen Hauptsternwarte zu Pulkovo

Quart JRAS The Quarterly Journal of the Royal Astronomical Society

RAJ Russian Astronomical Journal (until 1931). Astronomical Journal of Soviet

Union

Royal Obs Ann Royal Observatory Annals. Herstmonceux: Royal Greenwich Observatory Royal Obs Bull Royal Observatory Bulletins. Joint Publications of the Royal Greenwich

Observatory, Herstmonceux; Royal Observatory, Cape of Good Hope

Rutherfurd Contr Contributions from the Rutherfurd Observatory of Columbia University,

New York

SAI Memorie della Società Astronomica Italiana

Sky Tel Sky and Telescope. Harvard College Observatory, Cambridge, USA

Sonn Veröff
Veröffentlichungen der Sternwarte zu Sonneberg

Soviet Astr AJ Soviet Astronomy AJ. A translation of the Astronomical Journal of the

Academy of Sciences of USSR. Published by the American Institute of

Physics, Inc., New York

Spec Vat Ric Specola Astronomica Vaticana. Richerche Astronomiche

Toronto Comm Communications from the David Dunlap Observatory, University of

Toronto

Toronto Publ Publications of the David Dunlap Observatory, University of Toronto

UOC Circular of the Union Observatory

VS Variable Stars. Academy of Sciences of USSR, Moscow

VS Supp Variable Stars. Supplement Series. Moscow

ZAp Zeitschrift für Astrophysik. Berlin-Göttingen-Heidelberg