PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

Number 7

THE LUMINOSITY FUNCTIONS OF GALACTIC STAR CLUSTERS

SIDNEY VAN DEN BERGH AND DAVID SHER

> 1960 Toronto, canada

THE LUMINOSITY FUNCTIONS OF GALACTIC STAR CLUSTERS

Abstract

The luminosity functions of the following galactic clusters have been obtained down to $m_{pq} \simeq 20$

NGC	188	NGC 663	NGC	2158	NGC 2539
NGC	436	NGC 1907	NGC	2194	NGC 2682 (M67)
NGC	457	NGC 1960	(M36) NGC	2362 (r CMa)	NGC 7789
NGC	559	NGC 2099	(M37) NGC	2477	IC 361
NGC	581 (M103)	NGC 2141	NGC	2506	Trumpler 1

It is found that striking differences exist among the main sequence luminosity functions of individual clusters. Also it appears that the faint ends of the luminosity functions of galactic clusters differ systematically from the van Rhijn-Luyten luminosity function for field stars in the vicinity of the sun in the sense that (with one exception) all the clusters which were investigated to faint enough limits, had luminosity functions which either decreased or remained constant below $M_{p\sigma} = +5$. The differences between individual clusters and the differences between the luminosity functions of clusters on the one hand and field stars on the other show that the luminosity function of star creation is not unique. This result is taken to indicate that the luminosity function with which stars are created probably depends on the physical conditions prevailing in the region of star creation.

It is also shown that the observed surface density of cluster stars may be represented by an exponentially decreasing function of the distance from the cluster centre. In a number of clusters, which have ages larger than their relaxation times, the brightest cluster stars are found to be more strongly concentrated towards the cluster centre than are the faintest stars.

Observational Material

This investigation is based on a series of 170 plates of galactic clusters obtained with the 48-inch Schmidt telescope on Palomar Mountain during nine nights in January and February of 1958*. A series of exposures ranging from 4 seconds to 10 minutes on Kodak 103aO emulsion (no filter) was obtained of each cluster. Also one 5-minute exposure of each cluster was taken on Kodak 103aE emulsion behind a red plexiglass filter. The limiting magnitude of each blue plate was determined from a magnitude sequence which had previously been established within the cluster. On each plate stars were counted in rings centred on the cluster. From these counts the number of

*During the night of January 13/14, 1958, the seeing deteriorated rapidly. All plates taken after 19^h 15^m P.S.T. were subsequently rejected.

cluster stars in each ring down to a given limiting magnitude was determined. By means of this procedure it was possible to investigate the luminosity functions of 20 galactic clusters down to about 20th magnitude.

Counting Procedure

The centre of each cluster was found by inspection and the plate was placed, emulsion downwards, on a sheet of transparent polar graph paper, in such a way that the centre of the cluster coincided with the pole of the co-ordinate system.

The difference in the radii of two consecutive circles of the polar graph paper was 0.1 inches, corresponding to 171" on the plate. The annuli, henceforth called "rings", thus formed, were numbered 1, 2, 3, etc., from the pole outwards.

Counting stars on a plate is not free from a "personal equation" effect. Innumerable decisions have to be made, rejecting some marks on the plate while accepting others as stars. A comparison between independent counts by the two authors on four plates in M67 is shown in figure 1. The comparison shows that the counts by van den

FIG. 1—Comparison of independent counts by van den Bergh and Sher on four plates of M67.

Bergh are systematically higher than those by Sher; that is to say the latter author was more conservative in his judgment of faint markings on the plate. Most of the counts which are reported in this paper have been made by Sher. Multiple counts of the same plate by Sher indicate that the root mean square deviation of two independent series of counts is 3.7 per cent.

An individual's counting limit is likely to vary somewhat over a period of time. To reduce, as much as possible, the effects of such systematic variations of the counting limit while counting stars on a single plate each cluster was divided into four quadrants and the quarter-rings thus formed were then counted in what was effectively a random order.

The basic data on each cluster were obtained by counting stars down to the plate limit on plates with different limiting magnitudes. In a number of cases these data were supplemented by counting only those stars brighter than a certain star of known magnitude, which was well above the plate limit. The latter data are considered to be of somewhat lower accuracy than the counts down to the plate limit.

THE NUMBER OF CLUSTER STARS

To estimate the surface density of background stars, the area which was counted in each case extended well beyond the boundary of the cluster. A "rule of thumb" was to choose the background area roughly equal to the cluster area, but this precept was not followed rigidly.

Suppose that the adopted background area, A_b , contains N_b stars, then the density of background stars, σ_b , is

$$\sigma_b = \frac{N_b}{A_b} \tag{1}$$

Let there be $N(r_n)$ stars in the *n*th ring within the cluster, then the number of cluster stars within the ring is

$$N_c(r_n) = N(r_n) - A(n) \sigma_b \tag{2}$$

where A(n) is the area of the *n*th ring.

Mean errors were associated with each determination of the number of cluster stars. These errors were obtained in the following way: Let

 ϵ_e = mean error of the number of cluster stars

 ϵ_1 = mean error of the number of background stars within the area of the cluster, due to the uncertainty in the surface density of background stars, σ_b

 ϵ_2 = error due to the statistical fluctuations of the number of background stars, themselves, within the cluster then

$$\epsilon_c^2 = \epsilon_1^2 + \epsilon_2^2 \tag{3}$$

in which

$$\epsilon_1^2 = N_b \frac{A_c^2}{A_b^2}$$
 and $\epsilon_2^2 = N_b \frac{A_c}{A_b}$

where M_b is the background area and A_c is the cluster area.

It should be emphasized that these errors do not take into account the uncertainties in the adopted limiting magnitudes or the uncertainties which might be introduced by irregular absorption over the background or cluster areas. Most of the clusters which will subsequently be discussed were selected for observation because they appeared projected on a relatively smooth field of background stars.

DETERMINATION OF THE LIMITING MAGNITUDES

(a) Standard Sequences

Photoelectric sequences and (or) photographic transfers were used to establish a standard sequence in or near each cluster. The photographic magnitudes of the sequence stars were determined with the Eichner photometer of the California Institute of Technology. All magnitudes were transformed to the P system by means of the relation (Allen 1955).

$$P - V = 1.10 (B - V) - 0.18$$
⁽⁴⁾

Details on individual magnitude sequences are given below:

- NGC 188: A photoelectric magnitude sequence to magnitude 17.2 was kindly supplied by Dr. Sandage. As NGC 188 lies less than 5° from the pole two transfer plates were taken, with both the cluster and the North Polar Sequence appearing on the same 14×14 inch plate. These transfers were used to set up a sequence in the cluster that included fainter stars than those in the photoelectrically obtained sequence. No significant deviations were found in the magnitude range where the two sequences overlap.
- NGC 436, NGC 457, NGC 559, NGC 581, NGC 663, Trumpler 1: A photoelectric sequence by Pesch (1959) down to magnitude 14.6 was used. The sequence was extended by means of a photographic transfer to SA 51 in which Dr. Baum had established a photoelectric sequence which he kindly made available to us.
- NGC 1907, NGC 1960: A magnitude sequence was set up by means of two photographic transfers to SA 51. No systematic differences between this sequence and sequences set up by Johnson and Morgan (1953) to $m_{pg} = 12.7$ and Cuffey (1937a) to $m_{pg} = 16.6$ were found.
- NGC 2099: The magnitude sequence depends on one photographic transfer to SA 51.

NGC 2141, NGC 2194: The magnitude sequence depends on two photographic transfers to SA 51. Comparison of our sequence with one set up by Cuffey (1943) in NGC 2194 indicates a systematic difference in the sense m (Cuffey) -m (adopted) = 0.08. Cuffey's sequence extends to magnitude 16.6.

- NGC 2158: A photoelectric sequence in this cluster down to magnitude 20.0 was kindly made available to us by Dr. Arp.
- NGC 2362: A photoelectric sequence down to magnitude 15.1 has been obtained in this cluster by Johnson and Morgan (1953). The sequence was extended to fainter magnitudes by means of two transfers to SA 57 in which a photoelectric sequence had been set up by Baum. The photographic transfers to this cluster are rather unsatisfactory since they were affected by fogging due to the lights of San Diego.
- NGC 2477: A sequence by Miss Sawyer (1930), which is probably of rather low accuracy, was used.
- NGC 2506, NGC 2539: The adopted magnitude sequences depend on two photographic transfers to SA 57.
- NGC 2682: A photoelectric sequence down to magnitude 17.0 by Johnson and Sandage (1955) was extended to fainter magnitudes by means of two photographic transfers to SA 51. The transfer magnitudes were reduced by 0.2 magnitudes to bring them into agreement with the photoelectric sequence.
- NGC 7789: A photoelectric sequence (Burbidge and Sandage 1958) down to magnitude 17.3 was kindly supplied by Dr. Sandage. This sequence was extended by means of two transfers to SA 68. The transfer magnitudes were shifted by 0.78 magnitudes to bring them into agreement with the photoelectric data. This large zero point error is probably due to the fact that the cluster was rather far west at the time of observation so that the plates may have been affected by twilight.
- IC 361: The adopted magnitude sequence depends on two photographic transfers to SA 57.

In some cases the number of standard stars in a given magnitude interval was rather small. In such cases the magnitudes of additional stars were interpolated by measuring image diameters.

(b) Determination of the plate limits

The provisional limiting magnitude of each plate was determined from the standard sequence on that plate. Let m_i and m_j be the magnitudes of two adjacent stars of this sequence. If star *i* was visible but star *j* was not, then $\frac{1}{2}(m_i + m_j)$ was adopted as the provisional limiting magnitude of the plate. Sometimes the appearance of the images suggested that this limiting magnitude was too bright, or perhaps, too faint and the simple average, accordingly, was reduced or increased slightly. In the case of transfer plates it was assumed that the limiting magnitude in the selected area was equal to that in the cluster.

The limiting magnitudes obtained in this manner are unsatisfactory on two counts:

(1) The limiting magnitude is an interpolation between two limits m_i and m_j which in a representative sequence might differ by 0.3 magnitudes.

Publications of the David Dunlap Observatory

(2) No account is taken of possible fluctuations in the sensitivity of the photographic emulsion as a function of position on the plate. Clearly such variations might affect the visibility or invisibility of a certain sequence star.

The provisional limiting magnitudes were therefore adjusted by requiring them to fulfil the condition that the background count, $N_b(m)$ must be a smoothly increasing function of the limiting magnitude. Experience shows that the effective counting limit lies somewhat above the actual plate limit. From a comparison of the luminosity function of the inner region of M67 derived in this paper, with that obtained by Johnson and Sandage (1955) it was estimated that the effective counting limit is 0.5 magnitudes brighter than the actual plate limit. This correction was applied to the limiting magnitude of all counts down to the plate limit. The magnitudes in Tables I and II (see p. 220 to p. 235) therefore refer to the actual limiting magnitude of the counts and not to the plate limit itself.

_					
	Cluster	$m - M_{pg}$	$m - M_o$	Distance	Age
	NGC 188	10.5	10.5	1250 pc	old
	NGC 436	13.7:	11.7:	2200:	young
	NGC 457	14.3	12.3	2900	young
	NGC 559	14.5:	11.7:	2200:	young
	NGC 581 (M103)	13.9	11.9	2400	young
	NGC 663	15.3	12.1	2600	young
	NGC 1907	13.1::	11.1::	1650::	young
	NGC 1960 (M36)	11.5	10.5	1250	young
	NGC 2099 (M37)	11.1	10.7	1400	intermediate
	NGC 2141				intermediate?
	NGC 2158	14.8	13.4	4800	intermediate
	NGC 2194	12.9:	10.4:	1200:	intermediate
	NGC 2362 (7 CMa)	11.2	10.8	1450	young
	NGC 2477	10.5::			intermediate
	NGC 2506				intermediate?
	NGC 2539	10.5	9.4	750	intermediate
	NGC 2682 (M67)	9.8	9.5	800	old
	NGC 7789	12.5	11.4	1850	intermediate
	IC 361				intermediate?
	Trumpler 1	14.2:	11.7:	2200:	young

TABLE III Basic Data on Clusters

Notes on Table III

- NGC 188: Modulus obtained by fitting Sandage's provisional main sequence to the zero-age main sequence. Zero reddening was assumed.
- NGC 436: True distance modulus taken from Bodén (1951). Absorption assumed to be same as that measured in the nearby cluster NGC 457 by Pesch (1959).
- NGC 457: Data from Pesch (1959).
- NGC 559: Data derived from Hiltner's (1956) observations of H.D. 8768 and H.D. 9105 using Johnson's (1959) intrinsic colours.
- NGC 581: From Krušpán (1959). Hiltner's (1956) data on B.D. +59°273 confirm Krušpán's estimate of the reddening.
- NGC 663: Data derived from Hiltner's (1956) observations of B.D. +60°331, 333, 339, 343 using Johnson's (1959) intrinsic colours.
- NGC 1907: Distance and reddening were obtained under the assumption that the cluster is physically associated with nearby OB stars. The data for these OB stars were taken from Hiltner (1956).
- NGC 1960: Data from Johnson (1957).
- NGC 2099: Apparent modulus obtained by assuming the red giants in this cluster (Lindblad 1954) to have the same M_{pg} as those in the Hyades and Praesepe.
- NGC 2158: Modulus obtained by fitting the colour-magnitude diagram given by Cuffey (1937b) to that of NGC 7789. The cluster-reddening was estimated by comparing provisional photoelectric magnitudes and colours obtained by Arp for some stars on the red giant branch with those obtained by Burbidge and Sandage (1958) in NGC 7789.
- NGC 2194: Data from Cuffey (1943).
- NGC 2362: Data from Johnson (1957).
- NGC 2477: Measurements of the diameters of stellar images on red and blue plates indicate that the cluster colour-magnitude diagram is possibly intermediate between those of NGC 752 and M67. The cluster main sequence terminates at about $m_{pg} = 13.0$. Assuming this to correspond to $M_{pg} = +2.5$ one obtains $m - M_{pg} = 10.5$.
- NGC 2539: Modulus obtained by comparing the cluster red giants (Zug 1933) with those in the Hyades and Praesepe. Absorption estimated by assuming $A_{pg} = 0.24$ cosec b.
- NGC 2682: Data from Johnson and Sandage (1955).
- NGC 7789: Data from Burbidge and Sandage (1958).
- Trumpler 1: Modulus from Kruspán (1959). Hiltner's (1956) colour excess for B.D. +60°274 is consistent with the absorption used by Kruspán.

THE LUMINOSITY FUNCTIONS OF CLUSTERS

(1) Old Galactic Clusters: NGC 188, NGC 2682 (M67)

NGC 188 and M67 are the two oldest known galactic clusters. Both clusters are located at intermediate galactic latitudes and are therefore particularly well suited for a determination of their luminosity functions. M67 appears projected on a very smooth stellar background.

Some faint emission and reflection nebulosity is visible in the vicinity of NGC 188 and star counts indicate some irregularities in the stellar background. As a result the luminosity function of NGC 188 is probably less accurate than that of M67. The luminosity functions of NGC 188 and M67 are shown on pages 236 and 237 respectively. Comparison of these two figures shows that the luminosity functions of both clusters exhibit a number of points of similarity. The integral luminosity functions of NGC 188 and M67 show a sudden increase in slope at $m_{pq} \simeq 15.6 \ (M_{pq} \simeq + 5.1)$ and $m_{pq} \simeq 13.3 \ (M_{pq} \simeq + 3.5)$ respectively corresponding to the termination points of the cluster main sequences. In both clusters the integral luminosity function has the largest slope (maximum of the differential luminosity function) less than one magnitude below the termination point of the main sequence. Below this maximum the luminosity functions decrease continuously down to the limits of observation. Comparison of the luminosity functions for the entire cluster with those for the inner region of each cluster shows that the brightest and hence most massive stars are more strongly concentrated towards the cluster nuclei than are the faintest least massive stars. Such an effect would be expected on dynamical grounds since both clusters are considerably older than their respective times of relaxation.

Table IV gives for both clusters the distance from the galactic plane, Z, the radius containing half of the cluster mass in projection, $r_{\frac{1}{2}}$, the largest distance to which the cluster could be traced, r_m , the extrapolated total cluster mass, \mathfrak{M} , the extrapolated total number of cluster stars, N, and the cluster relaxation time, τ , computed by means of an equation recently given by King (1959).

	1	FABLI	ΞI	ſ	
Data	ON	NGC	188	AND	M67

Cluster	Ζ	$\gamma_{\frac{1}{2}}$	₹m.	M	N	τ
NGC 188	+ 500 pc.	6.5' = 2.4 pc.	20' = 7.2 pc.	900∭ _☉	1200:	1.2×10^{8} y.
M67	+ 450	9.4 = 2.2	28 = 6.5	800	1000:	1.0×10^{8}

The mass-luminosity law tabulated by Schmidt (1959) was adopted to determine the total cluster mass. Stars which have evolved from the main sequence were assigned masses of 1.0 and 1.2 \mathfrak{M}_{\odot} respectively in NGC 188 and M67. The mass in the form of white dwarfs was assumed to be $50\mathfrak{M}_{\odot}$ in NGC 188 and $40\mathfrak{M}_{\odot}$ in M67. The extrapolated total

number of cluster stars, N, is considerably less accurate than the extrapolated total cluster mass \mathfrak{M} .

(2) Galactic Clusters of Intermediate Age: NGC 2099 (M37), NGC 2141, NGC 2158, NGC 2194, NGC 2477, NGC 2506, NGC 2539, NGC 7789, IC 361.

The luminosity functions of clusters of intermediate age (pages 238 to 246) show a number of interesting differences. Some of these differences are due to evolutionary effects, i.e. differences in the shapes of the red giant branches of the cluster colour-magnitude diagrams. In other clusters the differences are due to genuine differences in the cluster main sequence luminosity functions.

In the clusters NGC 2158 (p. 240) and NGC 7789 (p. 245) the slope of the integrated luminosity functions changes abruptly at $m_{pq} \simeq$ 17.0 ($M_{pq} \simeq + 2.2$) and $m_{pq} \simeq 14.0$ ($M_{pq} \simeq + 1.5$) respectively. This change in slope corresponds to the termination point of the cluster main sequence and to a concentration of red giants at the beginning of the cluster giant branch. The same explanation may also account for the sudden change in slope near $m_{pq} \simeq 17.7$ in the rich cluster NGC 2141 (p. 239), for which the distance modulus is unfortunately unknown. A similar explanation may account for the change in slope of the integral luminosity function of NGC 2506 (p. 243) near $m_{pq} \simeq$ 15.5 for which the distance modulus is also unknown.

The figure on p. 238 shows that the main sequence luminosity function of NGC 2099 (M37) has a flat maximum between the termination point of the cluster main sequence near $M_{pq} = 0$ and $M_{pq} = +4$. For fainter stars the luminosity function appears to decrease gradually. The main sequence luminosity functions of NGC 2477 (p. 242), NGC 2506 (p. 243) and NGC 2539 (p. 244), also seem to decrease slightly towards fainter magnitudes. The main sequence luminosity function of NGC 7789 (p. 245) appears to remain approximately constant over the range $+2.5 < M_{pq} < +5.5$. On the other hand the luminosity function of NGC 2194 (p. 241) seems to increase down to the limit of observation at $M_{pq} = +6$.

The data gave some indication that the brightest stars in NGC 2099 (M37), NGC 2194 and IC 361 are more concentrated towards the cluster nucleus than are the fainter stars.

(3) Young Galactic Clusters: NGC 436, NGC 457, NGC 559, NGC 581 (M103), NGC 663, NGC 1907, NGC 1960 (M36), NGC 2362 (τ CMa), Trumpler 1.

Publications of the David Dunlap Observatory

Young galactic clusters, which have only recently been formed from the interstellar gas, are usually located at low galactic latitudes. They, therefore, appear projected on a rich stellar background, which, due to the effects of absorbing interstellar clouds, is often quite irregular. As a result the luminosity functions of young galactic clusters are less reliable than those for the clusters of intermediate age, which have been discussed previously. Only in the case of the clusters NGC 436, NGC 457 and NGC 2362 was the background sufficiently homogeneous to determine the luminosity function in the usual manner.

For the other clusters it could, however, be assumed that the background was reasonably uniform over the two innermost rings. For these clusters only $f\phi(M)$ could be determined, in which f is an unknown constant which is smaller than one and $\phi(M)$ is the luminosity function of the entire cluster.

Let $N(r_n,m)$ be the total number of stars brighter than m in ring n and let $N_c(r_n,m)$ be the number of cluster stars brighter than m in ring n, then

$$N_c(r_n,m) = N(r_n,m) - \sigma_b(m) A(n)$$
(5)

in which $\sigma_b(m)$ is the surface density of background stars brighter than m and A(n) is the area of ring n. Since we are dealing with very young clusters, which have ages smaller than their times of relaxation, it will be assumed that the radial density distribution of cluster stars is identical for *all* magnitudes. Equation (5) may then be written

$$K(n) N_c(m) = N(r_n, m) - \sigma_b(m) A(n)$$
(6)

in which K(n) is the fraction of all cluster stars $N_c(m)$ in ring *n*. From equation (5) for rings 1 and 2 one obtains

$$f N_{e}(m) = \left[K(1) - \frac{K(2)}{3} \right] N_{e}(m) = N(1,m) - \frac{N(2,m)}{3}$$
(7)

This equation was used to determine the function $f\phi(M)$ for those clusters in which the absorption was judged to be relatively homogeneous over the nuclear region of the cluster.

The luminosity functions of the nine young clusters which were studied in the present investigation are shown on pages 247 to 250. The data indicate that the luminosity functions of young clusters differ from cluster to cluster. In the majority of the clusters the luminosity function appears to increase rapidly and then remains constant down to the limit of the observations. On the other hand the figures on p. 250 indicate that the clusters NGC 1907, NGC 1960 (M36) and NGC 2362 (τ CMa) appear to contain few if any intrinsically faint stars.

Star counts were made on the red prints of the Palomar Sky Survey in NGC 1907 and NGC 1960 to check the possibility that the apparent absence of faint cluster stars might be due to some peculiarity of the absorption in or near the nuclei of these clusters. Such absorption would of course be less effective in the red than in the blue. The results of the counts on the Sky Survey red prints are shown as open circles on p. 250 and seem to agree with the results obtained from the blue plates. Due to the fact that interstellar absorption is smaller in the red than in the blue, and because the faintest cluster stars are intrinsically red, the counts on the red prints should reach even fainter cluster stars than those recorded on the blue plates. It is therefore concluded that the absence of intrinsically faint stars in NGC 1907 and NGC 1960 (M36) is probably real. The possibility that the least massive stars in such very young clusters are still non-luminous, should of course, be kept in mind.

It is of some interest to note that if ϕ Cas is a member of NGC 457 (Pesch 1959), then the cluster contains stars with a brightness range of at least 15 magnitudes. On the other hand the main sequences of NGC 1907 and NGC 1960 (M36) only appear to be populated over a range of about 7 magnitudes.

THE RADIAL DENSITY DISTRIBUTION OF CLUSTER STARS

From the counts of stars in rings centred on the cluster nucleus the radial density distribution of cluster stars could be determined for the majority of the clusters contained in the present programme. The results are shown in figure 2, in which the fraction of all cluster stars $F(r/r_2^*)$ within radius r is plotted as a function of r/r_2^* in which r_2^* is the radius containing half of the cluster stars in projection. A cluster in which cluster stars could be traced out to a distance of n rings is represented in the figure by n points. The figure shows that the radial density distributions of all clusters which have been investigated are essentially similar. The scatter of the points for the outer regions of clusters may be largely due to the uncertainties inherent in the observations. The data for the high latitude clusters NGC 188 and M67 and the very rich cluster NGC 7789, which are

believed to be more accurate than those for the other clusters, are given in Table V (the points for these clusters are shown as large dots in figure 2).

TABLE V

	Fra	CTION C)F ALL	Cluste	er Stai	Rs F(r∕	r;*) W	ITHIN H	RADIUS	r/r <u>1</u> *	
					NGC	C 188					
$r/r_{\frac{1}{2}}*$	0.00	0.44	0.87	1.30	1.74	2.17	2.61	3.04			
F	0.00	0.17	0.43	0.65	0.77	0.86	0.95	1.00			
				N	GC 26	82 (Me	i7)				
$r/r_{\frac{1}{2}}^{*}$	0.00	0.29	0.59	0.88	1.18	1.47	1.76	2.06	2.35	2.65	2.94
F	0.00	0 10	0.28	0 43	0.58	0.71	0.80	0.86	0.93	0.96	1.00
					NGC	7789					
$r/r_{\frac{1}{2}}^*$	0.00	0 34	0.69	1.03	1 38	1.72	2.07	2.41	2.76	3.10	
F	0.00	0 11	0.34	0.01	0.08	0.81	0.90	0.94	0.98	1.00	
100 F		1		1	. 1			• •	••		
100											•
							:				
							•	• •			
-					,						1
					- <i>`</i> ,	•					
					•						
60 -					•						-
				2/2							
F			/								-
			•								
		•	•/								
10		/									
40											
	, i										
يما م				.1	I.,		2			3	l

FIG. 2—Fraction of the total number of cluster stars $F(r/r_{\frac{1}{2}}^*)$ within a distance $r/r_{\frac{1}{2}}^*$ of the cluster centre. $(r_{\frac{1}{2}}^*$ is the radius containing half of the cluster stars in projection.) The curve shows $F(r/r_{\frac{1}{2}}^*)$ for an isothermal cluster.

In figure 2 a smooth curve shows $F(r/r_{\frac{1}{2}}^*)$ for an isothermal cluster with a cutoff at $\xi = 10$, which has been tabulated by Chandrasekhar (1942). The scale factor for the isothermal distribution was chosen such that F = 0.5 for $r = r_{\frac{1}{2}}^*$. Comparison of the observed points, with the curve representing an isothermal cluster, shows systematic deviations which are probably significant. For $r/r_{\frac{1}{2}}^* < 0.5$ the observed points lie above the isothermal curve and for $r/r_{\frac{1}{2}}^* > 0.5$ the observed points fall predominantly below it. The observations may be represented remarkably well by a stellar surface density, σ , of the following form

$$\frac{\sigma(r)}{\sigma(o)} = e^{-1.68r/r} t^* \tag{8}$$

The data on the radii of the clusters contained in the present programme are given in Table VI.

 TABLE VI

 Cluster Radii Containing Half of the Cluster Stars in Projection

	$r_{\frac{1}{2}}^{*}$	D	- interfe	r1 *	D
NGC 188	8.5 = 2.4 pc.	1250 pc.	NGC 2362	1.6: = 0.7:pc.	1450 pc.
NGC 436	$1'_{.8:} = 1.2$:pc.	2200:pc.	NGC 2477	6:0	
NGC 457	$3'_{.8} = 3.2 \text{ pc.}$	2900 рс.	NGC 2506	4.'8	
NGC 2099	$8'_{.8} = 3.6 \text{ pc.}$	1400 pc.	NGC 2539	6.7 = 1.5 pc.	750 pc.
NGC 2141	4.'1		NGC 2682	$9'_{$	800 pc.
NGC 2158	3.6 = 5.0 pc.	4800 pc.	NGC 7789	$8'_{.2} = 4.4 \text{ pc.}$	1850 pc.
NGC 2194	3.7 = 1.3:pc.	1200:pc.	IC 361	3:8 —	

The data in the table may indicate a loose correlation between the radius containing half the total number of cluster stars and the stellar content of the clusters. NGC 2158 and NGC 7789, which are extremely rich, are seen to have larger than average radii.

DISCUSSION OF RESULTS

Probably the most striking feature revealed by the luminosity functions shown on pages 236 to 250 is that significant differences exist between the luminosity functions of individual galactic clusters. Some of these differences may be explained in terms of the effects of stellar evolution on the positions of cluster stars in the Hertzsprung-Russell diagram. However, evolution of individual stars cannot account for

the differences which are observed among the luminosity functions of unevolved main sequence cluster stars. The data on the luminosity functions of those clusters for which the observations extend below $M_{pg} = +5$ are summarized in Table VII. The data for the Hyades, Pleiades and Praesepe were taken from Sandage (1957).

Cluster	Limiting M_{pg}	$\phi(M_{pg})$
NGC 188	+10	Decreasing
NGC 436	+ 6	Constant?
NGC 457	+ 6	Constant?
NGC 559	+ 6	Constant?
NGC 581 (M103)	+ 6	Decreasing slightly?
NGC 663	+ 5	Decreasing slightly?
NGC 1907	+7	Decreasing
NGC 1960 (M36)	+ 9	Decreasing
NGC 2099 (M37)	+ 8	Decreasing slightly
NGC 2194	+ 6	Increasing
NGC 2362 (7 CMa)	+ 9	Decreasing
NGC 2539	+ 8	Decreasing slightly
NGC 2682 (M67)	+11	Decreasing
NGC 7789	+ 6	Constant
Trumpler 1	+ 6	Constant?
Hyades	+ 7	Constant
Pleiades	+10	Decreasing slightly
Praesepe	+7	Constant

			TABLE	VII	
Тне	FAINT	ENDS OF	CLUSTER	LUMINOSITY	FUNCTIONS

Table VII shows that, with only one exception, the faint ends of the luminosity functions of galactic clusters either decrease or remain constant. This behaviour is in sharp contrast to that of the van Rhijn-Luyten luminosity function for field stars in the vicinity of the sun. Recent computations by Schmidt (1959) show that $\phi(M_{pq})$ for field stars begins to increase sharply at $M_{pq} = +5$. The present observations show that such an increase does not, in general, occur in the luminosity functions of galactic clusters.

In the case of very old clusters like NGC 188 and M67 it might be assumed that the difference between the cluster luminosity functions and the van Rhijn-Luyten luminosity function is due to the escape of faint cluster stars (van den Bergh 1957). However, the relaxation times of these clusters (see Table IV) are so long that it now appears unlikely that the entire discrepancy could be accounted for in this way. The fact that faint stars appear to be almost absent in such young objects as NGC 1907, M36 and the τ Canis Majoris cluster could conceivably be accounted for by assuming that such faint stars have not yet contracted to a position near the main sequence. However, this appears unlikely in the light of Walker's (1956) observations of the extremely young cluster NGC 2264, which show that stars as faint as $M_{pg} = +8$ occur in that cluster. In any case neither of the two special hypotheses outlined above could account for the differences between the van Rhijn-Luyten luminosity function and the luminosity functions of galactic clusters of intermediate age.

The differences between the luminosity functions of galactic clusters on the one hand and the luminosity function of field stars on the other may be accounted for in a number of ways. It may be assumed that:

(1) There now exists a universal cluster luminosity function which is identical to the luminosity function of star creation during the last few million years and this luminosity function differs from the initial luminosity function of star creation in the galaxy.

(2) The luminosity function of galactic star clusters is not representative of the luminosity function of star creation. This presumably implies that the conditions under which star clusters are created are not representative of the conditions under which "average" stars in the galaxy were formed.

For a number of reasons, the second hypothesis appears more attractive than the first. If the first hypothesis were correct then, to account for the present luminosity function of field stars, one would have to assume that the luminosity function of star creation in the galaxy initially contained a much larger fraction of faint stars than it does now. This is equivalent to saying that the initial luminosity function of star creation must have been deficient in bright stars. According to current views on stellar evolution, the ejection of heavy elements, formed by nucleogenesis in bright stars, enriches the heavy element concentration in the interstellar gas. It is, therefore, difficult to see how the presumably rapid increase in the heavy element abundance during the first phase of the evolution of the galaxy could be understood if the luminosity function of star creation were initially deficient in massive stars.

The striking differences between the luminosity functions of individual galactic clusters makes it difficult to believe in the universality Publications of the David Dunlap Observatory

of the luminosity function of star creation. It would appear to be more reasonable to assume that the differences between individual star clusters and also between star clusters on the one hand and field stars on the other are due to different physical conditions in the regions of star creation. Although our understanding of the processes by which stars are created from the interstellar gas is still very fragmentary, it appears likely that the resulting spectrum of stellar masses will depend to some extent on the prevailing gas density, temperature and turbulent velocity and perhaps also on the prevailing strength and configuration of the magnetic field.

The conclusion that the luminosity function with which stars are created depends on the physical conditions prevailing in the region of star formation implies that it is not possible to obtain a significant determination of the change in the rate of star formation with time by comparing the present main sequence luminosity function of bright field stars with the bright ends of cluster luminosity functions. Assuming the dependence of the rate of star formation, f(t), on the gas density ρ , to be given by

$$f(t) \sim \rho^n \tag{9}$$

Schmidt (1959) obtains n = 1 to 2 from a comparison of the main sequence luminosity function of bright field stars with a "mean" luminosity function of bright stars in young clusters. On the other hand he finds that a comparison of the distribution of young stars and interstellar gas perpendicular to the galactic plane yields n = 2 to 3. The present investigation suggests that this discrepancy may be due to the fact that it is not legitimate to assume that the luminosity functions of galactic clusters are identical to the general luminosity function of star formation.

(Concluded on page 251)

TABLES AND FIGURES

Information concerning the arrangement of the tabular material and figures is given below.

Table I - Star Counts

The table contains the actual number of stars counted per ring down to each limiting magnitude. Limiting magnitudes marked by an asterisk refer to counts of stars brighter than a star of that magnitude. Limiting magnitudes not so marked refer to counts to the plate limit. Uncertain limiting magnitudes are followed by a colon. Limiting magnitudes followed by the letters B or R refer to counts on the blue or red prints of the Palomar Sky Survey. A vertical line in the tables indicates the adopted boundary between the cluster and background areas. In NGC 2158 and NGC 7789 numbers in parenthesis are counts corrected for overlapping images in the crowded cluster nuclei. In NGC 2158 numbers preceded by a minus sign give the number of background stars in the quadrant containing the nearby cluster M35. These were subtracted from the total number of stars in each ring to give the adopted background.

Table II - Integral Luminosity Functions

The table gives the total number of cluster stars N(m)down to each limiting magnitude as determined from the star counts in Table I. For most clusters the data are given separately for the inner region of the cluster, in which the cluster luminosity function is less affected by uncertainties in the adopted background level, than is the luminosity function of the entire cluster. For a number of young clusters only f N(m) is given in which f is an unknown constant which is smaller than one. In the case of NGC 2362 the inner half ring was excluded because the data are affected by the bright star T CMa which is in the centre of the cluster.

Figures

The following figures give the integral luminosity functions (below) and differential luminosity functions (above) for the clusters contained in the present programme. The data for the inner cluster region are represented by the lower curve (scale on right) and solid histogram. The data for the entire cluster are given by the upper curve (scale on left) and the open histogram. Data obtained from the red prints of the Palomar Sky Survey are shown as open circles.

																					Q		00	>
10		0	Ó	15	16	31	47	59	71	148	180	199	252	269	315	333	376	616	668		Q		00	2
6		-	2	2	6	24	43	47	59	116	160	179	226	228	268	284	316	582	663	457	4		00	>
8		0	4	Ø	12	20	45	48	64	135	161	176	219	218	236	250	283	506	577	NGC	2		н с 0 0	2
7		0	e	4	2	20	32	42	50	93	131	148	200	186	226	236	256	465	545		Ļ		00	0
9		1	9	6	11	20	39	46	53	111	135	150	198	189	227	225	255	444	479		Ring	mpg	5.77* 7.53*	
ទ		7	e	2	5	10	19	22	27	81	104	124	156	155	187	196	206	370	416					
4		Ţ	4	12	80	19	24	29	41	110	129	140	176	179	185	190	219	341	365		22		00	1
က		1	1	Ð	9	12	19	30	40	124	138	145	180	183	202	213	221	336	390		3 4		0	
2		0	r=	7	4	22	26	46	63	171	159	193	212	206	234	226	238	314	330	C 436	2		0 -	-
7		0	0	61	3 C	7	13	21	28	75	86	98	106	109	120	114	122	174	179	NG	r-i		00	>
Ring	mpg	*06°6	12.02*	13.15*	13.40	14.17*	14.71*	15.21*	15.59*	16.52*	17.00	17.23*	17.60	17.65	17.80*:	18,15:	18.40:	20.00:B	R		Ring	mpg	9.68* 10.25*	
								-	- :	22	0	-												

TABLE I - STAR COUNTS NGC 188 5

	- 23	21 -														
11.82* 13.14* 14.50 14.50 15.45 16.25 16.25 20.30:B R		ц рс	9.68*	10.35*	11.82*	13.14*	14.50	15 15	16.00:	16.25	16.45	16.85*:	18.60:	19.30:	20.30 B	В
13 19 19 19 19 19 19 218 218 277		Ring														
4 4 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	NGC	-	0	0	0	en 1	11	6 T	3 8 6	51	26	85	1	1	259	318
739 739 739 739 739 739 739 739 739 739	559	2	0	0	2	(T) (00	21	28	40	53	115	I	L	426	651
11 22 54 54 933 933 932 932				-	0.1	~	~				~	10			.0	_
2 20 20 32 116 116 1151																
	NGC	1	Ч	2	$\frac{13}{2}$	23	40 70	22	58	69	66	83	125	195	280	282
9.68* 10.35* 11.82* 14.50 14.50 15.45 16.25 16.45 20.30:B	581	5	4	1	с (zo ti	286	54	74	89	100	166	277	432	675	697
1 2 2 2 1 2 2 2 1 2 2 2 2 0 2 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0																
5 18 53 65 112 112 117 476	Ţ	-	0	0	<u>ີ</u>	070	45	55	61	69	75	82	133	154	227	250
1 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	NGC 66								1	1	1	1	2	n	4	9
1 3 3 5 5 1 0 4 1 0 4 8 3 1 8 3 1	e	52	1	ຄ	14	07.0	22 T T	97	06	28	35	59	64	49	56	10
0 0 0 0 0 0 0 0 0 0 0 0 0 0																
0 0 1 29 109 1231 1231	T1	r4	0	0	9 0	30	34	45	48	61	63	78	116	156	$242 \\ 242$	7.97
1 22 555 128 1439 1437	, 1	2	0	0	0 0	717	26	36	40	47	58	109	171	326	451	T70

																									10		80	TR
960	2		0	2	e	9	9	13	31	44	53	63	67	76	107	135	1	1	149	169	377	1	477		6		en e	80
NGC 1	Ч		0	6	7	9	13	17	28	39	43	45	48	50	61	67	1	ı	66	78	147	ŧ	183		8			14
																									7			9
907	2		0	0	0	0	2	3	13	27	47	54	72	92	140	159	183	171	194	232	ŧ	368	413	9 (M37)	6		1	2
NGC 1	Fi		0	0	0	2	4	2	16	35	50	49	66	75	95	105	96	94	108	116	t	182	189	NGC 209	ស		0	
																			. 1			. 1			4		0	2
	Ring		3*	8*	8*	1*	5	5	0	5	0	5	0	0	0	0	0	0	0	0	0:B	0:B			e		1	32 T
	oum	20 1	7.5	0.6	9°2	10.5	11.5	12.2	13.7	14.3	15.0	15.2	15.6	16.2	17.5	18.2	18.4	18.4	18.7	19.1	20.5	20.6	R		2		0	29
																									7		e i	37
																									Ring	mpg	10.68*	×21.•TT

HP

TABLE I (continued)

- 222 -

19	64	104	116	176	191	344	886	1148	1186	1428	1677																	
31	82	118	133	160	181	326	849	1040	1180	1353	1604																	
23 58	65	90	120	168	186	297	753	606	1072	1172	1536																	
27	75	105	106	149	167	279	666	875	958	1074	1379																	
17	45	71	90	125	144	266	624	762	877	959	1173		7		9	27	44	121	172	202	301	321	434	474	500	705	882	1059
19 58	59	87	96	125	146	231	537	711	771	847	1117	GC 2141	6		7	23	32	89	121	156	229	282	351	416	439	630	762	854
34 63	68	108	112	139	158	231	485	585	675	749	890	N	5		5	27	44	87	135	160	222	249	289	340	342	524	653	719
41 59	63	88	97	130	138	199	418	507	582	615	792		4		4	19	24	68	96	123	173	203	278	322	323	463	586	655
66 87	95	123	119	146	158	229	374	432	455	529	605		3		7	18	24	55	83	95	128	160	216	252	268	360	453	568
73 118	107	132	137	153	161	216	331	374	368	393	487		2		4	13	16	33	56	70	121	143	209	240	246	345	417	517
79 97	92	118	108	124	127	145	182	192	202	210	222		7		0	с С	9	36	45	59	75	100	138	153	174	206	240	380
12.78* 13.60	13.65	14.00	14.15	14.50	14.65	15.55	17.40	17.95	18,20	18.60	19.35		Ring	mpg	12.35*	13.76*	14.89*	16.15	16.75	17.10	17.65	17.85	18.20	18,35	18.40	18,95	19.30	19.55:B

- 223 -

T	3
0	2
12	5
2	1
-	i
÷	ŝ
ċ	1
2	5
č	ŝ
. 1	٦.
-	
1 1	-
E T C	
LE T (
RLF. T (
ARLE T (,	
TARLE T (

NGC 2158

5	9 1	- 6 C 6 C	99 190	1 00 1 00 1 00	000 1000	150	-55 216	-85	-123	342	-124	597	-193	6TL	-221	946	-278	1024	-324
Q	4	24	04	100	020 1	-19	$-30 \\ 180$	- 59	- 80	271	-89	453	-156	621	-219	773	-268	903	-286
Q	0	21	38	51	76	113	160	610	041	231		381		476		618		669	_
4	3	15	21	27	39	71	106	1 5.0	101	167		302	(303)	403	(405)	525	(223)	632	(640)
က	4	16	23	30	36	67	106	2 V L	740	158		270	(271)	346	(348)	442	(447)	520	(528)
0	г	8	10 17	20	26	33	76	100	204	125		262	(264)	343	(345)	493	(200)	563	(277)
1	eri.	8	13	6	1.7	28	68	60	0	100		281	(286)	331	(338)	474	(495)	442	(469)
Ring m _{pg}	10.69*	12.85	13.65	14.00	14.35	15,35	16.00	16 70		16.90		18.00		18.50		19.00		19,25	

- 224 -

																								2362 (t CMa)			
5		6	10	16	19	16	35	47	79	120	150	206	235	243	290	293	313	323	372	404	443	561	628	NGC	Ċ	2	Η 2
4		[10	80	18	40	55	72	101	126	184	201	205	239	248	271	278	317	347	368	472	1 506		6	1	
3			0	10	16	14	31	40	73	102	114	163	190	187	238	238	240	257	292	313	345	442	494		- 0	N	00
5		0		7	6	9	20	35	69	97	115	148	185	168	214	208	218	234	277	290	342	406	412		[2 0
g 1		1	0	12	14	e	24	47	69	97	95	119	143	149	171	156	178	178	179	188	209	250	274		-[c	u u	11
Rin	mpg	10.72*	11.45*	11.75	11.80	12.35*	13.76*	14.89*	16.15	16.75	17.10	17.65	17.85	17.90	18.20	18.25	18.35	18.40	18.65	18.75	18.95	19.30	19.55:B		Rine	mpg	6.63* 7.61*

NGC 2194

		NGC 2477	5	1 1 3 6 10	10 20 51 64	164 184 232 294 555 656
ę	55221 556234554 55624345544 55624455 5562445 556245 55755 55755 55755 557555 557555 557555 557555 557555 5575555 5575555 5575555 55755555 5575555 55755555 55755555 557555555	L	c	04	85	198 260 567
5	0 0 110 110 183 183 183 183 183 183 183 183 183 183	~	¶.	0 ო	7 94	193 263 551
17	0 30 10 10 10 10 10 10 10 10 10 10 10 10 10	c	c	2 1	26 11 3	232 292 552
Ħ	106 106 117 117 117 106 106 106	c	1	4 0	26 121	214 282 466
- 1 04	333250255583203 703558482203	.	-	0 н	19 86	136 169 218
Ring ^m pg	8.83* 10.17* 11.21* 12.25* 12.25* 13.40 14.80 13.45 18.45 18.45 18.45 20.00	2 D	antra gq ^m	10.1^{+} 11.4^{+}	13.1* 14.5*	15.9* 16.8* 18.0::

TABLE I (continued)

(beu)

- 226 -

		æ	0	4 8	11_{90}	57	124	149
7	$\begin{array}{c} 1 \\ 1 \\ 3 \\ 3 \\ 5 \\ 5 \\ 1 \\ 1 \\ 2 \\ 5 \\ 5 \\ 5 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	7	1	10 2	15	00 68	111	185
Ó	$\begin{array}{c} 1 \\ 22 \\ 22 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ $	C 2539 6	0	0 0	6	54	91 L	149
ນ	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NG 5	0	01 10	16	58	90 110	135
4	6 5 5 2 3 3 9 2 8 4 4 1 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4	4	Ţ	5 13	25	4 <i>c</i> 6 8	93 112	130
e	558662200 578665220 578765220 578765220 578765220 57875520 577755520 577755500 577755500 577755500 577755000 57775000 5777500000000	3	0	0	23	49 49	71	101
7	585 585 585 585 585 585 585 585 585 585	2	0	1 18	27	44 53	73 85	100
1	32022001 32022001 320220022003 3202200220001 320220001 320220001 320220001 320200001 320200001 320000000000	1	0	102	16	2 5	34 27	43
Ring	PK 12.15. 13.00* 15.005 15.85 16.15 16.65 16.65 17.20* 18.005 18.05 18.05 18.05 18.05	Ring	п _{рк} 9.15*	10.90*	13.00*	13.70× 15.05	15.50	16.15
	- 227 -							

NGC 2506

							ĩ		Ŭ				~		~	1	H	5	36	9	8	11(151
							17		5	2	ý	2	6	10	16	27	26	49	53	75	104	130	162
							16		2	ന	က	4	ý	ŝ	80	18	16	28	37	49	79	98	134
							15		2	က	က	ى ك	2	6	11	24	30	37	45	64	94	114	156
							14		1	4	က	Ω	80	10	6	17	24	33	40	55	91	98	197
		6	318 415	705	1047		13		0	က	4	က	4	S	2	18	20	30	33	50	74	95	195
		8	64 33	4 6 0	64		12		2	e	4	2	00	80	11	21	28	34	40	52	74	87	114
			00	4 O U	ά		11		2	4	ر	4	2	9	6	12	24	30	30	47	66	81	118
ued)	(pən	7	244 325	547 547	811	~	10		0	1	က	e	2	4	7	23	24	31	34	45	71	83	108
ontin	ontin	6		0 0		(M67	6		0	e	0	0	က	4	4	14	21	33	41	46	67	81	107
I (c	39 (c		18 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	474	40 66	2682	80		٦	Ч	-	4	ß	80	80	16	18	27	35	45	67	85	66
TABLE	GC 25	ß	182 230	100	571	NGC	7		1	2	с С	က	4	4	2	10	1_{4}	26	32	52	61	76	96
	N						9		0	0	0	0	-	٦	е С	13	20	30	39	49	75	86	108
		4	178 211 241	340	454		5		0	Ч	٦	2	4	ß	2	18	25	36	42	59	75	96	111
		က	127 164	247	343		4		0	0	1	က	ന	4	4	7	15	37	57	73	100	108	122
		5	00 h- 0		N m		ന		1	4	0	വ	വ	9	œ	15	22	38	47	62	74	89	109
			13,		248		2		1	9	2	11	11	15	24	30	44	76	87	89	119	129	130
		1	50 58 60	102	103		1		0	0 Q	9	œ	œ	11	12	20	28	40	42	53	56	65	69
		Ring M _{pg}	16.65 17.05 17.20*	18.00 18.00	18.65	22	Ring	mpg	9.78*	10.67*	11.10*	11.51*	11.83*	11.95	12.30*	13.25	13.60	14.30	14.60	15.45	16.30	16.90	17.70

18.55 19.25	19.30	19.85	20.65B		R1	mpg	11.07*	12.68*	13.14*	*88°ET 22	0 14.25	1 14.75	14.77*	15.09*	15.15	15.45	16.49*	17.26*	17.60:		18.00:		18.10:		18,20:		18.20:	
75 78	74	62	92		ng 1			2	10	17	45	75	46	66	91	115	159	197	225	(238)	253	(266)	261	(279)	272	(305)	290	(309)
$146 \\ 149$	158	169	172		64		674	22	24	40	86	122	92	241	186	221	346	444	508	(526	617	(637	606	(634	720	(762	680	(717)
130 143.	136	160	179							_		-			-			4		(2)	9	9) (9	9) (6	2	() (2	-	2) (.
$133 \\ 165$	160	173	199		co		1	12	16	25	60	.03	83	.82	.36	.83	341	40	149	58)	77	87)	71	86)	42	(63)	54	(02.
$130 \\ 151$	150	180	217		4		5	21	19	40	53	85	92	218	138	185	350	528	651	(099)	828	(837)	875	(890)	941	(961)	938	(953)
$124 \\ 151$	148 150	175	212												-	-1	00	20	0)	2	<u> </u>	æ)	TC	(10)	1(()()
$121 \\ 149$	147	172	209	N(5		က	27	26	41	62	92	91	214	44	195	391	535	578	685)	395	904)	397	010)	101	(610)26	(01)
127 157	157	193	236	3C 778	0		ſ	26	22	44	61	100	36	215	147	171	365	596	700	(706	943	(950	994	(1006	1105	(1121	1079	(1091)
$130 \\ 162$	166	195 1	236	39				.0	~1			.0	<u> </u>					.0	_) ()	~	E) (1)		 (1) (1) 		() ()	[(
137 177	172	214	261		7		9	35	39	36	88	126	114	256	1.64	204	463	639	795	(802)	1072	080)	068	.081)	183	(200)	176	189)
$\frac{148}{182}$	181	211	246					e	က	4	2	6	11	20	15	19	43	68	86		113		125		135		136	
$156 \\ 198$	196	194 231	280		8		7	7	6	5	1	6	4	0	6	1	3	3	0				4		5		3	
$145 \\ 183$	198	1.20 2.2.8	294		6		7	25	33	30	72	109	93	257	159	190	487	749	956		1274		1326		1473		1479	
$165 \\ 208$	211	254	362				_							C 4			4	<u></u>	10		E		14		10			
$204 \\ 261$	263	310	406		10		5	31	28	45	82	118	66	227	53	L95	150	321	32		372		143		583		586	
$172 \\ 241$	231	294	384		11		w	4.5	35	45	6	13^{2}	10^{-1}	28(19(24	513	86/	108(1513		1581		174		1762	
209 251	276	327	389		_,		~	~	~	~	~	-		~	.0	7		_									_	
208 282	260	337	424		12		14	49	68	81	123	165	155	323	226	272	608	1007	1250		690		805		.943		1961	

TABLE I (concluded)

IC 361

		Г		-	-	-	-	-	Ξ.	-	23			
Ring	mpg	4.60	5.50	5.80	6.15	7.10*	7.70	8.25	8.25	8.55	8.85	9.00	0.00:B	p
-1		co	11	23	40	65	180	153	136	162	180	215	255	317
5		6	14	19	28	86	128	158	155	182	204	229	377	554
co		8	17	25	26	82	120	167	152	180	237	241	412	741
4		11	25	43	59	84	154	201	200	235	287	304	485	845
2		18	38	43	55	112	169	252	226	274	331	359	625	074
9		28	52	60	83	135	223	274	287	339	397	427	713	1266
7		27	50	65	78	1.62	221	340	338	403	480	526	901	1478

TABLE II - LUMINOSITY FUNCTIONS

NGC 188

	Inner	Re	egion	Ent	tir	e
^m pg	Rings	1	,2,3	C11	151	er
9.90*	1	±	0	1	±	2
12.02*	0	\pm	1	6	±	5
13.15*	8	±	1	13	±	7
13.40	6	±	2	6	±	8
14.17*	29	±	2	40	±	12
14.71*	34	±	3	42	±	16
15.21*	70	±	3	89	±	17
15.59*	97	±	3	116	±	19
16.52*	300	±	5	381	±	27
17.00	295	±	6	401	±	31
17.23*	338	±	ó	466	±	31
17.60	375	±	7	559	±	36
17.65	372	±	7	521	±	37
17.80*:	412	±	7	597	±	39
18.15:	400	±	7	567	±	40
18.40:	409	±	8	581	±	42
20.00:B	524	+	10	807	±	57
R	563	+	11	873	±	60

NGC 436

NGC 457

mpg	Inner Region Ring 1	Entire Cluster	Inner Region Rings 1,2	Entire Cluster
5.77* 7.53* 9.68* 10.35* 11.82* 13.14* 14.50 14.90 15.45 16.00: 16.25 16.45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 \ \pm \ 0 \\ 0 \ \pm \ 0 \\ 0 \ \pm \ 0 \\ 1 \ \pm \ 1 \\ 5 \ \pm \ 1 \\ 11 \ \pm \ 2 \\ 16 \ \pm \ 4 \\ 22 \ \pm \ 5 \\ 37 \ \pm \ 6 \\ 43 \ \pm \ 6 \\ 47 \ \pm \ 7 \\ 67 \ \pm \ 8 \end{array}$	$ \begin{array}{c} 1 \pm 0 \\ 2 \pm 0 \\ 6 \pm 0 \\ 11 \pm 1 \\ 29 \pm 1 \\ 45 \pm 1 \\ 82 \pm 4 \\ 94 \pm 4 \\ 111 \pm 5 \\ - \\ 143 \pm 7 \\ 142 \pm 7 \\ \end{array} $	$ \begin{array}{c} 1 \pm 0 \\ 2 \pm 0 \\ 8 \pm 1 \\ 15 \pm 2 \\ 38 \pm 2 \\ 61 \pm 3 \\ 96 \pm 9 \\ 111 \pm 10 \\ 137 \pm 12 \\ - \\ 199 \pm 15 \\ 204 \pm 16 \\ \end{array} $
20.30:B R	144 ± 12 143 ± 12	153 ± 25 233 ± 25	281 ± 23	406 ± 52
mpg	NGC 559 fN(m)	NGC 581 fN(m)	NGC 663 fN(m)	Tr 1 fN(m)
9.68* 10.35 11.82* 13.14* 14.50 14.90 15.45 16.00: 16.25	$\begin{array}{c} 0 \ \pm \ 0 \\ 0 \ \pm \ 0 \\ -1 \ \pm \ 1 \\ 10 \ \pm \ 1 \\ 10 \ \pm \ 1 \\ 12 \ \pm \ 1 \\ 22 \ \pm \ 3 \\ 29 \ \pm \ 4 \\ 38 \ \pm \ 4 \end{array}$	$ \begin{array}{c} 1 \pm 0 \\ 2 \pm 1 \\ 12 \pm 1 \\ 20 \pm 2 \\ 37 \pm 3 \\ 39 \pm 4 \\ 34 \pm 5 \\ 33 \pm 6 \\ 39 \pm 6 \\ 39 \pm 6 \end{array} $	$\begin{array}{c} 0 \ \pm \ 1 \\ -2 \ \pm \ 1 \\ 0 \ \pm \ 2 \\ 11 \ \pm \ 3 \\ 24 \ \pm \ 4 \\ 26 \ \pm \ 5 \\ 23 \ \pm \ 7 \\ 26 \ \pm \ 7 \\ 26 \ \pm \ 8 \end{array}$	$\begin{array}{c} 0 \ \pm \ 0 \\ 0 \ \pm \ 0 \\ 6 \ \pm \ 0 \\ 7 \ \pm \ 1 \\ 24 \ \pm \ 3 \\ 25 \ \pm \ 3 \\ 3.3 \ \pm \ 4 \\ 3.5 \ \pm \ 4 \\ 45 \ \pm \ 5 \end{array}$

- 231 -

TABLE II (continued)

(cont [®] d) ^m pg	NGC 559 fN(m)	NGC 581 fN(m)	NGC 663 fN(m)	Tr 1 fN(m)
16.45 16.85*: 18.60: 19.30: 20.30:B R	41 ± 5 47 ± 8 - 117 ± 14 101 ± 17	33 ± 7 28 ± 9 32 ± 11 51 ± 14 55 ± 17 50 ± 17	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
^m pg	NGC 1907 fN(m)	NGC 1960 fN(m)		
7.53* 9.08* 9.58* 10.51* 11.55 12.25 13.70 14.35 15.00 15.25 15.60 16.20 17.50 18.20 18.40 18.40 18.40 18.70 19.10 20.50:B 20.60:B	$\begin{array}{c} 0 & \pm & 0 \\ 0 & \pm & 0 \\ 0 & 2 & \pm & 0 \\ 3 & \pm & \pm & 1 \\ 12 & \pm & \pm & 2 \\ 26 & \pm & \pm & 5 \\ 31 & \pm & \pm & 5 \\ 32 & \pm & \pm & 5 \\ 42 & \pm & \pm & 5 \\ 44 & \pm & \pm & 4 \\ 48 & \pm & \pm & 4 \\ 52 & \pm & \pm & 9 \\ 35 & \pm & \pm & 9 \\ 37 & \pm & \pm & 9 \\ 39 & \pm & \pm & 10 \\ 59 & \pm & \pm & 14 \\ \end{array}$	$\begin{array}{c} 0 \ \pm \ 0 \\ 5 \ \pm \ 1 \\ 6 \ \pm \ 1 \\ 7 \ \pm \ 2 \\ 10 \ \pm \ 2 \\ 13 \ \pm \ 4 \\ 24 \ \pm \ 4 \\ 25 \ \pm \ 5 \\ 26 \ \pm \ 5 \\ 25 \ \pm \ 5 \\ 22 \ \pm \ 2 \\ 13 \\ 16 \ \pm \ 4 \\ 22 \ \pm \ 13 \\ 24 \ \pm \ 14 \end{array}$		

NGC 2099 (M37)

^m pg	Inner Rings	Re 1,	egion 2,3	En: Clu	tin 151	re ter
10.68* 11.72* 12.78* 13.60 13.65 14.00 14.15 14.50 14.65	2 93 206 273 261 324 304 343 358	********	1 2 4 6 8 8 10 10	-6 114 274 383 367 482 443 524 572	********	5 9 13 21 22 27 30 35 36
15.55 17.40 17.95 18.20 18.60 19.35	437 494 509 482 508 552	*****	13 21 24 25 27 30	709 823 961 1028 938 1253	******	48 77 86 90 97 107

NGC 2141

NGC 2194

^m pg	Inner Region Rings 1,2	Entire Cluster	Inner Region Ring 1	Entire Cluster
10.72* 11.45* 11.75 11.80 12.35* 13.76* 14.89* 16.15 16.75 17.10 17.65 17.90 18.20 18.25 18.35 18.40 18.65 18.75 18.95 19.30 19.55:B	$ \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$ \begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	1 ± 0 -1 ± 1 10 ± 1 12 ± 1 19 ± 2 41 ± 2 95 ± 4 955 ± 4 955 ± 4 160 ± 2 138 ± 4 121 ± 6 121 ± 6 121 ± 6 121 ± 4 140 ± 4 14	$\begin{array}{c} 0 & \pm & 2 \\ 0 & \pm & 5 \\ 14 & \pm & 5 \\ 4 & \pm & 5 \\ 65 & \pm & 9 \\ 127 & \pm & 12 \\ 172 & \pm & 12 \\ 172 & \pm & 12 \\ 172 & \pm & 12 \\ 2173 & \pm & 12 \\ 2252 & \pm & \pm & 12 \\ 297 & \pm & \pm & 20 \\ 326 & \pm & \pm & 23 \\ 3301 & \pm & \pm & 25 \\ 3613 & \pm & \pm & 26 \\ 439 & \pm & \pm & 26 \\ 439 & \pm & \pm & 301 \\ 516 & \pm & \pm & 31 \\ \end{array}$
	NGC 21	58	NGC 2362	(てCMa)
mpg	Inner Region Rings 1,2	Entire Cluster	^m pg	fN(m)
10.69* 12.85 13.65 14.00 14.35 15.35 16.00 16.70 16.90 18.00 18.50 19.00 19.25	1 ± 1 9 ± 3 14 ± 4 12 ± 5 21 ± 5 21 ± 7 88 ± 8 121 ± 10 136 ± 10 394 ± 14 483 ± 16 736 ± 18 753 ± 19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.63* 7.61* 8.83* 10.17* 11.21* 12.25* 13.40 14.80 16.00 17.50 18.45 18.75 20.00	$\begin{array}{c} 0 & \pm & 1 \\ 1 & \pm & 1 \\ 3 & \pm & 1 \\ 10 & \pm & 2 \\ 266 & \pm & 2 \\ 337 & \pm & 4 \\ 40 & \pm & 5 \\ 48 & \pm & 8 \\ 40 & \pm & 11 \\ 57 & \pm & 15 \end{array}$

NGC 2477

	Inner Region	Entire
mpg	Rings 1,2	Cluster
10.1*	0 ± 1	-3 ± 3
11.4*	2 ± 2	0 ± 6
13.1*	40 ± 2	54 ± 8
14.5*	188 ± 5	379 ± 16
15.9*	293 ± 8	610 ± 27
16.8*:	363 ± 10	717 ± 33
18.0::	483 ± 15	1093 ± 51

TABLE II (continued)

NGC 2506

NGC 2539

mpg	Inner Region Rings 1,2	Entire Cluster	Inner Region Rings 1,2,3	Entire Cluster
9.15* 10.90* 12.12* 13.00* 15.05 15.50 15.50 15.85* 16.15 16.65 17.05 17.20* 18.00 18.05*: 18.40B	$\begin{array}{c} - \\ 3 \pm 2 \\ 7 \pm 2 \\ 21 \pm 3 \\ 116 \pm 6 \\ 128 \pm 7 \\ 108 \pm 7 \\ 268 \pm 9 \\ 355 \pm 10 \\ 413 \pm 11 \\ 511 \pm 14 \\ 546 \pm 16 \\ 589 \pm 16 \\ 559 \pm 17 \end{array}$	$\begin{array}{c} -2 \pm 6 \\ 1 \pm 8 \\ 18 \pm 11 \\ 129 \pm 21 \\ 162 \pm 22 \\ 183 \pm 22 \\ 387 \pm 28 \\ 518 \pm 33 \\ 688 \pm 33 \\ 688 \pm 45 \\ 925 \pm 51 \\ 952 \pm 51 \\ 952 \pm 54 \\ 1069 \pm 57 \end{array}$	$\begin{array}{c} 0 \ \pm \ 0 \\ 1 \ \pm \ 1 \\ 33 \ \pm \ 2 \\ 58 \ \pm \ 3 \\ 79 \ \pm \ 5 \\ 89 \ \pm \ 7 \\ 109 \ \pm \ 9 \\ 128 \ \pm \ 9 \\ 130 \ \pm \ 12 \\ 130 \ \pm \ 14 \\ 144 \ \pm \ 16 \\ 161 \ \pm \ 19 \\ 138 \ \pm \ 21 \\ 175 \ \pm \ 21 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
18.65	656 ± 18	1037 ± 60	150 ± 26	210 ± 63

NGC 2682 (M67)

Inner	Re	egion	En	tiı	ce	
Rings	1,	,2,3	C1	us1	ter	
1	±	1	-2	±	3	
14	±	1	11	±	4	
14	±	1	13	±	4	
23	±	1	25	±	5	
22	±	1	26	±	6	
30	±	2	36	±	6	
41	±	2	47	+	7	
59	±	2	98	±	10	
87	±	3	148	±	11	
143	±	3	255	±	13	
163	±	4	316	±	14	
186	±	4	369	±	17	
222	±	5	468	±	21	
250	±	6	535	\pm	23	
264	±	7	574	±	27	
294	±	8	625	±	30	
297	±	9	676	±	34	
295	±	9	649	±	35	
312	±	9	700	±	35	
320	±	9	731	±	38	
331	+	10	770	+	42	
	Inner Rings 1 14 14 23 22 30 41 59 87 143 163 186 222 250 264 294 297 295 312 331	Inner Re Rings 1 1 ± 1 14 ± 23 ± 22 ± 30 ± 4 22 ± 30 ± 4 143 ± 163 ± 163 ± 163 ± 163 ± 222 ± 2564 ± 294 ± 2975 ± 312 ± 331 ± 3	<pre>Inner Region Rings 1,2,3 1 ± 1 14 ± 1 14 ± 1 23 ± 1 22 ± 1 30 ± 2 41 ± 2 59 ± 2 87 ± 3 143 ± 3 163 ± 4 186 ± 4 222 ± 5 250 ± 6 264 ± 7 294 ± 8 297 ± 9 312 ± 9 331 ± 10</pre>	Inner Region Rings 1,2,3 1 ± 1 -2 14 ± 1 11 14 ± 1 13 23 ± 1 25 22 ± 1 26 30 ± 2 36 41 ± 2 47 59 ± 2 98 87 ± 3 148 143 ± 3 255 163 ± 4 316 186 ± 4 369 222 ± 5 468 250 ± 6 535 264 ± 7 574 294 ± 8 625 297 ± 9 676 295 ± 9 649 312 ± 9 700 320 ± 9 731 331 ± 10 770	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

NGC 7789

mpg	Inner	Re	gion	En 1	tir	re
	Rings	1,	2,3	Clu	1st	er
11.07*	0	±	2	-2	± ± ±	9
12.68*	24	±	5	55		19
13.14*	31	±	5	53		20

TABLE II (concluded)

NGC 7789 (concluded)

	Inner	R	egion	En	ti	re
"pg	KINGS	1	, 2, 0	011	15	ter.
13.88*	59	±	5	100	±	22
14.25	149	±	7	216	±	30
14.75	240	±	8	381	±	35
14.77*	170	±	8	364	±	32
15.09*	403	±	12	811	±	50
15.15	331	±	10	601	±	41
15.45	417	±	11	737	±	46
16.49*	621	±	.16	1313	±	68
17.26*	696	±	21	1350	±	89
17.60:	841	±	24	1661	±	99
18.00:	937	±	27	1886	±	116
18.10:	909	±	28	1857	±	119
18.20:	1063	±	30	1054	±	126
18.20:	1037	±	29	2083	±	125

IC 361

Inner R	egion	Entire
Ring	1	Cluster
1 ±	1	-5 ± 7
7 ±	2	-1 ± 10
18 ±	2	29 ± 11
33 ±	3	47 ± 12
53 ±	3	119 ± 16
111 ±	4	234 ± 20
127 ±	5	259 ± 24
110 ±	5	231 ± 24
131 ±	6	267 ± 26
146 ±	6	322 ± 28
$175 \pm$	6	352 ± 29
187 ±	8	445 ± 38
204 ±	11	654 ± 52
	Inner R Ring 1 ± 7 ± 18 ± 33 ± 53 ± 111 ± 127 ± 110 ± 131 ± 146 ± 185 ± 187 ± 204 ±	Inner Region Ring 1 1 ± 1 7 ± 2 18 ± 2 33 ± 3 53 ± 3 111 ± 4 127 ± 5 110 ± 5 131 ± 6 146 ± 6 175 ± 6 187 ± 8 204 ± 11

Acknowledgements

The observations on which this investigation is based were obtained while one of us (S. v. d. B.) was a guest investigator at the Mount Wilson and Palomar Observatories on temporary leave from the Ohio State University. The hospitality which he enjoyed at Mount Wilson and at the California Institute of Technology is gratefully acknowledged. In particular it is a pleasure to thank Dr. I. S. Bowen for his kind co-operation and Dr. A. R. Sandage for a number of helpful discussions. The competent assistance of Mr. C. Kearns with the 48-inch telescope is also gratefully recorded.

We are also indebted to Dr. H. C. Arp for providing us with an unpublished photoelectric sequence in NGC 2158 in addition to a set of plates of the same cluster taken with the 200-inch telescope. Dr. A. R. Sandage kindly provided photoelectric sequences in NGC 188 and NGC 7789 and Dr. W. A. Baum gave us unpublished photoelectric sequences in a number of selected areas. Dr. M. S. Roberts gave us some of his unpublished data on luminosity functions of a few clusters.

Part of this investigation was supported by a grant from the Ontario Research Foundation.

REFERENCES

Allen, C. W. 1955, "Astrophysical Quantities", (London: The Athlone Press) p. 180. van den Bergh, S. 1957. A. J., vol. 62, p. 100.

- Bodén, E. 1951, Uppsala Ann., vol. 2, no. 10.
- Burbidge, E. M. and Sandage, A. R. 1958, Ap. J., vol. 128, p. 174.
- Chandrasekhar, S. 1942, "Principles of Stellar Dynamics", (Chicago: Univ. of Chicago Press) p. 234.
- Cuffey, J. 1937a, Harv. Ann., vol. 105, p. 403.
- Cuffey, J. 1937b, Harv. Ann., vol. 106, p. 39.
- Cuffey, J. 1943, Ap. J., vol. 97, p. 93.
- Hiltner, W. A. 1956, Ap. J. Suppl., vol. 2, p. 389.
- Johnson, H. L. and Morgan, W. W. 1953, Ap. J., vol. 117, p. 313.
- Johnson, H. L. and Sandage, A. R. 1955, Ap. J., vol. 121, p. 616.

Johnson, H. L. 1957, Ap. J., vol. 126, p. 121.

- Johnson, H. L. 1959, Lowell Obs. Bull., vol. 4, p. 37.
- King, I. R. 1959, A. J., vol. 64, p. 351.
- Kruspan, E. 1959, Zs. f. Ap., vol. 48, p. 1.
- Lindblad, P. O. 1954, Stockholm Ann., vol. 18, no. 1.
- Pesch, P. 1959, Ap. J., vol. 130, p. 764.
- Sandage, A. R. 1957, Ap. J., vol. 125, p. 422.
- Sawyer, H. B. 1930, Harvard Obs. Bull., no. 875, p. 16.
- Schmidt, M. 1959, Ap. J., vol. 129, p. 243.
- Walker, M. F. 1956, Ap. J. Suppl., vol. 2, p. 365.

Zug, R. S. 1933, Lick Obs. Bull., vol. 16, p. 119.

