

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

No.

- Period changes of RR Lyrae variables in the globular cluster Messier 5 Christine M. Coutts, Helen Sawyer Hogg
 Studies of the variables in the globular cluster NGC 6171 Christine M. Coutts, Helen Sawyer Hogg
 Variables in Messier 5: A study of Mount Wilson 1917 observations Christine M. Coutts
 Spectroscopic orbits of the binary systems HD 128661, AR Cas, beta Ari and HD 209813 Walter L. Gorza, John F. Heard
- 5 The establishment of 21 new ninth magnitude IAU standard radial velocity stars John F. Heard, CH. Fehrenbach
- 6 A third catalogue of variable stars in globular clusters comprising 2119 entries Helen Sawyer Hogg
- 7 The Sculptor dwarf spheroidal galaxy I. Discovery and identification of variable stars S.L. Th. J. Van Agt

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

NUMBER 1

PERIOD CHANGES OF RR LYRAE VARIABLES IN THE GLOBULAR CLUSTER MESSIER 5

CHRISTINE M. COUTTS AND HELEN SAWYER HOGG

> 1969 TORONTO, CANADA

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

Volume 3

Number 1

PERIOD CHANGES OF RR LYRAE VARIABLES IN THE GLOBULAR CLUSTER MESSIER 5

CHRISTINE M. COUTTS AND HELEN SAWYER HOGG

> 1969 TORONTO, CANADA

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

PERIOD CHANGES OF RR LYRAE VARIABLES IN THE GLOBULAR CLUSTER MESSIER 5

By Christine M. Coutts and Helen Sawyer Hogg

Abstract

The purpose of this investigation is to study period changes in RR Lyrae variables in the globular cluster M5. The study is based mainly on a collection of 167 plates taken between 1936 and 1966 at the David Dunlap Observatory. Some 64 photographs taken by Dr. Harlow Shapley in 1917 with the 60-inch telescope on Mount Wilson have also been measured.

Studies of this type which have been carried out for other globular clusters are briefly discussed. The methods for studying period changes using a phase-shift diagram are explained.

A total of 66 RR Lyrae variables has been studied in M5. Of these, 16 have irregular periods, 18 have been constant, 20 have shown increases (median rate 0.05 ± 0.02 days per million years) and 12 decreases (median 0.075 ± 0.02 days per million years) in period during an interval of about seventy years. It seems not possible at present to attach any evolutionary significance to these changes.

Introduction

Messier 5 is in third place among the globular clusters which are richest in variable stars (ω Centauri and Messier 3 supersede it). The only study of period changes of the RR Lyrae variables in this cluster was made 27 years ago by Oosterhoff (1941), based on observations obtained up to the year 1935. Messier 5 is therefore a cluster very suitable for a study of changes in period. One of us (Sawyer Hogg) has taken a series of 136 photographs of this cluster with the 74-inch telescope between 1936 and 1964 inclusive.

An additional series of 31 plates was taken by Coutts on four nights in 1966 with the 74-inch telescope at the David Dunlap Observatory, after this investigation was begun. Dr. H. W. Babcock kindly lent us some plates taken by Dr. Harlow Shapley with the 60-inch telescope at Mount Wilson Observatory in 1917. Although these plates were studied previously (Shapley 1927), the individual observations were never published and so these plates were remeasured. The measures of the David Dunlap and Mount Wilson plates form the basis for the present investigation.

In addition, a number of published observations of the variables in M5 are available, from 123 photographs taken between 1889 and 1912 by Bailey (1917), and from 81 photographs with the 60-inch Mount

Wilson telescope in 1934 and 1935 by Oosterhoff (1941). When all this material is considered, M5 can be studied over an interval of more than seventy years. It is important to find what characteristics of the period changes of the RR Lyrae variables in M5 are similar to those in the other clusters which have been studied already.

Other Studies of the Period Changes of RR Lyrae Variables in Globular Clusters

About ten globular clusters have been investigated for period changes. The results, on the whole, do not indicate any particular trend in changes in period of the RR Lyrae stars. Some variables have constant periods. Some have periods which are secularly decreasing and others which are secularly increasing. In most clusters, there appears to be no preference for periods to increase or decrease. The clusters which have been investigated specifically for period changes are listed in Table I, in order of decreasing number of variables.

Cluster	No. of RR Lyrae Variables	Investigators
NGC $5272 = M3$	173:	Martin (1942) Hett (1942) Belserene (1952) Ozsvath (1957) Szeidl (1965) Kheylo (1966)
NGC 5139 = ω Centauri	140:	Martin (1938) Belserene (1961, 1964)
NGC $5904 = M5$	93	Oosterhoff (1941)
NGC 7078 = M15	88	lzsak (1956) Mannino (1956a, 1956b) Grubissich (1956) Nobili (1957) Notni and Oleak (1958) Bronkalla (1959) Fritze (1962) Makarova and Akimova (1965)
$NGC \ 6402 = M14$	69:	Sawyer Hogg and Wehlau (1968)
$NGC \ 6121 = M4$	41	Wilkens (1964)
NGC $5024 = M53$	38:	Margoni (1964, 1965a, 1965b, 1967) Wachmann (1965)
NGC 5466	18	Bartolini, Biolchini and Mannino (1965)
NGC 7089	13	Mantegazza (1961) Kulikov (1961)
NGC $6341 = M92$	12	Kheylo (1964, 1965) Bartolini, Battistini and Nasi (1968)
NGC 5053	10	Mannino (1963)

TABLE 1

The RR Lyrae stars in ω Centauri exhibit a distinct tendency for the periods to increase. For about 70 per cent of the stars investigated in this cluster, the periods show secular increases while the others decrease, remain constant or fluctuate. The median rate of change of period for 47 variables classed as RR u, b types investigated by Belserene (1964) is an increase of 0.11 days per million years.

The RR Lyrae variables in M3, on the other hand, do not exhibit such a tendency. Szeidl (1965) has studied 112 variables. Of these, 22 have periods which are increasing at an average rate of 0.18 days per million years and 25 have periods which are decreasing at an average rate of 0.20 days per million years. Of the other periods, 7 have remained constant and the rest are fluctuating. The average rate of change of period of all the stars is a decrease of 0.02 days per million years, but the median rate is zero. Thus the RR Lyrae variables in M3 behave in a different manner from those in ω Centauri. Belserene (1964) has pointed out, however, that the period-amplitude relations for these two clusters are also different, and therefore she notes that conclusions based on the observations of RR Lyrae variables in one cluster are not necessarily applicable to the class of variables as a whole.

In M15, there are a few more stars with increasing periods than with decreasing, but the tendency to increase is not as marked as that in ω Centauri.

In the other clusters investigated, there are approximately equal numbers of stars with increasing and decreasing periods. Margoni (1967) in his work on M53 has suggested that sine curves can be fitted to the phase-shift diagrams for five of the stars on the basis of the present observations. This implies that the period changes are periodic and if this be true, we can not attach any evolutionary significance to the values of β computed for other stars. The quantity β is the rate of change in the period in days per day as defined by Martin (1938).

For M5, Oosterhoff (1941) used observations from 1895, 1896, 1897, 1912, 1917, 1934 and 1935. He considered 41 stars of RR Lyrae types a, b and found that the average period change was an increase of 0.05 days per million years, with 25 periods increasing and 15 decreasing, and 1 remaining constant. The tendency for periods to increase is therefore not as marked as in ω Centauri.

Theory of Investigation of Period Changes

To investigate changes in period among RR Lyrae stars, a reasonably accurate period is needed, i.e., it must satisfy the observations over an interval of one or two years. The light curve is derived by reducing all the observations of the star to one cycle of light variation.

FIG. 1-Light curve of an RR Lyrae variable (phase in fractions of period).

A certain period, P, is assumed and a reference epoch at time E is adopted. All the observations at the different times, t, are reduced to one cycle of period, P, at epoch E, such that: phase = (t - E)/P. This is the number of cycles of length P, which have elapsed between epoch E and time t. The phase adopted at time t is the fractional part of this number. When phases are computed at a series of times t, a light curve can then be plotted. If the period is constant and correct, the scatter on the light curve should be that expected from the accuracy of the observations. However, if the scatter is larger than this, the assumed period is incorrect or varying or both. The method used to examine the behaviour of the period is to plot a phase-shift diagram.

There are five cases of the phase-shift diagram, described below.

Case 1: Assumed period incorrect

Suppose that the true period is α , and that an incorrect value *P* has been assumed in computing the phase for the light curve. Then the resulting displacement in phase is given by:

$$\Delta \text{ phase} = \frac{t-E}{P} - \frac{t-E}{\alpha},$$
$$= (t-E) \left(\frac{\alpha - P}{P\alpha}\right),$$
$$\simeq \frac{(t-E)}{P^2} \cdot \Delta P,$$

where $\Delta P = \alpha - P$.

If Δ phase is plotted against *t*, a straight line results, and the true period can be determined from the slope of this line, $\Delta P/P^2$.

Case 2: Period changing at a uniform rate

Suppose that the period is not constant, but instead, changes at a constant rate β . If the period at time *E* is α , then the period at time *t* is

FIG. 2—Phase-shift diagrams for a star of constant period: (a) α , the true period, > P, the assumed period (b) $\alpha < P$, (c) $\alpha = P$.

given by: $P = \alpha + \beta(t - E)$. Since the period is changing at a constant rate, the true phase at time t should be given by:

$$\frac{t-E}{\alpha+\frac{\beta}{2}\left(t-E\right)}.$$

The phase calculated assuming a constant period, α , is: $(t - E)/\alpha$. Hence, the displacement in phase (or phase-shift) at time t is:

$$\Delta \text{ phase} = \frac{t - E}{\alpha} - \frac{t - E}{\alpha + \frac{\beta}{2}(t - E)},$$
$$\simeq \frac{t - E}{\alpha} \left[1 - \left\{ 1 - \frac{\beta}{2\alpha}(t - E) \right\} \right],$$
$$= \frac{\beta(t - E)^2}{2\alpha^2},$$

where $\frac{\beta}{2\alpha} \cdot (t - E) \ll 1$.

In this case, if Δ phase is plotted against *t*, the result is a parabola with a vertical axis, with equation:

$$\Delta$$
 phase = $A + Bt + Ct^2$,

where $C = \beta/2P^2 \text{ day}^{-2}$. If the parabola is concave upward, β is positive, and the period is increasing. If the parabola is concave downward, the period is decreasing.

Case 3: Assumed period incorrect and period changing at a uniform rate

Suppose that the assumed period is not the true period at time E and that the period is changing at a constant rate. Indeed, if the

FIG. 3—Phase-shift diagrams for a star with period changing at a uniform rate: (a) $\beta > 0$, period increasing; (b) $\beta < 0$, period decreasing.

period is changing, it is very difficult to determine the period precisely at any given moment. In this case, the phase shift at time *t* is given by:

$$\Delta \text{ phase} = \frac{t-E}{P} - \frac{t-E}{\alpha + \frac{\beta}{2}(t-E)},$$

$$= \frac{t-E}{P} - \frac{t-E}{\alpha} - \frac{t-E}{\alpha + \frac{\beta}{2}(t-E)} + \frac{t-E}{\alpha},$$

$$\cong \frac{\Delta P}{P^2}(t-E) + \frac{\beta}{2\alpha^2}(t-E)^2,$$

$$\cong \frac{\Delta P}{P^2}(t-E) + \frac{\beta}{2P^2}(t-E)^2.$$

Thus, a plot of Δ phase against time once again results in a parabola with a vertical axis (see figure 3). The value of β is again determined from the coefficient of the l^2 term $\beta/2P^2$.

Case 4: An abrupt change in period

If the period changes abruptly, rather than gradually, the phaseshift diagram consists of two straight lines with different slopes. If the

FIG. 4-Phase-shift diagram for a star whose period changes abruptly.

slope of the second line is greater than that of the first, an increase in period is indicated. The amount of change in the period is related to the difference in slope between the two lines: $\Delta P = (\Delta \text{ slope}) P^2$.

Case 5: Irregular changes in period

Many phase-shift diagrams have a more complicated form than those described above. In such cases, it is difficult to predict long-range period changes. An increase in slope indicates an increase in period and a decrease in slope, a decrease in period. However, if these changes occur in an irregular manner, it must be assumed that the period changes are random.

Obviously the phase-shift diagram can give important information regarding the behaviour of the period of a star. In the past, most investigators have assumed a parabolic form for the phase-shift diagram (rather than a more complicated curve) to determine the period change. According to Belserene (1964), β is a useful parameter for describing the extent of the variation in period. She adds, "It is the average rate of period change if the true rate has varied." However, Makarova and Akamova (1965) in a study of RR Lyrae variables of M15 find that for about 50 per cent of the stars they studied, the period changes are abrupt, i.e., the phase-shift diagram is represented better by two intersecting straight lines than by a parabola. This is also a simple assumption, but it is difficult to determine the rate of period change when the observed quantity is its amount.

In the present investigation, the period change is determined by both methods.

Present Investigation

The globular cluster M5 has a total of 98 variables (but the variability of one, no. 51, is questionable). There are two W Virginis variables (nos. 42 and 84), one irregular (no. 50), one SS Cygni (no. 101) and 93 RR Lyrae. Of the RR Lyrae stars, 91 have periods determined (Bailey 1917, Shapley 1927, and Oosterhoff 1941). Sixty-eight are of type a, b and twenty-three are type c.

The plates used with the 74-inch reflector were Eastman Kodak 103aO. Sixty-six RR Lyrae stars (50 of type a, b and 16 of type c) and the two W Virginis stars could be studied on these plates. Most of the stars were measured with a Cuffey iris astrophotometer, but the magnitudes of variables 6, 13, 14, 27, 33, 34, 38, 45, 63, 67, 69, 83 and 98 were estimated by eye.

A sequence of photoelectric B, \mathbb{M} standards determined by Arp

	PERIOD)
	OF THE
TABLE II	IN FRACTIONS (
	SHIFTS (
	PHASE

10

1	1												
Year	No. 1	No. 3	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11	No. 12	No. 13	No. 15	No. 16	No. 19
1889													
1895 - 96	025	00.	01	.01	04	00.	02	01	33	.03	.04	05	04
1897 - 99	06	00.	01	05	04	00.	01	00.	30	03	01	06	03
1901 - 02	+.0.	00.			04	.02	01	00.		.02?	05	08	.01
190 - 1 - 05	055	01	02		07	01	01	01		:00	07	10	047
1912	027	02	00.	.02	07	.057	01	.02	10	00.	20	07	077
1917	017	01	01	09	07	02	04	01	60. –		167	06	06
1934	00.	00.	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.	.00
1936 - 38	.03?	00.		01	00.	03	.00	02	00.	.00	00.	.04	
19-10-42	.03	.01	.03	.00	.05	.007	00.	02	.01	00.	.01	.03	00.
19-13-4-1	.01	.02	00.	.21	.02	00.	00.	00.	00.	.02	.11	10.	.02
1946 - 49	.00	.01	02	.20	.04	00.	:005	.02	01	.05	. 19	.06	.01
1950-53	.01	.02	02	.21	.11	.01	037	00.	.01		.24	.10	.25
1954 - 56	.06	.015	06	:292	.14	.05	04	.00	02	. 15	.207	. 11	14.
1959 - 60	.07	.08	05		.15	. 03	02	.03	10	.13	.35?	. 16?	.68
1963 - 64		.08		.38	.17	.03	06	.03	10		.35?	.167	1.02
1966	.065	.06	07	. 53	.25	.02	07	. 03	15	.12	21.	.17	1.09
Year	No. 20	No. 21	No. 27	No. 28	No. 29	No. 30	No. 31	No. 32	No. 33	No. 34	No. 36	No. 38	No. 39
1889													
1895 - 96	00.	01	06	01	19	00.	.01	- 12	03	00.	.012	.03	01
1897 - 99	02	01	.02	. 11	10	.05	02	11	01	01	.00	.04	.00
1901 - 02	10.	01		.12	087	.01	.06	12	02	.01			00.
1904-05	01	03	.06		10	.04	.01	1 1	02			.03	03
1912	00.	05	.08	.11	(50	00.	.01	06					.06
1917	00.	01		.11	.082	10	01	08	00.			.627	01
1934	.00	.00	.00	.00	.00	.00	00.	.00	.00	.00	00.	00.	00.
1936 - 38	01	04	.02	05	.04	02	. 03	.00	.00	02	067	05	
1940-42	01	00.		06	60.	00.	00.	.01	.00	560.	.027	60. –	00.
1943-44	.00	01	.17	12	·01	.01	0.1	00.	.04	1.0.	.007	12	00.
1946 - 49	.01	00.	.25	15	08	01	05	00.	.05	.01	092	15	.02
1950 - 53	.00	.00	.20	27	32	.01	05	.04	.06	107	06	20	.06
1954 - 56	.02	02	.23	25	-,40	.01	04	.03	.03	.01	.037	29	.07
1959-60	.01	01	.26	31	497	.00	03	.01		00.			.05
1963 - 64	.01	01		31		.00	03	.01	.16	.00			.05
1966	10.	00.	29	54	58	02	05	.07	.14	.04	07	55	.07

No. 70	07 157 155 209 .04 .14 .14 .14 .14 .14 .133 .33 .33 .33 .33 .49	No. 98 00 05 23 91
No. 69		No. 87 00 00 00 00 00 00 00 00 00 00 00 00 00
No. 64	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No. 83 03 03 02 01 01 01 01 01 01 01 01 03 02 03 02 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 00
No. 63	03 02 05 05 05 .01 .02 .02 .02 .02 .02 .10	No. 81 No. 81 - 05 - 10 - 10 - 10 - 10 - 11 - 11 - 11 - 11
No. 62		No. 80 .00 .03 .03 .03 .03 .03 .03 .0
No. 61	$\begin{array}{c} -& -& 05\\ -& -& 06\\ -& -& 08\\ -& -& 08\\ -& 06\\ -& 06\\ -& 06\\ -& 06\\ -& 02\\ -& 02\\ -& 03\\ -& 02\\ -& 03\\ -& 02\\ -& 03\\ -& 02\\ -& 03\\ -& 02\\ -& 03\\ -& 02\\ -& 03\\ -& 02\\ -& 03\\ -& 0$	No. 79 04 01 01 01 03 -
No. 59	$\begin{array}{c} - & - & 02 \\ - & - & 02 \\ - & - & 04 \\ - & - & 04 \\ - & - & 04 \\ - & - & 04 \\ - & - & 04 \\ - & - & 04 \\ - & - & 04 \\ - & - & 01 \\ - & 01 \\ - & 02 \\ 03 \\ - & 02 \\ 03 \\ - & 01 \\ 03 \\ - & 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01$	No. 78 No. 78 02 000 000 000
No. 55		No. 77 02 01 09 09 09 00 00 .00 .02 .02 .02 .02 .02 .03 .02 .03 .03 .01 .15 .15 .15 .15 .15 .15 .15 .1
No. 47	$\begin{array}{c} - & 0.2 \\ - & 0.5 \\ - & 0.5 \\ 0.05 \\ - & 0.0 \\ - & 0.11 \\ - & 0.01 \\ - & 0.12 \\ -$	No. 76 00 01 00 01 00 00 01 000 000 000 000 000 000 000 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000 0000 0000 00000 0000 00000 0000 00000 00000 000000 00000 000000 00000000 0000000000
No. 45		No. 75 No. 75 - 00 - 01 - 01 - 00 - 00
No. 43	00 - 00 - 00 - 00 - 00 - 00 - 00 -	No. 74 06 01 01 .05 .05 .01 01 01 12 13
No. 41		No. 73 No. 73 06 00 00 00 03 13
No. 40	01 01 01 05 05 	No. 71 01 03 03 03 03 03 04 04 04 05 05 05 05 05 05 05 03 00 00 00 01 02 01 03 00
Year	$\begin{array}{c} 1889\\ 1895-96\\ 1897-99\\ 1901-02\\ 1901-02\\ 1912\\ 1912\\ 1912\\ 1912\\ 1912\\ 1912\\ 1912\\ 1912\\ 1912\\ 1912\\ 1912\\ 1912-15\\ 1934-19\\ 1946-49\\ 1953-60\\ 1955-64\\ 1955-66\\ 1955-$	Y car Y car 1889-96 1897-99 1807-99 1901-02 1901-02 1917 1917 1936-38 1946-49 1936-33 1946-49 1946-49 1956-56 1945

TABLE II-continued

Period Changes of RR Lyrae Variables in M5

11

(1962) was used to reduce the data. Arp's *B* magnitudes were converted to photographic magnitudes by his relations:

$$B = m_{pg} + 0.23 - 0.16 CI$$

$$V = m_{pv}$$

$$CI = m_{pg} - m_{pv}.$$

In addition, each plate was examined for the visibility of an SS Cygni star discovered by Oosterhoff (1941), but it was not detected. The limiting magnitude of many of the David Dunlap plates, whose exposure times average only 3 minutes, is at a brighter magnitude than the maximum, $m_{pg} = 17.16$, at which Oosterhoff observed this star. The observations (photographic magnitudes) are listed in Table III where the first column gives the plate number (for variables 1–27), and the second column the heliocentric Julian day with the first two digits (24) omitted. In subsequent sections of the table the plate numbers are not repeated. Measures could be made on 157 plates.

Thirty-three plates taken by Shapley in 1917 with the 60-inch Mount Wilson telescope were also measured. Some of the plates had two exposures of the cluster so that there were 64 photographs altogether, with exposures usually 2 or 3 minutes. All the variable stars except variables 6, 33, and 38 were measured with the iris photometer, while the others were estimated visually. Some of the stars measured on the David Dunlap plates (variables 13, 27, 84 and 98) could not be measured on the Mount Wilson plates owing to the double exposures on the latter. The presence of two exposures on one plate has the effect of crowding the field, particularly in the nuclear region of the cluster. The observations (photographic magnitudes) from the Mount Wilson plates are listed in Table IV. The first column gives the Mount Wilson plate number for the 32 plates whose quality permitted measures, and the second column gives the heliocentric Julian day with the first two digits (24) omitted. From these two columns the plates with two exposures can be identified. We made every effort to determine which exposure was made first, but we cannot guarantee that the decision is always correct. The time difference between the two exposures is so small that we used the means of the times and of the magnitudes.

On both series of plates, no correction was made for background light which has the effect of making the stars in dense regions of the cluster appear too bright. There are no photoelectric standards in these regions, and correction for background intensity without such standards could introduce additional uncertainties into the results.

These two series, totalling 200 plates, along with the values from 123

TABLE III

Photographic Magnitudes from the David Dunlap Plates

			TABL	E III.	PHOT	OGRAPH	IIC MA	GNITUD	ES FF
Plate	Julian Day	No. 1	No. 2	No. 3	No. 6	No. 7	No. 8	No. 9	No.
819	28308.736								
828 828	661	15.9	15 17	14 74	15 05	15.2	15 6	14 80	14 0-
830	.001	15.25	15 19	14,74	15.05	15.0.	15.48	14.80	14.9.
821	.070	15.20	15.29	14.86	14 85	1/1 96	15 42	14.05	14.66
838	796	10.20	15 43	15 11	14 85	14 76	14 65	15 18	15 14
1107	8365 608	15 45	15 43	15 17	15 25	14 53	15 20	15.02	15 30
1199	8366 608	15.4	15.39	15 39	14 9	14.66	13.20 14 76	15.36	15.2
1285	8399 596	15.39	14 81	15.38	14 85	15 56	15.40	15.36	15.29
1976	8688 640	10.00	11,01	10.00	14.6	10.00	10.10	10.00	±0. ±i
1990	8689.640				±1.0				
2005	8692.632	15.3	15.48	14.97	14.9	15 35	15.35	14 82	15.5
2012	8693.730	15.4	15.5?	15.21	14.85	15.45	15.35	15.31	15. 5:
2029	8696.631	14.55	14.77	15.51	15.05	15.50	15.21	15.54	15.1
2108	8715.638	11.00		20.02	20100	20.00	-0.0-	-0.01	-0
3246	9071.660	15.47	15.51	15.41	14.5	14.78	15.43	15.3	15.6
3259	9072.698	15.42	15.47	15.3	15.05	15.27	15.44	15.25	15.4
3269	9073,605	15.34	15.23	15.33	15.05	14.74	15.3	15.01	15.5
3284	9076.603				14.6:				
3296	9077.600								
3310	9078,600								
3325	9079.602	14.68	15.42	15.31	15.15:		15.21	15.45	15.6
5706	9786.609	14.56	15.5	15.45	15.25	15.01	15.51	15.27	15.1
5720	9787.608	15, 45	15.62	15.43	15.25	15.12	15.54	15.63	14.4
5804	9813.610	15.4	15.58	15.45	15.25	15.43	14,95	14.65	14.5
5817	9814.612	15.41		15.45	15.3	15.31	15.13	15.36	15.3
5832	9815.613	15.48	15.47	15.05	15.15	15.01	15.56	15.36	15.5
5839	9816.611	15.44	15.44	15.44	14.85	14.75	15.5	15.23	15.4
6855	30171.617	15.52	15.6	15.21	14.6	14.4	15.5	15.1	15.6
6868	0172.615	15.44	15.58	14.96	14.5	14.41	15.4	15.39	15.5
7852	0519.606	15.53	15.25	14.84	14.9	15.40	15.28	14.74	15.5
7867	0520.606	15.41	15.58	15.39	14.55	15.41	15.42	15.37	15.3
7935	0550.608	14.97	15.37	15.47	15.25	15.37	15.23	15.44	15.8
7952	0553.604	15.06	15.4	15.41	14.85	15.43	15.5	15.49	15.7
7971	0554.614	15.32	15.81	15.15	14.4	15.66	15.75	15.27	15.1
7989	0555.629	15.39	15.44	14.92			15.56	15.45	15.2
8008	0556.620	15.39	15.21	15.45	15.25	15.45	15.40	14.87	14.9
8115	0586.572	14.75	15.02	15.3	15.0	15.28	15.05	14.56	15.:
8801	0880.592								- 16
8804	.623	15.49	15.53	15.43	14.4	14.57	15.5	15.42	15.5
8807	.659	15.22	15.54	15.33	14.6	14.55	15.43	15.27	15.0
8810	.690	15.4		15.36	14.85	15.0	15.49	15.45	15.1
8813	.730	15.36	14.15	15.43	14.9	14.92	15.50	15.35	14.8
8816	.760	15.1	14.46	15.44	14.95	15.11	15.55	15.0	14.0
8819	.788								
8827	0883.593								
8830	.630	15.29	15.54	15.31	15.1	14.71	14.67	14.55	15.
8833	.664	15.47	15.66	15.41	15.25	15.05	14.9	14.74	15.
8836	0884.622								
8839	.651								
8842	.680	15.41	15.64	15.35	15.25	15.19	14.80	15.32	15.

 $\mathbf{14}$

THE DAVID DUNLAP PLATES

	No.	11	No.	12	No.	13	No.	14	No.	15	No.	16	No.	18	No.	19	No.	20	No.	21	No.	25	No.	27
				0.5	14. 15.	55 15	15.15.15.15.15.15.15.15.15.15.15.15.15.1	45 25				0.5		0.5		0				0		0.0	15.	5
	15.	24	15.	62	15.	1	15.	. 2	15.	38	14.	97	14.	65	15.	6	15.	35	15.	6	14.	66		
	15.	22:	15.	42	15.	05	15.	2	15.	3	14.	94	14.	68:	15.	51	15.	24	15.	49	14.	61	15.	6
	15.	24	15.	35	15.	0	15.	3	15.	33	14.	96	14.	91:	15.	44	15.	29	15.	48:	14.	61	15.	5
	15.	37	15.	55	14.	6	15.	4	14.	97	15.	04	15.	17:	15.	52	15.	34	14.	58	14.	22	14.	85
	15.	31	14.	85	15.	15	14.	85	15.	31	15.	12	15.	47:	15.	54	15.	16	15.	28	15.	28	15.	6
	14.	88	15.	19	14.	85	14.	95	15.	28	15.	0	15.	31:	15.	50	14.	67	15.	16	14.	21	15.	55
	19.	JΙ	19.	44	14.	25	15	1	19.	35	19.	43	19.	19	19.	40	14.	94	19.	34	14.	41	19.	4
							±0.																	
	15.	18	15.	30	14.	65	15.	3	15.	17	15.	28:	15.	06	15.	24	15.	35	15.	44	14.	74	15.	35
	14.	94	15.	50	14.	8	15.	25	15.	01	15.	13	15.	31	15.	55	15.	40	15.	40	14.	77	14.	85
	14.	35	15.	61	15.	0	15.	35	15.	43	14.	12	14.	97	15.	64	15.	32	15.	53	14.	63	15.	4
	15	9	15	F 9	1 7	0.7	15	0	15	05	1.4	4	1.4	= 0	1 -	F 1	1.7	99.	15	4.4	14	= C	15	
	15. 14	৪৪	10. 15	94 31	10.	1	15. 15	2	15	00 22	14.	4 94	14.	20 29	10. 14	01 01	10.	04: 35	15	44 93	14.	20 80	10.	20 35
	15	46	т0,	υı	14	85	14	9	15	08	14	51	15.	34	14.	77	14.	82	15.	49	14.	38	15.	65
	10.	10			± ± •	00	14.	9	15.	1		0 -	-01	0 2										
							15.	25															15.	3:
	15.	32	15.	44	14.	95	15.	3			15.	04	14.	88	15.	35	15.	34	15.	48	14.	12	15.	5
	14.	93	15.	36	14.	9	15.	25	15.	08	14.	14	15.	18	14.	92	15.	35	15.	40	14.	4	15.	55
	15.	57	15.	63	14.	45	15.	3	15.	0	15.	2	15.	31	15.	28	15.	33	14.	81	14.	27	14.	8
	15.	37:	14.	38	1 -	~	14.	6?	15.	25	15.	24	15.	34	15.	54	14.	90	14.	75	14.	59	15.	2
	14.	82	15.	04	15.	2	15.	3	15.	3	14.	98	15.	57:	15.	53	15.	25	15.	69	14.	66	15.	3
	15.	48 90	15.	54	14.	95	15.	35	15.	17	15.	40 91	14.	98	10. 14	60 64	10. 14	30	10.	39	14.	64 65	15.	45
	15	00 25	15. 15	5	15	95 0	10.	40	15	10 97	15. 15	21 2	14. 14	50	14.	38	14.	00 35	15	19	14.	71	15	0
	14	$\frac{20}{37}$	15	57	14	95	14	95	15	29	14	35	14	92	15	54	15	02	15	45	14	67	15	55
	15.	17	15.	57	15.	3	15.	25	14.	93	15.	16	14.	45	15.	24	15.	33	14.	75	14.	58	14.	95
	14.	51	15.	71	14.	95	15.	5	15.	16	14.	99	14.	97	14.	41	14.	99	15.	56	14.	66	15.	5
	15.	17	15.	34			15.	55	15.	08	15.	28	14.	97	15.	48	15.	11	15.	47	14.	51	14.	85
ł	15.	26	15.	02	15.	25	14.	75	15.	16	14.	85	15.	11	14.	88	14.	98	15.	42	14.	48	15.	3
l	14.	26	15.	52	15.	4	14.	9	15.	21	13.	82	15.	56	15.	56	14.	93	14.	84	14.	16	15.	7
ł	15.	38	15.	56	15.	35	15.	2	15.	20	14.	69	15.	26	15.	72	15.	33	15.	58	14.	39	15,	2
l	15.	23	15.	64	15.	3	15.	0	15.	30	13.	97	15.	03	15.	72	14.	92	15.	36	14.	39	14.	9
ł	15.	67	15.	51	14.	8	15.	35	15.	25	14.	85	15.	22	15.	28	15.	2	15.	06	14.	63	15.	6
l	14	60	15	4.4	14.	8	14.	.6	15	0.4	14	07	1 -	05	14	4.4	1.5	45	14	= C	14	4.9	15.	4
l	14.	70	15	44 1	14.	9	14.	0	10. 14	04	14.	0(79	15.	00	14.	44 Q1	15	40	14.	20	14. 14	40	14.	00 75
l	14.	95	15	6	14.	85	14.	9	15	00	14.	10	15	10	15	1	14	88	14.	95	13	87	14.	75
l	14.	94	15	47	14	9	15	25	14	92	14	91	15	10	15	3	14	42	15	09	14	0	14	95
ł	15.	18	15.	54	14.	9	15.	25	15.	06	15.	08	15.	20	15.	4	14.	65	15.	29	14.	26	15.	1
					•	0	-0.	10	201	00	201	•••	-0.	10	-0.	-		00	20.	-0	~		201	-
					14.	95	14.	95																
	14.	80	15.	49	14.	5	15.	2	15.	19	13.	85	15.	20	15.	46	15.	38	14.	50	14.	57	14.	95
	15.	02	15.	62	14.	65	15.	25	15.	08	14.	05	15.	26	15.	56	15.	54	14.	76	14.	54	15.	25
1					14.	6	15.	15															15.	3
	14	00	14	4.4	14	75	15.	2	15	0.5	1 -	95	1.4	0.5	1.5		1.5	9.4	1.5		1.4	19	15	
í	14.	00	14.	44	14.	()	TD.	Ű	19.	05	TD.	40	14.	90	T.D.	99	TD.	54	19.	99	14.	43	19.	99

Plate	Julian Day	No. 1	No. 2	No. 3	No. 6	No. 7	No. 8	No. 9	No. 10
8846	30884.721	15.43	15.60	15.47	14.95	15.41	14.85	15.47	15.55
8851	.771		15.58	15.26	14.95	15.41	14.99	15.26	15.44
8887	0899.602	14.62	15.50	15.22	15.25	15.21	15.17	15.48	15.72
8891	.647	14.8	15.21	15.17	14.95	15.38	15.37	14.85	15.55
8897	.701	15.16	14.73	15.37	15.05	15.55	15.59	14.58	15.69
8912	0900.604	14.76	15.38	15.25		15.45	14.9	15.22	15.50
8916	.638	14.62:	15.5	14.98	14.95:	15.4	15.15	15.18	15.50
8935	0901.632								
8938	. 676	14.55	15.77	15.44	15.05	15.44	15.01	15.42	15.42
9001	0932.604	15.24	15.54	15.03	15.05	15.16	15.55	14.66	15,63
9021	0933.589	14.97			15.05	14.85			
10098	1257.634	14.93.	14.50	15.51	14.35	15.23	15.45	14.86	15.29
10108	1258 625		-1.00	20102	11.00	20140	201 20	-1.00	-01-20
10121	1259 604	14 55	15 74	14 77	15 05	15 42	15 2	14 62	15 16
12043	1969 736	14 52	15 21	15 17	15 25	14 16	15 34	14 72	15 15
12040	1970 698	11.02	10.21	10.11	10.20	11.10	10.01	11.10	10.10
12100	1976 641	1/ 93	15 28	15 42	14 45	14 26	14 74	14 74	14 96
10100	1977 600	14.93	15.20	15 49	14.45	14.20	14.55	15 33	14 75
10076	2000 641	15 07	15 55	15 97	15 15	15 25	14 6	15 1	15 40
10000	2000.041	15 62	15 57	15 99	14 05	15 /1	15 97	14 55	15 00
12020	2004.052	15.00	14 69	15.00	14.00	19.41	15 99	15 79	15 99
12337	2006.599	10.31	14.02	10.27	14 0	14 977	10.00	15.74	15.40
13326	2326.715	14.40	15.52	14.03	14.9	14.27	14.90	15.47	15.00
13340	2328.739	14.51	15.21	15.82	15.25	14.5	15.00	15.40	15.54
13392	2354.604	15.54	15.62	15.48	15.15	15.65	15.03	15.63	15.46
13415	2355.607	15.37	15.51	14.96	15.25	15.12	15.77	14.9	14.84
13439	2356.605	15.26	15.63	15.32	15.2	15.25	15.25	15.15	14.86
13454	2357.604	15.29	15.17	15.9	14.95	15.36	15.50	14.67	14.51
13504	2361.704	14.84	15.15	15.23	15.05	15.3	14.75	15.18	15.41
14506	2733.605				15.15				10.00
14530	2734.604	15.5	15.16	15.5		14.02	15.55	15.35	15.57
14578	2740.608	15.28	15.08	15.41	14.55	14.48	15.52	14.65	15.14
14602	2741.607	14.97	15.37	15.18	15.05	15.08	15.7	15.40	15.53
14627	2742.648	14.81	15.25	14.65	15.3	15.02	15.46	14.70	15.6
14750	2770.576	15.49	15.44	15.42	15.4	15.48		14.94	15.28
16016	3068.668	14.37	15.35	15.1	15.35	15.35	15.16	15.23	14.48
16043	3069.654	15.21	15.11	15.37	15.5	15.44	14.57	15.52	15.48
16167	3095.604	15.35	15.77	14.91	15.45	15.25	15.77	14.57	15.17
16196	3096.609	15.54	15.52	15.48	15.45	15.01	15.35	15.34	15.78
17448	3476.602	15.7	15.49	15.03			14.8	14.79	15.28
17472	3477.601	15.38	15.49	15.45	15.25:	15.63	15.7	15.45	15.37
17504	3481.597	15.26	15.0	14.99		14.1	14.98	15.03	15.11
17627	3505.572	15.35	15.6	15.18	15.25	15.3	14.81	15.47	15.23
18162	3823.649	14.5	15.31	14.9		15.0	15.35	15.41	15.65
18273	3858.636	14.3	15.68	15.3	14.7	15.26	15.59	15.42	15.50
18277	3859.590								
18292	3860.589	15.39	15.16	15.44	15.25	15.17:	14.60	15.35	15.34
19147	4180.634	14.76	15.4	15.04	14.9	15.64	14.82	15.36	15.37
19164	4181.607	14.51	15.04	15.54	15.25	15.61	15.71	15.49	
19186	4182.607	15.51	14.98	15.18	15.25	15.37	15.58	15.25	14.82
19191	4183.608								
20072	4538.633	14.87	15.62	15.3	14.85	14.00	15.37	15.4	14.59
20092	4539.634	14.65	15.53	14.83	14.55	14.09	15.15	14.85	14.65

.

No. 11	No. 12	No. 13	No. 14	No. 15	No. 16	No. 18	No. 19	No. 20	No. 21	No. 25	No. 27
14.21	14.98	14.85	15.55	15.11	15.58	15.05	15.66	15.39	15.66	14.21	15.3
14.58	15.22	14.8	15.3	14.94	15.18	15.0	15.48	15.38	15.35	14.05	15.4
14.2	14.58	15.0	14.5	15.10	15.22	14.97	15.58	14.55	15.41	14.56	15.25
14.3	14.44	14.85	14.8	15.10	15.13	15.04	15.65	14.58	15.40	14.48	15.15
14.66	14.94	15.2	15.0	15.39	15.41	15.25	15.83	14.82	15.62	15.62	15.3
15.06:	14.75	14.8	14.65	15.05	14.68	15.0	15.71	15.3	14.86	14.42	
15.41	15.04	14.65	14.8	15.12	14.79	15.26	15.54	15.3	14.95	14.67	15.2
15.35	15.45	14.95	15.25	15.21	15.42	15.32	15.65	15.35	15.67	14.67	15.5
15.29	15.86	14.95	15.6	14.68	15.15	15.17	15.82	14.67	14.55	14.29	15.3
14.1		14.95	15.5		14.20					13.97	15.6
15.45	15.53	15.2		15.12	14.89	14.56	15.19	15.12	15.27	14.52	15.25
14.71	15.66	15.25	15.5	14.89	15.07	15.16	15.48	15.45	15.32	14.56	15.5
15.35	14.30	15.25	14.6	15.06	13.78	15.31	15.6	15.39	15.58	14.45	15.5
15.24	15.63	14.7	$14.4 \\ 15.2$	15.17	15.06	15.27	15.01	14.77	14.79	14.52	15.2
14.7	14.18	15.0	15.4	15.4	14.81	15.52	15.63	15.49	15.59	14.45	15.45
15.44	14.37	15.25	15.5	15.31	15.25	15.11	15.16	15.31	15.46	14.7	15.3
15.30	15.7	15.2	15.4	15.4	14.40	15.64	15.75	14.62	15.20	14.53	15.5
	15.81	15.4	15.5	14.95	14.32:	14.32:	15.55		15.25	14.43	15.15
15.26	15.02	14.85	15.0	14.90	14.38	15.24	14.48	15.27	15.50	14.35	15.6
14.95	15.51	15.25	14.95	14.96	14.75	14.96	15.54	15.41	14.61	14.35	15.45
15.59	15.74	15.1	14.45	15.33	14.9	15.05	15.63	15.1	15.82	14.48	15.6
15.27	14.17	15.4	14.85	15.36	15.16	14.64	15.87	15.00	15.42	14.48	14.9
14.53	14.86	15.3	14.8	15.1	14.77	14.93	15.40	15.51	14.59	14.28	14.55
15.30	15.21	15.3	14.95	15.35	15.22	15.1	15.61	14.92	15.51	14.29	15.0
15.35	14.40	15.3 14.95	15.5 14.4	15.02	14.67	14.99	15.56	15.13	15.40	14.64	15.55 15.6
15.48	15.38	14.95	14.6	14.92	13.97	15.29	14.63	15.59	14.63	13.84	15.15
15.39	14.83	14.55	15.2	14.84	14.69	15.23	15.56	15.26	15.02	13.75	15.55
14.72	15.42	14.9	15.25	15.01	15.25	15.60	15.86	15.12	15.56	14.33	15.5
15.33	15.7	14.75	15.25	14.79	14.71	14.49	14.60	14.66	15.17	13.57	15.6
15.36	15.12	15.15	15.2	14.87	15.20	14.98	15.52	15.49	15.46	14.19	15.15
14.17	15.50	15.15	15.5	14.93	15.01	15.35	15.60	15.30	15.24	14.51	14.55
15.26	15.62	14.85	15.45	14.79	14.58	15.44	15.78	15.28	15.39	14.34	14.75
14.8	14.93		14.8	14.9	14.73	15.68	14.75	14.74	15.65	14.65	15.25
15.35	15.18	15.25	14.9	14.96	14.01	15.38	15.09	15.34	15.48	14.51	15.6
	15.46		14.85	15.2			15.60		15.51	14.06	
15.14	15.67	14.9	14.75	15.31	14.76	15.59	15.43	15.50	15.30	14.1	15.6
14.34	15.46		15.1?	14.91	14.76	14.65	15.27	15.25	15.07	14.18	
14.94	15.58		15.25	15.32	15.14	14.96	15.5	15.43	15.60	14.40	14.6
14.07	15.59		15.5	14.85	14.7	14.75	15.17	15.24	15.41	14.07	
15.26	15.70	15.3	15.3	15.01	14.75	14.92	15.74	14.47	15.07	14.42	15.6
14.2	15.62		15.4	15.44	15.06	14.83	15.57	15.09	15.44	14.68	
14.32	14.32	14.9	15.35	14.98	15.31	15.57	15.63	15.25	15.42	14.73	15.5
15.49	14.69	15.05	15.55	15.16	15.11	15.59	15.78	14.7	15.09	14.58	15.6
15.31	15.13	14.9	15.2 15.2	15.04	14.91	15.27	14.48	15.35	15.62	14.33	15.5
15,39	15.51	14.7	14.85	14.86	14.89	14.95	15.59	15.11	15.35	14.33	
15.33	15.59	14.9	15.2	14.88	14.30	15.11	15.67	15.11	14.69	14.33	15.7

Plate	Julian Day	No. 1	No. 2	No. 3	No. 6	No. 7	No. 8	No. 9	No. 10
20110	34540.613	14.33	15.49	15.37	15.25	14.20	14.67	15.44	15.53
20227	4572.602	15.09	14.96	14.81	14.6	15.05	15.49	15.32	14.94:
20240	4573.635	15.1	14.85	15.3	14.65	15.15	15.37	15.38	14.51
20255	4574.602	14.5	15.6	15.25	15.3	16.0	15.69	15.17:	15.17
20274	4575.603	14.43	15.58	14.7	15.25	15.48	14.76	15.46	15.26
21394	4929.623	15.33	15.80	15.38		15.61	14.82	14.74	15.55
22336	5273.612	15.44	14.82	14.69	14.9	14.69	15.6	15.11	14.72
22356	5274.609	15.51	14.61	15.42	14.85	15.29	15.53	15.48	14.46
22373	5275.610	15.16	15.86	14.91	14.5	15.15	15.69	14.85	15.22
22470	5307.600	15.10	15.62	15.38	15.0	15.13	14.91	14.81	14.98
22491	5308.599	15.5	15.65	15.24	14.7	15.07	14.8	15.26	14.56
22514	5309.600	15.54	15.7	14.92	14.95	15.39	15.57	15.55	15.36
22538	5310.600	15.49	15.52	15.38	15.0	15.31	15.6	14.99	15.54
23203	5658.601		15.56		15.0				
23215	5661.602	15.27	14.93	15.5	15.05	15.12		15.56	14.98
23293	5685.588	15.08	15.08	15.26	14.65	15.44	14.92	15.44	15.6
23313	5687,592	14.63	15.85	15.30	15.4	15.06	15.52	15.28	14.81
23327	5688.590	14.55	15.52	15.31	15.25	14.65	15.55	14.72	14.76
24782	6752.607	14.87	15.48	15.01	14.8	14.46	15.68	15.31	14.85
24803	6753.602	14.55	15.63	15.16	14.7	14.59	15.52	14.78	14.02
25182	7113.610	14.62	15.57	15.4	14.95	14.92	15.52	14.61	15.52
25209	7115.636	14.23	15.43	14.83	15.1	15.15	14.91	14.75	15.29
25231	7116.640	15.10	15.30	15.34		15.23	14.78	15.15	15.02
26824	8198.614	15.37	14.96	15.3	15.2	15.44	15.43	15.33	15.11
26845	8199.629	15.29	15.35	15.02			15.5	14.70	14.53
27544	8584.628	15.28	15.38	15.35	15.1	15.25	15.42	15.43	15.37
27551	8586,605	14.92	15.53	15.15	15.05	15.47	14.82	15.44	15.1
29082	9262.772								
29083	. 779	14.42	14.72	15.28		14.82	14.75	14.85	15.48
29084	. 785	14.38	14.91	15.41	15.25	15.15	14.49	14.95	15.61
29087	9265,585			-01	14.75				
29092	. 620								
29097	.680	15,15	15.7	15.2		13.95?	15.27	15.05	14.88
29098	. 684	-01-0	-011	-0.1		-01001		20110	
29099	. 772	15.27	15.60	15.31		14.44?	15.41	15.22	14.92
29103	.816	15.4	15.47	15.31	15.05	15.31	15.61	15.28	14.95
29104	. 819	15.65	15.63	15.43	14.9	15.24	15.38	15.31	15.11
29106	. 847	15.53	15.34	15.50	14.95	15.47	15.65	15.39	15.30
29138	9270.772	15.10	15.35	15.30	15.05	15.2	15.49	15.27	15.44
29139	. 776	15.22	15.35	15.31	-0.00	15.35	15.42	15.28	15.58
29141	.798	15.03	15,62	14.93	15.25	15.36	15.43	15.27	15.45
29142	. 803	15.28	15.6	14.96		15.26	15.5	15.31	15.56
29148	9271.615	15.11	15.56	15.11	14.95	14.71	14.83	15.32	15.00
29149	.619	15.02	15.66	15.16	14.8	14.84	14.90	15.5	14.91
29151	.647	14.43	15.27	15.12	14.6	14.82	14.97	15.38	15.00
29152	.651	14.49	15.07	15.27	14.55	14.88	14.98	15.49	15.00
29155	.697	14.33	14.79	15.15	14.65	15.12	15.06	14.92	14.92
29156	.701	14.60	14.60	15.44	14.6	15,05	15.22	14.88	15.20
29158	.722	14.72	14.72	15.34	14.9	15.16	15.3	14.91	15.18
29159	.725	14.82	14.81	15.38	14.65	15.22	15.24	14.72	15.44
29164	.771	15.08	15.14	15.34	15.1	15.48	15.41	14.51	15.48
29165	.776	20.00	20. 21	-0.01	14.9	20. 20	0.11		-01-10
29169	.817	15.10	15.23	15.27	14.95	15.48	15.5	14.69	15.36
29170	. 820	15.07	15.32	15 35		15.37	15.45	14.76	15.45

No. 11	No. 12	No. 13	No. 14	No. 15	No. 16	No. 18	No. 19	No. 20	No. 21	No. 25	No. 27
14.51	15.5	15.25	15.25	14.95	14.84	15.30	15.80	14.53	15.57	14.47	15.8
15.63	14.69	14.95	14.85	15.18	14.20	15.11	15.52	15.5	15.33	14.37	15.6
15.55	15.2	14.95	14.75	15.06	15.03	15.03	14.37	14.93	15.17	14.48	14.6
14.82	15.7	14.95	14.7	15.28	14.49	15.55	15.00		15.78	14.78	14.85
15.4	15.79	14.9	14.85	15.08	15.11	14.8	15.15	15.16	15.46	14.51	15.15
14.12	15.69	14.65	14.5	14.68	14.49	14.83	15.59	15.09	15.52	14.39	
15.03	15.63	14.95	14.65	15.31	15.20	14.68	15.45	15.53	15.32	14.58	15.4
14.94	14.32	15.15	14.65	15.25	14.14	15.05	15.76	14.98	14.90	14.48	15.6
14.98	14.87	14.95	14.55	15.28	14.72	15.09	15.70	15.20	15.46	14.21	15.5
14.96	15.63	15.2	15.5	15.24	13.88	15.15	15.65	15.23	15.55	14.59	15.6
14.48	15.64		15.2	15.2	14.81	15.24	15.49	14.59	15.20	14.5	
15.65	15.9	15.15	15.6	15.2	14.16	15.39	15.00	15.50	14.95	14.5	15.6
15.21	14.23	15.15	15.4	15.14	15.12	15.49	14.51	15.19	15.41	14.37	14.95
			14.95			1 - 00		14 00	1= 00	14.24	15 05
15.22	15.33	15.2	15.3	15.58	15.22	15.09	1.0.00	14.89	15.66	14.51	15.25
15.29	15.77	14.8	15.5	15.01	14.92	15.39	14.97	15.34	15.43	14.26	15.3
14.07	14.3	14.85	15.65	15.02	14.75	14.81	15.0	15.59	15.55	14.06	15.4
15.19	14.82	14.9	15.6	15.21	14.49	15.07	15.38	15.27	15.4	14.06	15 4
14.75	14.61	14.95	15.0	15.04	14.13	15.24	15.16	15.09	15.16	14.48	15.4
15.46	15.07	15.15	15.0	14.95	14.77	14.29	15.41	14.99	14.85	14.55	14.2
14.23	14.73	15.0	14.65	15.15	15.23	14.68	15.36	15.34	15.32	14.42	15.0
15.4	15.27	14.95	14.7	15.1	15.26	15.18	15.45	14.80	15.48	14.41	15.25
14.59	15.57	14.85	14.8	15.08	14.84	15.18	15.58	15.55	15.21	14.89:	15 C
15.5	15.48	15.4	14.8	14.81	13.75	10.00	10.01	15.49	15 90	14.44	19.0
15.32	14.81	14.0	14.9	14.83	14.76	14.90	14.55	15.35	15.38	14.35	14 05
15.36	14.82	14.8	15.35	15.17	14.20	15.23	15.21	14.97	15.04 15.94	14.30	14.95
14.98	15.43		15.2	15.15	14.41	15.45	19.00	19.9	10.04	14.40	
15 25	1/ /8			1/1 8	14 58	15 15.	14 88	15 05	15 1	14 42	
15.55	14.40 14.45	15 25	15 5	14.0	14.00 14.65	15 29	14 89	15,00 15,27	15 17	14.31	14 8
10.00	11.10	10.20	14 7	11.0	11.00	10.20	11.00	10.21	10.11	11.01	11.0
			15 0								
14 8	15 12		15.35	15.35	14.88	15.38	15.34	15.13	14,65	14.54	
-110	201 25		20100	20100		-0.00	-0.01	-01-0			
15.41	15.43:		15.6	14.84	15.22	15.03:	15.45	15.32	15.01	14.05	
15.42	15.60	15.15	15.65	14.93	15.22	14.77	15.67	15.37	15.17	14.25	15.5
15.63	15.72	15.25	15.5	14.93	15.35	14.65	15.47	15.6	15.15	14.18	15.25?
15.7	15.73	15.3	15.6	15.07	15.13	14.97	15.78	15.17	15.29	14.30	15.6
14.36	14.87	14.8	15.55	15.09	14.82	15.34	14.93	14.48	15.28	14.25	14.8
14.54	14.98		15.5	15.0	15.05	15.17	14.89	14.46	15.22	14.22	
14.82	15.14	14.9	15.3	14.92	14.88	15.22	15.05	14.76	15.31	13.97	14.85
14.73	15.05	14.9	15.25	14.88	15.18	15.14	14.98	14.55	15.31	13.92	14.8
15.33	14.95	15.2	15.65	14.97	15.11	15.22	14.91	15.25	15.22	14.63	15.5
15.32	14.72	15.15	15.45	15.15	15.34	15.36	14.83	15.39	15.51	14.67	15.5
15.36	14.40	14.7	15.65	15.06	15.09	15.12	14.39	15.26	14.98	14.57	15.35
15.39	14.36	14.5	15.55	15.25	15.31	15.23	14.47	15.31	14.88	14.62	15.4
15.25	14.97	14.55	15.4	15.19	14.03	14.97	14.63	15.55	14.31	14.41	14.65
15.59	14.76	14.5	15.55	15.4	14.33	15.19	14.72	15.35	14.45	14.52	14.55
15.37	14.9	14.85	15.5	15.25	13.90	15.28	14.93	15.22	14.59	14.47	14.7
15.50	14.89	14.8	15.55	15.27	13.98	15.42	14.81	15.58	14.50	14.66	14.6
15.58	15.3	14.95	15.35	15.14	13.93	14.92	15.2	15.4	14.83	14.39	15.2
15 15	15 00	14.85	15.25	14.00	14 40	14.00	15 00	15 47	14.00	14 01	15 0
15.45	15.33	14.85	14.4	14.99	14.40	14.96	15.36	15.41	14.99	14.01	19.3
15.45	15.32		14.35	14.95	14.37	14.81	15.25	15.32	14.98	14.02	

Julian Day	No. 28	No. 29	No. 30	No. 31	No. 32	No. 33	No. 34	No. 35	No. 36
28308.736						15.3?	15.25		
8309.651		4 - 0	4- 0			15.4			14.9
.661	15.33	15.6	15.6	15.1	15.6	15.5	15.20	15.13	14.85
.670	15.25	15.5	15.43	14.99	15.49	15.3	15.05	15.10	14.95
.677	15.35	1 - 1	15.42	15.09	15.43	1 = 0	14.85?	15.10	14.9
.796	15.27	15.4	14.89	15.09	15.36	15.0	14.80	14.70	14.95
8365.608	15.1	15.53	15.34	14.96	15.57	14.9	15.20	14.75	15.05
8366.608	14.62	15.65	14.83	15.18	14.34	15.0	15.1	14.98	15.25
8399.596	15.50	15.52	15.44	15.00	14.7	14.4	14.8	15.17	14.9
8688.640							14.9:		
8089.042	15 90	15 0	15 95	14 07	14 07	15 1	14 65	15 10	14 77
8092.032	15.29	15.3	15.30	14.07	14.91	10.1	14.05	14 77	14.7
0093.130	15.30	15.44	15.07	15.29	15.40	15.0	14.90	15 10	14.1
0090.001	19.47	19.0	19.99	19, 19	15.40	10.2	14.00	19.10	19.19
0110.000	15 09	1 = 47	1= 22	14 0.9	11 0	15 05		15 0.9	14 7
9071,000	15.02	15.47	15 25	15 22	15 28	15.00	14 0	10.00	14.7
0072 605	15,02	15 75	15 91	15 10	15 25	1/ 0	15 5	14.99	14.752
9013.003	10.00	10.10	10.21	10.10	10.40	14.0	15 /	14.00	T4.191
9070.003						14 4	10.4		
9078 600						14.4	15 1		14 55.
9079 602	15 97	14 64	14 69	15 10	15 32	LI.I	14 7	14 95.	15 30
9786 609	15 39	15 19	15 06	15.42	15.02 15.46	15 75	15 35	15 12	14 9
9787 608	15.39	15.55	15.53	15 17	14 61	15 55	15 1	15 20	15 25
9813 610	15.26	14 96	15.46	15 19	15 57	15.25	10.1	14 66	15 1
9814.612	14.87	15 20	15.25	15.49	14.65	15.5	15.35	14.94	15 25
9815.613	15, 11	15.34	15.13	20.10	15.23	15.4	15.1	15.23	14.65
9816.611	15.42	15.52	15.38	15.19	15.44	15.15	15.2	15.15	14.95
30171.617	15.36	14.78	14.97	15.24	15.30	15.4	14.95	15.22	14.7
0172.615	15.23	15.26	15.53	15.43	14.75	15.6		15.13	14.9
0519.606	14.88	15.33	15.31		14.30	15.55	15.5	15.13	15.3
0520.606			15.33	15.26	15.15	15.6	15.35	14.85	15.25
0550.608	14.95	15.28	14.90	14.91	15.35	15.5		14.64	14.85
0553.604	15.25	14.87	14.98	14.90	15.12	15.25	15.5	14.71	15.35
0554.614	15.36	15.66	15.56	15.56	15.45	15.2	15.5	14.50	14.7?
0555.629	15.59	15.70	15.52	14.96	15.57	15.35		14.96	
0556.620	15.00	15.43	15.24	15.03	14.92	15.25	15.45	15.03	15.55
0586.572	15.19	15.04	15.39	14.81	15.26	14.55	15.25	14.75	15.3
0880.592						15.05	14.65		15.2:
.623	15.37	15.70	15.37	14.85	15.50	15.3	14.8	14.66	15.05
.659	14.61	15.49	15.33	15.1	15.41	15.05	14.8	14.60	15.15?
.690	14.51	15.70	15.50	15.3	15.58	15.4	14.9	14.70	15.05
.730	14.79	15.50	15.50	15.39	15.31	15.3	15.1	14.81	15.0
.760	14.97	15.37	15.46	15.44	14.22	15.5	14.95	15.05	15.0:
0880.788									
0883.593						15.05			
.630	15.28	15.22	15.42	14.95	15.10	15.05	15.2	15.11	15.1
.664	15.50	15.45	15.42	15.14	15.39	15.40	15.2	15.00	14.9
0884.622						15.30			
.680	15.32	15.61	15.25	15.42	15.60	15.55	14.95	14.70	15.0

No. 38	No.	39	No.	40	No.	41	No.	42	No.	43	No.	44	No.	45	No.	47	No.	52	No.	55
14.75													15.	1						
14.85							12.	4					14.	6						
14.85	15.	00	15.	17	15.	13	12.	4	15.	08	14.	92	14.	65	14.	96	14.	46	15.	34
14.85	15.	02	15.	21	15.	22	12.	4	15.	15	14.	91	14.	7	14.	99	14.	37	15.	23
14.9	15.	15	15.	27	15.	26	12.	3	15.	20	14.	71	14.	7	14.	70	14.	29	15.	20
15.05	15.	26	15.	11	15.	60	12.	4	15.	08	14.	82	14.	95	14.	28	14.	69	15.	02
14.6	14.	90	15.	37	15.	54	10.	7	15.	10	15.	09	15.	2	15.	15	15.	12	15.	36
14.9	15.	61	15.	07	15.	60	10.	7	15.	39	15.	15	15.	25	15.	0	15.	12	15.	35
15.05	15.	65	15.	21	15.	35	11.	8	15.	31	15.	25	14.	4	15.	40	15.	02	15.	15
							11.	9												
14.0	1.5	1.77	1	00	14	07	12.	1	15	0.5	1 -	10	14	17	15	11	15	04	15	00
14.9	15.	17	15.	09	14.	87	12.	0	15.	25	10.	12	14.	7	15.	20	15.	04	15.	00
15.15	15.	02	15.	კე 19	15.	40 95	12.	4	10.	21	14.	00	14.	00 9	15	20	15	00	10.	05
15.25	14.	0	19.	19	19.	39	12.	1	19.	30	14.	91	10.	4	19.	JJ	T0.	00	14.	. 50
14 4	15	12	15	22	15	19	11	4 0	15	33	15	10	15	15	15	17	14	85	15	01
14.4	15	42	15	07	14	51	19	1	15	17	15	00	15	25	15	40	15	15	15	30
14.5	14	99	15	20	15	11	12.	2	15	43	15	07	14	65	14	94	14	81	14	92
14.0	14.	00	10.	20	т О •		14.	4	15	20	15	02	тт.	00	11.	01	1 1.	01	11	02
									10.	20	10.	~								
													14.	7						
15.05	14.	95	15.	27	14.	9	12.	6					15.	5	15.	14	14.	83	15.	06
15.15	15.	39	15.	31	15.	25	11.	6	15.	20	15.	11	15.	15	14.	91	14.	97	14.	95
15.4	15.	18	15.	37	15.	35	11.	7	15.	54	15.	10	15.	3	14.	64	15.	04	14.	94
15.4	15.	34	15.	28	15.	53	11.	9	14.	98	15.	11	14.	9	15.	00	15.	18	15.	02
15.15	14.	82	15.	04	15.	63	11.	7	15.	49	15.	17	15.	25	14.	76	15.	28	15.	. 09
15.15	15.	43	15.	01	15.	60	11.	8	15.	15	15.	13	14.	95	14.	41	15.	40	15.	10
15.15	15.	32	15.	02	15.	48	11.	7	15.	46	15.	12	14.	75	15.	37	15.	28	15.	06
14.6	15.	04	14.	95	15.	28	11.	5	15.	42	14.	93	15.	1	15.	50	15.	15	15,	31
14.9	15.	35	14.	93	15.	35	11.	7	15.	40	14.	85	14.	9	15.	20	15.	16	15.	30
15.35	14.	25	15.	28	15.	55	12.	6												
14.15	15.	52	15.	24	15.	57	12.	7	15.	53	15.	24	14.	75	15.	21	14.	37	15.	. 10
14.8	15.	38	15.	06	14.	37	11.	7	15.	24	15.	57	14.	95	14.	99	14.	41	15.	.25
14.5	15.	37	15.	34	15.	03			15.	38	15.	06	14.	65	15.	20	14.	33	14.	.88
14.9	15.	47	14.	78	15.	02	11.	7	15.	18	14.	90	14.	7	14.	90	14.	35	14.	.78
15.4	14.	76	14.	88	15.	27		~	15.	60	14.	40	15.	25	14.	80?	13.	50	14.	.95
15.4	15.	65	14.	95	15.	28	11.	3	14.	79	14.	54	15.	2	14.	15	13.	75	14.	.98
14.85	15.	42	15.	30	15.	54	11.	9	15.	49	14.	62	14.	65	14.	64	14.	20	14,	.99
14.6	10		14	07	10	50	10	C	15.	46	14.	97	15.	25	19.	34	19.	10	19.	05
15.0	10.	00	14.	97	15.	99 47	12.	0	10	00	14	70	10.	0	14	0.0	14	70	15	05
15.1	14.	00 91	10.	10	15.	41	12.	4	10.	29 17	14.	70 61	14.	90	14.	90 60	14.	10	10.	16
15,05	14.	51	10.	20	10.	50	12.	4	15	20	14.	70	14.	90 15	14.	05	10.	90	15	26
15.20	14.	30 77	10.	30	15	50	12.	4± 1	10.	04 95	14.	20	14	0	14.	99	14	26	15	34
10.0	14.		т.	04	10.	00	12.	4 ⊿	15	40	15	05	14	95	15	21	14	55	15	30
							12	4	10.	10	тu,	00	14	8	т	44	тт.	00	т.,	00
15.35	14	21	15	25	15	55	12.	6	15	49	14	66	14	95	15	17	14	90	15	24
15, 15	14	39	15	15	15	62	12	5	15	50	14	80	14	95	15	37	14	50	15	35
10, 10	-, I +	00	×0.	10	-0.		12	2	10.	00	- 1 0	00	14	9	-0.	51	- 1 0	50	201	
15.15	15.	60	14.	85	15.	58	12.	2	15.	38	14.	85	14.	15	15.	23	14.	17	15.	35

Julian Day	No. 28	No. 29	No. 30	No. 31	No. 32	No. 33	No. 34	No. 35	No. 36
30884.721 .771	15.53 15.44	$15.65 \\ 15.52$	15.43 15.38	$15.38 \\ 14.90$	$15.61 \\ 15.41 \\ 15.7$	$15.40 \\ 15.30$	$14.8 \\ 15.1$	$14.94 \\ 15.06$	14.9 14.9
0899.602	15.45	15.45	15.39	15.19	14.78	15.20		15.12	14.85
.647	15.50	15.67	15.48	15.31	15.14	15.15	15.35	15.14	14.7
.701	14.65	15.42	15.58	15.5	15.46	15.40	15.35	14.84	14.8
0900.604	15.37	1 1	14.91	15.41	15.20	15.20	15.2	14.90	15.2:
. 638	15.4	15.21	15.31	15.41	15.41		14.95	14.77	
0901.632					15.60				
.676	15.32	15.43	15.08	15.15	15.60	15.30	14.7	14.87	14.9
0932.604	15.17	15.64	15.12	14.75	15.04	14.85	15.3	14.78	15.05
0933.589		14.90		1	1 = 0.0	14.85	15.4	14.80	15.25
1257.634	14.40	15.60	14.75	15.31	15.06	15.2	15.25	14.55	14.95
1259.604	15.25	15.14	15.25	14.77	15.5	14.7	14.8	15.15	15.3
1969.736	14.98	15.28	15.49	15.34		15.15	14.4	14.90	15.3
1970.698		1	1 - 11	1= 0.4		14 4 -	14.0	14 05	1= 0=
1976.641	15.47	15.48	15.11	15.34	15.55	14.45	14.8	14.65	15.35
1977.690	15.67	15.19	14.55	14.85	14.82	14.55	14.6	14.90	15.3
2000.641	14.56	15.56	15.46	15.16	15.23	15.25	15.5	14.99	14.85
2004.652	15.83	15.70	15.48	15.43	14.36	15.25	15.4	14.70	15.3
2006.599	14.66	14.99	15.41	14.87	15.17	14 0	15 05	14.01	15.3
2326.715	15.38	14.79	15.48	14.85	15.60	14.9	15.25	14.95	15.2
2328.739	14.98	15.54	15.6	15.06	14.18	15.15	14.85	14.90	15.35
2354.604	15.8	15.52	15.57	15.17	15.60	15.4	15.0	14.90	14.65
2355.607	15.46	14.67	15.34	15.17	15.70	15.4	15.15	15.22	15.6
2356.605	15.16	15.52	15.28	15.18	15.27	15.3	14.55	14.92	14.95
2357.604	15.2	15.26	15.37	14.88	14.37	15.45	15.3	14.69	15.3
2361.704	15.4	15.61	15.40	15.37	14.19	15.25	14.0	14.90	15.15
2733.605	15 10	15 00	14 00	14 00	15 50	15.5	15.0	14 59	15.0
2734.604	15.10	15.80	14.90	14.82	15.53	15.4	15.0	14.00	15.15
2740.608	15.13	14.89	15.03	14.84	15.45	15.35	15.4	14.83	15.2
2741.607	15.10	15.20	14.80	15.44	15.84	15.4	15.5	14.75	15.35
2742.648	14.75	15.73	15.60	14.80	14.08	10.4	15.5	14,00	10.4
2770.576	15.39	15.43	14.90	15.21	14.80	14.90	15.4	14.03	10.0
3068.668	15.35	15.55	15.30	15.27	15.20	10.4	19.1	14.73	14 05
3069.654	15.12	16.02	14.04	15.25	15.55	15.4	15 45	14.07	14.00
3095.004	14.08	16.0Z	15.74	15 91	15.10 15.95	15.0	15.40	10.00	10.4
3090.009	19.49	10.01	10.04	15.01	15.20	10.2	15.45	14.70	14. (
0470.002 0477 CO1	15 94	15.00	15.10	15.44 15.01	15.00		15 95	14.04 14.60	14 05
3477,001	15.34	15,00	15.40	10.01	10.00 15.10	14 95	15.00	14.09	14.95
3401.397	1 - 49	10.07	10.20	14.90	10.12	14.00	15.2	14.40	15 95
3000.014	15,45	15.0	14.90	14.01	15.50	14.00	15.20	14.00	10.20
3858 626	15.09	15.76	15.96	15 16	15 02	14 45	15.20	15 12	14 95
2020.020	15.40	10.70	15,30	14 90	14 06	14.40	15.35	10.12 14.79	14.00
4180 634	15.10	14.10	11 98	14.00	15 20	14 6	15 35	15 05	14 85
4181 607	15 50	14.00	15 67	15 01	15.64	14 45	15 25	15 31	15 25
4182 607	15 27	15 41	15 27	15 30	15 55	14 35	15 1	15.00	14 95
4538 633	14 49	14 76	15 47	15.02	15 29	14 5	15 55	14 59	11.00
4539.634	15 49	15 28	15 29	15 04	15.67	14.45	15.45	14.57	15.3
	10.10	10.20	10.20	10.01	-0.01		-0.10		

No. 38	No. 39	No. 40	No. 41	No. 42	No. 43	No. 44	No. 45	No. 47	No. 52	No. 55
14.2	15.57	15.07	15.60	12.2	15.43	15.18	14.65	15.45	14.34	15.34
14.2	15.19	15.11	14.76		15.41	15.20	14.7	15.05	14.63	15.02
15.25	14.70	14.99	15.38	12.2	14.97	15.05	14.8	15.00	15.17	14.85
15.15	14.85	14.95	15.41	12.1	14.92	15.15	14.95	15.19	15.19	14.98
15.25	15.11	15.22	15.66	12.1	15.04	14.87	15.25	15.29	15.25	15.24
15 45	15.31	15.05	15.52	12.2	15.33	14.99	15.3?	15.14	15.19	14.84
10, 10	15.55:	15.25	15.44		15.46	15.21	14.95	15.14	15.25	15.06
								1- 0-		1= 00
14.2	15.52	15.27	15.52	40.0	15.15	15.19	15.35	15.07	15.45	15.36
15.25	14.78	14.77	15.80	12.9:	14.81	14.94	15.25	15.10	14.94	15.34
15.25				12.8:		14.95	15.2	14.82	15.07	1 = 0.0
15.4	15.00	15.13	14.78	11.7	15.25	14.92	15.25	15.10	15.02	15.28
15.3	15.29	15.29	14.91	12.0	15.42	15.10	14.65	15.10	15.02	15.20
15.05	15.59	15.08	15.56	$\begin{array}{c} 11.3 \\ 11 4 \end{array}$	15.47	14.44	15.1	14.12	14.47	15.23
14.2	15.48	14.86	15.51	11.9	15.28	14.79	15.3	14.77	13.84	15.24
14.65	15.33	15.30	15.44	12.0	15.24	14.92	15.3	15.35	14.34	14.93
14.25	15.75	15.27	15.51	11.6	15.42	14.84	15.25	15.20	14.73	15.30
15.25	14.66	15.27	14.65	12.0	15.61	14.75	14.9	15.33	14.34	14.99
	15.18	15.27	14.82	12.3	15.33	14.72	15.25	15.29	15.21	15.18
14.6	15.69	14.97	15.15	11.1	15.46	14.67	15.25	14.92	13.93	14.81
15.4	15.21	15.32	15.54	10.5?	15.37	14.82	15.45	14.63	14.25	15.05
15.3	15.02	14.98	15.36	11.0	15.60	14.77	15.5	14.77	15.32	15.12
15.4	15.05	15.07	15.48	11.0	15.15	14.68	15.05	14.25	15.12	15.03
15.15	15.46	15.17	15.55	11.5	15.69	14.80	14.55	15.00	14.92	14.78
15.2	15.18	16.2	15.68	11.7	15.11	14.68	15.25	15.17	14.92	14.95
15.3	15.33	15.25	15.40	11.7	15.35	15.05	14.95	15.20	15.01	15.32
14.4							14.95			
14.9	15.18	15.43	15.03	12.3	15.31	14.92	14.6	14.80	14.25	14.96
14.3	15.16	15.39	15.73		15.48	14.57	15.3	14.89	14.13	15.08
14.3	15.21	15.33	15.63	11.5	14.86	14.66	14.95	14.89	14.10	15.4
14.85	14.15	14.80	15.77	11.7	15.56	14.53	14.55	14.37	14.06	15.21
15.25	15.35	14.92	15.63	11.7	15.57	14.65	14.9	14.8	14.34	15.32
15.05	15.40	15.22	15.39	12.5:	15.27	14.83	15.0	14.51	14.31	14.98
15.2	14.70	15.30	15.02	12.6	15.60	14.63	15.2	14.01	13.95	14.87
	15.21	14.83	14.23	12.5	15.10	14.65		14.53	14.09	15.13
15.2	15.07	15.31	14.82	12.4	15.52	14.70	14.55	14.34	14.35	14.91
	14.31	14.82	15.53			14.50		13.98		15.06
15.25	15.59	14.82	15.42	11.6	15.56	14.61	14.65	15.23	15.09	15.14
	15.21	15.12	14.75	12.0	15.50	14.80	15.1	14.63	14.59	15.10
14.35	15.08	15.13	14.91		14.96	14.90	14.85	15.33	14.79	15.11
14.9	14.78	15.27	15.06		15.31	14.25	14.7:	13.60	14.00	15.11
15.25	15.66	14.94	15.66	12.2	15.48	14.52	15.6	15.0	14.32	15.23
15.45	15.26	14.95	15.59	12.1	15.55	14.65		14.90	14.23	15.20
14.1	15.12	15.40	15.62	10.7	15.34	14.78	14.55	15.29	14.66	15.11
14.35	15.50	15.75	15.41	10.7	14.75	14.65	15.2	14.87	14.50	15.41
14.8	15.41	15.33	15.56	11.3	15.49	14.64	14.9	14.57	14.38	15.02
14.4	14.26	15.29	15.6	11.6	15.49	14.55	15.25	14.77	14.93	15.07
14.6	15.48	15.65	15.65	10.8	15.16	14.51	14.95	14.84	14.86	15.1

Julian Day	No. 28	No. 29	No. 30	No. 31	No. 32	No. 33	No. 34	No. 35	No. 36
34540.613	15.39	15.58	14.95	15.48	15.63	15.2	15.25	14.86	15.35
4572.602	15.25	15.38	14.75	14.77	15.50	15.3	15.25	14.68	15.05
4573.635	15.07	15.41	15.35	15.08	15.40	15.5	15.25	15.16	14.7
4574.602	15.12	15.84	15.74	16.01		15.5	14.65	15.52	15.25
4575.603	14.78	14.93	14.91	14.92	14.57	15.6	15.45	14.64	15.15
4929.623	15.28	15.39	15.52	15.35	15.41	15.6	15.45	14.95	
5273.612	15.11	15.22	15.55	14.87	15.53	15.5	14.75	14.81	14.95
5274.609	14.60	15.43	15.33	15.33	14.36	15.55	14.95	14.61	15.25
5275.610	15.48	15.93	15.15	15.41	14.97	15.5	15.5	14.65	14.95
5307.600	15.40	15.56	15.13	14.95	14.57	15.4	14.8	14.69	14.95
5308.599	15.21	15.70	15.53	15.35	15.09		15.6	14.95	
5309.600	15.37	15.18	15.60	15.26	15.49	15.4	15.25	15.27	15.15
5310.600	15.03	15.01	15.19	14.90	15.53	15.25	14.95	14.69	14.9
5658.601						15.15	15.35		15.15
5661.602			14.65	15.16	15.42	15.1	14.8	15.04	15.0
5685.588	15.34	15.48	15.55	15.43	15.54	14.85	15.2	15.12	15.2
5687.592	15.02	15.48	15.66	15.17	14.68	14.85	14.95	14.53	15.3
5688.590	14.62	15.55	15.46	15.49	15.27	14.9	15.3:	14.76	
6752.607	15.26	15.74	15.49	15.47	15.65	15.7	15.4	15.07	15.15
6753.602	14.80	15.87	15.01	15.34	15.30	15.6	14.95	15.27	15.2
7113.610	14.73	15.05	15.07	15.38	14.98	15.4	15.15	14.65	14.9
7115.636	15.36	15.70	15.28	14.95	15.47	15.6	15.25	15.04	15.15
7116.640	15.36	15.55	14.95	15.38	15.43	15.6	15.15	14.72	14.95?
8198.614	15.39	15.57	15.15	14.90	15.19	15.3	15.4	14.87	15.5
8199.629	15.12	15.56	15.15	15.39	15.45	15.4	15.4	14.92	
8584.628	15.24	15,45	14.84	15.25	15.50		14.9	14.94	15.5
8586.605	14.59	15.08	15.34	14.92	15.44	14.55	15.7	15.41	
9262.779	15.15:	14.60	15.20	15.28	15.41	<i>.</i>	1- 0-	14.65	
.785	15.29	14.62	15.21	15.4	15.48	15.4	15.25	14.69	14.9
9265.585	1 - 40	1 - 10	1 = 10	14 0.0	1 = 10	14.55	15.5	14 00	
.680	15.48	15.48	15.16	14.96	15.13	14.9:		14.83	
.684	15 05	15 01	1 - 14	15 00	15 00			14 07	
.772	15.35:	15.61:	15.14	15.28	15.32	15 0	14 5	14.97:	14.05
.816	15.40	15.61	15.38	15.40	15.55	15.0	14.5	14.70	14.85
.819	15.37	15.63	15.37	15.35	15.51	15.3	14.5	14.64	14.85
.847	15.55	15.63	15.51	15.48	15.07	15.05	14.05	14.04	14.7
9270.772	15.27	15.67	15,54	14.87	15.22	15.4	15.5	14.02	19.3
. (10	15.30	15.02	15.49	14.07	15.20	15.5	10.4	14.70	15 9
. 190	15.07	15.01	15.49	14.95	15.01	15.0	15 5	14.41	10.2
.803	15.31	15.79	15.00	14.94	15.29	10.40	10.0	14.01	14.9
9211.015 610	10.11	15.00	15.05	14.00	14.70	14.00	14.95	15 17	14.55
.019	15.40	15.74	15.00	14.00	14.00	14.4 14 G	14.55	14 80	15 15
.047	15,10	15.01	15.10	14.70	14.55	14.0	1/ 95	14.00	15 15
.031	14 05	15.05	15.05	14.00	15.10 15.18	15.05	15 /	14.01	15.10
701	14.55	15.00 15.71	15 17	14.70	15 31	14 9	15 05	14.50	15.0
722	15 39	15 36	15 36	15 01	15 32	15 25	15.3	14 52	15.05
725	15 49	15 42	15 27	14 92	15 43	14 95	15.3	14 62	15 15
771	15 36	15 02	15 40	15 27	15 53	15 5	15.25	14 67	15.3
. 776	10.00	10.00	10.10	10.21	10.00	15 25	15.15	11.01	10.0
.817	15.38	14 73	15.45	15.38	15.58	15.4	15.25	15.00	15.3
.820	15.32	14.77	13.37	15,30	15.47			14.93	

No. 38	No. 39	No. 40	No. 41	No. 42	No. 43	No. 44	No. 45	No. 47	No. 52	No. 55
14.9	15.33	14.90	15.64		15.44	14.56	15.4	14.73	14.79	15.13
14.8	15.38	15.42	14.86	11.7	15.30	14.90	15.3	15.20	15.20	15.23
15.15	15.30	14.84	15.12	11.6	15.42	15.02		15.16	15.21	15.14
15, 15	14.76	14.95	15.00	11.7	15.24	14.95	14.7	15.05	15.09	
15.25	15.84	15.01	15.15		15.51	14.84		14.75	15.05	15.30
14.6	15.77	14.89	15.63	11.3	14.88	14.90	15.25	15.25	14.42	14.78
15.15	15.57	15.03	14.45		14.96	14.83	14.95	15.35	14.62	14.95
15.4	15.35	14.96	14.31	12.2	15.40	14.62	14.65	14.83	14.48	14.91
15.05	14.98	14.64	14.25	12.5	14.67	14.35	15.15	15.10	13,92	14.95
15.25	15.37	14.95	15.55	12.5	15.49	14.77	15.1	15.17	14.31	15.15
	14.98	14.92	15.65	12.2	15,00	14.82		14.84	14.13	15.19
15.25	15,70	15.17	15.63	12.4	15.51	15.00	14.95	14.95	14.24	15.28
14.15	15.51	15.23	15.69	11.9	14.85	14.88	15.0	14.26	14.25	15.16
15.2				12.2		14.98	15.25			
14.6	15.15	15.50		12.9	15.32	14.81	15.4	14.90	15.26	15.31
14.6	14.96	14.83	14.97	12.1	14.82	14.67	15.25	14.98	14.84	15.39
15.1	15.62	15.13	15.16		14.74	14.60	15.25	14.95	14.58	15.37
	15.15	15.27	15.37		15.39	14.62		14.73	14.81	15.30
14.85	15.59	15.20	14.77	11.4	14.87	14.67	14.6	15.60	14.73	15.13
15.15	15.56	15.06	14.77		15.57	14.78	15.15	15.39	14.18	15.39
15.25	15.48	14.93	14.33	11.0	15.25	15.07	15.0	15.59	15.13	15.32
15.05	14.45	15.39	15.06	10.9	14.98	15.10	15.25	15.15	15.15	15.26
	15.53	15.05	15.18	11.2	15.51	15.10		15.05	15.04	15.25
14.6	15.41	15.19	15.65	10.8:	15.22	14.93	14.6	15.30	14.29	15.02
	15.03	15.25	15.62		15.38	14.94		15.55	14.14	15.10
15.3	15.56	15.05	15.45	11.5	15.10	15.23	14.7	14.78	15.16	15.10
15.25	15.1	14.95	14.92	11.6	15.21	15.23		15.51	15.35	14.94
	14.87	14.87	15.35	12.1	14.76	14.70		15.00	14.55	15.10:
15.15	14.82	14.92	14.96	12.4	14.93	14.65	15.25	15.16	14.65	15.1
14.8:										
15.4:	14.81	14.70	15.55	12.2 12.4	15.22	14.58		14.09	14.82	15.37
	14.93	15.15?	14.6:	12.2	15.48	14.77		14.62?	14.73	14.96:
15.25	15.22	15.25	14.79	12.8	15.42	14.71	15.5	14.56	14.28	14.94
15.25	15.27	15.33	14.90	12.5	15.46	14.89	15.1	14.83	14.37	14.79
15.3	15.41	15.41	14.95	12.8	15.61	15.00	15.2	14.92	14.09	14.90
14.9	15.54	14.85	15.20	12.6	15.17	14.83	15.4	14.89	14.74	14.89
14.9	15.50	14.92	15.35	12.6	15.21	14.92		15.10	14.95	14.90
14.9	15.58	14.83	15.31		15.24	14.84	15.3	14.79	14.40	14.91
14.9	15.60	14.88	15.41	12.5	15.22	14.96	14.9	14.90	14.73	14.87
14.2	14.77	15.17	14.51	12.6	15.42	14.76	14.5	14.45	14.96	15.20
14.15	14.63	15.15	14.27	12.6	15.48	14.80	14.7	14.48	15.08	15.40
14.5	14.95	14.93	14.73	12.5	15.49	14.66	14.85	14.15	14.87	15.10
14.45	14.91	15.0	14.65	12.6	15.55	14.70	14.75	14.37	15.14	15.09
14.9	15.36	14.75	14.85		15.48	14.67	14.95	14.21	14.71	14.92
14.75	15.05	14.81	14.90	12.8	15.60	14.63	14.75	14.49	15.12	14.83
14.9	15.22	14.93	15.10	12.8	15.37	14.46	14.85	14.41	14.97	14.90
14.95	15.15	14.85	15.10	12.8	15.55	14.78	14.95	14.74	15.28	14.81
15.15	15.35	15.05	15.42	12.6	15.55	14.90	15.15	14.78	14.91	14.91
15.05				12.5			14.85			
15.25	15.44	15.15	15.30	12.5	15.47	15.02	15.25	14.90	14.58	15.13
	15.42	15.22	15.50	12.4	15.53	14.97		15.12	14.55	15.02

Julian Day	No. 58	No. 59	No. 61	No. 62	No. 63	No. 64	No. 65	No. 66	No. 67
28308.736					15.25	15.05			
8309.651									
.661	14.65	14.93	15.51	15.60	15.35	15.1	15.15	15.40	
.670	14.76	15.02	15.42	15.36	15.45	14.85	15.15	15.36	
.677	14.86	15.01	15.38	15.36	15.5	14.85	15.10		
.796	15.41	15.32	15.51	14.97	15.45	15.05	14.86	15.17	
8365.608	15.46	15.27	14.62	15.51	14.95	15.6	14.41	15.05	
8366.608	15.16	15.13	15.47:	14.98	14.8	15.5	14.57	15.10	
8399.596	15.02	14.94	15.46	15.30	14.95	14.9	15.25	14.90	
8688.640					14.65	14.7			
8692.632	15.55	15.30	14.96	15.30	14.65	15.05	15.05	15.45	15.25
8693.730	15.44	15.37	14.91	15.35	14.95	15.05	15.2	15.48	
8696.631	15.60	14.90	15.03	15.32	14.65	15.6	15.22	15.20	15.05
9071.660	15.09	14.62	15.42	15.29	15.45	15.15	14.68	15.29	
9072.698	15.23	14.60	15.40	15.17	15.2	15.25	14.65	15.11	15.7
9073.605	15.18	15.42	15.00	15.36	15.25	15.0	14.53	15.5	15.15
9076.603					15.25				
9078.600					15.1	15.0			14.85
9079.602	15.30	15.20	15.34	15.20	15.35	14.85	14.92	15.35	14.9
9786.609	15.65	14.78	14.69	14.98	15.25	15.7	14.92	15.42	14.5
9787.608	15.60	14.64	15.60	15.51	15.25	15.35	14.95	15.50	14.6
9813.610	15.56	15.01	15.48	14.97	15.25	15.65	15.16	15.36	
9814.612	15.53	15.33	15.23	15.43	15.35	15.75	15.31	15.62	15.15
9815.613	15.51	15.37	14.68	14.90	15.25	15.7	15.30	15.47	
9816.611	15.32	15.40	15.42	15.41	15.35	15.5	15.18	15.25	
30171.617	15.15	15.30	15.0	15.00	15.25	15.5	15.01	15.5	14.95
0172.615	15.14	15.11	15.55	15.44	15.25	15.4	15.08	15.4	15.05
0519.606	15.64	15.24	15.02	15.18	14.5	15.55	15.04	15.44	14.75
0520.606	15.50	15.24	15.71	15.04	14.5	15.7	15.11	15.52	15.15
0550.608	15.28	15.20	15.37	15.08	15.25	14.55	14.95	14.94	15.05
0553.604	15.51	14.81	15.44	15.13	15.35	14.65	14.00	15.75	
0554.614		14.47	15.77	14.83	15.45	15.75	13.96	15.57	
0555.629	15.21	15.20	15.40	15.55	15.35	15.7	14.75	15.23	
0556.620		15.33	15.06	15.03	15.35	15.65	14.68	15.01	
0586.572	15.58	14.38	15.56	15.31	15.35	15.65	15.07	15.33	15.05
0880.592					15.25	15.55			14.9
.623	15.70	15.38	14.59	15.40	15.25	15.55	14.98	14.90	14.9
.659	15.45	15.30	14.70	15.38	15.35	15.55	14.96	15.02	14.95
.690	15.70	15.35	14.88	15.45	15.45	15.55	15.2	15.10	15.2
.730	15.57	15.34	14.89	15.07	15.35	15.55	15.10	15.28	15.15
.760	15.65?	15.37	15.08	14.99	15.35	15.7	15.22	15.44	15.6
.788									
30883.630	15.59	14.42	15.21	15.01	15.25	15.0	15.15	15.45	15.45
.664	15.69	14.75	15.35	15.23	15.35	15.1	15.31	15.53	15.6
0884.622						14.7			15.15
.651						14.6			15.4
.680	15.66	14.45	14.95	14.92	15.35	14.75	15.26	15.46	15.75
.721	15.65	14.64	15.23	15.05	15.45	15.05	15.27	15.50	15.35
.771	15.5	14.90	15.30	15.10	15.35	15.15	14.03	15.11	15.1

No. 68	No. 69	No. 70	No. 71	No. 72	No. 73	No. 74	No. 75	No. 76	No. 77	No. 78
	$15.15 \\ 14.95$									
	15.0	14.63	15.7		15.30	14.26	15.17	15.10	14.84	15.20
	15.05	14.78	15.51	15.48	15.31	14.30	15.07	14.99	14.84	15.22
		14.79			15.33	14.34	14.95	15.20	14.96	15.20
	15.55	15.45	15.45	14.51	15.17	14.35	15.05	14.66	14.82	14.95
	15.15	15.24	14.85	15.53	14.98	14.42	15.40	14.97	14.94	15.00
	15.35	15.12	14.53	15.01	15.01	14.35	15.10	15.24	15.01	15.26
		14.64			14.87	14.40	15.30	15.12	15.23	15.20
	14.7									
15.25	14.9	15.62	15.61	15.5	15.47	14.14	15.35	15.16	14.80	15.14
14.9	15.15	15.59	14.84	15.5	15.42	14.33	15.28	14.83	15.18	15.0
15.45	15.15	15.8	15.80	15.85	15.08	14.45	15.45	15.00	15.29	15.02
15.65	15.25	15.47	15.38	15.16	15.17	14.36	15.32	14.84	15.20	15.01
15.3	15.0	15.18	15.48	15.67	15.02	14.06	15.25	15.22	15.30	15.06
15.4	15.8		15.15	15.52	15.63	13.96	15.35	15.21	15.16	15.29
	14.7									
15.25	14.65	15.47	14.77	15.15	15.28	14.42	15.25	15.01	14.66	15.06
15.4	15.9	15.60	15.13	15.59	14.90	14.45	15.42	15.11	15.20	15.04
15.7	15.7	14.92	14.85	15.51	14.85	14.28	15.35	15.17	15.39	15.40
15.05	15.75	15.68	15.75	15.63	15.39	13.84	15.37	14.98	15.15	15.06
15.3	15.6	15.74	15.87	15.56	15.37	14.38	15.65	14.95	15.37	15.33
		15.15		14.63	15.03	14.35	15.10	15.23	14.92	15.28
		14.85	15.34	15.07	15.11	14.41	15.25	14.95	14.82	15.11
15.2	15.75	15.8	15.44	15.22	14.85	14.46	15.42	15.03	14.91	15.22
15.05	15.75	15.65	15.49	15.11	14.95	14.37	14.95	14.81	15.10	15.30
14.65	15.3	15.39	15.25	14.49	14.87	13.94	15.02	14.97	14.9	15.15
15.15	15.4	15.63	15.61	15.55	14.90	14.30	15.46	15.02	14.78	15.28
15.05	15.35	14.78	15.38	15.00	14.90	14.50	15.31	14.76	15.11	15.04
15.15	15.5		15.70	15.35	14.65	14.0	15.24	14.57	14.74	15.11
		15.29			14.77	14.03	15.33	15.27	15.15	14.77
		14.90			14.80	14.30	15.69	14.93	15.22	14.95
		15.60			14.78	14.78	15.24	14.74	15.33	15.26
15.05	15.25	15.47	14.84	15.08	14.75	14.22	14.96	14.97	14.75	15.26
	15.3?					1.4 0.0	14 05	1= 0=	14 00	14 00
15.55	15.55	14.90	15.44	15.23	15.49	14.30	14.87	15.05	14.63	14.92
15.5	15.55	14.86	15.51	15.35	15.26	14.27	15.06	15.22	14.83	14.94
15.5	15.55	15.0	15.58	15.49	14.98	14.27	15.19	15.35	14.99	15.11
15.25	15.6	15.2	15.60	15.42	14.95	14.34	15.23	15.29	14.95	15.21
15.2	15.65	15.45	15.60	15.58	15.03	14.37	15.29	15.28	15.03	15.33
15 95	15 05	15 40	15 94	15 49	15 44	10 55	15 20	15 00	15 99	15 94
15.35	15.05	15.40	15.34	15.42	15.44	10,00	15.30	15.00 15.10	15.20	15.44
15.5	15.70	15.69	15.58	19.92	19.99	13.00	19.39	19.10	15.40	10.4
	15.07									
15 6	15.35	14 50	15 65	15 55	15 40	14 90	15 20	15 19	15 02	15 26
15.0	15 /	14.00	19.09	15.60	15.49	14.20	15 22	15 09	15.02	15.40
15.4	15.5	15.01	15 /9	15 20	15.40	14.00	15.06	14 99	14 77	15 17
10.00	T0.0	10.00	10.49	10.00	10.00	14.40	TO. 00	17.04	77.11	10.11

Julian Day	No. 58	No. 59	No. 61	No. 62	No. 63	No. 64	No. 65	No. 66	No. 67
30899.602	14.78	15.37	15.33	14.92	15.35	15.65	15.05	15.22	15.25
.647	15.42	15.34	15.52	14.90	15.45	15.5	14.04	15.07	
.701	15.56	15.38	15.60	15.24	15.5	15.55	14.3	15.40	
0900.604	14.95	15.16	14.75	15.31	15.25	15.35	14.1	14.87	14.95
.638	15.46	15.35	15.12	15.42	15.5	15.55	14.35	15.18	
0901.676	15.69	15.21	14.77	15.36	15.55	15.3	14.93	14.99	
0932.604		15.15	15.42	15.12	15.55	14.9	14.75	15.10	
0933.589		14.85	14.90		15.5	15.5			
1257.634	15.36	14.39	14.46	14.95	14.4	14.35	15.07	15.55	14.7
1258.625					14.5	15.4			14.9
1259.604	15.56	15.25	15.53	14.99	14.6	15.5	15.25	15.33	15.3
1969.736	15.56	15.16	15.33	15.45	15.65	15.8	14.64	15.30	15.25
1976.641	15.56	15.32	15.45	14.94	15.5	15.5	15.21	15.08	15.4
1977.690	15.71	15.33	15.31	14.91	15.5	15.5	15.15	15.12	15.45
2000.641	15.41	15.40	15.46	15.30	14.85	15.65	15.18	15.25	15.05
2004.652	15.95:	15.00	15.54	15.43	14.5	14.9	15.10	15.65	15.2
2006.599	15.29	15.63	14.73	15.23		15.3	14.78	14.85	14.7?
2326.715	14.60	15.20	14.86	15.05	14.5	15.5	15.18	14.82	
2328.739	14.78	14.63	15.38	15.25	14.95	15.05	14.00	15.11	14.05
2354.604	15.60	15.53	15.10	15.12	14.95	15.6	14.38	15.38	14.95
2355.607	15.09	15.32	14.97	15.47	15.15	15.4	13.78	14.98	14.9
2356.605	15.59	15.37	15.57	15.07	15.0	15.3	14.36	15.03	14.9
2357.604	14.78	15.21	15.35	14.91	15.25	14.95	14.36	14.93	14.9
2361.704	15.35	14.48	15.49	15.34	15.4	15.6	15.20	15.08	15.25
2733.605	1= 00	14 05	1= 10	15 05	15.5	15.4	1= 05	15 05	15 15
2734.604	15.90	14.85	15.48	15.35	15.3	15.5	15.05	15.27	15.15
2740.608	15.79	14.31	14.48	14.75	15.4	15.35	14.42	15.48	15.0
2741.607	15.75	15.70	15.74	15.51	15.4	15.6	14.85	15.00	10.0
2742.048	15.0	15.32	15.00	15.00	10.4	15.4	14.23	14.93	14.00
2770.370	15.04	10.12	10,40	15.40	14.20	10.0	14.09	10.04	15.00
3008.008	15.00	14.90	14.97	10.40	14.0	14.00	14.90 14.71	10.4	19.29
3009.034	10.00	14.40	15.49	14.97	14.00	15.0	16 10	15 22	14 0
2006 600	14.00	15 96	10.27	1/ 91	14.0 14.5	15.0	15,10	15 60	14.9
3476 602	15.56	10.00	14.14	15 21	15 9	15.20	14 00	14 81	14 9
3477 601	15.50	15 20	14 80	15 35	15.5	14 75	14 43	14 92	15 05
3481 597	1.1 95	14 62	14.00	14 81	15 5	15 5	15, 10	15, 20	14 95
3505 572	15 88	15.25	15 39	14 93	15 5	15.4	15.08	15 36	15 15
3823 649	15.36	14 46	15.39	15 39	15 0	15.4	14, 10	15.65	15.3
3858 636	15 53	15 32	15 05	15 32	15.25	15 55	15, 13	15.08	15.5
3860.589	15.56	15.21	15.44	15.27	14.9	15.4	14.96	15.31	14.95
4180.634	15.28	15.45	15.48	14.87	14.95	14.95	15.35	15.39	15.05
4181.607	15.24	15.34	14.84	15.55	14.8	14.75	15.11	14.00?	14.95
4182.607	15.20	15.14	14.78	14.91	14.95	15.6	14.98	14.84	15.6
4538,633	15.75	14,95	14.69	15.07	15.45	15.6	14.92	15.00	15.4
4539.634	15.80	14.53	15.62	15.35	15.5	15.55	14.88	14.96	15.55
4540.613	15.82	15.05	15.5	15.19	15.5	15.25	14.85	15.15	14.95
4572.602	15.77	15.10	15.67	14.90	15.5	14.75	14.61	14.83	15.05
4573.635	15.70	15.32	15.46	15.26	15.45	14.65	15.01	14.88	15.1

No. 68	No. 69	No. 70	No. 71	No. 72	No. 73	No. 74	No. 75	No. 76	No. 77	No. 78
15.0	15.8	15.45	15.17	15.21	15.65	14.16	15.32	14.82	15.20	15.34
15.25	15.7	14.82	15.20	15.05	15.47	14.18	15.57	15.10	15.30	14.88
15.6	15.7	15.18	15.63	15.4	15.31	14.15	15.67	15.29	15.29	14.96
15.15	15.6	15.92	15.39	15.77	15.60	14.40	15.05	15.27	15.31	15.41
					15.58	14.35	15.30	15.25	15.35	15.26
					15.44	14.42	15.63	14.86	14,72	15.18
		14.82			15.58	14.14	15.72	15.36	15.37	15.16
						13.85				
15.15		15.21	15.82	15.61	15.25	14.13	14.90	14.88	14.83	15.20
15.15	15.5	15.75	15.58	14.91	15.08	13.92	15.20	14.95	15.25	15.04
15.25	15.25	15.80	15.85	15.39	15,26	14.41	15.23	14.95	15.39	15.06
15.05	14.95	15.31	15.60	15.51	14.92	14.23	14.89	14.74	14.71	14.96
15.15	15.5	14.90	15.85	15.60	14.91	14.33	15.58	15.10	14.81	15.12
14.9	15.65	15.41	15.42	15.25	15.39	14.32	15.05	15.20	15.18	15.26
14.85	15.7	15.98:	15.66	15.49	15.63	14.05	15.18	15.03	14.70	15.37
14.85?		15.51	15.18	15.60	14.95	14.44	15.18	14.58	14.80	14.80
15.1	15.6	14.48	15.32	14.60	15.12	14.12	15.50	15.32	14.89	15.00
15.35	15.6	15.70	15.45	15.70	15.22	13.92	15.57	14.79	15.18	15.18
15.05	15.6	14.99	15.51	15.48	14.90	13.83	15.82	14.85	14.91	14.87
14.9	15.5	15.40	15.02	14.91	14.85	13.97	15.36	15.18	15.25	14.83
14.9	15.4	15.33	14.98	14.56	14.83	14.35	15.16	14.94	15.28	15.19
15.05	15.35	15.04	15.14	14.43	14.90	14.36	15.10	14.80	15.35	15.36
14.85	15.25	15.59	15.31	15.30	15.05	14.29	15.56	15.18	15.38	14.88
15.2	15.55									
14.9	15.3?	14.86	14.42	15.21	15.33	13.90	15.33	14.94	15.26	14.90
14.95	15.6	14.78	14.24	14.66	15.05	14.25			14.74	15.32
15.05	15.6	15.83	14.16	15.26	14.82	14.13	15.07	14.89	14.85	15.36
14.9	14.6	15.85	14.48	15.65	14.98	14.13	15.44	14.98	15.02	15.25
15.25	15.5	15.85	15.83	15.55	15.36	14.16	15.20	14.85	15.08	15.00
15 05	15.55	15 52	15, 13	15.65	15.22	14.05	15.30	15.20	14.80	15.20
15 05	15.7	14 83	15.92	15.48	15.25	13.93	15.54	15.13	14.92	15.04
15 05	15 0	15.39	15.64	15.69	14.75	13.89			15.02	14.87
15.2	15.25	16.02	15.90	15.43	14.95	14.40	14.73	14.64	14.76	15.00
15.2	14.75	15.19	15.41	15.37	14.77	14.25	15.55	15.10	15.43	14.72
15.4	14.9	15.43	15.69	14.81	14.42	14.16	15.42	14.80	14.71	15.10
15.15	14.9	15.78	15.59	14.88	15.17	14.30	15.30	14.90	15.29	14.94
14.95	15.4?	15.53	15.67	15.73	15.29	14.28	15.29	14.93	14.73	15.31
14.85	15.5	15.0	15.8	15.32	15.35	14.20	15.59	15.05	15.17	15.12
15.3	14.9	15.61	14.5	15.41	15.3	13.52	15.62	15.18	15.45	15.26
15.0	14.55	15, 10	14.79	14.68	14.94	14.24	15.30	14.79	14.84	15.01
14 95	11.00	15 02	15 52	15 20	14 98	14, 19	15.44	14.76	15.39	15.37
15 25	15 4	14 30	15 42	15.04	11.00	14 20	14.95	15, 15	14.66	15.01
15 3	15 65	15 12	15 68	15.59	14.58	14 43	15 36	15.11	14.71	15.00
15 95	14 9	14 01	15 52	14 81	14 90	14 97	15 31	14 85	15 15	15 36
15 05	15 05	15 35	15 58	15 69	15 25	13 79	15 37	14 86	15 25	15.40
15 25	14 85	16 10	15 69	15 75	15 25	14 01	15 65	15 29	15.39	14.85
15 25	15 6	14 60	14 00	15 33	15 15	14 20	15 45	15.20	15.38	15.26
15 15	15 5	15 56	14 73	15 32	15 20	14 30	15.06	14.89	15.19	15, 18
		1000	+ + + + 1 0	10.000	10.40	- I . U U	10.00			

Julian Day	No. 58	No. 59	No. 61	No. 62	No. 63	No. 64	No. 65	No. 66	No. 67	
34574.602	15.85	15.55	15,60	14.85	15.4	15.7	15.03	14.92	15.45	
4575.603	15.76	15.26	14.69	15.45	15.55	15.55	15.00	15.23	15.25	
4929.623	16.0	15.39	15.70	15.49	14.9	15.45	14.59	15.09	15.4	
5273.612	15.95	15.07	15.61	14.84	15.2	15.45	15.31	14.87	14.85	
5274.609	15.68	14.53	15.28	15.40	15.1	15.45	14.94	15.13	14.9	
5275.610	15.93	14.85	14.81	15.13	15.25	14.9	14.99	15.06	15.3	
5307.600	15.08	14.85	15.45	15.28	15.45	14.7	14.99	15.07	14.95	
5308.699	15.21	15.47	14.91	15.18	15.35	15.55	15.10	15.08	14.9	
5309.600	15.13	15.55	15.60	14.96	15.3	15.45	15.27	15.45	14.9	
5310.600	14.98	15.29	15.59	15.30	15.15	15.5	15.13	15.42	14.85	
5658.601		15.45				15.45			14.9	
5661.602	14.94	14.37	14.66	15.12	14.3	14.95	15.09	15.15		
5685.588	15.57	15.18	14.92	14.89	14.8	14.85	15.19	15.21	14.95	
5687.592	15.77	14.30	15.70	14.91	14.7	15.7	14.89	15.25	15.3	
5688.590	15.57	15.34	15.28	15.41	14.9	15.7	13.84	15.49		
6752.607	15.51	15.27	15.43	15.53	14.9	15.6	14.88	15.10	15.55	
6753.602	15.82	15,43	15.37	15.15	14.7	15.55	15.03	14.70		
7113.610	15.43	15.16	15.62	15.46	15.4	15.6	15.12	15.40	15.4	
7115.636	15.8	15.41	14.63	15.8:	15.15	15.6	15.12	15.50	15.6	
7116.640	15.84	15.30	15.16	15.09	15.4	15.3	14.13	15.23	15.25	
8198.614	15.27	15.33	15.49	14.90	15.5	15.4	15.00	15.66	15.3	
8199.629	15.00	15.30	15.24	15.36	15.5	15.25	14.52	15.28	15.25	
8584.628	15.51	15.43	15.73:	15.37	15.05	15.6	15.37	14.95	15.25	
8586.605	15.76	15.31	15.40	15.35	15.05	14.85	14.56	15.25	14.85	
9262.772					14.85					
.779	14.63	14.45	14.55	15.38	14.7	15.55	15.01	15.38	14.85	
.785	14.89	14.36	14.61	15.37	14.7	15.5	15.06	15.30	14.9	
9265.585					15.35	14.8			14.8	
.620						14.85			14.85	
.680	14.75	14.97	15.23	15.34		15.35	14.97	14.97	15.15	
.772	15.2	15.26?	15.31	14.92		15.6	15.29:	15.29:	15.3?	
.816	15.31	15.28	15.30	15.22	14.45	15.4	14.06	15.34	15.2	
9265.819	15.46	15.38	15.51	15.07	14.55	15.55	14.20	15.37		
.847	15.35	15.41	15.57	15.37	14.55	15.6	14.13	15.57	14.85	
9270.772	15.62	15.35	14.72	14.92	14.6	15.6	14.84	15.37	14.9	
.776	15.62	15.33	14.83	14.86	14.65	15.55	15.02	15.40	14.8	
.798	15.80	15.30	15.08	14.93	14.45	15.55	14.86	15.50	14.9	
.803	15.80	15.41	14.92	14.77	14.4	15.6	14.95	15.55	14.9	
9271.615	14.74	15.06	15.55	14.72	15.5	14.85	14.21	15.05		
.619	14.78	15.19	15.72	14.86	15.4	14.85	14.44	14.94	15.15	
.647	14.94	15.09	15.38	14.77	15.5	15.05	14.25	14.97	15.4	
.651	14.99	15.11	15.62	14.84	15.5	14.9	14.54	14.95	15.9	
.697	15.38	15.46	15.69	14.95	15.55	15.1	14.66	14.84	15.4	
.701	15.32	15.28	15.72	14.94	15.4	14.95	14.74	15.07	15.6	
.722	15.33	15.21	15.47	15.05	15.6	15.25	14.61	15.12	15.3?	
.725	15.50	15.35	15.68	15.02	15.4	15.15	14.91	15.15	14.0	
. 761	15.70	15.33	15.67	15.33	14.55	15.4	14.95	15.45	14.9	
.776	1	1= 00	16 05	10 10	14.25	15.5	1 - 0 -	15 00	15.15	
.817	15.56	15.28	15.27	15.45	14.45	15.0	15.07	15.32	14 05	
. 820	15.53	15.32	15, 18	15.35	14.0	10.0	14.97	19.99	14.00	
No. 68	No. 69	No. 70	No. 71	No. 72	No. 73	No. 74	No. 75	No. 76	No. 77	No. 78
--------	--------	--------	--------	--------	--------	--------	--------	----------	--------	----------------
15.15	15.7	15.21	14.51	14.45	15.15	13.42	15.63	15.01	14.91	15.07
15.15	15.55	15.23	14.72	15.47	15.25	14.19	15.64	15.19	14.95	14.79
15.25	15.05	15.06	15.90	15.4	15.23	13.50	15.35	14.73	14.75	14.66
15.4	15.4	14.75	14.95	15.05	15.43	14.29	15.06	15.20	14.79	14.97
15.45	15.35	15.77	14.93	15.74	15.50	14.20	15.30	14.83	14.91	15.33
15.15	15.4	15.13	14.69	15.57	15.25	13.79	15.20	14.89	15.28	15.01
15.05	14.8	15.69	15.66	15.57	15.51	14.39	15.39	14,79	15.02	15.07
14.85	14.6	15.52	15.47	15.15	15.49	14.34	15.28	15.15	15.34	14.86
14.85	14.7	15.54	15.55	14.77	15.59	13.57	15.49	15.09	15.43	15,25
14.9	15.05	15.16	15.51	15.34	15.40	13.96	15.15	14.71	15.01	15.34
15.25?	15.25				15.25	14.28				
14.95	15.2	15.35	15.34	14.91	15.23	14.57	14.85	14.79	14.82	15.13
14.4	15.5	15.63	14.27	15.53	14.87	13.88	15.49	15.30	15.38	15.23
14.55	15.3	14.73	14.16	15.30	14.69	14.05	15.17	14.86	14.78	14.75
14 5	14 9	15 21	14 51	15 16	14 85	14.32	15 48	14 81	14.84	14.86
14 8	14 15	15 73	11,01	14 57	14 85	14.02	15.07	15.17	14.88	14.87
14 7	14 4	15 19	15 10	14 62	14 95	13 88	15 64	14 85	15.30	14 97
15 05	15.6	15 91	14 25	15 55	15 28	14 15	15 48	15 28	15 10	14 82
1/ 8	15.6	15.73	14 25	15, 10	15.56	13 85	15 39	14 89	15 34	15 29
14 85	15 /	15 46	14.36	14 87	15.00	14 10	14 99	15 16	15 07	15 21
14.05	14 8	15.75	15 /8	15 25	16 0	14 24	15 47	15.20	14 78	1/ 96
14.10	14.0	15.7	15 98	14 74	15.56	14.04	15 16	14 79	15 07	14.00 14.75
14.1	14.4	15 54	15 44	15 45	15 28	14.20	15 49	14.05	15 02	15 02
14.9	14.00	15.04	15 90	15 09	15 49	14.00	15 40	15 20	15 10	15 19
19.09	14.0	19.00	19.90	19,09	10.40	14.00	10.40	10.20	10,12	10,12
15.25		15.28	14.63	15.03	15.74	14.42	15.35	15.06	15.13	15.31
15.2	15.4	15.36	15.0	15.13	15.63	14.32	15.30	15.05	15.05	15.34
14.9	14.5									
14.85	14.5									
15.25	14.85	15.00	15.05	14.55	14.85	13.78	15.60	15.00	15.46	15.07
		15.31	14.97	15.12	15.27:	14.23	15.35:	14.76:	15,23	14.92:
15,15	15.7	15.43	15.07	15.26	15.34	14.08	15.57	15.14	14.90	14.81
15.2	15.7	15.65	15.16	15.20	15.46	14.15	15,47	14.93	14.77	14.90
15.25	15.6	15.46	15.26		15.51	14.03	15.56	15.25	14.90	15.06
15.35	15.7	15.27	14.5	14.73	14.89	14.00	15.23	15.11	15.51	14.95
15.4	15.65	15.35	14.67	14.83	15.06	13.93	15.10	15.04	15.36	15,10
15.4	15.7	15.4	14.79	14.91	15.05	14.03	15.19	14.96	15.55	14.71
15.3	-0.	15.35	14.89	14.89	14.73	14.15	15.01	14.85	15.46	14.79
14 95	14.95	15.58	15.25	15.09	15.41	13.84	14.85	15.01	15.39	
14.9	15.25	15.92	15.53	15 42	15.60	13.77	15.09	15.06	15.51	14 80
15.15	15.25	15.58	15.27	15.07	15.55	13.97	15.21	14.83	15.40	14 94
15 15	15.6	15.76	15 41	15 31	15 51	14 02	15 20	14 90	15 38	14 90
15 4	15.62	15 50	15 37	15 53	15 36	13 72	15 28	14 87	15 32	14 83
15 1	15.6	15 91	15 61	15 78	15 48	14 07	15 15	14 80	15 05	15 15
15 25	15.6	15 05	14 70	15 58	15 11	14 07	15 97	14 90	14 90	15 22
15 2	15.65	15 20	14 60	15 67	TO TT	14 11	15 16	14 68	14 70	15, 20
15 35	15 65	14 79	14.56	15 49	14 05	14 95	15 9/	14 77	14 70	15 9/
15.3	10.00	LI. ()	TH. 00	10.42	14.00	14,20	10.04	T.I. ((14.10	10.04
15.2	15.7	14.90	14.92	14.89	14.87	14.27	15.55	14.90	14.73	15.06
15.15	15.5	14.93	14.92	14.79	14.73	14.30	15.42	14.87	14.64	15.06

Julian Day	No. 79	No. 80	No. 81	No. 83	No. 84	No. 87	No. 92	No. 98
28309.651					12.2			
.661	15.05	14.97	15.55	15.5?	12.2	14.85	14.44	
.670	15.05	14.97	15.39		12.2	14.84	14.44	
.677	14.97	14.90	15.30		12.1	14.92	14.46	
.796	14.78	14.70	14.67	14.75	11.9	15.02	14.27	15.15?
8365.608	15.17	14.85	15.07	15.05	11.9	14.98	14.23	15.1
8366.608	15.10	14.84	14.58	15.7	11.0	15.03	14.37	15.5
8399.596	15.15	15.07	15.02		11.2	15.12	14.58	15.0
8688.640					10.7			
8692.632	14.86	15.18	14.57	14.4	11.2	15.16	13.93	15.4
8693.730	15.14	15.03	14.92	14.95	11.4	15.12	14.36	15.05
8696.631	14.85	15.29	14.97	15.0	11.6	15.12	14.38	15.6
8715.638					11.3			
9071.660	14.79	14.92	14.73	14.6	11.4	14.99	13.92	15.7
9072.698	14.92	14.96	15.02	15.6	12.1	15.25	14.40	15.05
9073.605	15.20	15.23	15.40	15.55	11.7	15.20	14.25	15.05
9077.600				15.25				
9079.602	15.04	15.15	15.07	15.3	10.8	15.04	14.07	
9786.609	14.84	15.00	14.93	15.0	12.0	15.13	14.18	
9787.608	14.75	15.00	15.42	15.25	11.8	15.21	13.78	15.3
9813.610	14.73	15.17	15.30	15.55	12.5	14.96	14.13	15.5
9814.612	14.82	15.25	15.10	15.45	12.5	15.18	14.39	15.55
9815.613	14.81	15.23	14.60	15.6	12.6	15.31	14.39	15.15
9816.611	14.88	15.32	15.44	15.3	12.5	14.95	14.43	14.6?
30171.617	15.12	15.08	15.42	14.9	11.6	15.25	14.49	
0172.615	15.14	15.11	15.43	15.6	11.8	15.0	14.03	15.05
0519.606	15.07	15.15	14.98	15.3	11.3	14.74	14.38	15.7
0520.606	15.10	15.05	14.63	15.6	11.4	15.10	14.43	14.95
0550.608	14.91	15.10	15.37	15.35	12.2	14.80	14.34	15.4
0553.604	14.85	15.26	15.01	15.35		14.80	13.92	15.55
0554.614	14.76	14.95	14.35	15.05	11.2:	14.76?	13.96	15.2
0555.629	14.84	15.24	15.40	14.85		15.0	14.18	1
0556.620	14.93	15.05	15.40	15.55	11.3	14.93	14.30	15.9
0586.572	14.95	15.05	15.18	15.3	11.3	15.18	13.96	14.9
0880.592	14 70	14 00	14 05	15.25	10 7	14 0	14 00	15.4
.623	14.70	14.66	14.65	15.3	10.7:	14.8	14.32	15.0
.659	14.67	14.57	14.55	15.5	10.7:	14.79	14.40	
. 690	14.84	14.88	14.77	15.4	10.0:	14.80	14.31	
.730	14.90	14.95	14.92	15.0	10.8	14.85	13.5	
.760	15.07	15.14	15.10	12.5	10.8	14.95	13.7	
.788				15 50	11.2			15 49
0883.593	14 05	14 00	15 00	15.07	11.4	14 70	14 00	19.47
. 630	14.05	14.00	15.20	15.3	11.2	14.78	14.09	14.0
.004	14.80	14.87	15.41	19.9	11.0	14.92	14.21	14.9
0884.622	14 00	14 70	15 14	15 5	11.5	15 90	14.9	15 15
.080	14.80	14.78	15 20	15.0	11.0	15.20	14.5	19.19
. (41	15,10	15 10	15 40	15.5	11.0	15 20	14.07	15.9
• ((L	19.19	19.19	10.40	10.0	TT.0	10.20	14.4(10.0

Julian Day	No. 79	No. 80	No. 81	No. 83	No. 84	No. 87	No. 92	No. 98
30899.602	14.74	15.10	14.52	15.5	12.1	15.17	14.38	15.25
.647	14.72	15.15	14.74	15.3	12.1	15.15	14.35	15.1
.701	14.9	15.12	15.01	15.55	12.1	15.25	13.47	14.95
0900,604	14.77	15.07	15.47	15.5	11.7	15,04	14.2	
.638	14.88	15.18	15.42			14,98	13.5	
0901.676	14.95	15.35	15.54	15.4		15.25	14.29	15.25
0932.604	14.55	15.18	15.15	15.3		14.87	13.60	15.3
0933, 589	14.52	14.87	14.45	14.95			13.79	
1257.634	15.00	14.80	15.34	15.3	11.1	15.10	14.12	15.25
1259,604	15.20	14.78	14.47	15.35	11.4	15.02	14.37	14.95
1969.736	14.63	14.59	14.81	15.3	11.3	14.63	13.57	15.5
1970.698					11.6			
1976.641	14.66	14.96	15.35	15.05	12.2	15.00	13.40	15.15
1977.690	14.62	14.75	15.45	14.9	12.0	15.27	13.89	15.3
2000 641	14 83	14.79	15 39	15.4	12.0	15.21	14.50	15, 55
2004 652	14 68	14 65	15 61	15 5	12 6	14 95	14 28	15 6
2006 599	14 97	14 66	15 43	15.3	12.4	14 71	14 75	-0.0
2326 715	14 73	14 43	15 40	15 25	12 1	14 93	14 17	15.6
2328 739	14 60	14 54	15 71	15 6	10 72	14 90	14 23	15 6
2354 604	15.08	14 83	15 55	14.9	11 2	14.95	14.40	10.0
2355 607	15.06	14 71	15 53	15.2	10 9	15 29	14.37	15.3
2356 605	15 17	14 95	15 29	14 95	10.8	14.83	13.81	15.4
2357 604	14 97	14.97	14.97	15.5	11.1	15.03	13.87	15.6
2361.704	14.87	14.65	15.42	-0.0	11.3	15.21	13.99	
2734.604	14.80	14.75	15.28	14.9	11.4	15.21	14.12	
2740,608	14.59	14.82	15.13	15.1		14.73	14.11	
2741.607	14.85	14.93	15.19	15.6	12.4	15.06	14.34	15.25
2742.648	14.66		14.53	15.6	11.8	15.0	13.5	
2770.576	14.66	14.80	14.95	14.9	11.9	15.13	14.18	
3068.668	14.87	14.98	14.62	15.35		14.81	14.35	
3069,654	14.35	14.92	15.48	15.3	10.6:	14.95	14.08	
3095,604	14.86	15.13	15.56		10.7	15.06	14.47	
3096,609	14.76	15.17	15.00	15.2	11.2	14.81	14.16	15.55
3476,602			14.54			14.93	13.6	
3477.601	15.02	15.06	15.71	15.35	11.3:	14.80	13.9	14,95
3481.597	14.90	14.95	14.38		11.7	14.82	14.32	
3505.572	15.12	14.98	14.57	15.2	11.5	15.05	14.45	15.3?
3823.649	14.41	14.11	15.33			15.29	13.96	
3858.636	14.78	14.45	15.46	15.3	11.3	14.64	14.23	15.55
3860.589	14.75	14,97	14,61		12.0	15.20	14.41	
4180.634	15.02	15.16	15.32	15.4	11.2	14.92	14.35	15.25
4181.607	15.01	15,15	14.72	15.3?	10.8	15.24	14.30	15.15
4182,607	14.82	15.23	15.41	14.85	10.9	15.17	14.24	14.9
4538.633	14.89	14.88	15.35		10.9	14.83	14.00	
4539.634	14.84	14.90	15.37	15.3	10.9	14.95	13.80	15.55
4540.613	14,78	14.85	15.12			15.10	13.98	
4572.602	14.97	15.02	15.38	15.05	11.9	15.08	13.92	15.15
4573.635	15.11	15.17	15.41		12.3	15.30	14.47	
4574.602	15.14	15.05	15.53	15.4	12.8	15.45	14.43	15.6

Julian Day	No. 79	No. 80	No. 81	No. 83	No. 84	No. 87	No. 92	No. 98
34575.603	14.94	14.87	14.65	15,25		14.70	14.35	
4929.623	14.60	15.05	15.1		10.8?	14.80	14.16	
5273.612	15.22	15.20	15.5	15.4		15.09	13.75	15.05
5274.609	14.99	14.91	15.23	15.6	10.0:	15.15	13.95	
5275.610	14.99	15.10	14.77	15.3	10.7	14.55	13.95	15.55
5307.600	15.15	15.06	15.45	15.15	10.3:	15.02	14.28	
5308.599	15.15	14.91	15.23		11.3	15.12	14.36	
5309.600	15.24	15.08	14.87	15.15	11.6	14.92	14.44	15.7
5310.600	15.17	14.90	15.46	15.15	11.6	15.04	14.31	15.3
5658.601				15.2	12.0			
5661.602	14.74	15.01	15.36	14.75	12.7			
5685.588	14.95	14.89	15.55	15.25	12.2	14.91	13.70	
5687.592	14.42	14.93	15.32	14.7		14.61	14.10	
5688.590	14.84	14.85	14.82			14.89	14.23	
6752.607	14.58	14.5	15.35	15.5	11.9	15.02	14.26	15.6
6753.602	14.59	14.63	15.00	15.3	12.5	15.17	14.24	15.6
7113.610	14.73	14.88	14.95	15.2	12.2	14.89	14.32	15.6
7115.636	14.72	14.96	15.44	14.65	11.8	14.9	13.50	15.25
7116.640	14.82	14.88	15.38		11.3	14.99	13.89	
8198.614	14.89	14.97	14.50	15.45	10.5:	14.99	13.73	
8199.629	14.73	14.82	15.35			14.70	13.81	
8584.628	15.15	15.13	15.45	15.35	12.7	15.07	13.64	15.5
8586.605	15.16	15.27	15.21		12.4	15.10	14.27	
9262.779	14.66	14.91	15.50		11.6	14.95	14.47	
.785	14.78	14.82	15.45	15.3	10.8:	15.2	14.38	
9265.680	14.66	14.73	15.26		11.5	14.92	14.38	
.684					11.8			
.772	14.72:	15.16:	14.93:		11.6	15.06:	13.85	
.816	14.80	14.70	14.54	14.65	11.0:	15.07	13.80	15.5
.819	14.92	14.89	14.48	14.7	12.0	15.20	13.83	15.55
.847	14.98	14.81	14.68	14.9	11.4	15.00	13.74	15.6
9270.772	14.74	15.04	15.35	14.8	11.9	15.00	14.35	15.7
.776	14.87	14.87	15.27	14.5	12.3	15.10	14.42	15.4
.798	14.66	15.02	14.79	14.55		14.90	14.21	
.803	14.77	15.12	14.73	14.6	12.2	15.12	14.33	14.9
9271.615	15.02	14.66	15.31	15.4		14.95	14.28	15.6
.619	15.21	14.72	15.53	15.3	12.5	15.17	14.36	15.35
.647	14.97	14.69	15.29	15.3	11.4	15.01	14.23	15.55
.651	15.00	14.77	15.36	15.15	12.5	15.23	14.35	15.55
.697	14.80	14.60	15.32	15.5		15.00	14.07	
.701	14.67	14.89	15.45	15.3	12.6	15.07	14.28	15.15
.722	14.57	14.72	15.42	15.4	11.9	15.01	14.21	15.25
.725	14.75	15.11	15.42	15.15	12.7	15.18	14.32	14.95
.771	14.66	15.11	15.44	15.3		14.89	14.26	15.2
.776					12.5			14.9
.817	14.85	14.97	15.42	15.25	11.5	14.9	13.85	15.1
. 820	14.81	15.02	15.35		12.4	14.81	13.87	

TABLE IV

Photographic Magnitudes from Mount Wilson Plates

TABLE IV PHOTOGRAPHIC MAGNITUDES

Plate	Julian Day	No. 1	No. 2	No. 3	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11
3686P	21338.885	14.35	15.45	15.37	15.15?	15.32	14.70	14.63	14.30	15.33
	.887	14.42	15.40	15.23		15.30	14.80	14.73	14.32	15.02
3694P	21339.696	15.53	15.04	15.04	14.90	15.68	15.63	15.23	15.68	14.85
	. 699	15.50	14.98	14.85		15.67	15.67	15.17	15.61	14.67
3696P	.719	15.53	14.98	14.98		14.95	15.80	15.23	15.87	14.30
	.721	15.60	14.95	14.95		14.90	15.68	15.22	15.65	14.35
3698P	.740	15.45	15.02	14.87	14.75	14.43	15.67	15.30	15.62	14.18
	.742	15.67	15.07	14.90		14.35	15.62	15.35	15.65	14.23
3699P	.765	15.49	15.18	15.02	14.8	14.03	15.60	15.49	15.57	14.33
	.767	15.63	15.10	14.93		14.02	15.71	15.45	15.76	14.35
3701P	.787	15.48	15.35	15.25	14.9	14.80	15.55	15.53	15.60	14.35
	.789	15.51	15.25	15.14		14.83	15.70	15.44	15.66	14.53
3702P	.807	15.41	15.39	15.32	14.8	14.77	15.78	15.76	15.63	14.45
	.809	15.48		15.15		14.87	15.65	15.77	15.70	14.65
3704P	.828	15.75	15.42	15.09	14.85	14.92	15.62	15.48	15.65	14.69
	.830	15.55	15.36	15.10		14.85	15.55	15.33	15.65	14.80
3705P	.848	15.60	15.47	15.20	14.9	14.97	15.61	15.43	15.66	14.97
	.850	15.59	15.42	15.23		15.06	15.48	15.42	15.75	15.02
3707P	.868	15.45	15.53	15.18	14.9	15.17	15.38	15.42		15.00
	.870	15.47	15.40	15.09		15.13	15.24	15.38		14.97
3708P	.889	15.35	15.53	15.42	15.05	15.25	14.98	15.62	15.85	15.24
	.891	15.55	15.58	15.57		15.37	15.01	15.65	15.95	15.47
3710P	.910	14.76	15.76	15.29	15.05	15.42	14.55	15.42	15.65	15.05
	.912	14.82	15.68	15.25		15.44	14.55	15.32	15.58	15.15
3711P	.932	14.63	15.62	15.43	15.0	15.50	14.57	15.50	15.05	15.01
0=100	.934	14.58	15.51	15.35	14 07	15.45	14.60	15.39	14.92	15.21
3713P	.954	14.75	15.60	15.43	14.95	15.55	14.73	15.48	14.75	15.20
07140	. 956	14.75	15.52	15.39	14 05	15.40	14.62	15.35	14.70	15.34
3/14P	.970	14.00	15.00	10.40	14.95	15.00	14.70	15.00	14.00	10.00
97160	.9//	10.12	15.54	15.47	16 169	15.54	14.70	15.00	14.00	10.40
5/10P	. 555	14.90	15.00	15.40	10.10:	15.04	14.07	15.00	14.33	15 42
37 1 7D	21240 010	15.00	15.60	15.47	15 25	15.46	14 92	15.50	14 90	15 28
01211	012	15 14	15.66	15 57	10.20	15.66	14 94	15 55	15 00	15 50
3718P	015	15 10	15.37	15 50	15 25	15.50	15 20	15 57	15 17	15.53
3748P	21375.679	15.62?	15.65	15.50?	10.20	15.65?	15.85?	15.85?	15.35?	20:00
01101	. 680	15.56?	15.37	15.37?		15.45?	15.62?	15.85?	15.40?	15,20?
3750P	. 695	15.42	15.53	15.03	15.5	15.42	15.53	15.50	15.31	14.97
	.697	15.55	15.56	15.05		15.50	15.52	15.40	15.30	15.26
3751P	.718	15.57	15.65	14.86	15.15	15.40	15.29	15.65	15.92	15.27
	.719	15.63	15.67	14.90		15.55	15.39	15.58	15.90	15.47
3754P	.766	15.30	15.64	15.01	15.3	15.52	15.47	15.10	15.78	15.16
	.768	15.36	15.69	14.93		15.84	15.40	15.14	16.00	15.39
3755P	.790	15.44	15.60	14.80	14.95	15.69	15.76	14.90	15.75	15.47
	.791	15.35	15.58	14.85		15.61	15.61	14.98	15.84	15.77
3757P	.807	15.35	15.35	15.17	15.15	14.99	15.57	14.88	16.00	15.31
	.808	15.57	15.68	15.03		14.92	15.50	14.79	16.00	15.60
3758P	.827				15.25					
-	. 828								1 - 01	1
3760P	.845	15.55	15.72	15.02	15.15	14.37	15.28	14.61	15.81	15.45
07010	. 846	15.57	15.67	15.07	10.10	14.58	15.23	14.52	16.05	15.75
3701P	.862	19.71	12.22	12.22	19.19	14.89	19.92	19.13	19.9	15.47

FROM MOUNT WILSON PLATES

Vo. 12 No. 14 No. 15 No. 16 No. 18 No. 19 No. 20 No. 21 No. 25 No. 28 No. 29 No. 30

1	15.70	15.20	15.00	14.56	14.67	15.70	14.93	15.60	14.50	14.43	14.90	15.50
]	15.55	15.20	15.00	14.65	14.80	15.75	14.87	15.75	14.62	14.46	14.91	15.65
]	15.53	15.41	15.41	14.53	15.63	15.40	15.53	15.06	14.55	15.68	15.02	15.60
]	L5.50	15.40	15.37	14.40	15.51	15.40	15.48	14.87	14.35		14.80	15.68
1	15.87	15.38	15.25		14.22	15.56	15.45	15.22	14.10	15.64	14.43	15.66
]	15.73	15.50:	15.25	14.60	14.17	15.48	15.48	15.19	14.08		14.38	15.63
]	15.69	15.32	15.30	14.85	14.15	15.69	15.35	15.17	14.10	15.71	14.62	15.45
]	15.52	15.40	15.32	14.9 2	14.17	15.67	15.10:	15.28	14.10		14.63	15.72
]	15.75	15.41	15.23	14.96	14.40	15.63	15.40	15.40	14.10	15.65	14.90	15.45
]	15.77	15.45	15.20	14.97	14.49	15.90	15.40	15.35	14.04		14.86	15.57
]	15.83	15.17	15.30	15.13	14.80	15.90	15.44	15.72	14.16	15.75	15.08	15.30
]	15.65	15.17	15.20	14.98	14.75	15.83	15.33	15.58	14.25		15.10	15.34
1	15.85	15.50	15.18	15.26	14.90	16.05	15.62	15.62	14.02	15.70	15.25	14.99
]	15.65	15.40	15.10	15.00	14.80	16.00	15.70	15.69	14.15		15.24	15.02
]	15.80	15.35	14.96	15.03	14.88	15.80	15.58	15.40	14.18	15.60	15.25	14.63
]	15.72	15.40	14.80	14.88	14.76	15.80	15.47	15.20	14.22		15.25	14.65
]	15.81	15.42	15.00	15.05	15.02	15.72	15.63	15.40	14.22	15.60	15.38	14.53
]	15.65	15.48	14.92	15.15	14.98	15.65	15.64	15.31	14.19		15.36	14.60
J	15.65	15.18	15.02	15.10	15.10	15.75	15.51	15.38	14.32	15.65	15.45	14.65
1	5.45	15.13	15.00	14.80	14.80	15.55	15.50	15.21	14.22		15.35	14.63
]	15.81	15.19	15.19	15.19	15.40	15.83	15.60	15.58	14.27	15.75	15.57	14.76
1	15.73	15.34	15.42	15.15	15.47	15.83	15.58	15.65	14.40		15.54	14.96
1	5.95	14.90	15.15	15.33	15.47	15.82	15.44:	15.44	14.30	15.25	15.71	14.85
1	5.68	15.00	15.17	15.13	15.47	15.76	15.48	15.37	14.50		15.68	14.97
1	15.53	14.77		15.25	15.53	15.77	14.90	15.53	14.36	14.79	15.55	14.95
1	15.39	14.79	15.42	15.23	15.55	15.78	14.81	15.39	14.39		15.57	15.00
1	4.73	14.83	15.38	15.40	15.67	15.70	14.65	15.60	14.43	14.48	15.66	14.95
1	4.52	14.67:	15.25	15.17	15.57	15.75	14.64	15.40	14.38		15.54	14.95
ļ	4.44	14.91	15.44	15.52	15.74	15.74	14.55	15.54	14.42	14.60	15.66	15.09
1	4.30	14.95	15.45	15.32	15.59	15.62		15.41	14.42		15.56	15.01
1	4.66	14.97	15.52	15.34	15.63	15.26	14.69	15.53	14.50	14.75	15.65	15.08
1	4.50	15.00	15.45	15.28	15.72	15.08		15.50	14.40		15.65	15.07
1	4.72	14.98	15.34	15.25	15.70	14.25	14.68	15.53	14.53	14.77	15.59	15.08
	4.97	15.06	15.40	15.19	15.72	14.33	14.70	15.54	14.52		15.65	15.18
-	.4.80	15.00	15.45	15.24	15.57	14.30	14.67	15.60	14.57	14.80	15.30	15.20
100	15.45?	15.48?	15.78?	15.42?	15.75?	16.05?	15.52?	15.90?	14.66	15.85?	15.66?	15.40?
	15.24?	15.43?	15.80?	15.20?	15.70?	15.8?			14.50		15.57?	15.30?
1	.5.45	15.19	15.62	15.37	15.58	15.73	15.33	15.40	14.45	15.51	15.66	15.35
	5.31	15.30	15.52	15.26	15.60	15.68		15.26	14.43		15.68	15.33
	5.80	15.37	15.4	15.27	15.48	15.02	15.48	15.69		15.34	15.76	15.27
	5.60	15.60	15.31	15.21	15.55	14.85	15.37	15.53	14.99		15.70	15.36
	5.75	15.35	15.50	15.17	15.62	14.45	15.58	15.75	13.75	15.61	15.64	15.43
	-5.85	15.37	15.29	14.98	15.81	14.29	15.62	15.66	13.87		15.69	15.33
	6.05	15.69	15.24	14.53	15.76	14.90	15.72	15.69	13.80	15.85	15.30	15.09
	5.97	15.62	15.07	14.59	15.84	14.74	15.77	15.18?	14.07		15.32	15.10
	6.00	15.44	15.10	14.60	15.86	14.88	15.65	16.00	14.08	15.35	15.22	15.31
	.5.85	15.57	15.13	14.29	15.77	14.92	15.61	15.77	13.90		15.16	15.10
				14.21					14.12			
	0.0-	1= 00	14 00	13.95		1 - 0 -	1	14.00	14	14.10	14 04	
	6.05	15.39	14.80	13.80		15.25	15.72	14.90	14.32	14.40	14.64	15.72
	5.87	15.50	14.66	13.71	10.00	15.05	15.95:	14.60	14.18	14 00	14.82	15.52
	5.75	15.67		14.07	15.95	15.65	15.47	14.97	14.20	14.83	14.47	15.72

Plate	Julian Day	No. 1	No. 2	No. 3	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11
3761P	21375.863	15.85	15.34	14.95		14.48	15.85	14.92	16.0	15.45
3763P	.886	15.43	15.28	15.24	15.0	14.87	15.56	14.80	15.38	15.96
	.887	15.55	15.47	15.20		14.94	15.43	14.82	15.47	15.88
3764P	.905	14.50	15.68	15.35	14.9	15.35	15.62	14.85	15.70	15.62
	.907	14.81	15.53	15.22		15.40	15.62	14.91	15.62	15.48
3766P	.926	14.38	15.18	15.46	14.85	15.01	15.40	15.20	15.60	15.31
	.928	14.32	15.20	15.42		15.24	15.35	15.22	15.66	15.53
3767P	.946	14.31	15.03	15.40	14.75	15.13	15.09	15.12		15.50
004070	.948	14.38	14.97	15.45	14 050	15.23	15.01	15.26	15 50	15.66
3849P	21435.746	15.45	15.62	14.82	14.05?	15.05	15.45	15.35	19.93	14.57
Plate	Julian Day	No. 31	No. 32	No. 33	No. 34	No. 35	No. 38	No. 39	No. 40	No. 41
3686P	21338.885	14.75	15.65	14.55	15.80	14.90	14.6	14.30	15.10	15.58
	.887	14.70	15.75		15.90	14.85		14.37	15.10	15.75
3694P	21339.696	15.43	15.30	15.25	15.88		15.5	15.35	14.83	15.36
	.699	15.43	15.25	1 - 0	15.87	15.19		15.34	14.76	15.27
3696P	.719	15.40	15.43	15.3	15.25	14.90	15.5	15.40	14.90	15.53
0.00070	.721	15.32	15.51	1 - 1	10 00	15.22	1= 0	15.43	14.90	15.48
3698P	.740	15.12	15.53	15.4	16.00	1 7 10	15.2	15.48	14.92	15.54
0.000 D	. 742	15.06	15.58	10.0	15.88	15.12:	14 55	15.50	14.95	15.64
3699P	.765	15.02	15.60	15.5	15.95	14 05	14.55	15.52	15.02	15.57
9701D	. 101	14.95	15.74	15 G	16.05	14.80	14 55	15,48	14.90	15 00
3701P	. 101	14.97	15.00	19.0	16.05	14.00	14.00	15 50	15.12	15 62
2702D	. 109	15.00	15.00	15 5	16 05	14.17	14 65	15.00 15.60	15.04	15.02
01021	.007	14 83	15.95	T0.0	10.00	14 40	11.00	15.55	15.00 15.17	15 77
3704P	.005	14.86	15.79	14 9	14 70	11.10	14 7	15.48	15 06	15 70
01011	.020	14.75	15.72	11.0	11.10	14.60	- I • I	15.51	15.06	15.62
3705P	.848	14.89	15.66	14.55	14.77		14.75	15.49	15.20	15.53
	.850	14.95	15.67			14.66		15.48	15.10	15.70
3707P	.868	15.00	15.61	14.45	14.80		15.05	15.57	15.15	15.70
	.870	14.96	15.55			14.62		15.42	15.07	15.56
3708P	.889	15.25	15.76	14.45	15.02		14.85	15.53	15.31	15.83
	.891	15.36	15.72			14.88		15.58	15.55	15.95
3710P	.910	15.32	15.70	14.6	15.10		14.9	15.66	15.35	15.82
	.912	15.24	15.62			14.99		15.60	15.20	15.76
3711P	.932	15.43	15.65	14.7	15.13	14 00	14.95	15.62	15.24	15.72
05100	.934	15.39	15.59	14 05	1 = 0.0	14,96	1 - 0 -	15.57	15.26	15.66
3713P	.954	15.38	15.73	14.95	15.09	15 04	15.05	15.57	15.19	15.73
97140	. 950	15.30	15.00	14 05	15 95	15.04	16 16	15.47	15.07	15.00
9114P	.970	15 99	15.07	14.90	10.20	15 10	19.19	10.14	15.20	15.74
3716D	.917	10.04 15.35	15.00 15.26	14 95	15 25	19.10	15 5	15.63	15.15 15.00	15 14
01101	995	15.30	15.06	14.00	10.00	15.06	10.0	15.61	14 95	15.09
3717P	21340.010	15.00	14 30	15 25	15 12	10.00	15 35	15.63	14 85	14.59
01-11	.012	15.28	14.30	10,20	10, 11	15.10	10,00	15.57	14.90	14.57
3718P	.015	15.32	14.25	15.35	15.26	15.28	15.05	15.40	15.12	14.60
3748P	21375.679	15.60?	15.90?	_0,00	15.32?	0.20	0.00	15.48?	15.48?	14.14?
	.680	15.45?	15.70?			14.91?		15.37?	15.24?	14.17?
3750P	.695	15.45	15.37	15.3	15.05		15.2	15.32	15.07	14.30
	.697	15.44	15.37			14.95		15.40	15.12	14.29
3751P	.718	15.45	14.44	15.5	14.82	14.13	15.4	15.35	15.23	14.44
	.719	15.41	14.33			14.10		15.36	15.27	14.42

No. 12	No. 14	No. 15	No. 16	No. 18	No. 19	No. 20	No. 21	No. 25	No. 28	No. 29	No. 30
15.25	15.53		13.85	16.05	15.70	15.40	14.66	14.09		14.17	15.60
16.05	15.67	14.73	14.22	15.25	15.05	15.19	14.50	14.16	14.55	14.73	15.19
15.80	15.70	14.75	14.15	15.37	15.60	15.26	14.46	14.31		14.65	15.26
16.05	15.30	15.15	14.46	15.20	15.75	15.03	14.46	14.35	14.70	14.70	15.30
16.00	15.40	15.09	14.01	15.35	15.57	14.96	14.65	14.28		14.85	15.57
15.73	15.11	14.70:	14.55	14.10	15.76	14.62	14.88	14.65	15.04	15.13	15.11
15.65	15.15	14.55:	14.20	14.02	15.75	14.49	14.55	14.29		15.06	14.96
15.65	14.81	15.68:	14.47	14.17	15.91	14.45	14.92	14.45	15.12	15.39	14.95
15.42	15.01	15.60:	14.40	14.20	15.89	14.40	15.02	14.45		15.70	14.88
15.70	15.39	14.91	15.13	15.75	15.56	14.89	14.73	14.43	14.82	15.41	14.96
Jo. 42	No. 43	No. 44	No. 45	No. 47	No. 52	No. 55	No. 58	No. 59	No. 61	No. 62	No. 63
11 7	14 00	1 - 10	1 - 00	10 10	14 05		15 50	15 00	1= =0	1= 00	14 04
11.7	14.80	15.10	15.22	15.15	14.85	1= 00	15.53	15.32	15.50	15.32	14.64
11.0	14.80	14.95	15.20	15.30	14.97	15.00	15.50	15.27	15.35	15.20	14.62
11.3	15.32	14.80	14.90	14 40	15.10	15 05	15.28	14.65	15.10	15.55	15.58
11.3	15.25	14.72	14.79	14.40	15.20	15.07	15.28	14.67	15.00	15.62	15.67
11.4	15.28	14.87	14.50	14 40	14.10	15.35:	15.10	14.83	14.73	15.50	15.70
11.3	15.27	14.90	14.00	14.40	13.90	15.32	15.10	14.92	14.68	15.50	15.65
11.4	15.29	14.75	14.20	14.09	14.10	1- 4-	15.30	14.82	14.53	15.38	15.69
11 4	15 97	14.90	14.20	14.91	14.00	15.45	15.20	14.93	14.00	15.27	15.82
11.4	15,07	14.00	14.23:	14 59	14.20	15 90	15.40	14 05	14.75	15.27	10,72
11 5	15.42	14.90	14.17	14.00	14.30	19.40	15.20	14.95	14.04	14.90	10.00
11.0	15.04	14.92:	14.10:	14 01	14.40	15 90	10.72	1 - 1 -	14.90	15.04	15.00
11.0	15,30	10.10	14.23	14.01	14.00	15.20	15.00	19.19	14.80	10.07	15.85
11.4	15.95	14.90	14.00	14 79	14.00	15 10	15.74	15 90	14.91	14.77	10.90
11 5	15 40	15 99	14.20	14.70	14.20	19.10	15 69	15.20 15.40	14.09 15.10	14.90	15.00
11.0	15 40	15.22 15.17	14.00	14.00	14.00	14 95	15.05	15.40	15.10	14.90	15.70
11.6	15.40	15 97	14.05	14.00	14.00	14.00	15.00	15.00	15, 10 15, 20	14.00	15,00
.1.0	15.53	15 18	14.52 14.77	15 09	14.00 14.76	14 86	15.00	15 21	15.20	14 05	15 21
1.6	15.50	15.00	14.66	10.00	14.10	14.00	15.65	15 07	15 17	14.90	15 17
-1.0	15.55	14 82	14.60	1/ 82	14.00 14.75	1/ 80	15 50	15 25	15.17	14 08	15,00
1 7	15.55 15.67	15.08	14.02	14.00	14.70	14.00	15 79	15.20 15.58	15 21	15 99	14 85
1 8	15.68	15.17	15 21	15 51	15,00	1/ 88	15 75	15 69	15 50	15 40	15 02
1 8	15.00	14 79	14 82	15.06	14 94	11.00	15 85	15.00	15.40	15.94	14 30
-1.0	15.57	14.80	14 75	10.00	14 97	15 00	10.00	15.35	15.40	15 32	14 39
1.7	15.53	14.79	14.75		15 00	10.00	15 82	15.26	15 38	15.02	14.55
	15.50	14.75	14.89	15.12	15.25	15.01	15.74	15.32	15.45	15 51	14.58
1.7	15.57	14.75	14.87		15.14	-010-	15.78	15.27	15.45	15.48	14.65
	15.54	14.74	14.95	15.26	15.20	15.18	15.62	15.38	15.45	15.45	14 72
1.7	15.62		15.05		15.30	-0.10	15.86	15.34	15 50	15.40	14 87
	15.61	14.70	15.12	15.33	15.09	15.41	15.77	15.36	15.47	15.27	14.89
1.7	15.67	14.69	15.14	-0.00	15.35	-0.1-	15.79	15.19	15.48	15.34	15.07
	15.70	14.65	15.04	15.32	15.39	15.25	15.79	15.37	15.60	15.30	14.97
1.7	15.60	14.92	15.19		15.15		15.60	15.52	15.60	15.18	15.00
	15.69	14.90	15.23	15.27	15.34	15.29	15.60	15.60	15.57	15.25	15.06
1.8	15.55	14.98	15.06	15.30	15.17	15.25	15.49	15.25	15.37	15.26	15.17
2.2?	15.75?	14.89?					15.80?	0.00	15.17?	15.75?	15.60
8	15.70?	14.92?		15.15?		15.20?	15.56?		15.16?	15.70?	15.40
2.1	15.63	14.80	14.60		15.20		15.75	15.10	15.16	15.49	14.84
	15,56	14.95	14.65	15.07	15.25	14.89	15.55		15.15	15,52	15.02
2.3	15.63	15.18			14.86		15.85		15.33	15.42	14.52
	15.69	15.17	15.03	15.43	15.17	14.88	15.90	15.53	15.46	15.47	14.62

Plate	Julian Day	No. 31	No. 32	No. 33	No. 34	No. 35	No. 38	No. 39	No. 40	No. 41
3754D	21375 766	15 50	14 57	15 55	14 71		15 25	15 52	15 97	1/ 22
01011	. 768	15.33	14 62	10.00	11.11	14 90	10.00	15.55	15.31	14.00
3755P	.790	15.44	14.95	15.4	14.98	11.00	15.3	15.40	15.10	15.10
	.791	15.35	14.98	-0		15.19	-0.0	15.35	15, 25	14.97
3757P	.807	15.03	14.91	15.6	15.06		15.2	15.40	15.21	15.10
	.808	14.95	14.88			14.98		15.35	15.30	15.10
3758P	.827			15.25			15.3			
3760P	.845	14.85	15.17	15.3	14.90		15.3	15.57	15.22	15.22
	.846	14.75	15.08			14.70		15.38	15.23	15.23
3761P	.862	15.07	15.35	15.25	15.35		15.15	15.75	15.13	15.68
	.863	14.72	15.58			14.40		15.62	14.91	15.30
3763P	.886	14.85	14.90	15.25	15.24		15.3	15.25	14.73	15.58
	.887	14.72	15.07			14.59		15.26	14.82	15.70
3764P	.905	14.97	15.66	15.5	15.10		15.25	15.86	14.80	15.27
	.907	15.03	15.79			14.82		15.70	14.71	15.31
3766P	.926	15.23	15.67	15.2	15.23		15.4	15.76	15.05	15.68
	.928	15.21	15.85			14.80		15.69	14.92	15.75
3767P	.946	15.20	15.82	14.7	15.27		15.3	15.85	14.92	15.82
	.948	15.37	15.75			14.91		15.67	15.01	15.65
3849P	21435.746	15.03	14.62	14.95	14.57	15.07	14.4	15.25	15.34	15.35
Plate	Julian Day	No. 64	No. 65	No. 66	No. 67	No. 68	No. 69	No. 70	No. 71	No. 72
3686P	21338.885	15.45	14.43	15.20	14.5	15.65		15.70	15.80	15.55
	.887	15.25	14.57	15.12		15.75		15.50	15.90	15.50
3694P	21339.696	15.53	15.38	15.07	15.75?	15.27		14.85	15.41	15.80
	.699	15.52	15.41	14.93		15.22		14.67	15.43	15.72
3696P	.719	15.76	15.65	14.98	15.5	15.15	16.05	14.62	15.66	15.77
	.721	15.67	15.58	15.02		15.13	15.87	14.50	15.57	15.67
3698P	.740	15.69	15.39	15.01	15.35	15.00	14.93?	14.70	15.67	15.33
	.742	15.62	15.45	14.92		15.02	14.88?	14.80	15.70	15.43
3699P	.765	15.65	15.45	15.08	15.25	15.33	14.32	15.11	15.77	15.29
	.767	15.75	15.50	15.02		15.28	14.26	15.02	16.00	15.28
3701P	.787	15.87	15.34	15.15	14.9	15.22	14.40	15.20	15.20	15.32
07000	.789	15.62	15.30	15.13	14 55	15.35	14.49	15.16	15.16	15.26
3702P	.807	15.74	14.94	15.58	14.55	15.48	14.90	15.57	15.57	15.37
070410	.809	15.62	15.07	15.48	14 45	15.61	14.92	15.53	15.53	15.30
3704P	.828	15.70	14.70	15.30	14.45	15.35	14.76	15.18	15.18	15.03
97050	.830	15.45	14.77	15.29	14 55	15.22	14.62	15.22	15.22	14.80
3705P	. 848	15.55	14.90	15.33	14.55	15.37	14.87	15.28	15.20	14 05
270710	.000	10.44	14.90	15.40	14 45	15.44	14.50	15 20	15 99	14.50
5101F	.000	15,00	14.00	15 27	14.40	15,50	1/ 80	15.00	15.72	14 93
3708D	.070	15 58	14.76	10.01	14 55	15 85	15 46	15 71	16 05	15 35
0100F	.005	15.60	15 10		14.00	15 75	15.40	15 72	15 95	15 36
3710P	910	15.00	15.20	15 44	14 8	15 58	15.04	15 34	15.00	15 00
01701	.010	15 69	15.10	15.47	11.0	15.62	15 15	15.36	15.70	15.10
3711P	. 932	15.76	15.20	15.52	14.9	15.58	15.47	15.53	15.25	15, 15
01211	.934	15.66	15,25	15.47	-1.0	15, 57	15.33	15.58	15,66	15.10
3713P	.954	15.66	15,28	15, 55	15.0	15, 55	15.63	15,63	15,73	15.15
	. 956	15.43	15.00	15,45		15.50	15.52	15.54	15.77	15.14
3714P	.975	15.26	15.40	15.44	15,25	15.65	15.55	15, 53	15.85	15.25
	.977	15.05	15.34	15.45		15.47	15.45	15.47	15.76	15.14
3716P	. 993	14.74	15.26	15.28	15.25	15.45	15.60	15.50	15.70	15.17

No. 42	No. 43	No. 44	No. 45	No. 47	No. 52	No. 55	No. 58	No. 59	No. 61	No. 62	No. 63
12.2	15.25	14.75			14.95	15.30	15.83		15,62	15.19	14.89
	15.14	14.75	14.75	15.02	15.17	15.22	15.95	15.45	15.69	15.28	15.08
12.6	15.09	15.32	15.35:		15.17		15.50		15.72	14.63	14.93
	15.02	15.42	15.40:	15.65	15.33	15.18	15.50	15.65	15.76	14.85	15.13
12.4	14.91		15.37		15.26		15.41		15.73	15.07	15.21
	14.77	15.16	15.52	15.49	15.13	15.30	15.75	15.75	15.68	14.83	15.02
12.4										14.40	
12.3	15.00	14.82	15.45	14.85	14.00		15.51		15.79	14.85	15.06
	15.00	14.90	15.60		13.92	15.23	15.61	15.90	15.90	14.90	15.08
12.2	15.13	14.10	15.35		13.75		15.80		15.55	15.55	15.65
	14.85	14.29	15.12	14.05	13.88	15.45	15.68	15.10	15.30	15.40	15.49
12.5	15.25	15.05	16.05	14.52	13.93		15.52		15.85	14.94	15.10
	15.19	15.15	15.75		14.07	15.10	15.53	15.63	15.60	15.10	15.19
12.4	14.77	15.41	15.20		13.72		14.85		16.05	15.55	15.48
	14.65	15.13	15.52	14.30	13.95	15.62	15.22	15.53	16.0	15.31	15.40
12.3	15.07	14.40	15.13		14.57		15.51		15.53	15.42	15.60
	15.21	14.39	15.20		14.52	15.57	15.42	14.26	15.75	15.56	15.78
12.1	15.12	14.33	15.07		14.50		14.78		15.70	15.68	15.75
	15.20	14.54	15.23	14.40	14.62	15.48	14.60	14.34	15.69	15.82	15.90
12.9	15.28	15.26	15.23	15.10	15.07		15.64:	15.16	15.68	14.91	15.42
No. 73	No. 74	No. 75	5 No. 76	6 No. 77	7 No. 78	No. 79	No. 80	No. 81	No. 83	No. 87	No. 92
14 46	13 62	15 33	15 33	15 32	15 15	14.75	15.07		15.45	15, 15	
14 52	13.55	15 25	15 23	15 20	15 10	14.75	15, 13	14.82	15.43	15.27	
15 03	14 25	15 03	15 32	15 35	15 20	15.03	20, 20		14,90	15, 23	14.05
15.00	14 15	15.08	15.27	15.37	15 17	14.92	14.70	15.45	14.70	15.17	14.00
15 14	14 16	15 08	15 23	15 32	15 03	15.02			14.70	15.15	14.01
15.25	14 13	15 10	15.28	15.38	15.02	15.23	14.45	15.57	14.82	15.15	
15 30	13.81	15.08	15.27	15.35	14.95	14.87			14.50	15.25	14.10
15.38	13.81	15.18	15.32	15.45	14.95	14.96	14.86	15.52	14.45	15.45	
15.45	13.60	15.23	15.28	15.37	14,90				14.70	15.17	14.22
15.43	13.63	15.17	15.35	15.35	14.83	14.92	14.92	15.38	14.62	15.26	14.18
15 46	13 85	15.35	15.32	15.40	15.00	15.05			14.75	15.17	14.25
15 42	13 85	15.26	15.32	15.45	14.97	-0.00	15.00	15.30	14.65	15.11	14.17
15 57	14.04	15.37	15.10	15.57	14.96	14.74			14.80	14.96	14.0
15 57	14.00	15.30	15.17	15.45	15.05	15.06	15.05	15.46	14.80	14.83	
15.35	13.93	14.89	14.86	15.36	15.11	15.05			15.07	14.70	14.27
15.30	14.00	15.12	14.85	15.30	15.07	14.95	15.33	15.33	14.77	14.80	14.18
15.30	13.97	15.19	14.75	15, 19	15.25	14.91		-	15.00	14.65	14.21
15.25	14.01	15.23	14.85	15.39	15.25	14.89	15.22	15.31	14.95	14.85	14.15
15, 12	13,95	15.25	14.79	15.24	15.30	14.67			15.00	14.74	14.36
15.05	14.00	15.17	14.77	15.28	15.16	14.75	14.98	15.30	14.87	14.75	14.13
14.98	14.23	15.42	14.67	15.13	15.56	14.70			15.13	14.71	14.12
15.20	14 35	15.38	14.86	15.38	15.65	14.92	15.45	15.25	15.12	15.08	14.23
14.98	13.95	15.37	14.72	15.10	15.58	14.57			15.19	14.76	14.15
14.95	14.08	15.42	14.79	15.15	15.50	14.80	15.05	14.95		14.95	14.30
14.84	14.18	15,50	14,69	14.82	15.43	14.79			15.27	14.73	14.20
14.80	14.22	15.39	? 14.70	14.89	15.39	14.58	15.01	14.43		14.89	14.20
14.92	14.21	15.38	14.59	14.69	15.30	14.65			15.36	14.75	14.23
14.80	14.19	15.34	14.58	14.77	15.32	14.78	14.96	14.52		14.85	14.37
14.79	14.19	15.42	14.60	14.65	15.31				15.29	14.91	14.10
14.95	14.25	15.34	14.57	14.75	15.32	14.84	14.90	14.63		14.98	
14.93	14.25	15.36	14.65	14.55	15.17	14.89			15.39	14.97	14.10

Plate	Julian Day	No. 64	No. 65	No. 66	No. 67	No. 68	No. 69	No. 70	No. 71	No. 72
3716P	21339,995	14.64	15.35	15.25		15.28	15.60	15.48	15.70	15.19
3717P	21340.010		15.45	15.10	15.3	15.10	15.67	15.55	15.70	15.16
	.012	14.40	15.38	15.05		15.15	15.58	15.60	15.48	15.28
3718P	.015	14.52	15.23	15.35	15.5	15.10	15.65	15.75	15.47	15.37
3748P	21375.679	15.73		15.70	14.9?	16.0?		15.80	15,90?	15.95
	.680	15.39		15.50		15.66?		15.54	15.80?	15.80
3750P	.695	15.51	15.73	15.65	15.05	15.65	16.00	15.80	15.13	15.65
	.697	15.47	15.65	15.60		15.70	16.00	15.85	15.15	15.80
3751P	.718	15.46	15.76	15.66	15.05	15.52	16.05	16.00	14.36	15.35
	.719	15.35	15.82	15.81		15.53	16.05	15.92	14.50	15.44
3754P	.766	15.75	15.64	15.12	14.55	15.12	15.85	15.79	14.50	14.33
	.768	15.59	15.45	14.96		15.05	16.05	15.95	14.41	14.27
3755P	.790	15.43	15.72	15.09	14.55	14.75	15.85	15.85	14.58	14.40
	.791	15.25	15.80	15.05		15.02	15.80	15.80	14.79	14.50
3757P	.807	15.35	15.84	15.03	14.5	15.40	16.05	16.05	15.31	14.91
	.808	15.35	15.60	15.13		15.35	16.05	15.95	15.30	15.16
3758P	.827				14.35					
3760P	.845	15.67	15.75	14.85	14.45	14.93	15.65	15.55	15.22	14.85
	.846	15.53	15.45	14.90		14.79	15.83	15.50	15.08	14.88
3761P	.862	15.68	14.70	15.08	14.7	14.73	14.95	15.85	15.60	15.05
	.863	15.40	14.58			14.76	14.53	15.63	15.25	15.25
3763P	.886	15.70	14.35	14.95	15.1?	14.67	13.70	15.75	15.10	15.02
	.887	15.32	14.39	14.77		14.77	13.85	15.60	15.19	15.00
3764P	.905	15.85	14.45	14.67	15.15	14.90	13.90	15.95	16.00	15.70
	.907	15.53	14.65	15.02		15.21	13.85	15.62	15.67	15.48
3766P	.926	15.17	14.95	15.13	15.25	14.85	13.93	15.79	15.60	15.31
	.928	14.96	14.67	15.14		15.12	13.90	15.78	15.72	15.35
3767P	.946	14.56	14.53	15.30	15.25	15.60	14.53	15.97	16.15	15.71
	.948	14.59	14.62	15.30		15.64	14.45	15.82	16.0	15.73
3849P	21435.746		15.41?	15.07				15.19		

No.	73	No.	74	No.	75	No.	76	No.	77	No.	78	No.	79	No.	80	No.	81	No.	83	No.	87	No. 92
14.	90	14.	16	15.	42	14.	53	14.	60	15.	05	14.	84	14.	91	14.	57			15.	11	13.93
14.	85	14.5	24	15.	32	14.	53	14.	49	14.	99	15.	02					15.	37	14.	81	14.06
14	82	14.	35	15.	32	14.	72	14.	63	15.	05	15.	00	14.	94	14.	63			14.	98	14.15
15.	20	14.4	40	15.	30	14.	60	14.	60	15.	25	14.	87	15.	10	14.	82			15.	25	14.17
15.	15?	13.9	93?	15.	66?	15.	43?	14.	88?	15.	52?	•						14.	98			14.32
14.	93?	14.	10?	15.	50?	15.	30?	14.	91?	15.	32?	,		14.	70	15.	12?	•		15.	70?	14.10
14.	88	13.	88	15.	42	15.	10	14.	89	15.	15	14.	90					14.	69	15.	25	14.35
14.	93	13.	78	15.	47	15.	12	14.	95	15.	24			14.	70	14.	83			15.	35	14.20
15.	07	13.	79	15.	40	14.	88	14.	84	15.	16	15.	00					14.	47	14.	89	14.07
15.	12	13.	88	15.	39	15.	04	14.	90	15.	30			14.	85	14.	57			15.	09	14.05
15.	17	13.	75	15.	50	15.	04	15.	01	14.	75	14.	85					14.	95	15.	25	13.43
15.	.40	13.	90	15.	45	15.	00	15.	05	14.	87			14.	. 69	14.	.79			15.	32	13.39
15.	21	13.	60	15.	43	14.	80	14.	90	14.	98	14.	90					15.	55	15.	25	13.52
15.	. 19	13.	90	15.	45	14.	94	15.	02	14.	86			15.	.22	15.	.02			15.	02	13.48
15.	50	14.	05	15.	65	14.	80	15.	25	14	. 88	14.	83					15.	35	15.	21	13.59
15.	57	14.	00	15.	61	14.	75	15.	10	15	25			15.	10	15.	91			15.	02	13.53
		14.	17			14.	23															13.77
15.	.40	13.	95	15.	.47	14.	77	15.	22	15.	00	14.	70					15.	48	15.	05	13.79
15.	32	14.	01	15.	45	14.	72	15.	17	15.	. 18			15.	23	15.	.17			15.	00	13.80
15.	.40	14.1	25	15.	.80	14.	78	15.	. 17	15	.60							15.	.29	15.	84	13.86
15.	. 17	14.	15	15.	61	14.	.85	15.	10	15	.33			14.	.72	15,	. 53			16.	00	
15.	. 15	14.	00	15	. 15	14.	.51	15.	05	15	.44	14.	67					15.	.85	14.	.87	14.00
15	. 19	14.	18	15	.20	14.	.69	15.	. 03	15	.27			15.	. 56	15.	. 46			15.	07	14.07
		13.	95	15	. 02	14.	.85	15.	. 15	15	.20							16.	. 05	15.	.21	14.0
		13.	88	15	.45	15.	. 03	15.	.35	15	.21			15.	.27	15.	.70			15.	40	
15	.00	14.	13	15	. 18	15.	. 18	15.	.28	15	.25	14.	54					15.	.28	15.	35	14.00
		14.	17	15	. 12	15.	. 12	15	.42	15	. 50			14.	.83	15.	. 18			15.	66	14.02
		14.	21	15	.17	15	.18	15	.30	15	.27	14.	63					15.	.52	15.	. 33	14.15
		14.	25	15	. 17	15	.23	15.	.41	15	.48			14	.67	15.	. 33			15.	. 53	14.02
15	.28	14.	08	15	.20	15	. 10	14	.91	15	.28	15.	23	15.	. 16	15	.41	15.	. 53	15.	. 05	14.13

plates published by Bailey (1917) and from 81 by Oosterhoff (1941) were used to investigate the period changes of the RR Lyrae stars in M5.

The reciprocal periods given by Oosterhoff (1941) were used in determining the light curves. The phases for the light curves were computed from the formula:

phase =
$$\frac{\text{Julian Date of Observation} - 2400000}{P}$$

Separate light curves were plotted for the following epochs: 1889, 1895–96, 1897–99, 1901–02, 1904–05, 1908, 1912, 1917, 1934–35, 1936–38, 1940–42, 1943–44, 1946–49, 1950–53, 1954–56, 1959–60, 1963–64, 1966. Figure 5 shows the light curves of variable 7 at the various epochs. The light curve for each variable given by the 1934–35 observations of Oosterhoff was drawn on tracing paper. Each was then fitted to the other curves by a horizontal shift. Thus the phase-shifts relative to the epoch 1934–35 were determined. (A positive phase-shift implies that the features on the light curve in question occur at later

F1G. 5—Illustration of light curves for determination of phase-shift diagram (variable 7).

FIG. 6-Phase-shift diagrams (phase-shift in fraction of a period).

phases than on the 1934-35 curve.) Then a phase-shift diagram was plotted.

No phase-shift diagrams were plotted for variables 2, 14, 18, 25, 35, 44, 52, 58, 65, 66, 67, 68, 72, and 92 because their light curves were too irregular. The phase-shifts for the other 52 stars are listed in Table II and their phase-shift diagrams are shown in figure 6.

Determination of Period Changes

The changes of period have been determined in two ways: by fitting parabolas to the points on the phase-shift diagrams to determine the rate of period change, β , and by fitting intersecting straight lines to the points to determine the amount of period change, ΔP .

Standard parabolas were plotted on transparent paper for 11 values

FIG. 6—Phase-shift diagrams (continued).

of $\beta/2P^2$ between 10⁻¹⁰ and 10⁻⁸ days⁻². These were fitted visually to the phase-shift diagrams and the values of β computed for each star from the most suitable parabola. Most of the phase-shift diagrams are not true parabolas and there is an uncertainty of about 25 per cent in the values of β .

FIG. 7—The rate of change of period, β (in days per million years) determined from fitting parabolas to the points in the phase-shift diagrams, plotted against the period (in days), stars with constant period included.

An attempt was made to determine the amount of this change in a million years in order to compare with the values of β determined from the parabolas. Of the 50 stars for which the period increased, decreased or remained constant during the seventy-year interval, periods of 18 (or about one-third) remained constant. Then, if the interval of observations was extended to 100 years, it might be expected that abrupt changes in the periods of these stars would be observed, i.e., a star changes its period abruptly about once in 100 years. At this rate, in a million years, the period of a star would change by 10,000 times the amount observed in 70 years. Assuming this, the period change expected in a million years is calculated for those stars for which changes were observed in the present investigation. These are listed in Table V and plotted against period in figure 8.

If the phase-shift diagram produced a single straight line, the period was assumed constant and corrected if necessary: ΔP (correction to period) = slope $\times P^2$. These corrected periods are listed in Table V. The light curves for these stars are shown in figure 9.

In Table V the epochs are those given by Oosterhoff in heliocentric Julian days with the first two digits (24) omitted. Successive columns give the period, reciprocal period, β (the rate of change of period in days per million years), and the projected period change for a million years (assuming the period changes abruptly). The periods adopted here are those computed from Oosterhoff's reciprocal periods. It was found in the course of this investigation that Oosterhoff's periods do not always correspond to his reciprocals. Besides the stars with period

	T	ABLE V			
Periods	OF	VARIABLES	IN	M5	

					Rate	
	Epoch from	Period	Reciprocal	β days/	abrupt	
Var.	Oosterhoff	days	Period	10° yr	change	Notes
1	27563.794	0.5217856	1.916496			const.
2	27601.700	0.526				1
3	27567.842	0.6001832	1.666158	. 039	.044	
4	27627 708	0.4496402	2 224006	234:		15
Ĝ	27567 856	0.5488311	1 822054	- 048	026	2.0
7	27601.730	0.4943896	2 0226062	105	100	
ŝ	27605 697	0.54623	1 83075	. 105	077	
ă	27653 855	0.6988950	1 43083	.001	.011	const
10	97567 895	0.5306628	1.8841359	- 020	-037	const.
11	27563 817	0.5058014	1.678158	.020	.001	const
1.0	27003.317	0.1677144	2 128057	- 061	006	const.
12	27001.702	0.3077133	1.018832	004	050	
10	27507.500	0.0101220	2.030000	. 000	.040	1
1 7	27007.014	0.4072420	2.002007	050	0.91	1
10	27007.908	0.001001	2.909408	194	.034	
10	27007.781	0.0470220	$1.0\pm\pm11$ 9.15579	.124	.009	1
18	27007.770	0.400525	2.10070		274	1 0
19	27001.700	0.4099555	2.12/8/		.074	
20	27601.729	0.0094759	1.040704			const.
21	27605.684	0.0048941	1.000182	20.5		const.
24	27867.821	0.4/85//1	2.090401	. 205		10
20	27007.700	0.008	1.909	0.1.1		
-26	27601.761	0.6225642	1.60626	.044		15
-27	27888.894	0.4703	2.126217		2112	4
28	27540.882	0.5439474	1.838413	127	292	Ð
29	27567.700	0.4514355	2.215166	120	180	6
30	27567.761	0.5921755	1.6886886			const.
31	27567.872	0.3005826	3.3268725			const.
32	27605.754	0.4577863	2.1844254			const.
-33	27601.738	0.5014722	1.9941286	.037	.041	7
34	27567.727	0.5681431	1.76012			const.
35	27567.866	0.3081197	3.245492			1
36	27563.868	0.6277229	1.5930596			const.
37	27605.762	0.4887941	2.045851	039		15
38	27889.937	0.4704441	2.1256511			
39	27563.832	0.5890346	1.697693	.051	.035	
40	27605.698	0.3173286	3.1513078	. 029	.015	
41	27567.879	0.4885749	2.046769	070	072	
43	27601.767	0.6602264	1.514632			const.
44	27601.732	0.329	3.0362			10
45	27567.774	0.6166364	1.6217012			const.
47	27563.861	0.5397295	1.85278	085	077	
52	27563.804	0.5017848	1.992886			1
55	27601.734	0.3288968	3.040467	.032	.028	
56	27889.931	0.5346903	1.8702415	264		15
58	27601.716	0.491265	2.03556			1
59	27540.936	0.5420259	1.8449303			const.
61	27567.826	0.5686157	1.758657	.095	.107	
62	27601.704	0.2814092	3.553544		.193	11
63	27567.851	0.4976763	2.009338	.037	.031	
64	27540.853	0.5145075	1.836522	127	117	
65	27628.729	0.480691	2.08034			12
66	27567.813	0.350681	2.85159			13
67	27567.733	0.3490462	2.86495			13
· · ·			and the second sec			

Var.	Epoch from Oosterhoff	Period	Reciprocal Period	β days 10 ⁶ yr	Rate for abrupt change	Notes
68	27628.727	0.3342797	2.991507			13
69	27567.761	0.4948743	2.0207151			const.
70	27567.930	0.5585255	1.7904286	.184	.268	
71	27541.011	0.5024676	1.990178	.073	. 039	
72	27596.82	0.562	1.779			1
73	27601.753	0.3401118	2.94021	.050	.074	
74	27626.684	0.4539961	2.202662	060	048	
75	27596.816	0.6854136	1.458973	.070	.057	
76	27563.813	0.4324210	2.312561	.027	.118	
77	27605.721	0.8451121	1.183275	.106	.176	
78	27567.727	0.2648174	3.776187			const.
79	27567.884	0.3331387	3.001753			const.
80	27562 986	0.3365424	2.9713936	017	014	
81	27567 972	0.5573235	1.79429	184	265	
83	27567 783	0.5533073	1.807314		1200	const.
87	27540 914	0.7383888	1 3543			const
00	27540 828	0.5571527	1 79484	076		15
99	27567 963	0.4635789	2 15713	.010		14
98	27605.737	0.3063857	3.26386	416	060	11

TABLE V-continued

Notes

- 1. Irregular; therefore no phase-shift diagram was plotted.
- No parabola could be fitted on the phase-shift diagram. Period changes abruptly between 1945 and 1950.
- 3. Following component of close double. Of Oosterhoff's two possible periods, 0.508 and 0.517 days, the D.D.O. observations fit the former, but not well enough for a phase-shift diagram.
- 4. Irregular, Oosterhoff. A complicated phase-shift diagram indicates a fluctuating period.
- 5. Period change calculated from difference in slope between first and third line of three straight lines.
- 6. Oosterhoff found the shape of the light curves abnormal for the period, with rising branch less steep than expected.
- 7. Visual observations by Barnard (1909). His published Julian Dates appear to be calculated for noon C.S.T. On this assumption, his light curves coincide with those of Bailey (1917).
- 8. Irregular Oosterhoff, and current investigation. Bailey class *c*, and no phase-shift diagram made.
- 9. Phase of light curve in 1917 ambiguous with respect to the others, which prevents definite determination of period change.
- Period irregular. The D.D.O. observations fit Oosterhoff's longer period of 0.329 better than his 0.247-day period.
 Positions of light curves from observations of Bailey in 1912 and Shapley in
- Positions of light curves from observations of Bailey in 1912 and Shapley in 1917 ambiguous, relative to other years. Net change in period calculated from slope of line representing Bailey's observations and that for D.D.O. observations.
- Probably not irregular, but because of uncertainties in measures due to closeness to another star no phase-shift diagram was constructed.
- 13. Bailey class c, some irregularity, no phase-shift diagram.
- 14. Measures difficult on D.D.O. plates; perhaps irregular.
- 15. β determined by Oosterhoff.

changes, the table lists those with constant or irregular periods, and six stars for which Oosterhoff (1941) found period changes, but which were not studied on the David Dunlap plates.

Discussion

From this study of the variables in M5 with observations over an interval of 75 years, we have found that for 18 stars the periods are constant, for 20 they have increased, and for 12 they have decreased.

FIG. 8—The projected period change (in days per million years) determined from fitting straight lines to the points in the phase-shift diagrams, including stars with constant period.

For the other 16 stars, periods are not well determined or are irregular. The median rate of change of period for the stars with increasing periods is 0.05 (\pm 0.02) days per million years; the median rate for those decreasing is 0.075 (\pm 0.02) days per million years. The median rate of change of periods of all the stars considered together is zero. It is interesting to try to determine if these changes are due to evolution of the stars across the horizontal branch of the II-R diagram or if they are just random. If the former, then it follows that both the decreases and the increases must have evolutionary significance. Otherwise, since the median rate of period change is zero, the changes do not indicate an evolutionary trend.

Sandage (1957) has calculated, by semi-empirical methods, a time scale for stars in the RR Lyrae phase in M3. According to him, the stars spend 8×10^7 years in the RR Lyrae stage. The H-R diagram for M5 is very similar to that of M3, and so, it might be concluded that stars in M5 also spend about 8×10^7 years in the RR Lyrae stage. According to figure 10, the range of periods an RR Lyrae star in M5

FIG. 9-Light curves for stars with constant periods.

may take is 0.55 days (allowing for a gap between types c and a). Thus the expected average rate of change in period is 0.007 days per million years. The minimum rate that can be detected over 75 years depends on the period. The minimum value of $\beta/2P^2$ observable at the present time is 10^{-10} days⁻². This corresponds to the following values for β :

> $\beta = 0.04$ days per million years for P = 0.8 days, = 0.02 days per million years for P = 0.5, = 0.005 days per million years for P = 0.25.

FIG. 9-Light curves for stars with constant periods (continued).

Thus, using the present observations, only for variables with periods < 0.3 days is it possible to detect evolutionary changes in period. Almost all the variables in M5 have periods greater than 0.3 day. However, Sandage's computations have been made on the assumption that stars cross the RR Lyrae gap only once and in the direction of decreasing periods, whereas the periods of the stars in M5 exhibit both increases and decreases.

Theoretical calculations of Faulkner and Iben (1966) indicate that stars do change direction of evolution on the horizontal branch. They have considered models with two different hydrogen compositions in the envelope: $X_e = 0.90$ and $X_e = 0.65$. These models have double energy sources: helium burning in the core and hydrogen burning in a shell outside. In the models with $X_e = 0.90$, the helium burning in the

FIG. 10-Period-frequency diagram for M5.

core dominates the energy production and the stars move to the right in the H-R diagram (analogous to stars moving off the main sequence). Then, when the core is exhausted and gravitational contraction sets in, the star moves to the left in the diagram, but much faster. The favoured model with this composition spends about 4×10^7 years crossing the horizontal branch (about 1.3×10^7 years as an RR Lyrae variable) corresponding to an average increase of period at the rate of 0.04(2) days per million years followed by decrease of period at a faster rate. On the other hand, in their models with $X_e = 0.65$, the hydrogen burning in the shell dominates the energy production and there is a resulting contraction in the envelope to maintain a high temperature and density in the shell, causing evolution to the blue in the H-R diagram. When a point is reached where helium burning in the core dominates the energy production, the star evolves to the red at a much faster rate. In the model favoured by Faulkner and Iben (1966) with this hydrogen envelope composition, the star spends 1.3×10^{8} years on the horizontal branch evolving to the blue (about 4×10^7 years in the RR Lyrae stage). This would indicate an average decrease of period of 0.014 days per million years followed by an increase at a faster rate. This rate of decrease is below the limit of detection for periods greater than 0.4 days, and most of the decreases are observed at periods greater than this value.

In the case of the models with $X_e = 0.90$, the average increase of periods at the rate of 0.042 days per million years predicted by the theory is approximately what is observed, but the observed decreases are at the same rate, and not faster as expected from the theory.

It therefore seems likely that the observed period changes are not caused by the evolution of the stars across the H-R diagram.

Furthermore, Sandage (1965) has pointed out that if the RR Lyrae stars follow evolutionary tracks like those of Faulkner and Iben (1966),

then there would be a correlation between the rate of period change and the mean magnitude of the RR Lyrae stars. All the stars with decreasing periods would be brighter or fainter than those with increasing periods. An examination of 26 stars in M3, using period changes determined by Szeidl (1965) and mean m_{pg} and m_{pv} colours determined by Roberts and Sandage (1955), does not indicate any correlation between period changes and mean magnitudes, nor does an examination of 14 stars in ω Centauri, with the period changes determined by Belserene (1964) and mean B, V magnitudes of Dickens and Saunders (1965). However, these are very small samples.

An explanation for observed period changes based on evolution also seems difficult because the patterns of observed period changes differ from cluster to cluster. In ω Centauri, there is a predominance of variables with increasing periods, while in M3, there are equal numbers increasing and decreasing, and about half of the stars investigated show irregular period changes. In M15 and M5, a significant proportion of the stars investigated have periods which have remained constant throughout the years of investigation. (Light curves for the variables in M5 with constant periods are shown in figure 9.)

In the case of a variable whose period appears constant, it is possible that the period is changing at a rate too slow to be detected, or that, if the change is abrupt, it has not occurred in the observed time interval. Assuming that the periods of the stars in M5 change abruptly, the period changes so determined are shown plotted against the values of β determined from the assumption that the period varies at a constant rate. With the exception of variable 98 (with an unreliable β), the points define a straight line with a slope slightly greater than unity (about 1.2) which seems to justify the determination of rates of period change by fitting intersecting straight lines to the diagram. This is useful because many of the phase-shift diagrams (that of variable 19 in particular) resemble straight lines more than parabolas.

It is important to determine whether or not the period changes are abrupt, because our interpretation of the observed constancy of period for some of the stars depends on this. To do this, we must accumulate observations for another 30 years and then plot new phase-shift diagrams for the stars which appear to have constant periods at the present time. If they do exhibit period changes, it will not be justified to consider them as variables with constant periods with regard to evolution.

Also we might arrive at the most suitable interpretation of the

FIG. 11—Projected period changes (days per million years) versus β (in days per million years).

diagrams by reinvestigating the stars with observed period changes. If the diagram is a parabola, then as different periods are tried, the parabola should retain its shape, but the position of the vertex should shift so that it occurs on the time axis at the point where the assumed period is actually the true period. If the diagram is best represented by two intersecting straight lines, then the point of intersection should always occur at the same time, as different periods are tested. The slopes of the lines would change, but the difference in slope should remain constant. This method is now being explored at the Asiago Astrophysical Observatory for some of the stars in M5. Before the possible evolutionary interpretations of the period changes observed in the different clusters can be considered, it is important that the significance of the apparent constancy of period for some of the stars be understood.

A very important point illustrated by this study is the necessity to observe the clusters at least once every two or three years. When there are ten-year gaps between series of observations, it becomes difficult in many cases, to know how to draw the diagram.

From this investigation, it does not appear that the period changes are caused by the effects of evolution. However, the time is approaching when we might expect to be able to determine such changes.

Acknowledgements

It is a pleasure to acknowledge the help we have received with this program. It was supported by a Province of Ontario graduate fellowship to C. Coutts and by grants from National Research Council of Canada. We express our gratitude to Dr. H. W. Babcock for the loan of the Mount Wilson plates, to Dr. Harlow Shapley and Miss Henrietta Swope for consultation about the double exposure plates, to the Directors and those staff members of the David Dunlap Observatory who have helped with the observational program during the 30 years, and to Dr. John Percy for discussion of the phase-shift diagrams.

References

Arp, H. 1962, Ap. J., 135, 311.

Balazs-Detre, J. and Detre, L. 1965. Remeis-Sternw. Bamberg, Kl. Veröff., 4, no. 40, p. 184.

Barnard, E. E. 1909, A. N., 184, 273.

Bartolini, C., Battistini, P. and Nasi, E. 1968, Bologna Pub., 9, no. 15.

Bartolini, C., Biolchini, R. and Mannino, G. 1965, Bologna Pub., 9, no. 4.

Belserene, E. P. 1952, A. J., 57, 237.

____, 1961, .4. J., 66, 38.

—, 1964, A. J., **69**, 475.

Bronkalla, W. 1959, J. N., 285, 181.

Christy, R. F. 1965, Remeis-Sternw. Bamberg, Kl. Veröff., 4, no. 40, p. 77.

Dickens, R. J. and Saunders, J. 1965. Royal Obs. Bull., no. 101.

Faulkner, J. and Iben, I. 1966, Ap. J., 144, 995.

Fritze, K. 1962, A. N., 287, 79.

Grubissich, C. 1956, Soc. Astr. Ital. Mem., 27, no. 3. Asiago Contr., no. 76.

Hett, J. H. 1942, A. J., 50, 77.

Izsak, I. 1957, Stern Ungar. Akad. Wiss. Budapest Mitt., no. 42, p. 63.

Kheylo, E. S. 1964. I. A. U. Inf. Bull. Var. Stars, no. 43.

_____, 1965, I.A.U. Inf. Bull. Var. Stars, no. 104.

_____, 1966, I.A. U. Inf. Bull. Var. Stars, no. 171.

Kulikov, V. I. 1961, Var. Stars (Russ.), 13, no. 6, p. 400.

Makarova, V. A. and Akimova, V. P. 1965, Var. Stars (Russ.), 15, no. 4, p. 350.

Mannino, G. 1956a, Soc. Astr. Ital. Mem., 27, no. 3; Asiago Cont., no. 75.

----, 1956b, Soc. Astr. Ital. Mem., 27, no. 3; Asiago Cont., no. 76.

Bailey, S. 1. 1917, Harvard Ann., 78, 157.

- Mantegazza, G. P. 1961, Bologna Pub., 8, no. 5.
- Margoni, R. 1964, Soc. Astr. Ital. Mem., 35, no. 2; Asiago Cont. no. 150. ——, 1965a, Asiago Cont., no. 170.
- ------, 1965b, Remeis-Sternw. Bamberg, Kl. Veröff., 4, no. 40, p. 249.
- _____, 1967, Asiago Cont. no. 198.
- Martin, W. Chr. 1938, Leiden Ann., 17, pt. 2.
- ____, 1942, Ap. J., 95, 314.
- Nobili, F. 1957, Soc. Astr. Ital. Mem., 28, no. 2; Asiago Cont., no. 81.
- Notni, P. and Oleak, H. 1958, A. N., 284, 49.
- Oosterhoff, P. Th. 1941, Leiden Ann., 17, pt. 2.
- Ozsvath, I. 1957, Stern. Ungar. Akad. Wiss. Budapest Mitt., no. 42.
- Roberts, M. and Sandage, A. 1955, A. J., 60, 185.
- Sandage, A. 1957, Ap. J., 126, 326.
- ——, 1965, Comment made at NATO school, Herstmonceux Castle.
- Sawyer, H. B. 1955, David Dunlap Obs. Pub., 2, no. 2.
- Sawyer Hogg, H. and Wehlau, A. 1965, David Dunlap Obs. Pub., 2, no. 19.
- Shapley, H. 1927, Harvard Bull., no. 851, 15.
- Sterne, T. E. 1934a, Harvard Circ., no. 386.
- ——, 1934b, Harvard Circ., no. 387.
- Szeidl, B. 1965, Stern. Ungar. Akad. Wiss. Budapest Mitt., no. 58.
- Wachmann, A. A. 1965, Über die Periodenanderungen einiger RR Lyrae-Sterne in Kugelhaufen M53. Astronomische Abhandlungen. Professor C. Hoffmeister zum 70. Geburtstage gewidmet. Leipzig, J. A. Barth.
- Wilkens, H. 1964, La Plata Sep. Astr., no. 54.
- Richmond Hill, Ontario
- December 30, 1968.

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

Number 2

STUDIES OF THE VARIABLES IN THE GLOBULAR CLUSTER NGC 6171

CHRISTINE M. COUTTS AND HELEN SAWYER HOGG

> 1971 TORONTO, CANADA

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

Number 2

STUDIES OF THE VARIABLES IN THE GLOBULAR CLUSTER NGC 6171

CHRISTINE M. COUTTS AND HELEN SAWYER HOGG

> 1971 TORONTO, CANADA

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

STUDIES OF THE VARIABLES IN THE GLOBULAR CLUSTER NGC 6171

By Christine M. Coutts* and Helen Sawyer Hogg

Abstract

The purpose of this investigation is to study periods of the variables in NGC 6171 over a long time interval and to look for period changes in the RR Lyrae stars. The study is based on a collection of 47 photographs taken at the David Dunlap Observatory between 1946 and 1969 and 24 photographs at Cerro Tololo in 1970 combined with published observations of other investigators dating back to 1935.

Twenty-three variable stars have been studied. Twenty-two of these are RR Lyrae stars, 10 of which show period changes. One of the variables is a long period variable with a period of 332 days. All the variables inside the cluster radius are RR Lyraes.

Introduction

NGC 6171 (Messier 107, R.A. $16^{h}29^{m}$.7, Dec. $-12^{\circ}57'$, 1950) is a globular cluster with a relatively high metal content. There are 24 variables which Oosterhoff (1938) discovered on fifteen plates taken with the Mt. Wilson 60-inch reflector in 1935. He published magnitudes for 23 of the stars and photometer readings for variable 22, which was much fainter than the others and below his magnitude sequence. His material was not adequate for period determination and the periods for these stars were not found until much later.

Mannino (1961) at Bologna and Kukarkin (1961) at Sternberg both investigated the periods of the variables. Mannino's work was based on 199 photographs taken with the Loiano 60-cm. reflector during 1959 and 1960. He made visual estimates of the apparent magnitudes for 15 of the variables and determined periods for 10. Kukarkin took 67 photographs of the cluster with the 40-cm. reflector at Sternberg, also during 1959 and 1960; he determined periods for 19 of the stars from visual estimates.

Thirty-one variables beyond the visible boundaries of the cluster have been announced. Kurochkin (1962, 1964) found 29, of which 14 are RR Lyrae and Kukarkin (1962) found 2, for one of which he determined an RR Lyrae period.

^{*}Visiting Astronomer, Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

The periods of the variables in the cluster given by Kukarkin and by Mannino agree fairly well for all except three, numbers 2, 3, and 8. Mannino considered all of these stars to be RR Lyrae variables of type c, while Kukarkin's results definitely show them all to be of type a, and in all three cases,

$$\frac{1}{P_K} = \frac{1}{P_M} - 1$$

where P_K , P_M are the periods by Kukarkin and Mannino respectively.

Variables 1, 11, 20, 22, and 24 were not measured by either Kukarkin or Mannino. Variables 1 and 22 were too far from the centre of the cluster to appear on their plates, and variables 11, 20, and 24 were too close to the centre to be resolved.

Since we began work on this cluster, Dickens (1970) has published an extensive paper on it, making use of some of our unpublished data. He studied all the variables except nos. 1, 22, and 24. His work is based on 25 U, 48 B, and 45 V plates of the cluster, all taken with the Mt. Wilson 100-inch telescope in 1966 and 1967.

Investigations at the David Dunlap Observatory

The observing program on NGC 6171 was begun by one of us (Sawyer Hogg) in 1946 with the 74-inch reflector. The David Dunlap Observatory collection includes 46 photographs taken with this telescope in 10 different years between 1946 and 1969 and one photograph (D250) taken with the 16-inch reflector on the campus of the University of Toronto in 1969. This material has been supplemented by 24 plates taken by Coutts with the Curtis 24-inch Schmidt of the University of Michigan on Cerro Tololo in 1970.

Twenty-three stars have been measured on the David Dunlap plates. Variables 6, 7, 8, 9, 11, 20, and 24 were measured visually, the others with an iris photometer. Variable 22, probably not a cluster member, was again too far from the centre of the cluster to appear on the David Dunlap plates and it was not studied. All measures of the variables on the Cerro Tololo plates were made with an iris photometer, but variables 9, 11, and 24 were too crowded for measurement. The photographic magnitudes and heliocentric Julian Days are in Table I. Variable 1 is considered separately later. All the observations up to and including Julian Day 2440393 are from David Dunlap plates; all later observations are from Cerro Tololo.

The adopted periods are listed in Table II, which also gives the photographic magnitudes at maximum and minimum light, the ampli-
TABLE I

Photographic Magnitudes

				TA	BLE I	. PH	OTOG	RAPH	IC M	AGNIT	UDES
Dunlap	Julian Day	No.2	No. 3	No.4	No.5	No.6	No.7	No.8	No.9	No.10	No.11
12068	31970,762					15.65	15.95		16.20		16.05
12116	76,729	15.67	15,92	15,91	15.93	15.70	15,95	15.95	15.80	16.23	16.05
12121	,767	15.84	16.00	15,63	15,98	15,70	16,05	16,00	16,00	16,22	16.05
12140	77,709	16.41	15.54	15,74	16.17	15,70	15.75	15.40	15.85	15.41	15.65
12261	99.720					16.10	16.10	16.00	15.70		15.85
12280	2000.695					15.85	16.10	15.50	15.70		16.25
12326	04.682	15.53	16.09	15.56	15.66	16,25	15.85	15.55	16.25	16.32	16.20
13400	354.693	15.50	16.10		16.03	16.05	16.50	15.95	15.80	16.06	15.70
13426	55.712	16.36	16.09	15.55	16.24	16,00	16,40	15.40	16.05	16.22	16.05
13446	56.674	16.28	15.82	16.06	15.86	15.70	16.45	16.35	16.00	15,38	16,00
13447	.697	16.30	15.75	16.09	15,96	15,75	16.40	16.40	16.30	15.39	16,00
13462	57.675	15.89	15.62	15.52	16,19	16,00	16,40	16.35	16,15	16,23	15.70
14512	133.019	16 34	10,12	15,90	15,00	16.00	16 20	15 95	16.00	16 20	16.00
14517	34 661	16 22	16 12	15.00	16 08	16 05	16 15	16 35	16 10	16 33	16.05
14542	739	16 32	16 18	16 15	16 21	16 20	16 30	15 40	16 20	16 43	15 65
20077	4538, 691	16.34	15,62	16.04	16.19	15.80	16.25	16.40	16.00	16.08	15,60
20229	72.634	16.02	15,82	15.85	15.93	16.35	16,50	16,30	16.00	16.35	16.05
20241	73,647	15,91	16,26	16,05	16,24	16,20	16,20	15,95	16,05	16.03	15,80
20275	75,612	16,23	15.80	16.11	16.20	15.80	16.30	16.35	16.10	15.67	16.05
21416	930,630							16.45	15.70		15.95
21424	31.636							16.35	15.75		
22472	5307.634	15.94	16.23	15.66	16.22	16.25	16.35	15.50	15.70	16.38	15.85
22475	.673	16.25	16.28	15.67	16.25	16,15	16.45	15.65	15,65	16.52	16.15
26830	8198.715	16.09	16.01	15.76	16.26	15.95	16.25	16.40	16.15	15.41	15.70
26833	.744	16.19	16,06	16,00	16.47	16,10	15.95	16,15	16.25	15.66	15.70
26850	99.679	15.75	15.53	15,22	15.86	15,75	16.05	15 00	16 10	16 09	10.00
26852	. 702	15.09	15.04	15,90	15,80	15.15	16.10	16.00	16 15	16,00	16 10
20000	. 140 593 794	15,75	16 24	15,05	16.09	16.00	15,05	15 54	16 10	16 38	16.05
27545	84 638	16 14	15 88	15 88	16 12	15 60	16.00	16 23	15 70	16.36	15.60
27561	87 712	16 18	15 96	15 70	16.30	15.60	15.60	15.73	15.90	15.72	15.70
29101	9265,794	16,00	16.33	16,13	15,95	16.10	16.25	15.95	15,60	16.20	15,95
29105	.837	16,05	16.45	16,18	15,39	16,25	16,25	16,10	15,60	15.27	16.10
29144	70.834	15,70	16.32	15.81	15.58	15.85	16.25	15.85		15.41	16.10
29160	71,738		15.75	16.16	16.12	15.85	15.80	16.15	16.05	15.78	16.05
29166	39271.787	16.40	15,97	15.91	16.14	15.95	16.10	15.45	16.05	15.87	16.15
29171	.834	16.25	15.98	15.87	16.05	16.15	16.05	15.20	15.95	16.20	16.25
29557	357,580	10 00	16,13	15.77	16.35	15.05	15.60	15.90	15.05	16.20	15.80
22142	40354.772	16 50	15.61	16.02	16.00	16 10	16.00	16 15	15 85	16 20	
D250	82 735	16.05	16 06	10.02	15 92	15 70	15 60	15 35	10.00	16.22	
32203	89 690	16.05	15 80	15.70	15.95	15.75	15.70	16.15	16.10	16.10	15.80
32206	,733	16.30	16,10	15,98	16.05	15,60	15.60	16,40	16.05	16.31	16.05
32210	.777	16.15	16.11	16.05	16,10	15,75	15.85	16,25	15,95	16.20	16.05
32228	93.703	16.25	15,95	15,95	16,40	15.90	15.55	16.25	15.60	15.65	
32231	.745								15.55	15.95	
C. T. I. O											
6408	691.892	16.54	16.34	16.00	16.15	16.18	15.94	15.50		15.70	
6417	92.681	16.15	15.92	15.96	16.23	15.71	15.88	16.06		15.86	
6428	.889	16,06	16,21	16.12	16.27	15.92	15.96	15.04		15.16	
6438	93.681	16.72	15.98	16.18	16.25	15.67	15,90	15.86		15.25	
6443	.801	16.53	16.10	15.84	16.06	16.00	15.90	15.98		15.82	
6447	.874	15.88	15.98	15.83	16.13	16.43	16.03	15.85		15.93	
6477	94.912	16.69	15.88	15.88	16.40	16.24	15.90	16.09		15.20	
6491	93,878	16.42	16.27	10.21	16,11	15.03	10.00	15.09		15.07	
6027	100,193	16 53	16 35	16 23	16 20	16 32	15 00	15.55		15.04	
6931	47 669	16 18	16 19	16 02	16.35	16 16	15,92	15.92		15.00	
6945	49,679	16.46	16.27	15.72	16.27	15.76	16.29	16.00		15.83	
7031	801.476	16.45	16,00	16.41	16.23	15.98	15,47	15.69		15.47	
7043	.606	16.64	16.39	15.90	16.43	16.16	15.88	15,61		15.54	
7065	02,586	16.35	16.04	16.19	16.00	16,17	15.80	15.61		15.18	
7077	03.486	16.00	16.39	16.22	16,20	16.30	15.45	15.88		15.37	
7087	.632	16.20	15.90	15.94	16.16	16.06	15.96	15.73		15.59	
7107	05.663	16.47	16.17	16.21	16.25	15.81	16.09	15.72		16.00	
7115	06.493	16.21	15.98	16.12	16.41	16.10	15.59	16.15		15.82	
7119	.560	16,19	16.04	16.35	16.41	16.19	15.92	15.37		15.81	
7155	08.469	16.68	16.17	16.43	16.37	15.53	15.52	15.94		15.80	
7166	.013	16 35	16 20	15.84	16 10	15,00	15,84	15.61		16 10	
7172	. 634	16.54	16,15	16.23	15.92	15.78	15,96	15, 59		15.24	

No.	12 No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20	No.21	No.23	No.24
		16,10						15.75			15.25
16.	18 16.43	16.20	15,63	16.43	16.29	15.75	15.92	15.75	16.29	16.05	15.85
16.	23 16.43	16.30	15.80	16.38	16.31	15.74	15.88	15.65	16.28	16.14	15.75
16.	40 16.52	16.20	16.12	16.26	16.17	16.31	16.12	15.45	16.65	16.08	15.95
		16.10						16.00			15,95
1		16.15						15.30			15,90
16.	40 16.20	16.15	15,71	15.60	16.16	16.38	15.89	15.35	16.53	15.90	15.20
16.	54 15.67	16.15	16.03	16.26	15.87	16.53	16.10	15.60	16.38	15.88	15.45
16.	44 16.20	16.60	16.10	16.52	15.44	16.38	16.28	15.55	16.55	16.04	15.35
16.4	48 16.30	16.35	16.19	15.97	16.45	16.00	15.81	16.00	16.56	16.23	15.95
16.	55 16.52	16.20	16.21	16.12	16.37	16.10	15.76	15.80	16.49	16.24	16.05
16.	58 16.56	16.40	15.60	15.82	16.21	15.79	16.25	15.80	16.79	16.17	15.85
	15.30	16.15	15.69	16.12	16.28	16.07	16.12	15.55	16.56	16.08	16.05
16.4	45 15.75	16.15	15.82	16.25	16.26	16,27	16.36	15.40	16.78	16.22	16.00
16.0	57 15.60	16.05	16.09	15.89	16.12	16.01	15.88	15.85	16.41	16.11	15.80
15.3	25 16.32	16.35	16,29	16.13	16,24	15.77	15.92	15.95	16.65	16.28	15.85
15.6	6 16,57	15.65	16.27	16.35	15.88	16.38	16.18	15.65	16.38	16.19	15,80
16.4	11 16,58	16.15	15.93	16.29	16.30	16.53	16.01	15.45	16.78	16.18	15.65
15.4	16 16,50	16.15	16.16	16.33	16,23	16.36	16.20	15.70	16.68	16.13	15.45
12.8	30 16.72	16.60	16,19	15.88	15.40	16.51	15.90	15.50	16.44	15.83	16.05
		15.45						15.55			15.95
		15.50									
10.0	15.79	16,45	15.85	15.88	16,26	16.57	16.15	15.65	16.49	16.02	15,20
15.0	10 10 45	16.50	15.89	15.96	16,38	16.07	15.96	15.75	16.46	15.90	15.30
16	10,45	16.20	15.03	15.00	16.12	16.39	16.03	15,60	16.38	15.78	15.85
10.4	10	16 50	15.05	15,95	10,28	10,44	15.82	15.65	16,37	15.70	15.70
16 1	16 56	16.20	16 17	15 70	15 00	16 05	16 20	15 45	10 00	15 05	15.55
16 4	14 16 55	16 15	16 17	15 00	16.05	16.30	16,38	15.45	16 50	15.00	16.00
16.4	4 16.33	15 60	15 98	16 48	16 44	16 40	15 07	15.25	16,59	10.04	10,10
16.4	13 16.14	15.40	16.19	16 22	16 03	16 30	16 14	15.00	16 36	16 35	15,95
15.7	16.26	16.20	15,66	16.07	16 16	16 37	16 26	15,40	16.33	15 86	15.65
16.0	1 16.15	15,65	16.17	15.97	15.49	16.08	15.83	15.55	16 35	16 04	15.55
15.7	16.40	16.00	15.99	16.17	15,75	16.05	15.49	15.55	16.45	16.11	15.70
16.1	15 15.85	16,15	15.62	16,42	15,45	15.75	15.74	15.70	16.55	16.15	15 95
16.0	5 15.95	16,10	15,90	16.40	16.24	16.48	15.94	15.85	16.30	16.20	15.55
16.3	16.23	16.15	16,15	16.46	16,28	16.45	16.38	15,85	16.50	16.30	16.15
16.2	16.41	16.15	16.11	16.53	16.53	16.31	16.39	15,75	16,55	15,95	16.00
15.8	15.62	16.15	16.15	16.50	16.31	16.16	15.80	15.70	16.55	16.05	15.70
16.0	16.10	16.00	15.71	15.96	16.14	16.51	16.15	15.70	16.50	15.95	16.10
		16.15	15.89	16.43	16.02	16.54	16.10	15.75	16.65	15.93	15.70
16.4	16.05	16.10	15,82	16.08	16.17	16.34	16.54	15.55	16.35	16.28	15.30
16.1	2 15.89	16.25	15.89	16.59	16,19	16,68	16.00	15.45	16.30	15.85	15,90
16.2	16,16	15,55	15,95	16.70	16.05	16.26	16.19	15.65	16.45	16.00	16.10
16.3	16.37	15.20	16.07	16.21	15.43	16.32	16.08	15.70		15,99	16.10
10.0	15 16,50	15.55	15,82	16.24	15.30	16.30	15,70	15.45	16.60	16.03	15.65
10.0					15.44					16.23	
15 6	6 16 13	16 22	15 95	16 36	15 70	16 02	16 20	16 15	16 46	10.00	
15.6	9 15.88	15 24	15.86	15 90	16 18	16 46	16 35	15,15	10,40	16, 10	
15.6	8 16.25	16.22	16.03	16.37	15 52	16 56	16.07	15 30	16 60	16 12	
15.6	0 16.10	15.32	16.17	16.01	16.09	16 28	16 17	15 10	16 48	15 90	
15.6	16.46	16,20	16.10	16.30	16.24	16.39	16.50	15.15	16 47	16 33	
15.9	0 16.34	16.32	15.85	16.13	15.93	16.40	16.18	15.34	16.63	16 18	
16,1	3 15.28	16.40	16.27	16.38	16.26	16.60	16.46	15.20	16.80	16.03	
15.9	7 15.49	16,30	15.84	16.27	16.11	15.97	16.03	15.38	16.46	16,11	
15.7	0 16.30	16.15	16.23	15.76	16,05	16.13	16,19	15,20	16.36	16.14	
15.7	1 16.23	16.32	16.25	16.39	15.59	16.31	16.37	15,18	16,53	16,23	
15.4	1 15.45	15.69	16.20	16.33	16.20	16.60	16.39	15.24	16.60	16.02	
15.8	16.08	16.14	16.25	16.16	15.96	16.31	15,96	15.18	16.70	16.14	
15.4	4 15.96	16.23	15.88	16.25	16.08	16.02	16.20	15.20	16.35	16.35	
15.5	9 16.23	15.67	16.04	16.31	16.12	16.56	16.27	15.40	16.70	16.06	
15.6	5 16.26	15.71	16.10	16.22	15.96	16.12	16.37	15.13	16.44	16.12	
40.00		15 94	15 88	16 10	15.71	16.70	16.08	14.94	16.52	16.37	
15.5	4 16.25	15.24	10.00	10.10							
15.5	16.25 16.15	15.24	16.12	16.29	15.88	15.84	16.45	15.14	16.49	15.92	
15.5	16.25 16.15 2 16.00	15.24 15.86 16.15	16.12 16.17	16.29 16.27	15.88	15.84 16.58	16.45 16.20	15.14 15.22	16.49 16.43	15.92 16.19	
15.5 15.8 16.0	16.25 16.15 2 16.00 8 15.45	15.24 15.86 16.15 16.16	16.12 16.17 16.08	16.29 16.27 16.17	15.88 15.55 16.15	15.84 16.58 15.92	16.45 16.20 16.33	15.14 15.22 15.06	16.49 16.43 16.74	15.92 16.19 15.92	
15.5 15.8 16.0 15.9	16.25 16.15 16.00 15.45 15.86 16.25	15.24 15.86 16.15 16.16 16.29	16.12 16.17 16.08 16.16	16.29 16.27 16.17 15.79	15.88 15.55 16.15 16.22	15.84 16.58 15.92 16.17	16.45 16.20 16.33 16.00	15.14 15.22 15.06 15.26	16.49 16.43 16.74 16.76	15.92 16.19 15.92 15.94	
15.5 15.8 16.0 15.9 16.2	16.25 16.15 16.00 15.45 15.86 16.35 16.15	15.24 15.86 16.15 16.16 16.29 15.96	16.12 16.17 16.08 16.16 15.94	16.29 16.27 16.17 15.79 16.58	15.88 15.55 16.15 16.22 15.76	15.84 16.58 15.92 16.17 16.62	16.45 16.20 16.33 16.00 16.09	15.14 15.22 15.06 15.26 15.32	16.49 16.43 16.74 16.76 16.35	15.92 16.19 15.92 15.94 16.10	
15.5 15.8 16.0 15.9 16.2 15.4 15.4	4 16.25 16.15 2 16.00 8 15.45 94 15.86 10 16.35 12 16.18 9 15.98	15.24 15.86 16.15 16.16 16.29 15.96 16.17 16.15	16.12 16.17 16.08 16.16 15.94 16.06 16.00	16.29 16.27 16.17 15.79 16.58 15.90	15.88 15.55 16.15 16.22 15.76 15.94	15.84 16.58 15.92 16.17 16.62 16.80	16.45 16.20 16.33 16.00 16.09 16.27	15.14 15.22 15.06 15.26 15.32 15.28	16.49 16.43 16.74 16.76 16.35 16.80	15.92 16.19 15.92 15.94 16.10 16.14	

	Ph M	iotograph Iagnitude	ic es	Freeh	Poriod	0		
Variable	Max.	Min.	Amp.	of Max	days	days/10 ⁶ yr.		
1	14.0	17.0	3.0	40504.	332.			
2	15.6	16.4	0.8	40389.502	0.5710205			
3	15.55	16.25	0.7	40389.595	0.566343			
4	15.5	16.15	0.65	40389.628	0.2821317			
5	15.7	16.25	0.55	40389.709	0.70238	0.9		
6	15.7	16.25	0.55	40389.740	0.2602558			
7	15.6	16.55	0.95	40389.696	0.49959	-0.15		
8	15.4	16.45	1.05	40389.957	0.559921	-0.25		
9	15.95	16.35	0.4	40389.583	0.3206025	0.15?		
10	15.4	16.6	1.2	40389.532	0.4155329	1.1		
11	15.8	16.45	0.65	40389.611	0.592808	-0.21		
12	15.25	16.5	1.25	40389.593	0.472956	2.2 to -1.1		
13	15.35	16.6	1.25	40389.596	0.466797			
14	15.4	16.5	1.1	40389.763	0.4816129	0.5		
15	15.6	16.25	0.65	40389.687	0.2885895			
16	15.65	16.5	0.85	40389.853	0.5228709	-1.6		
17	15.4	16.45	1.05	40389.761	0.561154			
18	15.75	16.5	0.75	40389.898	0.564378			
19	15.75	16.3	0.55	40389.822?	0.2787622			
20	15.65	16.4	0.75	40389.653	0.5781113			
21	16.3	16.6	0.3	40389.704	0.258125			
23	15.5	16.2	0.6	40389.725	0.3233436			
24	15.65	16.45	0.8	40389.615	0.3462153	-0.35?		

TABLE II

ELEMENTS OF TWENTY-THREE VARIABLES

Remarks to Table II

Variables for which no β is given here are considered as having constant periods and their light curves are shown in Figure II. Values of β have been determined on the assumption of linear period change, as represented in the phase shift diagrams in Figure I.

- V7 Period derived from Kukarkin's alternate period 0.4996. His favoured period 0.3332065 did not fit the David Dunlap observations. Period decrease seems indicated but a constant period is not ruled out.
- V9 Period increase seems indicated, but a constant period is not ruled out.
- V11 Adopted period derived from that of Dickens (0.59280). The value of β is uncertain. The phase-shift diagram is better represented by an abrupt change of period than by a linear change (i.e. two intersecting straight lines rather than a parabola).
- V12 The assumed period indicates both an increase and decrease of period over the 35 year interval. If instead, the phase-shift diagram was constructed with P = 0.472972, a period decrease of 1.6 days per million years would be indicated. The adopted period is that which gives the smaller dispersion of points in the phase-shift diagram over the 35 year interval.
- V20 Period derived by us and confirmed by Dickens.
- V21 Probably not a cluster member.
- V24 Period derived by us, but uncertain because there were no observations by Kukarkin, Mannino or Dickens. An alternate period, P = 0.529586 is possible.

FIG. 1—Phase-shift diagrams (phase-shift vs. year). The marks along the vertical axis are one tenth of a cycle apart. Vertical bars represent probable errors.

FIG. 1, cont'd—Phase-shift diagrams (phase-shift vs. year). The marks along the vertical axis are one tenth of a cycle apart. Vertical bars represent probable errors.

tudes, the epochs of maximum light and β , the rate of period change in days per million years. The periods were derived from those of Kukarkin (1961) except for variable 7, where we chose his alternate period, and variables 1, 11, 20, and 24. Dickens (1970) has studied variables 11 and 20; he confirmed a value of the period for variable 20 which we communicated to him (Coutts 1964), but ruled out our period for variable 11 so the period we have adopted for this star is based on his value. We are not certain about our value for the period of variable 24 and have suggested an alternative, but it does not fit the observations as well.

FIG. 2—Light curves for stars with constant periods. The phase is in fractions of a period. Triangles represent the observations from Mt. Wilson (1935), closed circles from the David Dunlap Observatory, and open circles from Cerro Tololo. For variable 20, only the David Dunlap observations are plotted because there are large systematic differences in magnitudes between the observations from different observatories.

FIG. 2, cont'd—Light curves for stars with constant periods. Triangles represent the observations from Mt. Wilson (1935), closed circles from the David Dunlap Observatory, and open circles from Cerro Tololo. For variable 6, only the Mt. Wilson and David Dunlap observations are plotted because the star is not resolved on the Cerro Tololo plates and the magnitudes are brighter.

We have investigated the variables for period changes by the method described by Belserene (1964). Using the periods of Table II, light curves for the Mt. Wilson 1935 observations were drawn on tracing paper and fitted to the curves for other years to determine the phase shifts. The phase shift data are shown in Table III and the diagrams in figure 1. For twelve of the stars, no period change is indicated over the time interval 1935–1970. Light curves for these stars are shown in figure 2. For the stars which have period changes, β has been calculated as for Messier 5 by Coutts and Sawyer Hogg (1969). Standard parabolas for different values of β/P^2 were fitted visually to the phase shift diagrams and the best value of β calculated. These values of β are listed in Table II and the relationship between β and period is shown in figure 3.

70

	No. 11 No. 12	00.	.0020	.02	.1803	0202	.02 .00		02	No. 23 No. 24	00	02 .07	.00	02	.03 .16	0805	02	.01 .01	.02
	No. 10	0.00	- 1.20	24	09	03	02		.08	No. 21	00	.06	.02	.03	.04	.07	.06	00.	.02
	No. 9	00.00	00 14	09	10	- 00	10	04		No. 20	00	03	04		04	04	07	02	00.
period)	No. 8	00.	90. 20.	.04	.07	.06	.05	.03	03	No. 19	00	05	00.	00.	.03	03	04		.02
actions of a	No. 7	00.	- 10	.05	02		.01	00.	02	No. 18	00	00.	00.	.02	00.	.01	00.	04	00.
HIFTS (in fr	No. 6	00.	9 <u>9</u>	02	.04	00.	.05	00.	.05	No. 17	00	0.	03	05	.05	00.	.02	.03	.05
PHASE SI	No. 5	00 [.]	14 14	12	13	08	11	05	04	No. 16	00	.25		.25	.23	.08	.07	.03	02
	No. 4	00.	10. – 10. –	03	01	01	02	09	03	No. 15	00.	01	.01	00.	13	05	04		00.
	No. 3	00.	8.8.	00.	.11	.02	.07	.06	.02	No. 14	00.	10	12	02	07		.03	.06	.02
	No. 2	00.	38. -	00.	00.	10	00.	02	.00	No. 13	00.	02	.03	00.	03	.04	00.	03	
	Year	1935	1940-40	1959 - 60	1963 - 64	1966	1966-67	1969	1970	Year	1935	1946 - 48	1953 - 55	1959 - 60	1963-64	1966	1966-67	1969	1970

71

FIG. 3—The rate of change of period β (in days per million years) vs. period (in days). Vertical bars represent the probable errors in β for stars with changing periods.

Variable 1

Variable 1 (V720 Oph) is a long period variable. It is located 8'.9 from the centre of the cluster. The cluster radius is given as 6'.4 by Kron and Mayall (1960). Owing to the distance of this variable from the centre of our plates and the fact that it is brighter than the standard sequence of Oosterhoff at maximum and fainter at minimum it is difficult to determine the magnitudes accurately. In Table IV, we give mean photographic magnitudes and mean Julian Days for all observations separated by less than a week. The period of this variable appears to be very long, 332 days. Its light curve is shown in figure 4. According to Feast (1965), no Mira variables with periods greater than 220 days have been found to be members of globular clusters. He is currently working on the important problem of the membership of this star.

FIG. 4—Light curve for variable 1. The phase is in fractions of a period. Open circles represent the observations of 1935, closed circles 1946–48, open triangles 1953–55 and closed triangles 1963–70.

TA	ΒL	Æ	IV

MEAN POINTS FOR LIGHT CURVE OF VARIABLE 1

Julian Day	Magnitude
31970	14.85
32000	15.75
32328	15.5
32355	16.15
32734	17.0
34540	14.1
34570	14.1
34930	15.5
35308	15.9
38199	14.2
38585	15.25
39265	16.0
39357	17.0
40355	17.0
40390	17.0
40449	14.0
40692	17.0
40708	17.0
40747	14.7
40801	14.0
40809	14.0
40862	14.0
40870	14.0
40880	15.0

Discussion

There are twenty-two RR Lyrae variables in NGC 6171. Of these, fourteen are of Bailey type a, b and eight type c. One of the type cvariables, no. 21, is fainter than the others and is probably not a cluster member. Dickens (1970) excludes this variable from his discussion of the properties of RR Lyrae variables in NGC 6171. The number of RR Lyrae type c variables is therefore seven. The mean period of the a, b stars is 0.54 days, and of the type c stars 0.29 days. These periods are short for their types, a feature which is characteristic of relatively high metal content. This is expected because the Morgan class of the spectrum is V (Sandage and Katem 1964) and in the colour-magnitude diagram, the horizontal branch is heavily populated on the red side of the RR Lyrae gap (van Agt 1961, Sandage and Katem 1964). The period-amplitude relation is shown in figure 5 and the period-frequency distribution in figure 6. These diagrams indicate that NGC 6171 is a cluster of the Oosterhoff type I, or, as Dickens (1970) notes, it might even represent a somewhat shorter period group.

We have found that almost half of the variables show period changes during the 35 year interval of observations. Four have increasing periods (median rate 0.7 days per million years) and five decreasing (median rate 0.25 days per million years). One variable, no. 12 appears to have had an increase and a decrease in its period over the 35 year interval. Behaviour like this raises doubt that observed changes are caused by evolutionary effects in the stars. Also it can be seen from figure 1 that the observations for both variables 10 and 11 would be better represented by two intersecting straight lines (indicating an abrupt period change) than by a parabola (indicating a uniform change). This problem of the interpretation for phase-shift diagrams was discussed for six stars in M5 by Coutts (1969) who concluded that the hypothesis of abrupt period change was usually better than that of the uniform change.

The period changes for these variables in NGC 6171 are large compared with those in M5 where 20 stars have increasing periods (median 0.05 days per million years) and 12 have decreasing periods (0.075 days per million years). However, we must keep in mind the fact that with observations over a time interval of only 35 years in NGC 6171, the minimum value of β that can be detected when P = 0.5 is 0.15 days per million years.

The period changes of the RR Lyrae variables in M3 are of about the same order of magnitude as those we observe in NGC 6171 and in both clusters there are about the same number increasing as decreasing. On the other hand, almost all the RR Lyrae stars investigated in ω

FIG. 5—Period-amplitude relation. The amplitude in photographic magnitudes was calculated from the David Dunlap observations.

FIG. 6-Period-frequency distribution of the RR Lyrae stars.

Centauri show increases in period. If the observed dispersion in period changes is due to some random noise as Iben and Rood (1970) commented, it would appear that the RR Lyrae periods are increasing at a rate of 0.1 days per million years. These authors pointed out that one of their models for horizontal branch stars (Y = .30, Z = 10⁻⁴) gave a reasonable fit to the observed period changes of the RR Lyrae stars in ω Centauri. They found that a model with Y = 0.30, Z = 10⁻³ gave an approximate fit to the observations in M3. It appears that the period changes found for the variables in M5 and NGC 6171 are similar to those in M3 and give a reasonable fit for Iben and Rood's models. However, if the observed increases and decreases are both caused by evolutionary effects, most theories indicate that increases and decreases

FIG. 7—Colour-magnitude plot of the RR Lyrae variables in NGC 6171. The data are taken from Dickens (1970). Arrows pointing to the right indicate period increases; and those to the left, period decreases.

should be at different rates and consequently we should find more periods changing in the direction in which the evolution is slower. This is not the case in any of these clusters.

Figure 7 shows the positions of the RR Lyrae variables in a colourmagnitude plot. The data have been taken from Dickens (1970). Arrows indicate the direction of the period change (if any). The most noticeable feature of this diagram is the absence of period change among the type c variables with $\langle B - V \rangle < 0.60$. It is possible that these stars have constant periods because they are changing the direction of their evolutionary path in the HR diagram.

At the present time, it seems doubtful that the observed period changes are caused by evolution of the stars. It is interesting to note, however, that the period changes indicate a difference between ω Centauri and M3, M5 and NGC 6171. These latter clusters are of the Oosterhoff type I while ω Centauri belongs to the longer period type II group. Belserene (1956) pointed out that ω Centauri appears to be a cluster relatively poor in RR Lyrae variables when their numbers are compared with all the other horizontal branch stars. On the other hand, according to her investigation M3 and M5 are richer and NGC 6171 is one of the richest clusters. The reality of the separation of the clusters into two groups according to the period changes of their RR Lyrae stars can be better established when the variable rich and metal poor cluster M15 is reinvestigated.

Acknowledgements

It is a pleasure to acknowledge the help we have received with this program. It was supported by a Province of Ontario Graduate Fellowship to C. M. Coutts and by grants from the National Research Council of Canada. We express our gratitude to the Directors and staff of the David Dunlap Observatory who helped with the observational program during the 24 years and also to Dr. Victor Blanco and the staff of the Cerro Tololo Inter-American Observatory for making observing time on the Michigan Schmidt telescope available to us.

References

van Agt, S. L. Th. J. 1961, B.A.N., 15, 327.

Belserene, E. P. 1956, Contrib. Rutherford Obs. No. 33, 13.

_____, 1964, A. J., 69, 475.

Coutts, C. M. 1964, Master's Thesis, University of Toronto.

Coutts, C. M. and Sawyer Hogg, H. 1969, David Dunlap Obs. Publ., 3, no. 1.

Dickens, R. J. 1970, Ap. J. Supplement, no. 187.

Feast, M. W. 1965, Obs., 85, 16.

Iben, I. and Rood, R. T. 1970, Ap. J., 161, 587.

Kron, G. E. and Mayall, N. U. 1960, A. J., 65, 581.

Kukarkin, B. V. 1961, Peremennye Zvezdy Bjull., 13, 384.

, 1962, Peremennye Zvezdy Bjull., 14, 21.

Kurochkin, N. E. 1962, Peremennye Zvezdy Bjull., 14, 15.

-----, 1964, Peremennye Zvezdy Bjull., 15, 164.

Mannino, G. 1961, Bologna Pub., 7, no. 18.

Oosterhoff, P. Th. 1938, B.A.N., 8, 273.

Sandage, A. and Katem, B. 1964, Ap. J., 139, 1088.

Szeidl, B. 1965, Stern. Ungar. Akad. Wiss. Budapest Mitt., no. 58.

Richmond Hill, Ontario May 26, 1971

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

NUMBER 3

VARIABLES IN MESSIER 5: A STUDY OF MOUNT WILSON 1917 OBSERVATIONS

CHRISTINE M. COUTTS

1971 TORONTO, CANADA

.

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

Number 3

VARIABLES IN MESSIER 5: A STUDY OF MOUNT WILSON 1917 OBSERVATIONS

CHRISTINE M. COUTTS

1971 TORONTO, CANADA

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

VARIABLES IN MESSIER 5: A STUDY OF MOUNT WILSON 1917 OBSERVATIONS

By Christine M. Coutts

Abstract

This paper portrays the light curves and gives the epochs of maximum light for 62 variables from Shapley's 1917 collection of photographs of M5. This completes the publication of their magnitudes.

Messier 5 is the fifth globular cluster in richness of variable stars, being surpassed only by Messier 3, Omega Centauri, IC 4499 and Messier 15. Of its 97 variables, 93 are of the RR Lyrae type. The other types represented are W Virginis (nos. 42 and 84), irregular (no. 50) and SS Cygni (no. 101). Periods have been determined for 91 of the RR Lyrae stars (Bailey 1917, Shapley 1927 and Oosterhoff 1941). Period changes have been investigated by Coutts and Sawyer Hogg (1969), and independently by Kukarkin and Kukarkina (1969).

This paper presents the results from the measurement of Shapley's collection of photographs taken with the Mount Wilson 60-inch telescope on eight different nights in 1917. When the periods were published by Shapley in 1927, the individual magnitudes from the plates were not given. For the above-mentioned study of the period changes, Dr. H. W. Babcock, Director of the Hale Observatories, kindly lent us the plates for measurement. The 1917 series on Seed 27 blue-sensitive emulsion consists of 115 exposures on 59 plates. Most of the plates have double exposures with the two images separated by approximately half a millimetre. Previously (Coutts and Sawyer Hogg 1969), measures from 62 exposures on 32 of the plates were published. The present paper, with results from 51 exposures on 26 plates, completes the study. One plate, no. 3753, was not measureable.

Only sixty-two of the 97 variables were measured. The double exposures made measuring difficult in crowded areas and where the resolution was insufficient. Of the 62, 61 are of the RR Lyrae type. The other is the W Virginis star no. 42, with a period of 25.738 days. (The W Virginis, no. 84, was too crowded for measurement.) The stars were measured with a Cuffey iris astrophotometer. The photographic sequence was derived by converting Arp's (1962) B, V sequence to the photographic system. The photographic magnitudes of the 62 variables are listed in Table I with the heliocentric Julian days of the observations. Attempts were made to determine which of the two exposures

					TABL	EI: PI	HOTOGI	RAPHIC	MAGN	ITUDES
Plate	Julian Day	No.1	No.2	No.3	No.6	No.7	No.8	No.9	No.10	No.11
3802	2421424.678	15.26	15.42	15.38			14.71	15.09	15.65	
	.680	15.36	15.42	15.36			14.76	15.07	15.70	15.24
3804	.697	15.69	15.69	15.72	14.84		15.20	15.09	15.76	15.20
	.699	15.69	15.91	15.81			15.26	15.00	15.65	15.72
3805	.716	15.85	15.50	15.85	14.72	15.77	14.97	14.82	15.69	
	.717	15.81	15.85	15.65			15.30	14.78	15.80	
3807	.733	15.50	15.57	15.50	14.96	15.57	15.14	14.67	15.77	15.72
	.735	15.57	15,65	15.45		15.65	15.20	14.59	15.65	15.48
3808	.749	15.42	15.95	15.62	14.76	15.20	15.33	14.57	15.91	15.24
	.750	15.54	15.66	15.50		15.05	15.40	14.62	15.69	15.48
3810	.769	15.54	15.91	15.57		14.45	15.38	14.59	15.70	15.50
	.771		15.91	15.69		14.50	15.42	14.65	15.68	15.72
3811	.785	15.76	15.69	15.69		14.38	15.45	14.74	15.80	15.50
	.787	15,85	15.76	15.69		14.38	15.45	14.76	15.99	15.42
3813	.803	15.81	15.60	15.65		14.55	15.54	14.73	15.80	15.54
	.805	15.65	15.57	15.45		14.53	15.38	14.84	15.72	15.38
3814	.820					14.73	15.48	14.91		
	.821					14,78	15,60	14.91	15.6	15.54
3816	.842			15 00	14 00	15 05	14 50	15 00	15 50	15 00
3817	25.679	15.38	15.72	15,36	14,90	15.85	14.78	15.33	15.73	15.00
0010	.681	15.33	15.57	15.33	10.10	15.77	14.62	15,28	15.75	15.05
3819	.697	15.50	15.50	15,42	15,15	15,79	14.71	15,40		14,90
2000	.099	15.47	15,40	15,38	15 07	19.00	14, (1	15,20	15 79	10.02
3820	. (13	10,00	15.72	15,30	10.07	15 00	14.04	15 22	15 05	14.90
2000	. (15	15,04	15.69	15,30	16 16	15,09	14.07	15,33	15,00	15,14
3022	. (33	15,07	15,00	15,40	15.15	15 33	1/ 20	15 33	15,00	15.11
3093	, (J) 751	15.57	15,02	15.40	15 12	14 73	15 26	15 38	15.85	15.20
3023	. 753	15.57	15 60	15 40	14 98	14 65	14 98	15 33	15.00	15 17
3925	. 733	15.76	15 57	15 49	15 00	14 30	15 07	15.36	15 62	15 24
3023	774	15 60	15.72	15 40	10.00	14 30	15.02	15 42	15 70	15.33
3826	794	15.69	15 85	15 57	15 05	14 59	15 24	15 42	15.65	15.22
0020	796	15.60	15.76	15.45	10,00	14.59	15.36	15.45	15.65	15.30
3828	.815	15.60	15.62	15.60	15.09	14.84	15,42	15,62	15.75	
0020	818	15 72	15 57	15.50		14.78	15,48	15.57	15.77	15.40
3830	26,705	15.33	15.60	15.12	15.15	15.85	15.65	15.76	15.57	
	.707	15.30	15.45	15.02		15.70	15.57	15.62	15.57	14.73
3832	.721	15.38	15.40	15.02	15.09	15,42	15,42	15.54	15.80	14.24
	.723	15,26	15.45	14.84		15.45	15.22	15.62	15.70	14.26
3833	.758	15.57	15.72	14.82	15.00	14.36	14.67	15.42	15.61	14.34
	.762	15.60	15.62	14.82		14.40	14.73	15.36	15.70	14.51
3835	.777			15.22		14.67	14.67	15.60	15.90	14.65
	.778			15.24			14.86	15.20	15.64	14.80
3836	.793	16.00		15.30		14.88	15.05	15.48		14.67
	.794	15.81		15.14		14.80	15.05	15.17	15.77	14.57
3837	.801	16.00		15.20		14.65	14.95	15.22	15.85	14.80
	.803	16.00		15.22		14.74	14,95	15.11	15.90	14.69
3838	.810	15.76	15.30	15.12	15.28	14.88	14.95	14.82	16.00	14.71
	.812	15.81	15.72	15.05		15.00	14.97	14.84	15.66	14.71
3866	54,721									
	.723									

No.12	No.14	No. 15	No.16	No.18	No.19	No.20	No.21	No.25	No.28	No.29
14.84	15.20	14.86		14.22	14.62	14.74		14.40		14,95
14.82	15.28	14.84		14.40	14.65	14.82		14.36		15.07
15.12	14.76	15.17	15.30	14.50	14.97	14.69	15.57	14.27		15.09
15.24	14.89	15.05	15.14	14.84	14.97	14.69	15.65	14.35		15,26
	14.38	14.99	15.32	14.78	15.00	14.48	15,65			15.26
	14.40	15.05	15.23	14.73	15.17	14.55	15.54			15.40
15,22	14.57	14.99	15.16	14.67	15.02	14.71	15.57	14.35	15.65	15.50
15.20	14.48	14, 91	14.97	14.71	15.00	14.74	15.28	14.27	15.62	15.42
15.40	14.53	15.09	15.18	14.93	15.30	14.76	15.77	14.32	·	15.26
15.42	14.65	15.09	15.04	14.86	15.30	14.76	15.66	14.25	15.48	15.69
15 36	14.71	15.17	15.30	15.00	15.30	14.95	15.70	14.50	15.07	15.66
15 54	14 80	15.26	15.30	15.09	15.54	15.02	15.80	14.52	15.17	15.69
15 42	14 84	15 42	15 28	15 22	15 44	14.97	15.85	14.44	14.82	15.50
15 38	14 86	15 48	15 32	15 30	15 72	14 89	15 85	14 54	14.82	15.57
15 54	15 02	15 42	15 32	10,00	15 54	14 93	15 77	14 44	14 57	15 65
15 44	15 02	15 42	15 28		15 50	14 95	15 69	14 43		15 60
15 47	15 11	15 62	15 44	15 48	10.00	15 07	15 57	14 59	14 71	10.00
15 50	15 05	15.65	15 26	15 40		15 05	15 54	14 52	14 69	
15.50	13.03	10,00	15.20	10.40		15.05	10.04	14,52	14.00	
15.30	14.67	15.07	14.59	15.07	15.36	15.60	15.42	14.32	15.80	15.57
15.22	14.57	15.02	14.35	14.98	15.30	15.54	15.40	14.27	15.69	15.65
15.28	14.36	14.97	14.14	15.12	15.48	15.38	15.60	14.41	15.70	15.50
15.24	14.32	15.02	14.02	15.02	15.50	15.40	15.50	14.32	15.66	15.50
15.44	14.50	15.05	14.16	15.12	15.62	15.42	15.50	14.39	15.80	15.88
15.38	14.45	15.05	14.04	15,20	15,60	15.54	15.42	14.41	15.69	15.70
15.48	14.65	15.02	14.18	15.33	15.54	15,50	15,48	14.37	15.69	15.72
15.45	14.69	15.14	14.18	15.33	15.69	15.57	15.44	14.41	15.65	15.65
15.54	14.78	15,20	14.20	15.50	15.85	15.57	15.69	14.44	15.75	15.77
15.50	14.71	15.14	14.18	15.44	15.76	15.45	15.57	14.35	15.63	15.73
15.64	14.86	15.24	14.38	15.57	15.76	15.72	15.81	14.41	15.75	15.77
15.70	15.00	15.20	14.30	15.57	15.85	15.76	15.57	14.43	15.70	15.80
15.80	14,91	15.38		15.65	15.72	15.69	15.69	14.46	15.75	15.95
15 67	15.00	15.40	14.36	15.57	15.85	15.88	15.69	14.50	15.64	15.77
15 80	15 20	15 65	14 49	16 00	15 88	15 62	15 66	14.52		15.71
15 70	15 17	15 54	14 52	16 00	15 85	15 69	15 70	14 48		15 69
15 62	14 67	15 05	15 26	15 65	15 62	15 20	14 55	14 35	15 69	15 73
15 60	14 73	15 00	15 26	15 40	15 57	15 17	14 53	14 32	15 54	15 71
15 57	14 67	15 07	15 38	15 88	15 88	15.11	14 59	14 39	15.80	15 69
15 66	14 57	15 05	15.2	15 62	15.72	15 17	14.50	14 37	15 66	15 71
15.73	14 80	15 14	15 35	15 01	15 72	15 38	14 84	14 41	15 72	15 72
15 85	15 00	15 14	15 28	15 05	15 65	15 24	1/ 8/	1/ 30	15 57	15 60
16 00	1/ 01	15 44	10.20	16 00	10.00	15 26	15 1/	14.00	10.01	13.00
15 69	15 02	15 62		16 00	15 01	15 14	15 07	14,07		
15.00	15.02	10.02		16.00	15.01	15.14	15.07	14.01		
15.09	10,14	15 39		16.00	16 0		15,07	14,00		
15,40	15 20	15.65		16 00	15.05		15,20	14.00		
	15,30	15,00		16.00	16.04		15,40	14,44		
10 00	15,14	15.45		16.00	10.04	15 40	15,28	14.32		15 0
10.00	15.17	15.54		10.00	10.01	15.42	15,12	14.50		10.3
16.00	15.24	15,50		16.00	16.08	15.48	15,12	14.54		15,17

Julian Day	No.30	No.31	No. 32	No.33	No.35	No. 38	No.39	No. 40	No. 41	No. 42
2421424.678			14.84	14.82		15.22		15.12	15.36	12.10
.680			14.86	14.84		15.36		15.00	15.36	
.697	15.48	15.62	14.65	14.91	15.20		15.36	15.09	15.26	
.699	15.50	15.57	14.59	14.89	15.40		15.57	15.11	15.26	
.716	15.44	15.48	14.05	15.00	15.28		15.60	14.95	15.30	
.717	15.57	15.42	14.26	15.20	15.40		15.48	15.02	15.40	
.733	15.42	15.40	14.28	15.26	15.13		15.44	14.89	15.48	12.20
.735	15.24	15.26	14.30	15.07	15.08		15.40	14.73	15.48	
.749	15.50	15.40	14.53	15.22	15.06		15.57	14.78	15.48	12.10
.750	15.42	15.42	14.53	15.20	15.00	15.65	15.54	14.82	15,38	
.769	15.54	15.42	14.69	15.36		15.62	15.81	14.95	15.72	11.95
.771	15,62	15.48	14.80	15.33	15.13		15.81	14.91	15,65	
.785	15.57	15.30	14.86	15.40		15.45	15.75	14.93	15.70	11.75
.787	15,57	15.40	14,95	15,36	15.18	15.65	15.80	14.97	15,70	
.803	15.50	15.02	15.07	15.44	14.82		15.72	14.97	15.81	11.85
.805	15.47	15.02	14.97	15.42	14.82	15.54	15.65	14.93	15.62	
820	15.72	15.07	15.22					15.18		11.75
. 821	15.60	14.91	15.38		14.71			15.12		
.842										12,15
25,679	15.14	15.48	14.67	14.88			15.36	14.91	15.30	
. 681	14.95	15.42	14.78	14.91	15.19	15.70	15.28	14.97	15.42	
697	14.91	15.22	14.89	14.93	15.06		15.40	14.84	15.57	12.15
699	14 74	15 12	14 78	15 00	15 10		15 30	14 95	15 57	10,10
713	14 82	14 97	15 00	14 95	15 00	15 60	15 42	14 84	15 42	12 05
715	14 76	14 89	14 97	15 02	15.02	15,67	15 44	14 03	15 40	12.00
735	14 86	14 93	15 00	15 17	14 87	15 54	15 44	1/ 82	15 62	12 15
737	14 84	14 95	15 20	15 12	14 71	10.04	15 54	14.02	15 60	12.15
.151	15 00	14.55	15 39	15 26	14.64	15 62	15 62	14.05	15.09	12 05
- 753	14 05	14.05	15 96	15,20	14.04	15 69	15,02	14.00	15,72	12.05
. 733	15 02	14,00	15 49	15 22	14.00	15.60	15.50	14.05	15.79	12 20
774	15.02	14,00	15 49	15 17	14 69	15 69	15,54	14.00	15.72	12.20
- 794	15 17	15 00	15 57	15 19	14.00	15,02	15,04	14,95	15,72	12 00
. (94	15,17	14 07	15.07	15,14	14,00	15,40	15,02	15.09	15,60	12,00
. 190	15,12	14,97	15,48	15.44	14.00	15,48	15.02	15.07	15.69	11.05
.010	10,20	15,12	15.72	15,40	14,50	15,00	15.70	15.24	15.75	11,85
.818	15,20	15.14	15.69	15.44	14.64	15.70	15.62	15.26	15,66	10.00
20,105	15.72	14,95	15,44	15.00	14.75	15.65	14.57	14.89	15.50	12.00
. (07	12.57	15.00	15,44	14.91	14,50	15.60	14.53	14.93	15.50	
.721	15.75	15.17	15.69	15.17	14.68	15,60	14.67	15.02	15.65	12.25
.723	15,63	15.14	15.48	14.91	14.57	15.30	14.55	15,00	15.62	
.758	15.65	15.30	15.69	15.24	14.73	15.62	14.89	15.14	15.81	12.05
.762	15.65	15.26	15.81	15.22	14,68		14.89	15.24	15.50	
.777	15,65		15.85				14.80			12.15
.778	15.75	15.57	16.00	د	14.94		14.86			
.793	15.75					14.73	14.82		16.00	12.35
.794	15.57	15.65	15.85		15.00	14.59	14.69	15.42	15.69	
.801	15.73	15.65	16.00		14.97	14.76		15.50	15.68	12.20
.803	15.63		15.96		14.91	14.67		15.52	15.75	
.810		15.85				14.26	15.09	15.62	15.78	12.00
.812		15.69		15.48	15.08	14.20	15.26	15.50	15.66	
54.721										12.20

,723

84

No.43	No.44	No.45	No. 47	No.52	No.55	No.58	No.59	No.61	No. 62'	No.63
15.22	14.65		15.00	14.55		14.86	15.05	15.38		15.17
15.12	14.76		15.07	14.80		14.84	15.07	15.36		15.20
14.76	14.89	15.72		15.09			14.93	15.70	15.62	15.62
14.95	14.89	15.60		15.40	14.97	14.59	15.07	15.77	15.70	15.54
14.84	15.02	15.70		15.14	15.00	14.55	14.53	15.73	15.26	15.57
14.97	15.05	15,95		15.30	15.02	14.89	14.50	15.85	15.38	15.65
15.05	15.22	15.70		15.24	15.12	15.24	14.59	15.65	15.14	15.40
15.07	15.20	15.73	15.38	15.30	14.91	15.22	14.56	15.65	15.00	15.36
15.05	15.17	15.65	15.50	15.38	14.86	15.28	14.50	15.75	15.02	15.68
14.93	15.12	15.57	15.57	15.28	14,95	15.57	14.84	15.67	14.91	15.75
15.09	15.22	15.60	15.54	15.42		15.72	14.80	15,80	14.91	15,65
15.17	15.14	15.65	15.48	15.44	15.05	15.69	14.91	15.75	15.05	15.70
15.17	15,20	15.36		15.44		15,62	14,74	15,69	14.91	15.75
15.12	15.17	15.33	15.57	15.37	15.24	15,65	14.84	15.72	14.88	15.85
15.26	15,50	14.76	15,42	15,40			14.89	15.65	14.88	15.70
15.22	15.17	14.93	15.42	15,50	15.22	15.69	14.95	15.57	14.86	15.68
15.26	15.22	14.78					15.02	15.72	15.05	15.73
15.26	15.22	14.78			15.38		15.00	15.50	15.00	15.66
15.60	14.82	15.22	15.28	15.14		15.02	15.48	15.05	15.07	15.50
15.60	14.80	15.24	15.14	15.16	15.02	15.00	15.54	15.09	15.14	15.62
15.57	14.80	15.22	15.30	15.22		14.86	15.57	14.93	15.20	15.75
15.50	14.78	15.30	15.17	15.38	14.89	14.93	15.50	14.97	15.17	15.65
15.54	14.91	15.17	15.26	15.24	14.93	15.28	15.72	15.14	15.26	15.68
15.57	14.82	15.24	15.22	15.33	15.02	15.22	15.76	15.17	15.30	15.73
15.69	14.95	15.33	15.33	15.30		15.28	15.65	15.20	15.33	15.62
15.57	14.89	15.24	15.28	15.50	14.95	15.28	15.60	15.14	15.44	15.77
15.54	14.95	15.22	15.40	15.38	15.17	15.42	15.48	15.30	15.60	15.68
15.36	14.97	15.24	15.36	15.42	15.09	15.42	15.42	15.22	15.57	15.66
15.54	15.30	15.40	15.48	15.44		15.54	14.84	15.28	15.67	15.65
15.62	15.12	15.33	15.48	15.50	15.05	15.62	14.88	15.36	15.69	15.70
15.44	15.14	15.20	15.40	15.44	15.20	15.76	14.53	15.48	15.70	15.65
15.42	15.12	15.24	15.36	15.62	15.14	15.85	14.42	15.42	15.70	15.75
15,72	15.22	15.30	15.54	15.55		15.69	14.42	15.54	15.60	15.77
15.60	15.22	15.28	15.38	15.55	15.46	15.69	14.48	15.42	15.54	15.80
15.02	14.80	14.38	14.93	15.20	15.12	15.38	15.57	15.20	15.20	15.57
15.00	14.80	14.53	14.89	15.26	14.95	15.24	15.50	15.14	15.12	15.57
15.00	14.89	14.50	15.02	15.36	15.02	15.42	15.57	14.65	15.00	15.66
15.00	14.91	14.42	15.00	15.34	15.00	15.33	15.57	14.62	15.00	15.68
15.14	15.17	14.65		15.38		15.50	15.50	14.73	14.86	15.73
15.17	15.12	14.71	15.22	15,60	15.14	15.42	15.48	14.78	14.86	15.70
15.07							15.65	15.00		16.00
15.14					15.42		15.48	14.71	14.97	15.85
15.17							15,50	14.65	15.26	16.00
15.00	15.42		15.40		15.36		15.40	14.57	15.09	15.90
15.20	15.57						15.22	14.53	15.22	15.90
15.20	15.57				15.42		15.22	14.57	15.24	15.85
15.09	15.65	15.09				15.69	15,90	14.91	15.26	15.90
15.12	15.50	14.95			15.65	15.88	15.77	15.02	15.22	15.90

0	0
- ×	h.
()	0

Julian Day	No.64	No. 65	No.66	No.67	No.68	No.69	No. 70	No. 71	No. 72	No.73
2421424.678 .680 .697	15.72	15.67		14.40 14.40 14.38		16.00	15.30 15.36 14.71	15.66	14.24 14.36 14.30	15.23 15.23
.699	15,72	15,70		14.35			14.86	15,90	14.30	
.716	15.72	15.85	15,26	14.30	14.59		15.17	15,70	14.30	14.80
.717	15.60	15.88	15.50	14.38	14.93		15.36	15,90	14.30	14.97
.733	15.57	15.75	15.48	14.86	15.17		15.36	15.75	14.32	15.22
.735	15.50	15.48	15.33	15.02	15.17		15.60	15.60	14.57	15,14
.749	15.76	15.95	15.69	15.07	15.85		15.76	15.95	14.59	15.30
.750	15.48	15.60	15.50	15.00	15.48		15.54	15.77	14.67	15,28
.769	15.67	15.86	15.42	15.17			15.48		14.91	15.33
.771	15.73	15.80	15.65	15.30			15.69		15.07	15.45
.785	15.75	15.65	15.70	15.38			15.87	16.00	15.36	15.72
.787	15.73	15.62	15.70	15.40			15.73		15.36	15.60
.803	15.67	15.60	15.54	15.38			15.87		15.54	15.72
.805	15.48	15.57	15,65	15,28			15,65		15.38	15,60
.820										
.821										
.842	15 50		15 00		15 17	15 00			10 00	14 50
20,019	15,00	15 65	15,22		15,17	15,90	15 90	15 05	16.00	14.09
.001 607	15 50	15.60	15 30	14 73	15 49	13.30	15 36	10.00	13.33	14 05
699	15, 40	15.57	15.30	14 78	15 48		15.30			14 97
.000	15.68	15.69	15.22	14 84	15,50		14 73	16 00		15 02
715	15.65	15.78	15 20	14 80	15 42		14 78	16.00		15 02
.735	15.76	15.73	15.33	14.53	15.48		14.74	10,000		14.93
.737	15.62	15.36	15.36	14.65	15.42		14.74			15.07
.751	15.73	15.88	15.50	14.73	15,80		15.00			15.20
.753	15.65	15,69	15.48	14,67	15.75		14.78			14.88
.772	15.75	15,70	15,48	14.84	15,73		15,12			15.24
.774	15.75	15.62	15.44	14.82	15.67		15.05			15.36
.794	15.70	15.89	15.44	15.07	15.85		15.26		15.20	15.42
.796	15.64	15.65	15.54	15.14	15.80		15.24		15.07	15.42
.815	15.77	15.75	15.63	15.12			15.42		14.36	15,60
.818	15.77	15.60	15.70	15.00			15.36		14.38	15.48
26.705	15.28	15.77	14.91	15.54			16.00	15.95	16.00	14.84
.707	15.20	15.50	14.89	15.44			15.90	15.77	15.95	14.84
.721	15.26	15.75	15.14	15.38			15.90			15.00
.723	15.17	15.65	15.12	15,28			15.98			15.05
.758	15.42	15.73	15.12	14.69	15,50		15.95	16.00	15.92	14.97
.762	15.28	15.48	15.17	14.59	15.48		15.95	16.00	16.00	15.02
.777	15.22	15.85	14.91	14.30						14.86
.778	15.38	15.57	15.30	14.30						14.82
.793	15.44	15.20	15 50	14.36			15 57			15.48
. 794	15.24	14.04	15,50	14.32			15.57			15.30
100.		14.70	15.64	14.30			15,48			15.30
.003	15 68	14.70	15,04	14.30			15,04			15,30
.010	15.50	14 74	15 62	14 65			15 20			15 30
.012	10.00	A 4 6 7 2	10.02	1 10 00			10.20			10,00

No.74	No.75	No.76	No.77	No.78	No.79	No.80	No.81	No.83	No.87	No.92
			14.73	15,20	14.89	14.78	14.57			
			14.74	15.38	14.89	15.20	14,46			
13.90	14.71	14,50	14.89	15.24		14.91	15.12		15.02	
13.90	14.89	14.67	15.07	15.36		15.33	14.76	15.85	15.26	14.54
13,90	14,69	14.67	14.93	15,09	15.38	14.88	14,93	15,77	14,91	14,70
13.90	14.89	14.57	14.93	15.24	15.38	15,50	14.78	15.75	15,17	14.77
13.90	15,00	14.71	14.91	15.00	15.07	15,00	15.02	15.77	14,93	14.42
13.90	14.89	14.78	14.91	15.05	•	15,20	14.73	15,77	14,95	14.44
13,90	15,24	14.76	15.07	14.84	15.22	14.71	15.00	15.72	14.89	14.09
13,92	15.17	14.74	15.00	14,97	15.09	15.07	14.80	15,36	14.93	14.57
13.91	15,26	14,82	14.97	14.82	15,14	14.74	15.17	15.64	14.91	14.72
13,98	15,30	14,95	15,09	15.05	15.22	15.02	15.09	15.62	15.05	14.72
14.18	15,36	14,93	15.09	14,97	15,00	14.84	15.17	15.60	15.02	14.40
14.24	15.28	15,05	15.09	14.95		15.05	15.17	15,60	15.07	14.38
14.10	15.30	15.05	15.02	15.12	14.95	14.76	15.24	15.64	14.91	14.38
14.30	15.28	14.95	15.07	15.00	14.84	14.91	15.09	15.46	15.02	14.07
14,36	15.38	15.09	15.17	15.12	15.00		15.26		15.02	14.22
14.32		15.20	15.09	15.14	14.93		15.30	15.50	15.09	14.57
14.02	15.57	15.09	15.09	15.30	15.24	15.07	15.75	15.40	15.17	14.48
13,96	15.65	15.02	15.24	15.33	15.12	15.36	15.55	15.36	15.26	14.30
14.16	15.69	14.89	15.14	15.44	15.36	15.02	15.85	15.48	15.17	14.26
14.18	15.57	15.02	15.17	15.48	15.22	15.36	15.60	15.50	15.28	14.07
13,98	15.81	15.22	15.20	15.38	15.36	14.82	15.73	15.57	15.17	14.65
14.14	15.76	15.30	15.22	15.38	15.40	15.26	15.54	15.60	15.22	14.42
14.04	15.60	15.26	15.12	15.36	15.33	14.91	15.07	15.50	15.14	14,76
14.00	15.62	15.24	15.24	15.42	15.17	15.20	14.95	15.57	15.26	14.40
14.16	15.76	15.30	15.20	15.33	15.24	14.78	14.95	15.50	15.22	14.22
14.08	15.81	15,24	15.22	15.26	15.26	14.97	14.74	15.57	15.20	14.12
14.12	15.73	15.30	15.17	15.17	14.97	14.67	14.48	15.60	15.24	14.40
14.18	15.80	15.36	15.12	15.07	14.97	14.97	14.38	15.48	15.24	14.38
14.20	15.77	15.40	15.28	14.89	14.89	14.65	14.57	15.50	15.30	14.00
14.24	15.73	15.38	15.30	14.95	15.00	14.88	14.65	15.57	15.36	14.02
14.30	15.73	15.57	15.40	14.93	14.93	14.74	14.78	15.54	15.38	13,50
14.28	15.77	15.48	15.33	14.97	14.91	14.84	14.74	15.44	15.60	13.34
14.28	15.02	15.24	15.28	15.20	15.28		15.72	15.02	15.38	14.07
14.12	14,95	15.20	15.36	15.22	15.20	15.28	15.42	15.14	15.40	14.17
14.16	15.12	15.36	15.26	15.26	15.30	14.97	15.70	15.20	15.36	14.00
14.26	15,07	15.24	15.26	15.44	15.17	15.38	15.48	15.24	15.38	13.97
14.24	15.07	15.00	15.38	15.40	15.07	14.89	15.60	15.36	15.24	13,18
14.18	15,02	14.91	15.36	15.40	15.17	15.14	15.65	15.28	15.12	13.34
14.26	15,26		15.44	15.80	15.44			15.77		13.62
14.26	15.14		15.26	15,65	15.20		15.72	15.73		13.26
	15,20	15.09		15.68	15.07	15.00		15.69		13.73
	15.07	14.95		15.68	14.74	15.14		15.60		13.60
	15.20	14.95		15.67	14.76			15.60		13.91
	15.14	15.05		15.80	14.80					13.70
14.18	15.40	14.97	15.48	15.50	15.02	14.82		15.92		14.02
14.22	15.44	14.97	15,50	15.48	15.02	14.97		15.76		13,93

FIG. 1, cont'd-Light Curves of the 62 Variables.

FIG. 1, cont'd-Light Curves of the 62 Variables.

FIG. 1, cont'd-Light Curves of the 62 Variables.

TA	BL	E	Π

Elements of the Variables

	E.poch			Comments
Var.	of Max.	Period	β	on Period
1	91494 070	0 5017050		
1	21424.970	0.5217600		CONSL
2	21424.880	0.020	0.04	
3	21424.937	0.6001832	0.04	
6	21424.744	0.5488311	-0.05	
7	21424.779	0.4943896	0.07	
8	21424.575	0.546224	0.09	
9	21424.739	0.698895		const
10	21424.852	0.5306628	-0.02	
11	21424.943	0.5958914		const
12	21424.621	0.4677144	-0.06	
13		0.5131223	0.04	
14	21424.726	0.4872423		
15	21424.693	0.3367607	0.03	
16	21424.406	0.6476223	0.12	
18	21424.631	0.46388		
19	21424.603	0.4699535	0.16	
20	21424.699	0.6094759		const
21	21424.876	0.6048941		const
25	21424.525	0.508		
27		0.4703		
28	21424.805	0.5439474	-0.13	
29	21424.584	0.4514334	-0.12	
30	21424 518	0.5921755	0112	const
31	21424 560	0.3005826		const
32	21424 710	0.4577863		const
33	21424 616	0.5014722	0.04	const
34	21121.010	0.5681431	0.01	const
35	21424 548	0.3081107		const
36	21121.010	0.6277220		const
38	21424 027	0.4704441		const
30	21424.521	0.5800346	0.05	
40	21424.001	0.0000000	0.00	
40	21424.702	0.3173280	0.03	
49	21424.000	0.4000149	-0.04	W/Winnini.
42	21410.129	40.100		w virginis
40	21424.009	0.0002204		const
44		0.329		
40	21424.847	0.0100304	0.00	const
47	21424.978	0.5397295	-0.09	
52	21424.522	0.5017848	0.00	
20	21424.719	0.3288968	0.03	
28	21424.620	0.491265		
59	21424.712	0.5420259	0.40	const
61	21424.456	0.5686157	0.10	
62	21424.789	0.2814092		
63	21424.500	0.4976763	0.04	
64	21424.954	0.5445075	-0.13	
65	21424.902	0.480691		
66	21424.574	0.350682		
67	21424.681	0.3490462		
68	21424.647	0.3342797		
69	21424.881	0.4948743		const
70	21424.603	0.5585255	0.18	
71	21424.968	0.5024676	0.07	

Var.	Epoch of Max.	Period	β	Comments on Period
72	21424.682	0.562		
73	21424.626	0.3401118	0.05	
74	21424.667	0.4539961	-0.06	
75	21424.639	0.6854136	0.07	
76	21424.663	0.432421	0.03	
77	21424.521	0.8451121	0.11	
78	21424.760	0.2648174		const
79	21424.548	0.3331387		const
80	21424.836	0.3365424	-0.02	
81	21424.647	0.5573235	-0.18	
83	21424.955	0.5533073		const
87	21424.736	0.7383888		const
92	21424.893	0.4635789		

TABLE II-continued

REMARKS TO TABLE II

Vars. 13, 27, 34 and 36 were all studied on the David Dunlap plates by Coutts and Sawyer Hogg (1969), but were too crowded for measurement on the Mount Wilson 1917 plates.

was taken first. Both Dr. Shapley and Miss Henrietta Swope were consulted. The latter perused the Mt. Wilson records, but no definite decision was made. In constructing the Table it was assumed that the later exposure is the one to the west. This point is not of great importance because an average of the two was used in forming the light curves of the 62 variables which are shown in Figure I.

The curves, based on observations from eight different nights, are well defined and are therefore very useful for any studies of period changes of the variables. The periods adopted are the same as those used in Coutts and Sawyer Hogg (1969) and are listed in Table II, along with the epoch of maximum light for 1917. Also listed is β , the rate of period change, adopted from Coutts and Sawyer Hogg (1969) or Coutts (1969). Of the 61 RR Lyrae type stars, 46 are of type *a* and have periods ranging from 0.45 to 0.85 days and median 0.54 days. The other 15 are of type *c* with periods between 0.26 and 0.43 days and median 0.33 days. This is the period distribution for a cluster of the Oosterhoff type I.

This program has been supported by grants from the National Research Council of Canada to Dr. Helen S. Hogg. I am grateful to Dr. H. W. Babcock for the loan of the Mt. Wilson plates and to Mr. Basil Katem for making the necessary arrangements. It is a pleasure to thank Dr. Hogg for her invaluable guidance.

References

Arp, H. 1962, Ap. J., 135, 311.

- Bailey, S. I. 1917, Harvard Ann., 78, 157.
- Coutts, C. 1969, On the Nature of Some of the O-C Diagrams of the RR Lyrae Variables in M5. *Non-Periodic Phenomena in Variable Stars*. Budapest, Academic Press.

Coutts, C. M. and Sawyer Hogg, H. 1969, David Dunlap Obs. Pub. 3, no. 1.

Kukarkin, B. V. and Kukarkina, N. P. 1969, Astronomical Circular, no. 541.

Oosterhoff, P. Th. 1941, Leiden Ann., 17, pt. 4.

Shapley, H. 1927, Harvard Bull., no. 851, 15.

Richmond Hill, Ontario May 26, 1971

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

Volume 3

NUMBER 4

SPECTROSCOPIC ORBITS OF THE BINARY SYSTEMS H.D. 128661, AR Cas, § Ari and H.D. 209813

WALTER L. GORZA AND JOHN F. HEARD

1971 TORONTO, CANADA

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

NUMBER 4

SPECTROSCOPIC ORBITS OF THE BINARY SYSTEMS H.D. 128661, AR Cas, β Ari and H.D. 209813

WALTER L. GORZA AND JOHN F. HEARD

1971 TORONTO, CANADA

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

SPECTROSCOPIC ORBITS OF THE BINARY SYSTEMS H.D. 128661, AR Cas, β Ari and H.D. 209813

By Walter L. Gorza and John F. Heard

ABSTRACT

From spectroscopic observations there have been obtained the orbital elements of two eclipsing binary systems (H.D. 128661, AR Cas) and two spectroscopic binaries (β Ari and H.D. 209813). For one system (H.D. 128661), no solution was previously available. The other systems are well known and were investigated for possible changes in their orbital elements. There seem to be no changes for AR Cas; a small change in the value of the longitude of periastron, ω , seems probable for β Ari; and there is some evidence of a change in the value of the semi-amplitude, K, for H.D. 209813.

Introduction

The spectrograms used during the present work were all obtained with the 12 Å/mm dispersion of the all-reflection grating spectrograph attached to the 74-inch telescope of the David Dunlap Observatory. The measurements were carried out on the Grant (AR Cas, β Ari and part of H.D. 128661) and Zeiss-Abbe (remaining plates for H.D. 128661 and H.D. 209813) comparators. Preliminary elements were derived by the use of a series of computed velocity-curves drawn by R. K. Young (except for β Ari, for which the Lehmann-Filhés method was used). Least-squares differential corrections were carried out on all the preliminary values by the use of a computer program written by D. Hube. The equation of condition derived by Lehmann-Filhés (1894) was used for all the systems, except for H.D. 209813 for whichits eccentricity, e, being so small-Sterne's (1941) method was used. The indicated errors are mean errors. The phases (given in the tables and used in the diagrams) are given in days relative to the finally adopted value for T, the time of periastron passage. Table IX (see page 110) shows the wavelengths used in obtaining the radial velocities for the four binary systems.

H.D. 128661

The variable radial velocity of this star ($\alpha = 14^{h} 33^{n}_{,1}$, $\delta = +36^{\circ} 22'$, m_{ptg} = 6.97, Sp. = A0) was first observed at the Simeis Observatory. Jackisch (1968) found that the star was probably an eclipsing variable with the minimum occurring at J.D. 2438906.455. Another minimum was observed by Harris (1969) to occur at J.D. 2440362.9070. Following the report by Jackisch, the star was placed on our observing program and altogether 52 spectrograms were obtained between February 8, 1969 and April 17, 1970.

By counting our radial velocity measures with the above-mentioned times of minima it was possible to obtain a very accurate period of 3.33284(2) days. The assumption was made that both minima are primary minima. This assumption seems to be justified inasmuch as only one component is visible on the spectrograms. The differential correction was carried out only on five elements, the period being held fixed. The observations are listed in Table I. Figure 1 (see page 102)

RADIAL-VELOCITY	OBSERVA	TIONS OF H.D.	128661
J.D. 2440000+	V ₀ km/sec	Phase from Final T	O-C km/sec
260.827	-44.6	0.676	+0.9
268.950	+43.0	2.133	+2.7
269.938	-77.3	3.121	+2.7
270 928	-31.2	0.778	+0.1
271.896	+49.1	1.746	+1.8
273.932	-74.6	0.449	+1.3
274.853	+32.7	1.370	+0.8
282.842	-11.7	2.694	+4.3
283.815	-86.1	0.334	+2.4
284.778	+27.1	1.297	+0.6
285.763	+32.8	2.282	+2.0
290.784	-49.1	0.637	+1.8
296.712	-91.0	3.232	+0.9
307.860	+5.6	1.049	+2.8
317.811	+0.4	1.001	+3.1
323.882	-79.2	0.407	+1.7
325,618	+41.0	2.143	+1.2
331.735	+46.9	1.594	+3.4
341.647	+39.2	1.507	-0.7
346.732	-93.1	3.260	+1.0
353.593	-100.6	0.122	-0.2
364.699	+20.9	1.229	0.0
365.588	+41.9	2.118	+0.9
367.613	-26.6	0.811	+0.3
368.597	+48.4	1.795	+0.7
371.620	+36.4	1.485	-2.4
437.607	-28.4	0.815	-2.1
438.590	+46.8	1.798	-0.9
456.572	-78.0	3.116	+1.4
458.572	+46.4	1.783	-1.3
459.583	-31.8	2.794	-0.6
462.578	+14.8	2.456	+0.2
610.809	-44.6	0.709	-3.8
625.823	+19.3	2.392	-1.9
625.949	+7.5	2.518	0.0
629.917	-85.8	3.153	-1.9
640.822	-40.2	0.727	-1.8
641 899	+47.5	1 804	-0.3

TABLE I

J.D. 2440000+	V ₀ km/sec	Phase from Final T	O-C km/sec
646.753	-99.7	3.325	-1.5
646.951	-100.4	0.190	-1.9
654.820	+32.0	1.393	-1.4
655.885	+12.4	2.458	-2.0
657.907	+12.1	1.147	-1.1
658.874	+39.9	2.114	-1.3
660.806	-42.0	0.714	-1.8
664.834	+32.3	1.409	-2.1
665.785	+22.7	2.360	-1.6
673.858	-77.5	0.434	± 0.2
675.792	+20.8	2.368	-2.7
676.840	-103.0	0.083	-2.4
689.737	-62.7	2.982	-2.1
693.743	-89.2	0.322	+0.4

TABLE I-continued

shows the individual observations and the adopted velocity curve. The mean error of a single observation was found to be ± 1.8 km/sec. Table II lists the preliminary and the final values for the elements.

TABLE II

Orbital Elements of H.D. 128661

	Element	Preliminary	Final	
Р	(days)	3.33284(2)	3.33284(2	?)
Т	(J.D.)	2440263.460	2440263.484	± 0.003
ω	(°)	165	166.5	± 0.3
е		0.15	0.137	± 0.005
К	(km/sec)	75.3	74.2	± 0.4
γ	(km/sec)	-15.9	-16.5	± 0.3
as	in i (10 ⁶ km)		3.37	± 0.02
f(n	n) 💿		0.137	± 0.002

H.D. 221253 (AR Cas)

AR Cas ($\alpha = 23^{h} 25^{m}4$, $\delta = +58^{\circ} 00'$, $m_{ptg} = 4.89$, Sp. = B3 V) was first observed to be a spectroscopic binary by Frost and Adams (1903). Photoelectric observations, first by Stebbins (1921), and then by Huffer and Collins (1962), show a similar value for the longitude of periastron, ω , while spectroscopic observations first by Baker (1909), then by Luyten, Struve and Morgan (1939) and Petrie (1944, 1962), show a changing value for ω , which would indicate a rotation of the line of apsides (Petrie, 1944).

Following receipt of Circular No. 1 for the "AR Cassiopeiae Coordination Programme", 44 spectrograms were here obtained between August 14, 1968 and September 12, 1969. The period of the system

FIG. 1-Velocity Curve for the Eclipsing Binary H.D. 128661.

being known with great accuracy, it was held constant while the differential correction was carried out on the remaining five elements. The residuals were found to be reasonable except for those of three observations, which were made close to the time of the primary eclipse. It was easy to see that the radial velocities obtained at those points could have been influenced by the rotational velocity of the star itself (Batten, 1961), and accordingly they were removed. A new differential correction produced the final elements shown in Table IV. The observations are listed in Table III. Figure 2 shows the individual observations

J.D. 2440000+	V ₀ km/sec	Phase from Final T	O-C km/sec
82.730	-54.8	1.603	-2.8
83.716	-56.1	2.589	+0.3
84.590	-42.6	3.463	-2.7
95.773	-57.6	2.513	-0.5
98.706	+45.6	5.446	-3.4
100.825	-52.3	1.499	-2.9
102.925	-29.5	3.599	+6.4
103.710	-5.9	4.384	-0.5
104.849	+51.1	5.523	-0.5

TABLE 111 RADIAL-VELOCITY OBSERVATIONS OF AR CAS

J.D. 2440000+	$V_0 \ \rm km/sec$	Phase from Final T	O-C km/sec
106 897	40.7	1 497	
100.827 107.721	-49.7	1.450	-2.2
107.751	-01.4	2.009 9.901	- 5.5
111 819	-40.1	0.001	+1.1
113 000	± 52.0	0.000	0.0
114 824	- 16 7	2.441	+4.2
120 601	-52.6	0.000 2.076	-4.2
120.001 121.747	-32.0 -11.7	0.070	-0.4
131 656	-11.7 -56.9	4.222	+1.1
143 671	-57.5	1.998	T1.4
145.071 145.719	- 22 2	2 (199	-0.9
151 685	-97.0	2,044	-7.5
161 676	- 54 5	0.020	-70.5
170 522	- 11 5	1.007	-0.8
207 464		5.010	± 2.0
207.101	± 18.8	1.816	+2.0
417 853	-50.7	2.079	+0.5
424 868	- 20.0	3.078	-1.0
425 852	-20.5 ± 20.5	5.011	+0.1
438 778	± 59.9	5.804	+1.9
449 706	15.2	4 500	10.5
153 851	-50.4	9.670	+0.0
455 837	-00.4	2.078	± 0.1
456 837	±60.3	5 664	-0.2
459 856	-59.2	9.004	19.7
460 737	-36 1	2.017	19.8
462 756	10.2	5 517	T2.0
464 724	-15.2	1.118	118
467 760	-40.2 -1.7	1.4151	+1.0
469 703	± 24.1	4.404	+0.5
472 708	-41.8	2 996	+0.8
476 803	-44.8	0.000	-1.0
10.000	-44.4	1.000	± 0.8

TABLE III—continued

The following observations were not used to obtain the final solution.

099.814	+8.1	
166.604	+13.8	
457.808	+18.8	

Т	AB	LE	IV	

Orbital Elements of AR Cas

	Element	Preliminary	Final	
P	(days	6.0663309	6.066330)9
Т	(J.D.)	2440087.219	2440087.193	± 0.013
ω	(°)	30	31.4	± 0.8
е		0.22	0.245	+0.012
Κ	(km/sec)	56.5	56.7	+0.7
γ	(km/sec)	-10.3	-13.4	+0.5
a s	in i (10 ⁶ km)		4.59	+0.06
f (n	ı) <u>O</u>		0.095	± 0.004

and the adopted velocity curve. The error of a single observation was found to be ± 2.8 km/sec.

It can be seen that the value for ω here obtained (that is, $\omega = 31^{\circ}4$) and the identical result obtained by Petrie in 1958 (Batten, 1968), together with the two photoelectric solutions by Stebbins ($\omega = 37^{\circ}25$), and by Huffer and Collins ($\omega = 34^{\circ} \pm 5^{\circ}$), seem to rule out the suggestion that there is a rotation in the line of apsides. If, nonetheless, small variations in the value of ω are real, then, the suggestion by Batten (1960, 1961) that a third body may be present in the system would explain these variations and the variations that Batten found in the value of V_0 , the systemic velocity.

FIG. 2-Velocity Curve for the Eclipsing Binary AR Cas.

H.D. 11636 (β Ari)

The first spectroscopic orbital solution to this star ($\alpha_{1900} = 01^{h} 49^{m}1$, $\delta = +20^{\circ} 19'$, $m_{ptg} = 2.86$, Sp. = A5) was obtained by Ludendorff (1907), and another by Petrie (1938). Because of the unusually large orbital eccentricity, Dommanget suggested that this may be an excellent system in which to observe the "periastron effect".

Following receipt of a list of binary stars in need of spectroscopic observation from Commissions 30 and 42 of the I.A.U., the star was

placed on our observing program and 44 plates were obtained between August 31, 1968 and June 11, 1970. (On two occasions three plates were obtained very close together in time and were combined into normal places.) Since the period of the system is so very close to an integral number of days, no observations can be made at the present time, of the maximum point in the velocity curve from observatories in North America. This point now crosses the meridian during daylight, and it will be the end of the century before it will again cross the meridian at a time when observations can be made, as it was at the time of Petrie's observations. For this reason our preliminary elements were obtained with the help of some of Petrie's observations near the maximum point of the velocity curve. The least-squares differential correction, however, was carried out only on our own observations. The value for the period (as given by Petrie) was held constant. The observations are listed in Table V, while Table VI gives the preliminary and the final elements. Figure 3 shows the individual observations and the adopted velocity curve. The error of a single observation was found to be ± 2.3 km/sec.

FIG. 3—Velocity Curve for the Spectroscopic Binary β Ari.

The value for ω obtained by Ludendorff is 21°88, that by Petrie 24°17 and the present one 20°01. Leaving aside Ludendorff's solution (only two lines at the most could be measured on each plate), and if the

	-		
J.D. 2440000+	$V_0 \ km/sec$	Phase from Final T	O-C km/sec
00 780	1.97.6	105 985	0.0
100 \$11	± 27.0	100.000	-2.2
190.844	-10.0	0.440	5.1
149 000	-4.8	10.400	+5.0
145.092	-0.4	42.291	+0.1
151.098	$-\frac{8.0}{2}$	<u>00.297</u>	-0.7
158.723	-7.0	01.322	+0.2
199.074	+2.3	98.173	-1.0
207.401	+40.1	106.050	+2.0
223.038	-9.4	14.639	+0.4
258.499	-7.1	50.100	+0.8
417.863	+8.0	102.467	-3.3
421.856	+54.6	106.460	-0.6
425.867	-6.9	3.474	-2.3
432.840	-9.3	10.447	+0.2
436.889	-12.1	14.496	-2.3
438.790	-10.5	16.397	-0.7
438.890	-13.3	16.497	-3.5
453.866	-9.7	31.473	-0.4
455.849	-10.6	33.456	-1.4
456.877	-9.5	34.484	-0.4
457.818	-12.2	35.425	-3.2
459.867	-9.2	37.474	-0.3
-460.831	-10.4	38.438	-1.6
462.871	-10.9	40.478	-2.2
464.744	-6.5	42.351	+2.0
467.872	-9.5	45.479	-1.2
469.724	-7.3	47.331	+0.8
472.763	-7.2	50.370	+0.7
476.813	-6.5	54.420	+1.0
477.832	-7.9	55.439	-0.5
478.863	-5.6	56.470	+1.7
479.862	-6.5	57.469	+0.7
486.817	-6.1	64.424	+0.4
503.633	-6.3	81.240	-2.5
510.672	+1.5	88.279	± 3.4
733.855	+7.1	97.467	+3.9
743.839	+37.4	0.454	0.0
744.839	+6.4	1.454	-0.9
745 849	+3.7	2.464	+4.8
746 851	-3.5	3.466	+1.1
. 10.091	0.0	0.100	1

TABLE V

Radial-Velocity Observations of β Ari

TABLE VI Orbital Elements of β Ari

I	Element	Preliminary	Final
Р	(days)	106.9973	106.9973
ι ω	(J.D.) (°)	2440208.286 25.5	$\begin{array}{r} 2440208.398 \pm 0.033 \\ 20.0 \pm 1.3 \end{array}$
e K	(km/sec)	$rac{0.89}{38.1}$	$\begin{array}{ccc} 0.896 \pm 0.003 \\ 37.1 \pm 0.9 \end{array}$
γ a sin	(km/sec) i $(10^{6}km)$	-3.8	-4.0 ± 0.4 24.3 ± 0.7
f(m)	\odot		0.050 ± 0.004

criterion is used that only variations that exceed three times their probable error are real (Batten, 1968) then, since the mean error is $\pm 1^{\circ}28$ (i.e. a probable error of $\pm 0^{\circ}86$), it would appear that the variation in the value of ω —41°6 in 32 years—though small, may be real.

H.D. 209813

Four plates of this star ($\alpha = 22^{h} 01^{m}0$, $\delta = +46^{\circ} 45'$, $m_{v} = 6.52$, Sp. = KO III) taken at this Observatory in 1935–37 showed it to be a spectroscopic binary, and from 39 plates taken in 1945–46 the late Miss Ruth Northcott (1947) computed an orbit using a period of 24.431 days derived with the help of the first four plates. The 1945–46 plates were from the prism spectrograph with dispersion of 33 Å/mm. On six of her plates which were strong in the violet region Miss Northcott was able to see H and K lines in emission and to measure the velocities; they appeared to follow the velocities from the absorption lines.

Blanco and Catalano (1968) observed a slight variability of the light of H.D. 209813 to which they at first assigned a period of 25.98 days. Not being aware that the star had been studied as a spectroscopic binary, they suggested that the star was probably a Cepheid variable. Fernie, Hube and Schmidt (1968) of this Observatory replied that there were reasons to doubt the Cepheid explanation, and that the light variations should be re-examined relative to Miss Northcott's period to see if an explanation could be found in terms of an eclipsing system. At the same time we put the star on our spectroscopic observing program for a second orbit determination.

From a combination of our 30 1968–70 observations (which are listed in Table VII) and Miss Northcott's 1945–46 observations we have improved the period to 24.4284 days. We then solved for the remaining elements which are shown in Table VIII. Also in this table are listed the results of a new solution for Miss Northcott's observations which uses the improved period. Figure 4 shows our observations and the velocity curve representing our elements.

A comparison of the new elements from the 1945–46 observations and the elements from the 1968–70 observations calls for the following comments. In view of the smallness of the eccentricity the differences in the values of e and ω are not regarded as necessarily significant. The difference in γ , the systemic velocity, finds an easy explanation in the fact that different spectrographs were used. The difference of 1.5 km/sec in the value of K, the semi-amplitude, may be significant; it is about three times the mean error of either determination, and on a plot of the two sets of observations it was quite apparent. If it is indeed real it is tempting to think of an explanation in terms of mass transfer

J.D. 2400000+	V _{abs} km/sec	Phase from Final T Days	O-C km/sec	V_{em}	Em. Width km/sec
39999.974	-60.1	7.231	-3.1		
40099.719	-47.6	9.263	+0.4	-48.4	68
40100.786	-41.4	10.330	-0.9	-49.7	
40103.663	-16.2	13.207	-0.5	-14.4	70
40104.630	-7.6	14.174	0.0	-8.5	63
40107.835	+10.2	17.379	+0.4	+10.1	60
40112.717	-2.6	22.260	+1.9	0.0	67
40120.651	-57.8	5.766	+0.2	-60.7	59
40125.773	-36.8	10.888	$-0.\bar{8}$		
40133.664	+13.1	18.779	+2.2	+10.9	61
40140.688	-32.4	1.375	+2.3	-36.2	$\tilde{67}$
40143.588	-56.2	4.275	-2.2	-58.7	
40151.647	-23.6	12.334	-0.2	-23.5	62
40161.647	-2.4	22.334	+2.7	-6.4	66
40179.579	+3.1	15.838	-0.6	+0.8	64
40424.809	+6.8	16.784	-1.2	+6.2	$\tilde{62}$
40459.784	-49.2	2.902	-2.8	-46.2	65
40486.762	-57.1	5.451	+0.5	-58.1	
40779.822	-55.6	5.370	+1.8	-63.4	
40794.653	+8.2	20.211	+0.7	+14.0	
40800.783	-39.4	1.903	-0.3	-40.9	68
40804.799	-57.0	5.919	+1.1	-57.7	7.5
40820.774	-5.8	21.894	-3.9	+3.6	57
40866.724	+9.2	18.987	-1.5	+13.1	
40869.513	-0.7	21.776	+0.4	+9.6	69
40878.644	-57.1	6.479	+1.0	-54.0	64
40879.692	-55.2	7.527	+1.0	-57.5	68
40883.679	-27.8	11.514	+2.8	-31.3	57
40895.481	-13.4	23.315	-0.4	-11.2	73
40896.600	-23.4	0.007	-0.6	-20.5	70

TABLE VII Radial Velocities and ${\cal H}$ and ${\cal K}$ Emission Widths

TABLE VIIIOrbital Elements of H.D. 209813

Ele	ement	Preliminary	Final	Northcott's (re-computed)
Р	(days)	2444284	24.4284 ± 0.0005	24.4284 ± 0.0005
Т	(J.D.)		2440017.170 ± 0.054	J.D. 2431661.692 \pm 0.070
ω	(°)	0	89 ± 15	73 ± 6
e		0	0.009 ± 0.003	0.026 ± 0.003
K	(km/sec)	35.3	34.6 ± 0.4	33.1 ± 0.6
γ	(km/sec)	-24.2	-23.6 ± 0.3	-22.2 ± 0.4
a sin i	(10^{6}km)		11.6 ± 0.2	11.1 ± 0.2
f(m)	Ō		0.105 ± 0.005	0.092 ± 0.005

The mean error of the period is estimated.

FIG. 4-Velocity Curve for the Spectroscopic Binary H.D. 209813.

between the components. Although it is difficult to belive that sufficient mass could be transferred in 24 years to affect the mass ratio by an observable amount, it may be that the elements are affected by a process of gas streaming which for this star changes its pattern with time. The idea that motion of this star's atmosphere plays a role in the measured radial velocities is suggested by the fact that a few of our residuals (O-C in Table VII) are larger than 2.5 km/sec. Such large residuals we have never encountered in our measures of spectrograms of standard-velocity stars with the 12 Å/mm spectrograph. Also the mean error of a single observation for H.D. 209813 is ± 1.6 km/sec compared with ± 1.1 km/sec for measures of standard-velocity stars.

We have been able to study the Ca II emission lines better than could Miss Northcott from her prism spectrograms. The velocities which we obtained from measures of H and K emission lines are listed in Table VII; the overall mean value of V_{abs} — V_{em} is -0.2 km/sec. Also we have measured the widths of the emission lines, the mean widths being listed in Table VII. The overall mean width is 65 km/sec. This gives for the star an absolute magnitude of $M_v = +0.8$ according to the correlation of Wilson and Bappu (1957). Neither the widths nor the differences between the H- and K- and the absorption-line velocities seem to correlate with the orbital period or any period near 24 days, and, in fact, we believe that the widths are constant and that the velocity differences between emission and absorption lines are zero.

To return to the question of the light variability of H.D. 209813, Blanco and Catalano (1970) in the light of new observations have revised their period from 25.98 days to 25.3 days, but they state that their photometric observations are not at all satisfied by the orbital period, and that there are changes in the light curves of 1967 and 1968 and also apparent fluctuations in the period. For these and other reasons they reject the suggestion that the light variations are associated with eclipses.

A model to explain the light variability and its period remains to be

TABLE IX LIST OF WAVE-LENGTHS USED IN THE DETERMINATION OF THE RADIAL VELOCITY FOR:

H.D. 128661	AR Cas	β Ari	H.D. 209813
$ \begin{array}{l} {\rm Fe\ l} & 3820, 428 \\ {\rm Fe\ l} & 3825, 884 \\ {\rm Fe\ l} & 3859, 913 \\ {\rm Fe\ l} & 3859, 913 \\ {\rm Fe\ l} & 3859, 913 \\ {\rm Fe\ l} & 3859, 260 \\ {\rm Fe\ l} & 3920, 260 \\ {\rm Fe\ l} & 3922, 914 \\ {\rm Fe\ l} & 3922, 914 \\ {\rm Fe\ l} & 3922, 912 \\ {\rm Fe\ l} & 3930, 299 \\ {\rm Ca\ II\ 3933, 664} \\ {\rm Al\ I} & 3944, 009 \\ {\rm Sr\ II\ 4077, 714} \\ {\rm Si\ II\ 4077, 714} \\ {\rm Si\ II\ 4130, 876} \\ {\rm Fe\ l} & 4202, 031 \\ {\rm Sr\ II\ 4130, 876} \\ {\rm Fe\ l\ 4202, 031} \\ {\rm Sr\ II\ 4215, 524} \\ {\rm Fe\ I\ 4202, 031} \\ {\rm Sr\ II\ 4250, 125} \\ {\rm Fe\ I\ 4202, 031} \\ {\rm Sr\ II\ 4404, 752} \\ {\rm Ti\ II\ 4468, 493} \\ {\rm Ti\ II\ 4404, 752} \\ {\rm Ti\ II\ 4468, 493} \\ {\rm Fe\ I\ 4501, 449} \\ {\rm Fe\ I\ 4508, 283} \\ {\rm Fe\ II\ 4571, 971} \\ {\rm Fe\ I\ 4553, 829} \\ {\rm Fe\ II\ 4629, 323} \\ {\rm Fe\ II\ 4629, 323} \\ \end{array} $	H16 3703.855 H15 3711.973 H14 3721.940 H13 3743.370 H12 3750.154 H11 3777.900 He I 3819.666 H9 3835.386 H8 3889.051 Hε 4009.270 He I 4009.270 He I 4009.270 He I 4026.140 Hδ 4101.738 He I 4340.466 He I 4387.928 He I 4471.477 Hβ 4861.332	$ \begin{array}{c} 1116 & 3703.855 \\ 1115 & 3711.973 \\ 1114 & 3721.940 \\ 1113 & 3734.370 \\ 1112 & 3750.154 \\ 1111 & 3770.632 \\ 1110 & 3797.900 \\ Fe I & 3820.428 \\ H9 & 3835.386 \\ Si II & 3856.021 \\ 118 & 3889.051 \\ Ca II & 3933.664 \\ Sr II & 4077.714 \\ H\delta & 4101.738 \\ Sr II & 4215.524 \\ H\gamma & 4340.466 \\ Mg II & 4481.228 \\ S II & 4549.550 \\ H\beta & 4861.332 \\ \end{array} $	$\begin{array}{c} \mathrm{Mn}\ \mathrm{I} \ 4034.490\\ \mathrm{Mn}\ \mathrm{I} \ 4035.728\\ \mathrm{Mn}\ \mathrm{I} \ 4041.361\\ \mathrm{Mn}\ \mathrm{I} \ 4055.543\\ \mathrm{Gd}\ \mathrm{II} \ 4078.444\\ \mathrm{Fe}\ \mathrm{I} \ 4156.803\\ \mathrm{Fe}\ \mathrm{I} \ 4176.917\\ \mathrm{Fe}\ \mathrm{I} \ 4176.917\\ \mathrm{Fe}\ \mathrm{I} \ 4176.917\\ \mathrm{Fe}\ \mathrm{I} \ 4190.712\\ \mathrm{Fe}\ \mathrm{I} \ 4190.712\\ \mathrm{Fe}\ \mathrm{I} \ 4190.712\\ \mathrm{Fe}\ \mathrm{I} \ 4190.712\\ \mathrm{Fe}\ \mathrm{I} \ 4202.031\\ \mathrm{Fe}\ \mathrm{I} \ 4202.031\\ \mathrm{Fe}\ \mathrm{I} \ 4219.364\\ \mathrm{Fe}\ \mathrm{I} \ 4219.364\\ \mathrm{Fe}\ \mathrm{I} \ 4223.816\\ \mathrm{Fe}\ \mathrm{I} \ 4223.816\\ \mathrm{Fe}\ \mathrm{I} \ 4239.847\\ \mathrm{Fe}\ \mathrm{I} \ 4239.847\\ \mathrm{Fe}\ \mathrm{I} \ 4245.258\\ \mathrm{Fe}\ \mathrm{I} \ 42271.764\\ \mathrm{Fe}\ \mathrm{I} \ 4325.765\\ \mathrm{Cr}\ \mathrm{I} \ 4359.631\\ \mathrm{Fe}\ \mathrm{I} \ 4375.932\\ \mathrm{Fe}\ \mathrm{I} \ 4389.244\\ \mathrm{Gd}\ \mathrm{II} \ 4390.953\\ \mathrm{Fe}\ \mathrm{I} \ 4447.722\\ \mathrm{Fe}\ \mathrm{I} \ 4446.554\\ \mathrm{Fe}\ \mathrm{I} \ 44476.021\\ \mathrm{VI} \ 4496.864\\ \mathrm{Cr}\ \mathrm{I} \ 4526.4669\\ \mathrm{Cr}\ \mathrm{I} \ 4528.619\\ \mathrm{Co}\ \mathrm{I} \ 4528.619\\ \mathrm{Co}\ \mathrm{I} \ 4554.033\\ \mathrm{Go}\ \mathrm{I} \ 4565.512\\ \mathrm{Fe}\ \mathrm{I} \ 4602.944\\ \mathrm{Fe}\ \mathrm{I} \ 4904.023\\ \end{array}$

110

found. Probably a discussion in terms of gas streaming within the geometry of the Lagrangian surfaces would be illuminating in this regard. Meanwhile it seems clear that H.D. 209813 belongs to a group of spectroscopic binaries which all show greatly enhanced H and K emission (Hiltner 1947; Gratton 1950; Abt, Dukes, and Weaver 1969). Whether or not these other systems show light variability of the type seen in H.D. 209813 is important in determining a general model for their behaviour, and such an investigation is currently being carried out by Mr. William Herbst at this Observatory.

Acknowledgements

The writers were assisted by a grant from the National Research Council (J.F.H.) and by an Ontario Graduate Fellowship and a University of Toronto Summer Scholarship (W.L.G.). We are indebted to Dr. A. H. Batten of the Dominion Astrophysical Observatory for valuable discussion regarding AR Cas and β Ari, and to Dr. J. D. Fernie relative to H.D. 209813.

References

Abt, H. A., Dukes, R. J. and Weaver, W. B. 1969, Ap. J., 157, 717.

Baker, R. H. 1910, Allegheny Obs. Pub., 2, 28.

Batten, A. H. 1960, P.A.S.P., 72, 349.

——, 1961, J.R.A.S. Canada, **55**, 120.

——, 1968, J.R.A.S. Canada, **62**, 344.

_____, 1968, Pub. Dom. Astrophys. Obs. Victoria, 13, 119.

Blanco, C. and Catalano, S. 1968, I.A.U. Inf. Bull. Var. Stars, no. 253.

——, 1970, Astr. and Astrophys., 4, 482.

Fernie, J. D., Hube, J. O. and Schmidt, J. L. 1968. I.A.U. Inf. Bull. Var. Stars, no. 263.

Frost, E. B. and Adams, W. S. 1903, Ap. J., 18, 383.

Gratton, L. 1950, Ap. J., 111, 31.

Harris, A. J. 1969. I.A.U. Inf. Bull. Var. Stars, no. 365.

Hiltner, W. A. 1947, Ap. J., 106, 481.

Huffer, C. M. and Collins, G. W. 1962, Ap. J. Suppl., 7, 351.

Jackisch, G. 1968, I.A.U. Inf. Bull. Var. Stars, no. 314.

Lehmann-Filhes, R. 1894, A. N., 136, 17.

Ludendorff, H. 1907, Ap. J., 25, 320.

Luyten, W. J., Struve, O. and Morgan, W. W. 1939, Verkes Obs. Pub., 7, 281.

Northcott, Ruth J. 1947, David Dunlap Obs. Pub., 1, no. 19.

Petrie, R. M. 1938, Pub. Dom Astrophys. Obs. Victoria, 7, 105.

_____, 1944, A. J., **51**, 22.

Petrie, R. M. 1962, *Stars and Stellar Systems*, ed. W. A. Hiltner (Chicago and London: The University of Chicago Press) **2**, ch. 23.

Stebbins, J. 1921, Ap. J., 54, 81.

Sterne, T. E. 1941, Proc. Nat. Acad. Sci., 27, 175.

Wilson, O. C. and Bappu, M. K. V. 1957, Ap. J., 125, 661.

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

NUMBER 5

THE ESTABLISHMENT OF 21 NEW NINTH MAGNITUDE IAU STANDARD RADIAL VELOCITY STARS

JOHN F. HEARD AND CH. FEHRENBACH

1972 TORONTO, CANADA

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

NUMBER 5

THE ESTABLISHMENT OF 21 NEW NINTH MAGNITUDE IAU STANDARD RADIAL VELOCITY STARS

JOHN F. HEARD AND CH. FEHRENBACH

1972 TORONTO, CANADA

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

THE ESTABLISHMENT OF 21 NEW NINTH MAGNITUDE IAU STANDARD RADIAL VELOCITY STARS

By John F. Heard, David Dunlap Observatory and Ch. Fehrenbach, Observatoire de Haute Provence

ABSTRACT

Twenty-four stars of photographic magnitude 8.26 to 9.64 and of spectral types F, G and K, in the declination zone $+25^{\circ}$ to $+30^{\circ}$ have been investigated for suitability as an extension of the IAU lists of standard velocity stars. The stars were observed with dispersions of 12, 20 and 15 A/mm at the David Dunlap, Haute Provence and Dominion Astrophysical Observatories respectively, and the spectrograms were measured with systems tested against the IAU system. Three of the 24 stars are believed to have small-range velocity variations. The remaining 21 are presented as new IAU standard velocity stars.

INTRODUCTION

At IAU Symposium no. 30 on "Determination of Radial Velocities and their Application" (Batten and Heard 1967), Fehrenback drew attention to the need for an extension of the lists of IAU standard velocity stars to include stars which are appreciably fainter than those in Table 2 of the Report of Sub-commission 30a in the Transactions of the International Astronomical Union, vol IX, 1955.

In 1967 Heard reported to the IAU Commission 30 meeting in Prague the selection of 24 stars in the declination zone +25° to +30° with spectral types ranging from F7 to K5 and photographic magnitudes 8.26 to 9.64 which had already appeared to have constant velocities (Heard, 1956). He proposed to re-observe these stars at higher dispersion at the David Dunlap Observatory and invited participation by others.

OBSERVATIONS

Observations of the 24 stars were begun at the David Dunlap Observatory in 1968 and continued through 1971. The 12 A/mm dispersion of the Cassegrain grating spectrograph was used with the 188-cm telescope, and the goal was to obtain seven spectrograms of each star.

At l'Observatoire de Haute Provence Fehrenbach also undertook observations of these stars with the 20 A/mm dispersion of the coudé spectrograph of the 152-cm telescope, and in 1970 and 1971 obtained from three to five spectrograms of most of the stars.

Through the kindness of Dr. K.O. Wright and his colleagues, a total of 22 spectrograms of the stars were also obtained at the Dominion Astrophysical Observatory with the 15 A/mm dispersion of the Cassegrain grating spectrograph of the 183-cm telescope.

The results which follow are based on these three sets of observations which include a total of 277 spectrograms of the program stars. In addition,

133 spectrograms of existing IAU standard velocities stars were measured to ensure that the new velocities conform to the IAU system.

After reporting our preliminary results at the meeting of IAU Commission 30 in 1970, we were authorized to present the final results as IAU standards.

MEASUREMENT AND REDUCTION

David Dunlap

The Dunlap plates were measured on a Jenna Abbe comparator, four settings being made on both iron arc comparison lines and star lines in each direction of traverse. The star lines were a selection (usually between 20 and 28 in number) of the wavelengths listed by Gorza and Heard (1971). The reductions were made either by the usual method of tables of standard settings and correction curves or by a computer program which effectively establishes the dispersion curve of each spectrogram. We compared the two methods and found that the difference seldom exceeded 0.1 km/sec.

Although our lists of lines had been, in the first place, selected with care as a result of measurements of IAU standard velocity spectrograms, we feared that the special conditions of observation of the faint program stars (projected slit width 33μ , projected slit length 0.3 mm, long exposures and sometimes large hour angles) might introduce systematic errors. In an effort to determine such errors if they existed, we observed IAU standard velocity stars almost nightly under conditions similar to those for the program stars, attempting to match the quality of the spectrograms. Fifty-six such standard velocity spectrograms were measured and reduced. The results are summarized in Table 1 which lists, for F-, G- and K-type spectra separately, the residuals in the sense IAU-DDO and the average corrections which are applicable to our velocities to bring them to the IAU system. Although the mean errors of these corrections reveal them to be only marginally significant, we did nevertheless apply these small corrections to the Dunlap program star velocities.

A study of the standard velocity results failed to reveal any correlations of residuals with length of exposure, hour angle, plate density or seeing.

Dominion Astrophysical

Of the 22 available DAO 15 A/mm spectrograms of the program stars, 11 were taken with the spectrograph fitted with a conventional slit and the remaining 11 with the use of a Richardson image-slicer. Because these plates became available to us before a standard system of selected wavelengths had been made by the DAO astronomers, we used the wavelengths which had been selected for the DDO 12 A/mm spectrograms, and, to determine the systematic corrections which might thus be introduced, we measured six spectrograms of each of F-, G- and K-type standard velocity stars taken with the conventional slit. The results for the 18 spectrograms gave an average residual (1AU-DAO) of -0.8 ± 0.3 . This agrees well with the findings of Aikman (1971) who got a residual of about this same amount for DAO

standard velocity spectrograms, measuring them in a different manner with a different wavelength selection. The samples used by both us and Aikman were too small to give a significant break-down of the residuals by spectral class. Accordingly, we corrected the measured velocities of all 11 of the conventional-slit spectrograms of program stars by -0.8 km/sec.

Aikman also reported a test of image-slicer standard velocity spectrograms and found no statistically significant mean residual for them. We tested our measures of the image-slicer program star spectrograms by re-computing the velocities according to the wavelengths used by Aikman and found the mean residual to be only 0.1 km/sec. Accordingly, we made no corrections to our measured velocities for these image-slicer spectrograms.

Haute Provence

The methods of measurement and reduction of the Haute Provence 20 A/mm spectrograms have been described by Fehrenbach (1972) who also analysed the results from 59 spectrograms of IAU standard velocity stars. Because he found the residuals, IAU-OHP, to be small and statistically insignificant, we have applied no corrections to the Haute Provence velocities of the program stars.

RESULTS

The results for the 24 program stars are summarized in Table II.

Column 1 gives the designation and (for the three stars not listed in Table III as new standards) the 1950 co-ordinates, the photographic magnitude and the spectral classification, the last two data being quoted from the results of Heard (1956).

Columns 2, 5, 8 give the Julian dates of the observations. Columns 3, 6, 9 give the velocities (corrected to the IAU system as indicated earlier), and columns 4, 7, 10 give the internal mean errors, i.e.

$$\mathcal{E}_{1} = \sqrt{\frac{\sum v^{2}}{n (n-1)}} ,$$

where n is the number of lines measured and v is the deviation of the velocity of a line from the mean velocity for the plate.

Below the plate velocity entries in columns 2, 5, 8 are given the mean velocities from each observatory followed by the external mean errors, i.e.

$$\mathcal{E}_{2} = \sqrt{\frac{\Sigma V^{2}}{N (N-1)}} ,$$

where N is the number of spectrograms and V is the deviation of the velocity of a plate from the mean velocity for the N plates.

Three stars, namely $BD + 29^{\circ}$ 1553, HD 160952 and HD 204934 show sufficient evidence of small-range variation of velocity to warrant their exclusion from the list recommended as new standards of velocity.

The new list of 21 IAU standard velocity stars is given in Table III.

Finally, we have the following comments on the results which we believe support their validity:

Our observations having been carried out over at least two years and more often three, there seems to be little chance that long-period variations have been missed.

For the determinations at the three observatories considered separately, the average values of the external mean errors per star are DDO \pm 0.5, OHP \pm 0.5, DAO \pm 0.7, whereas the average values of the residuals between observatories are DDO-OHP = -0.2, DDO-DAO = +0.2. These residuals, then, seem not to be statistically significant.

Comparing the average external mean error per star in the list of IAU standard velocity stars fainter than magnitude 4.3 as given in IAU Transactions vol. IX p. 443 (after converting from P.E. to M.E.) with ours, we find that ours is somewhat better (0.34 compared to 0.44) in spite of the fact that the average number of observations per star is greater in the IAU list than in ours.

ACKNOWLEDGEMENTS

We gratefully acknowledge the help of colleagues at the three observatories in the obtaining of the spectrograms, and we thank Mr. Mark McCutcheon and Miss Molly Morrow at the David Dunlap Observatory and Mr. and Mrs. H. Petit at the Haute Provence Observatory for the measuring of most of the plates. One of us (J.F.H.) has received support for the project in the form of a research grant from the National Research Council of Canada.

REFERENCES

Aikman, C.L. 1971, private communication.

Batten, A.H. and Heard, J.F. 1967, *Determination of Radial Velocities and their Applications* (London: Academic Press), p. 70.

Fehrenbach, Ch. 1972, Astr. and Astrophys. (in press).

Gorza, W.L. and Heard, J.F. 1971, David Dunlap Obs. Pub., 3, 99.

Heard, J.F. 1956, David Dunlap Obs. Pub., 2, 107.

TABLE I

	F-type			G-type			K-type	
HD	Sp.	IAU-DDO km/sec	HD	Sp.	IAU-DDO km/sec	HD	Sp.	IAU-DDO km/sec
22484	F8 V	+0.3 +0.9	65583	G8 V	-1.6	3712	K0 II-III	+1.1
36673	F0 lb	+1.3	84441	G0 II	+1.5	3765	K2 V	+1.1
89449	F6 IV	+1.2	103095	G8 V	+0.9 -0.9	9138	K4 III	+1.3 +0.1 +1.4
		+0.7 -0.1 +0.1	109379	G5 111	+0.5 -0.4			+1.6 +1.8 +0.6
102870	F8 V	+0.2	171391	G8 III	-0.5 -1.4			+0.6 0.6
136202	F8 IV	+0.3 +0.3	204867	GO Ib	+0.3 +0.3	26162	gK1	+0.7
187691	F8 V	+0.8			+1.5	29139	K5 III	-1.8 +1.3
222368	F7 V	+0.6			-0.6 +1.5 +0.4	35410	K0 III	0.0 0.0 +1.6
						66141	K2 111	+1.5 -2.0 -1.7 -0.2 -1.7 -0.4
						92588	K1 IV	-1.5
						107328	K0 III	-0.8
						186791	K3 II	+1.5
						212943	K0 III	-0.1 +0.7
13 plates	, mean +	0.3 ±0.2	15 plate	es, mean	0.0 ± 0.1	28 plates	s, mean –(0.2±0.2

RADIAL VELOCITY RESIDUALS FROM IAU STANDARDS MEASURED ON DUNLAP SPECTROGRAMS

RADIAL VELOCITY MEASURES OF THE PROGRAM STARS										
STAR	DAVII	D DUNL	AP	HAUTE PROVENCE DOMINION ASTROPHYSICAL						
	J.D. 244	Vel. km/sec	٤ 1	J.D. 244	Vel. km/sec	ε1	J.D. 244	Vel. km/sec	٤1	
HD 4388	0525.7	-30.0	0.6	0856.5	-29.5	0.5				
	0532.6	-28.4	0.5	0858.5	-27.0	0.7				
	0571.6	-32.2	0.6	0862.5	-25.9	0.5				
	0784.2	-27.3	0.6							
	0793.2	-26.2	0.6							
	0834.7	-28.0	0.5							
	0849.8	-28.7	0.4							
		-28.7	±0.7		-27.5	±1.0				
HD 12029	0578.6	+37.1	0.8	0850.5	+37.8	0.5	0480.0	+39.1	0.6	
	0804.8	+38.3	0.6	0851.6	+38.1	0.6				
	0806.9	+38.1	0.2	0853.5	+43.7	0.5				
	0834.8	+37.4	0.3	0873.0	+36.8	0.5				
	0875.5	+39.7	0.5	0874.6	+38.1	0.6				
	0923.5	+39.6	0.4							
		+38.5	±0.4		+38.9	±1.2		+39.1		
HD 14969	0621.5	-32.6	0.4	0852.6	-33.0	0.7				
	0849.8	-35.2	0.5	0862.6	-32.6	0.5				
	0895.7	-32.6	0.8	0866.5	-33.2	0.9				
	0951.5	-34.9	0.3	0873.6	-32.5	0.8				
	0953,5	-32.5	0.4							
	0958.5	-34.9	0.5							
		-33.8	±0.6		-32.8	±0.2				
HD 23169	0578.7	+12.9	0.9	0858.6	+14.2	0.5				
	0594.7	+12.6	0.8	0872.6	+14.0	0.5				
	0624.6	+13.2	0.7	0873.5	+14.8	0.3				
	0640.6	+13.5	0.8	0874.5	+13.3	0.5				
	0927.8	+13.0	0.9	0892.6	+12.8	0.4				
	0951.5	+11.9	0.7							
	0953.5	+13.0	0.5							
	0993.5	+14.2	0.6							
		+13.0	±0.3		+13.8	±0.4				
HD 32963	0223.7	-64.0	0.8	0855.6	-60.0	0.6				
	0259.5	-62.2	0.6	0857.6	-64.0	0.6				
	0266.5	-63.4	0.6	0866.5	-64.5	0.4				
	0624.7	-63.7	0.5	0872.6	-63.7	0.4				
	0849.9	-64.2	0.4	0874.6	-62.4	0.6				
	0941.8	-63.4	0.6	1190.6	-60.8	0.4				
	0942.7	-64.1	0.7							
		-63.6	±0.3		-62.6	±0.7				

STAR	DAVID DUNLAP			HAUTE PROVENCE			DOMINION ASTROPHYSICAL			
	J.D. 244	Vel. km/sec	ε 1	J.D. 244	Vel. km/sec	٤1	J.D. 244	Vel. km/sec	ε1	
HD 42397	0259.6	+38.1	0.4	0872.6	+36.5	0.5	1026.7	+35.3	0.6	
	0270.7	+36.2	0.5	0873.7	+37.0	0.4				
	0280.6	+40.5	0.6	0892.7	+39.4	0.5				
	0660.6	+36.9	0.7	0893.6	+36.9	0.5				
	1001,5	+37.3	0.8							
	1015.5	+37.6	0.6							
	1020.5	+37.0	0.7							
		+37.7	±0.5		+37.5	±0.7		+35.3		
BD+29 ⁰ 1553	0259.7	-7.8	0.6							
07 ^h 31. ^m 4	0657.6	+1.2	0.9							
+28051'	0665.6	+0.5	0.6							
9.29	0675.6	-2.0	0.7							
GO IV	0681.6	-1.8	0.9							
	0951.8	-5.4	0.6							
		Var.								
HD 65934	0207.8	+34.7	0.3	1051.3	+36.5	1.3				
	0280.7	+35.4	0.3	1052.3	+35.1	0.8				
	0595.8	+34.8	0.4	1053.3	+35.3	0.7				
	0658.6	+33.4	0.7							
	0662.5	+34.3	0.5							
	0927.9	+33.9	0.3							
	0955.7	+36.2	0.3							
		+34.7	±0.4		+35.6	±0.4				
HD 75935	0207.8	-19.8	0.4	1052.3	-19.3	0.8				
	0308.6	-19.8	0.5	1053.4	-20.4	1.0				
	0624.8	-19.1	0.4	1055.3	-18.9	0.5				
	0641.8	-16.9	0.8							
	0700.6	-18.8	1.2							
	1015.6	-17.9	0.9							
	1020.6	-18.2	0.6							
		-18.6	±0.4		-19.5	±0.4				
HD 86801	0269.8	-14.3	0.5	1052.4	-13.0	0.7	0943.0	-12.7	0.6	
	0273.8	-15.6	0.7	1052.4	-14.9	0.7	1026.8	-17.1	0.4	
•	0318.6	-14.5	0.6	1053.4	-15.7	0.9	1035.8	-13.6	0.5	
	0665.7	-12.6	0.6	100011	1017	0.0	1075.7	-14.8	0.4	
	0971.9	-16.8	0.6						0	
	1015.7	-12.4	0.9							
	1022.7	-15.4	0.8							
		-14.5	±0.7		-14.5	±0.8		-14.5	±1.0	
HD 75935 HD 86801	0207.8 0308.6 0624.8 0641.8 0700.6 1015.6 1020.6 0269.8 0273.8 0318.6 0665.7 0971.9 1015.7 1022.7	$\begin{array}{r} +34.7 \\ -19.8 \\ -19.8 \\ -19.1 \\ -16.9 \\ -18.8 \\ -17.9 \\ -18.2 \\ -18.6 \\ -14.3 \\ -15.6 \\ -14.5 \\ -12.6 \\ -16.8 \\ -12.4 \\ -15.4 \\ -15.4 \\ -14.5 \end{array}$	±0.4 0.4 0.5 0.4 0.8 1.2 0.9 0.6 ±0.4 0.5 0.7 0.6 0.6 0.6 0.6 0.9 0.8 ±0.7	1052.3 1053.4 1055.3 1052.4 1052.4 1053.4	+35.6 -19.3 -20.4 -18.9 -19.5 -13.0 -14.9 -15.7	±0.4 0.8 1.0 0.5 ±0.4 0.7 0.7 0.9 ±0.8	0943.0 1026.8 1035.8 1075.7	12.7 =17.1 =13.6 =14.8	0.6 0.4 0.5 0.4 ±1.0	

TABLE Il-continued

STAR	DAVII	D DUNL	AP	HAUTE	PROVEN	NCE	DOMINION	ASTR	OPHYS	SICAL
	J.D. 244	Vel. km/sec	ε1	J.D. 244	Vel. km/sec	ε1	J.D. 244 J	Vel. km/sec	٤ 1	
HD 90861	0208.9 0579.9 0583.9 0592.9 0657.7 0694.6 0928.0	+36.2 +36.4 +36.7 +36.3 +36.9 +38.8 +33.5	0.4 0.3 0.3 0.3 0.3 0.6 0.5	1051.4 1051.4 1051.4 1055.4	+37.7 +36.4 +36.5 +34.2	1.3 0.8 0.8 1.0				
		+36.4	±0.6		+36.2	±0.7				
HD 102494	0208.0 0209.0 0257.7 0951.9 0967.9 1024.8 1027.8	-22.3 -22.8 -24.9 -24.3 -23.4 -21.8 -24.1	0.4 0.3 0.5 0.6 0.4 1.2 0.9	1051.4 1051.4 1055.4 1101.4 1110.4	-21.6 -21.7 -21.6 -22.4 -23.4	0.8 1.2 0.5 0.7 1.0	9902.9* 9993.9* 0245.0 1044.8 1063.9 1068.7	-24.8 -24.0 -21.7 -22.9 -22.1 -22.5	0.6 0.4 0.5 0.5 0.6 0.7	
		-23.4	±0.4		-22.1	0.3		-23.0	±0.4	
HD 112299	0260.0 0266.7 0268.8 0308.7 0681.7 0713.6 0724.6 0726.6	+6.8 +1.9 +5.0 +3.8 +1.4 +2.3 +1.3 +7.0	0.6 0.5 0.6 0.4 0.9 1.0 1.0 0.9	1100.4 1101.4 1134.4	+3.0 +3.1 +2.3	0.6 0.6 0.6	0724.8 1029.9	+3.3 +3.1	0.4 0.5	
		±3.7	±0.8		+2.8	±0.3		+3.2	±0.2	
HD 122693	0268.9 0584.0 0606.9 0657.8 0710.8 0725.8 1035.8	-4.8 -6.5 -7.2 -6.4 -6.7 -5.5 -5.5	0.3 0.5 1.2 0.3 0.7 0.4 0.6	1100.5 1101.5 1102.4 1111.4	-7.3 -5.2 -7.0 -7.3	0.7 0.5 0.5 0.7	9999.8* 1068.8	-6.6 -5.7	0.4 0.5	
		-6.1	±0.4		-6.7	±0.5		-6.2	±0.5	
HD 132737	0270.8 0304.0 0624.9 0657.9 0726.7 0727.6 0743.7	-24.9 -24.8 -24.4 -24.9 -23.8 -23.2 -22.7	0.4 0.5 0.3 0.4 2.2 0.5 0.4	1101.5 1111.4 1136.4 1143.4	-24.0 -23.6 -24.0 -23.5	0.7 0.8 1.0 0.8	0734.7 1068.8	-22.5 -27.4	0.7 0.6	
		·	±0.3		-23.8	±0.1		-25.0	±1.9	
								*J.D. 2	43	

TABLE II-continued

STAR	DAVI	D DUNL	AP	HAUTE	PROVEN	ICE	DOMINIO	N ASTRO	OPHYSICAL
	J.D. 244	Vel. km/sec	٤ 1	J.D. 244	Vel. km/sec	٤ 1	J.D. 244	Vel. km/sec	٤ 1
HD 140913	0308.9	-21.2	0.6	1110.5	-18.0	0.4	9999.8	* -22.3	0.7
	0681.8	-19.1	0.7	1111.4	-18.1	0.4			
	0724.8	-22.6	0.8	1134.4	-21.5	0.7			
	0734.7	-20.1	0.6	1141.4	-20.8	0.7			
	0746.6	-21.1	0.6	1142.4	-21.9	0.8			
	0750.6	-20.8	0.4						
	1022.9	-22.8	0.7						
		-21.I	±0.5		-20.1	±0.8		-22.3	
HD 149803	0303.9	-7.0	0.6	1147.4	-9.2	0.7	0734.9	-6.1	0.9
	0367.8	-7.0	0.6	1148.4	-8.0	0.5			
	0734.8	-9.7	0.6	1149.4	-8.9	0.6			
	0735.7	-8.0	0.6						
	0745.7	-8.3	0.7						
	0760.6	-4.6	0.4						
	1015.9	-6.9	0.6						
		-7.4	±0.6		-8.7	0.4		-6.1	
HD 160952	0368.7	+20.9	0.5	1110.5	+22.5	0.9	9999.9	* +22.4	0.4
17 ^h 39 ^m 7	0444.7	+29.1	0.6	1111.5	+23.2	0.9			
+29037'	0453.6	+29.2	0.7	1134.5	+24.8	0.7			
9.04	0455.6	+28.7	0.3	1136.4	+24.2	0.9			
G8 111	0736.7	+24.6	0.4						
	0759.6	+23.5	0.5						
		Var.							
HD 171232	0116.6	_35.2	0.3	0855.4	-36.9	0.5			
110 111252	0410.7	-36.5	0.6	0865.3	-37.8	0.4			
	0413.8	-38.2	0.4	0866.4	-36.7	0.6			
	0727.7	-33.6	0.3	1111.5	-36.0	0.9)		
	0735.8	-38.9	0.6	1136.4	-32.4	0.9	1		
	0746.8	-34.2	0.6						
	0751.7	-35.1	0.5						
	0758.7	-35.6	0.4						
		-35.9	±0.7		-36.0	±0.9)		
BD+28 ⁰ 3402	0504.5	-37.7	0.7						
	0525.5	-37.1	0.6						
	0759.7	-36.6	0.5						
	0760.7	-33.8	0.9						
	0793.7	-37.1	0.7						
	0800.6	-36.2	0.4						
	0804.7	-37.5	0.6						
		-36.6	±0.5						

TABLE II–continued

STAR	DAVI	D DUNL	AP	HAUTE	PROVEN	CE	DOMINIO	N ASTR	OPHYSICAL
	J.D. 244	Vel. km/sec	ε1	J.D. 244	Vel. km/sec	ε1	J.D. 244	Vel. km/sec	٤1
HD 194071	0418.7	-9.5	0.5	0857.4	-9.1	0.4			
	0425.7	-9.8	0.4	0861.4	-9.6	0.6			
	0751.8	-9.8	0.3	0865.4	-9.9	0.3			
	0758.8	-9.6	0.5	1136.5	-10.6	0.9			
	0773.7	-8.9	0.3	1138.6	-11.0	0.8			
	0774.7	-10.2	0.4						
	0834.6	-9.3	0.5						
		-9.6	±0.2		-10.0	0.3			
HD 204934	0546.5	-3.3	0.4	0873.3	-11.7	0.4			
21h29m.0	0547.5	-6.3	0.7	1134.5	-6.6	1.1			
+28009'	0806.7	+0.4	0.3	1191.3	-4.7	0.8			
K1 111	0861.7	-11.5	0.9						
		Var.			Var.				
HD 213947	0116.7	+16.7	0.3	0852.5	+18.2	0.7	0479.9	+16.3	0.9
	0504.6	+17.3	0.6	0856.4	+15.8	0.5			
	0525.6	+15.7	0.6	0864.4	+16.4	0.6			
	0759.8	+16.1	0.5	0893.3	+17.3	0.6			
	0774.8	+16.8	0.6	1134.6	+18.7	1.5			
	0762.7	+14.6	0.6	1136.6	+17.4	1.3			
		+16.2	±0.4		+17.3	±0.4		+16.3	
HD 223094	0116.8	+19.5	0.4	0864.4	+20.0	0.6			
	0504.7	+19.7	0.7	0864.5	5 +19.8	0.9			
	0525.7	+19.6	0.2	0866.4	+21.0	0.6			
	0532.6	+19.1	0.4	0867.4	+18.9	0.7			
	0576.5	+16.8	1.2	0874.4	+20.0	0.6			
	0784.8	+21.9	0.3	1134.6	5 +18.8	1.1			
	0806.8	+19.9	0.5						
		+19.5	±0.6		+19.8	±0.	3		

TABLE II-continued

HD or BD	α(1950) h m	δ(1950) ° '	Ptg. Mag.	Sp.	Ve1. km/sec	M.E.	No. of Obs.
4388	00 43.8	+30 41	8.80	K3 111	-28.3	0.6	10
12029	01 55.8	+29 08	8.96	K2 111	+38.6	0.5	12
14969	. 02 22.6	+29 39	8.96	K3 III	-33.4	0.3	10
23169	03 40.9	+25 34	9.39	G2 V	+13.3	0.2	13
32963	05 04.8	+26 16	8.36	G2 V	-63.1	0.4	13
42397	06 08.5	+25 01	8.68	G0 IV	+37.4	0.4	12
65934	07 59.1	+26 47	8.87	G8 [11	+35.0	0.3	10
75935	08 50.9	+27 06	9.35	G8 V	-18.9	0.3	10
86801	09 58.7	+28 48	9.48	G0 V	-14.5	0.4	14
90861	10 27.1	+28 50	8.36	K2 III	+36.3	0.4	11
102494	11 45.3	+27 37	8.26	G8 IV	-22.9	0.3	18
112299	12 53.0	+26 01	9.19	F8 V	+ 3.4	0.5	13
122693	14 00.5	+24 48	8.74	F8 V	- 6.3	0.2	13
132737	14 57.7	+27 21	9.03	K0 111	-24.1	0.3	13
140913	15 43.1	+28 37	8.81	G0 V	-20.8	0.4	13
149803	16 33.9	+29 51	8.90	F7 V	- 7.6	0.4	11
171232	18 30.6	+25 27	8.66	G8 111	-35.9	0.5	13
28° 3402	19 33.0	+28 59	9.55	F7 V	-36.6	0.5	7
194071	20 20.5	+28 05	9.06	G8 111	- 9.8	0.1	12
213947	22 32.3	+26 20	8.93	K4 III	+16.7	0.3	13
223094	23 43.9	+28 26	8.97	K5 111	+19.6 .	0.3	13

TABLE HI21 NEW IAU STANDARD VELOCITY STARS

David Dunlap Observatory, Richmond Hill, Ontario, October, 1972.

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

Number 6

A THIRD CATALOGUE OF VARIABLE STARS IN GLOBULAR CLUSTERS COMPRISING 2119 ENTRIES

ΒY

HELEN SAWYER HOGG

1973

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

Number 6

A THIRD CATALOGUE OF VARIABLE STARS IN GLOBULAR CLUSTERS COMPRISING 2119 ENTRIES

BY

HELEN SAWYER HOGG

1973

Printed by University of Toronto Press

INTRODUCTION

This is the third in the series of catalogues of variable stars in globular clusters published by the David Dunlap Observatory. The first appeared in 1939 (David Dunlap Publications, vol. 1, no. 4) and the second in 1955 (vol. 2, no. 2). In addition, a catalogue of variables in globular clusters south of -29° declination was published in 1966 at Cordoba by C. R. Fourcade and J. R. Laborde, along with a splendid atlas of photographic prints of clusters prepared by J. Albarracin.

A preliminary edition of this Third Catalogue, in manuscript form, comprising 2057 entries, was circulated at the IAU Colloquium no. 21, "Variable Stars in Globular Clusters and in Related Systems," in August 1972. Investigators were invited to send corrections and additions to the author of the manuscript by October 2, 1972. The cut-off date for material included in this publication is November 1, 1972. Considerable new material was received, much of it from the Colloquium itself. This led to extensive revisions in the manuscript and some delay in its publication. Some of the conclusions drawn from the material of the Third Catalogue are in press in the Colloquium volume edited by J. D. Fernie.

SUMMARY OF DATA ON VARIABLES IN GLOBULAR CLUSTERS

At present a recorded search for variables in 108 of the approximately 130 globular clusters belonging to our galaxy has been made. This search has yielded 2119 variables. Certainly variables do not abound in most globular clusters. Of the 108 clusters that have been examined, only 10 contain more than 50 variables each, and 81 contain fewer than 20 variables each. At the time of compilation of the Second Catalogue, from the distribution it appeared that the most frequent number of variables found in a globular cluster was one. Now, from the data in the Third Catalogue, the most frequent number is zero. There are effectively 13 clusters with no variables, if one includes NGC 6397, whose three variables are considered field stars. One variable alone is found in each of 10 clusters.

Figure 1 shows the frequency distribution of the number of variables per cluster. More than 60 per cent of the clusters examined, 65 in all, have 10 variables or fewer; exactly 25 per cent, 26 clusters, have more than 20 variables; and 5 clusters have approximately 100 or more. The richest cluster still remains NGC 5272, Messier 3, with 212 variables. The second richest is Omega Centauri, NGC 5139, with 179. Next in order of richness is IC 4499, a newcomer in this catalogue, less than 10° from the southern celestial pole, with 129 discovered by Fourcade and Laborde, and 41 suspected. Messier 15, NGC 7078, with 111 and Messier 5, NGC 5904, with 97 complete this list of exceptionally rich clusters.

One of the problems faced in compiling this catalogue was to decide whether to include or exclude field variables. In general my policy has been to number those variables which lie within the obvious confines of a cluster, even though some of them are manifestly field stars. To omit them would ultimately lead to confusion. On the other hand, work of recent years in the surroundings of globular clusters has shown that

Figure 1 Distribution of the known, published variables per cluster.

some of the RR Lyrae stars well beyond their confines are likely members, or were so in the past. These stars are not included among the numbered variables of a cluster, except in a few cases.

NUMBERS OF TYPES OF VARIABLES AND KNOWN PERIODS

Of the known variables, periods have now been determined for 1313 in 55 clusters, compared with 843 in 38 clusters in 1955. In many clusters some periods have been revised or redetermined. In some cases there are only minor changes in the fifth or higher decimal places, but in others the change is major, even in the first decimal, giving an alternate period. In addition, many determinations of period changes have now been made. An effective summary of such changes in a concise catalogue is not possible, and the reader is referred to the original papers for pertinent data.

Table I gives a summary of the numbers and types of variables and numbers of periods known in the 108 globular clusters for which there is a record of search. For further particulars about these stars, such as cluster membership, the reader is referred to the catalogue itself.

The first column of the table gives the customary designation of the cluster, usually the NGC number. The second gives the total number of variables, and the third the total number of known periods. Periods for RR Lyrae stars are counted as known even when the published value is questionable or there is an alternate period, providing at least two decimals are given; and for semiregular variables if a numerical value of the cycle has been published. The fourth column gives the number of RR Lyrae periods

Introduction

TABLE I

Summary of Variable Stars in Globular Clusters

NGC	Total variables	Total periods	RR Lyr periods	1-30 days	31-99 days	100-220 days	>220 days	lrr SR	Others
104	28	10	2		3	5		4	
288	1	1				1			
362	15	10	7	2	1				
1261	15	0							
Pal 1	0								
Pal 2	0								
1851	10	0							
1904	7	3	3					1	
2298	2	0							
2419	36	0						5	
2808	9	0							
Pal 3	1	0							
3201	88	84	83						EA, mem?
Pal 4	2	2				2			
4147	16	15	15						
4372	2	0							
4590	42	38	37				1 F		
4833	16	9	6		1		2 F	1	
5024	47	36	33	1	1	1			
5053	11	10	10						
5139	179	159	142	7	5	2	1 F	3	3 E, 1 RRs
5272	212	186	182	1	2	1			1 EW
5286	8	0							
5466	23	21	21						
5634	7	1	1						
5694	0	_							
14499	129	0							
5824	27	9	9				1		
Pal 5	5	5	5						
5897	7	7	6		1				
5904	97	92	90	2				1	1 UG
5927	11	1					1		
5946	3	0							
5986	5	0							
6093	8	3		1		1 F	1 F		1 N
6101	0								
6121	43	42	40		2				
6139	0								
6144	1	0							
6171	25	23	22				1 F		
6205	11	7	3	3 M	1 M			2 M	1 F
6218	1	1		1					
6229	22	15	14	1					
6235	2	0							

NGC	Total variables	Total periods	RR Lyr periods	1-30 days	31-99 days	100-220 days	>220 days	lrr SR	Others
Table	I (continue	ed)							
6254	4	2		2				1	
Pal 15	0								
6266	89	74	74						
6273	4	0							
6284	6	0							
6287	3	0							
6293	5	0							
6304	21	0							
6333	13	11	11						
6341	15	13	12						1 EW F
6352	4	0							
6356	10	1				1			
6362	33	15	15						
6366	2	0							
HP 1	15	0							
6380	1	0							
6388	9								
Ton 2	2	0							
6397	3	3	$1 \mathrm{F}$		1 F		1 F		
6401	3	0							
6402	77	40	34	5			1 F		1 N
Pal 6	0								
6426	13	11	11						
6441	10	0							
6453	0								
6496	0								
6522	10	9	8	1 F				1 F	
6528	0								
6535	1	0							
6539	1u	0							
6541	1	0							Slow, prob. mem
6553	18	4	3				1		2 slow, 1 N
6558	9	0							
11276	5	1	1					4?	
6569	5	0							
6584	1	0							
6624	4	0							
6626	18	10	7	2	1				
6637	8	2				2 M			1 RR F, 2 red gian
6638	3	0							
6642	2	0							
6652	0								
6656	32	27	18	1 M	2	2 F?	4 F?	1 M	
6681	2	0							
6712	21	16	10			6			1 UG, 2 E F?
6715	80	37	34	1	1	1			2 E, 2 SR, 3 F

NGC	Total variables	Total periods	RR Lyr periods	1-30 days	31-99 days	100-220 days	>220 days	Irr SR	Others
Table	I (continue	ed)							
6723	25	19	19						
6752	2	0							
6760	4	0							
6779	12	4	1 F	1	1			6	1 RRs F?
Pal 10	1	0							
6809	6	5	5						
Pal 11	0								
6838	4	2				1		1	1 EA, mem
6864	11	0							
6934	51	30	30						1 slow
6981	40	28	28						
7006	71	58	57		1				
7078	111	68	65	3					
7089	21	21	17	3	1				
7099	12	4	3						1 UG
Pal 12	3	0							
Pal 13	4	4	4						
7492	4	4	3	1					

determined. The next three columns cover the period interval between the RR Lyrae and the Mira stars with periods greater than 220 days. The totals in this period interval are broken down arbitrarily into three groups. The shorter group is made up mainly of W Vir stars, and the longer of short-period Mira stars, with semiregular or RV Tauri types in between. Only those variables technically in the pulsating variable group are included in the above-mentioned columns. Others, mainly eclipsing, are noted in the last column of the table. Mira stars with periods over 220 days are in the eighth column. These are mainly field stars. The ninth column contains those variables with no period given, mainly red ones, with irregular or semiregular fluctuations.

About 8 per cent of the stars in the catalogue, 169 in all, are definitely designated as other than RR Lyrae. There are 39 in the 1-30 day group, 26 in the 31-99, 26 in the 100-219, and 15 with a period of over 220 days. A conspicuous difference between the Third and Second Catalogues is the increase in the number of red irregular variables, many with small ranges.

DISTRIBUTIONS OF RR LYRAE PERIODS

There are 1202 definite RR Lyrae periods known in 46 clusters. The importance of the difference in most frequent length of period in individual clusters has been widely discussed since Oosterhoff first called attention to it. Figure 2 shows the distribution of all RR Lyrae periods in globular clusters for period intervals of 0.01 day. The double maximum of this distribution, conspicuous in the Second Catalogue, is further en-

Figure 2 Numbers of RR Lyrae periods at intervals of 0.01 days.

hanced by the new material. Certainly in globular clusters variables of the RR*ab* type have a strong preference for periods around 0.55 day, and of the RR*c* type, around 0.35 day.

DESCRIPTION OF THE CATALOGUE

The catalogue contains every globular cluster considered as belonging to our galaxy for which there is now a published record of search for variables. These clusters number 108, and 11 others are mentioned in brief references.

For the material of the catalogue an attempt has been made to select the most recent or the best determined data. This means that in some clusters for even a single variable the data in different columns may be drawn from different sources. When the Second Catalogue was prepared in 1955, every effort was made to obtain from the authors, or their respective institutions, information sufficient to identify variables listed many years earlier as unpublished. Despite this attempt, much of the unpublished material had to be left in relatively useless form. Now, 17 years later, it seems unlikely that any more of this material can ever be salvaged, and in most cases it is not mentioned in the Third Catalogue.

The system of references has been put on a different basis from that used in the First and Second Catalogues. As the literature proliferates with the years, it becomes no longer feasible to reprint all the references for a cluster in each catalogue. Accordingly

Introduction

only references since the publication of the Second Catalogue are included for the most part, along with a few overlooked earlier. However, for some clusters on which there has been no key work since then, an occasional early reference has been repeated to aid the reader.

The format of the reference system has also been altered from that used in the earlier catalogues. References are now printed under each cluster. The abbreviations of publications have been chosen to conform to the system of H. Schneller in *Geschichte und Literatur des Lichtwechsels der Veränderlichen Sterne* (Berlin), which seems to convey the necessary information in as concise a manner as possible. An index of the abbreviations used is given at the end of the catalogue. Photo or chart is shown by (p) or (c).

The principal papers on variables in any cluster are listed by author and abbreviated reference. However, there are some papers (23 in all) with remarks about many clusters. These more frequently mentioned papers are abbreviated to initials and the year of publication in this century, the key to these abbreviations being also given at the end, with the title of the paper. For clusters for which the Atlas and Catalogue of Fourcade, Laborde, and Albarracin contains new material, this reference is listed with the main references; otherwise it appears among the highly abbreviated ones.

Anyone actually investigating a cluster is strongly urged to consult the full list of references given in the Second Catalogue.

The clusters are listed in order of NGC number, which does not always correspond to the order in right ascension. Those lacking an NGC number are placed in order of right ascension, which, along with declination, is given for the equinox of 1950. If the cluster has a Messier number, that is given.

The variables are numbered according to the previous catalogues, and new numbers are usually assigned in order of discovery. The policy is to try to restrict the new numbers to those variables within the apparent physical area of the cluster, but it is not feasible to follow this rule rigidly.

The x and y coordinates are given in seconds of arc and correspond in direction to right ascension and declination. For a given cluster, they are usually those published by the first investigator, or reduced to his selected centre. In some cases, these coordinates unfortunately are not yet available.

The magnitudes are usually the latest that have been obtained, which are hopefully the best determined for maximum and minimum. Most of the magnitudes are photographic, but there is a gradual shift to the use of B magnitudes.

The epoch of maximum is usually, but not always, chosen as the one accompanying the period selected. Individual papers should be consulted to determine whether the time is heliocentric or geocentric.

The period is generally that most recently published. Stars with periods less than a day are assumed to be of RR Lyrae type unless otherwise indicated in the remarks. For stars with periods between one and thirty days the type is assumed to be Cepheid.

The "remarks" column contains a miscellany of information. An increase or decrease in period is indicated by + or - respectively, a constant period by "cst" or 0. "Alt" means an alternate period has been published, "var" signifies a variable period, and "B ℓ "

the Blashko effect. An available spectral type is indicated by "Sp" sometimes followed by the type without subdivision, and an available radial velocity by "V." Stars which have been shown to be definitely or very probably field stars are indicated by "f" and proven cluster stars by "mem." The abbreviation used for the type of variable is that in the Third Edition of the *General Catalogue of Variable Stars* by B. V. Kukarkin *et al.* (1969). For variables found since publication of the Second Catalogue, the discoverer is usually indicated.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the help I have received in the construction of this catalogue. This has come from many astronomers who have sent unpublished or explanatory data, as indicated in the references under individual clusters. I am particularly grateful to Professor Dr. B. V. Kukarkin of Moscow University, who, in the midst of his great task of recording all galactic system variables, has taken time to keep me briefed on Soviet work in globular clusters and to send me corrections to some of my previous papers. Also Dr. H. Wilkens of Argentina has been a constructive reader of my past works, and Dr. Steven van Agt of Nijmegen has straightened out the material on NGC 6362.

My thanks go also to the two directors of this observatory under which the Third Catalogue has been compiled, Dr. John F. Heard and Dr. Donald A. MacRae; to the National Research Council of Canada for their generous support of my cluster program; to my colleagues Dr. Amelia Wehlau of the University of Western Ontario and Dr. Christine Coutts; to the two librarians who assiduously tracked down elusive references, Mrs. Jean Lehmann and Mrs. Sheila Smolkin; to Mrs. Jennie Fabian, who prepared the preliminary version for distribution at IAU Colloquium no. 21 in August 1972; and last but not least to my daughter, Mrs. Sally MacDonald, who searched references and tabulated data.

June 30, 1973 Richmond Hill, Ontario

THIRD CATALOGUE OF VARIABLE STARS IN GLOBULAR CLUSTERS

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC 1	04 (47 Tuca	nae) a 00 ^h	21 ^m .9,	δ –72°21	1		
1	+ 36.8	-112.6	11.60	15.63	35487	212	Sp M, V
2	+ 64.7	-193.9	11.70	14.48	35645	203	Sp M, V
3	+ 328.4	+ 52.8	11.70	15.85	35468	192	Sp M, V
4	- 18.8	-160.4	12.50	14.0	35490	165	
5	+ 271.9	-284.6	13.0	13.7	36158	45	Sp M, V
6	+ 97.3	-103.8	13.0	13.6	36159	47	
7	+ 349.2	-113.0	13.0	13.7	36162	58	Sp M, V
8	+ 16.0	+ 57.0	12.4	14.0	35524	155	Sp M, V
9	- 108	- 78	13.6	14.7	36163.240	0.73652	mem, Sp, V
10	+ 72	+702	13.1	13.6		irr	
11	+ 306	+138	13.2	14.0		irr	
12	+1254	-348	13.89	14.45	36046.614	0.37143	f, Sp, V
13	- 301.95	-139.92					Wilkens
14	+ 8.25	+ 66.83					F&L
15						irr	W300
16							R18
17							W81
18			12.0	12.3			L168
19			11.0	11.6			R10
20			11.7	12.5			A 1
21			12.0	13.0			A2
22			11.7	12.2			A4
23			11.7	12.2			A6
24			11.6	11.9			A8
25			11.6	11.9			A9
26			11.8:	12.1:			A13
27			11.9	12.2			A18
28			11.8	12.2			LR5

V15 found by Eggen, 1961; V17 Eggen, 1972; V16 Brooke, 1969. Unpublished V magnitudes given for vars. 18-28, discovered by Lloyd Evans and Menzics, marked on print (1973); their identifying numbers are given in the remarks column. W = Wildey (1961), R = Feast and Thackeray (1960). A field variable, HV 809, is shown by Jones (1973) to be a non-member.

Feast, Thackeray and Wesselink, MN 120.64 (1960); Feast and Thackeray, MN 120.463 (1960); Eggen, Royal Obs Bull 29.E86 (1961); Kurochkin, VS 13.248 (1961); Wildey, ApJ 133.430 (p) (1961); Rosino and Sawyer Hogg, IAU Trans 11B.301 (1962); Arp, Brueckel and Lourens, ApJ 137.228 (1963); Feast, ApJ 137.342 (1963); Tifft, MN 126.210 (1963); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Brooke, Doctoral Thesis, Australian Nat'l Univ (1969); Eggen, ApJ 172.639 (1972); Lloyd Evans, Letter (1972); Jones, IAU Coll 21 (1973); Lloyd Evans and Menzies, IAU Coll 21 (p) (1973)

S55a, S57, S59, S61, A62, R62a, S62, P64, S64, R65, S69, F72

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
NGC	288 a 00 ^h	50 ^m .2, δ –2	26° 5 2'				
1	-55	+79	13.5	14.1	25576	103	
Shaple S55a,	ey, Star Clu S59, R62c,	sters, p. 45 (S62, S69	1930); O	osterhoff	, BAN 9. 397 (19	43)	
NGC 3	362 a 01 ^h	01 ^m .6, δ -7	1°07′				
1	-246.2	- 67.6	14.9	16.1	23751.558	0.5850512	
2	+ 41.4	-204.4	13.0	14.5	24391.8	90 var	
3	+ 93.6	-143.2	14.6	16.1	23604.806	0.4744151	
4	- 50.2	- 27.3	14.0	15.8			
5	- 79.2	- 31.9	15.1	16.4	24025.729	0.4900846	
6	+ 82.4	+ 15.5	14.9	16.3	24461.642	0.5146080	
7	+131.1	- 21.2	14.8	16.0	24468.687	0.5285492	
8	+ 33.4	-308.5	15.0	16.5	24433.677	3.901447	
9	-400.4	+224.4	14.7	16.0	24404.670	0.5476126	
10	+282.8	-381.8	14.9	16.4	23315.643	4.20519	
11	-136.1	- 26.0	15.1	16.0			
12	- 30.4	-115.4	15.2	16.1	24391.839	0.65254518	
13	+ 14.5	+ 38.8	14.6	16.3			
	22.8	- 66.8	14.8	16.2			
14	- 23.0						

\$55a, \$59, \$62, \$64, L65, R65, \$69

NGC	1 261 a 13 ¹	110 ^m .9, δ-	55° 25'		
1	- 29.8	- 28.4			L&F
2	- 39.8	+ 34.9	16.05	17.25	L&F
3	+ 49.6	- 54.6	15.88	16.67	L&F
4	+ 31.8	- 36.1			L&F
5	- 34.5	- 5.0	16.1	17.0	L&F
6	+ 78.1	- 12.3	16.32	17.32	L&F
7	-149.3	+140.2	16.85	17.3	L&F
8	-133.7	-139.0	16.13	17.48	L&F
9	+ 37.9	- 38.8	16.85	17.15	L&F
10	+ 52.3	+ 70.6	16.17	17.43	L&F
11	- 89.0	+ 89.5	16.85	17.29	L&F
12	+ 87.1	- 10.5	16.35	17.42	Bartolini
13	- 77.1	- 96.0	16.79	17.35	Bartolini
14	- 53.5	- 70.7	16.22	17.23	Bartolini
15	-114.5	+129.1	15.21	15.86	Bartolini

Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Laborde and Fourcade, Cordoba Repr 127 (1966); Bartolini, Grilli and Robertson, IBVS 594 (1971); Bartolini, Grilli and Morisi, IBVS 649 (1972); Bartolini, Letter (1972)

S55b, R62b, S67, S69

Catal	ogue
-------	------

11

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks
Palom	ar 1 a 03h	25 ^m .7, δ+7	'9° 28'				
No vai Kinma R61, S	riables found an and Rosir 361	d. no, ASP 74.4	99 (196	2)			
Palom	ar 2 a 04h	43m.1, δ +3	1°23′				
No vai Rosino R61	riables found o and Pinto,	i. IAU Coll 21	(1973)				
NGC 1	1851 a 05h	12 ^m .4, δ –	40° 05′				
1	+258.50	- 12.38	14.0	15.5			
2	- 41.25	+ 30.25	14.0	15.5			
3	- 38,50	+ 92.13					
4	+ 24.75	+ 35.75					
5	+ 41.25	+ 41.25					
6	_ 74.25	8 25					
0	- 14.23	- 0.23					
7	+ 4.13	- 8.35	0				

10 + 46.75 - 196.63

Small change in coordinates of vars. 1 and 2 discovered by Bailey. Variable formerly noted as unpublished is considered to be included in above list of new vars. 3-10 discovered by Laborde and Fourcade.

Bailey, HB 802 (1924); Shapley, Star Clusters, p. 45 (1930); Laborde and Fourcade, Cordoba Repr 138 (p) (1966)

S55a, S59, R62c, S62, F&L63, FLA66, S69

NGC	1904 (Messie	er79) a 05	h22m.2,	$\delta - 24^{\circ}34$	1		
1	+29.6	-199.6	var?				med 16.0
2	+78.3	- 68.3	14.2	14.80		SR	
3	+34.8	- 64.4	15.9	16.7	34032.40	0.73602	
4	+93.4	- 50.1	15.6	16.7	32877.50	0.63492	
5	-11.6	+ 20,2					
6	-70.8	+115.6	16.0	16.6	32940.25	0.33522	
7	+22.5	- 15.2					Tsoo Yu-hua
8	+ 7.1	- 11.7					Tsoo Yu-hua

Pickering, HC 18 (1897); Bailey, HA 38.238 (p) (1902); Rosino, Bologna Pubbl 5, 20 (p) (1952); Tsoo Yu-hua, Letter (p) (1965) S55a, S59, S62, L65, R65, S67, S69

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
NGC	2298 a 06h	47m.2, δ –	35°57′				
1	+119.35	-37.40					F&L
2	- 30.53	-22.28					F&L
Fourc	ade Labord	e and Albar	racin. Atla	as y Catal	ogo. Cordob	a (1966)	
S55a.	S59, R62c, 1	S62, F&L63	3, S69		-8-,	- (-, -, -,	
NGC	2419 a 07 ^h	34m.8, δ +	39° 00′				
1	+ 40	- 52	17.59	18.32		irr	
2	- 4	- 19					
3	+ 52	- 24	18.66	19.96			
4	+ 80	- 15	18.84	19.65			
5	+ 33	+ 47	18.75	19.72			
6	+ 56	-127	18.86	19.64			
7	+ 91	+ 87	18.69	19.77			
8	- 17	+ 41	17.50	18.10		irr	
9	- 32	+ 88	18.59	19.76			
10	+ 20	- 51	17.31	17.93		irr	
11	+ 95	- 8	18.55	19.81			
12	+133	+111	18.69	19.71			
13	+101	- 10	18.55	19.75			
14	-115	- 13	18.81	19.62			
15	+ 62	+ 40	18.62	19.76			
16	+ 47	+ 72	18.77	19.85			
17	+109	+111	18.65	19.75			
í 8	- 15	+114	17.84	18.53		irr	
19	-107	- 40	18.77	19.86			
20	- 28	+ 45	17.65	18.16		irr	
21	- 55	+ 30	18.76	19.74			
22	+109	- 5	18.60	19.84			
23	+ 27	+ 79					
24	-147	- 10	18.94	19.58			
25	- 59	+ 38	18.78	19.70			
26	- 70	- 50					
27	+ 19	-103	19.10	19.55			
28	-192	+ 59	18.72	19.78			
29	- 58	- 7	19.01	19.92			
30	- 26	+ 23					
31	+154	-146	19.08	19.53			
32	- 19	+ 48	18.60	19.71			
33	+ 47	- 17	19.11	20.13			
34	+ 21	+157	19.00	19.66			
35	+ 43	+ 8	18.88	20.00			
36	+ 23	+ 44	19.10	19.83			

Kinman has two RR Lyrae periods, 0.37 and 0.63 days. Baade, ApJ 82.396 (p) (1935); Rosino and Sawyer Hogg, IAU Trans 11B.301 (1962) S55a, S59, S62, R65, S69

Catalogue

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks
NGC	2808 a 09h	10 ^m .9, δ-6	4° 39′				
1	+107.25	- 35.20					F&L
2	- 48.13	+ 34.10					F&L
3	+ 31.63	- 61.33					F&L
4	-191.13	+ 60.50					F&L
5	+ 39.05	- 66.00					F&L
6	+168.58	-291.50					F&L
7	+ 63.25	+ 60.50					F&L
8			14.87	15.92			Alcaino 27
9			15.68	16.96			Alcaino 35
Fourc (p) (19 S55	ade, Labord 971) a, S59, R62	e and Albar c, S62, S69	racin, Atla	is y Catalo	ogo, Cordoba (1	1966); Alcaino,	Astr and Ap 15.36
Palom	ar 3 a 10 ^h	03 ^m .0, δ+0	0°18′				
V1 on	print					prob RR	B&S
Burbio S61, S	lge and Sand 62, S69	dage, ApJ 12	27.527 (p)	(1958)			
NGC 3	3201 a 10 ^h	15 ^m .5, δ –	46°09′				
1	+ 59	- 118	14.56	15.66	39505.858	0.6048761	+
2	+ 29	- 117	14.61	15.60	28272.352	0.5326722	
3	+ 182	- 43	14.84	15.52	39504.76:	0.5994093	augusta.
4	+ 155	+ 3	14.76	15.60	23198,539	0.6300006	
5	+ 42	- 24	14.40	15.54	39504.853	0.5015359	+
6	- 116	- 143	14.42	15.42	39506.796	0.5256131	-
7	- 91	- 189	14.88	15.40	39505.823	0.6303322	+
8	- 69	- 99	15.06	15.40	39504.816	0.6286280	+
9	- 51	- 91	14.86	15.57	23506.605	0.5266970	
10	- 181	+ 235	14.66	15.59	22429.597	0.5351571	
11	- 104	+ 112	14.82	15.36	39506.804	0.2990471	+
12	- 86	+ 108	14.50	15.53	23547.577	0.4955583	
13	- 160	+ 92	14.66	15.56	39506.720	0.5752145	+
14	- 150	+ 133	14.61	15.67	23961.495	0.5092897	
15	- 279	- 1/3	14.34	15.43	23164.372	0.5346644	
10	- 197	- 238	14.83	15.21	39504.819	0.365	
10	+ 11	- 25	14.80	15.52	39506.874	0.5655773	_
10	+ 23	- 24	14.73	15.54	39304.872	0.53	
20	+ 23	+ 31/	14.40	15.50	39306.821	0.5250201	-
20	+ 39	+ 204	14.40	15.52	39303,816	0.5291064	+
21	+ 94	+ 155	14.74	15.02	20506.703	0.3000309	+
22	- 100	- 30	14.00	15.57	39500.023	0.6039842	+ Companion
23	- 47	- 50	14.75:	15.12:	30505 860	0.01	Companion
25	+ 93	+ 173	14.43	15.52	39505.809	0.5147062	+
20	10	T 175	14.40	10.47	57505.010	0.314/203	T

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	3201 (conti	nued)					
26	+ 219	- 140	14.87	15.70	39505.878	0.5689949	_
27	+ 58	- 323	14.08	15.32	39505.790	0.4842943	+
28	+ 66	- 48	14.70	15.60	39505.760	0.5786766	_
29	- 256	+ 113	15.12	15.48	39506.74:	0.343	
30	- 289	+ 272	14.29	15.49	39504.814	0.5158559	+
31	+ 182	+ 131	14.65	15.51	23505.620	0.5194894	
32	+ 195	+ 199	14.30	15.54	39504,900	0.5611656	+
33	+ 48	- 40	not var				
34	+ 296	+ 285	14.37	15.62	23547.577	0.4678883	
35	- 11	+ 121	14.90	15.45	22484.504	0.6155244	
36	- 108	- 11	14.68	15.2:	39505.794	0.242	Alt 0.323
37	- 68	- 74	15.04	15.40	39504.77	0.273	Alt 0.382
38	- 61	- 60	14,70	15.60	23877.612	0.5091616	
39	+ 41	+ 54	14.83	15.80	23181.537	0.4832092	
40	- 96	+ 68	15.10	15.56:	39504,90	0.642	Alt 0.385
41	+ 291	+ 28		15.55		0.66	
42	- 301	+ 197	14.26	15.40	39504.840	0,5382490	+
43	- 377	+ 15	14,80	15.39	23166.665	0.6761289	
44	+ 31	+ 67	15.01	15.66	23190.635	0.6107344	
45	+ 127	- 32	14.56	15.60	39505.859	0.5374165	+
46	- 396	- 510	14.56	15.35	23167.570	0.5431990	
47	+ 108	+ 245	14.78	15.42	39504,903	0.342:	BQ, Alt 0.51
48	- 252	+ 12	14.96:	15.36	39506.67:	0.336	Alt 0.252
49	- 38	+ 151	14.72:	15.46	39504.76:	0.5814870	+
50	- 13	+ 27	14.80	15.72	39506.88	0.565	
51	- 205	- 26	14.50	15.30	39506.813	0.5205454	+
52	+ 14	- 812	14.90	15.30	39505.78:	0.38:	
53	- 873	- 758	14.57	15.38	23191.540	0.5334705	
54	+ 671	- 804	14.71	15.8:	39506.776	0.5558721	+
55	- 338	+ 767	14.47	15.43	39504.915	0.607	
56	+ 246	+ 94	14.95	15.62	23164.591	0.5903376	
57	+ 288	- 72	14.74	15.58	39506.762	0.5934373	+
58	+ 346	- 80	14.94	15.45	23164.538	0.6220418	
59	- 490	- 70	14.28	15.28	39506.813	0.5177106	+
60	- 850	+ 95	14.08	15.38	39505,798	0.5035723	
61	-1125	+ 175	14.12	15.59	39504.91	0.54	
62	-1060	- 186	14.29	15.49	39505.798	0.5697558	_
63	-1000	+ 59	14.36	15.39	23914.582	0.5680998	
64	- 646	+ 863	14.32	15.54	39504.815	0.5224218	+
65	- 544	+ 797	14.01	15.03	39506.71	1.660024	EA, Min, mem?
66	- 398	+ 289	14,90	15.27	39506.78	0.284	
67	- 374	- 120	14.75:	15.31	39506.70:	0.329	Alt 0.494
68	- 283	+ 846				long	
69	- 221	+ 995	14.34	15.50	23914.575	0.5122704	
70	- 221	- 13	not var				
71	- 182	- 117	14.35	15.39	39506.765	0.6011859	+
72	- 161	+ 596	15.00	15.24		0.36?	

Catalogue

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks					
NGC	NGC 3201 (continued)											
73	- 128	+ 86	14.40	15.60	39504.860	0.5199500	+					
74	- 94	+ 36	not var									
75	- 81	+ 147	not var									
76	- 62	- 42	15.16	15.72	39506.74	0.343	Alt 0.52					
77	- 10	- 52	14.64	15.50	22429.592	0.5676648	_					
78	- 8	- 143	14.48	15.48	39504.83	0.514						
79	+ 10	- 101	not var									
80	+ 60	+ 23	14.82	15.60	39505.79	0.58						
81	+ 96	- 153										
82	+ 161	- 166	not var									
83	+ 177	+ 172	14.44	15.62	23190.624	0.5451918						
84	+ 358	+ 703	14.65	15.43	22077.566	0.5136787						
85	+ 569	- 403	not var									
86	+ 611	- 315	not var									
87	+1013	- 460	14.65	15.30	23164.633	0.6038866						
88	+ 234	+1086	14.48	15.61	39504.86	0.57	Wilkens 1					
89	+1404	- 180	14.90	15.38	39505.83	0.369	Wilkens 2					
90	- 24	+ 06	14.8:	15.65	39504.73:	0.61	Wilkens 3					
91	-1524	+1170	14.64	15.10	39504.98	0.345	Wilkens 4					
92	- 150	- 30	14.48	15.50	39506.80	0.523	Wilkens 5					
93	+1986	- 192				0.48?	Wilkens 6					
94	-2862	+1824				RR	Wilkens 7					
95	+1860	+2580				RR	Wilkens 8					
96	-2790	- 468	14.50	15.50	39506.86	0.59	Wilkens 9					
96	-2790	- 468	14.50	15.50	39506.86	0.59	Wilkens 9					

Wilkens no. 10 = V39. Kukarkin considers Wilkens' new variables are cluster members, forming a large corona, and says identifications of vars. 6, 11, 45, 52, 57, 68 and 81 are erroneous in FLA66. Wilkens, MVS 3.75 (1965); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Kukarkin, AC 426.4 (1967), AC 428.1 (1967), AC 637.4 (1971), VS 17.610 (1971), Letter (1971) S55a, S57, S59, S61, R62a, S62, S64, L65, R65, St66, S67, S69, S70

Palom	ar 4 a 11h	26 ^m .6, δ+2	9°15′							
1 2	-12 -43	-4 -3	17.7 17.6	20 19.3	35922 35938	130.50 109.30	Rosino Rosino			
Rosino, Asiago Contr 85 (1957); Burbidge and Sandage, ApJ 127.527 (1958); Rosino and Pinto, IAU Coll 21 (1973) R57, S59, R61, S61, S62, S69										
NGC 4	4147 a 12 ^h	07 ^m .6, δ +	l 8° 49′							
1	-100.1	- 45.7	16.36	17.76	35546.544	0.5003860				
3	-20.2 -28.5	-28.8 -35.3	16.68	17.64	35538.485 35538.591	0.49306 0.280542				
4	+ 1 + 149	+ 18 + 27	16.27 17.0	17.29	34805.859	0.30097	Newburn			
6	+ 31.2	+ 28.4	16.29	17.67	34805.675	0.61860	S&W			

No.	x''	У"	Max.	Min.	Epoch	Period	Remarks
NGC	4147 (conti	nued)					
7	+ 4.6	+ 7.4	16.4	17.6	34805.924	0.51294	S&W
8	+ 8.6	+ 2.3	16.9	17.5		0.3897:	S&W
9			prob n	ot var			S&W print
10	- 47.8	- 45.6	16.96	17.54	35538.528	0.352314	S&W
11	- 12.2	- 41.9	16.72	17.30	35538.670	0.38739	S&W
12	+ 5.1	- 4.2	16.6	17.6		0.5 :	S&W
13	+ 0.1	- 19.0	16.8	17.3		0.3759:	S&W
14	+ 8.4	- 0.2	16.9	17.5		0.5255:	Newburn
15	+ 9.2	- 7.8	16.8	17.3		0.3354:	Newburn
16	+ 14.5	+ 7.7	16.8	17.1		0.2775:	Newburn
17	+ 63.7	+143.3	16.72	17.34	35538.430	0.37473	Newburn
Five f	ield variable	s, Baade.	C 1			N (1055) N	
Baa	de, AN 244.	153 (1931)	; Sandage	and Walk	er, AJ 60.230 (j	p) (1955); New	/burn, AJ 62.197
(1957); Mannino,	A siago Cor	ntr 87 (19	38)	0		
555	a, 557, 559,	561, R62a,	562, L65	, K65, S6	9		
NCC	1372 a 12h	2300 8	77° 71'				
1	720.75	42.00	12 27				E 9. I
2	- 139.13	- 42.00					F&L
4	+012.13	-302.23					ræL
Wilke S55a,	ns, Letter (1 S57, S59, S6	961); Four 61, R62c, S	cade, Lab 62, F&L6	orde and A	Albarracin, Atla	s y Catalogo, C	Cordoba (1966)
NGC	4590 (Messie	er 68) a 12	2 ^h 36 ^m .8,	δ-26°29) ⁽		
1	-283	+109	15.55	16.11	33421.357	0.349604	
2	-168	- 44	15.05	16.29	33661.66	0.578169	
3	-140	+ 91	15.40	16.15	33661.66	0.4158	
4	-118	-132	15.65	16.20	33423.273	0.396367	
5	- 53	+169	15.47	16.11	33423.297	0.282116	
6	- 54	+ 17	15.75	16.07	33422.413	0.368523	
7	- 51	- 78	15.71	16.07	33423.478	0.387945	
8	- 35	-134	15.74	16.13	33422.359	0.390402	
9	- 30	+ 40	15.43	16.28	33422.257	0.57900	
10	- 24	- 14	15.28	16.62	33423.224	0.55112	
11	- 17	-113	15.65	16.16	33423.295	0.36489	
12	- 12	00	15.07	16.23	33423.333	0.6162	
13	- 4	- 57	15.72	16.11	33423.385	0.361740	
14	- 2	+218	15.02	16.25	33421.437	0.55679	
15	+ 10	+ 59	15.65	16.36	33423.360	0.37220	
16	+ 10	+ 78	15.65	16.22	33423.289	0.381967	
17	+ 17	- 74	15.65	16.60	33418.293	0.66693	
18	+ 18	- 96	15.69	16.19	33423.327	0.367346	
19	+ 32	+ 70	15.65	16.20	33421.404	0.39206	
20	+ 33	-114	15.69	16.14	33421.293	0.385764	
21	+ 46	+ 8	15.82	16.60	33423.358	0.37241	
22	+ 61	- 22	15.30	16.52	33421.424	0.563469	
23	+ 65	+380	14.85	16.13	33423.198	0.6588799	

Catalogue

No.	x"	у"	Max.	Min.	Epoch	Period	Remarks				
NGC	NGC 4590 (continued)										
24	+ 72	- 8	15.64	16.13	33422.268	0.376500					
25	+140	+123	15.00	16.15	33423.328	0.641556					
26	+157	- 45	15.63	16.11	33799.370	0.413217					
27	+381	+263	10.2	17.4	33661.	320	F1 Hya, f				
28	+439	+159	14.81	16.18	33423.292	0.6067750					
29	+283	-153	15.65	16.15	33419.416	0.395253					
30	+112	- 77	15.60	16.20	33422.442	0.73362					
31	-109	+ 96	15.49	16.10	33423.310	0.399658					
32	-330	-639			33422.362	0.58692	van Agt				
33	+ 89	+ 59			33422.317	0.38523	van Agt				
34	+268	+216			33422.314	0.39696	van Agt				
35	- 35	- 52			33421.340	0.71608	van Agt				
36	- 38	- 52			33422.374	0.6998	van Agt				
37	- 21	+ 20			33423.317	0.38553	van Agt				
38	- 22	- 29			33423.251	0.3826	van Agt				
39	- 50	- 8					T,R&O				
40	- 1	- 52					T,R&O				
41	+ 4	+ 80					T,R&O				
42	- 3	+ 37					T,R&O				

Five new field variables, Terzan et al. (1973)

Rosino and Pietra, Bologna Pubbl 6, 5 (1954); van Agt and Oosterhoff, Leiden Ann 21.253 (p) (1959); Terzan, Rutily and Ounnas, IAU Coll 21 (p) (1973)

S55a, S57, S59, S61, R62a, L65, R65, S69

NGC 4833 a 12h56m.0, δ – 70°36'

1	-264	+468	15.32	15.86	29375.251	0.750101	RY Mus
2	+378	-354	13.0	16.2:	26166	333.7	RZ Mus, V, f
3	0	+ 6	15.46	15.9	29363.248	0.744526	
4	0	+ 24	15.24	15.88	29381.249	0.655536	
5	+132	- 66	15.4	16.0	29381.240	0.629414	
6	+120	+120	15.3	15.9	29381.297	0.653967	
7	+ 72	- 6	15.49	16.05:	29374.256	0.668422	
8	-168	+498	15.59	15.79			
9	- 42	- 6	14.5	15.16	28035	87.7:	
10	+ 72	+414	15.14	15.9			
11	-336	-828	14.5	16.0:	24320	303.8	
12	+ 19.2	+ 13.7					F&L, RR?
13	+272.2	- 30.2					F&L, RR?
14	- 13.7	- 38.5					F&L, RR?
15	- 15.1	- 57.7					F&L, RR?
16	- 76.5	+151.2				irr	F&L, red

Menzies confirms variability of all these stars, with small variation for V16. He lists eight new suspected variables, Menzies B57, B84, B105, B121, B193, C80, C308 (all appear to be RR 1 yr), and D199 (perhaps Pop 11 Cepheid), identified on print.

Feast, Obs 86.120 (1966); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Menzies, MN 156.207 (p) (1972)

S55a, S59, R62a, S62, L65, R65, S67, S69

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC 5	5024 (Messie	er 53) a13h	10m.5, δ	+18°26′			
1	+ 9.6	-171.0	15.75	17.20	23083.408	0.6098240	+
2	- 78.0	-183.6	16.30	16.90	22787.498	0.3861005	
3	- 60.6	-138.0	16.10	17.10	23113.388	0.6306134	0
4	-169.5	-156.6	16.41	16.84	23113.482	0.3851900	+
5	-237.0	-258.0	15.75	17.10	23143.336	0.6394247	
6	+123.6	+ 13.5	16.00	17.20	23083.457	0.66401573	_
7	+ 79.5	+ 83.5	15.85	17.15	23145.418	0.5448396	+
8	+ 72.0	+ 60.0	16.10	17.10	22762.553	0.61553333	-
9	+ 67.5	40.5	15.90	17.10	23145.523	0.6003694	_
10	-138.6	+ 54.0	15.85	17.05	23143.446	0.6082562	0
11	-143.4	- 58.5	15.85	17.0	23113.525	0.6299592	+
12	+409.5	+187.5	15.90	17.15	23113.579	0.61258094	-
13	+462.0	-299.7	15.75	17.10	23143.419	0.6274424	-
14	+354.6	-207.0	15.80	17.10	23143.363	0.5454029	
15	+248.4	+228.0	16.39	16.67	23113.361	0.3087107	+
16	-136.5	-202.5	16.43	16.90	23113.402	0.3031728	
17	-214.5	+114.0	16.29	16.80	22762.612	0.3814992	
18	- 96.0	+ 12.6	15.83	16.42			
19	+165.6	- 42.0	16.34	16.85	22789.465	0.3918418	
20	+188.4	-351.6	16.32	16.81	23113.615	0.3844212	
21	+437.4	27.0	16.32	16.81	22790.410	0.3384650	
22	- 53.4	-288.0	16.56	16.85	var?		
23	+ 96.0	- 89.7	16.34	16.88	23113.460	0.3658077	
24	-118.5	- 29.2	15.71	16.43		3.?	
25	+130.3	+ 31.7	16.05	17.0	23113.392	0.70516256	
26	-288.0	-279.9	16.20	16.85	23113.343	0.3911166	
27	-203.8	-157.9	16.0	17.10	23083.620	0.6710599	0
28	181.4	+459.0	15.65	17.05	23113.183	0.63279704	+
29	+125.4	- 79.5	16.56	17.04	22808.305	0.8232463	+
30	+ 57.7	-482.8	15.6	17.6	31223.384	0.53548466	B2, 37d
31	+ 60.6	- 0.1					
32	-111.9	- 86.6	16.26	16.65	22790.475	0.3901324	
33	-165.0	+ 12.2					
34	-144.0	-216.7	16.48	16.70	not var		
35	+104.1	+153.2	16.25	16.95	23113.327	0.3726739	0
36	+120.3	+306.5	16.33	16.71	23113.698	0.3732511	
37	- 44.0	+ 62.2	15.68	16.48			
38	+ 21.3	-143.2	16.0	17.0	23083.773	0.7057873	+
39	-234.0	+212.5	16.84	17.26	not var		
40	+ 8.9	+111.5					
41	+ 19	+ 66					
42	- 67	+ 17	15.54	16.33			
43	- 34	+ 53					
44	+ 53	- 2	15.20	15.99			
45	- 5	- 36					
46	- 12	+ 34					
47	- 68.7	+138.0	16.20	16.80	37763.435	0.35051	Margoni

No.	x'	,	у"		Max.	Min.	Epoch	Period	Remarks
NGC	5024 ((contin	nued)						
48 49	+ +	4.68 1.05	+ +	11.58 4.39	16.63 15.25	17.53 15.65	34480.91 34478.5	0.3327660	Cuffey 47 Cuffey 48
50	_	2.28	_	1.34	15.22	15.52	34482.0	55.4	Cuffey 49

Cuffey, AJ 67.574 (1962); Margoni, Asiago Contr 150 (1964); Cuffey, AJ 70.732 (1965); Margoni, Asiago Contr 170 (1965), Bamb Kl Veröff 4.40.249 (1965); Wachmann, Astr Abh Hoffmeister p. 121 (1965); Cuffey, AJ 71.514 (1966); Margoni, Asiago Contr 198 (1967); Wachmann, Berg Abh 8.114 (1968)

S55a, S57, S59, S61, R62a, S62, S64, L65, R65, S67, C&S69, S69, S70

NGC 5053 a 13^h13^m.9, δ +17°57'

1	-380	+158	15.8	16.5	37343.456	0.6471748	
2	-193	- 3	15.9	16.6	37370.575	0.3789561	+
3	+140	+138	15.8	16.6	37370.470	0.5929430	
4	+ 31	-114	15.8	16.5	37371.454	0.6670627	
5	+220	-220	16.0	16.6	37370.641	0.7148605	
6	+126	+ 77	16.0	16.5	37370.556	0.2921978	
7	- 87	+169	15.9	16.5	37370.469	0.3519300	+
8	+117	+ 50	15.9	16.5	37371.452	0.3628410	-
9	-199	+382	16.0	16.6	37371.407	0.7402201	
10	+ 94	+ 56	16.10	16.45	37370.427	0.4373803	Alt P?
11			16.01	16.47			Perova

Perova's var., V11, is Baade's comparison star c. Perova, VS 14.255 (1962); Mannino, Bologna Pubbl 8, 12 (1963) S55a, S59, R62a, S62, S64, L65, R65, C&S69, S69

NGC 5139 (ω Centauri) a 13^h23^m.8, δ –47°13'

1	- 416.16	+298.89	11.05	12.45	30027.0	29.3479*	0, Sp, F, V, mem
2	- 340.00	+238.51]13.06	16.12	30139.4	235.74	0, f
3	- 507.93	+167.43	14.11	15.14	27000.42	0.8412403	-
4	337.61	+262.10	14.96	15.25	27000.32	0.6273172	+
5	- 282.75	+328.29	14.48	15.49	27000.44	0.5152823	+
6	- 162.43	+252.95	13.84	15.24	27010.1	73.513	0, prob f
7	+ 153.19	+879.15	14.15	15.33	27000.20	0.7130181	+
8	+ 629.43	+ 16.20	14.03	15.35	27000.31	0.5212859	+
9	- 473.17	+137.14	14.31	15.28	30000.04	0.5233301	0
10	- 397.76	+244.48	14.43	14.95	27000.06	0.374956	1.000
11	- 158.63	+338.73	13.90	15.04	27000.19	0.5648246	
12	- 193.16	+274.34	14.43	14.95	27000.08	0.3867639	0
13	- 487.26	+199.54	13.96	15.14	30000.50	0.6690507	0
14	- 473.51	-627.56	14.56	15.17	30000.29	0.3771102	0
15	- 194.09	+242.62	13.70	14.39	27000.40	0.8106152	+
16	+ 517.05	-536.81	14.46	15.04	27000.07	0.3301802	+
17	+ 522.24	+200.00	14.18	14.61	30062.2	64.725	irr, prob f
18	+ 596.64	+220.15	14.06	15.35	30000.42	0.6216671	0

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks
NGC	5139 (contin	ued)					
19	+ 444.14	+ 32.44	14.76	15.30	30000.11	0.2995525	0
20	+ 280.88	+ 32.06	14.09	15.28	27000.61	0.6155528	+
21	- 355.75	+162.07	14.20	14.81	30000.10	0.380810	
22	+ 552.18	-330.22	14.63	15.17	27000.22	0.3965212	
23	+ 2.54	+240.71	14.26	15.39	27000.17	0.5108653	+
24	+ 524.71	-336.96	14.57	15.04	27000.08	0.4622076	+
2.5	- 210.77	+ 17.48	13.98	15.07	30000.50	0.5885146	0
26	- 229.58	+101.21	14.36	15.06	27000.15	0.7847138	+
27	- 205.47	+ 24.11	14.50	15.19	30000.02	0.6157067	0
28	200111		not var				-
29	- 193.25	- 6.45	12.39	13.50	30008.98	14.73383	0. Cep. mem
30	- 307.92	- 75.01	1 = 10 3		30000.21	0.403988	0
31	00117-		not var				
32	+ 174.39	+420.01	13.87	15.20	27000.39	0.6204298	_
33	- 554.54	- 24.00	14.16:	15.25:	27000.52	0.6023334	-
34	- 396.87	-269.04	14.10:	15.00::	27000.55	0.7339428	+
35	+ 71.70	+365.07	14.43	15.00	27000.00	0.3868382	_
36	+ 246.11	+789.42	14.62	15.17	30000.26	0.379846	0
37			not var				
38	+ 169.10	-470.37	14.45	15.20	27000.01	0.7790474	+
39	+ 741.86	-365.80	14.48	15.08	30000.21	0.3933505	0
40	- 220.99	-125.30	13.95	15.15	30000.11	0.6340925	0
41	+ 151.80	-142.18	14.03	15.06	27000.53	0.6629590	+
42	+ 0.21	= 50.21	12.5	14.9		149.4	
43	+ 119.23	+103.16	13.27	14.29	30000.65	1.156706	0, Cep, mem
44	- 243.40	-354.05	13.67:	14.65:	30000.48	0.5675440	0
45	- 764.48	+ 80.97	14.18	15.37	27000.09	0.5891301	+
46	- 770.61	+170.11	14.43	15.44	27000.60	0.6869406	+
47	- 504.32	+269.26	14.07	14.60	27000.15	0.4851319	
48	- 86.54	-104.54	12.95	13.80	30003.6	4.47227	0, Cep, mem
49	- 391.98	-553.77	14.40	15.52	30000.36	0.6046505	0
50	- 530.75	+ 65.40	14.32	14.90	30000.20	0.3861960	0
51	- 36.85	+258.73	13.86	15.16	27000.08	0.5741332	+
52	- 112.85	+ 36.47	13.60	14.22	30000.28	0.6603703	0
53	- 482.79	-447.74	13.30	13.87		32.7	irr, Alt 70
54	- 229.39	+592.76	14.33	15.22	27000.30	0.7728973	+
55	- 617.73	-816.68	14.50	15.50	27000.11	0.5817244	-
56	- 515.93	-541.96	14.56	15.57	27000.42	0.5680098	_
57	+ 635.72	-493.26	14.52	15.16	27000.44	0.7944181	+
58	- 335.44	+277.68	14.49	14.74	30000.28	0.3699124	0
59	- 282.90	- 65.84	14.20	15.18	30000.41	0.5185122	0
60	-108.42	-247.33	13.24	14.47	30001.00	1.349464	0, Cep, mem
61	+ 280.44	+ 68.07	13.65	14.42	30001.59	2.273564	0, Cep. mem
62	- 199.80	+ 45.28	13,88	15.10	27000.31	0.6197945	+
63	- 996.82	-491.46	14.59	15.17	27000.24	0.8259432	+
64	- 448.01	-457.49	14.54	15.14	30000.24	0.344621	+
65	- 454.49	-474.32	14.72:	15.17:	30000.022	0.06272267	0, f, RRs

Catalogue

No.	x''	у′′	Max.	Min.	Epoch	Period	Remarks
NGC	5139 (contin	ued)					
66	- 133.37	+375.15	14.46	14.95	27000.24	0.4074100	+
67	- 178.11	+593.57	14.18	15.28	27000.41	0.5644510	÷
68	- 338.18	+545.12	14.15	14.67	30000.1	0.534708	0
69	- 965.76	+530.94	14.14	15.35	27000.24	0.6532208	+
70	+ 417.83	-304.65	14.62	15.11	30000.2	0.390596	0
71	+ 220.39	+ 47.13	14.38	14.92	30000.2	0.3574826	0
72	+ 477.85	+734.87	14.44	15.10	27000.17	0.3845221	+
73	- 532.49	+750.76	14.00	15.32	27000.42	0.5752151	+
74	+ 215.47	+664.83	14.10:	15.29:	27000.43	0.5032480	+
75	+ 341.44	+591.55	14.52	15.07	30000.16	0.4283681	0
76	+ 113.31	+511.81	14.21:	14.72:	27000.17	0.3378487	+
77	+ 352.29	+392.42	14.39	14.85	30000.10	0.4260045	0
78	+ 586.10	+146.68	14.17	14.84	33929.972	1.16812901	-, EA, Min, mem
79	+1000.12	- 51.02	14.26	15.39	27000.23	0.6082758	+
80	+1304:	108:	14.1:	14.8		0.45	Alt 0.31
81	+ 511.36	+228.72	14.39	14.93	27000.14	0.3894005	+
82	+ 499.94	+126.98	14.47	15.00	30000.12	0.335931	0
83	+ 226.09	+424.66	14.50	15.07	27000.29	0.3566071	+
84	-1202.81	- 74.70	14.37:	15.10:	30000.33	0.5798732	0
85	-1010.51	+307.98	14.33	15.13:	27000.10	0.7427583	+
86	+ 293.14	+147.26	13.96	15.18	27000.32	0.6478337	+
87	+ 113.68	+184.13	14.40	14.90	30000.04	0.3965978	0
88	+ 98.13	+203.28	14.01	14.81	27000.22	0.6901959	+
89	- 2.95	+159.29	14.47	14.97	30000.29	0.374948	0
90	- 5.30	+137.09	13.81	14.73	27000.48	0.6034020	+
91	+ 43.72	+144.35	14.25	14.91	27000.18	0.8951197	
92	- 317.86	+446.38	14.10:	14.68:	30000.00	1.345044	0, Cep, mem
93			not var				
94	- 504.09	+355.09	14.58:	14.99:	30000.20	0.2539334	0
95	- 824.80	- 11.05	14.51	15.02	27000.39	0.4050201	+
96	- 71.20	+ 97.06	13.93	14.82	27000.08	0.6245320	+
97	+ 225.50	+187.93	14.11	15.16	27000.65	0.6918907	+
98	+ 198.25	+102.38	14.57	15.09	30000.19	0.2805649	0
99	+ 160.35	+ 50.36	13.77	14.90	37000.59	0.766140	+
100	+ 179.49	+ 65.68	14.05	15.05	27000.48	0.5527119	+
101	+ 444.11	- 73.28	14.46	14.90	26523.291	0.3408843	
102	+ 361.83	- 94.10	14.16	15.22	27000.13	0.6913899	+
103	+ 283.14	+ 2.35	14.46	14.80	30000.02	0.3288489	0
104	+ 822.98	-309.01	14.52	14.94	37000.51	0.867280	
105	+ 603.23	-246.92	14.70	15.25	27000.14	0.3353345	+
106	+ 130.35	+ 26.92	13.88	15.02	27000.22	0.5699061	
107	+ 279.83	-139.13	14.07	15.39	27000.07	0.5141002	+
108	+ 185.66	- 46.36	13.84	14.81	27000.24	0.5944554	+
109	+ 153.91	57.13	13.99	15.03	27000.67	0.7440615	
110	+ 158.94	- 87.08	14.41	14.96	26524.256	0.3221021	
110	+ 27.26	- 0.30	14.18	14.80	27000.02	0.7629005	+
112	+ /9.83	-103.36	13.92	14.92	30000.07	0.4743558	U

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	5139 (contir	nued)					
113	+ 99.99	-187.65	13.94	15.22	27000.39	0.5733636	+
114	+ 38.08	-101.15	14.00	14.75	26470.416	0.6753065	
115	- 345.49	-336.14	14.12	15.30	27000.14	0.6304638	_
116	- 109.66	+ 33.71	14.12	14.77	30000.37	0.7201327	0
117	- 267.73	- 40.22	14.40	14.92	30000.17	0.4216616	0
118	- 58.87	- 98.67	13.88	15.02	30000.03	0.6116283	0
119	- 82.04	-157.45	14.51	14.83	26472.319	0.3058774	
120	- 211.29	-247.61	14.26	15.23	27000.51	0.5485746	_
121	- 184.36	-189.58	14.48	14.81	27000.00	0.3041811	+
122	- 162.92	-261.41	13.99	15.17	27000.06	0.6349267	+
123	+ 46.11	-512.55	14.42	14.91	26473.331	0.4739051	
124	+ 78.88	-626.81	14.37	14.97	30000.02	0.3318607	0
125	+ 23.74	-742.59	14.04	15.33	27000.26	0.5928884	+
126	+ 822.95	-730.44	14.45	14.97	30000.17	0.3418905	0
127	- 880.16	+ 4.31	14.60	15.12	30000.03	0.3052736	0
128	- 289.77	- 92.09	14.25	14.86	27000.43	0.8349478	+
129	+ 192.02	- 25.83	14.18	14.74			f
130	- 366.17	+900.99	14.13	15.49	30000.38	0.4932499	0
131	- 165.05	- 59.95	14.40	14.86	27000.19	0.3921558	-
132	- 72.44	- 29.31	13.97	14.96	26469.386	0.6556410	
133	-1914.22	+1053.78	13.74	14.53	30000.07	0.31709593	0, EW, Min
134	- 942.87	+ 972.72	14.12	15.32	30000.57	0.6529026	0
135	- 184.88	- 37.25	13.87	14.85	26470.314	0.6325795	
136	- 154.26	+ 60.08	14.22	14.64	30000.0	0.3919136	0
137	- 149.54	+ 96.23	14.38	14.90	30000.29	0.3342179	0
138	- 111.12	- 187.55	12.5	13.6		74.6: irr.	
139	- 86.94	+ 65.18	14.00	14.90	26462.404	0.6768666	
140	- 42.65	- 86.80				short	
141	- 55.47	- 47.46	14.05	14.75	irr	0.6975651	
142	- 37.35	- 2.56	14.2	14.8		short	
143	- 37.45	+ 71.40	14.24	14.77	26470.394	0.8207020	
144	- 33.28	+ 22.44	14.33	14.81	26454.329	0.8353054	
145	+ 49.07	- 148.51	14.40	14.87	30000.15	0.373139	0
146	+ 65.96	- 48.03	13.87	14.77	26469.386	0.6331021	
147	+ 298.70	- 151.04	14.35	14.80	30000.34	0.4226989	0
148	+ 299.20	+ 44.21	12.9	13.8		90: irr.	
149	+ 477.33	+ 894.18	14.03	15.11	30000.42	0.6827281	0
150	+ 543.18	- 442.23	14.07	14.94	30000.7	0.8991997	0
151	+1010.06	+ 753.35	14.42	14.84	30000.1	0.4077838	0
152	+ 13.84	- 48.83	12.8	13.7		124:	irr
153	+ 34.46	+ 136.32	14.48	14.88	30000.23	0.386445	0
154	+ 169.59	- 113.20	14.55	14.72	30000.10	0.322407	0
155	+ 75.25	+ 237.31	14.43	14.88	30000.3	0.413919	0
156	+ 15.06	- 191.94	14.41	14.83	30000.34	0.3591887	0
157	+ 1.77	+ 82.58	14.42	14.79	26523.370	0.4064970	
158	- 10.58	- 119.80	14.32	14.74	26472.442	0.3673350	
159	-2039.94	- 891.45	14.39	14.96	30000.0	0.343101	0

Catalogue

No.	X''	y''	Max.	Min.	Epoch	Period	Remarks			
NGC 5139 (continued)										
160	- 711 13	+ 969.21	14.51	15.15	30000.1	0.397276	0			
161	- 96.81	- 129.27	13.3	13.8		irr				
162	- 392.40	- 252.39	12.9	13.6		irr	cst now			
163	- 575.24	+ 499.91	14.59	14.88	30000.0	0.3132294	0			
164	+ 152.75	+ 478.38	13.7	14.0		37: †	Red			
165	- 69.92	+ 104.59								
166	- 2.89	+ 144.71								
167	- 352.63	- 321.43								
168	- 543.66	- 201.42	14.96	15.46	30000.1	0.321295	0			
169	+ 347.5	+ 278.7	14.61	14.85	32323.35	0.46926	Belserene			
170						irr	Eggen, Herst 53			
171	-2280	+2520				RRa	Wilkens 1			
172	+ 720	+1440				RRa	Wilkens 2			
173	+1800	+ 660				RRa	Wilkens 3			
174	+ 780	-2040				1.8984	Wilkens 4, E			
175	-2640	-3000					Wilkens 5			
176	+ 144	- 66				RRc	Wilkens 6			
177	+1380	- 480				RRb	Wilkens 7			
178	+3120	+ 600				RRb	Wilkens 8			
179	-1800	-2940				RRb	Wilkens 9			
180	-1500	- 720				RRc	Wilkens 10			
181	+1925	-1216				0.58836	Wess 2			
182	+3355	+1292				0.54539	Wess 12			
183	+1744	- 116				0.29605	Wess 13			

* This variable appears intermediate between W Vir and RV Tau types, with alternate P 58^d.7. † Period from Dickens (1972).

Wilkens now considers his vars. 1, 5, 8, 9 also members (Letter, 1972), nos. 11-15 suspected. Wesselink has one field EW.

Belserene, Rutherfurd Contr 33.1, 43 (1956), AJ 64.58 (1959); Thackeray, Obs 80.226 (1960); Eggen, Royal Obs Bull 29.E73 (1961); Kurochkin, VS 13.248 (1961); Belserene, AJ 69.475 (1964); Dickens and Saunders, Royal Obs Bull 101.E101 (1965); Geyer, AG Mitt p.96 (1965); Geyer and Szeidl, Bamb KI Veröff 4, 40.63 (1965); Harding, Royal Obs Bull 99.E65 (1965); Wilkens, MVS 3.72 (1965); Oosterhoff and Walraven, BAN 18.387 (1966); Ponsen and Oosterhoff, BAN Suppl 1.3 (1966); Woolley, Royal Obs Ann 2 (1966); Dickens and Carey, Royal Obs Bull 129 (1967); Geyer, ZAp 66.16 (1967); Wilkens, MVS 4.93 (1967); Jones, MN 140.265 (1968); Sistero, IBVS 316 (1968); Wilkens, La Plata Bol 12 (1968); van Albada, AAS Bull 1.366 (1969); Sistero, Fourcade and Laborde, IBVS 402 (1969); Wesselink, Letter (1969); Geyer and Szeidl, Astr and Ap 4.40 (1970); Geyer, IAU Coll 15.235 (1971); Dickens, Letter (1972); Dickens, Feast and Lloyd Evans, MN 159.337 (1972); Eggen, ApJ 172.639 (1972); Feast, Preprint (1972); Geyer, AG Mitt 31.168 (1972); Wesselink, unpub (1972); Wilkens, Letter (1972)

S55a, S57, S59, S61, A62, R62a, S62, P64, S64, L65, R65, FLA66, St66, S67, C&S69, S69, S70

NGC	5272	2 (Messi	er 3)) a 13h	39m.9, δ	+28°38′			
1		5.2	_	128.5	14.68	15.92	36692.336	0.5206250	
2	+	15.8	+	52.6					
3	+	57.9	_	66.0	14.75	16.00	15021.225	0.5582053	

No.	х	,,	у''	Max.	Min.	Epoch	Period	Remarks			
NGC	NGC 5272 (continued)										
4	_ 4	43.5	- 8.8	14.9	16.0						
5	+ 20	51.0	- 22.3	14.71	16.15	15021.239	0.5058940	BQ			
6	- 13	23.9	+ 60.1	14.87	16.21	36669.320	0.5143228	+			
7		4.8	+ 87.2	14 69	16.25	15021.064	0 4974290				
8	_ 8	R1 7	- 23.4	14 37	15.4	100211001		Confirmed			
9	- 20	914	- 207.8	14.95	16.28	36668.502	0.5415641	_			
10	+ 1	53.6	+ 138.0	15.06	16.15	36658 470	0.5695185				
11	_ 14	52.6	- 209.7	14 75	16.17	36699 491	0.5078918	est			
12	_ 1.	3.8	- 145.4	15.23	15.83	36687 336	0.3178890				
13		26.0	_ 137.5	14 79	15.96	36702 398	0.4830302	- RR Binary?			
14		19.0	- 161.0	14.95	16.19	36668 549	0.6359019	+			
15		90.8	_ 273.2	14.55	16.26	36666 565	0.5300794	+			
16	- 31	01.4	- 93.1	14.07	16.31	36687 369	0.5115075	_			
17	+ 14	17 4	_ 440.4	15.20	16.20	36668 543	0.5761417	+ R0			
18		97.6	_ 295.3	14.86	16.30	36661 578	0.5163623	R0			
10	+ 34	50.5	- 245.6	15.56	16.15	36639 520	0.6319796				
20	+ 3	335	_ 271.6	14.85	16.25	36668 555	0.4912411				
21	+ 34	16.9	+ 17.9	14.00	16.27	30000.555	0.5157336	+			
22	- 10	90.2	- 10.7	14.01	16.20	36660 536	0.4814208				
22	_ 1	13.0	+ 279.2	15.07	15.80	15021.082	0.5953756				
23	- 1.	17.6	+ 10.4	15.06	16.07	15021.002	0.6633494	est			
24	1	74 A	- 31.4	14.66	16.07	15021.089	0.4800510	+			
25	1	77 /	- 13.0	14.00	16.04	15021.009	0.5977452				
27	_ 1	10.2	- 102.8	15.07	16.11	15021.255	0.5790912				
28	_ 1.	25.0	- 102.0	14 92	15.88	24290 335	0.4706364				
20		5.0	73.6	17.74	15.00	27270.333	0.4700304				
20		36.5	- 75.0	15 18	15.92	22760 635	0.5120902				
21		221	+ 65.1	14 43	15.52	15021 542	0.5120702				
22	- T .	11.0	T 05.1	14.45	15.05	15021.342	0.4953518				
22	+ 1	70.5	T 00.1	14.50	15.00	15021.108	0.5252227	- D0			
24	T 1 11	25 1	- 09.1	15 08	16.16	36668 467	0.5292237	-, Dx R0			
25	T 1.	7 2	T 170.2	15.00	16.10	15021 032	0.5306059	DX DX			
26	- 10	770	- 210.2	14.79	16.10	26602 525	0.53566055	Dx Dx			
27	T 1	12.0	- 55.4	15 24	16.12	30000 241	0.3766384				
20	- 2.	12.0	± 104.7	13.34	16.12	24200 204	0.5200304	P.O			
20	- 20	126	T 127.7	14.74	16.22	15021 072	0.5330270	-, Dx			
39	- 24	+3.0	+ 121.4	15.14	16.20	20000 207	0.5515416	Dx			
40	- 2	/1.2	+ 112.4	15.01	16.32	15021 441	0.3313410				
41		73.3	+ 54.0	13.22	10.23	15021.441	0.4630462				
42		/ 8.0	+ 41.0	14.40	15.00	15021,515	0.5901852	DO			
43	+ 3	79.9	+ 24.7	14.40	15.80	15021.191	0.5405790	DX			
44	+ 1	11.2	+ 99.4	14.84	16.04	15021.368	0.5003901	DX			
45	- 24	+1.2	- 129.9	14.94	16.23	15021.349	0.5308966				
46	- 1.	20.1	- 51.5	15.32	15.96	15021.264	0.0133009	DO			
47	- 11	17.5	- /3.2	14.74	15.97	15021.459	0.5409923	Βŕ			
48	+ 14	10.9	- 102.7	15.23	15.92	30009.340	0.62/8128	DO			
49	+ 14	+0.0	- 100.7	14./1	10.11	30/13.388	0.5462190	DX			
50	+	0.0	- 234.0	14.57	16.09	26702 202	0.5150679	DX			
21	+ .	0.UC	- 220.4	13.10	10.18	30/02.392	0.3039010				

Catalogue

No.		x''	У''	Max.	Min.	Epoch	Period	Remarks
NGC	52	72 (con	tinued)					
52		76.8	+ 152.0	14.92	16.06	15021.485	0.5162250	В٤
53	_	7.4	+ 122.8	14.68	15.93	15021.006	0.5048878	
54		32.6	+ 106.4	14.92	15.94	15021.193	0.5063150	
5.5	_	204.2	+ 324.4	14.88	16.31	30000.032	0.5298136	
56		141.1	+ 358.6	15 38	16.02	22760 623	0.3295986	
57	+	155.2	- 0.2	14 84	16.23	15021.618	0.5122223	
58		86.2	+ 46.2	14.58	15.91	22760 621	0.5170617	
59	_	109.8	- 228.4	15.23	16.20	36699 425	0.5888053	
60	_	297.8	- 315.4	15.20	16.15	15021 389	0.7077228	
61	+	190.2	+ 363.0	14.96	16.21	15021.009	0.5209312	R0
62	+	90.2	+ 417.0	15.42	16.16	15021.070	0.6524077	Dr
63		37.2	+ 341.0	14.96	16.22	15021.094	0.5704164	BO
64	+	114.8	+ 330.4	15 32	16.26	30000 382	0.5764104	DC
65	- -	125.4	+ 307.5	13.52	16.20	30000.332	0.6683394	
66	T	101.4	+ 121.3	15.20	15.03	15021 323	0.6201827	
67	_	121.4	+ 121.4	14.05	15.55	15021.525	0.0201827	D.0
607	_	21.0	+ 123.0	14.95	16.07	15021.411	0.3083009	DX
60	+	21.9	+ 1/4.0	15.0	16.05	26602.951.	0.3339732	DX
69 70	+	27.6	+ 141.0	15.15	16.05	36692.831:	0.3663878	DO
70	+	37.0	+ 152.2	15.22	15.75	15021.313	0.480:	BK
/1	+	160.6	- 2.0	15.07	16.04	15021.168	0.5490517	
72	-+-	445.5	- 2.2	14.80	16.30	15021.327	0.4560739	
13	+	438.5	+ 62.2	15.0	16.0	24440 200	0.4021441	
74	+	88.2	+ 151.0	14.80	16.20	36668.389	0.4921441	
15	+	49.0	+ 159.5	15.38	15.98	36668.411	0.3140790	
/6	_	14.4	88.2	14.90	16.46	15021.293	0.5017544	
77	_	94.4	+ 27.8	14.63	16.07	15021.451	0.4593425	
78	+	47.5	+ 66.4	14.92	15.70	15021.249	0.6119254	
79	+	43.4	+ 349.4	14.72	16.31	15021.229	0.4833275	B6
80	+	416.8	+ 284.6	14.80	16.17	15021.433	0.5384827	B6
81	+	342.8	+ 351.1	14.86	16.30	30000.461	0.5291108	
82		102.6	- 601.8	14.96	16.31	36668.477	0.5245061	
83	_	441.6	+ 113.4	14.87	16.32	15021.046	0.5012408	
84	+	64.0	+ 165.2	15.26	16.12	36666.463	0.5957289	
85	+	306.2	+ 225.8	15.32	15.92	22760.517	0.3558189	
86	+	513.0	- 114.2	15.42	16.06	15021.016	0.2926601	
87	+	110.6	+ 60.2	15.13	15.68	22760.535	0.3574814	
88		35.0	- 70.2	15.08	15.67	24290.324	0.2985092	
89	+	28.0	- 110.8	14.85	15.93	15021.507	0.5484779	
90	+	97.2	- 188.2	14.92	16.25	36692.397	0.5170334	
91		14.3	= 550.0	14.95	16.26	36669.366	0.5301630	
92		29.0	= 408.4	14.94	16.30	15021.083	0.5035553	
93		319.4	- 396.6	15.24	16.27	30000.420	0.6023007	
94		488.4	- 224.6	14.90	16.33	30000.304	0.5236936	
95		154.7	+ 15.4	13.73	14.42		103.19	
96		164.2	- 234.0	14.74	16.10	36692.470	0.4994467	
97		130.0	- 196.7	15.53	16.04	° 61.581	0.3349289	
98	+	132.4	- 3.2	not var				
99	+	201.8	55.0	14.8	15.8			

No.		x''		y''	Max.	Min.	Epoch	Period	Remarks
NGC	527	2 (conti	nued	d)					
100	+	69.9	+	97.3	15.31	15.96		0.6188126	
101	+	46.4	+	83.7	15.29	15.78	15021.101	0.6438975	
102	+	58.4	+	114.9	15.2	15.9	var?		
103	+	58.1	+	120.4	not var				
104		25.8	+	145.5	14.73	15.99	15021.288	0.5699231	
105	_	20.9	+	191.6	15.33	15.72	36668.548	0.2877427	
106	_	48.0	+	168.0	15.18	16.04	36666.372	0.5471593	
107	_	75.8	+	335.0	15.40	16.14	30000.039	0.3090348	
108		219.0	+	310.9	14.94	16.30	30000.250	0.5196047	
109	-	89.3	+	2.7	14.56	15.64	15021.033	0.5339239	
110	-	99.4		15.8	15.02	15.88	15021.397	0.5353569	
111	_	92.7	+	21.9	15.06	16.02	15021.402	0.5102469	BQ
112		144.6	_	719.4	not var				
113	+	199.8	_	689.8	14.90	16.25	15021.241	0.5130066	
114	+	11.8	+	622.0	15.18	16.24	15021.515	0.5977270	
115	+	445.0	+	664 7	14 98	16.34	15021 297	0.5133529	
116	_	491.8	+	465.2	14.89	16.32	15021.441	0.5148088	
117	+	89.6	_	467.6	15.22	16.22	15021.579	0.6005164	
118	+	144 4		292.2	14.90	16.36	15021.272	0 4993807	
119	+	253.4	+	106.2	14 76	16.25	30000 192	0.5177411	
120	_	295.8	+	231.4	15.56	16.07	15021 284	0.6401387	
121	_	43.6	+	56.1	14 84	15.54	22760 550	0.5351882	
122		33.5	_	46.4	14.6	16.1	22,000000	0.5017	
123		259		985	14.92	16.31	15021.395	0.5454472	
124		66.4	_	201.4	15.50	15.96	36685.349	0 7524328	
125	+	186.3	_	132.8	15.48	16.00	36666.585	0.3498206	
126	_	15.4	_	146.4	15.42	15.96	15021.208	0.3484043	
127	+	95.6	_	63.6	not var				
128	+	114.6	+	131.4	15.40	15.86		0.2922710	Bl
129	_	43.6	+	77.2	15.2	16.1		0.305471	
130	+	4.2	+	84.6	15.27	16.00	22760.347	0.5688172	BQ
131		73.2	+	27.4	15.04	15.56	15021.318	0.2976919	
132	-	53.6		22.0	15.3	16.4	24290.387	0.3398479	
133	_	58.6	+	43.5	14.89	15.96	15021.482	0.5507230	
134	_	22.4	+	52.4	14.9	16.3	24290.282	0.6190	
135	-	27.0	+	38.0	15.0	16.5		0.56843	
136		25.4	+	33.4	15.6	16.2			
137	+	53.0	_	18.8	15.30	16.04	15021.155	0.5751464	
138	_	263.6	+	41.9	14.0	14.46	35608.96	80.98	
139	+	34.5	+	28.0	15.25	16.12	22760.465	0.560004	
140	_	15.7	+	108.9	15.07	15.51	22760.216	0.3331304	
141	-1	497.5		249.9	14.98	15.97		0.2695671	RV CVn, EW, f
142	_	30	_	59	14.79	15.72	24290.397	0.5686256	, ,
143	_	34	+	16	15.4	16.4	24290.337	0.51111	
144	+	54		100	15.27	15.99	24290.565	0.5967843	
145	+	29	+	8	14.9	16.5	24290.528	0.514456	
146	+	96	_	59	14.6	16.5	24290.563	0.596740	
147	_	21	+	46	15.1	16.3	24290.005	0.34644	

Catalogue

No.		x''		у"	Max.	Min.	Epoch	Period	Remarks
NGC	527	2 (cc	ontinue	ed)					
148		7	+	37	15.3	16.4	24290.170	0.467246	
149	+	34	+	52	14.7	16.5	24290.228	0.54985	
150	+	69	+	37	14.8	16.7	24290.359	0.52397	
151	+	4	_	40	14.9	16.3	24290.191	0.51705	
152	+	77	+	50	15.42	15.76	24290.355	0.3261217	
153	_	38	+	60	not var				
154	+	2		29	12.1	13.7	38873.53	15.290	
155		64	_	74					
156	_	21		42	15.0	15.9	38872.331	0.531979	
157		17	+	35	14.2	15.7	24647.650:	0.5283	
158		16	_	41	15.2	16.5	24647.564:	0.50809?	
159		15	+	16	14.9	16.6	24647.602:	0.5337	
160	_	9	_	44	14.9	16.1	24647,446	0.64792	
161	+	17	_	58	15.4	16.4	24647.567:	0.49874	
162	+	28	_	32	not var				
163		16	_	32	not var				
164	+	21	_	36	15.3	15.9			
165	+	73	_	20	14.7	16.5	24647.544	0.483638	
166	_	97		8	15.4	16.1	38867.364	0.485622	
167		78	_	37	15.62	16.00	24647,448	0.6439839	
168	_	45	+	7	14.9	16.0	24647.617	0.3770	
169		29		35	not var				
170	_	28	+	32	15.1	16.1	24647.716:	0.43725	
171	_	27	+	16	15.0	16.1	24647.864	0.4303	
172	_	21	+	25	14.9	16.5	24647,700	0.59400	
173	_	13	+	39	15.2	16.6	24647.670;	0.606990	
174	_	9	_	34	15.1	16.1	24647.710	0.4082	
175	+	42	+	26	14.9	16.2	24647.914	0.60780	
176	+	46	+	32	14.8	16.4	24647.621	0.55599	
177	+	63		29	15.52	15.90	24647.953	0.3483438	
178	+	79	+	46	15.51	15.81	24647.755	0.2650805	
179	+	39		774	not var				
180	_	19	_	27	not var				
181	_	30	_	14	not var				
182	_	19	+	60	not var				
183	+	29	+	7	not var				
184	_	25	_	14	14.9	16.4	24647.841	0.517	
185	_	15	+	32	15.2	16.1	2.017.011	0.0 1 /	
186	+	12	~~~	64	15.1	16.1	24647 670	0.675	
187	_	23	+	9	14.9	16.2	24647 961	0.3927	
188	-	2.7	+	24	15.0	16.0	24647 615	0.3677	
189	_	25	_	21	15.2	16.0	24647 964	0.668	
190	_	8	+	28	14.8	16.5	24647 936	0.501	
191		0	+	24	15.1	16.1	24647 981	0.512	
192	_	2	+	3	15.0	16.1	24647 933	0.525	
193	+	15	T	7	14.8	16.3	24647.755.	0.630	
194	+	17		13	15.1	16.4	24647 758	0.549	
195	_	13		29	15.0	16.2	24647.470	0.549	
		10		10 /	10.0	10,4	2-10-1.470.	0.000	

No.		x''		y''	Max.	Min.	Epoch	Period	Remarks
NGC	527	2 (cont	inue	1)					
196	+	47	+	1					
197	+	58	+	10	15.1	16.5	24647.689	0.500075	
198		23	+	15	15.2	16.0	24647.923:	0.3617	
199		19	+	13	14.8	16.3	24647.699:	0.488	
200	_	4	+	21					
201	$^+$	4	_	9	15.1	16.1	39964.391	0.541333	
202		379.7	+	101	15.4	15.8		0.9987:	
203	_	30.2	-	308	15.56	15.72		0.28719	
204	_	106.4	_	18	15.76	15.90		0.9170:	
205	_	780	+	720	15.4	16.2	35600.38	0.6369126	vZ 89
206		0	- 1	1680	14.8	16.1	35601.41	0.5093832	vZ 1221
207	+	36.0		30.8	14.8	15.4			vZ 991
208	+	2.5	—	57.9	14.8	15.4			vZ 800
209		68.2	_	99.1	14.3	15.1			vZ 472
210	_	85.7		9.9	14.6	15.4			vZ 420
211	_	54.1	+	6.6	14.6	15.7	41061.438	0.557798	vZ 519
212	_	21.6	-	38.0	15.2	16.2	38867.356	0.542196	SVS 1365
213	_	25.4	_	29.7	15.0	15.4			vZ 648?
214	+	32.0	+	5.8	14.6	15.6	41061.447	0.539493	vZ 971
215		13.9	_	0.9	14.8	15.6			vZ 717
216	+	27.9	-	10.8	15.2	15.8			vZ 951
217		0.0		26.4	14.5	15.4			SVS 1370
218	+	28,1	_	29.4	14.5	15.7	38867,304	0.543774	vZ 950
219	_	57.9	+	15.7	14.6	15.8			vZ 509
220	+	33.1	_	15.2	14.2	14.8			vZ 978
221	_	16.6	_	13.5	14.6	15.1			vZ 692
222	+	96.3	_	63.3	14.9	15.9	38859.416	0.596764	vZ 1198
223	+	23.9	_	5.8	14.8	15.4			vZ 930
224	_	22.1	+	5.0	13.7	14.6			vZ 668
225	+	8.8	+	225	13.86	14.26	35651.38	89.59	vZ 837

Vars. 205. 206 found by Kurochkin, identified by Kukarkin; 207-224 by Kholopov; 225 by Russev. Variability of V8 and V156 reconfirmed by Kholopov, and of V138 by Russev. 11 suspected variables, Kholopov (1963). Identification of variables in this cluster is difficult. See von Zeipel numbers in S55a, with revisions by Kholopov (1963), and above for the new variables.

Arp, AJ 60.1 (1955); Roberts and Sandage, AJ 60.185 (1955); Osváth, Budapest Mitt 42 (1957); Kukarkin and Kukarkina, VS 12.291 (1958); Wallerstein, ApJ 127.583 (1958); Kurochkin, AC 205 (1959); Sandage, ApJ 129.596 (1959); Kraft, Camp and Hughes, ApJ 130.90 (1959); Kukarkin, AC 216.29 (1960); Kurochkin, VS 13.84 (1960); Thackeray, Obs 80.226 (1960); Kurochkin, VS 13.248 (1961); Kukarkina and Kukarkin, VS 13.309 (1961); Kurochkin, VS 14.196 (1962); Breckinridge, ASP 75.22 (1963); Kholopov, VS 14.275 (1963); Fernie, ApJ 141.1411 (1965); Feast, ApJ 142.796 (1965); Szeidl, Budapest Mitt 58 (1965); Kheylo, IBVS 171 (1966); Sturch, ApJ 143.774 (1966), AJ 72.321 (1967), ApJ 148.477 (1967); Kheylo, Problems in Astrophysics, Kiev, p. 62 (1968), NASA Tech Tr F598.57 (1971); van Albada, AAS Bull 1.366 (1969); Zhukov, Soviet Astr AJ 13.306 (1969); Kukarkin and Kukarkina, VS 17.157 (1970); Coutts, Bamb Veröff 9, 100.238 (1971); Kholopov, AC 640.3 (1971), AC 651.7 (1971), AC 652.7 (1971); Russev, VS 18.171 (1971); Kholopov, AC 676.7 (1972), Letter (1972); Szeidl, Letter (1972) S55a, S57, S59, S61, A62, R62a, S62, P64, S64, L65, R65, St66, S67, C&S69, S69, S70, F72

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
NGC	5286 al3h	43m.0, δ –	51°07′				
1	- 46.20	+145.48					
2	+ 78.10	- 42.63					
3	+256.58	- 39.60					
4	- 69.30	- 70.95					
5	+ 64.63	+ 27.78					
6	+ 60.23	- 33.00					
7	+ 24.48	- 60.23					
8	+ 16.50	- 35.75					
ll ab Baile 1965 855	ove variables ey, HB 801 (); Fourcade, a S59 R62c	found by F 1924); Fou Laborde ar	Fourcade rcade and nd Albarr 63 S67 S	and Labo I Laborde acin, Atla 569	rde. One field va , Cordoba Repr s y Catalogo, Co	riable, Bailey. 117 (1964), Co rdoba (1966)	ordoba Repr 126
IGC 5	5466 a 14 ^h +858	03 ^m .2, δ +2 - 95	28°46′ 15.80	16.80	40706.387	0.5774192	+
2	- 62	-110	15.77	16.77	40683.342	0.5885020	—, В¢
3	- 31	- 8	15.90	16.76	40704.319	0.5780638	cst
4	- 80	+ 9	15.69	17.03	40704.461	0.5120111	+, -, BQ
5	- 64	+112	15.85	17.10	39945,659	0.6152674	_
6	+122	- 24	15.60	16.60	40705.408	0.6206610	Alast.
7	-210	-225	15.94	16.90	40702.398	0.7034205	cst
8	+ 23	- 6	15.81	16.70	40705.358	0.6291182	cst
9	+ 31	+ 15	15.74	16.77	39947.328	0.6850240	_
10	+ 85	+ 46	15.87	16.90	40705.468	0.7092735	cst
11	+117	+ 68	16.09	16.70	40705.285	0.3779938	cst
12	+ 17	- 88	16.09	16.66	39945.210	0.2942387	cst
13	- 49	- 73	16.10	16.80	40736.379	0.3415476	+
14	- 47	+ 52	15.86	16.70	39947.568	0.7858598	-
15	+223	+ 20	16.31	16.69	40705.223	0.4015471	-, +
16	-149	-175	16.04	16.74	39945.372	0.2966414	
17	- 60	- 30	16.05	16.58	40706.394	0.3701037	+
18	+ 44	+ 41	16.0	16.7	30519.697	0.37406	
19	+157	-166	14.40	14.95	40705.737	0.8212879	Hop 216, f
20	-228	+ 45	16.42	16.72			Cuffey
21	+ 47	- 10	16.53	16.74			Cuffey
22	-153	- 80	16.08	16.65	40705.364	0.265687	Hop 35
22	+329	+ 15	16.50	16 73	40705 126	0.2221607	Hon 225 act

Baade nos. 3, 4, 5 in corona considered probable members by Kukarkin and Kholopov. Cuffey 3-5-2-72 is considered field variable.

Kukarkin, VS 12.50 (1959); Cuffey, AJ 66.71 (1961), Letters (1961); Kurochkin, VS 13.248 (1961), VS 13.331 (1961); Kholopov, VS 14.71 (1962); Kurochkin, VS 14.196 (1962); Bartolini, Biolchini and Mannino, Bologna Pubbl 9, 4 (1965); Gryzunova, AC 526.8 (1969), VS Suppl 1.253 (1972)

S55a, S57, S59, S61, R62a, S62, S64, L65, R65, S67, C&S69, S69

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	5634 a14 ^h	27 ^m .0, δ (05°45′				
1	-56.5	- 195	16.41	17 39		0.65872	
2	-25.4	+ 83.1	16.19	17.38		0.00072	
3	-45.1	+ 41.9	16.48	17.47			
4	+54.2	- 65.2	16.55	17.39			
5	-11.6	- 162.9	16.72:	17.19			
6	+43.4	- 52.6	16.69	17.05:			
7	0.4	- 4.0					
Baado S55a	e, Mt Wils Co , S59, S62, L	ntr 706 (p) (65, S69	(1945)				
NGC	5694 a14h	$36^{m}.7, \delta = 1$	26° 19′				
No va Baado S55a	ariables found e, ASP 46.52 , S59, R62c,	1. (1934) S62, S69					
IC 44	99 a 14h52	m 7 δ - 82°	02'				
1	+ 84.15	- 3.03					
2	+ 41.53	= 96.25					
3	90.75	104.50					
4	- 33.55	- 14.03					
5	- 38.23	- 47.58					
6	- 2.75	+ 34.38					
/	+ 24.75	+203.50					
8	+ 88.00	+ 97.08					
9	+ /2.60	+105.60					
10	+ 11.00	+ 68.75					
11	+ 95.15	- 29.98					
12	+112.75	+ 02.13					
13	+ 44.20	17.33					
14	+ 22.03	- 19.23					
15	- 0.00	- 9.08					
10	- 00.00	+ 52.23					
18	62.15	-22.28					
19	-159.50	21.20					
20	22 27	+159.23					
21	+ 85.53	+145.75					
22	+270.33	+ 64 35					
23	+ 93.50	- 38.50					
24	35.75	31.63					
25	-118.25	- 6.32					
26	-168.58	+159.50					
27	+ 19.53	+111.38					
28	- 11.55	- 44.28					
Catalogue

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
IC 44	99 (continu	ed)					
29	+ 41.25	- 13.75					
30	+ 85.25	- 33.55					
31	+ 35.75	+ 95.70					
32	+ 77.00	- 11.28					
33	+ 59.12	-273.35					
34	+ 88.00	-123.75					
35	+ 73.98	+101.75					
36	+159.78	+ 6.33					
37	+ 15.95	- 56.10					
38	- 85.25	+ 56.38					
39	+ 1.10	+ 39.05					
40	+128.98	+280.50					
41	+ 40.43	+178.75					
42	+115.50	- 22.83					
43	+ 64.90	-233.75					
44	- 62.98	+ 61.88					
4.5	+105.33	+250.53					
46	-133.10	-236.50					
47	+ 37.40	- 93.50					
48	+ 64.90	- 2.75					
49	+ 11.55	- 99.28					
50	+102.03	- 46.75					
51	+ 68.20	+ 9.90					
52	+ 63.53	+178.20					
53	+121.55	-110.00					
54	+ 93.78	-237.33					
55	- 46.75	- 31.08					
56	- 31.63	- 9.63					
57	- 6.05	+ 55.00					
58	- 58.30	- 67.65					
59	+ 71.23	- 42.08					
60	+ 2.75	+ 54.45					
61	+ 1.93	+ 57.48					
62	+258.23	- 88.23					
63	- 99.00	- 68.20					
64	+ 94.60	+ 57.20					
65	+ 30.25	- 93.50					
66	+132.00	+ 79.48					
67	+ 51.70	- 13.75					
68	- 25.03	+221.10					
69	-113.30	+ 19.25					
70	+ 66.28	- 18.15					
.71	- 30.80	- 25.03					
72	- 8.25	- 69.03					
73	+234.58	-280.50					
74	+ 22.00	+ 66.28					
75	+ 16.50	- 63.25					

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks	
1C 44	99 (continue	ed)						
76	+333.30	+293.15						
77	+ 79.20	+ 52.25						
78	-187.00	+104.50						
79	-159.50	+316.25						
80	+ 33.00	-283.80						
81	+ 45.00	- 11.00						
82	+ 22.55	+ 8.25						
83	+ 19.53	+ 31.08						
84	- 24.48	- 41.53						
85	- 91 30	+309.93						
86	+ 69.85	+ 13.20						
87	+ 34.93	+ 73.98						
88	+ 85.25	+ 50.60						
89	- 68 75	- 0.83						
90	+ 3.30	- 19.25						
91	- 61.05	- 24.75						
92	+123.48	+138.05						
93	+35.75	- 32.18						
94	+ 15.50	+ 55.83						
95	-3740	+ 38.78						
96	- 853	+ 29.98						
97	- 45.93	- 88.28						
98	+251.08	- 44 55						
99	-292.05	+ 4.68						
100	+ 72.60	-266.20						
101	+ 35.75	- 20.35						
102	+ 36.03	+ 7.15						
103	+ 35.48	+ 52.25						
104	+ 63.80	+ 30.53						
105	+ 72.60	- 3.30						
106	+ 30.25	+133.93						
107	+159.23	- 81.68						
108	+121.28	+ 633						
109	- 96.53	+ 97.63						
110	+ 3850	+ 82.23						
111	+ 4950	-158.13						
112	- 30.25	+ 63.25						
113	+156.75	+226.88						
114	- 7.98	- 13.75						
115	+ 33.28	+119.08						
116	+ 30.25	- 31.90						
117	-242.28	+234.85						
118	+168.03	+181.50						
119	- 71.50	+ 13.50						
120	+ 85.53	-220.00						
121	- 96.25	- 31.63						
122	+ 11.00	- 20.63						
	11100	- 0.00						

Catal	ogue
-------	------

No.	x"	у"	Max.	Min.	Epoch	Period	Remarks
C 449	99 (continue	d)					
123	+164.45	+ 17.33					
124	+ 10.73	+197.73					
125	+130.35	+131.18					
126	+ 18.98	- 59.95					
127	+ 49.50	- 10.45					
128	+ 77.00	- 38.78					
129	- 13.20	- 39.60					

All variables found by Fourcade and Laborde, who also have suspected variables nos. 130-169 with coordinates, and no. 170.

Fourcade and Laborde, Cordoba Repr 126 (1965); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Fourcade and Laborde, Cordoba Repr 173 (p) (1969) \$555b, R62b, F&L63, S67, S69, S70

NGC 5824 $a 15h00m.9, \delta - 32^{\circ}53'$

1	- 72.8	+ 35.5	16.8	18.3	35638.20	0.597	
2	+ 11.3	+113.1	17.1	18.2	35635.48	0.651	
3	+124.7	+ 32.0	17.1	18.2	35636.42	0.641	
4	+186.5	+ 74.0	17.1	18.0			RRc?
5	- 9.5	+108.0	17.0	18.1	35638.21	0.634	
6	+ 98.6	- 34.2	17.2	18.1			RRc
7	- 36.9	- 71.6	17.4	18.0			RR
8	- 8.7	69.4	17.7	18.3			RR
9	+ 75.8	+ 72.2	16.9	18.3			RRa
10	+155.9	-113.0	17.3	18.0			RR
11	- 10.1	- 50.8	16.9	17.9			
12	- 73.3	- 40.0	17.0	18.2	35661.30	0.592	
13	+ 14.0	-106.1	17.4	18.0			RR
14	+ 19.0	+ 51.0	17.1	17.9		0.35?	RRc
15	+ 82.5	- 58.1	17.2	18.3			RR
16	+ 4.1	- 63.4	17.5	18.3			RR
17	+ 33.7	- 90.3	17.3	18.2			RRc
18	+132.9	- 3.6	17.1	18.2			RR
19	- 29.1	- 42.6	17.0	18.3	35636.22	0.635	RRa
20	- 82.1	- 19.8	17.5	18.1			
21	+ 45.2	+ 71.1	17.6	18.2			RR
22	+ 48.5	- 15.9	17.1	18.0		0.6	RRa
23	-125.6	-243.2	17.0	18.1	35630.23	0.618	
24	+ 96.3	-305.6	17.2	18.0			RRc
25	-333.4	+ 6.5	17.3	18.1			RR
26	+401.5	+362.9	17.0	18.1	35635.45	0.744?	RRa
27	+326.1	- 24.5	17.2	18.1			RR
411 va	riables foun	d by Rosino					
Rosin	o, ASP 73.3	09 (1961)					

S55b, R57, S61, S62, S64, R65, FLA66, S69

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
Palon	nar5 a15h	13m.5, δ +0	0° 05'				
1	- 97	+ 25	17.50	17.92	33741.651	0.293230	
2	- 85	-246	17.61	18.01	34456.084	0.332467	
3	+143	-166	17.45	17.95	34182.801	0.329953	
4	+ 35	-238	17.45	17.93	34234.522	0.286362	
5	- 84	+ 94	17.55	17.85	34833.520	0.252395	
Pietra ASP S55	a, Bologna Pu 74.500 (196 5a, R57, S59	ubbl 6, 16 (1 2); Rosino a , R61, S62, S	.956); Ma nd Pinto, 564, R65,	nnino, Bo IAU Coll S69	ologna Pubbl 6, 21 (1973)	17 (1956); Kinr	nan and Rosino,
NGC	5897 a 15 ¹	h14m.5,δ-	20° 50′				
1	-109	-201	16.15	17.1	41100.695	0.4430685	
2	- 57	- 97	16.25	16.9	36752.627	0.454149	var
3	- 40	- 4	16.3	17.1	33481.615	0.419455	+
4	+ 71	+ 20	15.7	16.2	40807.611	0.42	
5	-136	+215	14.85	15.2	40807.611	64.5 irr	
6	+ 16	+ 59	16.4	16.9	41124.663	0.3325?	Alt 0.485
7	+ 20	+ 58	16.2	16.8	40803.536	0.511710	
NGC	5904 (Messi	er5) a15 ^h	16m.0, δ	+02°16′			
1	+ 27.7	+161.1	14.66	15.69	13715.588	0.5217865	+
2	- 343.5	- 31.5	14.17	15.57	39256.416	0.5262679	BQ
3	+ 160.1	+113.7	14.62	15.47	36762.676	0.6001888	+
4	- 12.3	+ 73.8	14.65	15.89	27627.708	0.4496402	
5	- 7.8	+ 51.6	14.83	16.06	27567.929	0.545903	
6	+ 27.2	- 46.6	14.55	15.61	27567.856	0.5488311	
7	- 5.1	-191.3	14.03	15.69	27601.730	0.494396	+
8	+ 134.0	-133.2	14.67	15.75	39942.309	0.5462306	+
9	+ 195.0	+ 88.0	14.57	15.50	27610.686	0.6988972	+
10	+ 107.4	+382.0	14.23	15.45	36762.591	0.5306602	-
11	- 154.5	+ 84.5	14.27	15.60	36762.605	0.5958939	+
12	- 175.5	- 17.3	14.20	15.78	27601.762	0.467716	_
13	+ 11.0	- 65.4	14.75	15.64	27567.800	0.5131223	+
14	- 145.6	+103.7	14.30	15.62	27610.358	0.4871724	—, ВQ
15	+ 192.0	+ 3.6	14.70	15.28	27567.908	0.336763	+
16	+ 91.0	+ 83.9	14.29	15.53	27567.781	0.6476223	+
17	- 26.1	+ 44.3	14.80	15.91	27567.723	0.601354	
18	+ 151.7	-107.7	14.33	15.55	38911.175	0.464098	+
19	+ 233.7	-129.9	14.38	15.57	27601.706	0.469965	+
20	- 255.5	- 25.0	14.38	15.56	36762.787	0.6094778	+
21	+ 322.6	+ 74.0	14.38	15.38	13715.505	0.6048947	+
22	- 205.7	+383 5	not var				

Catalogue

No.	x''	y''	Max.	Min.	Epoch	Period	Remarks
NGC	5904 (contin	nued)					
23	- 253.4	- 10.9	not var				
24	- 46.8	- 71.7	14.77	15.65	27567.821	0.4783771	
25	- 28.9	-128.0	13.83	14.73	27567.766	0.508	
26	+ 21.8	+101.5	14.42	15.46	27601.761	0.6225642	
27	- 6.7	- 59.2	14.37	15.74	27888.894	0.4703	
28	+ 132.2	-121.1	14.49	15.59	36762.271	0.5439272	
29	- 374.7	- 76.6	14.42	15.53	27567.700	0.451433	–, Sp F
30	+ 22.8	-212.8	14.55	15.55	39942.454	0.5921739	
31	+ 1517	-141.7	14.77	15.48	13715.209	0.30058294	est
32	+ 201.9	-150.6	14.10	15.67	13715.596	0.45778654	cst
33	~ 21.1	+127.5	14.57	15.63	27610.270	0.5014750	+
34	+ 84.3	+ 59.5	14.65	15.52	27567.727	0.5681431	cst
35	- 12.2	-114.7	14.80	15.39	27610.406	0.3081255	+
36	- 8.4	- 52.2	14.96	15.91	27563.868	0.6277229	cst
37	+ 44.7	- 67.0	14.49	15.60	27605.762	0.4887941	
38	- 44.2	+117.2	14.49	15.90	27889.937	0.470441	
39	- 125.3	-205.2	14.08	15.63	27610.368	0.5890374	+
40	+ 124.8	+113.5	14.84	15.45	27610.461	0.3173299	+
41	+ 19.3	+231.4	14.19	15.57	27567.879	0.488572	
42	- 123.2	-120.8	11.20	12.24	27567.8	25.738	Sp, V, mem
43	- 201.8	+154.3	14.70	15.43	27610.364	0.6602289	+
44	- 102.5	+ 31.1	14.97	15.61	27610.125	0.3296024	+
45	- 116.7	+ 65.7	14.74	15.90	27567.774	0.6166364	cst
46	- 80.0	+ 69.1	not var				
47	- 75.3	+ 58.1	14.84	15.96	27563.861	0.5397295	_
48	- 62.5	+106.3	not var				
49	+ 52.7	+177.5	not var				
50	+ 38.0	+109.1	14.00:	14.54:		irr?	Sp
51	+ 0.3	+135.5	var?				
52	+ 107.9	+ 35.3	14.49	15.57	27563.804	0.5017848	Be
53	+ 68.9	+ 19.2	14.98	15.28	27601.70	0.37360	
54	+ 30.3	+ 57.2	14.62	15.68			
55	+ 80.1	-163.2	14.87	15.39	36762.219	0.3289013	+
56	- 68.9	+ 96.5	14.75	15.86	27889.931	0.5346903	
57	- 30.6	+ 99.7	14.94	15.43	27567.897	0.28467869	
58	- 605.1	+168.2	14.86	15.52	36762.274	0.4912489	+
59	- 150.0	- 35.5	14.70	15.67	13715.490	0.5420257	+
60	- 109.7	+ 8.2	15.04	15.74	27567.75	0.285218?	
61	- 254.9	- 31.4	14.42	15.62	27610.472	0.5686267	+
62	+ 166.8	-216.8	14.78	15.36	36762.543	0.2814154	+
63	+ 212.9	+ 51.8	14.10	15.50	13384.553	0.4976783	+, BQ
64	- 51.2	-248.9	14.43	15.55	27610.553	0.5445006	
65	- 159.9	- 93.8	14.07	15.02	36385.522	0.4806936	+
66	+ 218.3	+406.8	14.83	15.42	27610.242	0.3507086	+
67	-1028.2	- 59.8	14.36	15.13	13715.314	0.3490944	_
68	+ 897.5	+ 47.6	14.87	15.47	27610.347	0.3342667	
69	+ 653.3	+751.6	14.10	15.68	27610.320	0.4948729	
70	+ 393.8	+626.4	14.54	15.70	27610.365	0.5585490	

No.	2	ς''	y''		Max.	Min.	Epoch	Period	Remarks
NGC	5904	(contir	nued)						
71	+ 66	54-1	+290	3	14.25	15.86	27610.357	0.5024724	
72	+ 68	29.7	+ 38	3	14.66	15.71	27610.318	0.5622722	–, Sp F
73	+ .	173	+604	. 7	14.66	15.23	19533.289	0.3401261	+
74	+ 20	12.8	+162	8	14.83	15.18	36762.379	0.4539887	_
75	+ '	78.6	-412	8	14.80	15.38	27610.523	0.6854171	+, Sp F
76	+ 8	80.5	-309	.2	14.69	15.18	13524.125	0.3018963	_
77	- 11	71.5	-184	.8	14.39	15.25	36762.596	0.845146	+
78	+ (55.5	+159	.7	14.90	15.46	39942.389	0.26481739	cst
79	- 1	33.5	- 32	2.2	14.88	15.42	39942.316:	0.33313838	cst
80		48.6	+111	.6	15.05	15.54	27562.986	0.3365424	_
81	_ '	72.2	-121	.7	14.61	15.58	34131.439	0.5572965	-
82	- 1	67.8	+ 12	2.4	14.86	15.72	27563.798	0.5584455	
83	_	84.7	- 87	7.8	14.80	15.66	27567.783	0.5533073	cst
84	+ -	43.7	- 31	.9	11.54	12.61	27602	26.42 ±	Sp, V, mem
85	+	38.3	- 34	4.4	14.80	15.70	27567.970	0.52741	
86	+	34.6	- 33	3.0	14.50	15.83	27567.856	0.56733	
87	+ 1	22.0	- 1	.8	15.00	15.38	21350.182	0.7383992	+
88	+	65.2	+ 61	1.8	15.08	15.48	27563.832	0.32808270	
89	+	60.0	+ 64	4.7	14.79	15.69	27626.707	0.55844189	
90	_	44.7	+ 15	5.3	14.67	15.88	27540.828	0.5571527	
91		36.0	+ 35	5.0	15.04	15.96	27567.927	0.584944	
92	_	56.6	-123	3.5	14.28	15.58	27567.963	0.4635789	
93	+	44.0	- 35	5.7	14.54	15.81	27567.771	0.55231	
94		23.5	+ 12	7.4	15.26	16.11	27601.728	0.53141	
95		47.2	+102	2.8	15.13	15.80	27626.689	0.29082	
96	_	12.4	+ 32	2.9	14.96	16.15	27563.778	0.51225	
97	+	48.9	- 92	2.5	14.18	15.61	27601.754	0.54466	
98	+	37.3	+ 20	0.0	15.26	15.71	27605.737	0.3063857	-
99	+	34.4	(0.1	15.32	15.89	27567.739	0.32134	
100	+	2.8	+ 48	3.7	15.30	16.01	27628.710	0.29434	
101	- 2	81.6	+ 30	5.0	17.15	22			UG?
102	+	14.8	- 1	4.8					prob RR
103	+	20.5	- 1	8.8					prob RR

Five suspected variables, Voroshilov (1971); one suspected, Osborn (1971).

Arp, AJ 60.1 (1955), AJ 62.129 (1957); Wallerstein, ApJ 127.583 (p) (1958), ApJ 129.356 (1959); Kraft, Camp and Hughes, ApJ 130.90 (1959); Preston, ApJ 134.651 (1961); Williams, AJ 71.615 (1966); Coutts, Doctoral Thesis, Toronto (1967); Sturch, ApJ 148.477 (1967); Wilkens, Inf Bull So Hemis 12.17 (1968); Coutts, Non-Periodic Phenomena in Variable Stars, ed. L. Detre, Budapest, p. 313 (1969); Coutts, Margoni and Stagni, AAS Bull 1.238 (1969); Coutts and Sawyer Hogg, Toronto Publ 3, 1 (1969); Kukarkin and Kukarkina, AC 541.1 (1969); Sturch, AJ 74.82 (1969); Zhukov, Soviet Astr AJ 13.306 (1969); Coutts Toronto Publ 3.81 (1971), IBVS 572 (1971); Kukarkin, AC 646 (1971); Kukarkin and Kukarkina, VS Suppl 1, 1 (1971); Osborn, IBVS 598 (1971); Voroshilov, AC 623.7 (1971); Coutts, Bamb Veröff 9, 100.238 (1972); Coutts and Sawyer Hogg, AAS Bull 4.217 (1972); Eggen, ApJ 172.639 (1972) S55a, R57, S57, S59, S61, A62, R62a, S62, P64, S64, L65, R65, S166, S67, S69, S70, F72

Catalogue

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC :	5927 a15h	24m.4, δ -4	50°29′				
1 2 3 4 5 6 7 8 9	+141.90 - 45.38 - 4.6	+129.25 0.0 - 4.1	14.6 14.7 14.7 14.7 15.0 15.1 14.7	15.3 15.2 15.3 15.3 15.6 16.0 15.1		300:	L&F 4, f? L&F 14 Osborn V3, LE&M V6, LE&M V7, LE&M V8, LE&M V9, LE&M V10, LE&M L43 LE&M
10 11			14.7 14.7	15.1			L43, LE&! L17, LE&!

V mags. for vars. 4-11, Lloyd Evans and Menzies, unpub. (1972). 13 field variables, Laborde and Fourcade.

Laborde and Fourcade, Cordoba Repr 138 (p) (1966); Osborn, Obs 88.26 (p) (1968), Letter (1968); Lloyd Evans, Letter, V3 (1972); Lloyd Evans and Menzies, IAU Coll 21 (1973) S55b, R62b, FLA66, S69, S70

NGC	5946 a 15 ¹	n31m.8,δ-	50° 30′					
1 2 3	+178.75 - 56.37 + 83.87	F&L 1 F&L 2 F&L 4						
Five f Fourc S55b,	ield variable ade, Labord R62b	s, Fourcade e and Albar	and Labo racin, At	orde. las y Catal	ogo, Cordoba ((1966)		
NGC	5986 a 15 ¹	n42m.8,δ-	37° 37'					
1 2 3 4 5 All va Rosin S55a,	+60.0 - 8.0 +23.2 -82.5 +58.6 riables foun o, A siago Co R57, S59, S	- 8.3 - 2.1 +110.5 + 18.7 - 2.8 d by Rosino portr 132 (p) 61, R62c, S	15.2 16.1 16.0 13.6 16.1 (1962) 62, F&L0	16.9 17.2 17.0 14.3 17.1	LA 66, S69		RR? RR RR SIow RR	
NGC	5093 (Messi	er 80) a 16	5h14m.1,	$\delta - 22^{\circ}52$	2'			
1 2 3	-137 + 22 +104	+ 49 - 19 + 56	13.1 13.7 15.5	14.6 14.8 16.15	32356.718 34889.704	16.304 24.9?	Sp F-G Short P	
4 5 6	- 85 + 14 + 520	+ 61 - 67 + 296	15.5 15.4 12.1	16.1 16.3 16.1	32741.67	177.90	Short P Short P S Sco, f	

No.	x''	у′′	Max.	Min.	Epoch	Period	Remarks
NGC	6093 (conti	nued)					
7 Nova	+502 + 4.0	+112 + 2.7	11.9 6.8	16.3	32770.60 00551	223.50	R Sco, f T Sco
Sawyo (1961 Nov S55	er, Toronto); Kukarkin a bibliograp 5a, S57, R57	Publ 1, 12 (1 , Letter (19) hy: Sawyer , S59, S62, 1	1942); Jo 72); Sawy , Toronto R65, St66	y, ApJ 11 ver Hogg a Comm 1 5, S67, S6	.0.105 (1949); and Wehlau, ur (1938) 9, S70	Eggen, Royal C npub (1972))bs Bull 29.E73

NGC 6101 a $16^{h}20^{m}.0$, $\delta -72^{\circ}06'$

Searched by Fourcade and Laborde, but no variables found. Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966) S55b, R62b

NGC 6121 (Messier 4) $a 16^{h} 20^{m} .6, \delta - 26^{\circ} 24'$

1	_	281	+ 42	13.46	13.97	30000.08	0.2888545	0
2	_	248	-195	13.05	14.10	30000.03	0.5356832	0
3	_	208	-507	12.92	14.08	38500.16	0.506651	+
4	-	185	= 340	11.0	12.5		50-70	Sp G, V
5	-	185	- 93	13.57	13.99	30000.05	0.622398	0
6		115	+318	13.54	14.09	30000.27	0.320516	0
7	_	113	+231	12.99	14.28	30000.13	0.4987743	0
8	_	110	+111	12.88	14.22	30000.18	0.508187	+
9	_	104	+105	12.75	14.16	30000.04	0.5718975	0
10	_	68	+159	12.68	14.18	30000.07	0.4907173	0
11	_	64	-297	13.32	14.14	33500.25	0.4930721	_
12	_	53	-207	13.04	14.38	33000.40	0.4461239	-
13	_	47	+270	12.37	13.08		40:	SpG-K, V
14	_	47	-244	12.96	14.40	32500.35	0.4635338	+
15	_	32	+436	12.98	14.25	27500.35	0.4437857	_
16	_	29	+ 69	13.05	14.18	30000.02	0.5425421	0
17	_	8	+ 20	13.40	13.74			
18	$^+$	4	+ 27	12.84	14.20	30000.14	0.4787924	0
19	+	11	+358	12.76	14.18	30000.41	0.4678111	0
20	$^+$	13	- 63	13.24	13.60	30000.27	0.309383	0
21	$^+$	19	- 4	12.73	14.10	29500.11	0.4719831	+
22	+	34	+ 80	13.40	13.98	31000.43	0.6029436	+
23	$^+$	38	- 26	13.26	13.77	30000.02	0.2985502	+
24	$^+$	49	+ 48	13.12	14.06	31500.53	0.5467797	+
25	$^+$	70	+ 70	13.08	14.08	30000.25	0.6127346	
26	+	94	- 72	12.80	14.14	35000.45	0.5412163	-
27	+	118	+255	12.90	14.09	30000.52	0.6120191	0
28	+	259	+ 84	12.60	14.02	31000.05	0.5223405	-
29	+	326	+598	12.88	14.02	34000.19	0.5224824	-
30	+	340	- 69	13.29	13.87	31000.12	0.2697490	_
31	+	353	+ 45	12.72	14.03	31000.18	0.5053039	_

Catalogue

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks	
NGC	6121 (conti	inued)						
32	+ 746	- 40	12.98	13.96	30000.21	0.5791092	0	
33	+ 805	+630	12.70	13.96	30000.39	0.6148303	0	
34	- 820	+416	13.16	14.36	29723.338	0.554843		
35	- 377	+ 62	13.44	14.15	29705.441	0.627042		
36	- 208	-259	13.26	14.18	29676.370	0.541310		
37	- 39	+ 2	13.46	13.76	29522.064	0.247352		
38	- 23	+ 49	13.38	14.09	29496.053	0.577848		
39	+ 1	- 80	13.62	14.06	29676.463	0.623980		
40	+ 25	+ 49				0.40151		
41	+ 65	-150	13.53	13.97	29676.402	0.2517311		
42	+ 377	+558	13.33	13.78	29526.164	0.303708		
43	+1263	+332	12.92	13.48	29748.245	0.320637		

Joy, ApJ 110.105 (1949); Hoffmeister, Sonn Veröff 6, 1 (1963); Wilkens, La Plata Bol 7.14 (1964), MVS 2.101 (1964); Oosterhoff and Walraven, BAN 18.387 (1966); Ponsen and Oosterhoff, BAN Suppl 1.3 (1966); Eggen, ApJ 172.639 (1972)

S55a, S57, S59, S61, R62a, S62, S64, L65, R65, S67, C&S69, S69, S70

NGC 6139 a 16^h24^m.3, δ -38°44'

Observed by Fourcade and Laborde. No variables found. Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966) S55b, R62b

NGC 6144 a 16h24m.2, 8 -25°56'

1 +481 -117 15.3 16.3

Sawyer, JRASC **47.229** (1953) S55a, S57, S59, S62, S69

NGC 6171 (Messier 107) $a 16^{h}29^{m}.7, \delta - 12^{\circ}57'$

1	- 112.8	-522.0	14.0	17.0	40504.	332	V720 Oph, V, f
2	+ 148.8	-388.8	15.6	16.4	40389.502	0.5710205	
3	- 224.4	-183.6	15.55	16.25	40389.595	0.566343	
4	- 99.6	-156.6	15.5	16.15	40389.628	0.2821317	
5	+ 231.0	-161.4	15.7	16.25	40389.709	0.70238	+
6	- 10.8	- 67.2	15.7	16.25	40389.740	0.2602558	
7	+ 42.0	- 61.2	15.6	16.55	40389.696	0.499728	+
8	+ 12.0	- 42.0	15.4	16.45	40389.957	0.559921	_
9	- 26.4	- 19.8	15.95	16.35	40389.583	0.3206025	+ ?
10	- 57.0	+ 8.4	15.4	16.6	40389.532	0.4155329	+
11	+ 9.6	+ 33.0	15.8	16.45	40389.611	0.592835	- ?
12	+ 58.8	+ 61.2	15.25	16.5	40389.593	0.4729722	Aug 70
13	- 27.0	+ 72.0	15.35	16.6	40389.596	0.466797	
14	+ 17.4	+ 82.2	15.4	16.5	40389.763	0.4816129	+
15	+ 19.2	+120.0	15.6	16.25	40389.687	0.2885895	

No.	x''	y''	Max.	Min.	Epoch	Period	Remarks
NGC	6171 (conti	inued)					
16	- 67.2	+113.4	15.65	16.5	40389.853	0.5228709	_
17	- 99.0	+ 71.4	15.4	16.45	40389.761	0.561154	
18	+ 77.4	+215.4	15.75	16.5	40389.898	0.564378	
19	+ 232.8	+162.6	15.75	16.3	40389.822?	0.2787622	
20	+ 31.2	+ 51.0	15.65	16.4	40389.653	0.578113	
21	+ 81.0	-144.6	16.3	16.6	40389.704	0.258125	
22	-1354.2	-183.0					prob f
23	- 263.4	+ 19.2	15.5	16.2	40389.725	0.3233436	
24	0.0	+ 8.4	15.65	16.45	40389.615	0.3462153	
25			14.8			red	SK217, L&M

Kukarkin, AC 216.17 (1960); van Agt, BAN 508.327 (1961); Kukarkin, VS 13.384 (1961); Mannino, Bologna Pubbl 7, 18 (1961); Kurochkin, VS 14.15 (1962); Kukarkin, VS 14.21 (1962); Coutts, Master's Thesis, Toronto (1964); Kurochkin, VS 15.164 (1964); Sandage and Katem, ApJ 139.1088 (1964); Sturch, ApJ 148.477, Abs. AJ 72.321 (1967); Dickens, ApJ Suppl 22.249 (1970); Coutts and Sawyer Hogg, Toronto Publ 3.61, Abs. AAS Bull 3.242 (1971); Dickens, Letter, VI (1972); Lloyd Evans, Letter, V25 (1972); Lloyd Evans and Menzies. IAU Coll 21 (1973) S55a, S57, S59, S61, R62a, S62, S64, L65, R65, S67, S69, S70, F72

NGC 6205 (Messier 13) $a 16^{h}39^{m}.9, \delta + 36^{\circ}33'$

1	+ 73.06	= 24.86	13.6	15.1	39691.720	1.458997	Sp A-F, V, mem
2	- 54.10	- 3.04	12.8	14.3	39672.177	5.110939	+, Sp, V, mem
3	-127.70	+ 16.52	15.58	15.79	prob not var		
4	- 47.34	+ 58.18	15.04	15.23	prob not var		
5	+ 71.62	- 14.06	14.33	14.94	40046.7820	0.38177	
6	+ 92.68	+ 76.60	14.0	15.1	39664.923	2.112867	Sp F, V, mem
7	- 39.78	- 82.72	14.72	15.17			f
8	- 93.02	+ 11.29	14.2	15.6	39679.821	0.7503158	mem
9	+ 71.62	- 14.06	14.0	15.1	40038.8121	0.39265	
10	- 5.40	- 70.73	13.1	14.0		SR	Sp, V, mem
11	- 45.78	- 75.88	12.9	13.8		92.5	Sp, V, mem
12	-105.88	+ 53.46	15.0	15.35	prob not var		
13	- 45.37	- 31.30	14.26	14.50	prob not var		
14	+ 3.18	+207.64	16.16	16.45	prob not var		
15	+ 79.03	-115.34	13.32	13.67		irr	mem
16	+349.40	+207.90					Tsoo Yu-hua

Variable 16 = Savedoff A 18, probably Ludendorff 1113. One field variable, Tsoo Yu-hua.

Joy, ApJ 110.105 (1949); Arp, AJ 60.1 (1955); Brown, ApJ 122.146 (1955); Savedoff, AJ 61. 254 (1956); Wallerstein, ApJ 127.583 (1958); Kraft, Camp and Hughes, ApJ 130.90 (1959); Kurochkin, VS 13.248 (1961); Arp, La Plata Symp p. 87 (1962); Tsoo Yu-hua, Letter (p) (1964); Kadla, Pulk Mitt (1sw) 24.93 (1966); Osborn, Letter (1968), AJ 74.108 (1969), 1BVS 350 (1969); Demers, AJ 76.445 (1971); Osborn, Letter (1972)

S55a, S57, S59, S61, R62a, S62, P64, S64, L65, R65, S67, S69, S70

Catalogue

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	5 218 (Messi	ier 12) a 10	5h44m.6,	δ 01°52	,		
1	+34	-62	11.9	13.2	27306.708	15.508	Sp F-G, V
Sawye S55a,	er, Toronto S57, S59, R	Publ 1, 2 (1 62a, S62, R	938); Joy 65, S69	ApJ 110	.105 (1949)		
NGC	5229 a 16 ¹	h45m.6,δ+	47° 37′				
1	- 24.6	-105.5	16.78	17.94	35630.542	0.5856908	
2	- 71.9	. + 4.9	16.95	17.93	35631.521	0.5552380	
3	-195.7	+ 41.3	17.21	17.82			
4	- 56.8	- 14.3	17.36:	17.89			
5	+ 14.5	+ 44.1	17.25	17.95	35633.555	0.5336051	
6	+ 44.1	+ 41.5	17.28:	17.96	27953.930	0.559385	
7	- 41.7	- 49.9	16.84	18.01	27978.840	0.506980	
8	- 4.1	- 42.1	15.47	16.51	35573.461	14.845093	Сер
9	- 38.9	+ 38.3	17.08	17.88	35629.516	0.5428497	*
10	- 29.5	+ 72.7	17.20	18.00	35629.535	0.5547785	
11	+ 23.9	- 25.0]17.44	18.01			
12	+ 34.2	- 23.6	17.12	18.02			
13	+140.2	+ 61.3	17.20	17.96	35630.552	0.5473432	
14	- 15.5	- 50.7	16.76	17.86	35631.565	0.4659161	
15	+ 34.2	+ 27.5	17.39	17.92	35611.460	0.2713783	
16	+ 47.0	- 24.2	17.31	17.94	35637.500	0.322784	
17	- 96.3	- 75.0	17.08	17.72	27979.830	0.324880	
18	- 36.1	+ 32.2	17.34	18.00			
19	+ 53.4	- 44.4	16.96	18.00	35629.546	0.4759609	
20	- 27.5	- 36.1	16.91	18.05	35631.524	0.4659728	
21	+117.3	- 61.6	17.12	17.94			
	+ 4	- 7	15.2	16.3			prob slow

S55a, S57, S59, R62a, S62, S64, L65, R65, S69

NGC 6235 α 16^h50^m.4, δ – 22°06′

1	-16	+ 39	16.5	17.2
2	+58	-211	16.5	17.3

Sawyer, JRASC 47.229 (p) (1953) S55a, S57, S59, S62, S69

NGC 6254	(Messier	10)	a 16 ⁿ	54m.5,	δ –	04°02
----------	----------	-----	-------------------	--------	-----	-------

1	+ 5	+ 22	13.2	13.8			Sp G, V
2	+ 30	+120	11.91	13.34	34907.0	18.728	Sp F-G, V

No.	х"	у''	Max.	Min.	Epoch	Period	Remarks
NGC	6254 (conti	nued)					
3 4	-209	+106	13.10	13.82	34905.64	7.908	Min Voroshilov Arp 1V–37
Joy, A (1958 S55	pJ 110.105); Voroshilo a, S57, S59,	(1948); Ar ov, AC 623.7 R62a, S62,	p, AJ 60.1 7 (1971) R65, S69	1,320 (19	55), AJ 62.129	(1957); Waller	stein, ApJ 127.583
Palom	ar 15 a 16	h57m.6,δ-	-00°28′				
No va Kinma R61	riables found an and Rosin	d. no, ASP 74.4	499 (1962	2)			
NGC	6266 (Messi	er 62) a 16	h58m.1.	δ -30°03	1		
1	+ 41.0	+ 6.1					S. F. C
2	- 26.6	- 68.9			22421 41	0 40 15 9	Spr-G
3	- 00.9	- 0.0	15 68	16.85	23/10/0	0.49138	
4	162.2	- 39.3	15.00	16.05	22/17 51	0.34113	
5	-103.2	+123.3	15.50	10.55	22/10/20	0.40049	
0	- 01.7	+ 34.0	15.96	17.06	22410.20	0.49191	
0	+ 22.1	± 162.4	13.00	17.00	33419.30	0.50309	
0	- 93.2	± 212.4	15.40	16.68	22/22.44	0.55662	
10	- 92.0	± 157.7	15.40	16.03	33423.40	0.53259	
11	457.1	± 126.7	16.06	16.95	22421 56	0.59823	
12	-437.1	± 268.0	10.00	10.05	33421.30	0.48799	
12	-204.4	± 200.7			55721.57	0.40777	
13	- 1.0	± 265.8	15 27	16.83	33421 41	0.44216	
15	+123.0	+203.0 +303.4	16.01	16.05	33423.60	0.63024	
16	- 74.5	+ 939	15 35	16.51	33421.55	0.59591	
17	- 22.1	+102.4	10.00	10.01	33423.51	0.5251	
18	- 33.3	+ 92.3	15.90	16.80	33423.58	0.52616	
19	- 14.5	+ 65.5	10170		33421.53	0.52271	
20	+131.6	+159.4	15.68	17.00	33423.52	0.47201	
21	+105.9	+ 79.7	15.75	17.14	33421.42	0.45045	
22	+ 61.9	+ 11.9			33421.48	0.49925	
23	- 73.2	- 37.4			33417.56	0.44821	
24	+ 58.1	- 38.6			33417.59	0.52267	
2.5	+152.5	- 72.8	16.35	17.71	33421.45	0.44584	
26	-182.9	-303.1					
27	- 6.8	- 59.8			33423.40	0.44916	Vars. 27-42
28	+154.0	+ 19.3	16.81	17.45	33423.52	0.49749	discovered by
29	+153.4	+ 14.5	15.96	17.35	33423.44	0.56	van Agt
30	- 61.7	-181.9	16.69	17.36	33418.54	0.30440	-
31	- 46.4	-143.0			33419.37	0.48500	
32	- 1.0	-136.4			33423.51	0.5468	

Catalogue

No.	x''	y''	Max.	Min.	Epoch	Period	Remarks
NGC	6266 (cont	inued)					
33	- 13.7	-117.9	16.79	17.71	33422.51	0.57438	
34	- 61.0	- 4.9			33422.54	0.58372	
35	-113.2	+ 14.1	15.56	16.82	33418.48	0.5288	
36	- 41.2	+125.6	15.84	16.66	33423.49	0.6530	
37	- 53.2	+ 6.5			33423.38	0.5852	
38	- 22.1	- 44.8			33421.56	0.77083	
39	-121.4	+ 59.0	16.02	16.89	33421.51	0,64020	
40	-122.0	+ 45.6			33423.52	0.30131	
41	-118.4	+ 40.7			33423.46	0.55848	
42	-130.0	+ 50.0	16.00	16.35	33421.56	0.24765	
43	- 62.8	-223.1	16.36	17.40	33423.37	0.56356	Vars. 43-82
44	- 47.6	-122.7	16.48	17.99	33423.54	0.44575	discovered by
45	+ 59.0	-187.7	16.72	17.95	33417.60	0.51688	Oosterhoff
46	+130.9	+477.9	16.65	17.63	33418.45	0.53874	
47	- 22.0	+241.6	16.34	16.93	33422.39	0.61211	
48	- 86.1	-130.8	16.35	17.29	33421.49	0.74360	
49	+139.0	-104.7			33423.35	0.54360	
50	+281.7	- 34.4	16.38	17.65	33421.56	0.50264	
51	+294.3	+193.7	16.40	17.01	33421.50	0.26181	
52	+ 75.9	-181.5	16.58	17.87	33423.59	0.50538	
53	-111.8	-101.0					
54	-150.5	-671.7			33423.51	0.38591	
55	+422.7	+278.4	16.07	17.11	33417.50	0.47872	
56	+ 37.1	+118.9	16.22	17.00	33423.47	0.5654	
57	+ 51.1	+121.1	16.00	17.03	33423.61	0.55636	
58	- 98.6	+ 32.2			33423.40	0.48100	
59	+122.1	+ 94.1	16.15	17.23	33421.46	0.57931	
60	+308.8	+395.5	15.99	16.53	33423.63	0.28662	
61	+215.9	+190.7	16.57	17.25	33421.48	0.26602	
62	+238.5	+104.9	15.99	17.26	33419.45	0.54807	
63	+105.4	-102.4	16.75	17.55	33418.59	0.64313	
64	-124.6	-266.4	16.10	17.08	33422.37	0.47299	
65	- 86.6	+137.5					
66	-316.8	+ 17.5	16.19	16.74	33423.60	0.33383	
67	+399.1	+621.4	16.12	17.14	33421.44	0.56488	
68	+146.5	+417.6	16.05	16.57	33419.50	0.23529	
69	+122.3	+109.9	16.39	16.94	33423.55	0.31369	
70	-725.2	- 86.9			33423.55	0.54546	
/1	- 87.6	-482.4	16.00	1.7.00	33422.34	0.70452	
12	-182.7	-104.5	16.09	17.29	33421.43	0.46751	
13	-203.5	-105.5					
74	- 21.4	- 53.6			33423.60	0.46646	
15	+ 396.5	+237.5	16.57	17.10	33423.43	0.33429	
70	+178.1	+629.6	15.81	16.55	33421.50	0.61523	
79	+213.3	+ 33.1	16.82	17.30	22421 40	0 (0170	
70	+ 3 38.4	+1/4.1	16.78	17.45	33421.49	0.62170	
19	+094.3	- 81.0			33423.40	0.31896	

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	6266 (conti	nued)					
80	= 85.3	+ 90.4	15.90	16.74	33422.54	0.58858	
81	-110.5	+ 97.3	15.65	16.95	33419.39	0.53093	
82	- 39.4	- 68.0			33421.58	0.56481	
83	- 38.3	- 9.9					van Agt
84			16.55	17.53			G&F
85			16.68	17.55			G&F
86			16.38	17.69			G&F
87			15.80	16.70			G&F
88			16.04	16.75			G&F
89			16.45	17.66			G&F

Wallerstein, ApJ 127.583 (1958); van Agt and Oosterhoff, Leiden Ann 21.253 (p) (1959); Gascoigne and Ford, Proc Astr Soc Aust 1.16 (1967); van Agt, Priv comm (1971); Gascoigne, Letter (1971)

S55a, S57, S59, S61, R62a, S62, R65, FLA66, S69, S70

NGC 6273 (Messier 19) $a 16^{h}59^{m}.5, \delta = 26^{\circ}11'$ + 4 + 48 1 14.1 15.1 +12313.4 Cep? 2 +1414.7 3 -2814.2 15.2 - 6 - 2 24 15.1 15.7 4 Two field variables, Sawyer. Sawyer, Toronto Publ 1, 14 (p) (1943) S55a, S57, S59, S61, R62a, S62, S69 NGC 6284 α 17h01m.5, δ - 24°41 ' - 24 + 3615.6 16.1 1 - 17 16.1 17.0 2 - 47 15.7 3 - 28 - 13 15.3 4 + 22 - 18 15.4 16.3 17.0 5 -20516.4 +109+139+22115.9 16.4 6 Four field variables, Sawyer. Sawyer, Toronto Publ 1, 14 (p) (1943) \$55a, \$59, \$62, \$69 NGC 6287 a 17^h02^m.1, δ –22° 38' 1 -152-40 16.2 171 2 + 46 -2615.7 15.9 + 26+443 16.1 16.8 Three field variables, Sawyer. Sawyer, Toronto Publ 1, 14 (p) (1943) \$55a, \$59, \$62, \$69

Catalogue

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks
NGC	6293 a 17 ¹	n07m.1,δ-	26° 30'				
1	+ 81.0	+49.5	15.9	16.6			
2	-135.6	+64.5	15.8	16.7			
3	+ 48.6	+18.6	15.5	15.8			
4	+ 92	-81	16.1	17.1			
5	+ 78	-83	15.7	16.5			
Three Shaple S55a,	field variab ey, Mt Wils (S59, S62, S	les, Sawyer. Contr 190 (1 69	920); Sa	wyer, Toro	onto Publ 1, 14	(p) (1943)	
NGC	6304 a17 ¹	111m.4,δ-	29°24'				····
1	+102.0	-114.4	16.5	18.0			
2	-168.9	+169.6	15.7	17.5			RR?
3	+200.5	+ 60.2	16.5	17.5			RR
4	-272.4	-154.9	16.0	16.9			
5	+235.5	- 7.8	16.7	17.6			RR
6	+304.7	-191.7	16.6	17.8			RR
7	+ 0.8	-293.5	17.5	18.3			
8	+486.7	+ 49.9	16.7	17.7			RR
9	+587.1	+230.2	16.8	17.8			RR
10	-591.2	-247.6	16.2	17.9			RR
11	-244.8	-534.6	16.4	17.2			
12			13.95	14.30			Terzan 28
13			11.00	12.52			Terzan 29
14			10.75	13.25			Terzan 30
15			12.90	13.88			Terzan 32
16			13.70	13.80			Terzan 33
17			15.25	15.40			Terzan 40
1.8			13.60	[14.60			Torgan 42

 20
 13.91
 14.15
 Terzan 69

 21
 13.87
 14.40
 Terzan 72

 Vars. 1-11 found by Rosino, 12-21 by Terzan on red plates. Many field variables by Terzan.

13.78

Rosino, Asiago Contr 132 (p) (1962); Terzan, Haute Prov Publ 9, 1 (1966), Haute Prov Publ 9, 24 (1968)

S55b, R57, S61, R62c, S62, F&L63, S64, FLA66, S69, S70

13.38

NGC 6316 a $17^{h}13^{m}.4$, $\delta - 28^{\circ}05'$

S55b, R62b

19

NGC 6325 a $17^{h}15^{m}.0, \delta - 23^{\circ}42'$

S55b, R62b

Terzan 68

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NCCA	222 Mossi		nem 2 S	100 201			
NGU	5555 (MESSIG	ci) u i /-	10	-10 20			
1	+ 91	- 76	15.6	16.9	29427.886	0.585727	
2	+ 40	- 31	15.6	16.4	29436.854	0.628191	
3	+207	-210	15.7	16.85	32000.735	0.605397	
4	+ 23	- 35	15.8	16.95	30520.749	0.670076	
5	+ 34	- 7	16.0	16.8	29435.870	0.274708	
6	- 70	- 14	15.7	16.95	29435.870	0.607795	
7	-111	- 80	15.95	17.2	29434.860	0.628456	
8	- 73	- 99	16.05	16.9			
9	+334	-191	16.0	16.75	30933.704	0.322990	
10	+ 37	+ 26	16.2	16.9	30553.653	0.242322	
11	- 4	- 7	15.7	16.8			
12	-275	-136	15.85	16.95	29408.951	0.571784	
13	+259	+ 11	16.7	17.8	30554.694	0.47985	f
NGC	6341 (Messi	er 92) a 1'	7h15m.6.	δ +43°12'			
1	+127.5	+ 413	14 35	15 30	24410-198	0.7028015	
2	+ 127.3	+ 69.2	14.55	15.30	24409 347	0.6438829	R¢
3	+ 53.7	+252.7	14.35	15.35	24410 377	0.6375010	Sn
4	- 76.0	+ 58.0	14.20	15.20	24433 262	0.6289128	, op
5	+ 81.6	= 53.7	14.50	15.25	24428 315	0.6196963	BØ
6	+ 38.7	+ 433	14.53	15.40	27340 360	0.600001	<i>D</i> *
7	+ 1.6	- 50.5	14.45	15.70	37871 517	0.5149114	
8	+208.9	+208.0	14.50	15.70	24410 289	0.6732769	Sp B0
9	+ 18.0	- 48 1	14.80	15.60	21110.200	0.61 var	op, D.
10	+ 83.0	+ 36.3	14.75	15.00	24410 454	0 3773182	
11	+ 71.2	- 67.1	14.75	15.20	24466 213	0.3084409	RØ
12	_ 29.9	97.8	14.00	15.10	38905 364	0 4099 39	
13	+153.4	- 60.1	17.70	10.10	50705.504	0.1077.07	
14	-316.0	± 245.7	14 45	14.85	39026 410	0.346178	FW f
15	- 2	+ 77	14.05	14.55	00020.110	5.510170	RR
				A		N. MILC	1 110 11

V15 in Second Catalogue is same as V12 (Kukarkin, Letter, 1972) so V16 renumbered 15. Nine field variables, Mnatsakanian and Sahakian.

Walker, AJ 60.197 (1955); Preston, ApJ 134.651 (1961); Kheylo, IBVS 43 (1964), IBVS 104 (1965), Voprosy Astrofiziki, Kiev, p.124 (1966), VS 16.213 (1967): Sturch, AJ 72.321, ApJ 148.477 (1967); Bartolini, Battistini and Nasi, Bologna Pubbl 9, 15 (1968); Mnatsakanian and Sahakian, AC 528.5 (1969): Eggen, ApJ 172.639 (1972); Kukarkin, AC 707.7 (c) (1972) S55a, S57, S59, S61, R62a, S62, P64, S64, L65, R65, St66, S67, C&S69, S69, S70

NGC 6342 α 17^h18^m.2, δ –19°32′

S55b, R62b

No.	x"	у"	Max.	Min.	Epoch	Period	Remarks
NGC	6352 a17h	21 ^m .6, δ = 4	48°26′				
1 2 3	+226.33 +130.63 -286.00	-158.13 + 58.30 + 139.91					F&L 1 F&L 4, f? F&L 8
4	200.00	1 2 9 . 9 1	12.7	13.4			HH 113

Fourcade and Laborde nos. 2, 3, 5, 6, 7, 9-12 considered field. V4 found by Lloyd Evans and Menzies (1973), who also have one field variable.

Fourcade and Eaborde, Cordoba Repr 117 (1964), Cordoba Repr 126 (1965); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Hartwick and Hesser, ApJ 175.77 (1972); Lloyd Evans, Letter (1972); Lloyd Evans and Menzies, IAU Coll 21 (1973)

S55b, R62b, F&L63, S67, S69

NGC 6355 $a 17^{h}20^{m}.9, \delta - 26^{\circ}19'$

S55b, R62b

NGC 6356	a 17	h20m.7.	δ -	$17^{\circ}46$
----------	------	---------	-----	----------------

1	- 15	= 24	16.3	17.2			
2	+101	- 110	16.8	17.1			
3	- 24	+ 45	16.0	17.5			
4	+187	+ 47	15.9	[17.5	32328.	208:	
5	255	+152	15.7	[17.5			
6*	575	+114	15.6	[17.3			
7			15.4V	15.6V			SW 34
8			15.6V	16.0V			SW 72
9			15.3V	15.7V			SW 30
10			15.4V	15.7V			SW 46

* Formerly Sawyer 11, which Wilkens says should be included in the cluster. Vars. 7-10 discovered by Lloyd Evans and Menzies (unpub).

Sawyer, JRASC 47.229 (p) (1953); Sandage and Wallerstein, ApJ 131.598 (p) (1960); Lloyd Evans, Letter (1972); Sawyer Hogg, unpub (1972); Wilkens, Letter (1972); Lloyd Evans and Menzies, IAU Coll 21 (1973)

S55a, S57, S59, R62c, S62, P64, R65, S69, F72

NGC 6362 α17^h26^m.6, δ 67°01'

1	00	00					
2	26	100					
3	83	90					
4	- 79	88					
5	+ 81	= 15					
6	- 54	+174	14.9	15.3	36565.999	0.2628878	VII 15
7	+ 22	+104	13.7	14.5	36565.724	0.5215674	VH 6
8	263	+108	14.8	15.3	36566.080	0.3810811	VH 17
9	207	+138					

No.	x"	У''	Max.	Min.	Epoch	Period	Remarks
NGC	6362 (conti	nued)					
10	+186	+353	14.5	14.9	36566.024	0.3617240	VH 10
11	- 29	+ 48					
12	-246	-103	14.5	15.5	36565.817	0.5328711	VH 3
13	-234	-120	14.4	15.4	36565.811	0.5800254	VH 1
14	+ 369	+ 28	15.0	15.3	36565.865	0.2463744	VH 16
15	+ 49	00					
16	+ 16	-270	14.2	15.5	36565.939	0.5256730	VH 4
17	+201	- 68	14.9	15.3	36566.026	0.3149808	VH W1
18	+110	+ 72	14.2	15.2	36566.074	0.5128892	VH 13
19	+123	- 25					
20	+ 45	- 15					
21	+160	-108					
22	+182	-313	14.8	15.3	36566.058	0.3639867	VH 14
23	+ 30	- 23					
24	+ 71	- 36					
25	-356	-212	14.0	15.5	36566.150	0.4558950	VH 2
26	+ 22	- 38					
27	-193*	+384	14.7	15.4	36566.061	0.3860821	VH 9
28	+ 24	+ 37					
29	- 15	- 35					
30	- 89	+ 74	14.2	15.4	36566.162	0.6133787	VH 5
31	- 33	+ 80					
32	+ 40	+ 31					L&F
33	+316	+364	14.7	15.3	36566.028	0.4412499	VH 11

* Coordinate corrected.

Vars. 16-31 found by van Agt (1961) seven of them independently by Van Hoof. One field variable, 58' from centre, Shapley.

Shapley, HB 777 (1922); van Agt, BAN 508.329 (1961); Van Hoof, Louv Publ 14, 131 (1961); Rosino and Sawyer Hogg, IAU Trans 11B.301 (1962); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Laborde and Fourcade, Cordoba Repr 138 (1966); van Agt, Priv comm (1971)

S55a, S59, R62c, S62, F&L63, S64, L65, R65, S69

NGC 6366 $a 17^{h}25^{m}.1, \delta - 05^{\circ}02'$ 1 = 26 - 42 - 15.5 - 17.0 2 + 305 - 390 - 15.7 - 16.8Sawyer, Toronto Publ 1, 5 (p) (1940) S55a, S59, S62, S69, S70

Haute Provence 1 a 17h28m.5, $\delta - 29^{\circ}57'$

1	T248, 1964	ł
2	T249, 1964	
3	T361, 1965	
4	T362, 1965	

Catalog

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks
HP1(continued))					
5							T 36 3, 1 96 5
6							T364, 1965
7							T126, 1966
8							T130, 1966
9							T247, 1966
10							T251, 1966
11							T136, 1966
12							T137, 1966
13							T139, 1966
14							T142, 1966
15							T143, 1966
Cailli (p) (19 R62t	64), Haute 64), S67, S69	Prov Publ	8, 11 (p),	12 (1965),	Haute Prov Pu	bl 8, 12 bis (p) (1966)
Cailli (p) (19 R62t NGC 6	64), Haute δ, S67, S69 380 α17 -14.85	h31m.9, δ +131.4	- 39° 02'	12 (1965),	Haute Prov Pu	bl 8, 12 bis (p	F&L
Caill (p) (19 R62t NGC 6 1 Fourca S55b, 1	64), Haute 64), Haute 5, S67, S69 380 α17 -14.85 de, Laboro R62b	h 31m.9, δ + 131.4 de and Alba	- 39°02' 5 arracin, A t	12 (1965),	Haute Prov Pu	bl 8, 12 bis (p	F&L
Caill (p) (19 R62t NGC 6 1 Fourca S55b, 1 NGC 6	64), Haute 64), Haute 5, S67, S69 380 a 17 -14.85 de, Labord R62b 388 a 17	h31m.9, δ + 131.4 de and Alba	- 39°02' 5 arracin, A t	12 (1965), las y Catalo	Haute Prov Pu go, Cordoba (bl 8, 12 bis (p	F&L
Caill (p) (19 R62t NGC 6 1 Fourca S55b, 1 NGC 6 1	64), Haute 64), Haute 5, S67, S69 380 a 17 -14.85 de, Labord R62b 	h31m.9, δ + 131.4 de and Alba h32m.6, δ	- 39°02' 5 arracin, A t	12 (1965), las y Catalo	Haute Prov Pu	bl 8, 12 bis (p	F&L V1, M
Caill: (p) (19 R62t NGC 6 1 Fourca S55b, 1 NGC 6 1 2	64), Haute 64), Haute 5, S67, S69 380 a 17 -14.85 de, Labord R62b 388 a 17	h31m.9, δ + 131.4 de and Alba	- 39°02' 5 arracin, A t	12 (1965), las y Catalo	Haute Prov Pu	bl 8, 12 bis (p	F&L V1, M V2, M
Cailli (p) (19 R62t NGC 6 1 Fourca S55b, 1 NGC 6 1 2 3	64), Haute 64), Haute 5, S67, S69 380 a 17 -14.85 de, Labord R62b 388 a 17	h31m.9, δ + 131.4 de and Alba	- 39°02' 5 arracin, A t	12 (1965), las y Catalo	Haute Prov Pu	bl 8, 12 bis (p	F&L V1, M V2, M V3
Cailli (p) (19 R62t NGC 6 1 Fourca S55b, 1 NGC 6 1 2 3 4	64), Haute 64), Haute 5, S67, S69 380 a 17 -14.85 de, Labord R62b 388 a 17	h31m.9, δ + 131.4 de and Alba	- 39°02' 5 arracin, A t	12 (1965), las y Catalo	Haute Prov Pu	bl 8, 12 bis (p	F&L V1, M V2, M V3 V4, M
Cailli (p) (19 R62t NGC 6 1 Fourca S55b, 1 NGC 6 1 2 3 4 5	64), Haute 64), Haute 5, S67, S69 380 a 17 -14.85 de, Labord R62b 388 a 17	h31m.9, δ + 131.4 de and Alba h32m.6, δ	- 39°02' 5 arracin, A t - 44°43'	12 (1965), las y Catalo	Haute Prov Pu	bl 8, 12 bis (p	F&L V1, M V2, M V3 V4, M V6
Cailli (p) (19 R62t NGC 6 1 Fourca S55b, 1 NGC 6 1 2 3 4 5 6	64), Haute 64), Haute 5, S67, S69 380 a 17 -14.85 de, Labord R62b 388 a 17	h31m.9, δ +131.4 de and Alba	- 39°02' 5 arracin, A t	12 (1965), las y Catalo	Haute Prov Pu	bl 8, 12 bis (p	F&L F&L V1, M V2, M V3 V4, M V6 V7
Cailli (p) (19 R62t NGC 6 1 Fourca S555b, 1 NGC 6 1 2 3 4 5 6 7	64), Haute 64), Haute 0, S67, S69 380 a 17 -14.85 de, Labord R62b 388 a 17	h31m.9, δ +131.4 de and Alba	- 39°02' 5 arracin, A t	12 (1965), las y Catalo	Haute Prov Pu	bl 8, 12 bis (p	F&L F&L V1, M V2, M V3 V4, M V6 V7 V8
Cailli (p) (19 R62t NGC 6 1 Fourca S555b, 1 NGC 6 1 2 3 4 5 6 7 8	64), Haute 64), Haute 5, S67, S69 380 a 17 -14.85 de, Labord R62b 388 a 17	h31m.9, δ +131.4 de and Alba	- 39°02' 5 arracin, A t	12 (1965), las y Catalo	Haute Prov Pu	bl 8, 12 bis (p	F&L F&L V1, M V2, M V3 V4, M V6 V7 V8 V10

(1972); Lloyd Evans and Menzies, IAU Coll 21 (c) (1973)

S55b, R62b, F72

Tonan	tzintla 2 a 1	7 ^h 32 ^m .7, δ –38° 32′	
- 1	+71.78	+63.25	F&L
2	+80.85	+49.50	F&L
Fourc	ade, Laborde	and Albarracin, Atlas y Catalogo, Cordoba (1966)	

No.	x"	у″	Max.	Min.	Epoch	Period	Remarks
NGC	63 97 a 17	h36m.8,δ-	-53°39′				
1	+210.7	+448.4	12.73	17.53	13727.6	314.6	Sp, M, V, f
2	-279.0	-424.6	14.30	15.24		45 or 60?	prob f
3	-220.0	- 33.5	15.51	16.65	33119.320	0.330667	ŕ
Bamb Sw 43 (19 Swop S55	erg var. 866 ope and Gro 961); Feast e, Letter (1 a, S57, S59	5 in environs eenbaum, A2 , Obs 86.120 969) , A62, S62, 2	J 57.83 (1) (1966); : P64, S64,	952); Woo Strohmeie R65, FLA	olley, Alexando r. Bauernfeind 166, S67, S69	er, Mather and E and Ott, Bamb	pps, Royal Obs Bu Veröff 6.9 (1966);
NGC	6401 a 17	h35m.6,δ-	-23°53′				
1			14.8r	15.2r			T&R 41
2			15.9r	16.5r			T&R 157
3			15.2r	15.9r			T&R 164
Terza S55b,	n and Rutil , R62b	y, Astr and A	Ap 16.408	(p) (197	2), 1AU Coll 21	. (1973)	
NGC	6402 (Mess	sier 14) a 1	7h35m.0,	δ -03°13	1		
1	+ 17	+ 47	14.65	16.1	38191.8	18.734	=, Sp G, V
2	116	-119	15.8	17.0	38198.58	2.794708	Sp F, V
3	- 3	- 90	16.65	17.55	38199.823	0.522455	
4	+169	+ 73	17.2	18.6	38199.23	0.651313	
5	-136	+ 90	17.1	18.7	38199.61	0.548796	
6	+ 34	= 77	15.8	16.4			
7	+ 62	- 97	15.4	16.5	38189.56	13.603	+, Sp F-G, V
8	+ 96	+ 35	17.8	18.6	38199.496	0.686071	
9	+151	- 39	17.0	18.4	38199.47	0.538831	
10	- 51	-205	17.1	18.5	38199.34	0.585914	
11	+196	-223	16.4	18.0	38199.59	0.604417	
12	+224	-177	17.1	18.6	38199.918	0.503952	
13	- 29	-118	17.0	18.6	38199.690	0.535215	+
14	+ 54	+ 1	17.2	18.1	38199.931	0.4/185/	
15	-135	+147	16.9	18.6	38199.51	0.557727	
16	19	- 36	16.8	18.2	38199.40	0.600617	0. X 69
17	-228	+122	15.5	16.15	38204.72	12.085	+, Sp, V, I?
18	+ 61	- 22	16.9	18.15	38199.885	0.479065	-
19	-128	+ 2	17.0	18.6	38199.34	0.545671	
20	-145	+ 98	17.9	18.55	38198./34	0.263/21	
21	+ 12	+125	16.3	17.4	20100 22	0 (5501(
22	+ /0	+ 95	17.3	18.5	38199.23	0.033910	
23	+ /4	+281	17.1	10.3	30199.72	0.552342	
24	- 2	+ /3	17.0	10./	20199.04	0.319901	
25	- 28	- 312	17.00	18.4	38177.48	0.300707	
20	- 85	+ 27	10.3	17.5	240.26	20.9 0	£ 2
21	-421	+121	10.45	1/.0	347 30	0.600	U.

Catalogue

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks
NGC	6402 (con	tinued)					
28	-465	+372	15.0	16.0			E. f?
29	- 68	-1.5.2	15.7	16.2			
30	+ 76	- 12	16.9	18.3	38199.72	0.534226	
31	- 41	+ 32	16.8	17.7	38199.383	0.619636	
32	+ 36	+147	17.0	18.1	38199.55	0.655975	
33	-1.38	+ 12	17.3	18.3	38199.59	0.479946	
34	- 70	+ 26	17.8	18.8	38199.854	0.606627	+
35	-112	- 49	16.2	17.4			
36	+204	- 346	17.2	18.3	38199.33	0.677990	
37	+ 5	+ 18	17.65	18.9	38199.654	0.489060	
38	+ 11	- 17	16.0	17.0			
39	+ 46	- 2	16.1	17.6			
40	+253	$+310^{-1}$	16.4	17.1			
41	- 13	- 3	16.0	17.1			
42	+ 36	+ 12	15.9	17.1			
43	+ 68	+ 23	17.0	18.2	38199 46	0 521747	
44	+ 20	+116	16.3	17.5	50177.10	0.0217.17	
45	- 90	+ 94	15.7	16.4			
46	+ 91	- 66	16.4	17.4			
47	- 89	+ 26	16.5	17.4			
48	_ 4	+ 40	16.3	17.0			
49	- 98	- 19	16.0	16.9			
50	- 15	- 38	16.1	17.0			
51	-104	- 50	17.6	18.15	38198 709	0.367606	
52	1 87	- 303	16.5	17.0	50170.707	0.507000	
53	± 134	+ 129	16.4	17.0			
54	+10+	+112	16.6	17.5			
55	± 121	+115	16.0	17.0			
55	+ 55	184	16.3	17.5			
57	-134	-104	16.2	17.4			
59	122	-110	16.5	17.0			
50	-123	- 34	10.4	10.75	20100 501	0 555624	
59	- 32	+ 50	16.7	10.75	30133.301	0.333034	
61	+ 41	+ 34	16.4	17.7	20100 610	0 560924	
62	+ 12	- 43	10.0	1/./	20122.010	0.309624	
62	-232	-134	10.0	10.5	38233.444	0.038460	
64	+122	= 03	10.5	17.4			
64	- 51	-109	10.5	17.5			
03	-123	+ 13	16.4	17.2			
00 67	-133	+ 3/	16.0	17.4			
67	+ 34	+ 14	10.1	1/.5	20100.000	0.000010	
68	+ 10	- 19	1/.1	18.7	38199.958	0.507217	
09	+140	+ 20	16.0	17.3			
70	+ 43	- 23	17.05	17.2	20100 (02	0.600000	
72	-110	- 50	17.05	18.3	38199.602	0.525925	
72	+122	-119	16.5	17.5		0	
73	+ 05	+ 07	16.5	18.0		ITT?	
74	+ 0/	+ 91	16.5	17.2	20100 202		
15	+ 33	- 12	16.7	18.5	38199.737	0.545281	

No.	х''	у"	Max.	Min.	Epoch	Period	Remarks
NGC	6402 (cont	inued)					
76	105	+ 03	16.1	17.0	38199.466	1.89003	
77	110	+ 55	17.55	18.10			
78	=137	5	17.50	18.50			
79	12	18	17.40	18.50			
80	35	145	17.50	18.45			
81	38	138	17.65	18.10			
82	79	-122	17.65	18.20			
83	- 65	34	17.70	18 50			
84	44	- 38	17.80	18.60			
85	21	+ 48	17.65	18.25			
86	+ 64	+ 22	17.85	18.75			
87	74	+ 11	17.60	18.60			
88	- 78	+ 10	17.55	18.55			
Nova	+ 30	+ 04	16		29071		Only on plates of 1938

Vars. 73-77 and Nova, Sawyer Hogg and Wehlau; 77-88, Wehlau and Potts.

Joy, ApJ 110.105 (1949); Sawyer Hogg and Wehlau, AJ 69.141, Toronto Comm 97 (p) (1964); Rep, Sky Tel 27.147 (p) (1964); Sawyer Hogg and Wehlau, AJ 70.678 (1965), Toronto Publ 2, 17 (1966), Toronto Publ 2, 19 (1968); Demers and Wehlau, AJ 76.916 (1971); Wehlau and Sawyer Hogg, unpub (1972); Wehlau and Potts, unpub (1972) S55a, S57, S59, S61, R62a, S64, R65, S67, C&S69, S69, S70

Palomar 6 $a 17^{h}40^{m}.6, \delta = 26^{\circ}12'$

28 variables found in environs by Terzan, who says none is a probable cluster member. Terzan, Haute Prov Publ 9, 1 (1966), Priv comm (1969)

S70

NGC 6426 a 17^h42^m.4, δ +03[°]12′

ł	170	+ 44	17.30	18.25	35638.528	0.61784	
2	204	53	17.60	18.10	35638.475	0.35545	Alt P 0.262
3	94	33	17.10	17.50	35660.484	0.40385	
4	- 77	- 74	17.70	18.15	35640.468	0.42586	
5	68	22	17.25	18.15	35638.460	0.70906	
6	46	+ 52	17.30	18.25	35638.449	0.68197	
7	+ 10	- 4	17.4	18.1:			RRa?
8	- 15	- 53	17.4:	18.2:			RRa?
9	39	85	17.55	18.05	35638.460	0.29009	
10	+ 46	+ 11	17.55	18.05	35638.430	0.36503	
11	+285	- 7	15.40	16.30	35638.506	0.46164	V979 Oph, f
12	+ 33	2	17.60	18.00	35640.550	0.23679	Alt P 0.191
13	+1.37	215	17.20	18.10	35634.437	0.65190	

Three field variables also. Boyce and Hurahata, IIA 109,19 (1942) (HV 11037); Grubissich, Asiago Contr 94 (p) (1958) \$55a, \$59, \$61, \$62, \$65, \$69

Ca	tai	logue

No.	x"	у"	Max.	Min.	Epoch	Period	Remarks
NGC 6	440 a 17h2	45m.9,δ-	20°21′				
S55b, I	R62b						
NGC 6	441 a 17h2	46 ^m .8, δ =	37°02′				
1 2 3 4 5 6 7 8 9 10 All vari Fourca S55b, 1	+ 46.20 + 36.85 +350.63 + 58.85 +206.25 + 30.53 - 38.50 -243.10 - 27.50 + 74.25 iables found de, Laborde R62b	- 44.83 + 23.93 - 90.75 -176 +225.50 + 48.68 +485.10 -444.68 - 47.30 = 60.50 by Four case and Albarr	le and La acin, Atl	aborde. as y Catalo	ogo, Cordoba (1966)	f? f?
NGC 64	453 a 17h4	l8m.0, δ –	34°37′				
Observe Fourcae S55b, F	ed by Fourc de, Laborde R62b	ade and Lal and Albarr	oorde. N acin, Atl	o variables as y Catale	found. go, Cordoba (1966)	
NGC 64	496 a 17h5	55m.5,δ=4	4° 15′				
Observe Fourcae S55b, F	ed by Fourc de, Laborde R62b	ade and Lal and Albarr	oorde. N acin, Atl	o variables as y Catale	found. go, Cordoba (1966)	
NGC 6:	517 a 17h5	59m.1, δ -)8°57′				

NGC 6522 *a* 18^h00^m.4, δ = 30°02′

1	-67.5	+34.4	17.08	17.74	32416.672	0.270	G222, mem
2	+ 0.5	+39.7	16.79	17.77	32740.861	0.47398	G133
3	+14.7	+37.2	17.24	17.74	32705.874	0.289	G44, mem
4	+25.6	+ 8.3	17.27	18.59	32387.747	0.563826	G170, mem?
5	+66.0	-42.6	17.41	18.19	32349.871	0.28684	G37, mem
6	+96.5	+30.5	17.77	18.23	32416.753	0.192392	G247, mem?
7	-51.5	+62.7	17.02	17.61		irr	G172, f
8	-20.2	+49.6	15.76	17.00	32290.987	1.747	G27, f
9	-19.5	-64.9	16.73	17.23	32740.786	0.299	G232, f?
10			17.70 m	nean		0.564	Clube 7, mem

No.	х′′	У''	Max.	Min.	Epoch	Period	Remarks

NGC 6522 (continued)

54

G numbers those assigned by Baade and Gaposchkin. Clube's var. 7 identified on Plate 2 (1965) where some other numbers do not correspond with text. Membership comments from Clube (1972).

Gaposchkin, VS 10.337 (p) (1955); Nassau, Spec Vat Ric 5.171 (1958); Woolley, Report of the Astronomer Royal (1964); Alexander, Obs 80.110 (1965); Clube, Royal Obs Bull 95.E383 (p) (1965); Terzan, Haute Prov Publ 8, 12 (p) (1965); Clube, Letter (1972); Kukarkin, Letter (1972) S55a, S59, S61, R62a, S62, P64, L65, R65, FLA66, S67, S69, F72

NGC 6528 a 18h01m.6, $\delta = 30^{\circ}04'$

A few variables from rich galactic field projected against this cluster, but Baade considered none of them a cluster member. S55a.

Gaposchkin, VS 10.337 (1955) S59, S61, R62a, S62, FLA 66, S69

NGC 6535 α 18^h01^m.3, δ --00°18′

1 -197 +65 16.3 17.3

Sawyer, JRASC 47.229 (p) (1953) S55a, S57, S59, R62c, S62, S69

NGC 6539 α18h02m.1, δ -07°35'

One unpublished variable, Baade. S55a. S57, S59, R62c, S62, S69

NGC 6541 a 18^h04^m.4, δ -43°44' 1 -18.0 -126.0 12.5 [16

Alcaino 127, prob mem

long

Alcaino, Astr and Ap 13.399 (1971) S55a, S57, S59, R62c, S62, F&L63, FLA66, S69

NGC 6544 α 18^h04^m.3, δ = 25°01′

R62b

NGC 6553 α 18h06m.3, δ – 25°56'

1	+186	+ 20	0.5642
2	+ 75	-152	0.5818 prob f
3	- 23	38	0.4886
4	+ 16	- 2	270: M
5	- 71	- 12]100
6			LE&M A1
7			LE&M A2

Catalogue

No.	x"	У″	Max.	Min.	Epoch	Period	Remarks
NGC	6553 (conti	nued)					
8							LE&M 3
9							LE&M 6
10							LE&M 7
11							LE&M 13
12							LE&M 14
13							LE&M 24
14							LE&M 33
ova	-131:	-281:	8	[12	30955		N Sgr 1943
	1 6 6	The design	. (14	d ama ava	nastad by Llow	d Evons and M	langing (1072)
Lloy S55	/d Evans and a, R57, S59,	1 Menzies, L R62a, S62,	AU Coll 2 R65, St6	66, S69	/3). Nova: May	all, AJ 54.191	. (1949)
1 I	24 Q	- 3.2	16.1	17.5		RR	Rosino
2	- 24.9	- 3.2	15.0	15.8		IXIX	Rosino
2	- 13.0	+ 40.0	16.2	17.5		R B	Rosino
3	+ 32.1	+ 32.2	16.4	17.5		DD	Rosino
4	- 33.3	- 24.2	10.0	17.6		DD?	Rosino
3	- 48.1	+124.7	16.9	17.0		KK:	Rosino
0	- 23.3	- 50.2	10.0	17.5			Rosino
/	+113.5	+132.4	14.4	13.4		DD	Rosino
0	- 2.2	-185.0	16.3	17.4			Rosino
9	-339.2	- 30.0	10.5	17.0			KOSIIIO
Fourt	een variable	s in field, Ro	osino.				
Rosin	o, Asiago Co	ontr 52 (195	4), Asiag	o Contr 1	32 (p) (1962)		
555b,	S57, R57, S	59, S61, R6	2c, S62, S	\$64, FLA	66, S69		
IC 12	76 a 18h08	3m.0, δ -07	′°14′				
1	+ 86.9	+115.0	120.2	22		SR?	SH
2	- 15.2	+ 23.7	18.9	20.0	37468.96	0.548	K&R
3	+ 74.2	- 51.4	17.8	22		SR?	K&R
4	+ 41.7	+136.1	18.8	19.5		SR?	K&R
5	-204.4	+230.3	18.8	19.6		SR?	K&R
Saww	ar Hogg IR	NSC 53 07 (n) (1050)	. Kinman	and Rosino A	SP 74 501 (10	(62) · Posino an
Sawy	er Hogg IAI	I Trane 110	301 (104	52)	and Rosmo, A	51 / 4.501 (15	02), ROSHIO dif
Sawyt S55	h \$57 \$67		.501 (190)2)			
355	0, 357, 302,	504, 509					
NGC	6569 a 18 ¹	h10m.4, δ	31°50′				
NGC	6569 a 18 ¹ - 95 1	$h_{10m.4, \delta} + 28.9$	31°50′ 17-3	18.1			Rosino
NGC	$6569 ext{ a } 18^{1}$ - 95.1 - 91.9	$h_{10}m_{.4}, \delta$ + 28.9 + 0.3	31°50′ 17.3	18.1 18.0		short	Rosino Rosino

 3
 + 43.7
 + 12.4
 16.6
 17.5
 slow
 Rosino

 4
 +116.5
 +202.1
 15.3
 17.3
 Rosino

 5
 - 20.7
 - 2.5
 17.0
 17.8
 Rosino

No.	x''	у′′	Max.	Min.	Epoch	Period	Remarks
NGC	6569 (conti	nued)					
Three	field variabl	es Rosino.					
Rosin	o. A siago Co	ntr 132 (p)	(1962)				
\$55b,	R57, S61, R	62c, F&L63	3, S64, F1	LA66, S 69)		
NGC	6584 a 18h	14 ^m .6, δ	52°14′				
1	-82.5	24.75					F&L
Nine f Bailey S55a,	ield variable , HB 801 (19 S59, R62c,	s, Bailey 924): Fourc 862, F&L63	ade, Labo S69	orde and A	Albarraciu, Atla	s y Catalogo, Co	rdoba (1966)
NGC (6624 a 18 ^h	20m.5,δ-	30°23′				
1	+167.75	± 176.00					F&L1
2	+114.13	+226.88					F&L 2
3	9.63	+ 49.50					F&L 11
4	- 39.88	- 20.63					F&L 14
y Cata S55	6626 (Messie	7, S69		24954			
noc ·	0020 (MC33N	u 207 U 10	11/11/2	0 /4 34	t		
1	+1/40	. 100 5	121 ^m .5,	0 24 54	r		
2	47.2	+188.5	15.1	0 24 54 16.4	r		
2	- 47.3	+188.5 + 63.1	15.1 14.3	0 24 54 16.4 14.8	1		
3	- 47.3 32.9	+188.5 + 63.1 +111.0 + 33.6	15.1 14.3 14.6	0 24 54 16.4 14.8 15.4 14.8	32759 765	12 937	Sp E-G
3 4 5	- 47.3 32.9 34.5 - 44.8	+188.5 + 63.1 +111.0 + 33.6 + 16.4	15.1 14.3 14.6 13.6 14.8	0 24 54 16.4 14.8 15.4 14.8 15.6	, 32759.765 36040.674	12.937	Sp F-G
3 4 5 6	-47.3 32.9 34.5 -44.8 +34.1	+188.5 + 63.1 +111.0 + 33.6 + 16.4 + 50.4	15.1 14.3 14.6 13.6 14.8 14.3	0 24 54 16.4 14.8 15.4 14.8 15.6 15.2	, 32759.765 36040.674	12.937 0.644360	Sp F-G
3 4 5 6 7	$ \begin{array}{r} - 47.3 \\ 32.9 \\ 34.5 \\ - 44.8 \\ + 34.1 \\ + 172.2 \\ \end{array} $	+188.5 + 63.1 +111.0 + 33.6 + 16.4 + 50.4 + 102.7	15.1 14.3 14.6 13.6 14.8 14.3 15.9	0 24 54 16.4 14.8 15.4 14.8 15.6 15.2 17.0	, 32759.765 36040.674	12.937 0.644360	Sp F-G
3 4 5 6 7 8	$ \begin{array}{r} - 47.3 \\ 32.9 \\ 34.5 \\ - 44.8 \\ + 34.1 \\ +172.2 \\ +227.3 \\ \end{array} $	+188.5 + 63.1 +111.0 + 33.6 + 16.4 + 50.4 +102.7 -222.3	15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6	0 24 54 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16 6	, 32759.765 36040.674 25474 346	12.937 0.644360 0.56600	Sp F-G Hoff 63c
3 4 5 6 7 8 9	$ \begin{array}{r} - 47.3 \\ 32.9 \\ 34.5 \\ - 44.8 \\ + 34.1 \\ +172.2 \\ +227.3 \\ -158.6 \end{array} $	+188.5 + 63.1 +111.0 + 33.6 + 16.4 + 50.4 +102.7 -222.3 252.4	15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75	0 24 54 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7	, 32759.765 36040.674 25474.346 35696.652	12.937 0.644360 0.56600 1.965	Sp F-G Hoff 63c Alt 0 6627
3 4 5 6 7 8 9	$\begin{array}{r} - 47.3 \\ 32.9 \\ 34.5 \\ - 44.8 \\ + 34.1 \\ +172.2 \\ +227.3 \\ -158.6 \\ + 96 \end{array}$	$\begin{array}{r} +188.5 \\ + 63.1 \\ +111.0 \\ + 33.6 \\ + 16.4 \\ + 50.4 \\ +102.7 \\ -222.3 \\ 252.4 \\ 79 \end{array}$	15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75 13.5	0 24 34 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7 14.6	, 32759.765 36040.674 25474.346 35696.652	12.937 0.644360 0.56600 1.965	Sp F-G Hoff 63c Alt 0.6627
3 4 5 6 7 8 9 10 11	$\begin{array}{r} - 47.3 \\ 32.9 \\ 34.5 \\ - 44.8 \\ + 34.1 \\ +172.2 \\ +227.3 \\ -158.6 \\ + 96 \\ - 14 \end{array}$	+188.5 + 63.1 +111.0 + 33.6 + 16.4 + 50.4 +102.7 -222.3 252.4 79 + 35	15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75 13.5 15.0	0 24 34 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7 14.6 16.3	, 32759.765 36040.674 25474.346 35696.652	12.937 0.644360 0.56600 1.965	Sp F-G Hoff 63c Alt 0.6627
3 4 5 6 7 8 9 10 11	$\begin{array}{r} - 47.3 \\ 32.9 \\ 34.5 \\ - 44.8 \\ + 34.1 \\ +172.2 \\ +227.3 \\ -158.6 \\ + 96 \\ - 14 \\ +148 \end{array}$	$\begin{array}{r} +188.5 \\ + 63.1 \\ +111.0 \\ + 33.6 \\ + 16.4 \\ + 50.4 \\ +102.7 \\ -222.3 \\ 252.4 \\ 79 \\ + 35 \\ - 49 \end{array}$	15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75 13.5 15.0 15.0	0 24 34 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7 14.6 16.3 16.1	, 32759.765 36040.674 25474.346 35696.652 35373.660	12.937 0.644360 0.56600 1.965 0.578254	Sp F-G Hoff 63c Alt 0.6627
3 4 5 6 7 8 9 10 11 12 13	$\begin{array}{r} - 47.3 \\ 32.9 \\ 34.5 \\ - 44.8 \\ + 34.1 \\ +172.2 \\ +227.3 \\ -158.6 \\ + 96 \\ - 14 \\ +148 \\ 92 \end{array}$	$\begin{array}{r} +188.5 \\ + 63.1 \\ +111.0 \\ + 33.6 \\ + 16.4 \\ + 50.4 \\ +102.7 \\ - 222.3 \\ 252.4 \\ 79 \\ + 35 \\ - 49 \\ - 24 \end{array}$	15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75 13.5 15.0 15.0 15.0	0 24 34 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7 14.6 16.3 16.1 16.7	, 32759.765 36040.674 25474.346 35696.652 35373.660 34893.807	12.937 0.644360 0.56600 1.965 0.578254 0.504027	Sp F-G Hoff 63c Alt 0.6627
3 4 5 6 7 8 9 10 11 12 13 14	$\begin{array}{r} - 47.3 \\ 32.9 \\ 34.5 \\ - 44.8 \\ + 34.1 \\ +172.2 \\ +227.3 \\ -158.6 \\ + 96 \\ - 14 \\ +148 \\ 92 \\ -131 \end{array}$	$\begin{array}{r} +188.5 \\ + 63.1 \\ +111.0 \\ + 33.6 \\ + 16.4 \\ + 50.4 \\ +102.7 \\ -222.3 \\ 252.4 \\ 79 \\ + 35 \\ - 49 \\ - 24 \\ - 100 \end{array}$	15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75 13.5 15.0 15.0 15.1 15.6	0 24 54 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7 14.6 16.3 16.1 16.7 16.1	, 32759.765 36040.674 25474.346 35696.652 35373.660 34893.807	12.937 0.644360 0.56600 1.965 0.578254 0.504027 0.330918	Sp F-G Hoff 63c Alt 0.6627
3 4 5 6 7 8 9 10 11 12 13 14	$\begin{array}{r} - 47.3 \\ 32.9 \\ 34.5 \\ - 44.8 \\ + 34.1 \\ +172.2 \\ +227.3 \\ -158.6 \\ + 96 \\ - 14 \\ +148 \\ 92 \\ -131 \\ -472 \end{array}$	$\begin{array}{r} +188.5 \\ + 63.1 \\ +111.0 \\ + 33.6 \\ + 16.4 \\ + 50.4 \\ +102.7 \\ 222.3 \\ 252.4 \\ 79 \\ + 35 \\ - 49 \\ - 24 \\ -100 \\ -186 \end{array}$	15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75 13.5 15.0 15.0 15.0 15.1 15.6 15.8	0 24 54 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7 14.6 16.3 16.1 16.7 16.1 17.0	, 32759.765 36040.674 25474.346 35696.652 35373.660 34893.807	12.937 0.644360 0.56600 1.965 0.578254 0.504027 0.330918	Sp F-G Hoff 63c Alt 0.6627
3 4 5 6 7 8 9 10 11 12 13 14 15 16	$\begin{array}{r} - 47.3 \\ 32.9 \\ 34.5 \\ - 44.8 \\ + 34.1 \\ +172.2 \\ +227.3 \\ -158.6 \\ + 96 \\ - 14 \\ +148 \\ 92 \\ -131 \\ -472 \\ +432 \end{array}$	$\begin{array}{r} +188.5 \\ + 63.1 \\ +111.0 \\ + 33.6 \\ + 16.4 \\ + 50.4 \\ +102.7 \\ 222.3 \\ 252.4 \\ 79 \\ + 35 \\ - 49 \\ - 24 \\ -100 \\ -186 \\ - 372 \end{array}$	15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75 13.5 15.0 15.0 15.1 15.6 15.1 15.6 15.8 15.9	0 24 34 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7 14.6 16.3 16.1 16.7 16.1 17.0 17.0 17.0	, 32759.765 36040.674 25474.346 35696.652 35373.660 34893.807 36067.656	12.937 0.644360 0.56600 1.965 0.578254 0.504027 0.330918 0.5220278	Sp F-G Hoff 63c Alt 0.6627
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{r} -47.3\\ 32.9\\ 34.5\\ -44.8\\ +34.1\\ +172.2\\ +227.3\\ -158.6\\ +96\\ -14\\ +148\\ 92\\ -131\\ -472\\ +432\\ \end{array}$	$\begin{array}{r} +188.5 \\ + 63.1 \\ +111.0 \\ + 33.6 \\ + 16.4 \\ + 50.4 \\ +102.7 \\ -222.3 \\ 252.4 \\ 79 \\ + 35 \\ - 49 \\ - 24 \\ -100 \\ -186 \\ -372 \end{array}$	15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75 13.5 15.0 15.0 15.1 15.6 15.1 15.6 15.8 15.9 12.8	0 24 34 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7 14.6 16.3 16.1 16.7 16.1 17.0 17.0 14.8	, 32759.765 36040.674 25474.346 35696.652 35373.660 34893.807 36067.656 38620	12.937 0.644360 0.56600 1.965 0.578254 0.504027 0.330918 0.5220278 92.8	Sp F-G Hoff 63c Alt 0.6627 RV, Hoff 63a

Joy, ApJ 110.105 (1949); Sawyer, AJ 54.193 (1949); Hoffleit, AJ 70.307 (1965); Deery, AAVSO Abstr Oct. p. 3 (1968); Hoffleit, IBVS 312 (1968), IBVS 387 (1969), IBVS 660 (1972); Sawyer Hogg and Moorhead, unpub (1972)

\$55a, \$57, \$59, \$62, \$67, \$69, \$70

56

Catalogue

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
NGC	6637 (Messi	er 69) a 18	h28m.1,	δ 32°2.	3'		
1 2 3 4 5 6 7 8	- 20 -228.8 - 36.6 - 17.5 + 8	- 9 +201.3 - 78.5 - 90.7 + 7	13.0 15.9 14.6 14.3 13.0	15.0 17.3 15.8 17.2 14.5	28433	196 195	red, mem RR, f red, mem mem 11 37, red 111 43, red IV 11, red

Vars. 1, 2, 3, 5 found by Rosino. V5 is Rosino 10, V4 is Ponson V1894. Rosino considers his variables 5-9 as field stars. Wilkens (Letter) suggests they may be cluster members. Identifications of new vars. 6-8, Lloyd Evans and Menzies (1973) from Hartwick and Sandage (1968).

Ponson, Leiden Ann 20.431 (Star 69) (1957); Rosino, Asiago Contr 132 (p) (1962); Hartwick and Sandage, ApJ 153.715 (p) (1968); Catchpole, Feast and Menzies, Obs 90.63 (1970); Lloyd Evans and Menzies, Obs 91.35 (1971); Wilkens, Letter (1972); Lloyd Evans and Menzies, 1AU Coll 21 (1973)

S55b, S57, R57, S61, R62c, F&L63, S64, R65, FLA66, S69, S70, F72

NGC 6638 α 18^h27^m.9, δ – 25° 32'

1	Terzan 9
2	Terzan 10
3	Terzan 11

Terzan's new variables identified on print. Six unpublished variables, Sawyer Hogg and Terzan (1972).

Terzan, Haute Prov Publ 9, 24 (p) (1968) S55b, S57, R62b, S70

NGC 6642 $a_{18h_{28m},4}, \delta_{-23^{\circ}30'}$

 1
 14.5
 16.0

 2
 14.9
 16.0

Two field variables, Hoffleit 137a and 137b. Hoffleit, 1BVS 660 (c) (1972) S55b, R62b

NGC 6652 a $18h_{32}m_{.5}$, $\delta - 33^{\circ}02'$

Observed by Fourcade and Laborde, 1966; no variables found. Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966) S55b, R62b Hoff 145a, M

Hoff 145b

No.	x"	у"	Max.	Min.	Epoch	Period	Remarks
NGC	6656 (Messi	er 22) a 18	h33m.3,	δ -23°58	P		
1	- 54.0	- 10.0	14.2	15.4	36070.678	0.615543	
2	+ 158.6	+ 69.2	13.45	14.25	37113.784	0.641717	
3	+ 214.7	+420.2	15.4	16.6	40063.702	0.515485	f
4	- 4.0	- 68.0	13.9	15.1	40058.727	0.716393	
5	- 178.2	- 33.8	12.5	13.4	40027.818	92.6	SpG, V, mem
6	- 74.4	-100.0	13.65	14.5	35279.755	0.638548	-
7	- 342.4	+411.2	13.65	15.0	35279.755	0.649520	
8	- 39.5	- 64.8	12.0	13.0		irr.	Sp G, V, mem
9	- 211.2	- 35.0	12.8	13.8	32740.781	87.71	Sp G, V, mem
10	- 39.0	-125.0	13.75	14.7	36069.643	0.646018	
11	- 14.4	+ 14.0	13.1	13.9	36073.656	1.69049	Sp, V, mem
12	+ 0.8	77.8	14.2	14.6	Prob. not va	ur.	
13	+ 76.4	+158.9	13.9	14.85	35 309 .7 30	0.672523	
14	+ 250.8	+486.4	14.5	17.5	34983.6	199.7	Sp M, V, f
15	+ 115.3	- 83.2	14.25	14.75	35279.755	0.373248	
16	+ 185.0	= 17.8	14.25	14.85	35335.645	0.325348	
17	- 438.0	+126.0	15.3	16.7	35338.7	113.2	f?
18	- 86	+433	14.3	14.7	34927.766	0.324960	
19	- 33	+130	14.3	14.8	35313.669	0.384009	
20	- 120	=123	13.9	14.6	34927.766	0.430060	
21	+ 36	+ 88	14.0	14.5	34922.732	0.327530	
22	-1089	+213	14.1	15.8	34927.766	0.6245374	
23	- 5	- 14	13.9	14.65	35341.635	0.355195	+
24	- 26	+ 10	14.4	15.5			
25	+ 326	+375	14.35	14.85	32006.740	0.402367	+
26			15.6	17.6	36051.7	309.0	Hoff 8, 181a, f?
27			14.0	15.1	35280.720	0.342811	Hoff 10, 181b, f?
28			13.8	14.8	34920.7	424.5	Hoff 16, 173a, f?
29			14.5	15.3			Hoff 187b
30			12.8	13.4			Hoff 191
31			12.8	13.5			Hoff 185
32	- 631	-331	15.4	18.0	34932.7	233.35	Watt, f?
33	- 149	-794	14.4	17.0	35308.8	250.3	Watt, f?

Sawyer, Toronto Publ 1, 15 (p) (1944); Joy, ApJ 110.105 (1949); Hoffleit, AJ 69.301 (1964), Sky Tel 27.274 (1964), AJ 70.307 (1965), AJ 72.711 (1967); Eggen, ApJ 172.639 (1972); Hoffleit, IBVS 660 (c) (1972); Sawyer Hogg and Wehlau, unpub (1972) S55a, S57, S59, R62a, S62, L65, R65, S67, S69, S70

NGC	5 6 81 (Messie	er 70) a 18	h40m.0,	δ -32°21′		
1 2	$+ 46.1 \\ -104.5$	-113.0 -581.3	16.2 16.1	17.2 17.1	RR? RR?	Rosino 1 Rosino 3
Four f Rosine S55b,	ield variable o, Asiago Co S61, R62c,	es, Rosino (1 ontr 132 (p) F&L63, S64	962). (1962) , FLA66	, S69		

Catalogue

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks
NGC (6712 a 18	h50m.3,δ	-08°47′				
1	- 63	- 17	16.18	17.32	35284.988	0.512030	
2	+ 69	+ 15	14.70	16.00	35007.4	104.6	AP Sct, mem
3	- 28	- 93	16.66	17.34	35285.235	0.655680	
4	+179	- 27	16.96	17.62	35285.082	0.611741	
5	+ 67	- 71	16.00	17.40	35285.350	0.545390	
6	+ 18	- 41	16.10	17.62	35285.344	0.510849	
7	-129	- 18	13.10	18.20	35327	190.48	CH Sct, V, mem
8	+ 24	+ 60	14.55	16.20	35400	117.0	
9	- 4	+285	16.80	19:			UG?, f
10	- 99	+ 30	15.45	15.95	35287	174	
11	-116	-333	16.7	17.5			E, f
12	+ 29	+ 39	16.00	17.54	35285.298	0.502776	
13	- 93	+ 25	15.98	17.36	35285.193	0.562651	Ros, San
14	-426	+ 31	15.30	17.90	35690.5	202.2	Sawyer F1
15	+247	- 38	15.60	16.60		100?	Har 160
16	-138	+175	16.8	17.5			Har 141, E
17	+ 27	+ 49	15.5				Har 151
18	- 25	- 1	16.64	17.26	35285.123	0.345044	Sandage
19	- 13	+ 34	16.50	16.92	35285.162	0.423900	Sandage
20	+ 1	+ 9	16.60	17.14	35285.031	0.330870	Sandage
21			13.5	13.8			LE&M

Sawyer, JRASC 47.229 (1953); Harwood, Priv comm (1956), Leiden Ann 21.387 (1962); Smith,
Sandage, Lynden-Bell and Norton, AJ 68.293 (1963); Rosino, Bamb K1 Veröff 4, 40.202 (1965);
Sandage, Smith and Norton, ApJ 144.894 (1966); Rosino, ApJ 144.903 (1966); Feast, Obs 87.35 (1967); Lloyd Evans, Letter (1972); Lloyd Evans and Menzies, IAU Coll 21 (1973)
S55a, S57, S59, S61, R62a, S62, S64, R65, S67, S69, F72

NGC 6715 (Messier 54) $\alpha 18^{h}52^{m}.0, \delta -30^{\circ}32'$

1	+ 83	+ 10	15.8	16.9	35661.45	1.34956	Сер
2	- 6	+ 90	16.3	17.3	35635.60	0.5111	
3	- 14	+ 179	16.5	17.6	35630.44	0.5010	
4	= 38	+ 311	16.6	17.8	35630.40	0.4803	
5	- 129	+ 45	16.5	17.8	35636.34	0.5780	
6	+ 194	- 188	16.6	17.8	35630.50	0.5417	
7	+ 54	- 165	16.6	17.5		0.46?	RR
8	+ 365	- 330	15.7	16.7			E? f?
9	- 67	- 637	16.8	17.7			RR
10	+ 115	- 530	16.9	17.6			RR?
11	- 106	-1086					f
12	- 220	= 248	15.4	16.4	35630.64	0.3220	prob f
13	- 238	+ 451	16.5	17.5			RR
14	+ 240	+ 213	16.2	17.4	35630.44	0.6892	
1.5	+ 124	- 63	16.6	17.5	35639.64	0.5869	
16	+ 87	- 917					f
17	+ 697	- 435	16.6	17.6	35665.30	0.4660?	
	. 0 - 1		- 010				

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	6715 (con	ntinued)					
18	+ 511	+ 382	16.5	17.2			RR?
19	-1260	- 190					f
20	+ 106	+ 95	16.8	17.2			
21	+ 85	- 231		17.8	var'?		
22	- 21	- 167	16.4	16.7			
23	+ 362	+ 170	16.8	17.6	35638.60	0.5286	
24	+ 453	+ 55	16.5:		var?		
25	- 65	+ 74	15.4	17.2	35628	$101\pm$	SR
26	+ 201	- 159	16.8	17.4			RR?
27	+ 209	- 306	16.75 r	ned			
28	+ 68	+ 161	16.3	17.6	35630.45	0.5128	
29	- 134	43	16.6	17.7	35638.44	0.5893	
30	+ 2	+ 80	16.6	17.7			RR
31	- 104	- 66	16.8	17.7			RR
32	- 181	+ 69	16.5	17.7	35636.36	0.5210	
33	+ 72	- 112	16.3	17.5	35629.58	0.4922	
34	- 61	- 153	16.4	17.6	35636.32	0.5053	
35	- 83	+ 54	16.6	17.6	35665.36	0.5266	
36	+ 129	+ 51	16.5	17.6	35629.58	0.5977	
37	+ 41	- 44	17.3	17.9			
38	- 69	+ 37	17.1	17.8			
39	- 105	- 63	16.7	17.7			RRa
40	- 56	= 112	16.5	17.5	35630.44	0.586	
41	+ 128	+ 45	16.4	17.6	35630.45	0.6187	
42	+ 70	+ 57	16.8	17.8	50050110	0.0107	RR
43	154	+ 54	16.8	17.5	35630.44	0 3913	IXIX
44	+ 10	- 81	16.6	17.8	50050.71	0.3713	RRa
45	+ 117	- 109	16.25	17.6	35630.62	0 4889	IXIXa
45	7 117	- 107	10.25	17.82	55050.02	0.4002	
40	20	+ 96	167	17.0	35635.60	0.5069	
47	- 25	T 90 47	16.7	17.7	35635.58	0.6849	
10	1 234	134	16.8	17.0	550 55.50	0.0042	RB
50	-101	- 154	16.7	17.5	35630.64	0.5635	IXIX
51	+ 104	- 208	16.95	17.5	55050.04	0.5055	DD9
51	+ 222	+ 208	16.05	17.55			DD
52	+ 90	- 30	16.00	17.55			
53	- 00	- /0	16.5	17.0	25620 57	0.5712	KK
54	- 115	+ 327	10.5	17.0	25629.37	0.3713	
33	+ 146	- 205	10.0	17.0	33029.38	0.4239	DD -
50	- 336	- 124	10.03	17.4		0.649	RRC DDo
51	+ 293	- 31	10./	17.7	25620 50	0.6149	KKa
38	+ 80	+ 282	16.5	17.3	35630.50	0.6148	
39	- 218	- 254	16.8	17.75	35630.63	0.5993	D D
60	- 269	- 247	16.8	17.6	33629.37	0.570?	KK DD
61	- 43	+ 107	17.05	17.85			KK DD -9
62	- 92	+ 102	17.0	17.8			KKC:
03	- 40	- 133	16.9	17.6			KK CD
64	+ 259	- 498	16.7	17.5			SK

Catalogue

No.		x''		У''	Max.	Min.	Epoch	Period	Remarks
NGC	671	5 (cor	ntinue	d)					
65	+	243	+	165	16.25	17.05	35638.36	0.4481	f
66	+	234	+	207	15.6	17.1			SR
67		0	+	69	16.85	17.55			RR
68		643	+	337	16.8	17.7	35630.65	0.5414	
69	_	328	+	283	16.45	17.25			RR?
70	+	128	_	426	16.8	17.4			RR
71	_	32	+	106	14.8	16.2		77:	SR
72	_	61	+	149	15.6	16.7			E?
73	+	26	+	62	17.0	17.5			
74	+	113	_	141	16.7	17.5			RR
75	+	18	+	79	16.5	17.7	35638.36	0.5797	
76	_	106	_	22	16.5?	17.5?			RR
77	_	112	_	42	16.5	17.5			RR
78	+	73		13					
79	+	30		46	16.9	17.5			RR?
80	+	51	_	25	16.7?	17.5			
81	+	45	+	12					
82		49	_	46	16.7?	17.5?			
Vars.	29-	82 foi	ind by	Rosing	and Nobi	li.			
Rosi	no ar	nd No	bili. A	siago C	ontr 97 (p)	(1959)			
S55a	, R 5	7, S57	, S59,	S61, R	62a, S62, I	L65, R65	FLA66, S69		

NGC 6717 $a 18^{h5}2^{m}.1, \delta -22^{\circ}47'$

S55b, S61

NGC 6723 α 18^h56^m.2, δ – 36°42′

1	+ 75.1	-199.5	15.76	16.25	38993.793	0.538177
2	+135.7	- 78.3	14.71	16.47	38993.951	0.503539
3	-244.4	+ 7.5	14.78	16.57	38994.131	0.494097
4	+ 16.8	+ 77.4	14.55	15.90	38993.855	0.451060
5	- 4.7	+ 51.0	15.20	16.00		0.57264
6	+ 7.2	+ 48.3	14.90	16.05	23618.80	0.4814
7	+197.5	- 71.3	15.53	16.14	38994.037	0.307672
8	+ 15.9	+ 10.8	14.75	15.60		0.53
9	+ 74.0	+ 15.7	14.70	15.80	38994.101	0.575803
10	+148.6	+ 83.9	15.39	16.03	38993.996	0.252325
11	+133.3	+228.8	14.85	15.65	38993.922	0.534283
12	+ 43.2	- 45.7	14.95	15.85	23618.53	0.4694
13	- 46.2	- 71.3	14.69	16.22	38993.930	0.507867
14	+ 38.2	- 43.2	14.95	15.80	23618.91	0.6190
15	- 93.4	+167.5	14.72	16.43	38993.847	0.435439
16	- 46.5	+ 93.3	14.55	15.69	38994.104	0.696273
17	+ 43.1	-102.5	15.27	16.66	38994.135	0.530179
18	-137.8	- 18.2	15.40	16.27	38994.091	0.526455
19	-169.4	-112.5	15.24	16.63	38994.018	0.534111

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
NGC	6723 (conti	nued)					
20	+ 3.5	+ 39.9				0.49293	F&L
21	- 79.0	- 28.2	14.50	15.72	38993.760	0.594863	
22	- 70.8	+ 38.1	15.18	15.72	38994.19	0.30844	
23	+ 53.4	- 10.0			38994.08	0.6259	
24	+117.5	-112.0	15.50	16.11	38993.999	0.300143	
25	+ 98.6	+203.1	12.1V	13.0V		SR?	
26	-197.0	+155.9	12.2V	13.1V		SR?	
27	-219.1	+101.6	15.50	16.33	38994.093	0.619249	
28	+ 10.8	- 79.0				0.4863	
29	+ 12.4	+ 63.6				0.53:	

New coordinates for all variables, Menzies (1973), who discovered vars. 21-29.

Innes, UOC 37.300 (UY Cr A) (1917); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Menzies, Proc Astr Soc Aust 1.16 (1967), Doctoral Thesis, Australian Nat'l Univ (1967); Lloyd Evans, Letter (1972); Lloyd Evans and Menzies, IAU Coll 21 (1973); Menzies, IAU Coll 21 (1973)

S55a, S59, S62, L65, R65, S69

 NGC 6752
 $a 19^{h}06^{m}.4, \delta = 60^{\circ}04'$

 1
 + 236.5
 + 143.0
 F&L

 2
 + 44.0
 + 82.5
 F&L

V1 considered the same as that mentioned in S55a.

Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Eggen, ApJ 172.639 (1972)

S55a, S57, S59, R62c, S62, F&L63, S69

NGC 6760 *a* 19^h08^m.6, δ +00° 57′

1	+57	- 57	15.7	17.0
2	- 6	-100	16.7	17.2
3	+ 31	- 10	15.5	[17.4
4	+42	+ 39	15.4	[17.5

Taffara has new eclipsing variable in field, and gives periods for it and two other field eclipsers. Sawyer Hogg, IAU Agenda and Draft Reports, p. 560 (1967); Taffara, SA1 43.481 (1972) S55a, S57, S59, R62a, S62, S69

NGC 6779 (Messier 56) $a 19^{h}14^{m}.6, \delta + 30^{\circ}05'$

1	+ 44.69	+ 74.10	15.0	16.2	30899.341	1.510019	Cep, Sp, V, mem
2	+ 18.16	+ 33.09	15.1	15.6		SR	
3	+ 25.10	+ 91.69	14.4	15.1		SR	Sp, V, mem
4	-112.13	-159.46	15.9	16.4			
5	+ 6.79	-134.78	14.4	15.2		SR	
6	- 2.02	+ 37.06	12.9	14.8	30172.7	90.02	RV, Sp, V, mem
7	+293.48	-213.24	15.6	16.3		irr	

Catal	ogue
-------	------

No.	x″	у''	Max.	Min.	Epoch	Period	Remarks
NGC	6779 (conti	nued)					
8 9 10 11 12	- 97.63 +177 -431.53 -415.58 -243.96	-335.90 +525 + 88.33 +283.80 - 95.41	15.9 15.6 16.4 15.5 15.6	16.7 16.1 17.4 16.3 16.4	30967.473 34239.516	SR SR 0.5988948 0.0756252	RR, f? RRs, f?

Field variables found by Kurochkin, 20 (1968), 21 (1970), 30 (1971).

Joy, ApJ 110.105 (1949); Sawyer, JRASC 43.38 (1949); Balázs, Budapest Mitt 30 (1952); Rosino, Asiago Contr 117 (1961); Preston, Krzeminski and Smak, ApJ 137.401 (p) (1963); Barbon, Asiago Contr 175 (p) (1965); Kurochkin, VS 16.460 (c) (1968), VS 17.186 (c) (1970), VS 17.620 (c) (1971)

S55a, S57, S59, R62a, S62, S64, R65, S67, S69, S70

Palomar 10 $a 19^{h}16^{m}.0, \delta + 18^{\circ}28'$

VI found by Rosino (1972) on red plates, centre of cluster, large amplitude. Rosino, Letter (1972) R61, S61

NGC 6809 (Messier 55) $a 19^{h}36^{m}.9, \delta - 31^{\circ}03'$

1	+304.2	- 55.6	32413.39	0.57997286
2	-214.9	- 26.0	32467.18	0.4061601
3	+ 78	-304	32413.22	0.6619023
4	+108	+ 59	32413.34	0.3841702
5	- 41	- 74		0.2?
6	+111	- 20	32413.32	0.388904

Bailey, HA 38.243 (p) (1902); King, HB 920 (1951) S55a, S57, S59, S61, R62a, S62, R65, FLA66, S69

Palomar 11 α 19h42m.6, δ -08°09'

No variables found. Abell suggests this may be very rich open cluster. Kinman and Rosino, ASP 74.499 (1962) R61, S61

NGC 6838 (Messier 71) $a 19h51m.5, \delta + 18^{\circ}39'$

1	+140	+ 24	13.5	14.9		193	Z Sge, SR
2	+ 44	-146	13.8	14.7			Slow
3	+ 44	- 70	15.2	17.0	33481.78	3.7907	E, Min, mem
4	+266	+ 31	14.7	15.3			RR?

Silbernagel, AN 192.450 (1912); Sawyer, JRASC 47.229 (1953); Prochazka, Letter (1967); Hartwick, Priv comm (1972); Kukarkin, Letter (1972); Sawyer, unpub (1972) S55a, S57, S59, S61, R62a, S62, P64, R65, St66, S69

No.	x″	у"	Max.	Min.	Epoch	Period	Remarks
NGC	6864 (Messi	er 75) a 20	0h03m.2,	$\delta - 22^{\circ}04$	t,		
1	+ 15.6	-83.4					
2	- 9.0	+54.0					
3	+ 18.0	+85.5					
4	- 18.0	-84.6					
5	+108.0	-36.0					
6	+ 8.4	= 81.0					
7	- 24.6	+780					
8	- 13.5	-41.4					
9	+ 45.6	-24.0					
*10	- 43.5	+50.4					
11	+121.2	+84.0					
12	+ 39.6	+75.0					
Shapl S55a,	ey, Mt Wils S57, R57, S	Contr 190 (59, S61, S6	p) (1920) 2, S64, S6	59, S70	, numbered 13-1		
NGC	6934 a 201	n31m.7,δ+	07°14′				
1	= 45	- 39	16.5	17.7	27307.968	0.568099	
2	40	- 14	16.4	17.9	27658.930	0.48195	+
3	0	+ 58	16.6	17.8	27275.882	0.539806	
4	+ 39	+ 58	16.3	17.8	27275.882	0.616422	
5	+ 59	+221	16.7	17.8	26923.943	0.564560	
6	- 27	- 33	16.7	18.0	27275.941	0.5558418	
7	+ 92	+ 59	16.65	17.7	28038.833	0.644049	
8	+100	+ 50	16.75	17.5	27715.760	0.623989	
9	+ 63	+ 18	16.5	17.8	27308.844	0.549156	
10	-135	+ 72	16.4	17.8	27275.882	0.519959	
11	+ 17	+ 28	17.1	18.15			
12	+ 29	- 44	16.3	17.4	27309.955	0.464215	
13	- 47	+ 25	16.55	17.8	26915.956	0.551334	
14	- 7	- 90	16.5	17.8	27659.902	0.52199	(
15	+ 10	- 53	15.65	16.3	26015.056	0.000000	not KK
16	+ 36	+ 18	16.7	17.9	20913.930	0.604833	
1/	- 13	-107	16.7	17.9	27309.935	0.398272	D D
10	+ 49	- Ö	10.0	17.0	21515 710	0.480550	N/X
19	+ 30	+ 17	16.4	17.9	21313./10	0.400330	
20	- 20	+ 1/	16.5	1015	2/30/.880	0.348223	DD
21	- 35	- 3	10.0	10.15			R R D D
22	-240	-1/3	16.0	19.05			DD
23	- 31	- 10	16.03	10.03			DD
24	+ 51	- 33	16.5	17.93	27275 705	0.500086	NN.
25	+ 31	196	16.0	17.2	21213.173	0.507000	BB
20	-148	+180	16.7	17.8	27272 914	0 592204	1/1/
28	234	+100	16.3	17.8	27715 760	0.485151	+

Catalogue

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks
NGC	6934 (con	tinued)					
29	- 85	-183	16.4	17.8	26628.689	0.454818	
30	+161	+127	16.6	17.65	27714.745	0.589853	
31	+146	-101	16.5	17.8	21481.825	0.505070	
32	- 10	+ 51	16.4	17.7	21481.825	0.511948	
33	+ 37	+ 12	16.5	17.7	27309.920	0.518445	
34	- 21	+ 16	16.6	18.05			RR
35	+157	-142	16.6	17.85	27664.870	0.544222	
36	+ 10	- 35	16.05	17.55			RR
37	+ 23	+ 10	16.5	17.95			RR
38	+ 12	- 18	16.6	18.0	21543.702	0.523562	
39	+ 8	- 16	16.6	17.95			
40	- 8	+ 26	16.15	16.8			RR
41	+ 30	- 39	16.6	17.9	27275.882	0.520404	
42	+ 55	+ 20	16.5	17.9	27659.975	0.524251	
43	+ 21	+ 27	16.4	17.4			
44	- 43	- 30	17.0	17.9	26925.933	0.630384	
45	- 32	- 9	16.3	17.8			
46	+ 14	- 24	16.9	18.05			
47	+ 10	- 26	16.8	17.95			RR
48	+ 33	+ 52	16.5	18.05			RR
49	+ 13	- 55	16.7	17.95			RR
50	+ 15	- 37	16.9	17.95			
51	+ 7	- 25	15.85	16.6			RR

Sawyer, Toronto Publ 7, 5 (p) (1938); Sawyer Hogg and Wehlau, unpub (1972); Harris, AJ 78, in press (1973)

\$55a, \$57, \$59, \$61, \$62, \$64, R65, \$67, \$69, \$70

NGC 6981 (Messier 72)	a 20-	h50m.7.	δ –	$12^{\circ}44$
-----------------------	-------	---------	-----	----------------

1	+ 43.5	- 54.0	16.45	17.25	33129.400	0.619818	
2	+ 99.0	+194.4	16.29	17.95	33126.405	0.46526213	_
3	- 52.5	- 58.5	16.16	17.74	33809.553	0.4976052	
4	-106.5	+ 37.5	16.56	17.74	33147.462	0.5524863	_
5	- 38.4	- 21.6	16.40	17.43	22163.738	0.4991	
6	+ 78.0	+ 78.6	16.70	17.10			
7	- 3.6	+ 55.5	16.36	17.53	39318.997	0.524630	
8	- 6.6	+ 89.4	16.73	17.74	33145.372	0.5683752	
9	+ 11.4	+ 50.4	16.73	17.54	39319.660	0.60296	
10	- 48.6	- 73.5	16.69	17.77	33857.504	0.5581814	+
11	+ 57.0	- 36.6	16.81	17.72	39319.478	0.51997	
12	+ 9.0	- 21.6	16.31	17.17	22163.90	0.4111	
13	+ 13.5	+ 17.4	15.77	16.85	39319.330	0.55114	f?
14	- 13.5	+ 36.0	16.40	17.06	22163.90	0.5904	
15	- 64.5	- 21.0	16.63	17.56	39318.917	0.55044	
16	4.5	- 19.5	16.31	17.21	39319.490	0.585497	
17	+ 3.6	- 43.5	16.57	17.62	33215.483	0.5735404	+
18	- 26.4	- 37.5	15.70	16.28	22162.88	0.52016	

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
NGC	6981 (contir	nued)					
19	+ 3.0	+112.5	17.15	17.30	not var		
20	- 54.6	+ 15.0	16.50	17.40	33857.420	0.595046	
21	- 82.5	+ 12.6	16.56	17.86	33145.370	0.5311636	+
22	-113.4	+ 1.5	17.10	17.25	not var		
23	- 99.0	+116.4	16.95	17.73	39319.437	0.585083	irr
24	- 15.6	- 24.0	16.20	16.55	22161.92	0.4973:	
25	-133.5	+ 67.5	16.92	17.48	33481.810	0.3533739	+
26	- 91.5	- 45.0	16.90	17.20			
27	+209.4	-234.0	16.30	17.78	39319.557	0.673774	f?
28	+ 65.4	+ 81.0	16.83	17.64	33853 437	0 56724873	_
29	+ 36.0	- 52.5	16.68	17.48	39319 295	0.605497	
30	+ 71.4	- 97.5	16.50	16.90	57517.475	0.005427	
31	- 54	+ 36.6	16.30	17.36	39319 110	0 53249	
32	138.0	-42.0	16.84	17.30	39319.440	0.52834	
22	-130.0 ± 2.4	- 42.0	16.05	17.70	57517.440	0.52054	
24	T 2.4	- 75	16.75	1672			
25	- 0.0	+ 7.5	16.78	17.75	30310 773	0 543771	
24	+ 231	+ 27	16.70	16.8	57517.772	0.545771	
20	- 12	0	15.5	16.0			
31	+ /	- 0	15.5	10.5			
30	+ 5	- 9	10.0	17.5			
39	+195	+243	10.8	17.0			
40	+ 18	+ 16	16.4	17.4			
41	- 15	= 20	16./	17.5			,
42	+ 12	+ 3					rea
Nobili	i, Asiago Cor	ntr 83 (1957); Dicken	s and Flii	nn, MN 158.99 ((1972); Dickens.	, Preprint (p)
(1972), Letter, V4	42 unpub (19	972)				
S55	a, S57, S59,	R62a, S62,	S64, L65,	R65, S6	7, \$69		
NGC	7006 a 20 ¹	n59m.1,δ+	16° 00'				
1	177 0	1114.8	18 20	10.60	26018 030	0 492729	
2	25.3	27.3	18.25	19.00	35453 245	0.586986	
2	- 33.5	-37.3	18.55	10.65	27209 945	0.560557	
3	24.4	7 34.2	not vor	19.05	27207.743	0.500557	
4	- 21.0	- 41.1	18 45	10.50	25410 240	0 534713	
2	- 20.9	+ 30.4	10.45	10.60	27020 626	0.334713	
0	- 13.5	- 44.3	10.40	17.00	27037.020	0.490030	
0	+ 3.2	- 30.9		10.50	25242 700	0 609 200	
0	+ 34.4	+ 13.5	18.70:	19.50	33 342.700	0.000209	
9	+ 39.4	+ 10.0	not var	10.00	25402 (19	0.5420.07	
10	+ 42.8	- 11.8	18.45	19.80	35403.038	0.542907	
11	+148	+ 50	18.35	19.65	35428.232	0.576036	
12	+122.0	- 64.0	18.35	19.55	35419.410	0.574039	
13	+102.7	+ 40.2	18.30	19.60	35453.274	0.55164/	
14	+ 35.3	+128.3	18.35	19.55	35459.269	0.560358	
15	- 11.5	+114.8	18.40	19.50	35429.250	0.588067	
16	- 39.6	+135.5	18.35	19.55	35429.240	0.537582	
Catalogue

NGC 7006 (continued) 17 - 99.3 + 85.5 18.35 19.60 35429.201 0.511494 18 - 29.6 - 89.5 18.55 19.65 35034.330 0.603706 19 - 0.6 - 25.3 16.70 17.90 35630.93 92.17 red SR 20 - 21.2 - 24.4 18.70 19.45 35003.270 0.568968 2 Alt Ps 22 - 12.6 - 15.8 18.40 19.60 35727.400 0.568968 2 Alt Ps 23 - 27.6 - 7.5 18.50 19.60 27274.873 0.608042 24 - 25.8 - 2.9 biended 25 - 19.2 + 5.2 18.80 19.60 26975.580 0.532792 26 - 10.6 - 2.9 18.55 19.60 34978.710 0.607364 Alt 0.540 27 - 11.8 + 4.3 18.75 19.60 3675.925 0.560987 Alt 0.56192 28 - 15.8 + 4.3 18.75 19.60 3657.925 0.560987 Alt 0.56192 29 + 35.0 + 31.6 18.40 19.60 27033.640 0.559195 30 + 5.2 + 16.6 18.70 19.70 31 + 10.0 + 11.2 18.65 19.55 26891.945 0.5663126 32 + 20.9 + 13.8 18.55 19.50 36376.920 0.585572 33 + 31.9 + 22.4 18.50 19.50 36376.920 0.585872 34 + 26.4 + 9.2 18.75 19.30 prob not var 35 + 36.2 - 2.0 18.60 19.55 35419.260 0.596309 P var? 36 + 25.5 - 3.7 18.75: 19.30 prob not var 35 + 36.2 - 2.0 18.60 19.55 35419.260 0.596309 P var? 36 + 25.5 - 3.7 18.75: 19.35 27274.850 0.437847 2 Alt Ps 37 + 18.9 - 3.4 18.40: 19.45 37274.850 0.567920 biended 38 + 21.5 - 18.4 18.70 19.50 34978.725 0.457330 Alt 0.622 39 + 11.5 - 25.3 18.50: 19.55 35419.260 0.596309 P var? 41 + 1.4 - 11.2 18.70 19.60 34978.725 0.495330 Alt 0.622 39 + 11.5 - 25.3 18.50: 19.55 35426.865 0.577261 Alt 0.565 40 + 9.7 - 14.3 19.15: 19.60: mot RR 41 + 1.4 - 11.2 18.70 19.60 34978.725 0.495330 Alt 0.622 39 + 11.5 - 25.3 18.50: 19.55 35419.300 0.608599 Alt 0.622 39 + 11.5 - 25.3 18.50: 19.55 35419.300 0.58779 41 + 1.4 - 11.2 18.70 19.38 35419.390 0.58779 50 - 42.9 - 7.6 18.80 19.30: 43 - 4.0 - 28.7 18.75 19.20 26975.650 0.596656 44 + 133.9 - 174.0 18.55 19.43 35719.429 0.66320 Alt 0.499 42 + 9.5 - 7.5 18.80: 19.35 35428.240 0.611975 50 - 42.9 - 7.6 18.60 19.45 35034.300 0.590428 51 + 54.3 + 46.0 18.90 19.35 35428.253 0.568294 4110 + 85.5 18.60 19.45 35034.300 0.590428 51 + 54.3 + 46.0 18.90 19.35 35428.253 0.56149	No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	NGC	7006 (cont	inued)					
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	17	- 99.3	+ 85.5	18.35	19.60	35429.201	0.511494	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	18	- 29.6	- 89.5	18.55	19.65	35034.330	0.603706	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	- 0.6	- 25.3	16.70	17.90	35630.93	92.17	red SR
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	- 21.2	- 24.4	18.70	19.45	35003.270	0.577476	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	- 21.5	- 18.4	18.60	19.50	34978.700	0.568968	2 Alt Ps
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	- 12.6	- 15.8	18.40	19.60	35727 400	0.526927	2 /110 1 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	- 27.6	- 7.5	18.50	19.60	27274 873	0.608042	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	- 25.8	- 2.9	10100	17100	2.27	0.000012	hlended
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5	- 19.2	+ 5.2	18.80	19.60	26975 580	0 532792	blended
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	- 10.6	- 2.9	18 55	19.60	34978 710	0.607364	Alt 0 540
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	- 11.8	+ 0.3	18.30	19.00	26975 650	0.522321	All 0.540
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	- 15.8	+ 43	18.75	19.60	35657 925	0.560987	Alt 0 5619
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	+ 35.0	+ 31.6	18 40	19.60	27033 640	0.559195	Alt 0.5017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	+ 5.2	+ 16.6	18.70	19.70	27035.010	0.000100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	+ 10.0	+ 11.2	18.65	19.55	26891 945	0.563126	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	+ 20.9	+ 13.8	18.50	19.50	36376 920	0.585572	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	+ 31.9	+ 22.4	18.50	19.50	34978 735	0.556812	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	+ 26.4	+ 9.2	18 75	19 30	prob not var	0.000012	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	+ 36.2	- 2.0	18.60	19.55	35419.260	0 596309	P var ⁹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	+ 25.5	- 3.7	18.75:	19.35	27274 850	0.437847	2 Alt Ps
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	+ 18.9	- 3.4	18.40:	19.45	37274 860	0.567920	blended
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	38	+ 21.5	- 18.4	18.70	19.50	26919.700	0.608599	Alt 0.622
$\begin{array}{llllllllllllllllllllllllllllllllllll$	39	+ 11.5	- 25.3	18.50:	19.55	36426.865	0.577261	Alt 0.565
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	40	+ 9.7	- 14.3	19.15:	19.60:	0012010000	0.077201	not RR
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	41	+ 1.4	- 11.2	18.70	19.60	34978.725	0.495330	Alt 0 499
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	42	+ 9.5	- 7.5	18.80:	19.30:		011200000	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	43	- 4.0	- 28.7	18.75	19.50	26975.650	0.596656	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	44	+133.9	-174.0	18.55	19.41	35017.632	0.58779	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	45	-190.0	- 74.4	18.70	19.38	35419.398	0.583858	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	46	-125.6	- 54.7	18.85	19.31	35719.429	0.666320	Alt P?
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	47	-183.4	- 22.1	18.60	19.35	35428.253	0.568294	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	48	-100.0	+ 90.3	18.70	19.28	35428.240	0.611975	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	49	+ 4.8	+ 40.5	18.65	19.60	26891.947	0.581897	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	- 42.9	- 7.6	18.60	19.45	35034,300	0.590428	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	51	+ 54.3	+ 46.0	18.90	19.35	26918.700	0.642709	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	52	- 1.0	+ 85.5	18.60	19.34	35419.290	0.621746	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	53	+ 47.5	- 9.1	18.75	19.25			
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	54	+ 3.2	- 30.0	16.95	17.75			red SR
	55	-254.4	+304.4	18.40	19.60	35017.663	0.537740	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	56	- 10.7	- 11.8	18.75	19.55	36376.920	0.520202	Alt 0.549
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	57	- 6.2	- 12.1	18.65	19.45	26918.890	0.6372352	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	58	+ 14.8	+ 16.2	18.85	19.45	26920.735	0.514982	Alt 0.525
	59	+ 26.2	+ 9.6	18.55	19.50	35657.875	0.463454	Alt 0.480
	60	- 10.9	+ 7.7	18.85:	19.50			
	61	36.2	+ 18.8	18.45	19.50	26918.865	0.589141	
63 + 14.1 + 22.2 + 18.65 + 19.50 + 27274.860 + 0.527996?	62	- 21.6	+ 3.0	18.75	19.55	26975.650	0.495233	
	63	+ 14.1	+ 22.2	18.65	19.50	27274.860	0.527996?	

No.	x"	у"	Max.	Min.	Epoch	Period	Remarks
NGC	7006 (contir	nued)					
64	+ 21.4	+ 6.2	18.80	19.45			
65	- 8.7	+ 9.9	18.70	19.50	36376.920	0.544081	Alt 0.515
66	+ 28.1	- 2.5	18.75	19.50	26918.730	0.617159	Alt 0.603
67	- 14.1	- 1.1	18.85	19.45			
68	+ 12.7	+ 5.8	18.60	19.50			
69	+ 10.0	+ 3.9	18.90:	19.30:			
70	+ 8.7	0.0	18.40	18.85:			
71	- 3.2	- 13.6	18.80	19.40			
72	+ 26.0	- 0.5	18.80	19.40	26919.675	0.2610439	Alt 0.318
73	- 15.5	0.0	18.40	19.30	35456.600	0.577966	
74	+ 1.2	- 10.8	18.40	19.60	27033.635	0.566850	
75	+152.2	156.7	18.40	19.00:	27300.600	0.518750	

New vars. 44-52 Rosino and Mannino, 53, 54, Sandage and Wildey, 55-75 Rosino and Ciatti. Sandage, ASP 66.324 (p) (1954); Rosino and Mannino, Asiago Contr 59 (p) (1955); Mannino, Asiago Contr 84 (1957); Rosino and Ciatti, Asiago Contr 199 (p) (1967); Sandage and Wildey, ApJ 150.469 (p) (1967); Pinto, Priv comm (1972)

S55a, S57, S59, S61, R62a, S62, L65, R65, S67, S69, S70

NGC 7078 (Messier 15) $a 21^{h}27^{m}.6, \delta + 11^{\circ}57'$

1	-118.6	+ 24.4	14.48	15.52	20724.394	1.437523	+,Sp
2	-171.7	+ 6.0	15.44	16.00	40442.58	0.6842736	
3	-248.0	- 46.8	15.70	16.29	40072,500	0.3887407	
4	-112.6	-163.6	15.58	16.24	40442.553	0.3135758	
5	-100.3	-212.5	15.66	16.24	40442.510	0.3842142	
6	+ 24.4	+ 76.5	14.93	15.68	25900.190	0.6659671	
7	+ 10.1	+ 73.2	15.56	15.98	25900.102	0.3675643	
8	- 0.6	+126.8	15.18	16.01	20725.103	0.6462446	
9	+ 15.6	+138.7	15.18	16.09	20724.993	0.7152819	
10	+125.6	+ 1.7	15.61	16.18	20724.967	0.3863931	
11	+172.3	- 21.8	15.52	16.22	20725.008	0.3432527	
12	+163.0	- 50.7	15.35	16.12	20724.930	0.5928844	BQ
13	+126.6	- 68.8	15.25	16.36	20725.068	0.5749536	
14	+ 84.1	-256.2	15.76	16.35	20725.167	0.3820024	
15	+ 81.7	-304.1	15.26	16.50	20724.991	0.5835687	Bl
16	+101.9	+129.8	15.50	15.97			
17	+ 83.7	+110.6	15.62	16.17	20725.001	0.4288924	+, BQ
18	+ 77.3	+100.4	15.47	16.05	20725.101	0.3677379	
19	+111.3	+160.4	15.11	16.42	20725.038	0.5723030	Bt
20	+ 81.2	- 9.8	15.04	16.07	25900.236	0.6969598	
21	+ 34.4	- 57.5	15.25	16.20			
22	-330.8	- 45.8	15.35	16.36	20724.719	0.7201510	
23	+192.0	+256.1	15.53	16.33	20724.891	0.6326959	Sp, Bl
24	-106.7	- 6.1	15.38	15.96	25900.534	0.3696955	
25	+302.9	= 10.7	15.49	16.52	20724.674	0.6653286	
26	+ 23.5	+ 331.9	15.83	16.37	20725.058	0.4022695	-
27	+222.5	+248.2	not var				

Catalogue

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC '	7078 (conti	nued)					
28	+309.9	+534.2	15.53	16.53	20724.739	0.6706464	
20	+163.3	+212.2	15.52	16.37	20725.128	0.5749761	+
30	-165.0	- 34	15.55	16.01	40442,479	0.4059796	BQ
31	-112.6	+245.6	15.55	16.30	20725.044	0.4081781	
37	- 50.4	+107.8	15.01	15.93	25900.589	0.6054003	
32	41.2	- 29.4	15.01	15.95	24409.065	0.5839452	
34	- 55.4	- 54.5	prob va	r			
35	- 34.0	-163.6	15.70	16.32	20725.143	0.3839986	
36	- 27.7	- 81.6	15.12	16.31	25900.141	0.6241424	
37	- 25.2	- 77.4	10115				
38	+ 7.6	-146.2	15.47	16.09	20725.100	0.3752769	
39	+ 20.5	-124.8	15.58	15.98	20725.184	0.3895696	B6
40	+131.8	-116.7	15.46	16.32	20724.834	0.3773302	
41	+ 62.9	- 55.4	15.50	16.15	24409.010	0.6452282	
42	+227.5	- 36.8	15.68	16.36	20725.086	0.3601745	
43	+416.7	+103.2	15.74	16.40	20725.808	0.3959928	
44	+ 91.3	+ 3.0	15.00	16.02	20725.128	0.5955547	
45	+ 66.9	- 31.0	15.20	16.15	24409.224	0.6773992	
46	+ 56.0	+ 33.2	15.40	16.32			
47	+ 45.7	- 4.3	15.0	16.2	25900.380	0.602799	
48	+ 59.7	+150.6	15.4	15.9	25900.346	0.3649762	
49	+ 40.3	+166.6	14.83	15.42		0.6552054	
50	+165.0	+100.0	15.52	16.12	25900.173	0.2980583	+
51	+ 6.2	+ 91.4	15.56	16.10	25900.280	0.3969565	
52	+192.4	- 22.6	15.36	16.44	20724.800	0.5756132	+
53	- 92.6	-111.0	15.60	16.07	20725.202	0.4141270	
54	+ 10.8	+ 88.4	15.55	16.05	25900.078	0.3995683	
55	+ 65.3	- 18.8	15.49	16.30			
56	+ 57.4	0.0	15.19	16.11			
57	+ 75.2	- 56.4	15.51	16.06	20724.891	0.3492988	
58	- 55.6	+ 8.8	15.5:	16.10			
59	+ 41.3	+ 41.5	15.10	15.95	24409.520	0.5547922	
60	+ 53.4	- 59.3	15.29	16.00			
61	- 67.3	- 40.2	15.2:	15.8:			
62	- 71.6	+ 39.6	15.3:	15.8:		0.3882:	
63	+ 49.8	+ 31.0	15.54	16.44			
64	- 46.2	+ 19.1	15.5	16.0	25900.211	0.355624	
65	-102.4	- 38.7	15.55	16.05	24409.366	0.7183491:	
66	- 68.4	-112.4	15.61	16.13	20725.179	0.3793488	
67	- 86.6	- 10.4	15.5:	16.2:			
68	- 31.8	+ 12.6					
69	- 37.0	- 25.2					
70	- 34.0	- 19.2					
71	- 34.8	- 12.6					
72	- 2.2	+ 34.8	15.0:	15.8:	24409.042	1.1386:	
73	- 3.7	+ 20.0					
74	+ 36.3	85.8	15.45	16.30	24409.188	0.296071	
75	+ 2.2	- 30.3					

No.	х″	У''	Max.	Min.	Epoch	Period	Remarks
NGC	7078 (contin	ued)					
76	+ 0.7	- 28.9					
77	- 11.8	- 22.9					
78	- 6.7	+ 47.4	15.15	15.8:	24409.421	0.398879	
79	+ 21.5	- 23.7					
80	- 47.4	- 26.6	15.1:	15.8:			
81	- 21.5	- 5.9					
82	- 20.7	+ 1.5					
83	+ 16.3	- 7.4					
84	+ 18.5	- 16.3					
85	+ 20.7	+ 2.2					
86	+ 12.6	+ 4.4	13.9	14.8	24410.62	17.109	
87	+ 23.7	- 23.7					
88	+ 2.2	+ 26.6					
89	- 23.7	- 6.7					
90	+ 31.1	+ 4.4					
91	+ 67.3	+ 28.9	15.3:	16.0:			
92	+ 9.6	- 25.2					
93	+ 27.4	- 33.3	15.5:	16.0:			
94	+ 3.7	+ 28.9					
95	+ 5.2	- 40.0					
96	+165.6	+215.0	15.85	16.30	24409.242	0.396046	
97	- 79.5	+ 29.3	15.50	16.25	24409.548	0.696333	
98	- 67.1	+ 46.1	15.4:	15.95	24409.07	0.4701:	
99	+ 29.2	+195.4	15.70	16.10	24410.435	0.277995:	
100	+ 12.5	- 35.8	15.5	16.3	24409.058	0.406114	
101	-104	+540	15.75	16.30	24409.292	0.400360	
102	+ 68.8	+ 31.5	15.70	16.15	24409.119	0.7589:	
103	= 251.5	-273.3	15.7	16.4	36070.16	0.368126	
104	-151.6	-642.5	15.6	10.4	36070.22	0.414124	60
105	-3/6.4	-137.3	15.6	17.1	36070.11	0.371133	PP c
106	- 30.3	+ 12.8	15.5	16.0			RRC RRc
107	- 32.5	- 21.8	15.5	15.9			RRC DPc
108	- 32.4	- 31.1	15.5	15.9			PRO
109	+ 12.7	- 31.3	15.5	16.1			D D c
110	+ 31.7	- 37.4	15.5	16.0			D D
111	+ 41.7	- 0.7	15.5	16.2			DD
112	+ 33.5	+ 35.0	13.3	10.3			NN

New vars. 96-98 Izsák, 99 Mannino, 100-102 Notni and Oleak, 103-105 Tsoo Yu-hua, 106-112 Rosino. Three of the corona stars of Kurochkin (1963) are similar to cluster members.

Izsák, Budapest Mitt 28 (1952): Arp, AJ 60.1 (1955); Kholopov, VS 10.253 (1955); Grubissich, Asiago Contr 76 (1956); Mannino, Asiago Contr 74, 75 (1956); Izsák, Budapest Mitt 42.63 (1957); Nobili, Asiago Contr 81 (1957); Notni and Oleak, AN 284.49 (1958); Bachmann, AN 284.191 (1958); Mannino, Asiago Contr 110 (1959); Bronkalla, AN 285.181 (1960); Preston, ApJ 134.651 (1961); Yu-hua, Acta Astr Sinica 9.65 (1961); Fritze, AN 287.79 (1963); Kurochkin, VS 14.457 (1963); Makarova and Akimova, VS 15.350 (1965); Rosino, 1BVS 327 (1969); Mironov, AC 637.1 (1971); Barlai, Priv comm (1972)

S55a, S57, S59, S61, A62, R62a, S62, P64, S64, L65, R65, St66, S67, C&S69, S69, S70

Catalogue

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	7089 (Messie	er 2) a 21	h30m.9, 8	6 -01°03'			
1	+ 25.6	+ 79.4	13.2	14.8	26607.800	15.583	Sp F-G
2	- 45.8	+ 71.1	14.6	16.1	21454.971	0.527858	
3	+222.9	- 39.6	15.1	16.4	26921.952	0.6197006	
4	- 26.8	+ 31.5	15.2	16.6	26628.644	0.564247	
5	- 44.4	+ 2.1	13.2	14.9	26628.644	17.606	Sp F-G
6	+ 11.8	- 45.4	13.2	14.9	22162.928	19.295	Sp F-G
7	+153.0	-189.2	15.1	16.4	27274.901	0.594609	
8	- 66.9	- 56.8	15.1	16.4	27273.896	0.643677	
9	-173.2	-128.2	15.2	16.4	27274.901	0.609291	
10	+ 90.6	+ 38.8	15.2	16.4	27275.909	0.466910	Sp
11	+ 85	+ 8	12.5	14.0	31259.8	67.0	Sp F-G, Min
12	- 62	+ 43	15.1	16.5	26628.776	0.665616	
13	- 77	+ 73	15.1	16.4	26924.972	0.706616	
14	+ 83	- 68	15.4	16.4	20749.843	0.693785	
15	+ 80	- 76	15.7	16.4	26944.880	0.430152	
16	- 31	- 27	15.3	16.5	27275.950	0.655917	
17	+ 2	- 63	15.2	16.3	27274.901	0.636434	
18	-189	-707	15.95	16.85	40088.467	0.36226	P var
19	+235	-502	16.00	17.05	39089.384	0.319403	P var
20	+400	+ 74	16.00	16.75	37162.281	0.2863224	
21	+315	+208	15.75	16.85	39789.516	0.712178	P var

New vars. 18-21, Margoni and Stagni.

Arp, AJ 60.1 (1955); Arp and Wallerstein, AJ 61.272 (1956); Wallerstein, AJ 62.168 (1957), ApJ 127.583 (1958); Kulikov, VS 13.400 (1961); Mantegazza, Bologna Pubbl 8, 5 (1961); Preston, Krzeminski and Smak, ApJ 137.401 (p) (1963); Margoni and Stagni, IBVS 239 (1967); Kukarkin, IBVS 253, 254 (1968); Poole, Master's Thesis, Toronto (1968); Demers, AJ 74.925 (1969): Margoni and Stagni, Asiago Contr 213 (1969); Kukarkin, IBVS 422 (1970): Voroshilov, AC 623.7 (1971); Eggen, ApJ 172.639 (1972)

S55a, S57, S59, S61, R62a, S62, P64, S64, R65, S67, C&S69, S69, S70

NGC 7099 (Messier 30) $a 21^{h}37^{m}.5, \delta - 23^{\circ}25'$

1 2	+ 30.0 + 58.6	- 60.6 -126.2	15.0 14.92	16.5 16.04	32060.525 32060.46	0.743608 0.6535049	
3	- 96.7	- 39.0	14.91	16.06	32039.39	0.69632	
4	-339:	- 51:	16.1	18	32450	9-10	UG
5							Terzan 1
6							Terzan 2
7							Terzan 3
8							Terzan 4
9							Terzan 5
10							Terzan 6
11							Terzan 7
12							Terzan 8

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	7099 (conti	nued)					
Variat Rosi	oles of Terza ino, Asiago (n (1968) id Contr 117 (1	entified o 1961); Te	n print. rza <mark>n,</mark> Hau	te Prov Publ 9,	24 (p) (1968);	Dickens, Preprint
(1972) S55a) 1, R57, S57,	S59, R62a,	S62, S64	, R65, St6	6, S69, S70		
Palom	ar 12 a 21	h43m_7,δ-	- 21° 28′				
1	-97.4	+129.8	20.3	21.1			Zwicky, RR
2 3	$-80.8 \\ -51.2$	+136.8 +102.0	20.3 18.5	21.5 22			RR, K&R 103a-D plate K&
Zwick R61, S	y, Morphole 61, S64, S6	gical A stroi 9	nomy, p. 2	205 (p) (1	957); Kinman a	nd Rosino, AS	P 74.503 (p) (1962)
Palom	ar 13 a 23	h04m.2,δ+	-12° 28′				
1	32	+ 32	17.35	18.55	35759.505	0.538158	P var
2	+11	- 10	17.45	18.60	35782.381	0.597111	
3	- 8	+ 21	17.35	18.55	36455.770	0.578168	
4	+76	-300	17.55	18.65	35721.615	0.575340	
All for Rosin	ur new varia o, Asiago Co	bles, Rosino ontr 85 (p) (5 1957); C	iatti, Rosi	no and Sussi, Ba	amb Kl Veröff 4	4, 40.228 (1965)
R57, S	559, R61, S6	51, S62, S67	, \$69				
NGC '	7492 $a 23^{1}$	ⁿ 05 ^m .7, δ -	15°54′				
1	+19.5	+ 96.0	17.07	17.67	37499.603	0.804873	
2	-19.5	+ 49.5	16.91	17.31		0.292045	
3	+30.0	-253.5	17.39	17.79		0.270998	
4	- 36.5	-116.0	15.66	15.96		17.9	red
Three Kini 73.57	suspected v man and Ro 9 (1968)	ariables, Ba sino, ASP 7	rnes (196 4.503 (19	8), who fc 62); Barn	ound variables 2 es, Priv comm (-4. 1966), AJ 72.2	91 (1967), AJ
S55	a, S57, S59,	S61, S62, S	64, S67, S	\$69, \$70			

INDEX OF ABBREVIATIONS USED IN REFERENCES, LISTED CHRONOLOGICALLY

- S55a Sawyer, H., Toronto Publ 2, 2: A Second Catalogue of Variable Stars in Globular Clusters, Table II, Summary of Variable Stars in 72 Globular Clusters (1955)
- S55b Sawyer, H., Toronto Publ 2, 2: Table I, Thirty-Four Globular Clusters Not Searched for Variables (1955)
- R57 Rosino, L., Budapest Mitt 42: Problems of Variable Stars in Globular Clusters (1957)
- S57 Sawyer Hogg, H., IAU Trans 9.548, Table 3a: Fifty-Nine Globular Clusters (1957)
- S59 Sawyer Hogg, H., Handbuch der Physik, ed. S. Flügge (Berlin: Springer Verlag), p. 181; Star Clusters (1959)
- R61 Rosino, L., IAU Trans 11B.300: Work Being Carried Out at the Asiago Observatory (1962)
- S61 Sawyer Hogg, H., IAU Trans 11A.271: Report of Sub-Commission 27b, Variable Stars in Clusters (1962)
- A62 Arp, H.C., Symposium on Stellar Evolution, 1960, La Plata (1962)
- R62a Rosino, L., Pad Com 29, Tables 3 and 4: Clusters Observed for Variables (1962)
- R62b Rosino, L., Pad Com 29, Table 1: Clusters Never Observed for Variables (1962)
- R62c Rosino, L., Pad Com 29, Table 2: Clusters Insufficiently Observed for Variables (1962)
- S62 Sawyer Hogg, H., Bamb Kl Veröff 34.8: Numbers and Kinds of Variables in Globular Clusters (1962)
- F&L63 Fourcade, C. R., and Laborde, J. R., La Plata Bol 6.111: Estrellas variables en cumulos globulares (1963)
- P64 Preston, G., Ann Rev Astr Ap 2.23: The RR Lyrae Stars (1964)
- S64 Sawyer Hogg, H., IAU Trans 12A.390: Variable Stars in Star Clusters (1965)
- L65 Lohmann, W., AN 289.99; Perioden-Helligkeits-Beziehungen von RR Lyrae-Sternen in Kugelförmigen Sternhaufen (1965)
- R65 Rosino, L., Bamb Kl Veröff 4.40.98: Characteristics and Absolute Magnitudes of the RR Lyrae Variables in Globular Clusters (1965)
- FLA66 Fourcade, C. R., Laborde, J. R., and Albarracin, J., Atlas y Catalogo de estrellas variables en cumulos globulares al sur de -29°, Cordoba (1966)
- Stofe Stothers, R., AJ 71.943: The Ultraviolet Dwarfs: A New Class of Degenerate Stars (1966)
- S67 Sawyer Hogg, H., IAU Trans 13A.555: Report of the Committee on Variable Stars in Clusters (1967)
- C&S69 Coutts, C., and Sawyer Hogg, H., Toronto Publ 3.1: Period Changes of RR Lyrae Variables in the Globular Cluster Messier 5 (1969)
- S69 Sawyer Hogg, H., Non-Periodic Phenomena in Variable Stars, ed. L. Detre, p.475: The Third Catalogue of Variable Stars in Globular Clusters (1969)
- S70 Sawyer Hogg, H., IAU Trans 14A.291: Report of the Committee on Variable Stars in Clusters (1970)
- F72 Feast, M., Preprint: Red Variables in Globular Clusters, in the Galactic Centre and in the Solar Neighbourhood (1972)

INDEX OF ABBREVIATIONS OF PUBLICATIONS

AAS Bull	Bulletin of the American Astronomical Society
AAVSO Abstr	Abstract of the American Association of Variable Star Observers
AC	Astronomical Circular. Bureau of Astronomical Information of the Academy of Sciences of USSR, Moscow
Acta Astr Sinica	Acta Astronomica Sinica
AG Mitt	Mitteilungen der Astronomischen Gesellschaft
AJ	The Astronomical Journal. Published by the American Astronomical Society
AN	Astronomische Nachrichten. Akademie-Verlag, Berlin
Ann Aph	Annales d'Astrophysique. Revue Internationale trimestrielle
Ann Rev Astr Ap	Annual Review of Astronomy and Astrophysics. Palo Alto
АрЈ	The Astrophysical Journal, An International Review of Spectroscopy and Astronomical Physics, Chicago
ApJ Suppl	The Astrophysical Journal. Supplement Series
Asiago Contr	Contributi dell'Osservatorio Astrofísico dell'Università di Padova in Asiago
ASP	Publications of the Astronomical Society of the Pacific. San Francisco
Astr Abh Hoffmeister	Astronomische Abhandlungen Prof. Dr. C. Hoffmeister zum 70. Geburtstag Gewidmet. Leipzig
Astr and Ap	Astronomy and Astrophysics
ВАС	Bufletin of the Astronomical Institutes of Czechoslovakia. Prague
Bamb Kl Veröff	Kleine Veröffentlichungen der Remeis-Sternwarte zu Bamberg
Bamb Veroff	Veroffentlichungen der Remeis-Sternwarte zu Bamberg
BAN	Bulletin of the Astronomical Institutes of the Netherlands. Haarlem
BAN Suppl	Bulletin of the Astronomical Institutes of the Netherlands. Supplement Series
Berg Abh	Abhandlungen aus der Hamburger Sternwarte. Hamburg-Bergedorf
Bologna Pubbl	Pubblicazzioni dell' Osservatorio astronomico universitario di Bologna
Budapest Mitt	Mitteilungen der Konkoly-Sternwarte zu Budapest-Svábhegy
Cordoba Repr	Observatorio de Cordoba. Reprint Series
НА	Annals of the Astronomical Observatory of Harvard College. Cambridge, USA
Haute Prov Publ	Publications de l'Observatoire de Haute Provence
HB	Bulletin of the Harvard College Observatory. Cambridge, USA
HC	Harvard College Observatory. Circular. Cambridge, USA
IAU Coll	International Astronomical Union, Colloquium
IAU Draft Reports	International Astronomical Union. Agenda and Draft Reports
IAU Trans	Transactions of the International Astronomical Union
IBV S	Information Bulletin on Variable Stars of Commission 27 of the Inter- national Astronomical Union. Budapest
Inf Bull So Hemis	Information Bulletin for the Southern Hemisphere. La Plata
IR ASC	The Journal of the Royal Astronomical Society of Canada
10	Journal des Observateurs. Marseilles
	the state of the state of the state of the Deletion Le Dista
La Plata Bol	Asociación Argentina de Astronomia, Boletin, La Plata
La Plata Symp	Symposium on Stellar Evolution, 1960. La Plata
Leanet	rublications of the Astronomical Society of the Factice. Leaffet, San Fran-
Laidan Ang	Annalan van de Sterrewacht te Leiden
Leiden Ann	Annalen van de Sterrewacht te Leiden

Louv Publ	Publications du Laboratoire d'Astronomie et de Géodésie de l'Université de Louvain
Lyon Publ	Publications de l'Observatoire de Lyon. Série I. Astronomie
MN Mt Wils Contr MVS	Monthly Notices of the Royal Astronomical Society. London Contributions from the Mount Wilson Observatory Mitteilungen über veränderliche Sterne. Herausgegeben von der Sternwarte Sonneberg
NASA Tech Tr	National Aeronautics and Space Administration, USA. Technical Translatior
Obs	The Observatory. Monthly Review of Astronomy, Oxford
Pad Com Proc Astr Soc Aust Pulk Mitt (Isw)	Osservatorio Astronomico di Padova. Comunicazioni Proceedings of the Astronomical Society of Australia. Sydney Mitteilungen (Istwestija) der russischen Hauptsternwarte zu Pulkovo
Quart JRAS	The Quarterly Journal of the Royal Astronomical Society
RAJ	Russian Astronomical Journal (until 1931). Astronomical Journal of Soviet Union
Royal Obs Ann Royal Obs Bull	Royal Observatory Annals. Herstmonceux: Royal Greenwich Observatory Royal Observatory Bulletins. Joint Publications of the Royal Greenwich Observatory, Herstmonceux; Royal Observatory, Cape of Good Hope
Rutherfurd Contr	Contributions from the Rutherfurd Observatory of Columbia University, New York
SAI	Memorie della Società Astronomica Italiana
Sky Tel	Sky and Telescope. Harvard College Observatory, Cambridge, USA
Sonn Veröff	Veröffentlichungen der Sternwarte zu Sonneberg
Soviet Astr AJ	Soviet Astronomy AJ. A translation of the Astronomical Journal of the Academy of Sciences of USSR. Published by the American Institute of Physics, Inc., New York
Spec Vat Ric	Specola Astronomica Vaticana. Richerche Astronomiche
Toronto Comm	Communications from the David Dunlap Observatory, University of Toronto
Toronto Publ	Publications of the David Dunlap Observatory, University of Toronto
UOC	Circular of the Union Observatory
VS	Variable Stars. Academy of Sciences of USSR, Moscow
VS Supp	Variable Stars. Supplement Series. Moscow
ZAp	Zeitschrift für Astrophysik Berlin-Göttingen-Heidelberg

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

NUMBER 7

THE SCULPTOR DWARF SPHEROIDAL GALAXY I. DISCOVERY AND IDENTIFICATION OF VARIABLE STARS

by

S.L. TH. J. VAN AGT

1978 TORONTO, CANADA

-

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

NUMBER 7

THE SCULPTOR DWARF SPHEROIDAL GALAXY I. DISCOVERY AND IDENTIFICATION OF VARIABLE STARS

by

S.L. TH. J. VAN AGT

1978

TORONTO, CANADA

PRINTED AT UNIVERSITY OF TORONTO PRESS

THE SCULPTOR DWARF SPHEROIDAL GALAXY I. DISCOVERY AND IDENTIFICATION OF VARIABLE STARS

S.L. TH. J. VAN AGT

ABSTRACT

All 602 variable stars in the Sculptor dwarf spheroidal galaxy which have been discovered by the author and by previous investigators are identified. Positions are given in rectangular coordinates relative to the center of the distribution of the variables at RA (1950) = $0^{h}57^{m}44^{s} \pm 2^{s}$, Dec (1950) = $34^{\circ}0'23'' \pm 20''$.

For 64 variables preliminary periods are given.

The estimated total number of variables in the Sculptor galaxy is 1050 ± 80 .

INTRODUCTION

The discovery of the dwarf galaxy in Sculptor by Harlow Shapley (1938 a) and the subsequent discovery of a similar object in Fornax (Shapley 1938 b) came when the interest of astronomers was focussed strongly on the significance of the sequence of galactic forms. They consequently attracted considerable interest.

In the Local Group ten Sculptor-type galaxies are now known. Table I includes the recently discovered dwarf spheroidal galaxy in Carina (Cannon, Hawarden and Tritton 1977).

Name	1	b	Remarks
Fornax	237°	- 66°	Shapley (1938 a)
Sculptor	286	- 83	Shapley (1938 b)
Leo I	226	+ 49	Wilson (1955)
Leo II	219	+ 67	Wilson (1955)
Ursa Minor	103	+ 45	Wilson (1955)
Draco	86	+ 35	Wilson (1955)
Carina	260	- 22	Cannon et al (1977)
Andromeda I	122	- 25	van den Bergh (1972)
Andromeda II	129	- 29	van den Bergh (1972)
Andromeda III	119	- 26	van den Bergh (1972)

TABLE I Sculptor-Type Galaxies

Nowadays the study of the dwarf spheroidal galaxies, especially of those nearest to us, contributes to investigations of stellar evolution and the evolution of the Local Group. (Norris and Zinn 1975, Lynden Bell 1976, Mathewson and Schwarz 1976). However knowledge about the stellar content and more specifically the numerous variable stars is still incomplete for these systems, as shown in review papers about the dwarf spheroidals by van den Bergh (1968, 1975), van Agt (1973) and Hodge (1971).

This report is a first contribution in an extended study of the variable stars in the dwarf spheroidal galaxy in Sculptor.

DISTANCE AND DIMENSIONS

Shapley (1938 a) assumed correctly, on the basis of his scanty preliminary data, that the stellar population of the Sculptor galaxy was in many respects comparable with that of galactic globular clusters. On the assumption that the brightest stars in the Sculptor galaxy would have an absolute photographic magnitude of about M_{pg} = 1.5, Shapley (1938a) derived a distance of 80 kpc.

Baade and Hubble (1939) observed the Sculptor galaxy with the 100-inch Mount Wilson telescope and were the first to discover, on a small number of plates, two variables thought to be W Virginis stars and 38 RR Lyrae variables, the latter visible close to the plate limit and only when they were near maximum luminosity.

On the basis of the observed mean maximum luminosity $m_{pg} = +19.12$ for the RR Lyrae stars, Baade and Hubble (1939) derived a distance of 84 kpc for the Sculptor galaxy. For these stars they assumed a semi-amplitude of 0.5 mag, and a median absolute magnitude of $M_{pg} = 0.0$ Later corrections to the sequence in SA 68 (Stebbins, Whitford, Johnson 1950) used by Baade and Hubble for the transfer to Sculptor were balanced by the shift of the median absolute photographic magnitude for RR Lyrae stars to fainter values so that Baade and Hubble's value of the distance (Hodge 1965) remains almost unaltered.

The two bright cepheids in Sculptor discovered by Baade and Hubble belong to a class of cepheids whose period-luminosity law differs from that of the cepheids in globular clusters (Baade and Swope 1961, van Agt 1973, van den Bergh 1975). Such anomalous cepheids with P < 10 days are also found in other dwarf spheroidal galaxies of the Local Group and are brighter than the BL Herculis variables of population II with P less than 10 days in galactic globular clusters. Provisional periods for these anomalous BL Her variables in the Sculptor cluster were determined by Miss Swope (Shapley 1939) and used by Shapley for a new distance determination of 76 kpc. In view of the uncertainties involved, this result is in agreement with his earlier estimate (Shapley, 1938 a) and with the value derived by Baade and Hubble (1939).

Hodge (1965) derived the first C – M diagram for the Sculptor dwarf spheroidal galaxy but it did not reach the horizontal branch. From the luminosities of the giant branch stars, the two anomalous BL Her stars, and the three RR Lyraes observed at maximum luminosity near the limit of his plates Hodge (1965) estimated a distance of 88 ± 7 kpc.

Kunkel and Demers (1977) recently derived a new distance of 78.3 kpc for Sculptor from the luminosity of the horizontal branch stars in the region of the variable gap in their C-M diagram. Their determination essentially confirms the results of the earlier investigators.

The apparent diameter was first determined by Shapley (1938 a) from star counts. Shapley's observations indicate an apparent radius of at least 40 arcmin but they do not exclude a radius of as much as 60 arcmin. From star counts Hodge (1965) derived a limiting radius of 53 arcmin, a value consistent with Shapley's result. At the distance of 78.3 kpc Hodge's angular radius yields a linear diameter of 2.4 kpc.

The variable stars reported on here extend up to distances from the center of the Sculptor galaxy of 60-70 arcmin. These values are in reasonable agreement with Shapley's conclusion that the Sculptor system might have a radius as large as 60 arcmin.

The dwarf spheroidal galaxies have many characteristics in common with globular clusters and at the same time show remarkable differences (van den Bergh 1975, van Agt 1973). The dwarf spheroidal galaxies are obviously considerably larger, but so far no transitional object with respect to linear dimension has been found.

OBSERVATIONS

Thackeray observed the Sculptor dwarf spheroidal galaxy during the observing seasons of 1948, 1949, 1950 and 1951 with the 74-inch Radcliffe telescope. His aim was specifically to investigate and discover variable stars in the central part of the dwarf galaxy. The surface density of the stars in the central region is sufficiently low to permit resolution of individual stars.

As a preliminary result Thackeray (1950) reported 237 variable stars and he derived provisional results on periods for 33 of them. He estimated the total number of variables to be 700. Our investigation of the variable stars in the Sculptor dwarf galaxy is a continuation of Thackeray's survey and for this purpose Thackeray kindly put his plates and reductions at our disposal. Considering both the number of variable stars marked by Thackeray in the central part of the galaxy and the dimensions of the system a bountiful harvest of variable stars was expected from the outset of our investigation.

In 1965 Sidney van den Bergh obtained a series of plates on the Sculptor system with the 48-inch Palomar Schmidt. In 1970 Christine Coutts obtained additional observations with the 24/36-inch Curtis Schmidt of the University of Michigan installed at Cerro Tololo, Chile. Helen Sawyer Hogg started the blinking of these plates at the David Dunlap Observatory. This material was turned over to me when I arrived at that Observatory on leave from the Department of Astronomy at the Nijmegen University, the Netherlands. I continued the series of Curtis Schmidt plates at Cerro Tololo in 1971. In addition Serge Demers put at our disposal the plates of Sculptor obtained by him with the same telescope in 1968 and 1969.

The field of the Curtis Schmidt telescope is well suited for observations of an extended object such as the Sculptor dwarf galaxy. On the plates taken with this telescope, which has a plate scale of 96". 6/mm, inspection of the individual stars is possible even in the central region of this galaxy. This is due in part to the low surface density of stars and in part to the use of Kodak IIIa-J emulsion which partly overcomes the limit to linear resolution set by the small plate scale. To reach sufficiently low limiting magnitudes the plates are typically exposed for two hours. This leads to a reduction of the resolution in time of the brightness variations, especially for the variables with the shortest periods. For the c-type RR Lyrae with periods between 5 and 11 hours the exposures integrate a considerable part of the light curve. Obviously there is a reduced possibility of detection of the shortest period variables as a consequence of the long exposure time.

The photographic observations available to the author are listed in table II. They cover the period from 1938 to 1971. The earliest ones are the plates obtained by Baade (1939) and Hubble (1939). The large number of observations listed in table II provides a good time base for period determination.

GENERAL	LIST OF PHOT	FOGRAPH	TABLE IC OBSEF	II VATIONS	OF THE SCULPTOR	DWARF SPHEROH	JAL GALAXY.
Telescope	Observer	Year	Emulsior	n,Filter	Number of Plates	Scale of Plates	Exposure Time (min)
100 - inch Mount Wilson	Baade, Hubble	1938	various combina	tions	6 .	16".2/mm	90 - 120
	Baade Baade	1945 1946	103aE 103aE				90
74 - inch	Thackeray	1948	103aO	none	_	22".5/mm	typical exposure time
Radcliffe	Thackeray	1949 1949	103aO 103aD	none	43		60 min 120 min
	Thackeray	1950	103aO	none	34		
	Thackeray	1951	103aO	none	2		
48 - inch	v.d. Bergh	1965	103aD	WR 12	4	67".5/mm	12 - 15
Palomar	v.d. Bergh	1965	103aO	WR 47	67		10
	v.d. Bergh	1965	103aO	GG 13	61		12
	v.d. Bergh	1965	103aE	RG 1	-		45
	v.d. Bergh	1969	103aD	WR 12	1		15
	v.d. Bergh	1969	IllaJ	WR 4	-		30
24/36 - inch	Demers	1968	llaO	GG 13	3	96".6/mm	60
CT10	Demers	1968	llal)	GG 14	3		120
	Demers	1969	IIIaJ	GG 13	8		120
	Demers	1969	103aE	NG 2]		120
	Coutts	1970	IIIaJ	GG 13	11		120
	Coutts	1971	llaD	GG 14]		30
	van Agt	1971	IIIaJ	GG 13	26		120
	van Agt	1971	HaO	GG 13	Ι		60
60 - inch CTIO	van Agt	1971	103aO	GG 13	2	18"/mm	75

During the observing run of 1971 the author also obtained a small number of photographic transfers to the sequences set up in Kron 3 (Walker 1970) and in NGC 121 (Tifft 1963) to extend the sequence in the Sculptor dwarf galaxy that had been obtained by Hodge (1965) to fainter limits. Two such transfers were also obtained with the 60inch telescope at Cerro Tololo and used for the same purpose (van Agt 1973). A comparison of the photoelectric sequence of Kunkel and Demers (1977) and preliminary results from the photographic transfers does not show any serious discrepancies.

DISCOVERY AND IDENTIFICATION

From among the Curtis Schmidt plates available at the end of 1970 and listed in table III, selection of pairs for blinking was made on the basis of time interval, plate quality and limiting magnitude (table IV). The plate combinations were all blinked on the Zeiss blink comparator of the David Dunlap Observatory. The work was carried out without reference to preceding variable star searches by Baade and Hubble (1939), Thackeray (1950) and Helen Sawyer Hogg (1970). In all, 521 stars were marked by the author as variable or as being suspected of brightness variations.

The 602 variable stars discovered both by previous investigators and the author are listed in table V. They are numbered in chronological order of discovery.

The variable stars numbered 1 through to 26 are those first found by Baade and Hubble (1939). Baade and Hubble identified (1939) only 10 variable stars out of the 40 they discovered. On an unpublished chart of the Sculptor system Baade identified

CTIO Plate Nr.	Date	Exp.Time	Emulsion	Filter	Remarks
5084	Sept 18, 1969	120 min	103aE	NG 2	
5166	Oct 12, 1969	120	IIIaJ	GG 13	baked plate
5168	Oct 12, 1969	120	1HaJ	GG 13	baked plate
5176	Oct 13, 1969	120	IllaJ	GG 13	baked plate
5184	Oct 14, 1969	120	H IaJ	GG 13	baked plate
5186	Oct 14, 1969	120	IIlaJ	GG 13	baked plate
5190	Oct 15, 1969	120	IIIaJ	GG 13	baked plate
5197	Oct 16, 1969	120	IIIaJ	GG 13	baked plate
5643	Dec 13, 1969	90	IIIaJ	GG 13	baked plate
7093	Aug 4, 1970	120	IIIaJ	GG 13	
7095	Aug 4, 1970	120	IllaJ	GG 13	
7111	Aug 6, 1970	120	IIIaJ	GG 13	
7113	Aug 6, 1970	120	IIIaJ	GG 13	
7128	Aug 7, 1970	120	IIIaJ	GG 13	
7130	Aug 7, 1970	120	IIIaJ	GG 13	
7142	Aug 8, 1970	120	IIIaJ	GG 13	
7144	Aug 8, 1970	120	lHaJ	GG 13	
7161	Aug 9, 1970	120	IIIaJ	GG 13	
7163	Aug 9, 1970	120	IIIaJ	GG 13	
7180	Aug 10, 1970	120	IIIaJ	GG 13	

TABLE IIILIST OF THE 1969-1970 CURTIS SCHMIDT PLATES.

Plate Pair Nr.	CTIO Plate Nr.	Time Interval
1	7093,7180	6 ^d .086
2	7130,7163	2.001
3	7093, 7095	.312
4	5166, 5186	2.126
5	5176,5184	1 .019
6	7093,7163	5 .097
7	5168,7130	299 .097
8	5166,7130	299 .232
9	5176,7130	298 .202

TABLE IV PLATE PAIRS FORMED FOR BLINKING FROM THE 1969-1970 CURTIS SCHMIDT OBSERVATIONS.

16 more however. For the remaining variable stars reported by Baade and Hubble no identification could be traced.

The variable stars numbered 27 through 241 are the ones newly discovered by Thackeray (1950) on the plates obtained with the Radcliffe telescope. These did not include plates off-set from the center of the dwarf galaxy. Variable stars farther from the center than approximately 20 arcmin therefore remained undetected.

In the preliminary search for variables on the Curtis Schmidt plates Helen Sawyer Hogg discovered 49 new variable stars. These objects have been assigned the numbers 242 through to 290.

The remaining stars, numbered through to 603, are the new variable stars discovered by the author. The star number 474 was subsequently found not to be a variable star and consequently has been eliminated from table IV. The total number of variable stars listed in table IV is therefore 602.

Kunkel and Demers (1977) found from their photographic photometry that their star 213 shows widely discrepant magnitudes on both B and V plates. They suspected this star to be variable; it is identified by Kunkel and Demers (1977) in their figure 5 as Star V. On the Radcliffe plates the photographic image of this object is in general not compatible with star images of similar photographic density. On recently obtained photographic observations at the prime focus of the 3.6 meter telescope of the European Southern Observatory at La Silla, Chile, this object under good seeing conditions is resolved as a faint galaxy. Widely varying magnitudes can be expected if such an object is mistaken for stellar and measured on plates obtained under not identical seeing conditions.

The variable stars listed in table V are identified by their number on Plates I. II, III, IV, V and VI. On all these Plates, directions on the sky and the scale are indicated.

The stars marked with "f" in column 5 of table V are those farthest away from the center of the Sculptor galaxy and not within the area that is represented in plate VI.

CENTER

Counts have been made of all the variables listed in table V in strips 60" wide placed over the galaxy in the directions of right ascension and declination. The maxima of the counts in the strips orientated in this way led to the adopted position for the center of the distribution of the variable stars at RA (1950) = $0^{h}57^{m}44^{s} \pm 2^{s}$, Dec (1950) = $-34^{\circ}0'23'' \pm 20''$.

COORDINATES OF THE VARIABLES

The coordinates were calculated from plate positions determined with the measuring facility of the projecting blink-comparator of the Department of Astronomy of the University of Nijmegen, the Netherlands (van Agt, 1972). The plate constants were derived from standard coordinates using a plate-scale of 96".6/mm.

The rectangular coordinates are given for each of the 602 stars in columns 2 and 3 of table V. These coordinates are quoted in seconds of arc and are relative to the adopted center of the distribution of the variable stars.

The accuracy in the x and y coordinates, corresponding respectively to right ascension and declination, is ± 4 arcsec.

COMPLETENESS

The total number of discoveries of variable stars in a series of plate comparisons and the average number of times that each variable was found have been used by van Gent (1933) to derive the probability w of discovering a variable star on each plate pair of the series and N, the total number of variable stars which can be expected to be present in the field investigated. In each of the nine intercomparisons, N was calculated by applying van Gent's method (van Gent, 1933, Plaut, 1965, Hoffmeister 1970). The results are given in table VI.

Number of Intercomparisons	Discovery Probability w (van Gent 1933)	Total of Variables Expected N (van Gent 1933)
1	_	-
2	0.152	650
3	0.160	692
4	0.207	631
5	0.206	682
6	0.182	773
7	0.162	805
8	0.141	839
9	0.129	897

TABLE VI

THE DISCOVERY P	ROBABILITY /	And	EXPECTED	NUMBER	OF	VARIABLE	STARS.
-----------------	--------------	-----	----------	--------	----	----------	--------

There is a tendency for the discovery probability w to decrease as more and more plate pairs are intercompared. Hoffmeister (1933) pointed out that this decrease indicates the existence of a dispersion in the discovery probability among the variable stars. This dispersion is not taken into account in van Gent's method, which is based on the assumption that the discovery probability for each variable in the field is the same on each plate pair. There are a number of parameters to which the discovery probability of a variable star can be related. The effects of the apparent brightness of the stars, the shape of the light curve and the range of the brightness variations have been investigated by a number of authors (Kviz 1956, Kiang 1962, Plaut 1953). Also variations in the quality of the plate pairs and changes in the attitude of the observer may cause variations. In a general way the decrease of the discovery probability can be explained by the fact that during the first intercomparisons those variables will be found which have large discovery probability and in later intercomparisons essentially those variables are left which have small discovery probability (Hoffmeister 1933). Of the variables discovered by Baade 92% were rediscovered. Of those found by Thackeray in his extensive survey of the central region, 71% were rediscovered.

Kviz (1959) and Kiang (1962) have pointed out that the net effect of not taking into account variations in the discovery probability is an overestimate of w and thereby an underestimate of N. Richter (1968) in an extension of van Gent's method found that for RR Lyrae variables the total number of variables N computed with van Gent's method should be increased by a factor of 1.2 when one takes into account systematic effects on the discovery probability. From a semi-empirical method Plaut (1966) derived essentially the same factor.

From the preliminary periods and the average median luminosities of the variables in Sculptor it is safe to conclude that most of the variables are RR Lyrae stars. In view of the limited data on the variable stars at this time it is not possible to analyse the blink statistics with either Richter's or Plaut's method. For the time being we therefore simply adopt Richter's factor of 1.2 for extrapolating the results of table VI to obtain a somewhat more realistic total number of variables in the dwarf galaxy of 1050, with an estimated mean error of 80. The low linear resolution of the Curtis Schmidt plates in combination with the increased surface density of stars in the central region of Sculptor reduces the discovery probability relative to the outer regions of the system. The somewhat lower completeness factor derived from the number of rediscoveries of Thackeray's variables is not in disagreement with our completeness arguments.

THE RR LYRAE STARS

At the present stage of the reductions, preliminary results on the periods for some of the variable stars are reported. In column 4 of table V periods for 64 stars are given. These periods have been determined by Thackeray and his co-workers Jackson, Shuttleworth and Wesselink, all of whom took part at certain stages in the reductions, and by the author. In column 5 of table V initials indicate to whom each period determination should be attributed. The variable stars for which periods have been determined are located in the central region of the dwarf galaxy because so far only the Radcliffe observations have been used for this.

Among those with periods, 51 are ab-type RR Lyrae stars and 9 have c-type RR Lyrae star characteristics. Although it is expected that the shortest period c-type RR Lyrae are under-represented in the discoveries, due to the long exposure times of the observations, it is evident that c-type RR Lyrae stars in Sculptor are not as scarce as in the Draco dwarf galaxy where they number about 4% of the number of RR Lyrae stars, (Baade and Swope 1961). The frequency distribution of the periods of the RR Lyrae stars in the Sculptor galaxy is smooth, does not show double maxima and is in general very similar to the period-frequency diagram of the galactic globular cluster NGC 5272 (Messier 3), (van Agt 1973, Cacciari and Renzini 1976, Thackeray 1950).

The mean period of the 51 ab-type RR Lyrae stars is $P = 0^d$.567. The shortest period in this sample of ab-type RR Lyrae stars is $P = 0^d .482$ (V66) and the longest is $P = 0^{d}.836 (V88).$

The mean periods of the ab-type RR Lyrae stars in four dwarf spheroidal galaxies are listed in table VII together with the number of ab-type RR Lyrae stars from which each mean period was determined.

Name	P	Number of ab-type
Sculptor	0 ^d .567	51
Draco	0.611	126
Ursa Minor	0.636	21
Leo II	0.592	64

TABLE VII

MEAN PERIODS OF ab-TYPE RR LYRAE IN DWARF SPHEROIDAL GALAXIES

Evidently the distribution of the mean periods of ab-type RR Lyrae stars in dwarf spheroidal galaxies does not follow the concept of the two period-groups observed for the RR Lyrae stars in galactic globular clusters by van Agt and Oosterhoff (1959). The mean period for the long period group (group I) is $\overline{P} = 0^d.647 \pm 0.015$ and for the short period group (group II) is $\overline{P} = 0^d .549 \pm 0.010$.

THE ANOMALOUS BL HERCULIS STARS

The variable stars V25 (= Baade-Hubble A), V26 (= Baade-Hubble B), and V119 belong to the class of anomalous BL Her stars which also have been discovered in other dwarf spheroidal galaxies in the Local Group (Swope 1968, Baade and Swope 1961, van Agt 1967). Similar variable stars are probably present in the Small Magellanic Cloud (van Agt 1973, Graham 1975). Zinn and Dahn (1976) report that V19 in the galactic globular cluster NGC 5466 might well belong to the class of anomalous BL Her stars, if indeed this variable is a member of the cluster. The anomalous BL Her stars are brighter by approximately $0.5 - 1.0 m_{pg}$ at the same period than the cepheids in the galactic globular clusters (van Agt 1973, Baade and Swope 1961, van den Bergh 1975).

Kunkel and Demers (1977) recently determined the photometric properties of the Baade-Hubble variable stars A and B (V25 and V26). They are located in the C - M diagram of the Sculptor dwarf galaxy about 1.4 mag above the horizontal branch and are about half a magnitude brighter than the population II cepheids in galactic globular clusters of the same period.

Plates obtained recently at the prime focus of the 3.6 meter telescope of the European Southern Observatory show that V92, formerly classified as an anomalous BL Her star (van Agt 1973), is an optical double. One component is variable, the other is a star of similar mean luminosity. When unresolved, such an object would appear to have a luminosity in the range of the anomalous BL Her stars.

On the basis of the presently available data Norris and Zinn (1975) and Demarque and Hirschfeld (1975) offer a hypothesis to explain the observed period-luminosity relation for the anomalous BL Her stars. They suggest that these stars belong to a younger population of stars than the majority in the same dwarf spheroidal galaxy, which itself was formed independently of and after the collapse of our galaxy. Renzini, Mengel and Sweigart (1977) suggest, however, that if higher masses are assumed for the anomalous BL Her stars. mass-transfer within binary systems in the dwarf spheroidal galaxies also is a hypothesis in agreement with the observational evidence.

LONG-PERIOD AND RED-IRREGULAR VARIABLE STARS

V544 located at about 14 arcmin north of the center of the Sculptor dwarf galaxy is bright on Curtis Schmidt plates taken in August 1970, but faint on plates taken in the same month one year earlier. Eye estimates of the variable star on the Radcliffe plates, where the star is in an unfavorable position close to the plate border, show the variable going through a maximum in 1949. The time of rise to maximum and the time of decline to minimum is of the order of 120 days. A longer period of 150 days is possible.

V97 is identical to the extremely red star numbered 453 in the list of Hodge (1965) of stars measured for the C -M diagram. In his C -M diagram this variable star is located at B-V = 2.16 mag., toward the red of the brightest stars of the giant branch. Eye estimates indicate a range in luminosity of approximately 0.6 m_{pg} , V97 is not among the stars measured by Kunkel and Demers (1977).

ACKNOWLEDGEMENTS

I want to express my gratitude to the Director of the David Dunlap Observatory Dr. Donald A. MacRae, who made it possible for me to accept the kind invitation of Dr. Helen Sawyer Hogg and Dr. Sidney van den Bergh, to continue my work on the Sculptor dwarf spheroidal galaxy at their observatory under such pleasant conditions. To them in particular I direct my appreciation for their assistance and patience.

The plates by Baade and Hubble were kindly put at my disposal by Dr. Horace W. Babcock, the Director of the Mount Wilson and Palomar Observatories.

Without the cooperation of Dr. A.D. Thackeray who made the Radeliffe plates and his research notes available, this work would still lack the basic observations for the determination of periods.

l appreciate the cooperation of the CTIO directorate and staff who helped in obtaining the excellent new Curtis Schmidt observations.

To the staff of the David Dunlap Observatory and especially Dr. Christine Coutts-Clement I am indebted for their help and for their excellent observational material obtained at CTIO. I also want to thank Dr. Paul Hodge. Dr. Serge Demers and others who in many ways helped or are helping with the Sculptor project.

The research was supported by grants to Professors Hogg and van den Bergh through the National Research Council of Canada, and by the David Dunlap Observatory.

REFERENCES

Agt, S. van and Oosterhoff, P. 1959, Ann. Sterrew. Leiden, vol. 21, p. 253.

- Agt, S. van. 1972, Proc. Conf. on the Role of Schmidt Telescopes in Astronomy, ed. U Haug (Hamburg Obs.) p. 97.
- Agt, S. van. 1973, Variable Stars in Globular Clusters and in Related Systems, ed. J.D. Fernie (Dordrecht-Holland), p. 35.
- Baade, W. and Hubble, E. 1939, Publ. Astron. Soc. Pacific, vol. 51, p. 40.
- Baade W. and Swope, H. 1961, Astron. J., vol. 66, p. 300.

Bergh, S. van den. 1968, J. Roy. Astron. Soc. Canada, vol. 62, p. 145.

Bergh, S. van den. 1972, Astroph. J. Letters, vol. 171, p. L31.

Bergh, S. van den. 1975, Ann. Rev. Astron. Ap., vol. 13, p. 217.

Cacciari, C. and Renzini, V. 1976, Astron. Astroph. Suppl., vol. 25, p. 303.

Cannon, R., Hawarden, T. and Tritton, S. 1977, Monthly Notices Roy. Astron. Soc., vol. 180, p. 81.

Demarque, P. and Hirschfeld, A.W. 1975, Astroph. J., vol. 202, p. 346.

Gent, H. van. 1933, Bull. Astron. Inst. Neth., vol. 7, p. 21.

Graham, J. 1975, Publ. Astron. Soc. Pacific, vol. 87, p. 641.

Hodge, P.W. 1961, Astron. J., vol. 66, p. 384.

Hodge, P.W. 1965, Astroph. J., vol. 142, p. 1390.

Hodge, P.W. 1971, Ann. Rev. Astron. Astroph., vol. 9, p. 35.

Hoffmeister, C. 1933, Astron. Nachr., vol. 250, p. 397.

Hoffmeister, C. 1970, Veränderliche Sterne (Barth: Leipzig), p. 171.

Kiang, T. 1962, Observatory, vol. 82, p. 57.

Kunkel, W.E. and Demers, S. 1977, Astroph. J., vol. 214, p. 21.

Kviz, Z. 1958, Bull. Astron. Inst. Czech., vol. 9, p. 70.

Kviz, Z. 1960, Bull. Astron. Inst. Czech., vol. 11, p. 71.

Lynden-Bell, D. 1976, Monthly Notices Roy. Astron. Soc., vol. 174, p. 695.

Mathewson, D.S. and Schwarz, M.P. 1976, Monthly Notices Roy. Astron. Soc., vol. 176, p. 47.

Norris, J. and Zinn, R. 1975, Astroph. J., vol. 202, p. 335.

Plaut, L. 1965, in Galactic Structure, eds. A.-Blaauw and M. Schmidt, (University of Chicago Press: Chicago), p. 302.

Plaut, L. 1953, Pub. Kapteyn Astron. Lab. Groningen, vol. 55.

Plaut, L. 1966, Bull. Astron. Inst. Neth. Suppl., vol. 1, p. 105.

Renzini, V., Mengel, J. and Sweigart, A. 1977, Bull Ani. Astron. Soc., vol. 9, p. 279.

Richter, G. 1968, Veröffentl. Sternwarte Sonneberg Berlin, band 7, heft 3.

Sawyer Hogg, Helen 1970, private communication.

Shapley, H. 1938 a, Harvard Bull., No. 908, 1.

Shapley, H. 1938 b, Nature, vol. 142, p. 715.

Shapley, H. 1939, Proc. Nat. Acad. Sci., vol. 25, p. 565.

Stebbins, J., Whitford, A. and Johnson, H. 1950, Astroph. J., vol. 112, p. 469.

Swope, H. 1968, Astron. J., vol. 73, p. S 204.

Thackeray, A. 1950, Observatory, vol. 70, p. 144.

Tifft, W. 1963, Monthly Notices Roy. Astron. Soc., vol. 126, p. 209.

Walker, M. 1970, Astroph. J., vol. 161, p. 835.

Wilson, A. 1955, Pub. Astron. Soc. Pacific, vol. 67, p. 27.

Zinn, R. and Dahn, C. 1976, Astron. J., vol. 81, p. 527.

Nijmegen University August, 1977

NR	X''	Y''	Period	Remarks
1	- 455.	184.	$P = {}^{d} \cdot 532$	Th
2	- 413.	93.		
3	52.	410.		
4	- 250.	108.		
5	53.	72.	P = d.484	Th. vA
6	- 91.	- 150.		
7	191.	161.	$P = d_{.285}$:	Th
8	26.	- 49.		
9	- 46.	- 211.		
10	43.	- 196.	P = d.515	vA
11	46.	- 215.	P = d.561	vA
12	251.	- 119.		
13	- 5.	640.	P = d.340	Th
14	- 612.	- 95.		***
15	- 239.	280.		
16	10.	416.		
17	- 310.	- 94.		
18	- 53.	139	$P = d_{.289}$	vΔ
19	145	290	$P = \frac{d.639}{2}$	Th
20	199	53	1 000	1 11
21	155	_ 134	$p - d_{.588}$	γA
22	- 52	- 590	1 - 500	* Z %
23	192	- 440	$P = d_{.510}$	Th
24	363	- 282	1 = 510	1 11
25	- 94	560	p = d.025	Roade A. Th. vA
26	10.2	_ 276	$P = 1^{d_{135}}$	Daade R. Th. VA
27	1149	- 102	1 - 1 55	Daaue D, III, VA
28	1076	183		
29	897	610		
30	895	600		
31	778	355		
32	813	555. 156		
33	7.28	- 450.	$p = d_{242}$	
34	720.	119.	r = 343 $p = d_{1}$	VA
25	702.	- 109.	P = -662	VA
35	699.	- 95.	P = -5.26	vA
30	683.	- 4/4.	P = -6.24	vA
20	382. 550	237.	D dicoo	
20	330. 670	268.	P = -502	vA
39	578.	- 84.	P= 506	VA
40	572.	- 548.	n _ d	
41	512.	- 50.	$P = \frac{1}{2}54 / \frac{1}{2}$	VA
42	SU3.	51.	P = -596	VA
43	495.	/5.	P = -61/	VA, J
44	501.	- 314.		
40	496.	- 519.		
40	453.	117.		

TABLE V VARIABLE STARS IN THE SCULPTOR DWARF SPHEROIDAL GALAXY: COORDINATES AND PRELIMINARY PERIODS.

TABLE V (continued)

NR	Χ''	Υ"	Period	Remarks
47	485.	- 483.	$P = {}^{d} \cdot 526$:	Th
48	472.	- 440.	$P = {}^{d} \cdot 565$	Th. vA
49	402.	263.		
50	401.	- 356.	$P = {}^{d}.545$	Th
51	387.	- 134.		_
52	377.	- 354.		
53	327.	50.	$P = ^{d.660}$	Th
54	360.	- 497.	$P = ^{d.}640$	Th
55	326.	- 339.		
56	293.	129.	$P = \frac{d}{567}$	Th
57	253.	596.	$P = ^{d.541}$:	vA
58	250.	480.		
59	249.	- 61.		
60	217.	259.	$P = ^{d.593}$	Th
61	198.	377.		
62	216.	66,		
63	236.	- 337.	P = d.542	Th
64	185.	398.		
65	193.	239.		
66	166.	450.	$P = ^{d.}482$	vA
67	145.	655.		
68	155.	368.	$P = ^{d.506}$	J. Sh
69	164.	- 190.		-,
70	139.	53.	$P = \frac{d}{663}$	Th
71	136.	46.	$P = ^{d}.519$	Th
72	144.	- 31.	$P = ^{d.548}$	Sh. W
73	112.	565.		,
74	101.	159.	$P = \frac{d}{488}$	vA
75	64.	46.	P = d.504:	Sh vA
76	56.	12.	$P = ^{d}.500$	Th
77	12.	438.	$P = ^{d.533}$	J
78	33.	- 27.	$P = ^{d.587}$	Th Sh W
79	42.	- 157.	007	111, 011, 11
80	73.	- 441		
81	- 23.	693.	$P = ^{d.560}$	Sh vA
82	20.	- 158.	P = d.570	Sh
83	- 18.	41.	P = d.531	Sh
84	- 6.	- 239.		0
85	- 22.	- 128.		
86	- 25.	- 247.		
87	- 42.	33.		
88	- 71.	237.	$P = ^{d}.836$	vA
89	- 50.	- 231.	000	
90	- 23.	- 372.		
91	- 75.	92.	$P = {}^{d} \cdot 618$	Th, vA

NR	X''	Υ"	Period	Remarks
92	- 89.	138.	$P = {}^{d}.503$	vA
93	- 97.	381.		
94	- 80.	- 186.		
95	- 84.	5.		
96	- 99.	7.		
97	- 102.	- 41.		red irr.
98	- 96.	- 232.		
99	- 112.	- 165.		
100	- 141.	105.	1	
101	- 152.	162.	$P = {}^{a} \cdot 487$	vA
102	- 172.	321.		
103	- 169.	292.		
104	- 214.	- 98.		
105	- 228.	39.		
106	410.	306.		
107	195.	183.	$P = {}^{d} \cdot 307$	Th
108	86.	- 108.		
109	1137.	176.		
110	_ 206.	- 397.		
111	- 248.	- 80.		
112	- 232.	- 425.		
113	- 268.	- 69.		
114	- 333.	576.		
115	- 311.	- 7.		
116	- 315.	- 27.		
117	- 323.	- 302.		
118	- 371.	406.	d	
119	- 376.	191.	$P = 1^{th} \cdot 15$	bright, Th, vA
120	- 358.	- 246.		
121	- 408.	301.		
122	- 411.	30.	d	
123	- 402.	- 170.	P = 0.566	vA
124	- 385.	- 469.	d	
125	- 460.	- 249.	P = 0.495	vA
126	- 538.	343.		
127	- 508.	- 598.		
128	- 580.	- 345.		
129	- 614.	171.		
130	- 690.	413.		
131	- 687.	- 532.		
132	- 745.	118.		
133	- 761.	239.		
134	- 805.	- 466.		
135	895.	316.		
136	819.	354.		
137	749.	629.		

TABLE V (continued)

TABLE V (continued)

NR	X''	Y''	Period	Remarks
138	764.	48.	$P = ^{d} \cdot 619$	vA
139	726.	- 17.		
140	722.	- 207.		
141	700.	31.		
142	585.	716.		
143	514.	462		
144	535.	- 93	$P = d_{.350}$	νA
145	558	- 61	$P = d_{522}$	Ch W
146	470	157	1 - 525	511, W
147	452	- 137.		
148	452.	03.		
140	400.	- 202.		
149	407.	- 522.		
150	434.	- 239.		
151	421.	- 80.		
152	425.	- 123.		
153	411.	- 136.		
154	402.	- 83.	- d	
155	376.	F12.	$P = \frac{d}{d} 550$:	Th
156	355.	97.	$P = \frac{d}{d} 509$	Th
157	344.	133.	$P = {}^{4} \cdot 293$	Th
158	378.	- 588.	d	
159	320.	- 32.	$P = \frac{d}{d} 672$	Th
160	319.	158.	P = 0.515	Th
161	343.	- 193.		
162	274.	394.		
163	240.	- 18.		
164	273.	- 283.		
165	166.	731.		
166	213.	- 14.		
167	212.	- 391.		
168	179.	- 54.		
169	151.	199.		
170	133.	162.		
171	136.	- 7.		
172	94.	521.		
173	232.	- 765.		
174	75.	445.		
175	115.	- 235.		
176	113.	- 315.		
177	70.	- 140		
178	52.	- 32.		
179	45.	- 20	P = d.715	νA
180	- 10.	437	1 - /15	Ύ ΔΆ
181	43.	- 121		
182	- 66.	375	$P = d_{.360}$	Th
-	00.	515.	1 - 500	1 11

NR	Χ''	Y''	Period	Remarks
183	- 25.	- 36.		
184	- 5.	- 700.		
185	- 48.	- 571.		
186	- 102.	239.		
187	- 126.	668.		
188	- 113.	282.		
189	- 110.	36.		
190	- 124.	47.		
191	- 139.	- 16.		
192	- 93.	- 676.		
193	- 167.	154.		
194	- 185.	415.		
195	- 179.	294.		
196	- 199.	533.		
197	- 192.	190.		
198	- 150.	- 492.	d	
199	- 220.	165.	P = 0.573	vA
200	- 236.	556.		
201	- 159.	- 645.		
202	224.	- 301.		
203	- 242.	- 176.		
204	- 228.	- 526.		
205	- 357.	494.		
206	- 337.	38.		
207	- 386.	- 15.		
208	- 371.	- 579.		
209	423.	16.		
210	- 390.	- 536.		
211	- 459.	72.		
212	- 489.	- 105.		
213	- 481.	- 762.		
214	- 569.	349.		
215	- 633.	369.		
216	- 669.	145.		
217	- 665.	- 24.		
218	- 731.	- 26.		
219	- 727.	- 284.		
220	- 766.	- 612.		
221	822.	- 426.		
222	- 312.	- 109.		
223	253.	- 327.		
224	287.	225.		
225	469.	- 151.		
226	132.	174.		
227	- 689.	89.		
228	535.	- 240.		

TABLE V (continued)

TABLE V (continue	d)
-------------------	---	---

229-77135.230-56845.231-79.66.322-549.21.233-23.345.234-223175.52447.236-50.132.237-69.257.238-583.187.239176.448.240-759.229.241-32.241.242-321.1224.243212.372.244134.1036.245193.1096.246-909909945.247-909520-100.531-799.201.252-252-1010.583.253-254-865.803.255255-264-702.275-515.286-78.529.258-261-78.259-264-275288264-276288277288288278279264-279 <tr< th=""><th>NR</th><th>Χ''</th><th>Y''</th><th>Period</th><th>Remarks</th></tr<>	NR	Χ''	Y''	Period	Remarks
230-56845.231-79.66.232-23.345.234-22173. $P = d.642$ vA23552447.236-50.132.237-69.257.238-583.187.239176.448.240-759.229.241-32.241.242-321.1224.243212.372.244134.1036.245193.1096.246-909909945.247-909520-909100583.253-1010.583-810.252-1010.583-581.255-1015.261-79.252-1010.253-644.254-865.258-644.259-484.472260-715264-272328264-273510.274715.274715.274715.274715.274715.274 <td>229</td> <td>- 77.</td> <td>- 135.</td> <td></td> <td></td>	229	- 77.	- 135.		
231-79.66.232-549.21.233-23.345.234-223175. $P = d.642$ vA 235 $524.$ -47.236-50.132.237-69.257.238-583.187.239176.448.240-759.229.241-32.241.242-321.1224.243212.372.244134.1036.245193.1096.246-909245193.1096.246-909251-779254-865.255-1010.251-799.201.252254-515255-256-257-515258-644259-484.472.260-715257-258-259-264-270-284271654285272392.274715.274715.274715.274<	230	- 568.	- 45.		
232-549.21.233-23.345.234-223235 $524.$ -47. $P = d.642$ vA 236-50.132.237-69.257.238-583.187.239176.448.240-759.229.241-32.241.242-321.1224.243212.372.244134.1036.245193.1096.246-909945.247-999.250-990.916511-250-9901010.583.253-1015.810.254-255-261-59258-644289-284-78.529.264-128261-59262-464.444.263-27.288.282829264-12827.288.2829264-27.288.<	231	- 79.	66.		
233-23.345.234-223173. $P = d.642$ vA23552447. $P = d.379$:vA236-50.132.237-69.257.238-583.187.187.239176.448.240-759.229.241.242-321.1224.243212.372.244.134.1036.245193.1096.246-909945.247-909945.247-909945.247-909201.250-99010.583.253-865.803.251-779.201.525.244-865.803.255-1010.583.255-1015.810.256-702.1190.525.258-644289.259-484.472.266.26.256.258715127.261529706.266.36691.262-464.444.444.263-78.529.264-1284.26529706.26529706.266.36691.<	232	- 549,	21.		
234-223173.P = $d.642$ vA23552447.P = $d.579$:vA236-50.132.237-69.257.238-583.187.239176.448.240-759.229.241-32.241.242-321.1224.243212.372.244134.1036.245193.1096.246-90925210.253-100.254-779448.249916511-799.201.252254-255-261-799.201.525.258-644289.259-484.472.260-71525629.264-12844.263-27288.284295264-27288.28827288.284285286297288298.299264- </td <td>233</td> <td>- 23.</td> <td>345.</td> <td></td> <td></td>	233	- 23.	345.		
235 $524.$ $ 47.$ $P = d^{-}379:$ vA 236 $ 50.$ $132.$ 237 $ 69.$ $257.$ 238 $ 583.$ $187.$ 239 $176.$ $448.$ 240 $ 759.$ $229.$ 241 $ 32.$ $241.$ 242 $ 321.$ $1224.$ 243 $212.$ $372.$ 244 $134.$ $1036.$ 245 $193.$ $1096.$ 246 $ 909.$ $-$ 945. $247.$ $-$ 249 $916.$ $-$ 517. $ 990.$ 251 $ 799.$ 201. $523.$ 252 $-1010.$ $583.$ 253 $ 876.$ $766.$ $234.$ $255.$ $-1015.$ $256.$ $-702.$ $257.$ $-515.$ $256.$ $258.$ $-644.$ $259.$ $259.$ $259.$ $259.$ $259.$ $254.$ $252.$ $264.$ $-78.$ $529.$ $264.$ $-128.$ $-106.$ $266.$ $36.$ $29.$ $27.$ $288.$ $-724.$ $266.$ $267.$ $288.$ $-724.$ $268.$ $106.$ $-206.$ $269.$ $27.$ $392.$ $737.$ $273.$	234	- 223.	- 173.	$P = \frac{d}{642}$	vA
236 $ 50.$ $132.$ 237 $ 69.$ $257.$ 238 $ 583.$ $187.$ 239 $176.$ $448.$ 240 $ 759.$ $229.$ 241 $ 32.$ $241.$ 242 $ 321.$ $1224.$ 243 $212.$ $372.$ 244 $134.$ $1036.$ 245 $193.$ $1096.$ 246 $ 909.$ $ 945.$ $ 779.$ 248 $ 779.$ 248 $ 779.$ 250 $ 990.$ $ 10.$ $583.$ 253 $ 1010.$ 251 $ 799.$ $201.$ $583.$ 253 $ 1010.$ 254 $ 865.$ $803.$ 255 $ 1010.$ 257 $ 515.$ $ 256.$ $ 259$ $ 444.$ $472.$ 260 $ 715.$ $ 197.$ 261 $ 59.$ $ 228.$ $ 29.$ $ 264$ $ 28.$ $ 29.$ $ 264$ $ 28.$ $ 29.$ $ 264$ $ 28.$ $ 29.$ $ 266$ $36.$ $29.$ $ 27.$	235	524.	- 47.	P = d.379:	vA
237-69. $257.$ 238 - $583.$ $187.$ 239 176.448. 240 - $759.$ $229.$ 241 - $32.$ $241.$ 242 - $321.$ $1224.$ 243 $212.$ $372.$ 244 134.1036. 245 193.1096. 246 -909 $945.$ 193.1096. 246 -909 244 134.1036. 245 193.1096. 246 -909 248 -779 $448.$ -916 250 -990 251 -799.201. 252 -1010.583. 253 - $876.$ 766. 254 - $865.$ $803.$ 255 -1015. $810.$ 256 -702.1190. 257 - $515.$ - 258 - $644.$ - 259 - $484.$ $472.$ 260 - $715.$ - 259 - $484.$ $472.$ 260 - $728.$ - 264 - $1228.$ 262 - $464.$ 444. 263 - $78.$ $529.$ 264 - $128.$ - 270 $843.$ - $561.$ 271 <	236	50.	132.		
238-583.187.239176.448.240-759.229.241-32.241.242-321.1224.243212.372.244134.1036.245193.1096.246-909945945.247-909950-10.251-799.252-1010.253-876.766.254-254-865.803.255255-256-702.257-515.258-644289259-484.472.260-78.529.264-288269-70843.26636.270843.271654.272392.274715.274715.274	237	- 69.	257.		
239176.448.240 $-$ 759.229.241 $-$ 32.241.242 $-$ 321.1224.243212.372.244134.1036.245193.1096.246 $-$ 909. $-$ 945.247 $-$ 909. $-$ 525.248 $-$ 779. $-$ 448.249916. $-$ 517.250 $-$ 990. $-$ 10.251 $-$ 799.201.252 $-$ 1010.583.253 $-$ 876.766.254 $-$ 865.803.255 $-$ 1015.810.256 $-$ 702.1190.257 $-$ 515. $-$ 256.258 $-$ 644. $-$ 289.259 $-$ 4484.472.260 $-$ 715. $-$ 197.261 $-$ 78.529.264 $-$ 128. $-$ 4.26529. $-$ 706.26636. $-$ 691.267288. $-$ 724.268106.206.26911.315.270843. $=$ 561.271654. $-$ 480.272392.757.273510.785.274715.570.	238	- 583.	187.		
240-759.229.241-32.241.242-321.1224.2432112.372.244134.1036.245193.1096.246-909945.247-909945.247-909251-779448.249916251-7990101.583.252-1010.253-876.766.254-254-865.803.255-1015.810.256-702.1190.257-515256.258-644289260-715261-759264-27229.274-288270843.=261-271654480.272392.274715.570.	239	176.	448.		
241 $-$ 32.241.242 $-$ 321.1224.243212.372.244134.1036.245193.1096.246 $-$ 909. $-$ 945.247 $-$ 909.248 $-$ 779. $-$ 448. $-$ 779. $-$ 250 $-$ 990. $-$ 10. $517.$ 250 $-$ 251 $-$ 799.201.252 $-$ 1010. $583.$ 253 $-$ 865.803.255 $-$ 1015.810.256 $-$ 702.1190.257 $ 515.$ $-$ 258 $-$ 644. $-$ 260 $-$ 715. $-$ 271 $ 59.$ $-$ 262 $ 464.$ $444.$ 263 $ 78.$ $529.$ 264 $-$ 128. $-$ 26529. $ 706.$ 266 $36.$ $ 691.$ 267288. $ 724.$ 268106. $ 206.$ 26911. $315.$ 270 $843.$ $-$ 271 $654.$ $-$ 272 $392.$ $757.$ 273 $510.$ $785.$ 274 $715.$ $570.$	240	- 759.	229.		
242-321.1224.243212.372.244134.1036.245193.1096.246-909247-909525.248-779.248-779448517.250-99010.251-799.201.252-1010.253-876.766.254-803.255-1015.810.256-702.1190.257-515258-644260-715271-59262-464.444.263-728264-12826529706.26636691.267288724.268106206.26911.315.270843.=271654272392.757.273510.785.274715.570.	241	- 32	241		
243212.372.244134.1036.245193.1096.246 $-$ 909. $-$ 945.247 $-$ 909. $-$ 525.248 $-$ 779. $-$ 448.249916. $-$ 517.250 $-$ 990. $-$ 10.251 $-$ 799.201.252 $-$ 1010.583.253 $-$ 876.766.254 $-$ 865.803.255 $-$ 1015. $-$ 256.258 $-$ 644. $-$ 289.259 $-$ 484.472.260 $-$ 715. $-$ 197.261 $-$ 59. $-$ 1228.262 $-$ 464.444.263 $-$ 78.529.264 $-$ 128. $-$ 4.26529. $-$ 706.26636. $-$ 661.270843. $-$ 561.271654. $-$ 480.272392.757.273510.785.274715.570.	242	- 321	12.24		
214134.1036.245193.1096.246 $-$ 909. $-$ 945.247 $-$ 909. $-$ 525.248 $-$ 779. $-$ 448.249916. $-$ 517.250 $-$ 990. $-$ 10.251 $-$ 799.201.252 $-$ 1010.583.253 $-$ 876.766.254 $-$ 865.803.255 $-$ 1015.810.256 $-$ 702.1190.257 $-$ 515. $-$ 256.258 $-$ 644. $-$ 289.259 $-$ 484.472.260 $-$ 715. $-$ 1228.262 $-$ 464.444.263 $-$ 78.529.264 $-$ 128. $-$ 4.26529. $-$ 706.26636. $-$ 691.267288. $-$ 724.268106. $=$ 206.26911.315.270843. $=$ 561.271654. $-$ 480.272392.757.273510.785.274715.570.	243	212	377		
245193.1096.246 $-909.$ $-945.$ 247 $-909.$ $-525.$ 248 $-779.$ $-448.$ 249916. $-517.$ 250 $-990.$ $-10.$ 251 $-799.$ 201.252 $-1010.$ 583.253 $-876.$ 766.254 $-865.$ 803.255 $-1015.$ 810.256 $-702.$ 1190.257 $-515.$ $-256.$ 258 $-644.$ $-289.$ 259 $-484.$ 472.260 $-715.$ $-197.$ 261 $-59.$ $-1228.$ 262 $-464.$ 444.263 $-78.$ 529.264 $-128.$ $-4.$ 26529. $-706.$ 26636. $-691.$ 267288. $-724.$ 268106. $-206.$ 26911.315.270 $843.$ $-561.$ 271 $654.$ $-480.$ 272 $392.$ $757.$ 273 $510.$ $785.$ 274 $715.$ $570.$	243	134	1036		
246 -909 -945 247 -909 -525 248 -779 -448 249 916 -517 250 -990 -10 251 -799 201 252 -1010 583 253 -876 766 254 -865 803 255 -1015 810 256 -702 1190 257 -515 -256 258 -644 -289 259 -484 472 260 -715 -197 261 -59 -1228 262 -464 444 263 -78 529 264 -128 -44 265 29 -706 266 36 -691 267 288 -724 268 106 $=206$ 269 11 315 270 843 $= 561$ 271 654 -480 272 392 757 273 510 785 274 715 570	245	193	1096		
247 -909 -525 248 -779 -448 249916 -517 250 -990 -10 251 -799 201252 -1010 583253 -876 766 254 -865 803255 -1015 810256 -702 1190257 -515 -256 258 -644 -289 259 -484 472 260 -715 -197 261 -59 -1228 262 -464 444 263 -78 529 264 -128 -44 265 29 -706 266 36 -691 267 288 -724 268 106 $= 206$ 269 11 315 270 843 $= 561$ 271 654 -480 272 392 757 273 510 785 274 715 570	245	_ 909	- 915		
248-709448. 249 916517. 250 -99010. 251 -799.201. 252 -1010.583. 253 -876.766. 254 -865.803. 255 -1015.810. 256 -702.1190. 257 -515 258 -644 $289.$ -484.472. 260 -715 259 -484.472. 260 -715 261 - $59.$ - $228.$ -464.444. 263 -78. $529.$ 264 -1284. 265 29706. 266 36691. 267 288724. 268 106206. 269 11.315. 270 843.= 271 654 $480.$ 272392. 274 715.570.	240	- 909.	- 525		
249916. $-$ 517.250 $-$ 990. $-$ 10.251 $-$ 799.201.252 $-$ 1010.583.253 $-$ 876.766.254 $-$ 865.803.255 $-$ 1015.810.256 $-$ 702.1190.257 $-$ 515. $-$ 258 $-$ 644. $-$ 260 $-$ 715. $-$ 261 $ 59.$ $-$ 262 $-$ 464.444.263 $-$ 78.529.264 $-$ 128. $-$ 26529. $-$ 706.26636. $-$ 691.267288. $-$ 724.268106. $-$ 206.26911.315.270843. \in 561.271654. $-$ 272392.757.273510.785.274715.570.	247	- 707.	- 525.		
249 $910.$ $-311.$ 250 $-990.$ $-10.$ 251 $-799.$ $201.$ 252 $-1010.$ $583.$ 253 $-876.$ $766.$ 254 $-865.$ $803.$ 255 $-1015.$ $810.$ 256 $-702.$ $1190.$ 257 $-515.$ $-256.$ 258 $-644.$ $-289.$ 259 $-484.$ $472.$ 260 $-715.$ $-197.$ 261 $-59.$ $-1228.$ 262 $-464.$ $444.$ 263 $-78.$ $529.$ 264 $-128.$ $-4.$ 265 $29.$ $-706.$ 266 $36.$ $-691.$ 267 $288.$ $-724.$ 268 $106.$ $-206.$ 269 $11.$ $315.$ 270 $843.$ $=561.$ 271 $654.$ $-480.$ 272 $392.$ $757.$ 273 $510.$ $785.$ 274 $715.$ $570.$	240	- 779.	- 440.		
250 $=$ $950.$ $=$ $10.$ 251 $=$ $799.$ $201.$ 252 $=$ $1010.$ $583.$ 253 $=$ $876.$ $766.$ 254 $=$ $865.$ $803.$ 255 $=$ $1015.$ $810.$ 256 $=$ $702.$ $1190.$ 257 $=$ $515.$ $=$ 258 $=$ $644.$ $=$ $289.$ $=$ $484.$ $472.$ 260 $=$ $715.$ $=$ 259 $=$ $484.$ $472.$ 260 $=$ $715.$ $=$ 261 $=$ $59.$ $=$ 262 $=$ $464.$ $444.$ 263 $=$ $78.$ $529.$ 264 $=$ $128.$ $=$ $4.$ 265 $29.$ $=$ 267 $288.$ $=$ $724.$ 268 $106.$ $=$ $206.$ 269 $11.$ $315.$ 270 $843.$ $=$ $561.$ $=$ $392.$ 272 $392.$ $757.$ 273 $510.$ $785.$ 274 $715.$ $570.$	249	910.	- 517.		
231 $-$ 799.201.252 $-$ 1010.583.253 $-$ 876.766.254 $-$ 865.803.255 $-$ 1015.810.256 $-$ 702.1190.257 $-$ 515. $-$ 258 $-$ 644. $-$ 289.259 $-$ 484.472.260 $-$ 715.261 $ -$ 59.262 $-$ 464.444.263 $-$ 78.529.264 $-$ 128. $-$ 4.26529. $-$ 26636. $-$ 691.267288. $-$ 724.268106. $-$ 206.26911.315.270843. $-$ 561.271654. $-$ 480.272392.757.273510.785.274715.570.	250	- 990.	- 10.		
252 $-1010.$ $383.$ 253 $-876.$ $766.$ 254 $-865.$ $803.$ 255 $-1015.$ $810.$ 256 $-702.$ $1190.$ 257 $-515.$ $-256.$ 258 $-644.$ $-289.$ 259 $-484.$ $472.$ 260 $-715.$ $-197.$ 261 $-59.$ $-1228.$ 262 $-464.$ $444.$ 263 $-78.$ $529.$ 264 $-128.$ $-4.$ 265 $29.$ $-706.$ 266 $36.$ $-691.$ 267 $288.$ $-724.$ 268 $106.$ $=206.$ 269 $11.$ $315.$ 270 $843.$ $=561.$ 271 $654.$ $-480.$ 272 $392.$ $757.$ 273 $510.$ $785.$ 274 $715.$ $570.$	251	- 799.	201.		
253- $876.$ $766.$ 254 - $865.$ $803.$ 255 - $1015.$ $810.$ 256 - $702.$ $1190.$ 257 - $515.$ - 258 - $644.$ - 259 - $484.$ $472.$ 260 - $715.$ - 272 - $464.$ $444.$ 263 - $78.$ $529.$ 264 - $128.$ - $4.$ 265 $29.$ - 266 $36.$ - $691.$ 267 $288.$ - $724.$ 268 $106.$ - $206.$ 269 11. $315.$ 270 $843.$ - $561.$ - $480.$ 272 $392.$ $757.$ 273 $510.$ $785.$ 274 $715.$ $570.$	252	- 1010.	383.		
254 $ 865.$ $805.$ 255 $ 1015.$ $810.$ 256 $ 702.$ $1190.$ 257 $ 515.$ $ 258$ $ 644.$ $ 289.$ 259 $ 484.$ $472.$ 260 $ 715.$ 261 $ 59.$ $ 2262$ $ 464.$ $444.$ 263 $ 78.$ $529.$ 264 $ 128.$ $ 4.$ 265 $29.$ $ 266$ $36.$ $ 691.$ 267 $288.$ $ 724.$ 268 $106.$ $=$ $206.$ 269 $11.$ $315.$ 270 $843.$ $=$ $561.$ $ 480.$ 272 $392.$ $757.$ 273 $510.$ $785.$ 274 $715.$ $570.$	253	- 8/6.	/00.		
255 -1013 . 810 . 256 -702 . 1190 . 257 -515 . -256 . 258 -644 . -289 . 259 -484 . 472 . 260 -715 . -197 . 261 -59 . -1228 . 262 -464 . 444 . 263 -78 . 529 . 264 -128 . -4 . 265 29 . -706 . 266 36 . -691 . 267 288 . -724 . 268 106 . $= 206$. 269 11 . 315 . 270 843 . $= 561$. 271 654 . -480 . 272 392 . 757 . 273 510 . 785 . 274 715 . 570 .	254	- 865.	803.		
256 -702 , 1190 , 257 -515 , -256 , 258 -644 , -289 , 259 -484 , 472 , 260 -715 , -197 , 261 -59 , -1228 , 262 -464 , 444 , 263 -78 , 529 , 264 -128 , -4 , 265 29 , -706 , 266 36 , -691 , 267 288 , -724 , 268 106 , $= 206$, 269 11 , 315 , 270 843 , $= 561$, 271 654 , -480 , 272 392 , 757 , 273 510 , 785 , 274 715 , 570 ,	255	- 1015.	810.		
257- $515.$ - $256.$ 258 - $644.$ - $289.$ 259 - $484.$ $472.$ 260 - $715.$ - $197.$ 261 - $59.$ - $1228.$ 262 - $464.$ $444.$ 263 - $78.$ $529.$ 264 - $128.$ - $4.$ 265 $29.$ - $706.$ 266 $36.$ - $691.$ 267 $288.$ - $724.$ 268 $106.$ - $206.$ 269 11. $315.$ 270 $843.$ - $561.$ $271.$ $654.$ 272 $392.$ $757.$ 273 $510.$ $785.$ 274 $715.$ $570.$	256	- 702.	1190.		
258- 644 289 . 259 - 484 . 472 . 260 - 715 197 . 261 - 59 1228 . 262 - 464 . 444 . 263 - 78 . 529 . 264 - 128 $4.$ 265 29 266 36 691 . 267 288 724 . 268 106 206 . 269 11. 315 . 270 843 561 . 271 654 480 . 727 . 392 . 773 510 . 785 . 274 715 . 570 .	257	- 515.	- 256.		
259- 484 . 472 . 260 - 715 197 . 261 - 59 1228 . 262 - 464 . 444 . 263 - 78 . 529 . 264 - 128 4 . 265 29 706 . 266 36 691 . 267 288 724 . 268 106 206 . 269 11 . 315 . 270 843 561 . 271 654 480 . 272 392 . 757 . 273 510 . 785 . 274 715 . 570 .	258	- 644.	- 289.		
260- $715.$ - $197.$ 261 - $59.$ - $1228.$ 262 - $464.$ $444.$ 263 - $78.$ $529.$ 264 - $128.$ - $4.$ 265 $29.$ - $706.$ 266 $36.$ - $691.$ 267 $288.$ - $724.$ 268 $106.$ - $206.$ 269 $11.$ $315.$ 270 $843.$ - $561.$ $271.$ $654.$ 272 $392.$ $757.$ 273 $510.$ $785.$ $274.$ $715.$ $570.$	259	- 484.	472.		
261 $ 59.$ $ 1228.$ 262 $ 464.$ $444.$ 263 $ 78.$ $529.$ 264 $ 128.$ $ 4.$ 265 $29.$ $ 706.$ 266 $36.$ $ 691.$ 267 $288.$ $ 724.$ 268 $106.$ $ 206.$ 269 $11.$ $315.$ 270 $843.$ $ 561.$ 271 $654.$ $ 480.$ 272 $392.$ $757.$ 273 $510.$ $785.$ 274 $715.$ $570.$	260	- 715.	- 197.		
262- $464.$ $444.$ 263 - $78.$ $529.$ 264 - $128.$ - $4.$ 265 $29.$ - $706.$ 266 $36.$ - $691.$ 267 $288.$ - $724.$ 268 $106.$ - $206.$ 269 $11.$ $315.$ 270 $843.$ - $561.$ $271.$ $654.$ - $480.$ $757.$ 273 $510.$ $785.$ $274.$ $715.$ $570.$	261	- 59.	- 1228.		
263- 78 , 529 , 264 - 128 ,- 4 , 265 29 ,- 706 , 266 36 ,- 691 , 267 288 ,- 724 , 268 106 ,- 206 , 269 11 , 315 , 270 843 ,- 561 , 271 654 ,- 480 , 272 392 , 757 , 273 510 , 785 , 274 715 , 570 ,	262	- 464.	444.		
264- $128.$ - $4.$ 265 $29.$ - $706.$ 266 $36.$ - $691.$ 267 $288.$ - $724.$ 268 $106.$ - $206.$ 269 $11.$ $315.$ 270 $843.$ - $561.$ 271 $654.$ - $480.$ 272 $392.$ $757.$ 273 $510.$ $785.$ 274 $715.$ $570.$	263	- 78.	529.		
265 $29.$ $ 706.$ 266 $36.$ $ 691.$ 267 $288.$ $ 724.$ 268 $106.$ $ 206.$ 269 $11.$ $315.$ 270 $843.$ $ 561.$ 271 $654.$ $ 480.$ 272 $392.$ $757.$ 273 $510.$ $785.$ 274 $715.$ $570.$	264	- 128.	- 4.		
266 $36.$ $ 691.$ 267 $288.$ $ 724.$ 268 $106.$ $ 206.$ 269 $11.$ $315.$ 270 $843.$ $ 561.$ 271 $654.$ $ 480.$ 272 $392.$ $757.$ 273 $510.$ $785.$ 274 $715.$ $570.$	265	29.	- 706.		
267 $288.$ $ 724.$ 268 $106.$ $ 206.$ 269 $11.$ $315.$ 270 $843.$ $ 561.$ 271 $654.$ $ 480.$ 272 $392.$ $757.$ 273 $510.$ $785.$ 274 $715.$ $570.$	266	36.	- 691.		
268 106. = 206. 269 11. 315. 270 843. = 561. 271 654. - 480. 272 392. 757. 273 510. 785. 274 715. 570.	267	288.	- 724.		
269 11. 315. 270 843. 561. 271 654. 480. 272 392. 757. 273 510. 785. 274 715. 570.	268	106.	- 206.		
270 843. = 561. 271 654. - 480. 272 392. 757. 273 510. 785. 274 715. 570.	269	11.	315.		
271 654. - 480. 272 392. 757. 273 510. 785. 274 715. 570.	270	843.	= 561.		
272 392. 757. 273 510. 785. 274 715. 570.	271	654.	- 480.		
273 510. 785. 274 715. 570.	272	392.	757.		
274 715. 570.	273	510.	785.		
	274	715.	570.		

2751011.408.276948. $-$ 169.277813. $-$ 543.2781038. $-$ 827.279959.6.280747.337.281883.404.282997.521.283720.648.284934.676.285772.1111.286928.988.287781.410.2881130. $-$ 474.2891308. $-$ 961.290385.1039.291204. $-$ 389.292 $-$ 45.130.293106. $-$ 78.294 $-$ 755. $-$ 20.295 $-$ 494. $-$ 250.296 $-$ 569.180.297 $-$ 847.188.298 $-$ 889.75.299 $-$ 290.225.300 $-$ 764.589.301 $-$ 1556.84.303 $-$ 1085.13.304 $-$ 2881.277.3051851. $-$ 16.3061700.23.3072504.98.3083173.1093.309 $53.$ $-$ 4485.311 $-$ 489. $-$ 375.312355.12.313225.148.314832.192.315944.29.316 $-$ 446.317 $-$ 374.318292.	NR	Χ''	Υ"	Period	Remarks
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	275	1011.	408.		
277 813. $-$ 543. 278 1038. $-$ 827. 279 959. 6. 280 747. 337. 281 883. 404. 282 997. 521. 283 720. 648. 284 934. 676. 285 772. 1111. 286 928. 988. 287 781. 410. 288 1130. $-$ 474. 289 1308. $-$ 961. 290 $-$ 385. 1039. 291 204. $-$ 389. 292 $-$ 45. 130. 293 $-$ 106. $-$ 78. 294 $-$ 755. $-$ 20. 295 $-$ 494. $-$ 250. 296 $-$ 569. 180. 297 $-$ 847. 188. 298 $-$ 889. 75. 299 $-$ 290. 225. 300 $-$ 764. 589. 301 $-$ 1570. $-$ 356. 302 $-$ 1556. 84. 303 $-$ 1085. 13. 304 $-$ 2881. 2777. 305 1851. $-$ 16. uncertain var. 306 1700. 23. 307 2504. 98. 308 3173. 1093. 309 53. $-$ 408. 310 $-$ 2. $-$ 485. 311 $-$ 489. $-$ 375. 312 355. 12. 313 225. 148. 314 832. 192. 315 944. 29. 316 $-$ 446. 261. 317 $-$ 374. 838. 318 292. 578. 320 $-$ 204. 962.	276	948.	- 169.		
2781038. $-$ 827. 279 959.6. 280 747.337. 281 883.404. 282 997.521. 283 720.648. 284 934.676. 285 772.1111. 286 928.988. 287 781.410. 288 1130 290 -385. $1039.$ 291204. 292 -45. 293 -106. 293 -106. 294 - $755.$ - $20.$ 225. 300 - 296 - $569.$ 180. 297 - $847.$ 188. 298 - $889.$ 75. 300 - 301 - $1570.$ - $356.$ 13. 304 - $2881.$ 277. 305 1851. $1085.$ 13. 304 - $2881.$ 277. 305 1851. $1093.$ 309 53. $408.$ 310 - $2.$ - $485.$ 311 - $489.$ - $375.$ 12. 313 225. $148.$ 314 832. $199.$ 575. $578.$ 320 - $204.$ 962.	277	813.	- 543.		
279959.6. 280 747.337. 281 883.404. 282 997.521. 283 720.648. 284 934.676. 285 772.1111. 286 928.988. 287 781.410. 288 1130 474. 289 1308 961. 290 - 385.1039. 291 204 389. 292 - 45.130. 293 - 106 78. 294 - 755 20. 295 - 494 250. 296 - 569.180. 297 - 847.188. 298 - 889.75. 299 - 290.225. 300 - 764.589. 301 - 1570 356. 302 - 1556.84. 303 - 1085.13. 304 - 2881.277. 305 1851 16. 306 1700.23. 307 2504.98. 310 - 2 485. 311 - 489 375. 312 355.12. 313 225.148. 314 $832.$ 192. 315 944.29. 316 - 446.261. 317 - 374.838. 318 292.578. 320 - 204.962.	278	1038.	- 827.		
280 $747.$ $337.$ 281 $883.$ $404.$ 282 $997.$ $521.$ 283 $720.$ $648.$ 284 $934.$ $676.$ 285 $772.$ $1111.$ 286 $928.$ $988.$ 287 $781.$ $410.$ 288 $1130.$ $ 290$ $ 385.$ $1038.$ $ 961.$ 290 $ 385.$ 290 $ 385.$ 291 $204.$ $ 292$ $ 45.$ $130.$ $ 293$ $ 106.$ $ 293$ $ 106.$ $ 294$ $ 755.$ $ 20.$ $225.$ 300 $ 764.$ $589.$ 301 $ 1556.$ $84.$ 303 $ 1085.$ $13.$ 304 $ 2881.$ $277.$ 305 $1851.$ $ 16.$ uncertain var. 306 $3173.$ $1093.$ 309 $53.$ $ 408.$ $3173.$ 311 $ 489.$ $ 313$ $225.$ $148.$ 314 $832.$ $192.$ $578.$ 316 $ 446.$ $261.$ $317.$ $ 318$ $292.$ $578.$ 320 $-$	279	959.	6,		
281 883. 404. 282 997. 521. 283 720. 648. 284 934. 676. 285 772. 1111. 286 928. 988. 287 781. 410. 288 1130. $-$ 474. 289 1308. $-$ 961. 290 $-$ 385. 1039. 291 204. $-$ 389. 292 $-$ 45. 130. 294 $-$ 755. $-$ 20. 295 $-$ 494. $-$ 250. 296 $-$ 569. 180. 297 $-$ 847. 188. 298 $-$ 889. 75. 299 $-$ 290. 225. 300 $-$ 764. 589. 301 $-$ 1570. $-$ 356. 302 $-$ 1556. 84. 303 $-$ 1085. 13. 304 $-$ 2881. 277. 305 1851. $-$ 16. uncertain var. 306 3173.	280	747.	337.		
282997. $521.$ 283 720. $648.$ 284 934. $676.$ 285 772. $1111.$ 286 928.988. 287 781. $410.$ 288 $1130.$ $ 474.$ 289 $1308.$ $-$ 961. 290 $-$ 385. $1039.$ 291 $204.$ $-$ 389. 292 $-$ 45. $130.$ 293 $-$ 106. $-$ 78. 294 $-$ 755. $-$ 20. 295 $-$ 494. $-$ 250. 296 $-$ 569. $180.$ 297 $-$ 847. $188.$ 298 $-$ 889.75. 299 $-$ 290.225. 300 $-$ 764.589. 301 $-$ 1570. $-$ 356. 302 $-$ 1556. $84.$ 303 $-$ 1085. $13.$ 304 $-$ 2881.277. 305 $1851.$ $-$ 16. 306 $1700.$ $23.$ 307 $2504.$ $98.$ 308 $3173.$ $1093.$ 309 $53.$ $-$ 408. 310 $-$ 2. $-$ 485. 311 $-$ 489. $-$ 375. 312 $355.$ $12.$ 313 $225.$ $148.$ 314 $832.$ $192.$ 315 $944.$ $29.$ 316 $-$ 446. $261.$ 317 $-$ 374. $838.$ 318 $292.$ $578.$ 319 $575.$ 5	281	883.	404.		
283720.648.284934.676.285772.1111.286928.988.287781.410.2881130. $-$ 474.2891308. $-$ 961.290385.1039.291204. $-$ 389.293-106. $-$ 78.294 $-$ 755. $-$ 20.295 $-$ 494. $-$ 250.296- 569.180.297- 847.188.298889.75.299- 290.225.300- 764.589.301 $-$ 1570. $-$ 356.302- 1556.84.303 $-$ 1085.13.304- 2881.277.3051851. $-$ 16.3061700.23.3072504.98.3083173.1093.30953. $-$ 408.310 $-$ 2. $-$ 485.311 $-$ 489. $-$ 375.312355.12.313225.148.314832.192.315944.29.316 $-$ 446.261.317 $-$ 374.838.318292.578.319575.578.320 $-$ 204.962.	282	997.	521.		
284934.676. 285 772.1111. 286 928.988. 287 781.410. 288 1130. $-$ 474. 289 1308. $-$ 961. 290 $-$ 385.1039. 291 204. $-$ 389. 292 $-$ 45.130. 293 $-$ 106. $-$ 78. 294 $-$ 755. $-$ 20. 295 $-$ 494. $-$ 250. 296 $-$ 569.180. 297 $-$ 847.188. 298 $-$ 889.75. 299 $-$ 290.225. 300 $-$ 764.589. 301 $-$ 1556.84. 302 $-$ 1556.84. 303 $-$ 1085.13. 304 $-$ 2881.277. 305 1851. $-$ 16.uncertain var. 306 1700.23. 307 2504.98. 308 3173.1093. 309 $53.$ $-$ 408. 311 $-$ 489. $-$ 375. 312 355.12. 313 225.148. 314 832.192. 315 944.29. 316 $-$ 446. $261.$ 375. 319 575.578. 320 $-$ 204. $962.$	283	720,	648.		
285 772 1111 286 928 988 287 781 410 288 1130 $ 277$ 781 410 289 1308 $ 961$ 290 $ 290$ $ 385$ 290 $ 385$ 291 204 $ 292$ $ 455$ 130 $ 293$ $ 106$ $ 78$ 294 $ 755$ $ 20$ $ 295$ $ 494$ $ 250$ $ 294$ $ 755$ $ 20$ 225 300 $ 764$ 589 301 $ 1556$ 84 302 $ 1556$ 84 303 $ 1085$ 13 304 $ 2881$ 277 305 1851 170 23 307 2504 98 310 $ 2.$ $ 485.$ 311 $ 489.$ $ 375.$ 313 $225.$ $148.$ 314 $832.$ $192.$ $578.$ 319 $575.$ $578.$ 320 $ 204.$ $962.$	284	934.	676.		
286 928 , 988 , 287 781 , 410 , 288 1130 , $ 1308$, $ 961$, 290 $ 385$, 1039 , 291 204 , $ 389$, 292 $ 45$, 130 , 293 $ 106$, $ 294$ $ 755$, $ 294$ $ 755$, $ 294$ $ 755$, $ 294$ $ 755$, $ 295$ $ 494$, $ 250$, 296 $ 569$, 180 , 297 $ 847$, 188 , 298 $ 889$, 75 , 300 $ 764$, 589 , 301 $ 1556$, 84 , 303 $ 10851$, $ 106$ 1700 , 23 , 307 2504 , 98 ,	285	772.	1111.		
287 781 410 288 1130 $ 474$ 289 1308 $ 961$ 290 $ 385$ 1039 291 204 $ 389$ 292 $ 45$ 130 293 $ 106$ $ 78$ 294 $ 755$ $ 20$ 295 $ 494$ $ 250$ 296 $ 569$ 180 297 $ 847$ 188 298 $ 889$ 75 299 $ 290$ 225 300 $ 764$ 589 301 $ 1570$ $ 355$ 13 277 305 1851 $ 16$ 304 $ 2881$ 277 305 1851 $ 16$ 306 3173 1093 309 53 $ 408$ $ 375$ 310 $ 2$ $ 485$ 311 $ 489$ 312 355 192 313 225 148 314 832 192 315 944 29 316 $ 446$ 261 375 319 575 578 320 $ 204$ 962	286	928.	988.		
130. $1474.$ 289 $1308.$ $-961.$ 290 $-385.$ $1039.$ 291 $204.$ $-389.$ 292 $-455.$ $130.$ 293 $-106.$ $-78.$ 294 $-755.$ $-20.$ 295 $-494.$ $-250.$ 296 $-569.$ $180.$ 297 $-847.$ $188.$ 298 $-889.$ $75.$ 299 $-290.$ $225.$ 300 $-764.$ $589.$ 301 $-1570.$ $-356.$ 302 $-1556.$ $84.$ 303 $-1085.$ $13.$ 304 $-2881.$ $277.$ 305 $1851.$ $-16.$ 306 $1700.$ $23.$ 307 $2504.$ $98.$ 308 $3173.$ $1093.$ 309 $53.$ $-408.$ 310 $-2.$ $-485.$ 311 $-489.$ $-375.$ 312 $355.$ $12.$ 313 $225.$ $148.$ 314 $832.$ $192.$ 315 $944.$ $29.$ 316 $-446.$ $261.$ 317 $-374.$ $838.$ 318 $292.$ $578.$ 320 $-204.$ $962.$	287	781	410		
2891308. $-$ 961.290 $-$ 385.1039.291204. $-$ 389.292 $-$ 45.130.293 $-$ 106. $-$ 78.294 $-$ 755.294 $-$ 755. $-$ 20.295 $-$ 494. $-$ 250.296 $-$ 569.180.297 $-$ 847.188.298 $-$ 889.75.299 $-$ 290.225.300 $-$ 764.589.301 $-$ 1556.84.303 $-$ 1085.304 $-$ 2881.277.3051851.3061700.23.3072504.98.3083173.1093.30953. $-$ 489. $-$ 311 $-$ 489.489. $-$ 313225.148.314832.192.315944.29.316 $-$ 446.261.318319575.578.320 $-$ 204.962.	288	1130.	- 474		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	289	1308	- 961		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	290	385	1029		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	201	- 505.	220		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	291	204.	- 309.		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	292	- 45.	130.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	293	- 100.	- 70.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	224	- 155.	- 20.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	295	- 494.	- 230.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	290	- 307.	100.		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	200	- 047.	100.		
255 $ 250$ 225 300 $ 764$ 589 301 $ 1570$ $ 302$ $ 1556$ 84 303 $ 1085$ 13 304 $ 2881$ 277 305 1851 $ 16$ uncertain var. 306 1700 23 307 2504 98 308 3173 1093 309 53 $ 408$ 310 $ 2$ $ 489$ $ 375$ 312 355 12 313 225 148 314 832 192 316 $ 446$ 261 317 $ 374$ 838 318 292 578 319 575 578 320 $ 204$ 962	290	- 882.	15.		
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	299	- 290.	22J. 590		
301 -1370 , -336 ,302 -1556 , 84 ,303 -1085 , 13 ,304 -2881 , 277 ,305 1851 , -16 , 306 1700 , 23 , 307 2504 , 98 , 308 3173 , 1093 , 309 53 , -408 , 310 -2 , -485 , 311 -489 , -375 , 312 355 , 12 , 313 225 , 148 , 314 832 , 192 , 316 -446 , 261 , 317 -374 , 838 , 318 292 , 578 , 319 575 , 578 , 320 -204 , 962 ,	300	- 704.	309.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	301	- 1570.	- 550.		
303 -1083 13 304 -2881 277 305 1851 -16 306 1700 23 307 2504 98 308 3173 1093 309 53 -408 310 -2 -485 311 -489 -375 312 355 12 313 225 148 314 832 192 315 944 29 316 -446 261 317 -374 838 318 292 578 319 575 578 320 -204 962	302	- 1550.	04.		
304- 2881.277. 305 $1851.$ - 16.uncertain var. 306 $1700.$ $23.$ 307 $2504.$ $98.$ 308 $3173.$ $1093.$ 309 $53.$ - 408. 310 - 2 485. 311 - 489 375. 312 $355.$ $12.$ 313 $225.$ $148.$ 314 $832.$ $192.$ 315 $944.$ $29.$ 316 - 446. $261.$ 317 - 374. $838.$ 318 $292.$ $578.$ 320 - 204. $962.$	204	- 1085.	15.		
305 $1831.$ $ 16.$ $uncertain var.$ 306 $1700.$ $23.$ 307 $2504.$ $98.$ 308 $3173.$ $1093.$ 309 $53.$ $ 408.$ 310 $ 2.$ $ 485.$ 311 $ 489.$ $ 375.$ 312 $355.$ $12.$ 313 $225.$ $148.$ 314 $832.$ $192.$ 315 $944.$ $29.$ 316 $ 446.$ $261.$ 317 318 $292.$ $575.$ $578.$ 319 $575.$ $578.$ 320 $ 204.$ $962.$	304	- 2001.	277.		
300 1700 25 307 2504 98 308 3173 1093 309 53 $ 408$ 310 $ 2$ $ 485$ 311 $ 489$ $ 375$ 312 355 12 313 225 148 314 832 192 315 944 29 316 $ 446$ 261 317 $ 374$ 838 318 292 578 319 575 578 320 $ 204$ 962	305	1001.	- 16.		uncertain var.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300	2501	23.		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	308	2304.	20.		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	300	5175.	1093.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	309	აა. ე	- 400.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	310	- 2.	- 403.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	212	- 409.	- 373.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	212	222	12.		
314 $832.$ $192.$ 315 $944.$ $29.$ 316 $ 446.$ $261.$ 317 $ 374.$ $838.$ 318 $292.$ $578.$ 319 $575.$ $578.$ 320 $ 204.$ $962.$	217	423.	140.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	215	044	192.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	316	116	29.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	217	- ++0.	201.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210	- 3/4.	030. 570		
319 575. 578. 320 - 204. 962.	210	292.	578.		
520 - 204. 962.	220	575.	578.		
	520	- 204.	962.		

TABLE V (continued)

TABLE V (continued)

NR	X''	Y''	Period	Remarks
321	439.	1158.		
322	1463.	875.		
323	1769,	1117.		
324	3063.	921.		
325	564.	- 942.		
326	- 1297.	- 1052.		
327	- 2089.	- 2059.		
328	1690,	- 543.		
329	155.	- 789.		
330	- 250.	- 529.		
331	- 291.	- 526.		
332	- 312.	- 899.		
333	- 683.	- 790.		
334	- 1267.	- 457.		
335	- 1893.	- 209.		
336	- 1067.	- 576.		
337	237	- 1206		
338	- 3217	- 2130		
339	- 581	- 2871		
340	982	115		
341	1283	275		
342	408	- 206		
343	_ 288	1 205.		
343	- 152	2070		
3/15	- 152.	451		
346	70	- 431.		
347	20.8	265		
348	- 590.	205.		
240	- 1027.	205.		
250	- 041.	- 529.		
251	- 020.	- 155,		
252	203.	- 230,		
332	1110.	- 149.		
333	907.	- 1010,		
334	798.	918.		
333	600.	1320.		
330	- 633.	1660.		
351	- 5/4.	1554.		
338	1057.	1990.		
359	482.	1958.		uncertain var.
360	- 957.	1952.		
361	- 1809.	1286.		
302	- 1789.	1210.		
303	- 1568.	369.		
304	386.	- 59.		
303	228.	- 243,		
200	79,	- 200,		

NR	X''	Y''	Period	Remarks
367	- 62.	- 378.		
368	51.	- 131.		
369	- 362.	- 432.		
370	92.	- 552.		
371	- 507.	- 434.		
372	- 866.	- 446.		
373	- 1354.	- 790.		
374	- 1731.	- 1078.		
375	- 2537.	- 2028.		
376	- 15	- 1109.		
377	1905	- 1378		
378	- 638	- 2047		
379	-2102	- 3723		
380	421	476		
381	97			
387	- 50	_ 233		
383	- 13	118		
30J 301	- 15.	- 164		
285	- 0,	- 104.		
386	154.	- 229.		
207	200	- 299.		
200	- 299.	- 70.		
200	- 510.	20		
200	- 370.	39.		
201	- 423.	- 203.		
202	- 208.	1220.		
202	- 200.	033.		
393	- 047.	919.		
394	332.	679.		
395	018.	398.		
390	337.	372.		
397	- 1998.	139.		
398	- 1639.	- 0.		
399	- 1139.	262.		
400	- 829.	- 4/8.		
401	- /1/.	494.		uncertain var.
402	- 307.	339.		uncertain var.
403	- +0+.	195.		
404	- 047.	- 142.		
405	- 393.	- 104.		
400	70.	13.		
407	210	- 3.		
100	217.	07.		
110	577.	142.		un contain us-
410	721	- 242.		uncertain var.
412	1050	32.		uncertain vor
412	1037.	<u> </u>		uncertain val.

TABLE V (continued)
TABLE V (continued)
--------------------	---

NR	X''	Y''	Period	Remarks
412	2006	102		
415	1008	192.		
414	0.27	- 227.		
413	037.	43.		
416	- 177.	- /44,		
41/	430.	- 010.		
418	509.	- 828.		
419	55.	- 606.		
420	/61.	- 622.		
421	- 942.	- 994.		
422	- 470.	- 952.		
423	634.	- 882.		
424	623.	- 901.		
425	778.	- 150.		
426	- 88.	- 442.		
427	- 10.	27.		
428	- 153.	- 1111.		
429	- 165.	- 949.		
430	- 888.	- 437.		
431	- 1078.	- 264.		
432	825.	- 1093.		
433	2033.	244.		
434	107.	- 440.		
435	543.	381.		
436	173.	- 380.		
437	1090.	- 157.		
438	1151.	- 164.		
439	166.	- 682.		
440	43.	- 616.		
441	- 235.	- 613.		
442	1020.	- 1067.		
443	- 2229.	- 1141.		
444	3272.	-1258.		
445	2184.	- 1913.		
446	- 7.	208.		
447	65.	218.		
448	39	154.		
449	- 49	311		
450	- 625	- 78		
451	- 355	11		
452	_ 95	- 114		
453	- 69	54		
454	_ 58	11		
455	_ 982	- 27		
456	- 1322	305		
157	- 1522.	505.		
457	419	517		
400	410.	517.		

NR	Χ"	Y''	Period	Remarks
459	- 591.	126.		
460	- 909.	236.		
461	- 3516.	- 142.		
462	- 13.	478.		
463	1056.	487.		
464	798.	491.		
465	164.	859.		
466	198.	239.		
467	366.	39.		
468	468.	- 124.		
469	274.	- 77.		
470	- 94.	935.		
471	- 91.	1401.		
472	- 69.	1245.		
473	- 555.	1216.		
475	- 308.	123.		
476	- 491.	240.		
477	- 366.	- 304.		
478	381.	- 1042.		
479	- 1838.	- 2335.		
480	1479.	- 1233.		
481	- 784.	- 20.		
482	- 1519.	576.		
483	- 1823.	634.		
484	- 1459.	- 828.		
485	- 861.	- 951.		
486	1635.	91.		
487	1178.	- 260.		
488	1115.	- 255.		
489	978.	303.		
490	540.	260.		
491	486.	215.		
492	- 82.	- 410.		
493	205.	- 413.		
494	- 364.	- 299.		
495	- 674.	- 539.		
496	- 857.	- 557.		
497	- 307.	1019.		
498	- 102.	31.		
499	- 482.	- 11.		
500	- 410.	434.		
501	- 725.	- 405.		
502	- 780.	- 358.		
503	- 2561.	- 898.		
504	- 480	562		

TABLE V (continued)

TABLE V (continue	d)
-----------	----------	----

Period Remarks	Υ"	Χ"	NR
	964.	931.	505
	719.	775.	506
	86.	- 56.	507
	- 56.	- 246.	508
	56.	- 366.	509
	- 198.	- 602.	510
	- 790.	576.	511
	- 243.	733.	512
	- 1911.	611.	513
	- 2389.	707.	514
	- 115.	- 587.	515
	- 364.	- 659.	516
	- 339.	- 544.	517
	- 50.	- 220.	518
	50.	- 395.	519
	- 250.	- 1457.	520
	122.	- 1376.	521
	- 424.	- 355.	522
	- 370.	- 115.	523
	- 395.	103.	524
	- 688.	277.	525
	- 429.	165.	526
	457.	1033.	527
	1661.	3627.	528
	2025.	1683.	529
	1166.	1941.	530
	918.	1165.	531
	873.	449.	532
	658.	- 271.	533
	689.	- 958.	534
	818.	- 1585.	535
	- 249.	1441.	536
	- 129.	1637.	537
	32.	1313.	538
	- 246.	- 238.	539
	- 318.	603.	540
	- 809.	951.	541
	316.	924.	542
	1068.	- 456.	543
LP	866.	- 111.	544
	435.	280.	545
	- 879.	- 1472.	546
	- 1218.	- 990.	547
	- 562.	- 717.	548
	- 75.	- 311.	549
	- 708.	- 87.	550

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NR	Χ''	Y''	Period	Remarks
$\begin{array}{llllllllllllllllllllllllllllllllllll$	551	48.	- 971.		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	552	- 288.	- 178.		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	553	2638.	- 202.		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	554	- 407.	816.		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	555	- 1764.	254.		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	556	- 975.	- 5.		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	557	283.	138.		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	558	306.	- 455.		
560 $-1788.$ $9110.$ f 561 $-7014.$ $4894.$ f 562 $-402.$ $4658.$ f 563 $-1822.$ $4005.$ f 564 $1867.$ $4050.$ f 565 $-3900.$ $2613.$ 566 $4722.$ $2231.$ 567 $-868.$ $2039.$ 568 $-637.$ $760.$ 569 $3623.$ $1934.$ 570 $531.$ $740.$ 571 $1865.$ $908.$ 572 $4150.$ $1068.$ 573 $-2626.$ $873.$ 574 $434.$ $25.$ 575 $352.$ $302.$ 576 $-24.$ $372.$ 577 $2032.$ $-70.$ 578 $3547.$ $-974.$ 580 $-1820.$ $-668.$ 581 $-1310.$ $-386.$ 582 $91.$ $-902.$ 583 $547.$ $-234.$ 585 $1155.$ $-570.$ 586 $-3030.$ $-1954.$ 587 $2895.$ $-2235.$ 588 $544.$ $-3283.$ 589 $= 866.$ $-4293.$ f 590 $2839.$ $-3990.$ f 591 $4291.$ $-5650.$ f 594 $7258.$ $-7025.$ f 596 $-7178.$ $511.$	559	- 1401.	215.		
561 $-7014.$ $4894.$ f 562 $-402.$ $4658.$ f 563 $-1822.$ $4005.$ f 564 $1867.$ $4050.$ f 565 $-3900.$ $2613.$ 566 $4722.$ $2231.$ 567 $-868.$ $2039.$ 568 $-67.$ $760.$ 569 $3623.$ $1934.$ 570 $531.$ $740.$ 571 $1865.$ $908.$ 572 $4150.$ $1068.$ 573 $-2626.$ $873.$ 574 $434.$ $25.$ 575 $352.$ $302.$ 576 $-24.$ $372.$ 577 $2032.$ $-70.$ 578 $3547.$ $2411.$ 579 $-2587.$ $-974.$ 580 $-1820.$ $-668.$ 581 $-1310.$ $-386.$ 582 $91.$ $-902.$ 583 $547.$ $-234.$ 584 $2783.$ $-234.$ 585 $-1155.$ $-570.$ 586 $-3030.$ $-1954.$ 587 $2895.$ $-2235.$ 588 $544.$ $-3283.$ 589 $-866.$ $-4293.$ f 590 $2839.$ $-3990.$ f 591 $4291.$ $-5650.$ f 592 $-2817.$ $-5650.$ f 594 $7258.$ $-7025.$ f 594 $7258.$ $-7025.$ f 594 $7258.$ $-7025.$ f	560	- 1788.	9110.		f
562 -402 4658 f 563 -1822 4005 f 564 1867 4050 f 565 -3900 2613 566 4722 2231 567 -868 2039 568 -637 760 569 3623 1934 570 531 740 571 1865 908 572 4150 1068 573 -2626 873 574 434 25 575 352 302 576 -244 372 577 2032 -70 578 3547 241 580 -1820 -668 581 -1310 -386 582 91 -902 583 547 -234 585 1155 -570 586 -3030 -1954 587 2895 -2235 588 544 -3283 589 $=866$ -4293 590 2839 -3990 591 4291 -5002 592 -2817 -5650 593 -921 -6133 594 7258 -7025 595 3721 -6907	561	- 7014.	4894.		f
563 -1822 4005 f 564 1867 4050 f 564 1867 4050 f 565 -3900 2613 566 4722 2231 567 -868 2039 568 -637 760 569 3623 1934 570 531 740 571 1865 908 572 4150 1068 573 -2626 873 574 434 25 575 352 302 576 -244 372 577 2032 -70 578 3547 2411 579 -2587 -974 580 -1820 -668 581 -1310 -386 582 91 -902 583 547 -234 586 -3030 -1954 586 -3030 -1954 587 2895 -2235 588 544 -3283 589 $=866$ -4293 590 2839 -3990 591 4291 -5002 592 -2817 -5650 593 -921 -6133 594 7258 -7025 595 3721 -6907	562	- 402.	4658.		f
5641867.4050.f565 $-3900.$ 2613.566 $4722.$ 2231.567 $-$ 868.2039.568 $-$ 637.760.5693623.1934.570531.740.5711865.908.5724150.1068.573 $-$ 2626.873.574434.25.575352.302.576 $-$ 24.372.5772032. $-$ 70.5783547.241.579 $-$ 2587. $-$ 974.580 $-$ 1820. $-$ 668.581 $-$ 1310. $-$ 386.58291. $-$ 902.583547. $-$ 234.586 $-$ 3030. $-$ 1954.5872895. $-$ 2235.588544. $-$ 3283.589 $=$ 866. $-$ 4293. f f 5902839. $-$ 3990. f f 5914291. $-$ 5002. f f 592 $-$ 2817. $-$ 6650. f 593 $-$ 921. $-$ 6133. f 594 $7258.$ $-$ 7025. f 595 $3721.$ $-$ 607.596 $-$ 1708 $521.$	563	- 1822.	4005.		f
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	564	1867	4050		f
5664722.2231. 567 $-$ 868.2039. 568 $ 637.$ 760. 569 $3623.$ 1934. 570 $531.$ 740. 571 1865.908. 572 4150.1068. 573 $-$ 2626. $873.$ $574.$ $434.$ 25. $575.$ $352.$ $302.$ $ 576.$ $ 24.$ $372.$ $577.$ 2032. $ 70.$ $578.$ $3547.$ $241.$ $579.$ $ 2587.$ $ 974.$ $580.$ $ 851.$ $ 91.$ $ 902.$ $583.$ $547.$ $ 32.$ $584.$ $2783.$ $291.$ $ 585.$ $1155.$ $587.$ $2235.$ $588.$ $544.$ $ 3283.$ $599.$ $=$ $866.$ $ 4293.$ f $590.$ $2839.$ $590.$ $2839.$ $591.$ $4291.$ $4291.$ $ 502.$ f $593.$ $ 921.$ $ 6133.$ f $594.$ $7258.$ $7025.$ f $595.$ $3721.$ $ 6077.$	565	- 3900.	2613.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	566	4722	2010.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	567	- 868	2039		
5693623.1934.570 $531.$ 740.5711865.908.5724150.1068.573 $-2626.$ 873.574434.25.575352.302.576 $-24.$ 372.5772032. $-70.$ 5783547.241.579 $-2587.$ $-974.$ 580 $-1820.$ $-668.$ 581 $-1310.$ $-386.$ 58291. $-902.$ 583 $547.$ $-32.$ 584 $2783.$ $-234.$ 5851155. $-570.$ 586 $-3030.$ $-1954.$ 5872895. $-2235.$ 588 $544.$ $-3283.$ 589 $=866.$ $-4293.$ 590 $2839.$ $-3990.$ 591 $4291.$ $-5002.$ 593 $-921.$ $-6133.$ 594 $7258.$ $-7025.$ 595 $3721.$ $-6907.$ 596 -1708 $521.$	568	637	760		
303 $302.$ $740.$ 571 $1865.$ $908.$ 572 $4150.$ $1068.$ 573 $-2626.$ $873.$ 574 $434.$ $25.$ 575 $352.$ $302.$ 576 $-24.$ $372.$ 577 $2032.$ $-70.$ 578 $3547.$ $241.$ 579 $-2587.$ $-974.$ 580 $-1820.$ $-668.$ 581 $-1310.$ $-386.$ 582 $91.$ $-902.$ 583 $547.$ $-234.$ 585 $1155.$ $-570.$ 586 $-3030.$ $-1954.$ 587 $2895.$ $-2235.$ 588 $544.$ $-3283.$ 589 $= 866.$ $-4293.$ 590 $2839.$ $-3990.$ 591 $4291.$ $-5002.$ 592 $-2817.$ $-5650.$ 593 $-921.$ $-6133.$ 594 $7258.$ $-7025.$ 595 $3721.$ $-6907.$	569	3623	1934		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	570	531	740		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	571	1865	908		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	570	1150	1068		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	573	7676	873		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	577	- 2020.	75		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	575	352	302		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	576	2.1	372		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	577	2032	70		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	578	35.17	2.11		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	570	- 2587	07.1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	580	- 1820	- 668		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	581	- 1310	- 386		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	582	91	- 902		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	583	547	- 32		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.1	37.83	_ 234		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	585	1155	- 570		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	586	- 3030	- 1954		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	587	2895	_ 2235		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	588	5.14	_ 3283		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	580	866	_ 1293		f
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	590	- 000.	_ 3990		f
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	501	4 2 9 1	- 5002		f
593 - 921. - 6133. f 594 7258. - 7025. f 595 3721. - 6907. 596 - 1708 521	592	_ 2817	- 5650		f
595 - - - - - - - - 594 7258. - - 7025. f 595 3721. - 6907. 596 - 1708 521	503	- 921	- 6133		f
595 3721 -6907 .	594	7258	_ 7025		f
575 - 1708 - 571	505	3721	- 6907		1
	596	1708	- 0507.		

TABLE V (continued)

NR	Χ''	Y''	Period	Remarks
597	- 295.	382.		
598	- 1486.	- 809.		
599	1161.	- 38.		
600	- 131.	1030.		
601	- 4691.	9683.		f
602	274.	113.		
603	- 2016.	1127.		

TABLE V (continued)

PLATE I

Identification of the variable stars in the central region of the sculptor dwarf spheroidal galaxy. The scale (60'') is indicated in the upper right hand corner.

PLATE II Identification of the variable stars in the NW quadrant. The scale (120") is indicated.

PLATE III Identification of the variable stars in the NE quadrant.

PLATE IV Identification of the variable stars in the SE quadrant.

PLATE V Identification of the variable stars in the SW quadrant.

PLATE VI Identification of the majority of the variable stars in the outer regions of the Sculptor dwarf galaxy. The scale (10 arcmin) is indicated.

.

ASTRONU Y LIBRARY UNIVERSITY OF TORONTO ROOM 1306 60 ST. GEORGE STREET TORONTO, ONTARIO CANADA M5S 1A7

