PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II NUMBER 4

THE RADIAL VELOCITIES, SPECTRAL CLASSES AND PHOTOGRAPHIC MAGNITUDES OF 1041 LATE-TYPE STARS

JOHN F. HEARD
DIRECTOR

1956 TORONTO, CANADA

THE RADIAL VELOCITIES, SPECTRAL CLASSES AND PHOTOGRAPHIC MAGNITUDES OF 1041 LATE-TYPE STARS

Introduction

In 1946 the late Frank S. Hogg, then Director of this Observatory, set out to design a long-range programme to measure the radial velocities of a large group of late-type stars, believing that stars of this kind had been neglected in comparison with early-type stars. To make the observational material most useful he decided to choose stars for which proper motion data were already available and to choose them so that the observational material would provide information well suited to galactic studies. With these points in mind, he chose the declination zone $+25^{\circ}$ to $+30^{\circ}$ which includes both the solar apex and the north galactic pole, and he selected from the Yale Catalogue of the Positions and Proper Motions (Schlesinger and Barney, 1933) the stars listed with photographic magnitudes brighter than 9.01 and of spectral types G0 and later for which radial velocities were not then known. The final programme included 1041 stars. Because of systematic errors in the photographic magnitudes of the Yale Catalogue the selected stars are for the most part fainter than 9th magnitude, and because of errors in the Henry Draper classification many are of type F.

The observations for this programme occupied a large part of the observing time of the 74-inch telescope from 1946 until 1954. As the observing and measuring of the spectrograms proceeded, it became apparent that the velocity data would be much more useful if spectral and luminosity classes and improved photographic magnitudes could be added. Accordingly, classification and photometric programmes were undertaken for the same stars. The present report combines the results of these three separate programmes.

THE RADIAL VELOCITIES

Observations. In conformity with earlier practices at this Observatory, four or more measurable spectrograms distributed over a reasonable interval of time were obtained for each star; the total number for this programme was about 4600. Eighty-three per cent. of the spectrograms were obtained with the $12\frac{1}{2}$ -inch camera of the one-prism spectrograph yielding a dispersion of 66 A./mm.at H γ , the remainder (mostly of the brighter stars) with the 25-inch camera, dispersion 33 A./mm. Kodak Spectroscopic 103a–O plates were used almost exclusively. Exposure times ranged from one-half hour to two hours.

Throughout the observations of the programme stars, spectrograms were also obtained of a selection of the fainter standard velocity stars of G- and K-type listed in the *Transactions of the International Astronomical Union*, vol. 7; in all, 156 spectrograms of 18 standards were obtained with the smaller dispersion and 45 spectrograms of 14 standards with the larger dispersion. The purpose was to provide a control in the manner outlined below.

All regular observers took part in the observations. Particular credit is due to G. F. Longworth and F. Hawker of the technical staff for much of the observing and for maintenance of the telescope and spectrograph and to Miss Ruth Northcott and Dr. J. B. Oke for their vigilance over the progress of the observing and the maintenance of plate quality.

Measurements. Measurement and reduction were carried out by methods reported in our earlier Publications (vol. 1, nos. 3, 13, and 16). On good quality plates the number of lines measured was about 20. The spectrograms of the standard velocity stars were measured in the same manner as those of programme stars.

Most of the regular members of the staff and a number of summer assistants shared the task of measuring the plates. Miss Northcott supervised the work of the assistants.

Stars of Variable Velocity. A question which merits discussion in any radial velocity study is the incidence of velocity variation. In the past it has been customary to assign variability in a rather arbitrary manner from a look at the individual velocities with allowance for the precision of measurement. We wished to employ

a more objective means of deciding to what degree the measures indicated variability. The following method was developed along lines suggested by Dr. Donald A. MacRae.

Reference has already been made to a group of spectrograms of standard velocity stars taken and measured under the same circumstances as the programme stars. We assume that these measures of standards form a population subject to the same error dispersion as the programme stars, except that they lack whatever dispersion may be present among the measures of some programme stars by reason of true variation of velocity. The problem is to identify what programme stars possess this additional "error" dispersion.

Consider first the standard velocity stars.

Say we have h plates of r stars on which we have measured a grand total of N lines.

Let us compute the deviation of each line-measure from the mean for the plate; call these the "within-plate" deviations. Call the sum of the squares of the deviations of all these N lines S_w .

Let us also compute the deviation of each plate mean from the weighted star mean; call these the "among-plate" deviations. Multiply the square of each "among-plate" deviation by the number of lines measured on the plate and call the sum of these products S_a .

Now if there were no source of error other than the errors of setting on the lines, we would have

$$\frac{S_w}{N-h} = \frac{S_a}{h-r}.$$

But we can expect an error involving systematic shift of all lines on a plate for a variety of reasons. Call this the "plate error" and let the estimate of it be ω .

It can be shown that

$$\omega^2 = \frac{1}{N} \left(S_a - \frac{h - r}{N - h} \cdot S_w \right).$$

We evaluated this for "standard" plates for both 66A./mm. and 33 A./mm. dispersions and found

 $\omega = 5.0$ km./sec. for the 66 A./mm.

 $\omega = 2.6$ km./sec. for the 33 A./mm.

Now consider a programme star for which we have h' plates with a total of N' lines.

We compute S'_w and S'_a for this star.

Then the quantity, F, given by

$$\frac{1}{F} = \frac{S'_w}{N'-h'} \cdot \frac{h'-1}{S'_a} + \frac{N'\omega^2}{S'_a},$$

can be shown to be Snedecor's ratio of variances for degrees of freedom h'-1 and N'-h'. Using Snedecor's table of F's, — see, for example, Weatherburn (1949)—we can now say whether or not the scatter shown by the programme star's velocity measures from plate to plate is significant If the F value computed exceeds Snedecor's "1% point", then there is a probability smaller than one per cent. that the amount of scatter has arisen by chance and it is strongly suggested that the radial velocity of the star is variable. If the F value exceeds Snedecor's "5% point", but not the "1% point", then the probability that the amount of scatter has arisen by chance is between one and five per cent. and it is less strongly suggested that the star's velocity is variable. If the F value is less than Snedecor's "5% point", we can hardly consider that the observations suggest variable velocity.

For all of the stars we have made this computation and it is on the basis of this that we have assigned positive variability (strongly suggested) or questionable variability (less strongly suggested). We have also used the measures for the standard velocity stars to establish the weights to apply to the different measures in obtaining the mean velocity for a star. We used weight 4 for good plates of the higher dispersion, 1 for good plates of the lower dispersion and $\frac{1}{2}$ for plates on which fewer than 10 lines could be measured.

A more complete study of the available statistical data may be made at a later time.

SPECTRAL CLASSIFICATION

A decision was made during the course of the investigation to reclassify the spectra of all the 1041 stars using the MK system (Johnson and Morgan, 1953). To this end a series of spectrograms of MK standard stars was obtained, using both dispersions and the same emulsion as for the programme stars. For each dispersion, a careful study of the series revealed the criteria which would be

most useful in the various ranges of spectral and luminosity classes, and a routine was developed for "converging" on the correct class of a spectrogram, using both the general appearance of the spectrum and the estimated intensity ratios of the lines and making continual reference to the spectrograms of the standards. Evidence has been adduced that the classification made with our spectrograms does not depart systematically from that made with the smaller dispersions and wider spectra on which the MK system was developed.

The classifications reported here are mostly those made by Miss Barbara Creeper (Mrs. V. Gaizauskas) using the 66 A./mm. spectrograms. For a few dozen stars for which there were no plates of this dispersion, classifications made by Dr. Ian Halliday from 33 A./mm. spectrograms were listed.

Difficulty was encountered with the M-type stars. With our spectrograms we found it difficult to assign a sub-classification to those stars which were recognized as giants of spectral class later than M2; all such are listed merely as M III.

PHOTOMETRY

A casual comparison between the photographic magnitudes of the Yale *Catalogue* and visual magnitudes listed there and elsewhere sufficed to show that the photographic magnitudes are unsatisfactory, the errors sometimes amounting to a magnitude. Therefore it appeared most desirable to undertake a photometric programme for our stars. This was done by Dr. Donald A. MacRae of this Observatory in collaboration with Dr. Jurgen Stock of the Warner and Swasey and the Hamburg Observatories. They will publish soon a more complete account of this work than the following brief summary.

Through the kindness of Dr. O. Heckmann, Director of the Hamburg Observatory, 80 fields distributed around the sky at declination $+27\frac{1}{2}^{\circ}$ were photographed with the "original" Schmidt telescope at Hamburg. These fields so overlapped that all our programme stars appeared on two films at least. The films, which cover an area 7.5° in diameter, were Perutz Phototechnical B emulsion exposed behind Schott filters BG3 and GG13, each 1 mm. thick. For the measurement of the films, the Eichner Astrophotometer of the Warner and Swasey Observatory was made available

through the kindness of the Director, Dr. J. J. Nassau. Many of the films were also measured on the iris photometer of the Hamburg Observatory. Dr. Stock supervised this part of the work.

To make possible the conversion of the astrophotometer readings to magnitudes, 24 sequences, involving 165 of the programme stars between 7.0 mag. and 10.0 mag., were selected. These stars were observed photoelectrically by Mr. G. Bakos, under Dr. MacRae's supervision, using the photometer attached to the 19-inch telescope of this Observatory. Each star was observed twice at least and the magnitudes, reduced to the B-V system of Johnson and Morgan, will be published separately.

Magnitudes, m_e , on the colour system of the Schmidt films were derived from the photoelectric measures by means of the equation,

$$m_e = B + 0.33 (B - V),$$

and the 24 sequences were used to calibrate the astrophotometer measures. The quantities listed in Table I are the resulting photographic magnitudes. It is believed that residual field errors are negligible. The average mean error of a final magnitude is ± 0.045 .

TABULATION OF RESULTS

The main body of the results is given in Table I. Following is a description of this table.

Column 1 gives the A.G. designations of the stars.

Column 2 gives the H.D. designations where applicable. A note has been added whenever any ambiguity could arise as to either designation or as to which component of a double star is meant.

Columns 3 and 4 give the 1950 positions which have been rounded off from the

positions given in the Yale Transactions, vol. 24.

Column 5 gives the photographic magnitudes derived by MacRae and Stock as described in the foregoing section. The magnitudes are from the photographic photometry in all cases except for those values marked with an asterisk which refers to stars which, for one reason or another, were measured only photoelectrically.

Column 6 gives the spectral classes assigned from our spectrograms as described in an earlier section. A colon refers to a classification which is doubtful, either because the plates are poor (when no note is given), or for some specific reason referred to in a note. Stars classified as M III are those which have been recognized as giants later than M2 but to which sub-classes could not be assigned with confidence.

(Continued on page 137.)

TABLE I

A.G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	Pl.	Ref.
14441 4	225292 111 167 249 598	04.0 04.8	+27 23 28 00 28 17 26 10 28 23	8.36 7.50 8.45	K5 III G9 III	+ 12.9 + 4.4 + 15.5	0.7 0.3 1.6 1.5	4	II
35 37 63 121 131	1406	08.8 10.8 15.7	30 10	8.88 8.54 10.42 8.34 8.55	K0 V K2 III K3 III	+ 9.0 - 3.1 - 15.6 - 37.1 - 10.9	1.8 1.0 1.9 1.0	4	
145 146 188 199 207	1605 1633 1996 2084 2190	18. 1 21. 8 22. 7	+30 42 26 14 26 07 29 49 28 40	9. 17 9. 40 9. 37	K5 III K1 III G8 II	+ 10.1 + 23.5 var? + 6.9 - 50.7	1.2 0.8 1.7 0.7	4 6 6	II
225 230 258 273 274	2315 2343 2552 2713 2732		+25 18 30 37 28 33 27 50 29 15	9.39 9.28 9.29	K1 III K3 III F2 IV	- 35.7 var. + 33.4 - 4.2 - 15.1	1.5 1.3 2.9 1.3	4 7 5 6 4	II
288 289 343 352 366	2839 2854 3252 3333	29.4	+28 15 27 23 28 50 29 34 25 33	9.47 9.53 9.27	G0 V K1 III K0 III	- 26.4 - 0.5 - 33.4 + 9.5 - 14.7	1.2 1.3 0.4 1.2 1.6	4 4 4	
375 382 387 412 434	3590 3650 3766 4006 4268	36.8 38.0 40.1	+26 03 26 28 29 44 29 50 27 41	9. 45 8. 63	K3 III G0 V F5 V K2 II-III K2 III	- 24.5 - 20.7	0.8 2.3 1.5 9.8	4 5 4 4 6	II
444 450 452 467 468	4312 4372 4388 4550 4549	43.8 45.1	+25 54 30 40 30 41 26 01 26 49	8.41* 8.80* 8.16	K1 III	- 18.5 + 13.6 - 24.8 - 4.0 - 30.9	1.2 0.7 0.2 0.6 0.9	4 5	
477 486 493 498 510	4744	47.6 48.0	30 11	8. 71 8. 47 8. 17	G8 III K0 III K1 III G8 III K1 III	-162.8	1.2 1.0	4 5	
521 527 533 537 555	5007 5092 5137 5164 5411	50.9 51.1	+25 31 30 05 29 13 28 17 28 53	9. 14 9. 05 7. 49 8. 48 9. 87	K1 III K3 III K0 III K1 III	+ 14.3 + 23.2 - 10.6 + 14.0 - 2.8	1.4 0.7 1.2 1.1	5 4 4 4 4	

A.G.	H. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P.E.	P1.	Ref.
559 560 571 574 582	5449 5462 5585 5584 5650	00 54.0 54.0 55.2		8.73 9.73 8.64	K0 III M III K3 III	+ 4.8 - 6.5 + 23.9 + 7.2 - 24.4	1.9	4 5	
586 600 614 627 628	5705 5917 6132 6274 6286	58.3 01 00.2 01.3	+27 23 28 44 29 43 26 17 26 19	9.35 9.15 9.58		- 7.6 + 21.8 - 26.5 - 28.1 var.	1.3	4 5	II
647 702 704 706 710	6525 7299 7300 7308	10.8 11.0	26 11 25 59	9.54 9.81	K1 III G8 III-IV K2 III K5 III K2 III	- 10.3 + 15.9 var.	1.0	4 6 8	II
714 721 778 812 814	7352 7426 8300 8747	01 11.4 12.1 19.9 24.0 24.1	26 11 26 18	8.79 9.13	K0 III K1 III	- 18.0 + 2.6 - 22.1 - 5.6 + 30.4	1.3 0.8 0.6	4 4 4	
817 849 851 867 878	8791 9224 9269 9446 9638	29.0	+25 11 29 09 30 22 29 01 28 51	9.31	K0 III	- 15.9 + 13.6 + 42.1 + 21.2 - 19.1	1.7 0.7 1.4 0.5 1.9	6 4	
887 903 916 929 962	9714 9984 10095 10296 10766	38.4	+28 01 25 39 27 30 28 14 26 09	8. 16 9. 83 8. 53		+ 7.7 + 39.4 - 36.0 - 4.2 + 6.2	1.2	5 5 6	
966 968 973 977 983	10829 10866 10981	43.8 44.3 44.9	+29 18 30 33 25 55 28 14 30 32	8.80 9.09 9.57	F7 IV K3 III K1 III	+ 1.4 + 5.2 + 22.9 + 31.6 + 11.3	0.8	5 4 4	
991 993 999 1023 1026	11120 11130 11453 11464	47.3 50.3	25 30	9.33 8.79	KO III G8 V K1 V K5 III K0 III	- 65.2 - 3.5 - 36.4 + 5.0 + 17.8	1.1 1.4 1.2 1.0		
1037 1042 1046 1054 1077	11650 11680 11721 11781	52.8	+27 36 27 01 25 52 27 14 25 33	8. 81 9. 16 9. 21 8. 91 9. 10	K1 II-III K1 III G8 III G0 V G2 V	- 3.8 - 32.8 + 30.9 - 2.4 - 1.1	1.7 2.0 1.3 0.3 0.4	5 4 4 4 4	

A.G.	н. D.	R.A. (1950)		Ptg. Mag.	Class	Velocity (km./sec)	P.E.	Pl.	Ref.
1082 1084 1094 1097 1102	12029 12052 12232 12260 12402	01 55.8 56.0 57.8 58.1 59.3	29 41	9.25 8.96	K2 III G8 III F2 V K2 III K1 III	+ 40.0 + 28.0 + 8.2 - 3.6 + 17.4	0.3 1.2 1.9 2.3 0.3	5 4 4 5 5	
1103 1113 1122 1128 1139	12426 12535 12638 12728 12897	01 59.5 02 00.7 01.5 02.6 04.1	27 15 25 41	9.72 8.56 8.26 9.12 8.36	K0 III K2 III G8 III K1 III K1 III	+ 10.7 + 36.5 - 17.9 - 8.4 + 0.2	1.8 1.0 1.0 1.9	5 5 4 4 5	
1143 1145 1158 1178 1181	13017 13565 13610	02 04.8 05.1 07.5 10.2 10.5	29 35	9.30 9.00	K0 III K5 III F8 V K0 II F8 IV	+ 25.4 + 4.5 + 28.1 + 18.6 - 48.3	2.8 0.8 3.0 1.0 0.5	5 5 5 4 4	
1186 1192b 1200 1209 1222	13691 13747 13836 13943 14146	02 11.2 11.7 12.6 13.5 15.0	28 28 27 08 29 34	7.72 9.06 9.51	K1 III K1 IV / G8 V G8 III M0 III	- 7.8 var? + 3.9 + 18.4 + 33.4	0.8 0.5 1.0 0.9	4 5 4 4	II
1248 1251 1252 1264 1265	14456 14479 14490	02 17.9 18.1 18.2 19.2 19.2	30 27 29 42 27 23	9.58 9.38	G8 III K1 II-III F8 V K0 III F2 II:	+ 28.2 - 64.4	1.6 1.8 2.8 0.6 2.6	5 6 5 4 6	III
1269 1271 1292 1293 1295	14608 14624 14875 14876 14874		26 03 29 01 27 26	8.94 9.48	K2 III G5 V K3 III K3 III G0 V	+ 0.9 + 50.2 - 9.1 + 9.0 + 6.0	1.4 2.5 1.3 0.8 1.2	4 6 4 5 4	
1297 1301 1304 1324 1330	14918 14949 14969 15256 15326	02 22.2 22.4 22.6 25.3 25.8	29 39 29 39	8. 90 9. 44 8. 96 8. 32 8. 34	G5 III K2 II K3 III G5 III F8 V	- 9.5 var. - 27.8 - 13.7 - 16.7	1.7 0.3 0.9 1.8	5 6 4 6 5	II
1371 1376 1429 1436 1447	16099 16139 17119 17190 17283	43.3	+29 39 27 15 30 07 25 27 26 32	8.76	G8 II F5 V K1 IV		1.9 1.8 1.4 0.8	4 5 5 4 4	
1454 1455 1473 1474 1497	17382 17396 17674 17673 17963	02 45.2 45.3 48.1 48.1 51.0	+26 52 30 08 30 05 30 18 29 54	8.57 9.22 8.29* 9.23* 9.71	K1 V G0 V G0 V K1 III F6 V	+ 9.4 + 12.6 + 5.2 - 19.8 + 25.0	1. 4 2. 1 2. 3 1. 8 2. 0	7 6 6 5 5	

TABLE I - continued

A.G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec.)	P. E.	P1.	Ref.
1516 1517 1521 1528 1530	18189 18202 18328 18403 18450	02 53.1 53.3 54.6 55.3 55.9	+25 53 28 58 29 31 27 08 26 34	9. 41 7. 55 9. 38 9. 49 9. 31	G8 III G8 III F8 V G0 IV K2 V	- 21.1 + 29.6 - 3.0 - 62.1 + 35.7	1.3 0.7 2.3 1.4 2.2	4 4 5 6 6	III
1537 1541 1559 1564 1572	18554 18602 18929 19079 19165	02 56.9 57.4 03 00.5 02.1 02.8	+30 25 30 22 27 23 30 00 27 30	9.46 9.75 8.74 9.21 9.06	K1 III G8 III G8 III F7 IV F6 V	+ 6.0 - 13.4 - 18.6 + 21.2 + 85.4	1.0 1.8 0.7 2.0 1.7	4 4 5 5 5	III
1584 1599 1652 1653 1699	19485 19823 20671 20680 21451	03 05.7 09.2 17.6 17.6 25.4	+25 24 29 38 28 39 26 45 26 06	8.97 9.75 9.41 9.59 9.34	G5 V G0 V F8 IV K2 III K3 III	var 31.6 - 19.7 - 12.0 - 19.0	0.9 1.1 2.1 0.7	17 4 4 5 4	II
1727 1747 1758 1791 1813	21820 22269 22403 22849 23141	03 29.1 33.0 34.2 38.2 40.8	+29 22 27 26 25 50 29 21 26 13	9. 43 9. 02 8. 17 9. 58 8. 96	K0 III K1 III G2 V K1 IV /	+ 32.2 + 15.7 var. + 8.1 - 24.9	0.4 0.5 2.1 1.1	6 4 6 4 4	II
1818 1824 1894 1902 1906	23169 23257 24301 24365 24399	03 40.9 41.7 49.9 50.6 50.8	+25 34 27 46 26 32 28 00 26 45	9.39 7.60 8.77 9.00 8.89	G2 V G5 V G0 IV G8 V G8 II	+ 17.4 + 49.0 + 26.0 + 21.3 + 4.6	0.3 1.3 1.2 1.4	4 5 5 4 4	
1911 1930 1958 1967 1993	24505 24768 25296 25461 25834	03 51.9 54.2 59.2 04 00.7 03.7	+28 03 25 08 27 59 29 04 30 08	9.01 8.78 8.50 9.27 9.56*	G5 III G8 III G8 III K1 V K1 II	- 9.4 + 6.8 - 20.8 - 9.3 + 22.8	0.8 0.9 1.7 1.5	4 4 4 5 5	
1999 2000 2001 2009 2023	26081 26090 26126 26372 26710	04 05.6 05.8 06.0 08.2 11.5	+25 45 29 04 28 31 26 22 26 08	9. 16 9. 16 8. 93 9. 50 8. 00	G8 II G0 IV F8 V F8 V G2 V	- 11.1 + 36.2 + 2.6 - 10.9 - 9.3	0.9 0.4 1.1 2.8 1.6	4 4 4 6 5	
2025 2065 2124 2157 2180	26766 27741 29246 30111 30467	04 12.0 20.6 34.3 42.7 46.0		8. 62 9. 19 9. 26 8. 31 8. 76	K1 IV / G0 V K2 III G8 III F8 IV	+ 9.0 - 8.4 + 39.1 - 23.0 - 21.2	0.7 1.0 1.1 1.7	4 6 5 6 5	
2204 2248 2249 2255 2265	30945 31782 31781 31867 32093	04 49.9 56.5 56.6 57.2 58.7	+26 42 25 52 26 11 25 04 26 35	9.44 8.20 9.14 8.86* 9.15	K3 III K0 IV F8 V G2 V G2 V	+ 27.2 - 67.8 + 22.2 - 25.4 - 1.0	1.7 1.5 1.2 1.0	5 5 4 4 4	III

TABLE I - continued

A.G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	PI.	Ref.
2271 2277a 2298 2302 2338	32387 32477 32835-6 32963 33463	05 00.8 01.4 04.0 04.8 08.5	+24 54 30 19 26 56 26 16 29 51	8. 26 9. 61 8. 76 8. 36 8. 74	G8 V M0 III F5 V, A G2 V M2 III	+ 57.9 + 36.2 + 27.0 - 62.0 + 14.0	1.0 2.2 3.8 0.4 2.7	4 6 4 4 5	N III
2344 2603 2606 2615 2627b	33585 37800 37956	05 09.3 38.8 38.8 39.3 40.2	+26 24 29 15 26 14 29 50 29 11	7.84 9.06 10.63* 9.51 7.96	G5 III F8 V M0 III F8 IV K1 III	var? - 4.0 + 21.8 + 3.0 + 28.8	1. 2 2. 0 0. 7 1. 0	5 6 4 5 5	П
2657 2672 2696b 2714 2763	38142 38261 38524 38750 39416	05 41.6 42.5 44.5 46.0 50.4	+24 54 25 06 25 33 25 38 25 04	9.08 8.98* 7.94 9.14 8.54	G8 III K2 III K1 III K2 II G2 II	+ 23.1 - 5.1 - 17.2 - 6.6 + 0.2	1.6 1.4 0.6 1.9 2.5	4 4 5 6	
2784 2805 2834b 2845 2940	39713 39949 40280 40460 41430	05 52.3 54.0 55.8 57.0 06 03.1	+29 10 27 19 25 46 27 16 29 06	8.86 8.58 7.83 7.88 9.03	G5 III G0 II K0 III K0 III K3 III	+ 71.9 + 13.7 + 2.0 + 98.5 + 21.1	1.7 1.6 1.5 1.4	5 5 5 5 4	III
2946 2967 2994 3028 3036	41456 41708 41994 42397 42454	06 03.3 04.8 06.3 08.5 08.9	+26 32 27 26 27 12 25 01 29 30	8. 82 8. 81 9. 14 8. 68 8. 74	G8 III G0 V G5 II G0 IV G2 Ib	- 21.0 + 34.8 + 8.0 + 39.8 + 11.4	1.6 1.8 0.8 0.2 0.4	4 6 5 4 4	
3061 3093 3107 3113 3146	42981 43383 43581 43693 44030	06 11.7 13.8 15.0 15.6 17.5	+25 16 25 31 26 27 28 05 25 38	9.84 8.98 9.26 9.39 9.45	K2 II F8 V K0 II K2 III K5 III	- 6.4 + 12.7 + 47.9 + 9.6 -103.8	1.5 1.6 2.2 1.0	4 4 4 4 4	III
3167 3176 3194 3204 3240	44316 44391 44615 44780 45207	06 19.3 19.6 20.7 21.6 24.3	+28 56 28 01 29 00 25 05 29 40	9. 20 9. 34 9. 32 7. 76 8. 48	K1 III K0 Ib F6 V K2 III F8 II	- 14.0 - 9.4 var? var. - 35.0	1.9 0.8	4 4 6 5 5	II
3247 3255 3288 3289 3307	45336 45427 45800 45824 46159	06 24.9 25.4 27.6 27.7 29.9	+29 16 27 40 25 55 26 41 29 27	9.58 9.23 9.52 9.08 9.25	K5 III K1 III G8 II K0 III G8 III	- 1.0 - 51.3 - 15.5 - 10.1 + 34.8	2.7 2.1 0.7 1.2 2.4	5 5 4 6 4	
3309 3320 3326 3340 3367	46160 46277 46336 46532 46944	06 29.9 30.5 30.8 31.9 34.2	+27 52 28 01 27 05 24 58 28 01	9. 46 9. 07 9. 19 9. 46 9. 38	K5 III K0 II K0 III K2 III F7 V	+ 7.9 - 2.5 + 36.6 + 3.2 + 65.2	1.8 0.4 1.4 1.5 2.2	4 4 4 4 5	

TABLE I - continued

A. G.	Н. D.	R.A. (1950)		Ptg. Mag.	Class	Velocity (km./sec)		Pl.	Ref.
3424 3433 3440 3441 3442	47730 47836 47960 48008	06 38.1 38.6 39.1 39.3 39.2	27 08 25 31	9.53 8.78 9.50 9.76 9.32	K1 III G8 III M0 III G8 III F6 V	+ 5.7 + 10.0 + 10.1 - 48.3 + 1.6		4 4 4 4	
3471 3474 3475 3504 3513	48591 48640 48638 49141 49365		24 44	8.76 9.54 8.40 10.30 9.00	F8 V K1 Ib K3 III K0 III G0 IV	var. + 24.5 - 35.5 - 1.1 - 29.3	1.6 1.3 2.0 2.6	6 5 4 5 4	II
3518 3615 3646 3647 3654	49500 51101 51690 51689 51834	56.3 56.3	+25 33 24 43 25 18 25 18 29 51	8.85 8.06 9.50 8.53 9.02		+ 61.4 + 23.4 + 6.4 + 23.6 - 13.7	1.8	6 5 5 4 4	N
3657 3668 3669 3670 3682	51886 52071 52101 52147		27 14 29 48	8.68 8.57 8.98 8.74 9.05	G8 III K2 IV K0 III G5 III G5 III		1.5 2.4 1.2 1.4 2.6	5 4 5 5 5	III
3708 3737 3775 3792 3808	52765 53472 54370 54825 55080	07 00.5 03.1 06.6 08.4 09.4	24 56 26 36 26 29	8.83 8.88 9.15 8.24 8.65	G8 III K5 III K2 III K0 II G8 II	+ 16.9 + 9.3 + 23.8 + 41.5 + 14.1	1.2 2.7 1.5 0.6 1.6	5 5 4 4 4	
3828 3834 3865b 3866 3873	55578 56176 56224 56418	14.0	28 32 26 47 26 27	7.70	F8 V G8 V G7 IV K3 III K1 III	+ 7.5 + 17.7 - 5.1 +109.6 + 1.1	2. 1 3. 1 0. 7 2. 3 2. 7	4 5 4 4 4	III
3874 3880 3890 3897 3918	56417 56513 56629 56761 57267	15. 4 15. 9 16. 4	+27 14 27 21 29 17 26 55 26 15	8. 95 8. 90 8. 79 8. 25 8. 65	G8 III G2 V G8 III G8 III	- 8.8 - 27.4 + 16.1 + 0.8 var.	1.5 1.2 1.9 2.5	4 4 4 4 7	Ν, П
3928 3974 3980b 4019 4044	57470 58683 58898 59684		27 24	9. 28 8. 62 8. 06 8. 66 9. 29	K1 III G8 III K2 III K1 III G0 IV	+ 55.7	1.4 0.5 2.3 0.5	4	II
4046 4051 4119 4143 4152	60235 60298 61645 62285 62567	07 31.6 31.8 38.2 41.1 -42.5	+28 37 25 04 26 00 25 54 26 07	9. 22 8. 18 9. 54 7. 43 9. 34	K3 III G0 V K2 III K5 III K5 III	+ 34.3 -134.5 - 28.5 + 1.6 - 6.0	3.1 2.6 3.0 0.9 0.6	5 4 4 4 4	III

TABLE I - continued

A.G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	Pl.	Ref.
4161 4173 4178 4194 4198	62857 63016 63138 63410 63433	07 43.9 44.9 45.4 46.7 46.8	+26 09 28 48 28 53 26 23 27 29	9. 28 8. 68 8. 18 8. 06 7. 71	G5 IV G8 III K0 III G8 III G5 IV	+ 17.1 - 8.2 + 20.4 + 81.4 - 15.7	1.3 2.4 1.6 1.4 0.7	4 5 4 4	III
4202 4209 4214 4261 4303	63495 63712 63816 64833 65934	07 47.2 48.3 48.8 53.8 59.1	+28 52 29 18 24 57 26 14 26 47	9.17 8.17 8.97 8.81 8.87	K1 III G8 III K1 III K1 III G8 III	- 6.4 var? + 8.2 - 35.3 + 34.4	3. 1 1. 7 1. 7 0. 5	4 5 4 4	II
4377 4384b 4386 4389 4390	67402 67542 67544 67613 67628	08 05.8 06.5 06.4 06.7 06.9	27 38 29 14 24 58 25 42 29 16	8. 17 7. 72 8. 59 9. 35 9. 48	KO III G5 II G8 III K5 III	+ 12.4 var? + 3.7 + 34.2 + 0.9	1.3 0.9 1.8 0.8	4 6 4 4	II
4392 4430 4451 4453 4454	67709 68724 69312 69349 69364	08 07.2 11.6 14.3 14.5 14.6	+27 14 26 53 27 12 27 33 25 00	9.51 9.21 9.10 9.04 8.83	K1 III K0 III K1 III K1 III K0 III	+ 45.3 - 32.1 var? + 2.9 - 19.6	2.7 I.3 1.5 1.1	4 4 4 4 5	II
4481 4488 4494 4499 4511	69866 70030 70178 70402 70688	08 17.0 17.7 18.5 19.8 21.2	+27 02 25 30 28 59 27 41 28 55	9. 20 9. 17 9. 22 9. 08 9. 44	K1 III K3 III G5 IV / G8 III F6 V	- 5.3 + 38.4 + 43.4 - 39.6 + 41.8	2.6 2.3 3.7 1.6 1.6	4 4 4 4 4	
4525 4526 4529 4531 4554	71008 71028 71093 71132 71730	08 23.0 23.1 23.4 23.6 26.7	+28 48 28 34 28 04 28 14 24 31	9.00 9.32 7.40 9.32 8.35*	K1 III K0 III K5 III G8 IV K0 III	- 1.8 var? + 24.8 + 19.8 + 32.8	3.5 0.6 2.6 1.7	5 5 4 4 4	II
4588 4598 4612 4632 4670	72559 72907 73160 73509 74260	08 31.6 33.3 34.8 36.8 40.9	+28 37 28 53 26 25 28 41 27 24	9.08 9.16 9.33 9.31 9.50	F6 V G8 II K2 III F8 V K3 III	- 19.4 - 3.8 + 39.9 var? + 12.7	0.9 2.2 0.4	5 4 4 4 4	II
4671 4682 4684 4690b 4693	74348 74624 74669 74811 74925	08 41.4 43.0 43.2 44.1 44.9	+28 38 28 34 27 47 28 21 28 10	9. 43 9. 02 8. 43 7. 40 9. 30	G0 IV F5 III K1 IV G2 IV G0 IV	+ 2.3 + 27.8 + 27.6 - 1.8 - 13.6	2. 1 2. 4 0. 8 0. 9 3. 1	4 4 4 4 4.	N
4702 4714 4715 4717 4727	75216 75646 75663 75935	08 46.7 49.0 49.0 49.3 50.9	+29 38 25 55 25 54 29 03 27 06	8.71 9.13 9.06 9.44 9.35	K2 III G0 IV K2 III K3 III G8 V	var? + 14.3 - 7.1 + 20.2 - 18.7	2.6 2.5 2.7 0.7	4 4 4 4	II

TABLE I - continued

A.G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity P.E (km./sec)	Pl.	Ref.
4730 4743 4754 4758 4760	76010 76332 76657 76752 76766	08 51.4 53.4 55.4 55.9 56.0	+27 07 28 52 26 41 25 36 26 07	9.06 9.34 9.08 7.94 8.25	M0 III G2 V K0 III G2 V F8 V	+ 29.6 1.2 + 18.6 0.3 + 23.7 1.8 - 10.1 0.8 + 15.3 0.3	4	
4764 4768 4771 4796 4799	76864 76866 76976 77313 77444	56.8 56.8 57.3 59.6 09 00.3	29 13 24 49 28 52 26 03 27 25	9.46 9.32 9.70 8.44 9.70	K3 III F5 V M0 III K1 III K4 III	- 0.3 1.9 + 12.2 2.6 + 20.9 2.7 + 16.7 2.1 - 30.9 1.0	5 5 4 4 4	
4809 4813 4814 4823 4829	77586 77694 77729 77948 78194	09 01.4 01.9 02.1 03.3 04.7	+29 28 24 48 26 22 26 20 28 12	9.64 9.33 9.42 9.52 9.29	M III K2 III K2 IV K0 III K1 II	+ 88.2 2.7 + 42.3 2.5 +104.5 3.3 - 10.7 2.1 + 57.2 3.2	4	III
4834 4835 4836 4856 4859	78277 78887 78967	09 05.1 05.4 05.5 08.4 09.0	+27 46 27 44 27 45 25 38 29 05	8. 87 8. 76 8. 84 9. 29 9. 30	G2 IV G0 V G0 V K0 II K1 III	var? + 32.6 2.0 + 28.2 0.3 0.0 1.4 + 22.0 1.2		II
4869 4875 4878 4906 4914	79214 79318 79373 80217 80327	09 10.7 11.2 11.6 16.3 16.9	+24 30 25 30 25 13 26 28 24 38	9.31 9.56* 8.46 8.35 8.45	KO III KO III K3 III K4 III F8 V	- 6.3 2.0 - 8.6 3.0 + 31.6 2.2 + 9.9 1.6 - 32.1 3.1	4 5 4 4	N
4930 4936 4958 4968 4994	80819 81058 81505 81855 82331	09 19.8 21.2 23.8 26.0 29.2	+25 58 26 08 26 34 26 26 27 03	9. 20 8. 38 9. 28 9. 84 9. 21	K0 III K2 III G8 III K3 III K1 III	+ 74.1 2.2 - 14.6 3.1 + 20.9 0.5 + 1.1 2.0 - 5.9 2.2	4 4 4 4	Ш
5030 5038 5041 5042 5054	83098 83224 83341 83340 83617	09 33.9 34.7 35.5 35.6 37.5	+27 59 24 37 25 36 28 14 25 15	8.53 9.63 9.86 8.65 9.56	K2 III F6 V G8 III G0 IV G0 IV	- 6.0 0.9 var. * + 54.8 1.3 + 23.4 2.9 + 13.1 2.9	4 5 5 4 5	II
5055 5059 5061 5065 5083	83632 83807 83820 83935 84440	09 37.7 38.7 38.8 39.5 43.0	+26 14 28 11 29 06 25 49 27 17	9. 91 9. 16 9. 82 8. 71 9. 13	K0 III F8 V K1 III K1 III	+ 89.8 1.6 var. + 20.4 1.8 + 15.9 1.7 + 12.2 1.3	4 4 4 4 5	III
5087 5090 5122 5126 5132	84577 85428 85440 85615	09 44.0 45.1 49.4 49.6 50.8	727 23 27 21 25 21 28 01 25 54	9. 58 9. 40 8. 94 8. 61	K0 III: F6 V K2 III G8 III K2 III	- 10.6 1.1 - 0.5 1.7 + 71.5 2.4 0.0 1.0 - 12.1 0.5	4 5 4 4	Ш

A. G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	P1.	Ref.
5145 5147 5156 5159 5173	85946 85976 86131 86168 86460	09 53.0 53.2 54.4 54.5 56.4	+27 05 26 14 28 48 25 02 27 46	9. 13 8. 98 8. 96 9. 70 8. 54	K0 III G8 III K2 III K1 III G0 IV	var? - 10.0 - 18.8 + 10.3 + 5.7	1.8 1.0 1.9 1.5	4 4 5 4 4	П
5179 5180 5182 5183 5216	86590 86680 86778 86801 87680	09 57.2 57.8 58.4 58.7 10 04.4	+24 48 28 25 29 02 28 48 29 29	8. 95 8. 78 8. 70 9. 48 8. 82	K0 V G0 V K2 III G0 V G2 V	var. + 8.4 - 0.3 - 4.6 - 25.5	2.5 1.1 0.5 2.4	4 5 4 4 5	П
5223 5229 5248 5251 5254	87804 88008 88416 88476 88532	10 05.3 06.5 09.5 09.9 10.3	+27 03 24 48 27 21 28 29 28 32	9. 46 9. 43 9. 85 8. 14 9. 78	G8 III G5 V K0 IV / G8 III K0 IV /	+ 1.6 var? - 0.6 + 4.7 var.	2.8 2.2 1.7	4 5 4 4 5	II
5255 5280 5298 5300 5308	88533 89055 89361 89415 89557	10 10.3 14.1 16.4 16.9 17.8	+27 40 26 07 24 37 29 37 29 12	9.30 8.34 9.00 9.81 8.79	G5 V G0 V K2 III F5 V G8 III	- 39.3 - 14.4 + 19.4 + 14.4 + 28.3	2.8 0.8 2.0 1.4 0.6	4 4 4 4	
5311 5312 5313 5336 5341	89629 89631 89630 90009 90183	10 18.2 18.4 18.4 21.0 22.3	+27 59 26 57 27 08 25 49 24 52	9.21 9.06 9.35 8.33 8.97	G8 IV F5 V F8 V K2 III G0 V	+ 18.1 + 7.7 - 12.2 - 1.0 - 5.3	3. 1 1. 0 1. 7 1. 7 3. 4	5 4 4 4 4	
5346 5355 5356 5361 5369	90346 90442 90443 90567 90682	10 23.5 24.2 24.2 25.1 26.0	+24 58 26 54 25 12 27 28 27 11	8.64 9.28 9.04 9.28 9.64	K1 III K1 V K1 III F8 V K3 III	- 20.0 var. var. + 32.8 + 6.3	2.5 3.1 1.7	4 5 5 4 4	II
5377 5379 5382 5390 5393	90841 90861 90932 91148 91164	10 27.0 27.1 27.6 29.0 29.2	+28 49 28 50 27 36 24 20 24 59	9.64 8.36 9.70 8.81* 9.07	K2 III K2 III K1 III G8 V K0 III	+ 27.3 + 39.8 - 40.6 - 24.4 + 17.1	1.1 0.4 1.6 1.0 3.1	4 5 4 4 4	
5397 5398 5407 5417 5419	91348 91366 91545 91685 91842	10 30.5 30.5 32.0 32.9 34.0	+28 02 25 23 28 13 29 22 28 02	9.53 9.02 8.32 9.28 9.76	G8 III K1 III K2 III F7 V K1 III	+ 10.6 - 0.5 - 21.6 - 30.7 + 39.0	2. 2 3. 0 1. 3 4. 1 2. 9	4 4 5 5 5	
5420 5421 5432 5451 5475	91855 91950 92108 92456 92824	10 34.0 34.6 35.7 38.1 40.7	+26 26 25 20 26 11 25 58 26 02	9.76 9.28 9.35 9.24 9.34	KO III G2 V KO III K1 III F8 V	- 6.6 + 42.0 + 32.9 + 23.0 - 10.2	2.9 1.1 1.0 2.7 1.8	4 5 4 4 4	

A.G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	Pl.	Ref.
5489 5490 5503 5545 5565	93215 93242 93391 94336 94833	10 43.4 43.6 44.6 50.8 54.5	+26 01 25 53 27 10 26 28 25 32	9. 98 9. 42 9. 30 9. 12 9. 39	G5 V K0 III K5 III M III F8 V	- 10.5 + 7.0 + 3.3 + 6.9 - 21.1	1.0 0.7 2.1 2.8 2.3	4 4 4 4	
5567 5571 5582 5591 5593	94834 94966 95188 95363 95364	10 54.6 55.5 57.1 58.2 58.3	+24 25 24 39 25 33 27 24 24 20	8.6 8.64 9.44 9.64 9.37	K1 IV K1 III G8 V F7 V G2 V	+ 4.7 - 6.5 + 6.8 var. + 12.3	1.8 1.4 2.7	4 4 5 5 4	п
5603 5611 5628 5635 5671	95725 95978 96234 96393 97476	11 00.5 01.9 03.4 04.3 10.6	+29 12 29 27 24 30 26 00 27 27	8.70 9.57 9.68 9.58 9.58	K1 II K2 III K0 III K0 III K4 III	- 12.8 - 45.4 + 11.6 + 15.1 + 9.4	1.1 2.7 1.9 1.3	4 5 5 4 4	
5676 5684 5698 5713 5765	97658 97777 98155 98562 99594	11 11.9 12.7 15.1 18.0 25.0	+25 59 26 43 25 19 23 53 26 44	8.96 9.71 9.17 9.59* 9.73	K1 V G8 III K0 III G2 V K2 III	+ 3.4 + 1.1 - 6.1 + 12.0 - 0.2	1.6 1.8 2.1 3.2 1.0	4 4 4 5 5	
5780 5781 5787 5790 5815	99947 99957 100041 100179 100947	11 27.4 27.5 28.3 29.2 34.6	+25 10 25 35 28 44 24 35 28 03	9.16 9.58 9.02 9.02 9.11	K0 III K3 III M III K4 III K1 III	+ 39.1 + 9.8 + 87.0 + 26.4 - 14.8	1.6 1.6 1.3 1.3	5 4 4 5 4	III
5818 5829 5838 5847 5851	100993 101289 101396 101856 101906	11 34.8 36.9 37.6 40.9 41.2	+25 42 25 35 26 26 27 51 24 17	8. 77 8. 49 9. 30 9. 27 8. 24	F8 V G0 V K1 V K0 III G2 V	+ 11.2 - 8.1 - 6.7 + 4.6 + 5.3	2.8 1.4 1.4 1.8 0.7	5 5 4 5 4	
5863 5864 5879 5882 5887	102142 102161 102404 102494 102646	11 42.8 42.9 44.7 45.3 46.6	+27 30 25 23 24 42 27 37 28 24	8. 23 9. 07 9. 37 8. 26 8. 55	G5 V G0 V K2 III G8 IV K0 III	+ 9.5 + 22.2 - 5.3 - 21.1 + 12.4	1.0 3.2 1.3 0.7 1.0	4 5 4 4 5	
5922 5946 5956 5962 5964	103614 104076 104392 104590 104589	11 53.4 56.7 58.7 12 00.1 00.2	+25 46 24 54 24 30 24 44 25 36	8.87 8.88 9.74 8.95 9.36	F6 V G0 V K2 III K2 III	var? + 1.9 - 13.1 - 3.2 + 28.0	2.2 2.3 2.8 1.5	6 5 5 5 4	П
5974 5981 6015 6020 6022	104784 105020 105771 105898 105964	12 01.5 03.0 07.9 08.7 09.1	+25 13 28 47 29 21 25 02 26 01	8.62 9.66 8.59 8.19 9.22	F8 V K3 III K0 III G2 V G0 V	+ 3.1 - 33.1 - 3.5 - 37.7 + 14.2	2.6 3.2 1.1 2.1 2.5	7 7 4 5 5	

TABLE I - continued

A.G.	н. р.	R.A. (1950)		Ptg. Mag	Class	Velocity (km./sec)	P. E.	PI.	Ref.
6031 6035 6052 6054 6060	106184 106398 106857 106947 107132	12 10.5 11.8 14.8 15.3 16.5	26 47 29 00	9.75 8.41 9.54 9.31 9.41	K5 III G8 III F5 V F7 V F7 V	+ 6.5 + 58.6 - 6.1 + 5.0 + 2.1	1.2 2.4 1.4 1.0 2.1	4 5 4 4 4	
6078 6085 6091 6125 6134	107468 107611 107725 108466 108675	12 18.6 19.4 20.1 25.1 26.5	27 35 26 54 28 23	9. 52 9. 04 9. 77 8. 56 9. 17	K1 III F6 V K2 III K2 III F6 IV-V	+ 34.3 + 3.2 - 1.7 - 27.1 var?	2.0 1.5 2.4 2.3	4 4 4 4 5	II
6140 6146 6149 6163 6170	108805 108976 109012 109282 109463	12 27.5 28.6 29.1 31.0 32.3	27 20	9. 24 9. 07 9. 03 9. 16 9. 35	G8 III F6 V K2 III M III K5 III	- 23.0 - 1.2 - 18.1 + 0.5 - 26.1	1.9 1.0 1.8 3.2	4 4 4 6 4	
6172 6175 6177 6182 6222	109482 109552 109627 109823 110788	12 32.3 33.0 33.5 35.2 41.9	28 54	9.31 9.07 9.10 9.71 9.35	G8 II F8 IV K2 III G0 IV G8 III	+ 0.7 + 20.9 + 1.0 + 8.2 - 30.6	3.0 3.1 2.9 1.6 2.9	5 5 5 4 4	
6227 6246 6249 6259 6274	110883 111285 111541 111842	12 42.6 45.5 45.8 47.4 49.5	24 22 25 25 26 42	8.98 8.93 11.07 8.32 9.68	K2 III G8 III K2 III K1 III K5 III	+ 7.0 - 31.2 - 18.2 - 8.6 - 32.5	1.9 1.1 3.1 1.7 2.4	4 4 5 4 4	
6280 6294 6295 6313 6321	112001 112257 112299 112753 113094	12 50.6 52.7 53.0 56.3 58.6		8.53 8.72 9.19 8.81 9.31*	G0 IV G2 V F8 V G0 V K1 III	- 12.0 - 38.5 + 3.6 var? - 10.3	2.7 1.0 0.4 2.7	5 4 4 5 5	II
6325 6343 6359 6364 6368	113242 113771 114037 114093 114172	12 59.7 13 03.3 05.0 05.6 06.2	26 51 26 47 25 06	9.68 8.77 9.06 7.99 9.29	F8 V K0 III K1 III G8 III G0 V	- 5.7 - 8.6 - 6.4 - 5.9 - 36.8	1.5 2.2 0.7 0.9 2.2	4 4 5 4	
6385 6407 6411 6416 6421	114636 115103 115256 115339 115613	13 09.1 12.2 13.2 14.0 15.6	29 40 29 00	9.77 9.23 9.06 9.13 9.24	K1 III F6 V K3 III G8 V F8 V	- 24.9 - 9.1 + 19.2 + 24.6 + 3.8	2.2 2.9 1.9 2.6 3.2	6 6 5 5 5,	
6430 6435 6438 6443 6454	115762 115929 116029 116232 116329	13 16.5 17.5 18.3 19.6 20.3	28 22	9. 39 8. 76 9. 05 8. 76 9. 52	G2 V F6 V K1 III G8 III F7 V	- 12.0 - 12.6 - 2.1 - 22.8 - 27.3	1.8 0.7 1.9 1.8 2.2	4 4 4 5 4	

A.G.	н. D.	F. A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec.)	P. E.	Pl.	Ref.
6477 6478 6501 6529 6546	117028 117062 117555 118658	13 24.8 25.1 28.4 32.8 35.6		9.46 9.02 9.02 9.47 9.79	G8 III F2 V G5 II G8 V K0 III	+ 26.7 var? var. - 2.3 - 5.4	1. 2 0. 5 2. 1	4 5 7 4 4	II N, II
6552 6556 6559 6582 6584	118823 118905 118971 119665 119748	13 36.5 37.1 37.7 41.8 42.2	+24 30 26 56 26 11 25 32 29 14	9. 25 8. 46 8. 91 9. 39 9. 76	K2 III K1 III G8 III F6 V K1 III	- 11.6 + 0.5 + 33.1 - 0.8 - 29.9	2.1 2.5 1.4 2.2 1.0	5 6 5 4 4	
6590 6605 6618 6619 6623	119944 120421 120802 120803 120895	48.9 48.9	+27 29 28 08 27 23 24 57 24 56	9.65 8.52 9.71 9.05 9.91	K2 III K1 III K1 III K1 III K3 III	+ 13.8 - 4.2 var. - 47.4 - 18.3	2.2 1.1 2.5 0.8	4 4 6 6 4	II
6633 6634 6638 6639 6646	121131 121149 121184 121183 121319	13 50.8 50.8 51.1 51.0 51.9	+28 04 27 54 24 24 27 20 28 34	9. 44 9. 29 9. 89 9. 57 9. 15	K1 V G0 V K3 III K0 IV / K0 III	+ 40.3 - 22.0 - 18.6 - 20.7 - 40.0	1. 4 2. 0 1. 7 2. 1 1. 6	4 4 5 5 4	
6663 6669 6693 6694 6699	121844 122052 122693 122767 122796	56.6 14 00.5	+25 15 24 56 24 48 24 50 27 45	9. 37 8. 67 8. 74 9. 73 8. 49	K1 III G0 III F8 V K3 III K1 III	- 62.1 - 26.1 + 1.0 var. - 32.5	2.7 2.4 0.4	4 6 4 5 5	II
6705 6726 6732 6734 6738	123612 123822 123877 124019	14 02.5 06.0 07.1 07.4 08.2	+26 05 24 33 25 41 26 05 27 52	9. 79 8. 43 9. 77 9. 93 9. 33	K0 V K5 III G8 III K5 III G2 V	- 12.7 - 25.4 - 0.3 + 21.0 - 20.2	1.6 2.1 2.2 2.9 0.4	5 4 4 5 4	
6788 6802 6808 6820 6821	125320 125728 126009 126307 126327	14 15.9 18.5 20.0 21.8 21.9	+27 02 26 18 29 36 27 38 25 56	9.12 7.99 8.65 8.45 var.	G5 IV G8 II M III K4 III M III	+ 21.1 + 26.1 • - 14.4 + 31.6 - 7.7	3. 0 1. 9 1. 7 1. 1 3. 0	4 4 8 4 5	N
6832 6838 6847 6848 6852	126598 126778 126970 126991 127093	14 23.7 24.7 25.8 26.0 26.5	+26 29 28 49 29 29 24 44 26 05	9.39	K4 III G8 IV G5 IV G2 V M III	var. -130.1 - 48.1 - 82.9 + 3.9	1.8		III III
6861 6888 6889 6894 6937	127386 128095 128185 129357	14 28.2 32.2 32.1 32.6 39.2	28 42	8. 99 9. 33 9. 49 8. 67 8. 72	pec. G8 III K1 IV F8 V G2 V	var 12.9 + 26.3 - 6.5 - 33.9	2.5 1.2 2.5 2.2	5 4 4 4 4	N, II

A.G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	Pl.	Ref.
6940 6960 6971 6983 7008	129412 130215 130500 130766 131509	14 39.5 43.9 45.6 47.0 51.1	+24 45 27 43 25 41 25 21 28 43	8. 27 9. 07 9. 72* 8. 43 9. 22	F7 V K2 V G8 II-III K3 II K0 V	+ 2.5 - 16.2 + 3.9 - 11.5 - 43.7	2.0 0.8 3.1 1.1 2.1	4 4 5 8 4	
7022 7032 7035 7039 7042	131972 132256 132304 132524 132737	14 53.8 55.2 55.5 56.6 57.7	+24 35 25 31 24 52 25 15 27 21	8. 10 8. 16 8. 82 8. 73 9. 03	K2 III G2 IV K3 III K0 III K0 III	+ 4.0 - 3.9 - 38.3 - 18.4 - 20.7	1.8 2.2 3.2 1.9 0.6	4 4 4 4	
7061 7062 7079 7089 7090	133460 133459 133922 134246 134282	01.6 15 01.7 04.2 05.9 06.1	26 14 +27 17 26 38 28 43 26 54	7.95 8.93 9.78 8.47 9.25	F8 V K4 III K4 III G8 III G8 II	+ 3.7 + 8.2 var? + 10.4 - 5.2	0.7 2.1 1.4 1.2	4 4 6 4 4	II
7106 7116 7152 7155 7181	134680 135145 136231 136274 136901	15 08.2 10.7 16.6 16.9 20.3	+27 37 28 07 25 57 25 52 25 48	9.68 9.19 9.31 8.94 8.91	G8 III G0 V G0 V G8 V K1 III	var 54.4 + 14.8 - 28.6 var.	1.1 1.6 1.1	6 5 5 10 9	П
7183 7201 7220 7256 7276	137003 137688 138156 139007 139550	15 20.7 24.4 27.3 32.7 35.8	+28 14 28 18 27 16 25 10 25 48	8.67 9.27 9.55 8.75 9.41	G8 III K3 III G5 III F8 V G8 III	- 9.8 + 28.6 - 36.1 - 22.2 + 11.1	1.8 2.1 2.2 2.6 0.8	5 4 4 4 4	
7280 7281 7298 7326 7333	139608 139749 140385 140913 141176	15 36.1 36.9 40.2 43.1 44.7	+24 41 25 54 29 47 28 37 25 14	8. 2 8. 87 9. 37 8. 81 9. 07	M III G0 V G2 V G0 V G2 IV	- 23.2 + 8.1 - 44.8 - 14.5 - 17.5	1.0 1.6 1.4 0.2 2.0	4 4 4 4 5	
7353 7367 7377 7378 7385	141690 142053 142209 142243 142418	15 47.4 49.4 50.3 50.5 51.5	+25 37 25 27 28 45 29 04 29 37	9. 27 8. 87 9. 40 9. 25 9. 41	G0 IV K1 II-III K3 III K3 III K1 III	var 10.6 - 15.8 - 17.5 + 9.1	1.0 2.0 2.3 2.6	5 5 4 5 5	II
7398 7399 7415 7418 7419	142898 142929 143271 143272 143313	15 54.0 54.3 56.4 56.5 56.6	+27 12 25 19 27 00 26 41 25 43	9. 24 9. 01 9. 43 9. 35 9. 59	K1 IV F8 V G8 III K0 II-III K2 V	- 31.5 - 34.1 + 1.3 + 3.6 var.	1.2 2.0 1.8 1.6	4 5 4 4 6	II
7420 7441 7444 7468 7505	143688 143705 144287 145374	15 56.5 58.9 58.9 16 02.0 07.5	+27 53 24 36 29 05 25 23 27 06	8. 95 9. 31 8. 73 8. 24 8. 28	K0 V F6 V G0 V G8 V K1 III	- 67.4 + 27.2 var. - 44.5 + 6.4	1. 2 3. 4 0. 7 1. 5	4 5 5 8 4	II

TABLE I - continued

A.G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	Pl.	Ref.
7507 7511 7513 7537 7603	145404 145458 145457 145890 147487	16 07.7 08.0 08.0 10.3 19.2	25 37 26 52 26 34	8.67 8.14	G0 V G8 II-III K0 III K1 III G0 V		0.8 1.2 1.1	4 4 7 4	II
7608 7612 7629 7685 7690	147527 147665 147980 149067 149132	20.2 21.9 29.4	+29 07 24 52 28 30 25 57 29 43	9. 41 9. 50 8. 80 9. 26 9. 25	F5 IV F8 V K1 II-III G8 II K2 II	- 33.5 - 7.0 - 28.8 - 4.1 - 18.2	1.4 1.6 2.1 1.8 1.2	5 5 4 4 4	
7692 7698 7704 7709 7721	149142 149241 149403 149474 149803	16 29.8 30.4 31.5 32.0 33.9	24 59 25 35	8.97 9.49 9.33 9.65 8.90	G8 III K5 III G0 V K3 III F7 V	+ 41.3 - 0.6 - 12.3 - 8.1 + 1.2	1.7 1.6 3.4 1.2 0.7	5 5 5 4	
7734 7735 7737 7742 7756	150087 150086 150102 150205 150431	16 35.7 35.6 35.8 36.3 37.9	28 56 27 09	9. 24 9. 74 9. 08 8. 32 9. 47	G8 III G8 III M2 III G5 V G8 III	- 2.1 + 1.1 + 12.7 + 29.9 - 14.0	1.8 1.0 2.7 1.5 0.8	5 4 5 4 4	
7761 7769 7774 7776 7779	150567 150665 150799 150889	16 38.7 39.5 40.1 40.2 40.9	+29 01 26 11 25 31 25 31 25 57	9. 13 9. 14 9. 52 9. 79 9. 07	K3 III K0 III F7 IV-V F8 IV K2 III	- 50. 4 - 3. 9 - 15. 5 - 28. 7 - 54. 4	1.3 1.8 2.4 2.9	4 4 7 5 4	
7799 7806 7826 7833 7847	151256 151369 151625 151780 152032			9.57 9.35 8.82 9.25 8.57	K1 III G2 IV G0 IV K1 III G8 II-III	+ 10.5 - 3.6 - 38.4 - 19.9 - 19.5	1. 1 2. 2 2. 4 1. 2 1. 9	4 4 4 4	
7857 7860 7884 7908 7940	152264 152306 152748 153224 153698	16 49.2 49.5 52.1 54.9 57.9	28 12 27 40 29 40	8. 41 8. 23 9. 15 8. 80 9. 21	G0 V G8 III G8 II F8 V M III	- 25.2 + 6.0 - 13.7 - 17.4 - 20.1	1.9 1.1 2.4 1.4	4 4 4 4 5	
7956 7969 7973 7989 8001	154049 154183 154510 154635	00.9 01.1 02.8	+25 06 25 43 24 55 28 10 25 34	9.33 9.51	G0 V K1 III K1 III	- 86.0 - 21.7 - 49.5 + 2.5 - 49.0	1.7 2.4 2.1 1.0	4 5 6 10 4	III
8009 8026 8032 8046 8063	154760 154942 155041 155344 155675		+26 35 28 11 29 13 26 31 25 18	9. 31 8. 77 9. 13 8. 50 9. 24	G2 V K1 III K2 III K2 III F8 V	- 14.3 - 20.4 - 29.2 + 4.0 - 23.8	1.5 2.1 2.2 0.9 1.7	4 4 5 4	

A.G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	Pl.	Ref.
8066 8072 8073 8077 8079	155839 155878 155989 156002	17 10.2 11.2 11.2 11.9 12.1	+29 35 25 03 27 59 26 14 26 53	9.48 9.18 9.17 9.43 9.10	G8 II-III K5 III G8 II G5 III F5 IV	- 29.5 + 0.8 + 3.0 var. - 9.7	1.1 0.8 1.1	4 5 4 5 5	II
8084 8085 8098 8104 8114	156093 156362 156454 156563	17 12.2 12.5 14.0 14.6 15.3	+29 38 26 07 27 11 26 38 25 05	8.99 8.42 8.27 9.41 9.56	G0 V K3 III K2 III G2 V G8 V	+ 17.9 - 20.3 - 51.1 - 0.3 - 11.7	0.8 2.2 0.8 3.1 2.6	4 5 4 4 4	
8117 8127 8128 8135 8152	156652 156774 156775 156966 157294	17 15.6 16.4 16.5 17.4 19.3		8.81 9.04 8.19 8.89 9.04	M III K2 III K1 III M2 III G8 III	- 36.4 - 48.3 - 4.8 + 72.7 - 48.6	2. 0 3. 1 1. 4 2. 0 3. 1	5 5 4 4 5	III
8189 8207 8223 8244 8283	158038 158332 158521 158823 159479	17 23.8 25.6 26.8 28.3 31.9	+27 21 26 50 26 46 29 33 26 42	8.76 8.80 8.82 9.25 9.56	K2 II K1 IV / F6 V K3 III K2 III	+ 15.6 - 18.8 - 1.1 - 42.9 - 21.3	0.9 2.2 1.2 1.4	4 4 4 4	
8291 8309 8311 8338 8350	159608 159948 159968 160508 160678	17 32.4 34.4 34.4 37.2 38.1		9.89 8.97 8.44 8.91 9.03	M2 III K2 III M III F8 V K0 III	- 60.2 + 6.3 - 35.0 + 25.1 + 35.5	3. 2 0. 6 1. 4 1. 8 1. 8	6 4 4 4 4	
8372 8380 8387 8390 8392	160952 161112 161197 161196 161268	17 39.7 40.6 41.1 41.1 41.5	+29 37 26 34 24 49 29 40 27 03	9.04 8.82 8.91 8.96 8.91	G8 III K0 III G2 IV M III K1 II	+ 30.6 - 5.6 + 26.5 + 2.4 - 23.4	0.3 1.7 1.7 2.0 2.4	4 5 4 4 4	
8492 8506 8523 8559 8563	162901 163077 163331 163949 163970	17 50.4 51.3 52.5 55.6 5.88	+25 00 25 00 27 37 28 00 27 51	8.95 8.82 9.16 9.39 9.60	K2 III G8 V K1 III F6 V G0 V	- 9.4 + 12.3 + 8.5 + 16.5 - 28.3	2. 4 1. 3 2. 3 1. 5 2. 8	5 4 4 4 4	
8564 8569 8571 8617 8651	163969 164042 164079 164923 165473	17 55.8 56.2 56.4 18 00.4 03.0		9. 52 9. 10 9. 21 9. 80 8. 29		+ 8.0 - 25.9 + 23.4 - 23.5 + 18.7	2.2 1.8 1.8 2.6 1.4	4 5 4 4	
8654 8656 8669 8677 8683	165589 165989 166070 166093	05.8	26 24	8. 31 9. 09 8. 22 9. 33 8. 89	K1 III F6 V G8 III K1 IV K3 II	+ 11.5 - 21.4 - 1.9 - 27.6 - 25.0	1.1 2.7 1.0 1.4 1.6	4 5 4 4 4	

TABLE I - continued

A.G.	н. D.	R.A. (1950)		Ptg. Mag.	Class	Velocity (km./sec)	P. E.	Pl.	Ref.
8685 8706 8707 8709 8712	166181 166683 166730 166781 166822	18 06.3 08.6 08.8 09.1 09.3	29 04 27 58 26 39	8.37 9.06 9.41 8.22 9.09		var 17.5 - 29.0 - 34.9 - 1.3	.3.0 1.0 2.0 1.7	5 6 5 4 4	II
8713 8715 8716 8717 8732	166842 166867 166895 166914 167132	18 09.5 09.5 09.5 09.7 10.9	29 54 30 07 25 22	8. 14 8. 59 9. 21 9. 51 9. 46	K1 III K0 IV F6 V F8 IV-V K1 III	- 59.3 + 17.3 - 20.7 - 9.9 + 11.6	1.8 1.2 2.2 3.2 1.0	4 4 4 5 4	
8742 8753 8773 8783 8818	167275 167472 167782 168038 168622		28 12	8. 79 8. 19 9. 70 9. 07 9. 70		- 3.7 - 1.8 - 18.3 + 9.8 - 30.3	0.8 1.1 1.8 2.4 1.7	4 4 4 4	
8824 8836 8849 8870 8887	168956 169245 169573 169797	18 18.1 19.3 20.7 22.2 23.3	26 41 26 12 26 18	10.87 9.12 9.47 9.63 8.92	K3 III F6 V F8 V K2 III G8 III	+ 8.7 - 25.3 - 13.4 + 28.5 - 19.9	2.4 2.1 2.1 1.2 0.7	4 4 4 5 4	
8889 8898 8958 8975 8976	169819 170619 170737 170738	18 23.5 23.8 27.3 27.9 27.9	29 23 29 31 26 37	9. 95 9. 33 8. 45 9. 11 9. 21	K2 III K2 II K0 III G5 V G8 III	+ 7.4 - 3.4 - 26.7 -136.7 - 27.8	2. 2 1. 2 1. 0 2. 2 2. 1	8 4 5 4 4	III
8990 9008 9013 9036 9050	170951 171164 171232 171550 171830	18 29.1 30.0 30.6 32.4 33.8		10.05 9.61 8.66 8.00 9.41	M III K2 III G8 III K0 III G8 III	- 2.7 - 24.4 - 30.6 - 12.4 - 75.8	2.8 1.8 0.9 1.7 3.1	5 4 4 5 4	
9077 9080 9091 9109 9180	172132 172169 172311 173367		+29 01 29 32 28 15 26 09 28 04	9.51 8.39 9.82 9.78 9.59	K2 III K4 III G8 III F8 V K0 III	+ 12.2 - 24.7 - 35.4 - 37.6 + 3.5	2.7 0.8 1.6 2.7 3.0	5 4 4 4 5	
9186 9223 9236 9244 9245	173435 173909 174104 174126	45.8	+26 11 27 26 28 22 28 40 28 35	9.25	K0 III G8 III G0 V G0 Ib K2 II	- 3.3 + 23.6 - 68.3 - 14.3 - 9.2	2.8 2.1 1.9 3.0 2.8	5 4 4 4 5	
	174414 174695 174764 175036 175204	49.1 50.4	+27 40 28 28 29 40 26 28 25 19	8. 57 9. 77 8. 94	K1 III K1 III K1 III G0 V G5 III	+ 14.8 + 2.1 - 4.4 - 51.5 - 46.5	1.6 1.9 1.7 2.1 3.2	4 4 4 4	

TABLE I - continued

A.G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	Pl.	Ref.
9358 9364 9383 9417 9449	175578 175940 176230	18 52.9 53.3 54.6 56.1 57.4	+29 58 26 56 28 08 28 06 29 32	8.77 9.31 8.40 8.87 9.01	G5 III G8 III K2 III K1 II F8 V	- 32.4 - 4.1 - 31.3 - 45.2 + 10.4	1.2 2.2 2.2 2.2 1.1	4 5 4 4	
9459 9472 9486 9516 9575	176695 177251 178029	18 57.9 58.3 59.4 19 00.7 03.9	+26 17 28 36 26 19 29 13 29 15	9.61 9.17 9.35 9.04 9.19	G8 III G8 III K1 III G8 III G8 III	+ 17.7 var. - 2.1 + 16.9 + 11.4	0.7 1.1 2.1 1.6	4 5 4 5 4	II
9585 9594 9607 9629 9659	178450 178798	19 04.5 05.0 05.6 06.9 08.6	+28 38 29 07 30 10 30 13 28 16	9. 91 9. 47 8. 83 8. 53 9. 29	F8 V G2 V G8 V K3 III F6 V	+ 2.2 - 7.8 var. - 12.1 - 52.4	1.2 1.4 0.9 1.4	4 4 5 6 4	II
9675 9763 9797 9865 9877	180502 181047 182056 182218	19 09.4 13.7 15.8 19.7 20.5	+26 19 29 02 25 16 30 16 27 04	8. 83 8. 77 8. 99 9. 25 9. 29	G5 III G0 IV G8 V K2 II K1 III	var? - 4.3 - 84.6 + 7.8 - 7.3	1.1 1.5 1.5 2.5	5 4 4 4 5	III
9882 9929 9949 9950 10014	182256 182617 183399	19 20.7 22.3 23.3 23.4 26.3	+25 14 28 29 25 37 26 14 29 21	8. 94 9. 09 9. 63 9. 71 8. 09	F5 IV K1 III K1 II-III K2 II K1 III	- 57.4 + 9.3 + 27.5 - 59.7 - 13.5	2.4 1.5 1.8 1.0	5 4 4 5 5	
10039 10072 10077 10103 10108	183753 184150 184538 184590	19 27.9 30.0 30.4 32.0 32.2	+28 37 30 05 25 19 25 42 25 15	9. 59 9. 49 9. 45 8. 97 9. 27	K3 II K3 III pec. K2 III M1 III	+ 26.7 - 30.0 - 4.2 - 25.1 + 28.3	1.4 0.4 0.3 0.6 1.0	6 4 4 4 6	N
10122 10133 10151 10154 10175	184719	19 32.7 33.0 33.6 34.0 34.7	+29 03 28 59 30 17 26 23 27 46	9.31 9.55 9.73 9.52 9.59	K5 III F7 V G8 II K1 III K1 III:	- 24.4 - 37.0 - 11.3 - 52.9 + 4.4	1.6 0.4 2.6 2.5 3.6	5 4 5 4 4	N
10181 10182 10184 10188 10268	185270 185241 185269 185289 185982	19 35. 2 35. 1 35. 2 35. 3 38. 7	+26 02 28 04 28 23 26 15 27 37	8.94 9.54 7.35 8:41 9.29	F8 V K0 III G0 IV G8 III G8 III	- 25.5 - 36.5 0.0 - 13.1 + 8.1	1.3 1.0 1.0 1.1 3.1	4 4 4 5 4	
10292 10299 10315 10333 10377	186223 186260 186517 186860	19 40.1 40.3 41.0 41.9 43.7	+27 04 26 57 27 49 27 19 30 08	9.47 9.24 9.22 9.11 9.81	K2 III K0 III F8 V K1 III M III	- 30.8 - 0.5 - 19.1 - 37.6 + 7.5	0.7 1.9 1.2 1.3 2.2	4 4 4 4	

A.G.	H. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity P. (km./sec.)	.E. Pl.	Ref.
10414 10426 10444 10445 10454	187162 187280 187462 187460 187548	19 45.4 46.2 47.1 47.1 47.4	+28 22 28 12 27 37 29 45 28 29	9.47 9.51 7.71 9.25 8.73	G8 III K2 III G0 V G8 III G0 V	- 10.6 2 + 3.5 · 0 - 6.1 2	. 1 5 . 3 4 . 5 6 . 7 6 . 1 5	
10456 10465 10499 10509 10528	187565 187614 187921 188015 188121	19 47.5 47.9 49.5 50.0 50.5	+29 15 26 57 27 20 27 58 28 25	8.74 7.63 var. 9.09 9.21	F8 V G8 III G5 IV		5 5 4 .7 .6 4	II II N, II
10546 10548 10582 10601 10644	188259 188258 188566	19 51.2 51.2 52.8 53.3 55.2	+26 22 27 58 25 12 29 51 29 48	8.99 8.32 8.91 9.36 9.20	K1 III K2 III K2 III K3 III G0 V	- 35.3 1 - 9.5 2 var.	. 4 4 . 1 4 . 2 5 5 5 . 7 4	II
10646 10650 10668 10704 10713	189087 189108 189317 189671 189753	19 55. 2 55. 4 56. 3 58. 2 58. 5	+29 41 28 34 28 28 26 03 27 00	8. 73 7. 83 8. 34 7. 88 9. 79	K1 V G8 III F6 V G8 II K4 II	+ 10.2 1 - 35.4 1 - 20.9 0	. 3 5 . 0 5 . 7 4 . 3 4 . 0 4	
10724 10731 10742 10753 10771	189796 189884 189943	19 58.8 59.2 59.5 59.9 20 00.9	+29 41 27 03 30 05 29 45 28 10	8. 46 8. 90 8. 70 9. 45 8. 36	G0 V K2 III G5 III F5 Ib G5 IV	- 10.2 0 + 17.6 1 - 3.3 1	. 9 4 . 7 4 . 6 4 . 4 4 . 4	
10799 10813 10814 10818 10831	190470 190605 190630 190749	20 02.1 02.7 02.8 02.8 03.5	+25 39 26 20 25 55 30 22 29 44	9. 04 9. 23 8. 50 9. 39 9. 59	K3 V G0 V G2 V K2 III K1 III	- 43.8 2 + 22.0 2 + 16.5 1	. 1 4 . 5 4 . 3 4 . 1 4 . 0 4	
10833 10837 10838 10843	190787	20 03.7 03.8 03.9 04.1 04.1	+27 59 29 37 29 37 27 59 28 46	9. 78 9. 72 9. 20 9. 84 9. 54	M III F6 V K3 III K3 III G0 V	var? - 10.0 1 - 36.2 2	. 4 4 5 5 . 8 4 . 0 4 4	II
10850 10899 10924 10925 10961	191010 191445 191590 191615 191875	20 04.7 06.9 07.7 07.8 09.0	+25 32 28 32 29 35 25 23 29 33	9. 42 9. 93 9. 28 9. 09 9. 84	G5 Ib K3 III K2 III K0 III K3 III	+ 39.0 1 0.0 2 - 94.0 0	. 1 4 . 7 4 . 2 5 . 7 4 . 0 4	III
10962 10971 11011 11012 11015	191898 191945 192287 192286 192405	20 09.2 09.4 11.2 11.0 11.6	+25 59 29 01 25 05 30 20 27 23	9.56 9.36 9.49 9.37 8.73	G0 V M0 III M III G8 III F7 V	- 17.4 1 - 7.3 2 - 75.9 0	. 3 4 4 . 4 . 6 5 . 8 4 . 7 4	

A. G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	Pl.	Ref.
11036 11053 11072 11086 11110	192732 192892 193011 193221	20 12.7 13.3 14.3 14.9 16.1	+26 38 29 52 26 20 29 57 25 21	9. 46 9. 18 8. 55 9. 70 9. 13	G5 III K0 III G9 III K1 III K2 III	- 23.1 - 11.1 - 17.1 - 29.9 - 11.4	1.9 2.8 1.2 1.1	4 4 4 4	N
11122 11140 11216 11233 11254	193347 193488 194071 194403	20 16.7 17.5 20.5 21.2 22.5	+26 50 27 16 28 05 28 38 25 45	8.80 8.85 9.06 9.67 9.71	M2 III F6 IV G8 III K1 III K3 III	- 36.7 - 10.3 - 12.8 + 53.2 - 2.8	1.2 3.4 0.3 1.0 2.8	4 5 4 4	N
11271 11273 11332 11368 11384	194510 194525 195216 195273	20 23.1 23.0 25.5 26.9 27.4	+25 33 30 24 27 53 27 41 26 46	8. 90 9. 04 10. 19 9. 95 8. 85	F7 IV G0 III G8 III K5 III K1 III	* 0.6 - 38.6 - 14.7 - 46.0 - 31.6	2.2 2.0 1.9 2.4 2.1	5 4 4 4 4	N
11420 11424 11440 11447 11453	195509 195667 195712 195790	20 28.7 28.8 29.7 29.9 30.3	+27 47 26 31 26 53 26 54 27 21	9.66 8.58 9.45 9.45 9.28	K2 III K0 III K3 III K0 III G8 III	- 17.4 + 2.7 + 17.9 + 7.8 + 8.9	2. 1 1. 9 1. 1 1. 7 1. 0	4 4 4 4	
11456 11470 11471 11480 11519	195834 195967 196034	20 30.6 31.3 31.5 31.8 34.3	+28 53 29 21 25 40 25 27 26 13	9. 99 9. 41 9. 32 9. 82 10. 06	K3 II K2 III G8 III K3 III K1 III	- 3.5 + 26.7 + 10.4 - 31.7 - 55.9	1. 2 2. 7 2. 6 1. 1 0. 5	4 4 4 4	
11525 11546 11571 11573 11579	196448	20 34.4 35.5 36.8 37.2 37.4	+29 02 30 00 26 31 25 54 26 27	9.60 9.31 9.74 8.70 10.21	G0 V G0 V G8 V K2 III K2 III	+ 4.6 + 21.5 + 3.9 - 76.5 - 3.6	1. 1 1. 9 0. 8 1. 0 0. 7	4 4 4 4	
11581 11584 11598 11623 11625	196928 196940 197020 197207 197227	20 37.4 37.5 38.1 39.2 39.3	+27 55 26 08 25 52 30 01 29 09	9.64 9.56 9.57 8.99 8.73	K4 III G8 III G0 V G5 V F7 IV	- 17.9 - 6.0 - 6.1 - 52.5 + 16.3	2.6 2.4 1.6 0.5 1.5	5 4 4 4 4	N
11630 11631 11648 11661 11662	197264 197263 197395 197515 197514	20 39.6 39.6 40.4 41.3 41.2	+26 56 28 05 30 05 25 25 27 04	9.85 8.99 9.53 9.43 9.60	K0 III G0 V K2 III K5 III M III	- 0.9 - 2.4 - 7.6 - 46.8 - 19.2	1.8 1.7 1.3 0.6 1.7	4 4 4 4	
11663 11668 11755 11765 11767	197550 197605 198198 198238 198254	20 41.3 41.8 45.7 46.1 46.1	+30 02 27 16 29 27 26 13 28 21	9.81 9.25 9.27 9.90* 9.62	K0 III F5 II G8 III K5 III K1 III	+ 9.8 - 13.7 + 16.0 + 23.2 - 15.0	1. 4 0. 9 2. 1 1. 3 3. 0	4 4 4 4	N

A.G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	PI.	Ref.
11779 11808 11809 11814 11817	198313 198483 198482 198526 198550	20 46.5 47.6 47.5 47.9 48.1	+28 37 25 35 30 28 28 48 29 12	9.31 8.55 9.54 9.91 9.81	K1 IV G0 V K2 III K1 III K5 V	- 63.4 - 14.6 + 15.8 - 0.9 - 13.3	1.9 1.7 2.2 1.1	4 4 4 4	
11823 11855 11919 11923 11941	198821 199375 199440 199598	20 48.4 50.0 53.9 54.2 55.5	+28 31 28 40 27 23 27 19 26 13	9.67 9.47 8.03 9.67 7.66	K0 III K2 III K2 III K1 III G0 V	- 7.2 - 23.0 - 12.8 - 45.1 - 27.1	1.8 1.4 1.6 0.9 1.3	4 4 6 4 4	
11958 11965 11970 11990 12015	199717 199763	20 56.0 56.2 56.3 57.8 59.6	+29 05 30 12 30 26 29 05 27 03	9.57 7.67 9.93 9.75 9.77	K0 III G9 III G0 IV F8 V G0 IV-V	- 23.8 var? - 26.6 - 2.2 - 9.0	2.0 0.8 2.3 2.1	4 5 4 4 5	II
12031 12032 12035 12042 12050	200391 200425 200451 200491 200546	21 00.3 00.4 00.5 00.8 01.2	+27 37 25 58 26 19 28 47 27 08	9. 11 8. 42 9. 49 8. 96 9. 58	G0 III F8 V K5 III G8 III M2 III	var 24.9 - 29.7 - 5.2 - 18.0	1.1 1.9 0.4 1.3	54 4 4 4	II
12059 12069 12130 12135 12158	200578 200679 201094	21 01.4 01.9 04.5 04.7 05.6	+28 54 26 09 26 21 30 15 30 10	8. 05 9. 76 9. 94 9. 92 9. 38	G8 III K1 III K2 II K0 III G0 V	- 25.0 - 16.3 + 3.8 - 21.3 - 12.7	0.5 1.5 1.1 1.9	4 4 4 4	
12166 12185 12199 12205 12228	201346 201490 201626 201669 201860	21 06.0 07.0 07.8 08.1 09.4	+28 25 30 10 26 25 27 06 26 08	9. 46 8. 57 9. 53 8. 94 9. 48	K1 IV F7 V pec. G8 III G0 V	- 71.0 + 1.0 -150.8 + 5.9 - 36.2	2.0 0.8 0.7 0.3	5 4 15 4	N, III
12281 12296 12298 12352 12372	202365 202521 202573 203030 203171	21 12.4 13.4 13.7 16.8 17.6	+27 57 27 48 25 14 26 01 27 18	9. 01 9. 13 8. 16 7. 30 9. 02	K0 III K2 III G5 V: G8 V G0 V	- 10.8 + 15.5 - 28.4 - 12.9 - 17.9	2.9 .0.7 0.9 1.9 1.4	4 4 4 4	
12381 12385 12398 12402 12426	203288	21 18.4 18.5 19.0 19.4 20.5		9.38 9.62 9.77 9.38 9.53	G5 V	+ 16.7 - 47.1 - 7.4 + 18.9 - 1.8	2.2	4 4 5 4 5	
12442 12483 12514 12538 12539	203733 204079 204388 204539 204540	21 21.1 23.3 25.3 26.5 26.5	+29 36 27 00 27 39 26 12 25 42	9.08 9.43 9.58 9.21 8.44	K1 III K1 V K5 III K3 III K2 III	- 46.7 - 30.9 - 24.7 - 44.8 - 23.7	1.4 1.5 0.6 0.7 0.5	4 4 4 4 5	

TABLE I - continued

A.G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	Pl.	Ref.
12553 12554 12566 12592 12596	204642 204658 204711 204923 204934	21 27.1 27.2 27.6 28.9 29.0	+28 22 28 39 25 36 25 50 28 09	8.14 9.42 9.68 9.89 9.64	K2 III G0 V K2 III K3 III K1 III	+ 19.9 var? - 15.8 - 23.0 + 2.5	0.4 1.6 2.0 0.3	4 5 4 4	п
12598 12643 12644 12677 12691	204921 205287 205316 205626	21 29.0 31.4 31.6 33.1 33.7	+30 03 27 23 25 40 27 48 26 09	9.18 9.98 9.61 9.52 9.95*	K2 III K5 III K0 III G0 V F8 V	- 25.7 - 41.7 - 17.2 - 21.1 - 2.7	2.0 0.8 1.5 1.0	4 4 4 4	
12692 12704 12707 12709 12781	205627 205700 205760 206332	21 33.7 34.2 34.5 34.7 38.5	+26 09 29 19 29 27 25 23 28 32	9.98* 8.78 9.36 9.84 8.24	F8 V F5 V G8 III K1 III G0 V	- 8.7 - 7.5 + 0.3 - 10.6 - 42.8	1.6 1.9 2.6 1.7 0.8	4 5 5 4 4	
12786 12787 12789 12834 12842	206374 206373 2 6 6385 206889	21 38.8 38.8 38.8 41.9 42.2	+26 31 29 07 30 04 26 17 29 02	8.51 9.08 9.12 9.36 8.56	G8 V G0 V K5 III G2 V K1 III	- 41.1 - 91.8 + 13.2 - 45.2 - 8.1	1.2 1.7 1.6 1.2 0.8	4 4 4 4 4	III
12846 12854 12856 12885 12902	206899 206978 206979 207243 207379	21 42.2 42.9 43.0 44.7 45.6	+30 05 30 11 29 00 29 52 29 30	10.00 9.65 9.41 9.62 9.12	K5 III G0 IV K2 III K0 III K1 III	+ 5.1 - 12.5 - 73.4 + 11.9 - 4.2	2. 1 1. 9 1. 4 1. 9 2. 0	4 4 4 4 5	
12915 12947 12985 12998 13000	207470 207740 208277 208379 208415	21 46.3 48.4 52.3 53.2 53.2	+28 29 28 32 30 00 25 42 30 35	9.58 8.96 9.52 9.41 9.04	G8 III G5 V G5 III G0 V K0 III	- 0.9 + 8.5 var. var? - 0.2	1.9 1.3	4 4 5 5 4	II
13008 13020 13032 13037 13039	208457 208641 208658	21 53.6 54.1 54.9 55.0 55.2	+26 10 26 13 27 45 28 35 28 42	9. 29 9. 64 9. 61 9. 47 9. 76	G0 IV G5 V G0 III K1 III G5 V:	- 3.6 - 33.1 + 1.4 + 15.1 - 16.8	2. 2 1. 8 2. 1 1. 1 0. 9	4 4 4 5 4	
13040 13047 13070 13072 13076	208700 208750 208951 208987	21 55.2 55.6 57.0 57.0 57.2	+29 04 26 59 28 24 30 18 29 39	8.84 9.58 9.76 9.24 9.94	K3 III G0 IV G0 V K2 III K5 III	- 13.1 - 63.6 - 35.5 - 20.7 var?	0.5 4.0 1.8 0.3	4 5 4 4 5	П
13135 13140 13144 13147 13157	209457 209500 209543 209598 209680	22 00.7 01.1 01.3 01.7 02.3	+29 27 29 30 26 42 28 06 29 43	10.21 9.92 9.49 var. 10.26	K5 III K5 III K0 III M III K5 III	- 7.3 + 15.9 - 5.9 - 19.4 - 5.6	2.2 0.9 0.9 0.8 1.8	5 4 4 4 6	N

TABLE I - continued

A.G.	H. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec.)	P.E.	PI.	Ref.
13167 13169 13179 13188 13192	209745 209858 209994 210026	22 02.9 02.9 03.6 04.5 04.7		9. 71 9. 38 8. 59 9. 94 8. 79	F8 V F8 V F8 V K0 III K1 III	- 4.8 - 21.8 + 0.6 + 10.5 + 14.0	2.8 0.8 1.5 1.0	6 4 6 4 4	
13194 13246 13250 13262 13271	210608 210685 210789	22 04.8 08.6 08.7 09.3 10.1	+26 48 25 34 29 24 27 01 25 14	10.08 9.93 9.87 9.52 9.52	K5 III K3 III K0 III K1 III K2 III	- 21.5 - 2.0 + 8.5 + 18.3 - 43.8	1.6 2.4 1.6 1.3 0.6	8 4 4 4 4	
13283 13325 13331 13340 13344	210925 211407 211460 211555 211606	22 10.9 14.0 14.4 15.1 15.5	+25 42 26 01 28 55 26 08 26 41	8.05 9.49 9.02 8.62 8.90	K0 III K0 III G8 III K0 III K5 II	- 62.4 + 5.4 var. - 23.4 - 8.3	1.3 0.5 0.3 1.0	6 4 5 4	П
13366 13391 13393 13422 13439	211884 212280 212289 212567 212750	22 17.6 20.3 20.4 22.5 23.8	+25 28 30 06 30 30 28 26 28 16	9. 46 8. 59 9. 49* 9. 68 8. 57	K5 III G0 IV K1 II K0 III K1 III	- 23.8 var. + 5.0 - 19.3 + 1.4	2.6 1.4 1.7 0.3	5 4 4 6 4	N, II
13466b 13477 13479 13518 13532	213025 213177 213178 213803	22 25.8 26.7 26.8 30.0 31.3	+26 46 29 32 28 46 25 20 29 20	7. 92 9. 17 8. 75 9. 50 9. 34	G8 III K0 II K1 III G8 II K0 III	- 39.7 - 2.3 - 7.5 var. + 13.2	1.7 0.6 0.8	5 4 4 5 4	п
13540 13547 13552 13555 13568	213857 213947 213992 214023	22 31.7 32.3 32.5 32.7 33.4	+29 29 26 20 29 42 30 33 29 51	9.58 8.93 8.67 9.20 9.44	K0 III K4 III K3 III K3 III G8 III	- 39.0 + 20.0 + 7.7 - 38.0 var?	1.1 0.4 1.6 1.4	5 4 4 4 7	11
13570 13575 13583 13592 13596	214202 214265 214332 214434 214458	22 33.9 34.3 34.6 35.6 35.6	+29 29 27 31 29 29 26 10 29 40	9.63 8.49 9.32 9.17 8.72	G8 III K0 III G8 III K2 II K2 III	- 1.8 - 17.7 - 12.3 - 1.4 - 41.6	2.8 0.3 2.6 2.1 0.7	4 4 5 5 4	
13639 13664 13675 13705 13715	215732	22 39.1 41.3 41.9 44.6 46.1	+29 47 29 50 29 21 29 39 27 51	9.27	K3 III G5 V M III K3 III F8 V	- 37.7 - 11.6 - 64.6 + 0.5 + 3.4	1.8 0.8 1.4 1.0 0.8	4 4 4 4	
13716 13748 13758 13760 13769	215956 216331 216465 216502 216586	22 46.2 49.4 50.4 50.8 51.4	28 28 29 47 29 11 26 43 28 22	9. 10 8. 75 8. 81 8. 86 8. 84	G0 V G5 II F5 V K2 III K1 III	- 17.4 - 9.8 0.0 - 9.8 - 50.4	1.6 1.1 1.3 1.0	5 4 5 4	

A.G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P.E.	Ρl.	Ref.
13772 13777 13780 13813 13821	216632 216685 216723 217230	22 51.8 52.2 52.5 56.5 57.1	+27 45 29 06 27 45 27 14 29 49	8. 29 9. 30 8. 36 9. 14 10. 21	F8 V F8 V G8 III G8 III	- 17.7 - 9.2 - 15.2 + 17.6 var?	1. 4 1. 0 9. 5 0. 7	4 4 6 4 4	ΙÌ
13839 13850 13862 13863 13870	217576 218113	22 59.0 23 00.3 01.8 01.9 02.7	+28 26 28 56 28 34 27 33 27 56	9. 24 9. 60 9. 42 9. 82 9. 64	K0 III G2 V G2 V G0 IV K5 III	var. + 3.1 var? - 37.6 - 20.8	3. 2 1. 5 2. 5	6 5 5 4 6	II
13876 13877 13879 13894 13901	218153 218170 218199 218356 218454	23 03.1 03.1 03.3 04.7 05.4	+25 44 28 43 30 27 25 12 30 10	9.07 9.18 9.43 6.53 9.03	G8 II M2 III K1 II K1 II-III K4 II	- 80.5 - 56.4 - 6.0 - 25.3 - 19.2	1.1 1.4 0.4 1.1 0.6	5 4 4 4 4	III N
13910 13919 13923 13940 13990b	218610 218660 218880 219418	23 05.9 06.7 07.1 08.8 12.9	+30 11 26 39 29 24 29 46 25 24	9. 30 9. 34 8. 10 8. 30 9. 52	G8 III K2 III K2 III K0 III G5 III	- 6.9 - 3.3 + 11.2 + 41.9 + 39.6	0.9 1.5 0.9 1.0 0.7	4 7 5 4 5	
13996 14006 14015 14021 14059	219538 219654 219736 219800 220286	23 13.8 14.9 15.5 16.0 19.9	+30 24 29 36 30 11 27 20 29 10	9. 04 9. 32 8. 41 8. 29 9. 28	K2 V M1 III K2 III K0 III G0 IV	+ 10.0 + 3.3 - 3.8 var. - 16.1	1.6 1.6 1.3	4 6 7 5	II
14060 14084 14120 14121 14136b	220288 220684 221133 221170 221364	23 20.0 23.1 26.9 27.0 29.0	+25 39 25 55 25 32 30 09 28 23	8.38 9.26 9.26 9.04 7.02	K3 III G8 III K2 III G0 V K0 III	+ 25.8 + 0.1 - 22.9 -119.8 - 4.0	1.8 2.3 1.4 3.0 1.2	4 7 4 4 4	III
14142 14144 14180 14185 14190	221469 221478 222033	23 29.8 30.0 34.6 34.8 36.3	+26 17 26 15 30 24 25 30 25 40	8.98 9.18 8.02* 9.97 9.76	F8 IV-V G8 II-III G0 V G8 III K1 III	- 14.8 + 22.0 - 12.6 - 11.8 - 4.6	0.6 2.0 0.8 2.1 0.9	5 4 4 5 4	
14195b 14201b 14203 14232 14255	222317 222390 222391 223019	23 37.0 37.5 37.5 41.3 43.2	+27 58 27 14 26 31 30 27 26 04	7.95 8.00 8.34 9.70* 9.40	G5 V K1 III G0 III G0 V K3 III	var 11.4 - 2.1 + 6.4 - 11.2	1.0 0.5 2.1 1.0	6 4 4 4	П
14261 14267 14276 14279 14292	223094 223138 223211 223231 223332	23 43.9 44.3 45.0 45.1 46.1	+28 26 28 09 25 18 26 54 28 06	8.97 8.55 7.3 9.69 9.06	K5 III M III K3 III K2 II K5 II	+ 20.8 - 1.7 - 18.3 - 6.3 + 11.8	0.5 0.9 0.6 1.6 0.8	4 4 4 4	

A.G.	н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P.E.	Pl.	Ref.
14301 14333	223424 223869	23 46.8 50.6	+26 45 25 43	9.01 8.67	K0 III K1 III	+ 4.8 + 16.7	2.7	6	
14346 14376	224085 224458	52.5 55.5	28 21 29 42	8.71 9.52	K2 III G8 III	var. - 55.2	1.0	7 6	N, II
14406 14407	224882	58.9 23 59.0	30 27 +28 09	8.44	G0 IV K2 III	- 14.5 - 11.4	1.1	5 4	

NOTES TO TABLE I

A.G. 2298	The spectrum is composite; the hydrogen lines of the A-type spectrum
	are very broad as are also some of the metallic lines. The velocity re-
	fers to the F-type spectrum.

- A.G. 3518 CN λ 4215 is weak as in the spectra of high-velocity stars.
- A.G. 3918 The spectrum has been reported as composite (Ap. J., vol. 112, p. 48, 1950). It is apparent on our plates.
- A.G. 4671 Refers to south preceding component of H.D. 74348.
- A.G. 4875 The star has a very close fainter companion.
- A.G. 6501 The lines are very diffuse.
- A.G. 6821 RX Boo. Hydrogen emission lines.
- A.G. 6861 The lines are diffuse. The strength of the hydrogen lines suggests type F0 and the strength of $\lambda 4077$ suggests brighter than class V. Other features are contradictory and vary from one plate to another.
- A.G. 10077 The hydrogen lines and the lines near λ 4250 indicate F0 type or earlier. The iron lines, λ 4227 and the G band indicate F6.
- A.G. 10175 Ca II emission appears on one plate. The plates are poor and there is uncertainty about the luminosity.
- A.G. 10499 SV Vul, a known Cepheid. The classification from our plates ranges from F8 Ib to G5 Ib.
- A.G. 11110 Two plates give K2 III; a third gives G8 III.
- A.G. 11140 One plate gives luminosity II.
- A.G. 11332 The south preceding component of a pair.
- A.G. 11623 The south following component of a pair.
- A.G. 11765 ADS 14315. The data refer to the brighter component.
- A.G. 12199 A CH star. (See Jour. Roy. Astr. Soc. Can., vol. 47, p. 65, 1953).
- A.G. 13147 TW Peg.
- A.G. 13391 One plate shows double lines.
- A.G. 13894 56 Peg. Ca II emission and strong hydrogen lines have been recognized. (See L.O.B., vol. 6, p. 149, 1911).
- A.G. 14346 A known spectrographic binary with Ca II emission and weak hydrogen lines. (See Jour. Roy. Astr. Soc. Can., vol. 46, p. 103, 1952).

Column 7 gives the mean radial velocities. When the designation "var." appears, it means that the data strongly suggest variable velocity; "var?" means that variable velocity is less strongly suggested. Assignment of these classifications has been made on the basis of a statistical treatment of the data as described earlier. For both "var." and "var?" stars, no mean velocities are given, but the individual velocities are listed in Table II.

Column 8 gives the probable errors of the mean velocities derived from the individual plate velocities in the usual manner.

Notwithstanding the remarks made with reference to column 7, one can expect that a number of the stars with probable errors in excess of 2 km./sec. are variable in velocity; but it is not possible to say which ones with any degree of confidence.

Column 9 gives the numbers of plates used for the velocity determination.
 Column 10 refers to inclusion in a series of notes following the table (N) or to inclusion in Table II (III) or in Table III (III).

STARS WITH VARIABLE VELOCITY (TABLE II)

In Table II are listed the individual velocities, along with the Julian Days of the observations, of those stars which, on the basis of the statistical criteria mentioned earlier, have been listed in Table I as having certain or almost certain velocity variations (var.) or as having less strongly suggested variations (var?). There are 43 of the former and 31 of the latter. In two instances where many observations are at hand and an orbit will be published soon, the individual velocities are not listed.

HIGH-VELOCITY STARS (TABLE III)

On the basis of radial-velocity data alone, it is possible to classify a number of the stars as high-velocity stars. Table III lists all the programme stars, 31 in number, for which the radial velocities, after correction for solar motion (Apex 18h, +30°; velocity 20 km./sec.), exceed 65 km./sec. Sixteen of these stars (marked R) have been listed by Miss Roman in her recent Catalogue of High Velocity Stars (1955).

EARLIER PUBLICATION OF SOME OF THE RADIAL VELOCITIES

Radial velocities of 223 of the stars included in this report were reported in 1950, when the data were less complete, to R. E. Wilson and were included by him in his *General Catalogue of Stellar Radial Velocities* (1953). The velocities given in Table I differ in a number of cases by one or two km./sec. from the velocities reported in

Wilson's *Catalogue*, either because of the effect of subsequent observations or by virtue of different weighting. Aside from these small differences, the corrections to Wilson's *Catalogue* are as follows.

The following stars, reported as spectroscopic binaries in Wilson's *Catalogue* are now, as a result of more careful analysis, believed to have constant velocity: A.G. 366, 382, 444, 647, 714, 983, 2157, 2714, 2845, 3240, 4051, 6808, 6983, 7155, 7468, 7989, 9629, 13283, 13870, 13918, 14015, 14060, 14084.

A.G. 628 reported in Wilson's *Catalogue* as having constant velocity is now believed to be probably variable in velocity.

The velocity assigned to star number 14428 in Wilson's *Catalogue* (B.D. 29° 4828) really belongs to A.G. 13821 (B.D. 29° 4830).

Acknowledgments

As well as to those whose names appear in this report, the writer wishes to offer sincere thanks to the members of the Observatory staff for the many hours of observing, measuring and computing which have been put into this work over the past ten years. Thanks are also due to Dr. W. W. Morgan of the Yerkes Observatory and to Dr. Nancy Roman of the U.S. Naval Research Laboratory for advice in the matter of spectral classification.

References

Johnson, H. L. and Morgan, W. W. 1953, Ap. J., vol. 117, p. 318.

Roman, Nancy G. 1955, Ap. J. Supp., vol. 2., p. 198.

Schlesinger F. and Barney I. 1933, Trans. Astr. Obs. Yale, vol. 9.

Weatherburn, C. E. 1949, "A First Course in Mathematical Statistics", 2nd Ed., Cambridge University Press.

Wilson, R. E. 1953, Carnegie Inst. of Washington Pub. 601.

Richmond Hill, Ontario, June 5, 1956.

TABLE II Stars with Variable Radial Velocity

Star A.G.	Julian Day (243)	Velocity (km./sec.)	Star A.G.	Julian Day (243)	Velocity (km./sec.)
14436	2066.801 2422.814 3186.752 3197.722 3515.875 3542.761	+ 1.9 +13.6 +21.9 +14.8 +18.6 +14.9	1301	2568.531 2895.612 3159.893 3325.562 3581.790 3710.538	$\begin{array}{c} -2.4 \\ +6.4 \\ +18.3 \\ +7.5 \\ +14.5 \\ -42.9 \end{array}$
188	2780.829 2850.639 3151.834	-23.8 -6.8 -27.1	1584	17 plates. Dog An orbit will l	
	3189.704 3554.744 3576.674	$ \begin{array}{r} -0.4 \\ -19.4 \\ -23.0 \end{array} $	1758	2112.805 2453.891 2467.858 2591.510	-44.2 -87.7 -52.6 -4.6
230	2772.854 2823.720 3169.772	$ \begin{array}{r} -27.1 \\ -22.2 \\ -0.3 \end{array} $		3554.897 3587.785	$+61.1 \\ +58.5$
	3228.622 3568.686 3608.597 4041.527	$ \begin{array}{r} -0.9 \\ -25.9 \\ -21.9 \\ -6.0 \end{array} $	2344	2120.862 2129.853 2883.751 3008.546 3575.900	$ \begin{array}{r} -7.2 \\ -20.5 \\ -5.8 \\ -9.9 \\ +1.6 \end{array} $
434	2784.844 2823.741 2826.745 3181.790 3571.697 4651.803	$ \begin{array}{r} -11.1 \\ -13.7 \\ -22.4 \\ -17.2 \\ +5.3 \\ -19.8 \end{array} $	3194	2839.944 3229.837 3316.652 3352.528 3710.611	+6.6 $+11.2$ -20.1 $+6.8$ $+30.6$
628	2529.567 2804.822 3162.850 3175.778 3584.717 3940.772 4651.856	- 3.5 - 7.8 - 4.6 -20.2 -29.6 -42.3 -30.4	3204	4667.710 2140.842 2203.694 2461.935 2143.847 3315.716	+ 4.3 + 5.5 + 1.2 +24.4 + 1.8 +11.4
706	2491.673 2806.819 2823.760	-14.2 -45.8 -57.6	3471	3603.868 3935.937 3937.881	$+102.0 \\ +84.2 \\ +48.7$
	2828.742 2841.710 3570.729 3960.682	$ \begin{array}{r} -54.6 \\ -53.2 \\ -24.4 \\ -14.6 \end{array} $	2012	3955.866 4668.745 4676.776	+54.5 +41.7 +63.9
119 2 b	2079.853 2203.525 2429.836 3197.846 3556.831	-15.5 $+7.6$ $+19.7$ $+16.0$ $+17.4$ $+30.6$	3918	2144.895 2639.546 4311.955 4347.711 4391.844 4394.802 4501.587	$\begin{array}{c} -0.8 \\ +46.6 \\ +0.1 \\ +0.5 \\ -0.4 \\ +23.7 \\ +22.8 \end{array}$

Star A.G.	Julian Day (243)	Velocity (km./sec.)	Star A.G.	Julian Day (243)	Velocity (km./sec.
3980Ъ	2169.822 2283.562 3644.776 4062.600	+32.8 +19.2 +19.7 +36.3	5145	2615.718 3687.765 4785.835 4818.601	$ \begin{array}{r} -0.1 \\ -9.0 \\ -28.5 \\ -12.7 \end{array} $
4209	2203.781 4080.606 4132.555 4133.556 4833.615	$ \begin{array}{r} -24.8 \\ -27.6 \\ -1.4 \\ -26.7 \\ -14.2 \end{array} $	5179	2391.836 3035.556 4719.958 4813.699	+83.9 +101.9 -17.0 - 6.9
4384b	2139.822 2165.870 2202.760 2257.641 3320.730	+1.9 $+18.3$ $+17.5$ $+14.9$ $+28.9$	5229	2639.670 3015.630 4792.783 4828.606 4833.702	$ \begin{array}{r} + 6.2 \\ -23.0 \\ - 0.4 \\ - 9.2 \\ - 3.9 \end{array} $
4451	4736.664 2644.556 3664.750 4668.879 4746.658	+26.9 -38.8 -38.3 -25.8 -54.0	5254	2989.676 3344.767 3398.625 4134.625 4434.578	$ \begin{array}{r} -34.3 \\ -17.3 \\ -10.1 \\ -31.0 \\ -50.7 \end{array} $
4526	2624.614 2982.622 3681.751 4750.633 4791.527	+34.1 $+45.2$ $+64.8$ $+22.6$ -4.1	5355	3693.788 3743.645 4813.841 4819.769 4841.634	+23.7 -7.1 -16.4 -16.8 -20.6
4632	2888.900 2968.681 4765.676 4791.733	-30.2 -23.5 -49.3 -26.8	5356	2672.561 2675.580 3771.572 4132.708 4844.576	$ \begin{array}{r} -24.4 \\ -16.5 \\ +5.0 \\ -20.6 \\ -27.8 \end{array} $
4702	2587.765 3281.833 4699.965 4777.608	$ \begin{array}{r} -3.2 \\ +2.6 \\ -2.6 \\ +25.3 \end{array} $	5591	2275.688 3322.847 4755.849	-12.6 + 16.9 - 13.0 + 33.2
4834	2899.917 4099.630 4771.837 4793.644	+27.2 + 6.3 + 1.0 + 11.8	5922	4828.757 4833.739 3010.700 3692.882	-33.2 -33.6 -32.1 -29.2
5038	2888.921 2977.727 4705.920 4800.647 4841.556	+18.6 -3.2 $+35.7$ -16.2 $+13.4$		3775.638 4165.710 4557.624 4796.803	$ \begin{array}{r} -16.7 \\ + 0.4 \\ -21.5 \\ -42.7 \end{array} $
5059	2573.819 2974.726 3763.597 4809.794	+42.9 -13.3 $+20.0$ -34.4	6134	3011.716 3381.729 4080.817 4186.604 4755.926	$ \begin{array}{r} -33.0 \\ -18.0 \\ -14.9 \\ -6.4 \\ -30.8 \end{array} $

Star	Julian Day	Velocity	Star	Julian Day	Velocity
A.G.	$(243\ldots)$	(km./sec.)	A.G.	$(243 \ldots)$	(km./sec.)
6313	2275.783	-5.5	7106	2369.650	-30.3
	3037.681	-16.6		2994.869	+ 2.0
	3779.649	+9.3		3057.703	-41.2
	4132.674	+9.4		3080.640	-22.0
	4188.679	-7.6		3434.694	-20.0
				4126.804	- 40.0
6478	3036.700	+15.9			
	3425.638	+30.7	7181	2303.793	-0.4
	4086.851	+ 3.0		2718.644	-21.6
	4198.668	- 6.1		3061.710	-21.7
	4226.592	+ 1.1		3423.724	-0.7
		·		3490.608	-16.2
6501	3053.652	-42.6		4111.846	+9.2
	3393.762	-6.8		4482.803	- 9.9
	4126.724	+16.2		4504.803	+ 5.7
	4228.592	+16.6		4525.713	-11.4
	4235.585	-14.3		-0-011-0	
	4501.738	-31.8	7353	2737.624	-43.1
	4507.672	-53.2	1000	3031.760	-26.8
	2001.101.			3079.671	-49.0
6618	2982.868	- 1.9		3413.785	- 9.3
0010	3028.727	-13.2		4569.673	-9.5 -44.5
	3423.685	+36.5		4009.070	-44.0
	4162.744	-24.2	= 440	001# 00#	0.0
	4210.622	-19.7	7419	3015.865	- 9.3
	4796.940	-14.2		3057.757	+50.4
				3086.675	+11.2
6694	2639.811	-19.2		3757.829	-39.6
	3033.734	-52.8		3822.651	+12.4
	3370.855	- 6.9		4819.928	-52.8
	3718.866	+10.0			
	4195.712	-41.5	7444	2722.672	+ 8.2
				3053.747	-13.0
6832	2720.606	+14.2		3404.816	+18.5
0002	3037.744	-4.3		3409.804	+12.1
	3380.795	+22.2		3821.654	+12.1
	3426.692	-16.0			
	3470.639	+10.6	7537	2712.717	+23.8
	3490.583	+4.6		3033.815	+36.9
	4536.747	+3.4		3061.746	+12.0
	1000,111	1 0,1		3067.726	+21.0
6861	2703.682	-12.7			
3001	3028.776	+59.2	8077	2728.751	-2.6
	3731.842	+13.2		3023.893	-17.9
	3757.770	+49.7		3044.839	+25.3
	4188.724	-23.3		3840.652	-19.7
	1100.121	20.0		4218.688	-17.8
7079	2949.961	-18.1			
1013	2977.918	+2.5	8685	2760.665	-56.3
	3034.760	$\frac{1}{2}$ $\frac{2}{4}$	0000	3136.587	-31.2
	3098.612	$\begin{array}{c} -2.4 \\ +5.2 \end{array}$		3507.653	-32.7
	4565.667	+10.7		3772.875	+30.8
	4918.883	- 1.3		4303.521	+29.4
	1010.000	1.0		1000.021	120.3

Star A.G.	Julian Day (243)	Velocity (km./sec.)	Star A.G.	Julian Day (243)	Velocity (km./sec.)
9472	2765.690 3067.837 4195.774	+13.0 $+14.1$ -10.2	12031	54 plates. I An orbit is puted	Double lines. s being com-
	4284.650 4603.704	$-19.4 \\ -3.8$	12554	2792.718 3178.665	-9.0 -18.4
9607	2347.796 3094.843 3098.758	+3.2 + 12.5 - 2.9		4209.824 4618.778 4756.476	-19.0 + 2.9 -39.7
	4173.849 4513.856	-52.4 + 8.9	12985	2798.812 3121.307	-13.2 + 5.6
9675	2426.646 2744.745 3833.753 4199.724	-19.2 -18.6 -45.2 -34.4		3945.588 3962.606 4610.781	+5.6 -8.2 $+21.2$ $+4.7$
	4548.767	-35.0	12998	2793.698 3585.544	$-35.1 \\ -11.7$
10456	2765.740 3144.662 3571.509 4567.786	$ \begin{array}{r} -24.6 \\ -31.0 \\ -1.9 \\ -23.8 \end{array} $		3945.615 3962.564 4629.717	-38.2 -11.3 -20.6
	4636.545	-34.5	13076	2798.710 3202.610	-46.6 -37.4
10465	2098.549 2262.844 2480.991 3515.670	-10.5 -5.8 -6.0 -21.1		3897.699 3941.654 4629.671	-20.3 -23.8 -21.7
	4583.741	- 7.1	13331	2066.757 2067.738 2068.726	-37.9 -37.6 -33.3
10499	2790.660 3150.639 4275.615 4569.745	$ \begin{array}{r} -4.9 \\ -10.2 \\ -6.6 \\ +15.7 \end{array} $		3509.746 3857.865	$-19.8 \\ -33.8$
10601	2772.689	+15.7 - 7.1	13391	2390.838 2748.855 3130.816	$+30.8 \\ +11.3 \\ +4.7$
	2835.523 3154.582 4225.755	$-13.4 \\ +23.2 \\ -13.9$		3883.795	$\begin{cases} -39.4 \\ +40.3 \end{cases}$
	4582.788	+11.1	13518	2788.749 2864.538	+5.7 -4.6
10837	3141.785 4273.628 4583.769 4612.700	-11.4 -39.8 -26.2 -12.6		3150.751 3532.714 3919.709	$^{+12.3}_{+30.4}_{+22.0}$
	4638.537	-22.3	13568	2779.781 2785.762	+1.8 -3.2
11965	2028.789 2066.690 2079.660 3508.731	-55.3 -55.3 -57.4 -44.8		2841.610 3555.683 3996.473 4266.740	+ 8.9 +19.9 - 9.8 +18.6
	4699.494	-41.6		4277.694	+ 9.8

Star A.G.	Julian Day (243)	Velocity (km./sec.)	Star A.G.	Julian Day (243)	Velocity (km./sec.)
13821	4912.828 4972.822 4974.819 5008.718	$ \begin{array}{r} -15.6 \\ -43.1 \\ -36.2 \\ -20.0 \end{array} $	14021	2454.739 3136.840 3199.685 3541.723 3955.626	-20.7 -45.8 -23.8 -20.3 -10.7
13839	2785.765 3530.792 3532.743 3884.778 3970.615 4269.782	+0.8 $+24.9$ $+34.2$ $+9.7$ $+19.5$ $+0.3$	14195b	2101.692 2109.711 3129.840 3190.702 3514.819 4659.578	$ \begin{array}{r} -18.9 \\ -35.6 \\ +32.6 \\ +31.1 \\ +20.2 \\ -0.9 \end{array} $
13862	2765.838 2820.685 3170.716 3222.621 3982.549	+26.5 + 1.2 + 12.0 - 12.0 + 3.9	14346	2100.726 2873.563 3149.832 3199.728 3507.878 3542.747 4266.702	$\begin{array}{r} -46.7 \\ -34.2 \\ -37.5 \\ -5.4 \\ -36.8 \\ +3.3 \\ -54.2 \end{array}$

TABLE III
HIGH-VELOCITY STARS

A.G.	V* km./sec.	A.G.	V* km./sec.
486 R 991 1264 1528 1572 R 2248 R 2302 R 2845 R 3146 R 3668 R	-160.7 -67.1 -68.4 -68.3 +79.1 -78.5 -72.5 +87.3 -115.1 +84.4	5055 R 5122 5787 6838 R 6848 7956 8135 8975 R 9797 10925 R	+ 85.1 + 67.2 + 89.6 -116.5 - 69.4 - 66.7 + 92.4 -116.8 - 65.6 - 76.4
3866 R 4051 R 4194 R 4809 4814 R 4930	+ 99.3 -144.7 + 71.9 + 82.4 + 98.0 + 68.4	11233 12199 12787 13876 14121 R	$ \begin{array}{r} + 70.5 \\ -135.7 \\ - 78.0 \\ - 72.2 \\ -112.5 \end{array} $

*Radial velocity corrected for solar motion. R Listed in Roman's Catalogue of High-Velocity Stars.

