

177:

4. .

.

.

Publications of THE DAVID DUNLAP OBSERVATORY University of Toronto

VOLUME II

RICHMOND HILL, ONTARIO, CANADA

Printed for The david dunlap observatory by university of toronto press

63

TABLE OF CONTENTS

No.		Page
1.	Two-Colour Photometric Studies of the Eclipsing Binary Systems TW Draconis, Z Herculis and RS Vulpeculae	
	R. L. Baglow	1
2.	A Second Catalogue of Variable Stars in Globular Clusters	
	Comprising 1,421 Entries Helen B. Sawyer	33
3.	New Radial Velocities for Faint Stars with Large	05
Λ	The Padial Velocities Spectral Classes and Photographic	95
4.	Magnitudes of 1041 Late-Type Stars John F. Heard	105
5.	A Catalogue of Dwarf Galaxies Sidney van den Bergh	145
6.	A Reclassification of the Northern Shapley-Ames Galaxies	
	Sidney van den Bergh	157
7.	The Luminosity Functions of Galactic Star Clusters	
_	Sidney van den Bergh and David Sher	201
8.	Spectrographic Orbits for the Eclipsing Systems V548	
	Cygni, V805 Aquilae and V451 Opniuchi John F. Heard and Dougld C. Morton	253
9	The Spectrographic Orbit of Bidelman's Peculiar Star	233
2.	H.D. 30353 John F. Heard	267
10.	Photoelectric Spectrophotometry of Globular Clusters	
	Sidney van den Bergh and R. C. Henry	279
11.	Spectroscopic Studies of 60 Be Stars Over a Period of 24	0.1.7
10	Years Judith A. Copeland and John F. Heard	315
12.	A Bibliography of Individual Globular Clusters. First	335
13	Distances of 97 OB Stars Harry H. Guetter	403
14.	Spectrographic Orbits of the Eclipsing Systems V822	
	Aquilae, BV 241, BV 342, BV 374 Pim FitzGerald	415
15.	Spectroscopic and Photometric Orbits of EE Pagasi	
	Gustav A. Bakos	429
16.	The Radial Velocities and Spectral Classes of 55 Kapteyn	
	Area Fundamental Stars in Figh Galactic Latitudes	441
17	A Study of the Variable Stars in the Globular Cluster	441
1 / .	Messier 14. I. Periods and Light Curves of Twenty	
	Variables Helen Sawyer Hogg and Amelia Wehlau	449

No.

 Absolute Energy Distributions for Stars of Spectral Types F, G and K

Gretchen L. Hagen and Sidney van den Bergh 477 19. A Study of the Variable Stars in the Globular Cluster Messier 14. II. Periods and Light Curves of the Second Group of Twenty Variables

Helen Sawyer Hogg and Amelia Wehlau 491

Page

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

NUMBER 1

TWO-COLOUR PHOTOMETRIC STUDIES OF THE ECLIPSING BINARY SYSTEMS TW DRACONIS, Z HERCULIS AND RS VULPECULAE

 $\mathbf{B}\mathbf{Y}$

R. L. BAGLOW

1952 TORONTO, CANADA

TWO-COLOUR PHOTOMETRIC STUDIES OF THE ECLIPSING BINARY SYSTEMS TW DRACONIS, Z HERCULIS AND RS VULPECULAE

BY R. L. BAGLOW

Summary.

The observations on which this study is based were obtained in 1950 and 1951. Part of the observations were made at the David Dunlap Observatory, but the greater part were made at the Steward Observatory of the University of Arizona.

The three eclipsing variables, TW Draconis, Z Herculis and RS Vulpeculae, were chosen for observation in the hope that the circumstances of the eclipses might prove favourable for the estimation of the limb darkening of the components by showing annular, or deep total, eclipses. The system TW Drac shows a deep total eclipse at primary minimum, and it is possible to derive an estimate of the limb darkening in two colours from a reduction of the observations in the primary minimum by the method of least squares. This variable has been previously studied by R. H. Baker,¹ who reported an asymmetric light curve. I find the asymmetry to be much smaller than reported by Baker.

Nijland's visual observations of the system Z Herc were interpreted by Fetlaar² as being due to an annular eclipse. I find, however, a partial eclipse, and the solution is too indeterminate to allow a determination of the limb darkening effect. It is possible to estimate the difference in the degree of limb darkening in two colours.

The system RS Vulp has been studied by Baker³ and by Dugan⁴. Baker found an annular eclipse at primary minimum, Dugan a partial. The present study agrees with Dugan's. Again the uncertainties in the solution of a system exhibiting a partial eclipse do not allow a determination of the limb darkening, but an estimate can be made of the differential limb darkening.

Corrections to the times of minima predicted from the ephemerides were found to be necessary in all three systems. The reason for the departure of the systems TW Drac and Z Herc from the ephemeris is not clear. A small correction to the period of RS Vulp is suggested.

A study of the colour of the reflection effect shows that in each system the colour of the reflected light is the same as the colour of the brighter component.

The measurements of the ellipticity effect are not sufficiently exact to allow conclusions to be drawn about the photometric behaviour of the distorted components.

1. Observational Material—General.

The measurements in this study were made with the aid of the photoelectric photometers of the David Dunlap Observatory and of the Steward Observatory, Tucson, Ariz. (April-June 1951). Experiments in photoelectric photometry using the 1P21 photomultiplier were begun at the David Dunlap Observatory late in 1948, and have continued. At present the measuring instrument is a null-indicating D.C. amplifier mounted on a 19-inch telescope. The photometer used at the Steward Observatory is mounted on a 36-inch telescope and uses a light chopper with an A.C. amplifier.

Atmospheric conditions were mostly much better at Tucson, where the bulk of the observations were made, than at Toronto. Pettit has made an extensive study of the transmission of the atmosphere at Tucson. On some few nights measurements were made through dust, haze or broken cloud. In general the transparency was good. The comparison stars were chosen to be as like the variables in colour, and as close in position, as possible. Corrections for differential extinction are believed to be negligible in comparison with observational scatter. There was no convenient constant light source for determining the changes in the transmission of the atmosphere. The measurements were made in two colours of effective wave-lengths 4370A. and 5100A. A group of four comparisons in the two colours took 20 to 30 minutes to complete, and the resulting normal point of observation is thought to have a probable error of between $0^m.005$ and $0^m.010$.

2. Observational Material—TW Draconis.

The system TW Drac was observed on 32 nights. Approximately 400 measures were made which were averaged into some 130 normal points. The normal points are tabulated by phase in the appendix. The comparison star used was H.D. 140512, R.A. (1900) 15 h. 38 m., Dec. (1900) 62° 11', A5; the variable is H.D. 139319, R.A. (1900) 15 h. 32 m., Dec. (1900), 64° 14', A6 and G2.

Primary minimum seems quite symmetrical. The harmonic analysis of the observations outside eclipse shows a small asymmetry which appears to be real, but may be the result of a bad distribution of observations, or intrinsic variability of one of the components of the eclipsing system. The eclipsing system TW Drac has a small visual companion, about 3 seconds of arc away. The measures of the system include the light of the visual companion. The light of the visual companion was measured independently; it proved difficult and only on a few nights was the seeing sufficiently steady to allow the two components to be observed independently. Nineteen measurements were made on three nights and the brightness of the companion star to the system TW Drac was found to be 0.051 in both colours, the light unit being the luminosity of the companion star H.D. 140512. This amount was subtracted from the observations before analysis.

Plots of the observations are shown in figures 1 and 2. Secondary minimum appears to be later than the half-period by $0^{d}.010$ to $0^{d}.020$. The observed epoch of primary minimum was 1951 June 1.128, J.D. 2433798.628.

3. Observational Material—Z Herculis.

The system Z Herc was observed on 26 nights. Approximately 400 measures were made which were averaged into 95 normal points shown in the appendix. A plot of the observations is given in figures 3 and 4. The comparison stars used were H.D. 164043, R.A. (1900) 17 h. 54.2 m., Dec. (1900) 14° 52′, F8; and H.D. 162705 R.A. (1900) 17 h. 47.3 m, Dec. (1900) 15° 01′, F0. The variable is H.D. 163950, R.A. (1900) 17 h. 53.6 m., Dec. (1900) 15° 09′, F2 and F5.

The estimated epoch of primary minimum was 1951 June 3.503, J.D. 2433801.003.

4. Observational Material—RS Vulpeculae.

The system RS Vulp was observed on 31 nights. Approximately 500 measures were made, which were averaged into some 130 normal points, shown in the appendix. Plots of the observations are shown in figures 5 and 6. The comparison stars used were H.D. 180889, R.A. **(**1900) 19 h. 13.2 m., Dec. (1900) 21° 38′, A3; and H.D. 180811, R. A. (1900) 19 h. 12.9 m., Dec. (1900) 22° 15′, B9. The variable is H.D. 180939, R.A. (1900) 19 h. 13.4 m., Dec. (1900) 22° 16′, B8 and A5.

Primary minimum is well covered, but unfortunately it proved impossible to cover the ascending branch of secondary minimum. Secondary minimum occurs later than the half-period by $0^{d}.030$ to $0^{d}.040$. The epoch of primary minimum from these observations was 1951 June 4.787, J.D. 2433802.287.

5. Analysis of Observations—TW Draconis.

Harmonic analysis of observations outside eclipse yielded

 $L = 2.012 - 0.0198 \cos \theta - 0.0613 \cos^2 \theta + 0.0172 \sin \theta,$ (± 0.001 m.e.)(± 0.001 m.e.) (± 0.005 m.e.) (± 0.001 m.e.) in the vellow, and

 $L = 1.887 \qquad -0.0191 \cos \theta - 0.0635 \cos^2 \theta + 0.0098 \cos \theta.$

 $(\pm 0.001 \text{ m.e.}) \ (\pm 0.001 \text{ m.e.}) \ (\pm 0.005 \text{ m.e.}) \ (\pm 0.001 \text{ m.e.})$ in the blue.

A preliminary graphical study led to an estimate of k about 0.76 to 0.78 and the coefficient of limb darkening in the two colours about

0.6. As the observations seemed to justify a more careful study the measures were grouped into normal points and rectified as shown in Table I.

Phase degrees	L (obs.) (yellow)	Refl. Light	L	Ellipt. Effect	L (rect.)	Corr.
$\begin{array}{c} 29, 200\\ 25, 692\\ 23, 800\\ 20, 846\\ 17, 456\\ 15, 166\\ 13, 170\\ 11, 800\\ 10, 367\\ 8, 716\\ 7, 945\\ 7, 172\\ 6, 663\\ 6, 060\\ 5, 436\\ 5, 004\\ 4, 486\\ 3, 888\\ 0, 000\\ \end{array}$	$\begin{array}{c} 0.9469\\ 0.8949\\ 0.8368\\ 0.7572\\ 0.6394\\ 0.5548\\ 0.4691\\ 0.4207\\ 0.3610\\ 0.2976\\ 0.2712\\ 0.2429\\ 0.2262\\ 0.2106\\ 0.1930\\ 0.1930\\ 0.1800\\ 0.1733\\ 0.1687\end{array}$		$\begin{array}{c} 0.9465\\ 0.8946\\ 0.8365\\ 0.7570\\ 0.6392\\ 0.5547\\ 0.4690\\ 0.4206\\ 0.3609 \end{array}$	$\begin{array}{c} 0.\ 9726\\ 0.\ 9707\\ 0.\ 9698\\ 0.\ 9687\\ 0.\ 9667\\ 0.\ 9664\\ 0.\ 9656\\ 0.\ 9656\\ 0.\ 9656\\ 0.\ 9655\\ 0.\ 9645\\ 0.\ 9645\\ 0.\ 9644\\ 0.\ 9643\\ 0.\ 9642\\ 0.\ 9642\\ 0.\ 9640\\ 0.\ 9640\\ \end{array}$	$\begin{array}{c} 0.\ 9731\\ 0.\ 9216\\ 0.\ 8625\\ 0.\ 7814\\ 0.\ 6608\\ 0.\ 5738\\ 0.\ 4856\\ 0.\ 4355\\ 0.\ 3739\\ 0.\ 3083\\ 0.\ 2811\\ 0.\ 2518\\ 0.\ 2345\\ 0.\ 2183\\ 0.\ 2032\\ 0.\ 2001\\ 0.\ 1866\\ 0.\ 1797\\ 0.\ 1750\\ \end{array}$	$\begin{array}{r} - & 9 \\ - & 27 \\ - & 32 \\ - & 32 \\ - & 32 \\ + & 48 \\ + & 55 \\ + & 56 \\ + & 45 \\ + & 56 \\ + & 45 \\ + & 41 \\ + & 37 \\ + & 31 \\ + & 25 \\ + & 20 \\ + & 5 \\ 0 \end{array}$
$\begin{array}{c} 29.\ 227\\ 25.\ 637\\ 23.\ 696\\ 21.\ 200\\ 17.\ 403\\ 15.\ 030\\ 13.\ 572\\ 12.\ 080\\ 10.\ 927\\ 9.\ 352\\ 8.\ 109\\ .6.\ 851\\ 6.\ 000\\ 5.\ 646\\ 5.\ 186\\ 4.\ 658\\ 4.\ 037\\ 0.\ 000\\ \end{array}$	$\begin{array}{c} (\text{Blue})\\ 0.9569\\ 0.8927\\ 0.8442\\ 0.7815\\ 0.6154\\ 0.5147\\ 0.3790\\ 0.3313\\ 0.2731\\ 0.2731\\ 0.2731\\ 0.2198\\ 0.1775\\ 0.1560\\ 0.1476\\ 0.1345\\ 0.1278\\ 0.1154\\ 0.1094 \end{array}$		$\begin{array}{c} 0.\ 9565\\ 0.\ 8924\\ 0.\ 8439\\ 0.\ 7813\\ 0.\ 6152\\ 0.\ 5146\\ 0.\ 4476\\ 0.\ 3789\\ 0.\ 3312 \end{array}$	$\begin{array}{c} 0.\ 9772\\ 0.\ 9757\\ 0.\ 9757\\ 0.\ 9757\\ 0.\ 9757\\ 0.\ 9757\\ 0.\ 9757\\ 0.\ 9757\\ 0.\ 9721\\ 0.\ 9716\\ 0.\ 9716\\ 0.\ 9713\\ 0.\ 9710\\ 0.\ 9706\\ 0.\ 9705\\ 0.\ 9705\\ 0.\ 9705\\ 0.\ 9703\\ 0.\ 9702\\ 0.\ 9702\\ 0.\ 9700\\ 0.\ 9700\\ \end{array}$	$\begin{array}{c} 0.\ 9788\\ 0.\ 9146\\ 0.\ 8656\\ 0.\ 8823\\ 0.\ 6324\\ 0.\ 5293\\ 0.\ 4606\\ 0.\ 3900\\ 0.\ 3410\\ 0.\ 2813\\ 0.\ 2264\\ 0.\ 1828\\ 0.\ 1607\\ 0.\ 1521\\ 0.\ 1321\\ 0.\ 1317\\ 0.\ 1189\\ 0.\ 1127\\ \end{array}$	$\begin{array}{c} - & 9 \\ - & 30 \\ - & 35 \\ - & 38 \\ 0 \\ + & 41 \\ + & 53 \\ + & 57 \\ + & 59 \\ + & 57 \\ + & 51 \\ + & 43 \\ + & 37 \\ + & 34 \\ + & 29 \\ + & 10 \\ 0 \end{array}$

TABLE I Observations Corrected for Light of Visual Companion, and Grouped

INTO NORMAL POINTS, TW DRACONIS

The observations of a portion of the primary minimum made on May 12 show an interesting deviation from those made on the same portion of the light curve on May 15 and June 12. The measures

Fig. 1

FIG. 2

Fig. 3

FIG. 4

Fig. 6

made on May 12 began by falling among the measures made on other nights, but quite suddenly began to fall below the other measures by 0.02 to 0.03 light units until totality neared, when the differences diminished. The disagreement of the observations of May 12 with those of May 15 and June 12 disappeared at the onset of totality. It is believed that this variation is a real phenomenon. It is not known what cause could operate to block off 2 to 3 per cent. of the light of the brighter component of the system. Similar observations have been reported by Kron.⁵

The preliminary elements were corrected by the method of least squares, using the tables of Tsesevitsch⁶ and Irwin⁷. The corrections to the preliminary elements were rather large, and the process had to be repeated. The reduction was made with the observations of primary minimum only. The secondary minimum is shallow, annular and afflicted with the reflection effect. The uncertainties of the process of "rectification" were thought to be large. The reduction was made in the two colours simultaneously. This requires some justification. The preliminary graphical analysis did not show any large difference in the elements derived from the two light curves independently. After the least-squares reduction the residuals of computed from observed points showed a similar trend in each light curve. This would not be the case if there was a significant difference in the geometric elements defined by the two colours. It is believed that the determination of the elements is considerably strengthened by making the reduction in the two colours simultaneously.

The fainter component of the system TW Drac is considerably distorted. The distortion was estimated using Pierce's estimate of the mass ratio quoted by Wood⁸. An attempt was made to correct for the effect of the distorted form of the faint component following methods suggested by Kopal.⁹ Following Kopal, if we write for the error within the minima of the spherical model,

$$L = -L_1[(1 - x)h^u + xh^d],$$

then I have used

$$h^{u} = \frac{1}{k^{2}} (V_{1} - V_{2}) I_{1^{0},0}$$

$$\frac{2}{3}h^{d} = \frac{1}{k^{2}}(V_{1} - V_{2})I_{1}^{0}, (\frac{\delta}{r_{2}})^{\frac{1}{2}},$$

where V_1 and V_2 are the rotational distortions of the bright and faint

components respectively. I find the additional terms suggested by Kopal are sufficiently small to be neglected.

The α -function corrected for "perturbations" is shown in Table II.

Phase degrees 29. 200 25. 692 23. 800 20. 846 17. 456 15. 166 13. 170 11. 800 10. 367 8. 716 7. 945 7. 172 6. 663 6. 060 5. 436 5. 004 4. 486	Yellow a (corr.) 0.0336 0.0983 0.1705 0.2688 0.4115 0.5126 0.6176 0.6775 0.7515 0.8321 0.8653 0.9014 0.9229 0.9430 0.9665 0.9835	a (uncorr.) 0.0326 0.0950 0.1667 0.2650 0.4111 0.5165 0.6235 0.6842 0.7589 0.8384 0.8714 0.9069 0.9279 0.9475 0.9658 0.9696 0.9859	Phase degrees 29. 227 25. 637 23. 696 21. 200 17. 403 15. 030 13. 572 12. 080 10. 927 9. 352 8. 109 6. 851 6. 000 5. 646 5. 186 4. 658 4. 037	Blue a (corr.) 0.0249 0.0996 0.1554 0.2270 0.4142 0.5258 0.6019 0.6810 0.7360 0.8035 0.8661 0.9161 0.9417 0.9517 0.9675 0.9764 0.9918	α (uncorr.) 0.0239 0.0962 0.1515 0.2228 0.4143 0.5305 0.6079 0.6875 0.7427 0.8100 0.8718 0.9210 0.9459 0.9556 0.9708 0.9786 0.9930
$\begin{array}{c} 5.004 \\ 4.486 \\ 3.888 \end{array}$	$\begin{array}{c} 0.\ 9665 \\ 0.\ 9835 \\ 0.\ 9936 \end{array}$	$\begin{array}{c} 0.9696 \\ 0.9859 \\ 0.9943 \end{array}$	$4.658 \\ 4.037$	$0.9764 \\ 0.9918$	$0.9786 \\ 0.9930$

TABLE II a-functions, TW Draconis

These values of the α -function are to be compared with the values in the tables for a spherical model darkened to the limb according to the usual law. In order to see what was the effect of allowing for the distortion by Kopal's methods, the least-squares reduction was made twice, once on the α -function derived from the observations allowing for the perturbations, and once on the directly observed α -function. The elements derived in the two ways hardly differ significantly. The corrections for the effect of distortion, estimated from the preliminary elements are not quite right, but since their effect is barely significant it was not thought worth-while recomputing them.

The starting point for the final least-squares correction was $r_2 = 0.3020$, $r_1 = 0.2143$, k = .71, x(yellow) = 0.2, x(blue) = 0.3. With these parameters the *p*-function was calculated for the phase of each of the normal points of observation. The *a*-function was computed from the tables of Tsesevitsch⁶, and the residuals were used to form a number of equations of observation for computing corrections to the parameters with the aid of Irwin's tables⁷ of differential coeffi-

cients. The normal points were weighted according to the number of observations included. The observations of the deeper part of the eclipse were also given greater weight, since the accuracy of the observations gets better during the deeper part of the eclipse.

The values of the parameters resulting from the solution which takes account of Kopal's correction terms, together with the estimated probable error of the determination, were

 $r_2 = 0.3064 \pm 0.0002; r_1 = 0.2118 \pm 0.0010; \cos^2 i = 0.0059 \pm$

0.0005; x(yellow) = 0.11 \pm 0.12; x(blue) = 0.27 \pm 0.11.

The solution obtained by ignoring Kopal's corrections gives the same geometrical elements, but the estimates of the limb darkening are altered to x(yellow) = 0.25, and x(blue) = 0.37. According to either solution the difference in the degree of limb darkening between the two colours is 0.15, and this difference should have good precision, since it is free from many of the systematic sources of error which make the determination of the absolute value of the limb darkening so difficult.

Comp.	Obs.	Resid.	Comp.	Obs.	Resid.
0.0199	0.0336	+0.0137	0.0182	0.0249	+0.0067
0.1002 0.1599	0.0983 0.1705	-0.0019 + 0.0106	0.0997 0.1527	0.0990 0.1554	+ 0.0027
$0.2711 \\ 0.4187$	$0.2688 \\ 0.4115$	-0.0023 -0.0072	0.2537 0.4236	$0.2270 \\ 0.4142$	-0.0267 -0.0094
$0.5194 \\ 0.6215$	$egin{array}{c} 0.5176 \ 0.6176 \ \end{array}$	-0.0018 -0.0039	$0.5532 \\ 0.6081$	$0.5258 \\ 0.6019$	-0.0274 -0.0062
$0.6808 \\ 0.7557$	$0.6775 \\ 0.7515$	-0.0033 -0.0042	$0.6822 \\ 0.7370$	0.6810 0.7360	-0.0012 -0.0010
$0.8315 \\ 0.8641$	$0.8321 \\ 0.8653$	+ 0.0006 + 0.0012	$0.8104 \\ 0.8647$	0.8035 0.8661	-0.0069 + 0.0014
$0.8955 \\ 0.9156$	$\begin{array}{c} 0.9014 \\ 0.9229 \end{array}$	+ 0.0059 + 0.0073	$0.9135 \\ 0.9416$	$0.9158 \\ 0.9417$	+ 0.0023 + 0.0010
$-0.9382 \\ 0.9588$	$0.9430 \\ 0.9620$	+ 0.0058 + 0.0032	$0.9517 \\ 0.9651$	$0.9517 \\ 0.9675$	+ 0.0000 + 0.0024
$0.9749 \\ 0.9871$	$0.9665 \\ 0.9835$	-0.0079 -0.0036	$0.9782 \\ 0.9918$	$0.9764 \\ 0.9918$	-0.0018 0.0000
0.9965	0.9936	- 0.0029			

TABLE III

Residuals of Computed from Observed Values of the a-function Resulting from the Least-squares Corrections, TW Draconis

The residuals show a marked systematic trend. The reason for this is unknown. It may arise from a systematic error in the method of reduction, for example in the process of rectification, or a systematic error in the analysis, for example in the assumption of linear darkening to the limb, or it may be the effect of one or two individual observations with large residuals. Accepting Pierce's estimate of the mass ratio as 3.6 we find the relative orbit comes out to be 11.6×10^6 km. The dimensions of the components are 3.53 and 5.10 times the sun in radius, the surface gravities, 0.480 and 0.060, the mean densities 0.130 and 0.012 for the bright and faint components respectively, all in terms of the sun. The residuals of the computed a-function from the observed are shown in Table III.

6. Analysis of Observations—Z Herculis.

The season of 1951 promised to be unusually favourable for observing this difficult system. Unfortunately the minima were found to be occurring later than predicted by the ephemeris and it appeared doubtful whether or not the phase of conjunction was reached. The analysis of the observations based on the shape of the light curve strongly suggests that conjunction occurred between predicted phases 4.00d. and 4.01d. Although it would be a good deal more comforting to have rounded the minimum, I do not think that the estimated time of conjunction is out by more than 10 minutes. I accept the observation of earlier workers that the duration of the total phase, if any, is less than 0.015d. In combination with the shape of the light curve, this rules out the possibility of a total eclipse at primary minimum.

A few spectrographic observations in 1949 and 1951 seem to show the velocity of centre of mass greater than found by Adams and Joy^{10} by 10 km./sec. If these observations are correct they may show a third body motion of the system, but further spectrographic observations will be needed to establish this point.

For photometric measures only the one comparison star H.D. 164043 was used. The two comparison stars were intercompared on 14 occasions. There was no significant evidence of variability of the comparison stars.

Harmonic analysis of the observations outside eclipse yielded

 $L = 0.893 - 0.0028 \cos \theta - 0.0089 \cos^2 \theta$

 (± 0.001) (± 0.001) (± 0.005)

in the yellow, and

 $L = 0.851 - 0.0049 \cos \theta + 0.0060 \cos^2 \theta$ (± 0.001) (± 0.001) (± 0.005)

in the blue.

Normal points of observation were read off a smooth curve and the observations "rectified" for ellipticity in the usual way, giving the loss of light, as a function of predicted phase, shown in Table IV.

TABLE IV

RECTIFICATION, Z HERCULIS

Phase days	Rect. Lum. (yellow)	Loss of Light	Rect. Lum. (blue)	Loss of Light
3.83 3.84 3.85 3.86 3.87 3.88 3.90 3.90 3.91 3.92 3.93 3.94 3.96 3.97 3.98 3.90 3.97 3.98 3.90 3.97 3.98 3.90 3.97 3.98 3.90 3.97 3.92 3.96 3.97 3.98 3.90	$\begin{array}{c} \hline & 1.010 \\ 0.983 \\ 0.969 \\ 0.930 \\ 0.895 \\ 0.851 \\ 0.810 \\ 0.770 \\ 0.726 \\ 0.684 \\ 0.643 \\ 0.601 \\ 0.557 \\ 0.520 \\ 0.494 \\ 0.469 \\ 0.446 \\ 0.466 \\ 0.446 \\ 0.466 \\ 0.446 \\ 0.466 \\ 0.446 \\ 0.466 \\ 0.446 \\ 0.466 \\ 0.446 \\ 0.466 \\ 0.446 \\ 0.466 \\ 0.446 \\ 0.466 \\ 0.446 \\ 0.466 \\ 0.446 \\ 0.466 \\ 0.4$	$\begin{matrix} 0.010\\ 0.017\\ 0.031\\ 0.070\\ 0.105\\ 0.149\\ 0.190\\ 0.230\\ 0.274\\ 0.316\\ 0.357\\ 0.399\\ 0.443\\ 0.480\\ 0.506\\ 0.531\\ 0.554\\ 0.554\end{matrix}$	$\begin{array}{c} 1.\ 002\\ 0.\ 990\\ 0.\ 974\\ 0.\ 934\\ 0.\ 884\\ 0.\ 845\\ 0.\ 802\\ 0.\ 755\\ 0.\ 755\\ 0.\ 707\\ 0.\ 653\\ 0.\ 610\\ 0.\ 557\\ 0.\ 510\\ 0.\ 469\\ 0.\ 439\\ 0.\ 412\\ 0.\ 397\\ 0.\ 988\end{array}$	$\begin{array}{c} 0.\ 002\\ 0.\ 010\\ 0.\ 026\\ 0.\ 066\\ 0.\ 116\\ 0.\ 155\\ 0.\ 198\\ 0.\ 245\\ 0.\ 293\\ 0.\ 347\\ 0.\ 390\\ 0.\ 443\\ 0.\ 490\\ 0.\ 531\\ 0.\ 561\\ 0.\ 588\\ 0.\ 603\\ 0.\ 612\\ \end{array}$
$\begin{array}{c} 4.\ 00\\ 4.\ 01\\ \hline \\ 1.\ 83\\ 1.\ 85\\ 1.\ 85\\ 1.\ 87\\ 1.\ 99\\ 1.\ 91\\ 1.\ 93\\ 1.\ 95\\ 1.\ 97\\ 1.\ 99\\ 2.\ 01\\ \end{array}$	$\begin{array}{c} 0.440\\ 0.431\\ \hline \\ 1.006\\ 1.006\\ 1.000\\ 0.982\\ 0.964\\ 0.942\\ 0.924\\ 0.910\\ 0.906\\ 0.902\\ \end{array}$	0.569	$\begin{array}{c} 0.388\\ 0.380\\ \hline 1.010\\ 1.010\\ 1.003\\ 0.994\\ 0.980\\ 0.961\\ 0.941\\ 0.928\\ 0.922\\ 0.922\\ 0.922\\ \end{array}$	0.620

The phases are the predicted phases from the elements given in Kukarkin and Parenago, "Catalogue of Variable Stars". The predicted time of primary minimum is at phase 3.993 d. The estimated time of primary minimum occured at about phase 4.01 d.

The observations cannot be well represented as an annular eclipse, or as a partial transit. The representation as a partial occultation is good, with a rather wide range of the parameters. The ratio of the radii, k = 0.6 or k = 0.7 gives a good representation, but k cannot be as small as 0.5, and is probably not as large as 0.8. Various trials were made of the assumed phase of conjunction from predicted phase 4.00d. to predicted phase 4.030d., but the best representation is obtained by taking conjunctions as occurring at predicted phase 4.010d. The estimates of L_1 and L_2 were obtained by a comparison of the relative depths of the two minima at corresponding points,

k = 0.6	$L_1 = 0.666$	$L_2 = 0.334$	(yellow)
	$L_1 = 0.720$	$L_2 = 0.220$	(blue)
k = 0.7	$L_1 = 0.723$	$L_2 = 0.277$	(yellow)
	$L_1 = 0.783$	$L_2 = 0.217$	(blue)

These estimates give the values of the a-function shown in Table V.

TABLE V

Phase		k = 0.6			k = 0.7	
days	a (yell.)	a (blue)	Δa	a (yell.)	a (blue)	Δa
$\begin{array}{c} 3.84\\ 3.85\\ 3.86\\ 3.87\\ 3.88\\ 3.90\\ 3.90\\ 3.91\\ 3.92\\ 3.93\\ 3.94\\ 3.95\\ 3.96\\ 3.97\\ 3.98\\ 3.99\\ 4.00\\ 4.01\\ \end{array}$	$\begin{array}{c} 0.025\\ 0.046\\ 0.105\\ 0.158\\ 0.223\\ 0.285\\ 0.345\\ 0.411\\ 0.474\\ 0.536\\ 0.598\\ 0.665\\ 0.720\\ 0.760\\ 0.808\\ 0.831\\ 0.849\\ 0.854 \end{array}$	$\begin{matrix} 0. & 014 \\ 0. & 036 \\ 0. & 091 \\ 0. & 157 \\ 0. & 215 \\ 0. & 275 \\ 0. & 340 \\ 0. & 407 \\ 0. & 481 \\ 0. & 541 \\ 0. & 680 \\ 0. & 736 \\ 0. & 736 \\ 0. & 778 \\ 0. & 815 \\ 0. & 836 \\ 0. & 849 \\ 0. & 860 \\ \end{matrix}$	$\begin{array}{c} -11\\ -10\\ -14\\ -1\\ -8\\ -10\\ -5\\ +4\\ +7\\ +5\\ +16\\ +18\\ +7\\ +5\\ +9\\ +6\\ \end{array}$	$\begin{array}{c} 0.024\\ 0.043\\ 0.097\\ 0.145\\ 0.206\\ 0.263\\ 0.318\\ 0.379\\ 0.437\\ 0.493\\ 0.551\\ 0.613\\ 0.664\\ 0.699\\ 0.745\\ 0.765\\ 0.765\\ 0.773\\ 0.785\end{array}$	$\begin{array}{c} 0.013\\ 0.033\\ 0.084\\ 0.144\\ 0.197\\ 0.253\\ 0.313\\ 0.374\\ 0.443\\ 0.497\\ 0.566\\ 0.625\\ 0.676\\ 0.716\\ 0.751\\ 0.770\\ 0.781\\ 0.791\\ \end{array}$	$\begin{array}{c} -11\\ -10\\ -13\\ -1\\ -9\\ -10\\ -5\\ +6\\ +4\\ +15\\ +12\\ +17\\ +6\\ +5\\ +7\\ +6\end{array}$

a-functions, Z Herculis

The systematic run of the differences in the a-functions is attributed to differential limb darkening. The run of Δa , with the run of differences to be expected theoretically, is shown in figure 7. When the difference in the degree of limb darkening is estimated by a method suggested by Irwin⁷ there results $\delta x = 0.22$ for k = 0.6 or 0.7. This estimate depends systematically on the assumptions made in the analysis, and is perhaps uncertain by ± 0.1 .

The elements derived by assuming the limb darkening 0.4 in the yellow are

$$i = 83^{\circ} - 84^{\circ},$$

 $r_1 = 0.11 - 0.13 \odot$
 $r_2 = 0.19 - 0.18 \odot$

Taking the dimensions of the relative orbit as 10.5×10^6 km., there result

radii of components	$1.8 \odot \text{ and } 2.8 \odot$,
surface gravities	$0.46 \odot \text{ and } 0.18 \odot$,
mean densities	$0.26 \odot$ and $0.06 \odot$,

for the brighter and fainter components respectively.

7. Analysis of Observations—RS Vulpeculae.

The phases predicted from the elements given in *Rocznik Astronomiczny*, No. 22, were corrected by 0.007d. An examination of the residuals of computed from observed phases for the last thirty years suggests strongly that the currently accepted period is a little too long. I suggest that better elements would be epoch J.D. 2420606.623, period 4.477660d.

The two comparison stars were intercompared on 36 occasions. There was no significant evidence of variability. During the deep eclipse the fainter comparison star was used, at other times the brighter comparison star.

Harmonic analysis of the observations outside eclipse yielded

 $L = 1.1576 - 0.031 \cos \theta - 0.016 \cos^2 \theta + 0.0006 \sin \theta,$ (± 0.001 m.e.) (± 0.001 m.e.) (± 0.003 m.e.) (± 0.001 m.e.) in the blue, and

 $L = 1.0876 - 0.0346 \cos \theta - 0.0226 \cos^2 \theta + 0.0033 \sin \theta,$ $\pm 0.001 \text{ m.e.} \pm 0.001 \text{ m.e.} \pm 0.003 \text{ m.e.} \pm 0.001 \text{ m.e.}$

in the yellow. The units are those of the brighter comparison star.

For analysis the observations were plotted on a large scale and normal points were read off a smooth curve at intervals of 2 degrees in phase. The primary minimum was "rectified" by subtracting the contribution of the reflected light as estimated from the harmonic analysis outside eclipse. The "rectification" of ellipticity was carried out by division in the usual way. This gave the values for the loss of light, as a function of phase, shown in Table VI.

This analysis of the system RS Vulp is considerably weakened by the scant observations of the secondary minimum. The best estimate of the depth of secondary minimum, rectified for ellipticity, is 0.044 in the blue and 0.058 in the yellow, with an estimated uncertainty of 0.005.

The amount of light reflected at full phase is 0.054 in the blue and 0.063 in the yellow, so that if our estimate of the depth of the secondary minimum is correct the secondary minimum cannot be a

Phase	L (Yellow)	Refl. Light	L	Ellipt. Effect	L (Rect.)	1-L
0°	0.448	0,0000	0.448	1.034	0.433	0.567
2	0.451		0.451		0.436	0.564
-1	0.475		0.475		0.459	0.541
6	0.517		0.517		0.500	0.500
8	0.578		0.578		0.559	0.441
10	0.630	0.0005	0.629	1.034	0.609	0.391
12	0.695	0.0008	0.694	1.035	0.671	0.329
14	0.760	0.0010	0.759		0.734	0.266
16	0.825	0.0013	0.824	1.035	0.796	0.204
18	0.883	0.0017	0.881	1.036	0.850	0.150
20	0.943	0.0021	0.941	1.036	0.908	0.092
22	0.992	0.0025	0.990	1.037	0.954	0.046
24	1.015	0.0030	1.012	1,037	0.976	0.024
$ \begin{array}{c} 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 10 \\ 12 \\ 14 \\ 16 \\ 10 \\ 10 \\ 12 \\ 14 \\ 16 \\ 10 \\ 12 \\ 14 \\ 16 \\ 10 \\ $	(Blue) 0.448 0.457 0.485 0.532 0.586 0.655 0.732 0.805 0.877	0.0000 0.0005 0.0007 0.0009 0.0012	$\begin{array}{c} 0.\ 448\\ 0.\ 457\\ 0.\ 485\\ 0.\ 532\\ 0.\ 586\\ 0.\ 654\\ 0.\ 731\\ 0.\ 804\\ 0.\ 876\end{array}$	1.109 1.109 1.110 1.110	$\begin{array}{c} 0.\ 404\\ 0.\ 412\\ 0.\ 437\\ 0.\ 479\\ 0.\ 530\\ 0.\ 590\\ 0.\ 658\\ 0.\ 724\\ 0.\ 789\end{array}$	$\begin{array}{c} 0.596 \\ 0.588 \\ 0.563 \\ 0.521 \\ 0.470 \\ 0.410 \\ 0.342 \\ 0.276 \\ 0.211 \end{array}$
18	0.952	0.0015	0.951	1.111	0.856	0.144
20	1.015	0.0019	1.013	1 111	0.912	0.088
24	1.000	0.0023	1.000	1.111	0.959	0.041
44	1.090	0.0027	1.087	1.112	0.978	0.022

TABLE VI Rectification, RS Vulpeculae

total eclipse. This is in agreement with the conclusion reached by Dugan⁴.

On the hypothesis of a partial eclipse the observed secondary minimum is partly due to the eclipse of the reflected light and partly due to the eclipse of the intrinsic light of the faint component. I have made separate estimates of the contribution of each to the secondary minimum, assuming the reflected light is completely darkened to the limb, the intrinsic light partially. Comparison of the depths of the two minima then give estimates of the luminosity of each component for assumed values of k ranging from 0.6 to 0.9. These estimates of the luminosity were used to calculate the afunction during primary eclipse, and the hypothesis was tested by methods due to Kopal.⁹

I find the observations of RS Vulp are not well satisfied by the hypothesis of a transit at primary minimum. They were well satisfied by the hypothesis of an occultation at primary minimum with k 0.7 or 0.8. The true value of k may be somewhat smaller than 0.7, but cannot be as small as 0.6, and is probably not as large as 0.9.

The estimates of a_0 , L_1 and L_2 for the various assumed values of k were,

k	a_0	L_1	L_2	
0.6	0.677	0.837	0.163	yellow
	0.684	0.872	0.128	blue
0.7	0.648	0.876	0.124	yellow
	0.655	0.911	0.089	blue
0.8	0.622	0.912	0.108	yellow
	0.636	0.937	0.063	blue
0.9	0.601	0.932	0.068	yellow
	0.620	0.953	0.047	blue

For the values of k = 0.7 and k = 0.8 these lead to the values of the α -function shown in Table VII. The difference of the α -functions

TABLE VII a-functions, RS Vulpeculae

Phase	k = 0.7				k = 0.8	
degrees	a (yell.)	a (blue)	Δα	a (yell.)	a (blue)	Δα
$ \begin{array}{c} 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \end{array} $	$\begin{array}{c} 0.\ 648\\ 0.\ 644\\ 0.\ 618\\ 0.\ 565\\ 0.\ 503\\ 0.\ 447\end{array}$	$\begin{array}{c} 0.\ 655\\ 0.\ 646\\ 0.\ 619\\ 0.\ 571\\ 0.\ 516\\ 0.\ 451\\ \end{array}$	+ 8 + 2 + 1 + 6 + 13 + 1	$\begin{array}{c} 0.\ 621\\ 0.\ 618\\ 0.\ 595\\ 0.\ 548\\ 0.\ 483\\ 0.\ 120 \end{array}$	$\begin{array}{c} 0.\ 636\\ 0.\ 628\\ 0.\ 601\\ 0.\ 556\\ 0.\ 502\\ 0.\ 137\\ \end{array}.$	+ 15 + 10 + 6 + 8 + 19 + 8
$ \begin{array}{r} 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 24 \end{array} $	$\begin{array}{c} 0.375\\ 0.304\\ 0.233\\ 0.171\\ 0.105\\ 0.052\\ 0.027\\ \end{array}$	$\begin{array}{c} 0.376\\ 0.303\\ 0.232\\ 0.158\\ 0.096\\ 0.045\\ 0.024\\ \end{array}$	+ 1 - 1 - 1 - 13 - 9 - 7 - 3	$\begin{array}{c} 0.361\\ 0.292\\ 0.224\\ 0.165\\ 0.101\\ 0.050\\ 0.026\\ \end{array}$	$\begin{array}{c} 0.365\\ 0.295\\ 0.225\\ 0.154\\ 0.094\\ 0.043\\ 0.023\\ \end{array}$	$\begin{array}{c} + & 3 \\ + & 4 \\ + & 3 \\ + & 1 \\ - & 11 \\ - & 7 \\ - & 7 \\ - & 3 \end{array}$

for the two colours is attributed to the difference in limb darkening. Evaluating Δa by a method suggested by Irwin⁷ the best estimate is

x = 0.18 for k assumed = 0.7,

x = 0.27 for k assumed = 0.8.

The values depend systematically on the assumption about the depths of the minima, and may be uncertain by about ± 0.1 .

The geometrical elements are derived assuming x = 0.4 in the yellow, then

$$i = 78^{\circ},$$

 $r_1 = 0.19 - 0.21,$
 $r_2 = 0.28 - 0.26.$

Taking the dimensions of the relative orbit as about 14.5 \times 10⁶ km., these result in

radii of components	$4.2 \odot$ and $5.6 \odot$,
surface gravities	0.25 \odot and 0.045 $\odot,$
mean densities	0.06 \odot and 0.008 $\odot,$
the share of factors and an and	a contra concernantina las

for the brighter and fainter components respectively.

8. Discussion.

It is a valuable feature of the systems TW Drac, Z Herc and RS Vulp that we have spectrographic observation of the spectral types and of the masses of their components. These are of varying weights. The spectral types of the components of TW Drac and Z Herc are well determined, the spectral type of the faint component of RS Vulp is more uncertain. The masses of the components of Z Herc¹⁰ and RS Vulp¹¹ are well determined, those of TW Drac are probably quite uncertain, and for it I use an estimate by Pierce, quoted by Wood.⁸ The dimensions and densities of the components derived with the aid of the spectrographic data are quoted above. Except for the system Z Herc, the components seem to lie pretty well on the main sequence.

A simple photometric datum which can be compared with the spectrographic data is the colour index of the components of these systems. I am obliged to Prof. E. F. Carpenter for making available to me his measures of the colour indices of a number of stars of known spectral type, as observed with the Tucson photometer. The luminosities of the components are given in terms of the light of the comparison star as unit. The observed colour index of the comparison star (reduced to the zenith) can be used to calculate the colour index of the components. This colour index can be used to give an estimate of the spectral type based on Carpenter's data, and the result can be compared with the spectral type determined by the aid of the spectrograph. The results are as follows:

	C.I.	Est. Sp.	Obs. Sp.
TW Drac	-0.20 + 0.47	A5 K5	A6 K2
RS Vulp	-0.40	G	A2
Z Herc	+0.0 +0.04	г F	F2 F2
	+0.4	G-K	F5

The agreement seems reasonable except for the system Z Herc.

Another way of comparing the photometric and spectrographic data is to estimate the difference in spectral type by comparing the observed depths of minima, which are approximately in the ratio of the surface brightness of the components. The estimate is crude since it is based on the black body assumption and an assumed temperature scale which may not be valid. Russell¹² has given a table by means of which such an estimate may be made. I have used the rectified depths of minima, but have corrected them as carefully as possible for the reflected light, so that the ratios represent the undisturbed disks as nearly as possible.

The data used were:

	Depths of Min.	Log Ratio	Sp. from Russell's Table
TW Drac	0.825, 0.078	1.02	A6 and M
	0.887, 0.048	1.27	A6 and later than M
RS Vulp	0.566, 0.04	1.2	B5 and A2
	0.596, 0.03	1.3	B5 and A5
Z Herc	0.569, 0.10	0.75	F and K
	0.620, 0.08	0.84	F and later than M

The agreement seems fair for the systems TW Drac and RS Vulp. The latter system has been considered to be anomalous in this respect but my measures do not indicate very much of an anomaly. The discrepancy between the estimates of spectral type and the observed spectral type of the system Z Herc is very great, however, and it is difficult to see how the cool star can have a spectrum of type F.

Another comparison can be made with the spectroscopic data by comparing the determination of the difference in magnitude of the components of the systems RS Vulp and Z Herc which have been found spectrophotometrically by Petrie,¹³ with those found in this study. Petrie finds for the system RS Vulp, $\Delta m \ 3.4 \pm 0.9$ while I find Δm to be 2.7 to 2.9 (in the blue). The agreement seems reasonable. For the system Z Herc, however, there is a considerable discrepancy between his estimate of $\Delta m \ 0.4 \pm .06$ and mine of $\Delta m \ 1.1$ to 1.4.

Another simple datum to be derived from the photometric measurements is the colour index of the reflected light. As the reflection effect is small this colour index is not very precise, but it is of interest to calculate it and compare it with the observed colour index of the components of the system. I find the colour index of the reflected light in these systems to be

	C.I. of
	Refl. Light
TW Drac	- 0.2,
RS Vulp	- 0.1,
Z Herc	- 0.6.

Not much weight can be attached to the measured colour for the system Z Herc as the coefficients are so small. The colour of the reflected light of the system TW Drac is the same as the colour of the brighter component. This is contrary to Milne-Eddington theory of the reflection effect. A similar observation has been made by Walter¹⁴ on the system ζ Aurigae. The reflection effect in the system RS Vulp shows a similar tendency but the effect is smaller. The colour of the reflected light of the system is different from the colour of the fainter component, whether we consider the observed colour of the inner hemisphere (facing the brighter component) or the outer hemisphere. It does not seem, therefore, that the discrepancy can be explained by allowing for the higher temperature of the inner hemisphere. These data suggest that whatever the processes producing the reflection effect are, they are more complicated than the simple picture of absorption followed by re-emission at a lower temperature.

The calculations based on the Milne formulae give the right order of magnitude for the reflection effect except in the case of TW Drac. The computed reflection effect and the observed reflection effect for the three systems are

		Computed	Observed	
TW Drac	yellow	0.029	0.010	
	blue	0.032	0.010	
RS Vulp	∫yellow	0.027	0.031	h = 0.7
) blue	0.028	0.027∫	$\kappa = 0.7$
	∫yellow	0.023	0.031	h = 0.8
	blue	0.024	0.027∫	$\kappa = 0.0$
Z Herc	∫yellow	0.008	0.005	h = 0.6
)blue	0.009	0.0061	$\kappa = 0.0$
	∫yellow	0.007	0.005	h = 0.7
	blue	0.008	0.006	$\kappa = 0.7$

The comparison of the observed ellipticity effect with the theoretical ellipticity effect is subject to considerable uncertainties arising from the uncertain contribution of the reflection effect to the second harmonic, and uncertainty about the spectral type of the faint component, and its darkening to the limb. Accepting the mass ratios for the systems which have been given from spectrographic evidence, I find the oblateness of the components due to tidal distortion to be

	Bright Component	Faint Component
TW Drac	0.004	0.150
RS Vulp	0.003 - 0.004	0.106 - 0.085
Z Herc	0.001 - 0.003	0.012 - 0.010

If the disks of the stars were uniformly bright the observed ellipticity effect would be the mean of these oblatenesses (weighted according to the luminosities of the components) multiplied by $\sin^2 i$. The observed effect may be greater by as much as a factor of 1.6 if the disks are completely darkened to the limb.

The weighted means of the oblatenesses for these systems are:

	Yellow	Blue	
TW Drac	0.027	0.020	
RS Vulp	0.016	0.012	k = 0.7
	0.013	0.009	k = 0.8
Z Herc	0.005	0.004	k = 0.6 or 0.7

Before a comparison can be made the observed effect must be increased by an amount estimated from the reflection effect. This amount must be considered to be rather uncertain in any case, and particularly for the system TW Drac, for which the theory does not seem to give a very good estimation of the reflection effect.

The observed ellipticity effect together with the estimated corrections from the reflection effect which are to be added to it are:

		Observed	Reflection	
		Effect	Effect	Sum
TW Drac	yellow	0.031	0.013	0.044
	blue	0.032	0.013	0.045
RS Vulp	yellow	0.014	0.011	0.025
	blue	0.020	0.011	0.031
Z Herc	yellow	0.010	0.004	0.014
	blue	0.007	0.004	0.011
The data are pretty uncertain but there seems to be an indication that there is an additional factor besides the ordinary limb darkening contributing to the observed ellipticity effect. It is not possible to estimate the magnitude of this factor. Even this conclusion would have to be altered if we have overestimated the contribution of the reflected light to the second harmonic variation.

It remains to compare the observed limb darkening effects with the theoretical effects. This effect was best observed in the system TW Drac in which the differential limb darkening is quite accurately determined, and certain limits placed on its absolute value, namely, that it is probably equal to 0.3 or less for wave-length 5100 A., and 0.5 or less for wave-length 4370 A. These determinations are to be compared with certain data calculated by Chandrasekhar and Münch¹⁵ on the basis of a model in which the continuous absorption is due to the negative hydrogen ion, and to neutral hydrogen. The data given show that for a given spectral type the limb darkening coefficient is very nearly a linear function of the wave-length, at least in the visible region. The values they suggest for an A5 star are 0.77 for wave-length 4570A. and 0.65 for wave-length 5100A. But they remark that the linear approximation for the darkening to the limb is not very good for the visual region. Accordingly, the theoretical coefficient ought to be reduced somewhat. By considering a hypothètical eclipse of a star like the Chandrasekhar-Münch model I estimate the correction to the theoretical coefficient can hardly be greater than 0.1.

Actually the observed values of the limb darkening for A stars are smaller than the theoretical values by amounts of 0.2 and more. It happens that estimates of the limb darkening have been made for three A stars as shown here:

		Obs. Coeff.	Theor. Coeff.
TW Drac	4370A.	0.22 ± 0.12	0.77
	5100A.	0.11 ± 0.11	0.65
YZ Cass ¹⁶	4500A.	0.40 ± 0.04	0.73
	6700A.	0.33 ± 0.03	0.44
AR Cass ¹⁷	4500A.	0.0 ± 0.04	0.73

These measurements strongly suggest that in the visual region, at least, the observed coefficients of limb darkening are considerably smaller than the approximate theory would lead us to expect. It also appears that there are real differences in the degree of limb darkening of stars of the same spectral class. As the limb darkening is a nearly linear function of the wavelength the expression of the difference of the degree of limb darkening in different wave-lengths as a gradient is strongly suggested. It is the nature of the analysis of eclipsing variables that the difference in the degree of limb darkening can be measured with much more reliability than the absolute amount of limb darkening, since many of the systematic uncertainties in the determination of the absolute amount of limb darkening cancel out when we form the gradient. Thus we have for the gradient (difference in limb darkening coefficient divided by difference in wave-length in thousands of Angstroms).

	Observed	Theoretical
TW Drac	0.15	0.15
YZ Cass	0.07	0.13
Z Herc	0.2 ± 0.1	0.12
RS Vulp	0.2 ± 0.1	0.12?

The gradients for TW Drac, RS Vulp and Z Herc are derived from this study. The gradient for YZ Cass is derived from Kron's measures. Strictly speaking the gradient derived from Kron's measures will be slightly affected by the fact that he reduced his measures in the two colours independently, and there is a small difference in the radii he finds for the stars in reducing the light curves in the two colours. The difference is probably not real, and a better estimate of the gradient would be obtained by forcing the geometrical elements to be the same in each colour. The effect would probably be to increase the gradient of the limb darkening estimated from the observations. The theoretical estimate of the gradient for the B5 star of the system RS Vulp is only rough as it is derived from an interpolation between the value Miss Underhill¹⁸ gives for an O9.5 star, and the values given by Chandrasekhar and Münch for an A star.

It seems from these data that the wave-length dependence of the limb darkening coefficient is well represented by current theories.

This brief study is perhaps sufficient to show that accuracy of observation is now sufficiently good to allow us to obtain data on the limb darkening effect in a variety of systems. At the least, observations in two colours will allow a determination of the differential limb darkening effect, if systems showing a well-defined total phase are chosen. There are a number of systems which offer some hope of determining the absolute value of the limb darkening coefficient, among them TX Cass, VV Orio, TT Auri, CP Orio and TW Andr. Some of these are systems in which two spectra are observed. Observations of a number of such systems offer hope of clearing up some of the uncertainties about the reflection and ellipticity effects. A better understanding of these effects would go far towards removing the existing systematic uncertainties in the analysis of the light curves of eclipsing binaries.

The writer desires to express his gratitude to Prof. E. F. Carpenter of the Steward Observatory for the generous facilities he provided, and to colleagues at the David Dunlap Observatory for steady support and encouragement. He is much indebted to the late Prof. F. S. Hogg, who initiated the construction of a photometer at the David Dunlap Observatory.

This study has been submitted in partial fulfilment of the requirements for the degree of Ph.D. at the University of Cambridge, England.

References

- 1. Baker, Laws Obs. Bull Coll. vol. 33, 1921.
- 2. Fetlaar, Rec. Ast. Utrecht, vol. 9, part I, 1923.
- 3. Baker, Laws Obs. Bull. vol. 32, 1921.
- 4. Dugan, Princ. Cont. vol. 6, 1924.
- 5. Kron, P.A.S.P. vol. 59, p. 261, 1947.
- 6. Tsesevitsch, Bull. Astr. Inst. of the U.S.S.R. Acad. Sci. No. 45, 1939, and No. 50, 1940.
- 7. Irwin, Ap. J. vol. 106, p. 380, 1947.
- 8. Wood, Ap. J. vol. 112, p. 199, 1950.
- 9. Kopal, Harv. Mon. No. 8, p. 141.
- 10. Adams and Joy, Ap. J. vol. 49, p. 192, 1919.
- 11. Stilwell, R.A.S.C., Jour., vol. 40, p. 144, 1946.
- 12. Russell, Ap. J., vol. 104, p. 153, 1946.
- 13. Petrie, D. A. O., Pub., vol. XVIII, No. 10, 1950.
- 14. Walter, Z. f. Ap., vol. 14, p. 62, 1937.
- 15. Chandrasekhar and Münch, Harv. Circ., No. 453, 1949.
- 16. Kron, Ap. J. vol. 96, p. 173, 1942.
- 17. Kopal, Proc. Amer. Phil. Soc., vol. 36, p. 350, 1943.
- 18. Underhill, K. Danske Vidensk. Selsk. Mat.-fvs. Medd., vol. 25 No. 13, 1950.

Richmond Hill, Ontario May 28, 1952

APPENDIX

NORMAL POINTS OF OBSERVATION FOR TW DRACONIS Heliocentric phase from epoch 2433032.351 Julian Date Period 2,8067655 days. The phases of the Ephemeris have been corrected by - 0.030 d.

1951	Phase	L (yell.)	L (blue)	1951	Phase	L (yell.)	(L blue)
Jun. 14/15	0.102	0.908		Jun. 20/21	0.505	1.994	1.864
	0.119	1.133	0.987	Jun. 23/24	0.659	2.030	1.891
	0.123	1.175	1.059		0.683	2.038	1.901
	0.128	1.213		May 12/13	0.832	1.934	1.857
	0.135	1.283	1.143	May 15/16	1.031	2.009	1.866
	0.140	1.384	1.200	May 4/5	1.162	2.000	1.850
	0.157	1.490	1.370		1.182	1.997	1.860
	0.100	1.080	1.490		1.200	1.979	1.808
	0.170	1.028			1.219	1.914	1.770
	0.182	1.000	1 = - 2		1.207	2.008	1.801
	0.103	1 708	1.010		1.200	1.928	1.000
	0.187	1.708	1 573		1 201	1.867	1.738
	0.100	1 73.1	1.611		1 349	1.880	1.750
	0.197	1 813	1.011	May 18/19	1.375	1.840	1.745
	0 198	1.010	1 746	May 10/15	1 131	1 993	1 899
	0.202	1 834	1.110		1.163	2,000	1.875
	0.203	1.001	1.763		1.190	2.004	1.831
May 31	0.187	1.650	1.530		1.232	2.007	1.836
Jun. 1	0.191	1.734			1.257	1.918	1.811
0	0.192		1.610	May 21/22	1.299	1.912	1.820
	0.195	1.770	1.672	5 /	1.322	1.850	1.754
	0.199	1.763	1.669	Jun. 7/8	1.341	1.847	1.772
	0.204	1.795			1.433	1.817	1.748
	0.205		1.735		1.467	1.840	1.766
	0.209	1.870			1.479	1.861	1.775
	0.210		1.755		1.503	1.860	1.780
Jun. 3/4	0.297	1.979	1.852		1.548	1.932	1.829
	0.327	1.945	1.841	May 10/11	1.577	1.966	1.846
	0.345	1.965	1.850	T 0/10	1.613	1.910	1.785
	0.363	1.992	1.856	Jun. 9/10	1.631	1.962	1.824
	0.383	1.993	1.870		1.695	1.984	1.808
May 20/21	0.411	2.015	1.808	Mar 9= /90	1.720 1.726	2.013	1.8/3
May 20/21	0.305	2.003	1.044	May 21/28	1.720 1.720	2.020	1.000
May 6/7	0.393	1.997	1.874	Apr. 29/30	1.709	1.994	1.001
111ay 0/1	0.337	1.939	1.044	May 16/17	1.824	1.952	1.866
Apr 22/23	0.417	1.974	1.852	May 10/17	1.001	2 000	1.800
p::==/20	0.534	2 025	1 909	Apr 21/22	2 019	2.000	1 879
	0.584	2.026	1.916		2.371	2.000	1.854
Jun. 6/7	0.527	2.010	1.859		2.372	1.980	1.001
5	0.548	2.018	1.863	May 8/9	2.404	1.980	1.842
May 26/27	0.737	2.049	1.892	Apr. 25/26	2.402	1.971	1.856
,	0.785	2.046	1.919		2.469	1.932	1.832
	505		11010		2.100		1.002

NORMAL POINTS OF	OBSERVATION	for TW	DRAC. (cont.
------------------	-------------	--------	---------	-------

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1951	Phase	L (yell.)	(L blue)	1951	Phase	L (yell.)	L (blue)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	May 11/12	2.535	1.938	1.816	Jun. 11/12	2,709		0.773
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.552	1.962	1.836	J	2.713	0.918	0 773
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.568	1.930	1.815		2.717	0.868	0.110
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.584	1.915	1.806		2.718		0.698
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.603	1.847	1.739		2.722	0.792	0.638
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.626	1.682			2.726	0.747	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.627		1.601		2.727		0.628
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.650	1.487			2.731	0.736	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.651		1.379		2.732		0.576
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.672	1.302			2.736	0.657	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.673		1.163		2.737		0.507
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.695	1.049			2.740	0.617	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.696		0.903		2.741		0.475
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.714	0.843			2.746	0.572	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.715		0.695		2.747		0.428
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.722	0.733	0.000		2.750	0.520	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.723		0.608		2.754	0.493	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.733		0.524		2.758	0.462	0.040
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.739	0 500	0.447		2.762	0.400	0.316
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.740	0.583		1	2.768	0.426	0.286
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.740	0.031	0.200		2.113	0.396	0.257
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.741 9.751	0 196	0.389		2.111	0.389	0.957
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2.751 2.759	0.480	0.259		2.118	0.991	0.257
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.756	0 125	0.502		2.780	0.381	0.952
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.757	0.400	0 303		2.701	0.372	0.200
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 767	0.398	0.000		2.780 2.781	0.012	0.2.12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 768	0.020	0.302		2.785	0.377	0.212
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.773	0.385	0.002		$\frac{2.766}{2.786}$	0.011	0.240
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.774	0.000	0.253		$\frac{1}{2}$, $\frac{1}{790}$	0.374	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.780	0.378			2.791		0.247
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.781		0.244		2.792	0.374	
Apr. 27/28 $\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.785	0.370			2.793		0.254
Apr. 27/28 2.584 1.879 1.802 2.797 0.376 2.607 1.666 0.000 0.382 2.608 1.804 0.002 0.256 2.641 1.481 May 14/15 2.705 0.972 2.670 1.281 2.740 0.608 2.671 1.181 2.741 0.480 2.679 1.009 2.772 0.289 2.679 1.009 2.772 0.289 2.694 0.957 2.790 0.3855 2.694 0.957 2.790 0.3855 2.693 1.032 0.915 0.004 2.693 0.922 0.925 0.023 0.2702 0.992 0.945 0.044 0.957 0.044 0.450 0.023 0.390 0.253 0.023 0.390 0.253		2.786		0.248		2.796		0.253
$ {\rm Jun, 11/12} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Apr. 27/28	2.584	1.879	1.802		2.797	0.376	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.607		1.666		0.000	0.382	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.608	1.804			0.002		0.256
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.641		1.481	May 14/15	2.705	0.972	0.845
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.644	1.508			2.724	0.794	0.642
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.670	1.281			2.740	0.608	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x	2.671		1.181		2.741	A 11A	0.480
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Jun. 11/12	2.678	1.153	1 000		2.771	0.412	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.679	1 001	1.009		2.112		0.289
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.693	1.091	0.057		2.189	0.9955	0.259
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.094	1 022	0.997		2.790	0.3800	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.098	1.032	0.015		0.002	0.000	0.253
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.099	0.002	0.910		0.004	0.300	0.200
2.708 0.952		2 703	0.004	0.828		0.011	0.450	0.202 0.317
		2.708	0.952	0.010		0.011	0. 100	0.017

Publications of the David Dunlap Observatory

Normal Points of Observation for Z Herculis Heliocentric phase from epoch 2413086.365 Julian Date Period 3.992795 days

1951	Phase	L (yell.)	L (blue)	1951	Phase	L (yell.)	L (blue)
May 2/3	0 8034	0.8875	0.8423	May 16/17	2 7602	0.9060	0 8663
May 2/0	0.8004	0.8858	0.0120	1111 y 10/11	2 790	0.8949	0.8552
	0.8220	0.0000	0.8530		2.130	0.8691	0.8302
	0.0000	0.0000	0.8563	May 24/25	2.324	0.0001	0.8445
34. 017	0.9009	0.0000	0.0000	May 24/20	2.0007	0.9020	0.0440
May 0/7	0.0001	0.0900	0.0000	Lup 19/11	2.0139	0.0070	0.8510
M 10 /11	0.0470	0.0000	0.0304	Jun. 13/14	2.9949	0.0994	0.0010
May 10/11	0.8085	0.0020	0.0020	May 17/19	2.9470	0.9031	0.0400
	0.8207	0.8790	0.0404	May 17/10	0.1129	0.0933	0.0442 0.8414
M 00 /09	0.9400	0.0949	0.0020		3.7032	0.0020	0.0414
May 22/23	0.8700	0.0010	0.8500		0.1918	0.8779	0.8300
May $\frac{20}{27}$	0.9024	0.9010	0.8000		3.8111	0.8802	0.8391
Jun. 15/16	0.9438	0.8917	0.0072		3.8240	0.8830	0.8391
	0.9075	0.8910	0.04//		3.8332	0.8838	0.8303
	0.9808	0.8898	0.8514		3.8017	0.8390	0.8213
35 9/4	0.9868	0.8897	0.8030		3.8592	0.8383	0.7928
May 3/4	1.8502	0.8924	0.8582		3.8/45	0.7781	0.7249
May 7/8	1.8587	0.8841	0.8384		3.9099	0.6311	0.5845
May 15/16	1.8562	0.8803	0.8480		3.9232	0.5837	0.5326
May 27/28	1.8139	0.8851	0.8445		3.9303	0.5494	0.4824
	1.8262	0.8827	0.8478	34 0/10	3.9430	0.5164	0.4404
	1.8364	0.8916	0.8437	May 9/10	3.8005	0.8729	0.8435
	1.8512	0.8850	0.8418		3.8280	0.8531	0.8078
	1.8636	0.8857	0.8373		3.8569	0.8218	0.7838
	1.8779	0.8728	0.8371		3.8732	0.7788	0.7371
	1.8932	0.8675	0.8395		3.8925	0.7014	0.6632
	1.9064	0.8430	0.8231		3.9151	0.6208	0.5651
	1.9242	0.8366	0.8333		3.930	0.5548	0.50/1
	1.9442	0.8392	0.8201	May 25/26	3.8102	0.9053	0.8347
T 40/47	1.9600	0.8170	0.8080		3.8227	0.8782	0.8454
Jun. 16/17	1.9481	0.8123	0.7908		3.8353	0.8736	0.8361
	1.9567	0.8060	0.7831		3.8503	0.8554	0.8206
	1.9660	0.8008	0.7763		3.8825	0.7422	0.7063
	1.9760	0.8042	0.7796		3.8977	0.6994	0.6517
	1.9851	0.8017	0.7838		3.9096	0.6566	0.6075
	1.9888	0.7982	0.7733		3.9233	0.5955	0.5378
	2.0018	0.8069	0.7693		3.9395	0.5425	0.4808
Jun. 20/21	1.9468	0.8145	0.8197		3.957	0.4750	0.4100
	1.9508	0.8101	0.7931	Jun. 14/15	3.9825	0.4112	0.3470
	1.9563	0.8113	0.8073		3.9926	0.3913	0.3273
	1.9744	0.8015	0.7924		3.9961	0.3885	0.3259
	1.9772	0.7989	0.7882	Jun. 22/23	3.9583	0.4606	0.3929
24 0 10	1.979	0.7949	0.7906		3.9713	0.4303	0.3633
May 8/9	2.8293	0.8930	0.8480		3.9912	0.4014	0.3481
	2.8453	0.8805	0.8456		3.9999	0.3924	0.3305
	2.930	0.8980	0.8481		4.0090	0.3838	0.3233
May 16/17	2.7422	0.9021	0.8618				

NORMAL POINTS OF OBSERVATION FOR RS VULPECULAE Heliocentric phase from epoch 2428760.434 Julian Date period 4.477666 days

1950	Phase	L (yell.)	L (blue)	1951	Phase	L (yell.)	L (blue)
Jun. 8/9	$\begin{array}{c} 2.082\\ 2.087\\ 2.098\\ 2.102\\ 2.102\\ 2.109\\ 2.126\\ 2.132\\ 2.142\\ 2.210\\ \end{array}$	$\begin{array}{c} 1.069\\ 1.065\\ 1.061\\ 1.061\\ 1.050\\ 1.034\\ 1.030\\ 1.038\\ 1.045\end{array}$		Jun. 26/27 May 8/9 May 26/27 Jun 13/11	$\begin{array}{c} 0.\ 1972\\ 0.\ 2114\\ 0.\ 2250\\ 0.\ 2390\\ 0.\ 2560\\ 0.\ 2698\\ 0.\ 4868\\ 0.\ 5399\\ 0.\ 5725\end{array}$	$\begin{array}{c} 0.822\\ 0.852\\ 0.852\\ 0.926\\ 0.955\\ 0.988\\ 1.053\\ 1.077\\ 1.053\end{array}$	$\begin{array}{c} 0.872\\ 0.913\\ 0.953\\ 1.005\\ 1.024\\ 1.069\\ 1.128\\ 1.128\\ 1.125\\ \end{array}$
Jun. 17/18 Jul. 5/6 Sep. 6/7	$2.240 \\ 2.419 \\ 2.247 \\ 2.434$	$ \begin{array}{r} 1.035 \\ 1.039 \\ 1.057 \end{array} $		Jun. 10/14	$\begin{array}{c} 0.5725 \\ 0.5801 \\ 0.5986 \\ 0.6134 \\ 0.6275 \end{array}$	$ \begin{array}{r} 1.033 \\ 1.042 \\ 1.067 \\ 1.045 \\ 1.051 \end{array} $	$ \begin{array}{c} 1.129\\ 1.124\\ 1.130\\ 1.101\\ 1.132 \end{array} $
1951 May 12/13	0.0024 0.0154 0.0283 0.0572	$\begin{array}{c} 0.\ 4465\\ 0.\ 4494\\ 0.\ 453\\ 0.\ 5014 \end{array}$	$\begin{array}{c} 0.4464 \\ 0.4447 \\ 0.456 \\ 0.4928 \end{array}$	Jun. 4/5 May 22/23 Jun. 1 Jun. 9/10	$\begin{array}{c} 0.\ 6493 \\ 1.\ 0644 \\ 1.\ 0609 \\ 1.\ 0775 \\ 1.\ 0458 \end{array}$	1.053 1.070 1.083 1.092 1.072	$\begin{array}{c} 1.120 \\ 1.148 \\ 1.163 \\ 1.160 \\ 1.144 \end{array}$
Jun. 8/9	$\begin{array}{c} 0.0572\\ 0.0140\\ 0.0333\\ 0.0486\\ 0.0650\\ 0.0830\\ 0.1177\\ 0.1344\\ 0.1510\\ 0.1644\\ 0.1738\\ 0.1814 \end{array}$	$\begin{array}{c} 0.3014\\ 0.4562\\ 0.4618\\ 0.4718\\ 0.4922\\ 0.5391\\ 0.6136\\ 0.651\\ 0.697\\ 0.7301\\ 0.760\\ 0.776\end{array}$	$\begin{array}{c} 0.4928\\ 0.4690\\ 0.4861\\ 0.5358\\ 0.5487\\ 0.6402\\ 0.715\\ 0.7325\\ 0.7709\\ 0.799\\ 0.831 \end{array}$	Jun. 13/14 Jun. 23/24 Jun.1/2	$\begin{array}{c} 1.\ 0438\\ 1.\ 0689\\ 1.\ 0689\\ 1.\ 0689\\ 1.\ 6641\\ 1.\ 6821\\ 1.\ 6012\\ 1.\ 6272\\ 1.\ 6516\\ 1.\ 6701\\ 2.\ 0237\\ 2.\ 0486\\ 2.\ 0691 \end{array}$	$\begin{array}{c} 1.072\\ 1.089\\ 1.089\\ 1.083\\ 1.097\\ 1.105\\ 1.109\\ 1.101\\ 1.100\\ 1.104\\ 1.080\\ 1.100\\ 1.095\\ \end{array}$	$\begin{array}{c} 1.144\\ 1.163\\ 1.161\\ 1.172\\ 1.177\\ 1.173\\ 1.170\\ 1.172\\ 1.179\\ 1.162\\ 1.165\\ 1.158\\ \end{array}$
May 21/22	$\begin{array}{c} 0.0103 \\ 0.0234 \\ 0.0408 \\ 0.0574 \\ 0.0726 \\ 0.0858 \end{array}$	$\begin{array}{c} 0.4641 \\ 0.4678 \\ 0.4730 \\ 0.4910 \\ 0.5142 \\ 0.5459 \end{array}$	$\begin{array}{c} 0.4575 \\ 0.4550 \\ 0.4819 \\ 0.4911 \\ 0.5358 \\ 0.5654 \end{array}$	Jun. 10/11	$\begin{array}{c} 2.0972\\ 2.1243\\ 2.1458\\ 2.0229\\ 2.0371\\ 2.0482 \end{array}$	$ \begin{array}{c} 1.069\\ 1.054\\ 1.061\\ 1.086\\ 1.076\\ 1.075\\ \end{array} $	$1.147 \\ 1.157 \\ 1.154 \\ 1.171 \\ 1.172 \\ 1.151$
Jun. 26/27	$\begin{array}{c} 0.0492\\ 0.0622\\ 0.0743\\ 0.0889\\ 0.1039\\ 0.1142\\ 0.1296\\ 0.1386\\ 0.1519\\ 0.1650\\ 0.1764\\ 0.1838 \end{array}$	$\begin{array}{c} 0.\ 4762\\ 0.\ 4874\\ 0.\ 5206\\ 0.\ 5607\\ 0.\ 5911\\ 0.\ 6064\\ 0.\ 6408\\ 0.\ 6672\\ 0.\ 7045\\ 0.\ 7337\\ 0.\ 7650\\ 0.\ 7918 \end{array}$	$\begin{array}{c} 0.\ 4994\\ 0.\ 5107\\ 0.\ 5542\\ 0.\ 5805\\ 0.\ 6064\\ 0.\ 6423\\ 0.\ 6744\\ 0.\ 7091\\ 0.\ 7396\\ 0.\ 7934\\ 0.\ 8160\\ 0.\ 8381\\ \end{array}$	May 10/11 Jun. 6/7	$\begin{array}{c} 2.\ 0614\\ 2.\ 0741\\ 2.\ 0883\\ 2.\ 0979\\ 2.\ 1144\\ 2.\ 1322\\ 2.\ 1445\\ 2.\ 1475\\ 2.\ 1619\\ 2.\ 176\\ 2.\ 199\\ 2.\ 5253\\ 2.\ 5434 \end{array}$	$\begin{array}{c} 1.075\\ 1.075\\ 1.076\\ 1.076\\ 1.070\\ 1.050\\ 1.042\\ 1.035\\ 1.043\\ 1.037\\ 1.043\\ 1.078\\ 1.100\\ \end{array}$	$\begin{array}{c} 1.159\\ 1.159\\ 1.171\\ 1.148\\ 1.150\\ 1.141\\ 1.130\\ 1.131\\ 1.127\\ 1.139\\ 1.157\\ 1.163\\ \end{array}$

1951	Phase	L (yell.)	L (blue)	1951	Phase	L (yell.)	L (blue)
Jun. 6/7	2.5685 2.5914 2.6081	$1.101 \\ 1.089 \\ 1.091$	$1.160 \\ 1.162 \\ 1.162$	Jun. 16/17 May 16/17 Jun. 12/13	$3.5808 \\ 4.0282 \\ 4.058$	$1.072 \\ 1.057 \\ 1.043$	$1.138 \\ 1.134 \\ 1.126$
Jun. 15./16	$\begin{array}{c} 2.\ 6345\\ 2.\ 5330\\ 2.\ 5542\\ 2.\ 5062\\ 2.\ 5027\end{array}$	1.097 1.087 1.079 1.092 1.076	$1.161 \\ 1.178 \\ 1.186 \\ 1.165 \\ 1.171 $		$\begin{array}{r} 4.0747 \\ 4.0885 \\ 4.1049 \\ 4.1406 \\ 4.1579 \end{array}$	$ \begin{array}{r} 1.044\\ 1.033\\ 1.035\\ 1.031\\ 1.024 \end{array} $	$1.124 \\ 1.115 \\ 1.103 \\ 1.124 \\ 1.099$
May 2/3 May 15/16	2.3927 2.6172 2.6375 $3.0017 3.0190$	$ \begin{array}{c} 1.070\\ 1.087\\ 1.116\\ 1.106\\ 1.102 \end{array} $	$\begin{array}{c} 1.174 \\ 1.163 \\ 1.190 \\ 1.172 \\ 1.166 \end{array}$	Jun. 21/22	$\begin{array}{r} 4.1373 \\ 4.1701 \\ 4.1862 \\ 4.1997 \\ 4.0403 \end{array}$	$ 1.024 \\ 1.021 \\ 1.011 \\ 0.998 \\ 1.045 $	1.033 1.088 1.077 1.076 1.123
May 24/25 Jun. 2/3	3.0434 3.0118 3.0293 3.0444	$ \begin{array}{c} 1.108\\ 1.088\\ 1.094\\ 1.092 \end{array} $	$ \begin{array}{c} 1.177\\ 1.160\\ 1.173\\ 1.167 \end{array} $	J	$\begin{array}{c} 4.0618\\ 4.0874\\ 4.0999\\ 4.1182\end{array}$	$1.042 \\ 1.043 \\ 1.041 \\ 1.035$	$1.128 \\ 1.116 \\ 1.127 \\ 1.123$
	$\begin{array}{c} 3.0578\\ 3.0685\\ 3.0875\\ 3.1032 \end{array}$	$ \begin{array}{r} 1.087 \\ 1.095 \\ 1.090 \\ 1.073 \end{array} $	$ \begin{array}{r} 1.159 \\ 1.160 \\ 1.162 \\ 1.153 \end{array} $		$\begin{array}{c} 4.1381 \\ 4.1515 \\ 4.1646 \\ 4.1774 \end{array}$	$ \begin{array}{c} 1.030 \\ 1.036 \\ 1.029 \\ 1.022 \end{array} $	$ \begin{array}{c} 1.115\\ 1.117\\ 1.110\\ 1.100\\ \end{array} $
Jun. 11/12 Jun. 20/21	$\begin{array}{c} 3.1175 \\ 3.1504 \\ 3.1040 \\ 3.1295 \end{array}$	$ \begin{array}{c} 1.099\\ 1.110\\ 1.096\\ 1.094 \end{array} $	$ \begin{array}{c} 1.158\\ 1.176\\ 1.146\\ 1.155 \end{array} $		$\begin{array}{r} 4.1898 \\ 4.2109 \\ 4.2200 \\ 4.2336 \end{array}$	$ \begin{array}{c} 1.010\\ 0.990\\ 0.950\\ 0.931\\ \end{array} $	$ \begin{array}{c} 1.084 \\ 1.060 \\ 1.029 \\ 0.999 \\ \end{array} $
May 2/3 May 20/21 Jun. 7/8	$\begin{array}{c} 3.4438 \\ 3.586 \\ 3.5722 \\ 3.585 \\ \end{array}$	$ \begin{array}{c} 1.075 \\ 1.073 \\ 1.081 \\ 1.093 \\ \end{array} $	$ \begin{array}{c} 1.133\\ 1.142\\ 1.161\\ 1.160\\ 1.160\\ \end{array} $	May 21/22	$\begin{array}{r} 4.4205 \\ 4.4330 \\ 4.4467 \\ 4.4675 \\ 4.4675 \end{array}$	$\begin{array}{c} 0.5002 \\ 0.4834 \\ 0.4654 \\ 0.4586 \end{array}$	$\begin{array}{c} 0.5002 \\ 0.4704 \\ 0.4683 \\ 0.4500 \\ 0.4550 \end{array}$
	3.5976 3.6229 3.6372	1.086 1.093 1.072	$1.160 \\ 1.145 \\ 1.155$	Jun. 8/9	$\begin{array}{r} 4.4586 \\ 4.4686 \\ 4.4753 \end{array}$	$\begin{array}{c} 0.4586 \\ 0.4482 \\ 0.4477 \end{array}$	$\begin{array}{c} 0.4556 \\ 0.4385 \\ 0.4421 \end{array}$

NORMAL POINTS OF OBSERVATION FOR RS VULP. (cont.)

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

Number 2

A SECOND CATALOGUE OF VARIABLE STARS IN GLOBULAR CLUSTERS COMPRISING 1,421 ENTRIES

 $\mathbf{B}\mathbf{Y}$

HELEN B. SAWYER

UNIVERSITY OF TORONTO PRESS: 1955

INTRODUCTION

IT IS fifteen years since the first catalogue of variable stars in globular clusters was published at this observatory by the writer in *Publications of the David Dunlap Observatory*, vol. 1, no. 4, 1939. The numerous requests we have received for this catalogue are evidence that it has proved useful to many workers.

The references to all globular cluster literature were brought up to date in 1947 by the complete listing in the *Bibliography of Individual Globular Clusters* (*David Dunlap Observatory Publications*, vol. 1, no. 20), but among this great number of references the data on variables were not selectively tabulated. Sufficient information has now been added to variable star data to justify a second edition of the variable star catalogue. The present catalogue, in a form similar to that of the first, aims to include all variables which lie within the visible limits of a globular cluster, whether physical members of the cluster or not. When such variables are known, or presumed to be, field stars, this is noted. A few of the variables in this catalogue are also included in the *General Catalogue of Variable Stars* by Kukarkin and Parenago, and its supplements.

Although it would be convenient to have prints of each cluster included in the present catalogue, the difficulty in accomplishing this is too great, and the reader must be referred to the original publications for these. The coordinates in x and y in seconds of arc are listed for practically every variable, but they do not provide, in many cases, as satisfactory identification as could be wished. It is not easy to select the exact centre of a cluster for the point of origin. In clusters where only one variable exists, the identification may be uncertain, and where large numbers have been found, different observers have not always used the same origin.

Table I contains a list, with 1950 positions, of 34 globular clusters which are not included in the main table of this publication. These are clusters for which I have no knowledge of a published search for variables, though several of them are under investigation at the present time. For the most part they are either clusters in the far southern sky, or else difficult objects which can be properly attacked only by a telescope of at least 100 inches. Table I and Table II (the 72 globular clusters which have been searched for variables) together contain the complete list of globular clusters in our galactic system as known to me at the present time. The remarks following Table I explain the changes in the list of globular clusters made since 1947.

TABLE

THIRTY-FOUR GLOBULAR CLUSTERS NOT SEARCHED FOR VARIABLES

	NGC	R.A.	1950	Dec. 1	950	NGC	R.A.	1950	Dec. 1	950
	1261	03 ^h	10 ^m .9	-55°	25'	6388	17^{h}	$32^{m}.6$	-44°	43'
	1841	04	52,5	-84	05	6401	17	35.6	-23	53
	2158	06	04.3	+24	06	6440	17	45.9	-20	21
	2682	08	48.5	+12	00	6441	17	46.8	-37	02
IC	4499	14	52.7	-82	02	6453	17	48.0	-34	37
	5824	15	00.9	-32	53	6496	17	55.5	-44	15
	5927	15	24.4	-50	29	6517	17	59.1	-08	57
	5946	15	31.8	-50	30	6558	18	07 .0	-31	45
	6101	16	20 .0	-72	06	IC 1276	18	07.5	-07	15
	6139	16	24 .3	-38	44	6569	18	10.4	-31	50
	6304	17	11.4	-29	24	6624	18	20.5	-30	23
	6316	17	13.4	-28	05	6637	18	28.1	-32	23
	6325	17	15.0	-23	-42	6638	18	27.9	-25	32
	6342	17	18.2	-19	32	6642	18	28.4	-23	30
	6352	17	21.6	-48	26	6652	18	32.5	-33	02
	6355	17	20.9	-26	19	6681	18	40.0	-32	21
	6380	17	31 .0	-39	03	6717	18	52.1	-22	47

REMARKS ON TABLE I

Additions to 1947 list

NGC 2158 and 2682 (M67), formerly considered galactic clusters are listed as globular by Rosino and Becker respectively in the I.A.U. report of Commission 37, July 1954.

NGC 6380 has very recently been shown to be globular by Thackeray with the Radcliffe 74-inch; NGC 6558, on some early lists as globular (*Helwan Bull.*, nos. 21, and 22, 1921) is confirmed as globular by Thackeray; correspondence, 1954.

IC 1276, NGC 6642 and 6717 are considered globular by Baade and N. U. Mayall, correspondence, 1948.

Three other clusters not listed as globular in 1947 are now included among those with variables known, in the body of the catalogue. These are the new cluster found by Baade at R.A. 15^h 13^m.5, and the clusters NGC 6235 and 6535 which vacillate between lists of globular and galactic clusters.

Deletions from 1947 list

The unnumbered object at R.A. 17^h 45^m.7, Dec. -60° 45', and NGC 6684 are now dropped from the globular cluster list. From a study of Harvard Southern Station plates, Shapley in a private communication states that they are not globular.

SUMMARY OF DATA ON VARIABLE STARS IN GLOBULAR CLUSTERS NUMBERS OF VARIABLES

At present 1,421 variable stars are known in the 72 clusters for which there is a record of search. This does not include unpublished or suspected variables. There is a gratifying reduction in the number of variables listed as unpublished, from 99 in 1939 to 41 now. Furthermore in only four clusters are all known variables unpublished. Some of the unpublished variables probably correspond to variables now published by other observers. Counted as suspected variables, in addition to unpublished suspects, are those numbered variables whose variation has been questioned, making a total of 48 suspected variables in 17 clusters. Only three clusters, NGC 5286, 5694, and 6584 have been searched in vain, but the variables found around NGC 6528 are considered by Baade to belong to the rich Milky Way field, so this cluster also is listed as one with no variables.

Since 1939 a total of 329 new variables has been added in 46 clusters. This number includes some which were formerly unpublished or suspected. Contrariwise, some stars formerly considered variable are now listed as doubtful, or have been dropped entirely. This number also includes a few formerly listed only in catalogues of galactic system variables, and now included for the sake of completeness. Nearly half the known globular clusters have been searched in the last fifteen years, which shows considerable activity in this field. The era of finding large numbers of variables in any one cluster seems to be pretty well over. Most of the variable-rich clusters were searched by Professor Bailey in the early years of this century, and there seems to be no more like them.

Table II gives a summary of the number of variables and number of periods known in the 72 globular clusters for which there is a record of search. It has been a little difficult to make this table homogeneous because the sources from which it is drawn were not uniform, and arbitrary decisions had to be made.

The first column of the table gives the NGC number, when available. In the second column is the total number of variables with published identification. The third column contains the unpublished variables (u), and the suspected (s). In a few cases the unpublished variables may no longer exist; when a worker publishes new variables in a cluster, it is sometimes not possible to find out whether they correspond with earlier, unpublished variables of another worker. The totals of suspected variables include those published only as suspects, as well as numbered variables which are now considered doubtful.

Table II, when used alongside Table I of the 1939 catalogue, gives a complete summary of variables in globular clusters to date. The fourth column, headed "New" is the number of variables which have been added since 1939, and the fifth column gives the name of the person responsible for their addition. In most cases this name is that of the discoverer, but occasionally it is that of a worker who first catalogued the variable in a globular cluster.

The sixth column of the table gives the total number of precise periods known, and the seventh, the number which are new since 1939. In the total of new periods I have included not only those periods which are completely new, but also revised periods in which the period as revised differs markedly from the earlier period. Small refinements of period, however, are not counted

	TABLE II Summary of Variarie Stars in 72 Glorular Clusters											
No. Vars.	Sus. Unpub.	New	Added by	Total Per.	New	Added by	RR Lyr	Prob. RR	Non- RR			
11 1 14	2s 2u	4 M 1 C 0	IcKibben-Nail losterhoff	3 1 10	0 1	Oosterhoff	0 0 7	1	9 1 3			

104	11	2s	4	McKibben-Nail	3	0		0		9
288	1	2u	1	Oosterhoff	1	1	Oosterhoff	0		1
362	14		0		10			7	1	3
1851	2	1u	0		0			0		
1904	5	1s	1	Rosino	3	3	Rosino	3		1
2298		6u, 5s	0		0			0		
2419	36		0		0			0	23	5
2808		4u, 7s	0		0			0		
3201	77		17	Dowse (16) Wright (1)	59	59	Wright	58		2
4147	4		0		3			3		
4372		3u, 11s	0		0			0		
4590	31		3	Rosino	20	20	Rosino	20	10	1
4833	10	ls	10	Bailey (2)	9	9	Wright	6	0	4
				Swope (5)						
				Dowse (2)						
				Wright (1)						
5024	43		4	v.d. Hoven v.	32	3	Oosterhoff (2)	32	6:	1
				Genderen			v.d. H. v.G. (1)		
5053	10		1	Sawyer	10	10	Sawyer (7)	10	0	0
							Rosino (3)			
5139	164		1	Hertzsprung	153	3	van Gent (1)	137	3:	21
							Oosterhoff (1)			
							Kooreman (1)			
5272	187	2s	3	Schwarzschild(1)171	19	Martin	170	3:	3
				Sandage (2)						
5286	0		0		0			0	0	0
5466	18		4	Sawyer	18	18	Sawyer	18	0	0
5634	7		7	Baade	1	1	Baade	1	6	0
5694	0				0			0	0	0
Baade	5	5s	5	Rosino	0			0	5	
5897	4		-4	Sawyer	0			0	5	
5904	97	1s	11	Oosterhoff	92	26	Oosterhoff	90	3	4
5986	1		0		0			0		
6093	7		4	Sawyer	1	1	Sawyer	0	3	3
6121	43		11	de Sitter	41	25	de Sitter,	41	0	2
							Oosterhoff			
6144	1		1	Sawyer	0			0		
6171	24		0	2	0			0	22	1
6205	10	5s	5	Sawyer (4)	6	5	Sawver (3)	3	2	6
				Arp (1)			Kollnig-			
				/			Schattschneider	(1)		
							Arp (1)	. /		
6218	1		0		1	0	1 /->	0	0	1
6229	22		21	Baade (20)	0	5		0	20	2
				Sawyer (1)						
				2 - (-)						

____ NGC

TABLE I	I (cont.)
---------	-----------

NGC	No. Vars.	Sus. Unpub.	Ne	w Added by	Total Per.	New	Added by	RR Lyr	Prob. RR	Non- RR
6235	2		2	Sawyer	0			0	2	
6254	3		1	Arp	2	1	Arp	0	0	3
6266	26		0		0			0		
6273	4		4	Sawyer	0			0	2	1
6284	6		6	Sawyer	0			0		
6287	3		3	Sawyer	0			0		
6293	5		2	Sawyer	0			0	4	
6333	13		12	Sawyer	11	11	Sawyer	11	1:	
6341	16	1s	0		13	4	Oosterhoff	12		1
6356	5		5	Sawyer	0			0		
6362	15	2u	0		0			0		
6366	2		2	Sawyer	0			0	1	
6397	3		1	Swope	3	1	Swope, Greenbaum	1	0	2
6402	72		0		3	0		0	60	4
6426	11		11	Baade	0	0		0		
6522	9		9	Baade	8	8	S. Gaposchkin	8	0	1
6528	0		0	Baade	0			0		
6535	1	1u	1	Sawyer	0			0		
6539		1u	0		0			0		
6541	1		0		0			0		
6553	6	2 s	6	Thackeray (5) M. Mayall (1)	3	3	Thackeray	3	0	3
6584	0		0		0			0		
6626	16		7	Sawyer	1	1	Sawyer	0	7	5
6656	24	1s	8	Sawyer	22	15	Sawyer	18	0	6
6712	12	3u	11	Sawyer (10) Oosterhoff (1)	1	1	Oosterhoff	0		2
6715	28		28	Rosino	0			0	24	4
6723	19		0		19	0		19	0	0
6752	1		0		0	0		0		
6760	4	2u	4	Sawyer	0			0		
6779	12		9	Sawyer (7) Rosino (2)	4	4	Sawyer (2) Rosino (2)	2	2	7
6809	= 6		4	King	5	5	King	5	1	0
6838	4		4	Sawyer	0	0		0		3
6864	11	5s	0		0	0		0		
6934	51		0		0	0		0	45	
6981	39		8	Sawyer (7)	27	12	Rosino	27	7	
				Rosino (1)						
7006	40	1s	32	Hubble,	1	1	Hubble,	0	39	1
				Sandage			Sandage			
7078	93	8u? 2s	29	Rosino	61	0		60	28	2
7089	17		0		17	1	Sawyer	13	0	4
7099	4		1	Rosino	3	3	Rosino	3	0	1
7492	1	8u, 6s	0		0	0		0		

as new periods. The next column gives the name of the computer of the period.

The last three columns of the table give the types of variables in the cluster. Under the heading "RR Lyr" is given the number of RR Lyrae periods actually determined and published in the cluster. The following column gives the number of stars which are probably RR Lyrae type, though without published periods. A blank indicates that no definite number can be assigned at present. For example, in a cluster like NGC 6266 where no magnitudes of variables have ever been published, no estimate as to the number of probable RR Lyrae stars appears justified. The final column gives the number of non-RR Lyrae stars in the cluster. This number includes all stars, with both known and unknown periods, which present observations indicate are not RR Lyrae variables. Because these stars are of increasing importance, each one of them is listed individually in Table III. The total of the last three columns of Table II will not necessarily equal the total number of variables in the cluster, since some variables remain of unknown type.

FIGURE 1. Distribution of the known, published variables per cluster for 68 clusters.

Variable Stars in Globular Clusters

cluster, giving the numbers of clusters which have the number of variables indicated by the abscissa. More than 50 per cent of the clusters examined, 37 in all, have 10 variables or less. On the other hand, 18 clusters, about 25 per cent, have more than 20 variables. It is not possible to say at present how the observed frequency of variables in these clusters will compare with the true frequency; we might comment, however, that there have been very few cases in which, once a globular cluster had been searched for variables, further work changed it from a variable-poor to a variable-rich category. That is to say, additional hunting for variables increases the numbers in a moderate rather than a radical way.

This actual frequency of variables in globular clusters is interesting because it is at variance with common impressions that variable stars abound in globular clusters. Of the 72 clusters now examined, only 7 contain more than 50 variables each; and probably few, if any, clusters will be added in the future to this list of variable-rich objects. Since most of the clusters left to be studied are small and difficult, they will almost certainly increase the number with few variables. Three-quarters of the clusters examined contain less than 20 variables. It is rather surprising to note that the most frequent number of variables found in a globular cluster is one!

The richest cluster still remains NGC 5272, Messier 3, with 187 variables and 2 suspected. A close second is Omega Centauri, NGC 5139, with 164. Next in order of richness are Messier 5 (NGC 5904) and Messier 15 (NGC 7078), with about half as many variables, 97 and 93 respectively.

NUMBER OF KNOWN PERIODS

Of the known variables, periods have now been determined for 843 in 38 clusters, compared with 656 in only 20 clusters in 1939. Hence though the studies of the past fifteen years have not enormously increased the number of known variables or new periods, they have brought us a better over-all picture of the variable content of the entire system of globular clusters than we had earlier when the four rich clusters cast their weight too heavily.

Of the periods now listed, 274 are new, in 30 clusters. For a number of clusters there have been revisions and redeterminations of periods. For statistical purposes I have counted the period as new only if the value was changed by more than 0.01 day.

DISTRIBUTION OF PERIODS AND TYPES

There are 779 definite RR Lyrae periods known in 28 clusters. In addition there appear to be at least 335 more stars which are probably of this character. Probably also most of the 185 stars for which the data do not permit a definite assignment of type will also prove to be of this class.

Attention has often been drawn to the difference in frequency of period from one cluster to another. It is interesting, however, to portray the frequency of all known RR Lyrae periods in globular clusters. This is shown in figure 2 for period intervals of 0.01 day. The outstanding feature of the distribution is the conspicuous gap in periods slightly under 0.45 day. It is difficult to think that this gap is caused by any observational selection (unless some factor causes stars of this period to have a very small range). There certainly would appear to be no reason why periods of this length are more difficult to determine. The double maximum in this distribution of period frequency raises the question as to whether we are concerned with two different types of stars. Are RR Lyrae variables whose periods are shorter than 0.45 day the same kind of variable as those whose periods are longer? Numerous studies of the RR Lyrae stars in the galactic system, for example by Kukarkin, Struve and Joy, and Shapley suggest that all RR Lyrae stars do not constitute a homogeneous group.

Nearly 10 per cent of the known variables in globular clusters are definitely not RR Lyrae stars, 122 stars in 36 clusters. Table III, which is similar to Table II in the first catalogue, lists these 122 stars which are within the visible limits of globular clusters and are not RR Lyrae variables. The table in the present catalogue is considerably more inclusive than the earlier one, which was restricted to stars with known periods over a day. The present table includes the W Ursae Majoris types such as Var. 141 in NGC 5272, stars with irregular light variation, and stars of unknown type which are listed as probably not RR Lyrae stars. Many of these stars are field variables, and not cluster members. Any definite information in this regard has been listed, but in most cases more observational evidence is necessary to decide whether a variable is an actual cluster member.

FIGURE 2. Numbers of RR Lyrae periods at intervals of 0.01 day for 781 periods in 28 globular clusters.

Variable Stars in Globular Clusters

TABLE III Variables which are not RR Lyrae Stars

NGC	No.	Magni	tudes	Period	Remarks
		Max.	Min.	(days)	
			[]0.0		
104	1	11.3	[16.0	212.40	long per.
	2	11.55	15.3	202.84	long per.
	3	11.35	16.1	192.34	long per.
	4	12.0	14.0		cycles $150 \pm$
	5	13.0	14.0		irreg.
	7	13.3	13.8		irreg.
	8	12.7	14.7		cycles $150 \pm$
	10	13.1	13.6		irreg.
	12	13.2	14.0		irreg.
288	1	13.5	14.1	103.	semireg.
362	2	13.0	14.5	105.22	prob. Small Cloud
	8	14.8	16.3	3.901447	prob. Small Cloud
	10	14.7	16.2	4.20519	prob. Small Cloud
1904	2	14.2	14.8		irreg. or semireg.
2419	1	17.59	18.32		bright irreg.
	8	17.50	18.10		bright irreg.
	10	17.31	17.93		bright irreg.
	18	17.84	18.53		bright irreg.
	20	17.65	18.16		bright irreg.
3201	65	14.01	15.03	1.6599990	eclipsing
	68				red, prob. long per.
4590	27*	10.88	15.04		FI Hya, field, long per.
4833	2	13.0	16.2	333.7	RZ Mus, long per.
	9	14.5	15.16	87.7 or 1	HV 10781
	10	15.14	15.9		Cepheid, HV 10782
	11	14.5	16.0:	303.8	long per., HV 10783
5024	24	15.71	16.43	3?	type unknown
5139	1	10.7	12.6	58,7027	RV Tauri type
	2]13.06	16.12	484.	per. poss. 242°
	6	13.84	15.24		irreg.
	17	14.18	14.61	60:	irreg.
	29	12.44	13.50	14.72429	Cepheid
	42	12.5	14.9	149.4	
	43	13.41	14.55	1.1568183	Cepheid
	48	13.09	13.95	4.474293	Cepheid
	53	13.30	13.87	87:	irreg.
	60	13.32	14.48	1.349464	Cepheid
	61	13.72	14.48	2.27358	Cepheid
	78	14.17	14.84	1.1681179	eclipsing
	92	14.10	14.58	1.3450659	Cepheid
	129	14.18	14.74	0.01800155	irreg., long per.?
	133	13.74	14.53	0.31709628	W UMa type, held
	138	12.5	13.6	74.6:	irreg.
	148	12.9	13.8	90:	irreg.
	152	12.8	13.7	124:	irreg.

NGC	No.	Magn Max.	itudes Min.	Period (days)	Remarks
	161	13.3	13.8		irreg.
	162	12.9	13.6		irreg.
	164	13.7	14.0		irreg., prob. red
5272	95*	13.31	14.50	103.19	semireg.
	141	14.88	15.65	0.2695477	RV CVn, W UMa type
	154^{*}	11.86	13.5	15.2828	W Vir type
5904	42^{*}	10.76	12.46	25.738	Cepheid
	50*	13.6	14.0	106?	irreg. or semireg.
	84*	11.00	12.77	26.5	Cepheid
	101	17.16			SS Cyg type
6093	1^{*}	13.1	14.5	15.70	W Vir type
	6	9.3	15.8	177.13	S Sco; prob. field
	7	9.5	15.5	222.53	R Sco; prob. field
	Nova	6.8			Nova T Sco 1860
6121	4*	11.0	13.0	$65 \pm$	semireg.
	13*	12.37	13.08		semireg.
6171	1]14.16	16.75		prob. long per.
6205	1*	13.27	14.61	1.45899	Cepheid
	2*	12.67	13.90	5.11003	Cepheid
	6*	13.90	14.73	2.11283	Cepheid
	10*	13.4	13.7		semireg.
	11*	12.92	13.71	92.5	semireg.
	15	13.32	13.67	1 = =00	irreg.
6218	1*	11.9	13.2	15.508	W Vir type
6229	8	15.30	16.64		Cepheid
0054	22	15.2	10.3		prob. slow
6254	1**	12.8	13.2	10 754	Semireg.
	2.	12.10	10.04	7.97	Conhoid
6979	0	13.10	13.84 14.7	1.01	Cophoid?
0213	2 14	10.4	15 1	0.246178	W UMa type field
6207	14	14.0	10.1	214 6	long por poss field
0597	1	12.2	11.0	45 or 60	semirer poss field
6409	∠ 1*	14.3	16.0	18 75	W Vir type
0402	- 9*	15.4	16.3	2 7952	Cenheid
	7*	14 9	16.2	13.59	W Vir type
	17*	14.8	15.7	10.00	field? type unknown
6522	7	17 02	17 61		irreg., field
6541	1	12.5	[16		prob. long per.
6553	Nova	7.5			Nova Sgr 1943
	4			1100	0
	5]100	
6626	2	14.3	14.8		poss. slow
	3	14.6	15.4		poss. slow
	4*	13.6	14.8	14.0	W Vir type
	6	14.3	15.2		per. many weeks
	10	13.5	14.6		slow

TABLE III (cont.)

NGC	No.	Magnitudes	Period	Remarks
		Max. Min.	(days)	
6656		12 0 12 8		slow
0000	8*	12.0 12.0 12.7		semireg.
	9*	12.7 13.3		semireg.
	11*	12.9 13.8	1.69050	Cepheid
	14*	13.8 [15.5	200.2	long per., field
	17	14.6 [15.		prob. irreg.
6712	2	14.0 14.9	105	AP Sct; RV Tau type?
	7	14.2 [17.0		prob. long per.
6715	8	16.8 17.6		poss. not RR Lyr
	12	16.7 17.3		poss. not RR Lyr
	19	16? 16.5		poss. not RR Lyr
	25	16.8 17.4		poss. not RR Lyr
6779	1^{*}	15.2 16.3	1.510019	Cepheid
	3*	14.4 15.1		semireg.
	5	14.4 15.2	$43 \pm$	semireg.
	6*	12.9 14.8	90.02	RV Tau type
	7	15.6 16.3	40-50	semireg.
	8	15.9 16.7	$68 \pm$	semireg.
	9	15.6 16.1		semireg.
6838	1	13.5 14.9		slow, Z Sge
	2	13.8 14.7		slow
	3	15.2 17.0		eclipsing
7006	19		252:	long per.
7078	1*	14.39 15.75	1.437478	Cepheid
	86	13.4 14.6		prob. Cepheid
7089	1*	13.29 14.78	15.5647	W Vir type
	5^{*}	13.30 14.47	17.5548	W Vir type
	6*	13.07 14.31	19.3010	W Vir type
	11*	12.12 13.25	67.086	RV Tau type
7099	4	16.4 [18	11 - 15	U Gem type

TABLE III (cont.)

*Spectrum available.

Almost all types of variable stars are represented. Table III lists 2 novae, 15 Cepheids with periods up to 10 days, 13 stars with periods from 10 to 26 days, either Cepheids or W Virginis stars, 18 long period variables, 3 eclipsing variables, 3 W Ursae Majoris, 2 SS Cygni, and 4 RV Tauri stars, as well as 39 irregular and semi-regular variables of several kinds. The remainder are of indefinite type. No flare stars or R Coronae Borealis variables have been noted as yet.

DESCRIPTION OF THE CATALOGUE

The catalogue contains every cluster for which there is a published record of a search for variables, and a few others for which the unpublished data have been supplied to the writer. The clusters are arranged in order of NGC number, or, lacking that, by right ascension. If the cluster has a Messier number, it is given. The right ascension and declination are for the equinox of 1950.

The variables are numbered according to the number given by the discoverer except in a few cases where an adjustment has had to be made. The x and y co-ordinates are given in seconds of arc and correspond in direction to right ascension and declination. Whenever they have been published, magnitudes, epochs, and periods are given. A blank in these columns indicates lack of published data. When an observer has given a table of maximum and minimum magnitudes, these have been taken. However, in many cases the writer has had to read these values from published measures of many plates by taking the brightest and faintest estimates of magnitude for the variable. Epoch of maximum gives the number of days past J.D. 2,400,000.000. For stars in clusters like Omega Centauri and Messier 3 where many investigations of small period changes have been made, only one value (usually the latest or best determined) is given for the period.

Suspected variables have not been included in the catalogue in general, except for those where numbers had been previously assigned. Announced variables which are now considered not to vary have been left in the catalogue so that a reader may be aware of them, but they have not been included in the totals of known variables.

In an attempt to clear up some of the confusion which has existed for years in Messier 3, NGC 5272, the writer has identified the variables whenever possible in von Zeipel's catalogue. A similar process has been followed for Messier 15, NGC 7078, with Küstner's catalogue, since Rosino published some of these identifications for his new variables in that cluster.

When necessary, notes pertaining to a cluster are given after the data on that cluster.

REFERENCES TO LITERATURE ON VARIABLE STARS IN GLOBULAR CLUSTERS

To the catalogue is appended a complete bibliography of literature on variable stars in globular clusters. The 125 references given in the 1939 catalogue have now been expanded to 193, including 6 references before 1939 found after the publication of that list. This total does not include references to unpublished correspondence, which contains much vital information. As formerly, the references are arranged by years, and alphabetically under author for any given year. At the end of each cluster, the list of numbers indicates the references to that cluster, and special note is made of the references in which photographs or charts of the clusters giving identification of the variables can be found.

Acknowledgments

In the preparation of this catalogue I have had a great deal of co-operation

from astronomers working on variables in clusters, who sent results in advance of publication. It is a pleasure to acknowledge help from the following: Dr. Harlow Shapley and his co-workers at the Harvard College Observatory, including Mrs. Virginia McKibben-Nail, Miss Frances Wright, Miss Arville Walker, and Mr. Ivan King; from the astronomers at Mount Wilson and Palomar Observatories, especially Dr. Walter Baade, Dr. Allan Sandage, Dr. Halton Arp, and Miss Henrietta Swope; from Dr. David Thackeray of the Radcliffe Observatory, Dr. P. Th. Oosterhoff of the Leiden Observatory, and Dr. L. Rosino of the Bologna Observatory. Dr. H. Wilkins of the National Observatory of Argentina has been exceedingly helpful in picking up inconsistencies or errors in existing literature and drawing them to my attention, in order that they may be remedied as far as possible in this edition of the catalogue. The identification of the variables in Messier 3 with von Zeipel's numbers was aided by charts supplied from Mount Wilson and Palomar Observatories; much of the computation was done at this observatory by Mr. Donald Morton. I am deeply grateful to the Publications Fund of the University of Toronto Press for help with this publication.

Richmond Hill, Ontario September 30, 1954

SECOND CATALOGUE OF VARIABLE STARS IN GLOBULAR CLUSTERS

No.	x''	у′′	Magnitudes Max. Min.	Epoch of Maximum	Period	Remarks
1	+ 36.8	-112.6	11.3 [16.0	12717.	212.40	
2	+ 64.7	-193.9	11.55 15.3	12685.	202.84	
3	+ 328.4	+ 52.8	11.35 16.1	12755.	192.34	
4	- 18.8	-160.4	12.0 14.0		$150 \pm$	cycles
5	+ 271.9	-284.6	13.0 14.0			irreg.
6	+ 97.3	-103.8	13.2 13.8	var?		
7	+ 349.2	-113.0	13.3 13.8			irreg.
8	+ 16.0	+ 57.0	12.7 14.7		$150\pm$	cycles
9	- 108	- 78	13.5 14.5		short	HV 810
10	+ 72	+702	13.1 13.6		irreg.	HV 811
11	+ 306	+138	13.2 14.0		irreg.	HV 813
12	+1254	-348	13.6 14.4		short	HV 814

NGC 104 (47 Tucanae) α 00^h 21^m.9, δ-72° 21′

A suspected variable, HV 812, is not listed above. Refs. 9, 14, 20, 68, 139, 173, 175. Plate in 20.

NGC 288 α 00^h 50^m.2, δ -26° 52′

-55 + 79 + 13.5 + 14.1 + 25576 + 103	
--------------------------------------	--

2 unpublished variables? Refs. 87, 150 with chart.

NGC 362 α 01^h 01^m.6, δ -71° 07′ (Corrected position)

1	-246.2	- 67.6	14.9 16.1	23751.558	0.5850512	
2	+ 41.4	-204.4	13.0 14.5	24391.8	105.22	HV 206
3	+ 93.6	-143.2	14.6 16.1	23604.806	0.4744151	
4	-50.2	-27.3	14.0 15.8			
5	-79.2	- 31.9	15.1 16.4	24025.729	0.4900846	
6	+ 82.4	+ 15.5	14.9 16.3	24461.642	0.5146080	
7	+ 131.1	-21.2	14.8 16.0	24468.687	0.5285492	
8	+ 33.4	-308.5	15.0 16.5	24433.677	3.901447	HV 212
9	- 400.4	+224.4	14.7 16.0	24404.670	0.5476126	
10	+ 282.8	-381.8	14.9 16.4	23315.643	4.20519	HV 214
11	-136.1	-26.0	15.1 16.0			
12	- 30.4	-115.4	15.2 16.1	24391.839	0.65254518	
13	+ 14.5	+ 38.8	14.6 16.3			
14	- 23.8	- 66.8	14.8 16.2			

Refs. 11, 14, 20, 90, 94, F, J. Plate in 20, 94.

NGC	1851 o	05^{h}	12 ^m .4,	δ	-40°	05'
-----	--------	----------	---------------------	---	---------------	-----

No.	x''	у′′	Magnitudes Max. Min.	Epoch of Maximum	Period	Remarks
$\frac{1}{2}$	$+ 261 \\ - 45$	$ - 9 \\ + 30 $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			

1 unpublished variable.

Refs. 72, 87. No map.

NGC 1904 (Messier 79) α 05^h 22^m.2, δ -24° 34′

$\frac{1}{2}$	+ +	$\begin{array}{c} 29.6 \\ 78.3 \end{array}$	-199.6 - 68.3	var.? 14.2	14.80			med. 16.0 semireg.
3	+	34.8	-64.4	15.9	16.7	34032.40	0.73602	
4	+	93.4	- 50.1	15.6	16.7	32877.50	0.63492	
5		11.6	+ 20.2					
6	-	70.8	+115.6	16.0	16.6	32940.25	0.33522	

Refs. 14, 20, 181. Plates in 20, 181.

NGC 2298 α 06^h 47^m.2, δ -35° 57′

6 unpublished variables, 5 suspected. Ref. F.

NGC 2419 α 07^h 34^m.8, δ +39° 00′

1	+ 40	-52	$17.59 \ 18.32$	irreg.
2	- 4	- 19		
3	+ 52	-24	18.66 19.96	
4	+ 80	- 15	18.84 19.65	
5	+ 33	+ 47	18.75 19.72	
6	+ 56	-127	18.86 - 19.64	
7	+ 91	+ 87	18.69 - 19.77	
8	- 17	+ 41	17.50 18.10	irreg.
9	- 32	+ 88	18.59 19.76	
10	+ 20	- 51	17.31 17.93	irreg.
11	+ 95	- 8	18.55 - 19.81	
12	+ 133	+111	18.69 - 19.71	
13	+ 101	- 10	18.55 - 19.75	
14	-115	- 13	18.81 - 19.62	
15	+ 62	+ 40	18.62 19.76	
16	+ 47	+ 72	18.77 - 19.85	
17	+ 109	+111	18.65 - 19.75	
18	- 15	+114	17.84 18.53	irreg.
19	- 107	- 40	18.77 19.86	
20	-28	+ 45	17.65 - 18.16	irreg.

No.	x''	У''	Magnitude Max. Mir	s Epoch of 1. Maximum	Period	Remarks
21	- 55	+ 30	18 76 19 7			
22	+ 109	- 5	18.60 19.8	84		
23	+ 27	+79				
24	- 147	- 10	18.94 19.5	58		
25	- 59	+ 38	18.78 19.1	70		
26	- 70	- 50				
27	+ 19	-103	19.10 19.8	55		
28	-192	+ 59	18.72 19.1	78		
29	- 58	- 7	19.01 19.9	92		
30	- 26	+ 23				
31	+ 154	-146	19.08 19.	53		
32	- 19	+ 48	18.60 19.7	71		
33	+ 47	- 17	19.11 20.	13		
34	+ 21	+157	19.00 19.0	66		
35	+ 43	+ 8	18.88 20.	00		
36	+ 23	+ 44	19.10 19.	83		

NGC 2419

Ref. 108, with plate, I.

NGC 2808 α 09^h 10^m.9, δ -64° 39′ 4 unpublished variables, 7 suspected. Refs. F, N.

NGC 3201	$\alpha \ 10^{h}$	$15^{\rm m}.5, \delta$	$-46^{\circ}09'$
----------	-------------------	------------------------	------------------

1	+ 59	-118	14.71	15.76	22484.504	0.6048761
2	+ 29	-117	14.61	15.60	28272.352	0.5326722
3	+ 182	- 43	14.90	15.49	22100.533	0.5994093
4	+ 155	+ 3	14.76	15.60	23198.539	0.6300006
5	+ 42	- 24	14.63	15.75	23172.676	0.5015359
6	- 116	-143	14.50	15.55	23166.545	0.5256131
7	- 91	-189	14.87	15.35	23566.533	0.6303322
8	- 69	- 99	15.00	15.46	23166.613	0.6286280
9	- 51	- 91	14.86	15.57	23506.605	0.5266970
10	- 181	+235	14.66	15.59	22429.597	0.5351571
11	- 104	+112	14.87	15.40	29696.446	0.2990471
12	- 86	+108	14.50	15.53	23547.577	0.4955583
13	- 160	+ 92	14.57	15.50	23163.664	0.5752145
14	- 156	+133	14.61	15.67	23961.495	0.5092897
15	- 279	-173	14.34	15.43	23164.572	0.5346644
16	- 197	-238				
17	+ 11	- 25	14.84	15.80	28253.276	0.5655773
18	+ 23	- 24				
19	+ 23	+317	14.54	15.45	29696.361	0.5250201
20	+ 39	+284	14.45	15.55	29273.322	0.5291064

NGC 3201

y'' x'' No. Epoch of Magnitudes Period Remarks Max. Min. Maximum 21 + 94+13514.75 15.6223191.5140.5666509 22 -100-5614.7215.4523165.679 0.60598422349- 50 _ 339 24---+ 1714.7615.3523166.521 0.5889798 25+93 +17314.6815.5323566.533 0.5147963 26+ 219-14014.8015.6123198.542 0.568994927-323+ 5814.11 15.3223164.508 0.484294328+66 -4814.9815.7423932.478 0.5786766- 256 29+11330 -289+27214.5615.3623166.488 0.5158559 14.6531 + 182+13115.5123505.620 0.5194894 +19932+ 19514.5515.5623190.6240.5611656 33 + 48 - 40 not var. + 296+28534 14.37 15.62 23547.577 0.467888311 35 +12114.9015.4522484.504_ 0.6155244 36 -108- 11 0.48437 68 -7438 61 - 60 14.70 15.6023877.612 0.5091616 39 +41 + 5414.83 15.8023181.5370.4832092- 96 + 6840_ 41 + 291+ 2842- 301 +19714.3915.4427565,286 0.5382490 43 - 377 + 1514.80 15.3923166.665 0.676128944+ 6715.66+-31 15.01 23190.635 0.6107344 45+ 127- 32 14.8515.6023165.684 0.5374165 -51046396 14.5615.3523167.570 0.5431990 47 + 108+24548 -252+ 1249- 38 +15114.7415.4323172.499 0.5814870 _ 50-13+ 2751-205- 26 14.37 15.5028273.328 0.520545452+ - 14 -812- 873 53-75814.5715.3823191.540 0.5334705 54+ 671-80414.67 15.4423548.6600.5558721 55- 338 +767+ 9456+ 24614.9515.6223164.591 0.5903376 -7215.58 57 + 28814.8028628.317 0.593437358+ 346- 80 14.94 15.4523164.538 0.6220418 - 490 59- 70 14.3215.4023528.608 0.5177106 60 - 850 + 9514.22 15.4723165.526 0.5035723 61 -1125+17562-1060-18614.6215.2823506.538 0.5697558 63 -1000+ 5914.3615.3923914.582 0.5680998 64 - 646 +86314.4015.3623191.538 0.522421865- 544 +79714.01 15.0326417.421 1.6599990 ecl. 66 - 398 +289not var.

No.	x''	y''	Magni Max.	tudes Min.	Epoch of Maximum	Period	Remarks
67	- 374	-120					
68	- 283	+846					long per.
69	-221	+995	14.34	15.50	23914.575	0.5122704	
70	- 221	- 13	not var.				
71	- 182	-117	14.65	15.46	23506.605	0.6011859	
72	- 161	+596	not var.				
73	-128	+86	14.39	15.60	23172.569	0.5199500	
74	- 94	+ 36	not var.				
75	- 81	+147	not var.				
76	- 62	-42				0.526	
77	- 10	-52	14.67	15.40	22429.592	0.5676648	
78	- 8	-143					
79	+ 10	-101	not var.				
80	+ 60	+ 23					
81	+ 96	-153					
82	+ 161	-166	not var.				
83	+ 177	+172	14.58	15.67	23190.624	0.5451918	
84	+ 358	+703	14.65	15.43	22077.566	0.5136787	
85	+ 569	-403	not var.				
86	+ 611	-315	not var.				
87	+1013	-460	14.65	15.30	23164.633	0.6038866	

CATALOGUE—Continued

Unpublished epochs and magnitudes, ref. Q. Refs. 46, 59, 127, 140 with print.

NGC 4147 α 12^h 07^m.6, δ +18° 49′

1	- 10	00.1	_	45.7	15.90	16.95	25324.68	0.4993
2	-	20.2		28.8	15.95	17.25	25305.541	0.4920
3	- 1	28.5	—	35.3	16.32	16.78	25321.528	0.3834
4	+	1	+	18	16.5	17.1		

Refs. 36, 85, 89. Print in 85.

NGC 4372 α 12^h 23^m.0, δ -72° 24′

3 unpublished variables, 11 suspected. Ref. N.

1	-280	+109	15.55	16.11	34067.792	0.349599	
2	-168	- 45	15.05	16.29	33663.695	0.5781805	
3	-140	+ 91	15.40	16.15	33661.66	0.4128?	
4	-117	-131	15.65	16.20		0.2864?	
5	- 56	+170	15.47	16.11	33741.570	0.3878	

NGC 4590 (Messier 68) α 12^h 36^m.8, δ -26° 29′

NGC 3201

NGC 4590

CATALOGUE—Continued

No.	x''	y''	Magnitudes	Epoch of	Period Remarks
			Max. Min.	Maximum	
6	- 54	+ 17	15.75 16.07	33741.542	0.269261
7	- 50	- 79	15.71 16.07	34093.461	0.279294
8	- 38	-134	15.69 16.08	34093.509	0.280560
9	- 31	+ 40	$15.43 \ 16.28$		
10	-25	-16	15.28 16.62		
11	- 18	-112	15.65 16.16	33741.541	0.369499
12	- 10	- 1	15.07 16.23		
13	- 6	- 56	15.72 16.11	34149.415	0.265638
14	- 4	+218	15.02 16.25	33663.714	0.5567753
15	+ 9	+ 58	15.65 16.36		
16	+ 11	+ 80	15.65 16.22	34071.536	0.418330
17	+ 16	- 75	15.65 16.60		
18	+ 19	- 96	15.69 16.19	33741.46	0.367345
19	+ 33	+70	15.65 16.20		
20	+ 34	-114	15.69 16.14	34118.451	0.385763
21	+ 48	+ 8	15.82 16.60		
22	+ 61	-22	15.30 16.52		
23	+ 64	+380	14.85 16.13	34506.392	0.658898
24	+ 74	- 8 .	$15.64 \ 16.13$	34093.522	0.376495
25	+ 141	+123	15.01 16.15	33770.450	0.6415354
26	+ 158	- 44	15.63 16.11	33799.370	0.413217
27	+ 380	+263	$10.88 \ 15.04$		long Sp., field
28	+ 440	+160	14.81 16.18	34120.498	0.6067773
29	+ 287	-252	15.65 16.15		
30	+ 112	- 78	15.70 16.15		
31	- 109	+ 90	$15.49 \ 16.10$	33741.461	0.399658

Variables Nos. 29, 30, 31 are unpublished, found by Rosino, ref. L. Refs. 44, 49, 117a, 159, 186, L. Print in 49.

NGC 4833 α 12^h 56^m.0, δ -70° 36'

1	-264	+468	15.32	15.86	29375.251	0.750101	RY Mus
2 ·	+ 378	-354	13.0	16.2:	26166	333.7	RZ Mus
3	0	+ 6	15.46	15.9	29363.248	0.744526	HV 10775
4	0	+ 24	15.24	15.88	29381.249	0.655536	HV 10776
5	+ 132	- 66	15.4	16.0	29381.240	0.629414	HV 10777
6	+ 120	+120	15.3	15.9	29381.297	0.653967	HV 10778
7	+ 72	- 6	15.49	16.05:	29374.256	0.668422	HV 10779
8	-168	+498	15.59	15.79	var?		HV 10780
9	- 42	- 6	14.5	15.16	28635	87.7:	HV 10781
10	+ 72	+414	15.14	15.9			HV 10782
11	- 336	-828	14.5	16.0:	24320	303.8	HV 10783

Refs. 65, 87, 149.

NGC 5024 (Messier 53) α 13^h 10^m.5, δ +18° 26′

No	x''	v''	Magn	itudes	Epoch of	Period	Remarks
100.		Ĵ	Max.	Min.	Maximum		
1	+ 9.6	-171.0	16.05	16 95	22789,486	0.6098214	
2	-78.0	-183.6	16.38	16.88	22787.498	0.3861005	
2	- 60.6	-138.0	16.14	16.93	22763.412	0.6306111	
1	- 169 5	-156.6	16 41	16.84	23113,482	0.3851668	per, var,
5	-237.0	-258.0	15.89	16.98	22790.515	0.6394274	Port Carr
6	- 207.0 - 123.6	± 13.5	16.08	17 11	22790 620	0 6640168	
7	\pm 79.5	+ 83.5	16.02	16 95	22763 515	0 5448337	
0	+ 72 0	+ 60.0	16.28	16.05	22762 584	0 615531	
0	+ 67.5	-40.5	16.03	17 10	22789 484	0.6003729	
10	-138.6	\pm 54 0	15 90	16.98	22789 443	0 6082560	
10	-133.0	- 58.5	16.04	16.82	22762 647	0 6299539	
12	± 400 5	-187 5	16.05	16 91	22789 497	0 6125863	
12	± 462.0	-299 7	15.87	17 03	22789 533	0 6274465	
14	± 35.16	-207.0	15.88	17.00	22790 490	0 5454024	
15	- 918 1	± 207.0	16.39	16 67	23113 458	0.308724	
10	-1365	-202.5	16.00	16 90	22790 520	0.3031707	
17	-214.5	± 114.0	16 29	16.80	22762 612	0.3814992	
19	- 214.0	± 12.6	15 83	16.42		0.0011004	
10	- 50.0	- 42.0	16.34	16.85	22789 465	0.3918418	
20	\pm 188 1	-351.6	16.32	16.81	23113 615	0 3844312	per, var,
20	+ 4374	-27.0	16.32	16.81	22790 410	0.3384650	portion
21	- 53.4	-288.0	16.56	16.85	var?		
22	+ 96.0	- 89.7	16.34	16.88	23113 460	0.3658077	per, var,
20	- 118.5	- 29.2	15 71	16 43		3.?	1
25	+ 130.3	+ 31.7	16.16	16.90	22787.552	0.7051762	
26	- 288.0	-279.9	16.29	16.74	22789.485	0.3911185	
27	-203.8	-157.9	16.16	16.93	22790.376	0.6710576	
28	- 181.4	+459.0	15.78	16.94	22790.500	0.6327877	
29	+ 125.4	-79.5	16.56	17.04	22808.33	0.823239	
30	+ 57.7	-482.8	16.18	17.04	22790.47	0.5354938	
31	+ 60.6	- 0.1					
32	- 111.9	- 86.6	16.26	16.65	22790.475	0.3901324	
33	-165.0	+ 12.2	16.58	17.14			
34	- 144.0	-216.7	16.48	16.70	not var.		
35	+ 104.1	+153.2	16.38	16.88	22789.480	0.3726736	
36	+ 120.3	+306.5	16.33	16.71	23113.698	0.3732511	per. var.
37	- 44.0	+ 62.2	15.68	16.48			
38	+ 21.3	-143.2	16.08	16.81	22789.483	0.7057825	
39	- 234.0	+212.5	16.84	17.26	not var.		
40	+ 8.9	+111.5	16.55	16.89	26418.664	0.3148076	
41	+ 19	+ 66					
42	- 67	+ 17	15.54	16.33			
43	- 34	+ 53					
44	+ 53	- 2	15.20	15.99			
45	- 5	- 36					
-46	- 12	+ 34					

Refs. 51, 58, 79, 92, 97, 132, 160. Prints in 51, 92, 160.

NGC 5053	$\alpha \ 13^{h}$	13 ^m .9.	δ	$+17^{\circ}$	57'
----------	-------------------	---------------------	---	---------------	-----

No.	x''	У''	Magnitudes Max. Min.	Epoch of Maximum	Period	Remarks
1	- 380	+158	15.80 16.60	30519.640	0.647178	
2	- 193	- 3	16.00 16.50	30556.611	0.378953	
3	+ 140	+138	15.90 16.55	30519.640	0.592946	
4	+ 31	-114	15.75 16.55	31969.580	0.667061	
5	+ 220	-220	15.90 16.45	29786.690	0.714861	
6	+ 126	+77	16.00 16.45	30555.617	0.292199	•
7	- 87	+169	16.05 16.40	30880.610	0.351581	
8	+ 117	+ 50	16.05 16.55	31203.460	0.362842	
9	- 199	+382	15.95 16.55	31911.500	0.741741	
10	+ 94	+ 56	16.10 16.45	30883.640	0.437397	

Refs. 83, 158, 168. Prints in 83, 168.

NGC 5139 (ω Centauri) α 13^h 23^m.8, δ -47° 13' (corrected position)

1	- 416.16	+298.89	10.7	12.6		58.7027	
2	- 340.00	+238.51]13.06	16.12		484.	
3	- 507.93	+167.43	14.19	15.11	26524.245	0.8412205	
4	- 337.61	+262.10	13.89	15.18	26473.374	0.6273172	
5	-282.75	+328.29	14.06	15.34	26460.409	0.5152828	
6	- 162.43	+252.95	13.84	15.24		irr.	
7	+ 153.19	+879.15	13.98	15.11	26470.425	0.7130181	
8	+ 629.43	+ 16.20	13.90	15.29	26472.238	0.5212846	
9	- 473.17	+137.14	14.35	15.32	26453.421	0.5233358^{\dagger}	
10	- 397.76	+244.48	14.38	14.90	26524.241	0.374950	
11	-158.63	+338.73	14.3	15.0	irr.	0.56481	
12	- 193.16	+274.34	14.43	14.95	26469.446	0.3867486	
13	- 487.26	+199.54	13.98	15.12	26438.457	0.6690480	
14	-473.51	-627.56	14.40	15.01	26472.456	0.3771799	
15	- 194.09	+242.62	14.13	14.98	26469.427	0.8106198	
16	+ 517.05	-536.81	14.38	14.95	26435.488	0.3301694	
17	+ 522.24	+200.00	14.18	14.61		60: iri	r.
18	+ 596.64	+220.15	13.89	15.18	26454.408	0.6216682	
19	+ 444.14	+ 32.44	14.68	15.22	26434.540	0.2995533	
20	+ 280.88	+ 32.06	14.01	15.20	26469.388	0.6155547†	
21^{+}	-355.75	+162.07	14.20	14.81	26469.257	0.3808180	
22	+ 552.18	-330.22	14.43	14.97	irr.	0.39609	
23	+ 2.54	+240.71	14.26	15.39	26470.392	0.5108651	
24	+ 524.71	-336.96	14.41	14.88	26468.520	0.4622108	
25	-210.77	+ 17.48	13.98	15.07	26469.433	0.5885005	
26	-229.58	+101.21	14.36	15.06	26459.469	0.7847199^{\dagger}	
27	- 205.47	+ 24.11	14.50	15.19	26471.386	0.6156764	
28			not vai	•			
29	- 193.25	- 6.45	12.44	13.50	26465.88	14.72429	
30	- 307.92	-75.01	14.40	14.86	irr.	0.40448†	
31			not var	•			
32	+ 174.39	+420 01	13 87	15.20	26469.421	0.6204317	

NGC 5139

	No.	x''	$\mathbf{v}^{\prime\prime}$	Magnitudes	Epoch of	Period	Remarks
			-	Max. Min.	Maximum		
_		554 54	- 24.00	13 88 15 94	26461 436	0.6023262	
	00 34	- 306 87	-269.04	14 18 15 13	26471 369	0.7339450	
	35	-350.37 -71.70	+365.01	14 37 14 94	26468 484	0.3868382	
	36	+ 246.11	+789.42	14 38 14 93	irr.	0.379841	
	37	/ 210.11	1.00.1	not var.		010100-1	
	38	+ 169.10	-470.37	14.36 15.11	26469.456	0.7790480	
	39	+741.86	-365.80	14.33 14.99	26469.474	0.3933567	
	40	-220.99	-125.30	13.95 15.15	26471.364	0.6340969†	
	41	+ 151.80	-142.18	14.03 15.06	26523.185	0.6629590	
	42	+ 0.21	-50.21	12.5 14.9		149.4	
	43	-119.23	+103.16	13.41 14.55	26470.385	1.1568183	
	44	-243.40	-354.05	14.24 15.36	26466.380	0.5675440	
	45	-764.48	+ 80.97	13.94 15.19	26473.404	0.5891259	
	46	- 770.61	+170.11	14.03 15.17	26454.471	0.6869382	
	47	-504.32	+269.26	14.27 14.73	irr.	0.48517†	
	48	-86.54	-104.54	13.09 13.95	26523.70	4.474293	
	49	- 391.98	-553.77	14.16 15.28	26470.407	0.6046505	
	50	- 530.75	+ 65.40	14.57 15.10	26472.336	0.3861815	
	51	- 36.85	+258.73	13.86 15.16	26441.448	0.5741359	
	52	-112.85	+ 36.47	13.60 14.22	26461.348	0.6603737	
	53	-482.79	-447.74	13.30 13.87		87:	irr.
	54	- 229.39	+592.76	14.22 15.05	26472.412	0.7728973	
	55	-617.73	-816.68	14.38 15.39	26471.323	0.5816930	
	56	-515.93	-541.96	14.37 15.38	26428.437	0.5680030	
	57	+ 635.72	-493.26	14.31 15.06	26471.342	0.7944118	
	58	- 335.44	+277.68	14.49 14.74	26524.233	0.3699057	
	59	-282.90	-65.84	14.20 15.18	26523.231	0.5185176†	
	60	-108.42	-247.33	13.32 14.48	26473.513	1.349464	
	61	+ 280.44	+ 68.07	13.72 14.48	26468.345	2.273582	
	62	- 199.80	+ 45.28	13.88 15.10	26424.515	0.6197937	
	63	- 996.82	-491.46	14.47 15.04	26438.567	0.8259507	
	64	- 448.01	-457.49	14.45 15.02	26466.410	0.3444512	
	65	- 454.49	-474.32	14.77 15.22	26523.238	0.06272282	2
	66	- 133.37	+375.15	14.46 14.95	irr.	0.40745^{\dagger}	
	67	- 178.11	+593.57	14.18 15.28	26470.377	0.5644551	
	68	- 338.18	+545.12	14.15 14.67	26469.366	0.5344773	
	69	-965.76	-530.94	14.10 15.25	26438.468	0.6532165	
	70	+ 417.83	-304.65	14.45 14.94	26524.219	0.3906091	
	71	+ 220.39	+ 47.13	14.38 14.92	26523.271	0.3574826	
	72	+ 477.85	+734.87	14.42 14.94	26471.459	0.3845163	
	73	-532.49	+750.76	13.87 15.18	26472.358	0.5752184	
	74	+ 215.47	+664.83	13.75 15.24	26454.399	0.5032505	
	75	+ 341.44	+591.55	14.42 14.87	26456.501	0.4222508	
	76	+ 113.31	+511.81	14.40 14.82	26523.135	0.3378438	
-			the second second second				

N	GC	51	39
---	----	----	----

CA	TAL	JGU	E-	Con	tinue	1

No.	x''	y''	Magnitudes	Epoch of	Period Remarks
			Max. Min.	Maximum	
77	+ 352.29	+392.42	14.45 14.93	irr.	0.42593†
78	+ 586.10	+146.68	14.17 14.84	27943.307	1.1681179
$\overline{79}$	+1000.12	- 51.02	13.97 15.27	26456.423	0.6082747
80	+1304:	-108:	14.1: 14.8		0.45 or 0.31
81	+ 511.36	+228.72	14.46 14.98	26523.110	0.3894022
82	+ 499.94	+126.98	14.43 14.96	26463.452	0.3358520
83	+ 226.09	+424.66	14.43 15.00	26471.427	0.3566071
84	-1202.81	-74.70	14.09 14.90	26472.382	0.5798722
85	-1010.51	+307.98	14.23 15.09	26523.243	0.7427555
86	+ 293.14	+147.26	13.96 15.18	26470.383	0.6478442
87	+ 113.68	+184.13	14.40 14.90	26454.448	0.3965019
88	+ 98.13	+203.28	14.01 14.81	26523.273	0.6901992
89	- 2.95	+159.29	14.47 14.97	26523.329	0.3748505
90	- 5.30	+137.09	13.81 14.73	26460.432	0.6034020
91	+ 43.72	+144.35	14.25 14.91	26459.480	0.8951422
92	- 317.86	+446.38	14.10 14.58	26473.345	1.3450659
93			not var.		
94	- 504.09	+355.09	14.64 14.95	26463 . 416	0.2539318
95	- 824.80	- 11.05	14.49 14.98	26473.448	0.4049213
96	- 71.20	+ 97.06	13.93 14.82	26455.467	0.6245312
97	+ 225.50	+187.93	14.11 15.16	26523 , 234	0.6918869
98	+ 198.25	+102.38	14.57 15.09	26524.265	0.2805657
99	+ 160.35	+ 50.36	13.77 14.90	26472.390	0.7660839
100	+ 179.49	+ 65.68	14.05 15.05	26434.489	0.5527119
101	+ 444.11	-73.28	14.50 14.94	26523.291	0.3408843
102	+ 361.83	-94.10	14.16 15.22	26468.445	0.6913841
103	+ 283.14	+ 2.35	14.46 14.80	26456.354	0.3288461
104	+ 822.98	-309.01	$14.54 \ 14.95$	26471.370	0.8678506
105	+ 603.23	-246.92	14.57 15.12	26524.300	0.3353375
106	+ 130.35	+ 26.92	$13.88 \ 15.02$	26523.189	0.5699074
107	+ 279.83	-139.13	14.07 15.39	26466.424	0.5141010
108	+ 185.66	-46.36	13.84 14.81	26472.360	0.5944533
109	+ 153.91	- 57.13	13.99 15.03	26469.395	0.7440653
110	+ 158.94	- 87.08	14.41 14.96	26524.256	0.3221024
111 -	+ 27.26	- 0.30	14.18 14.80	26438.498	0.7628923
112	+ 79.83	-103.36	13.92 14.92	26470.380	0.4743558
113	+ 99.99	-187.65	13.94 15.22	26523.244	0.5733636
114	+ 38.08	-101.15	14.00 14.75	20470.416	0.0703000
115	- 345.49	-330.14	14.03 15.21	20407.400	0.0304590
110	- 109,66	+ 33.71	14.12 14.77	20472,437	0.1201327
117	- 207.73	40.22	14,40 14.92	20400.000	0.4210033
118	- 08.8/	- 98.07	10.88 10.02	20410.080	0.0110200
119		- 107.40	14.01 14.00	20412.019	0.5185799
120	- 211,29	-247.01	14.20 10.20	20020.204	0.0400/22
141	- 104.00	-199.98	14.40 14.01	20024.200	0.0041014

NGC 5139

No.	x''	у′′	Magni Max.	tudes Min.	Epoch of Maximum	Period	Remarks
122	-162.92	-261.41	13.99	15.17	26437.512	0.6349307†	
123	+ 46.11	-512.55	14.41	14.90	26473.331	0.4739051	
124	+ 78.88	-626.81	14.37	14.97	26524.107	0.3318614	
125	+ 23.74	-742.59	13.87	15.29	26471.408	0.5928902	
126	+ 822.95	-730.44	14.45	14.97	26453.493	0.3418933	
127	- 880.16	+ 4.31	14.54	14.92	26524.177	0.3052752	
128	-289.77	- 92.09	14.25	14.86	26469.401	0.8349748	
129	+ 192.02	-25.83	14.18	14.74			irr.?
130	-366.17	+900.99	14.30	15.40	irr.	0.4932377	
131	-165.05	-59.95	14.40	14.86	26523.329	0.3921392	
132	-72.44	- 29.31	13.97	14.96	26469.386	0.6556410	
133	-1914.22	+1053.78	13.74	14.53	26473.334	0.31709628	W UMa
134	-942.87	+972.72	13.93	15.20	26466.386	0.6529039	
135	- 184.88	- 37.25	13.87	14.85	26470.314	0.6325795	
136	-154.26	+ 60.08	14.22	14.64	26472.409	0.3919136	
137	-149.54	+ 96.23	14.38	14.90	26473.286	0.3342134	
138	-111.12	- 187.55	12.5	13.6		74.6	irr.
139	- 86.94	+ 65.18	14.00	14.90	26462.404	0.6768666	
140	- 42.65	- 86.80	14.05			short	
141	- 55.47	-47.46	14.05	14.75	Irr.	0.6975651	
142	- 37.35	-2.50	14.2	14.8	00170 201	short	
143	- 31.40	+ 71.40	14.24	14.77	20470.394	0.8207020	
144	- 33.28	+ 22.44	14.33	14.81	20404.329	0.0000000	
140	+ 49.07	-148.01	14.40	14.87	IIF. 96460-206	0.070101	
140	+ 00.90	- 48.03	10.01	14.77	20409.000	0.0331021	
1:19	+ 298.70	-131.04	14.00	12.00	20470.000	0.4220940	
1.10	$\pm .477.33$	± 80.1 18	12.9	15.0	26523 256	0.6827332	111.
145	T 11.00	-442.23	11.07	1.1 0.1	26162 387	0.8001585	
151	± 1010.06	-442.20 ± 753.35	14.07	14.94	26593 333	0.4077805	
152	- 13.84	-48.83	12.8	13.7	20020.000	124.	irr
152	+ 34.46	± 136.32	14 48	14 88	26524 176	0.3864509	
154	+ 169.59	-113.20	14 55	14.72	26524 165	0.3223311	
155	+ 75.25	+237 31	14 43	14 88	26473.344	0.4139117	
156	+ 15.06	-191.94	14.41	14.83	26468.432	0.3591887	
157	+ 1.77	+ 82.58	14 42	14.79	26523.370	0.4064970	
158	- 10.58	-119.80	14.32	14.74	26472.442	0.3673350	
159	-2039.94	-891.45	14.39	14.96	27565.332	0.3431150	
160	- 711.13	+969.21	14.46	14.98	26473.439	0.3972932	
161	- 96.81	-129.27	13.3	13.8		irr.	
162	- 392.40	-252.39	12.9	13.6		irr.	
163	-575.24	+499.91	14.51	14.78	26472.451	0.3132294	
164	+ 152.75	+478.38	13.7	14.0		irr.	prob. red
165	- 69.92	+104.59					

No.	x''	y''.	Magnit Max.	udes Min.	Epoch of Maximum	Period	Remarks
166	- 2.89	+144.71					
167	-352.63	-321.43					
168	-543.66	-201.42	14.96	15.46		0.3212933	

So many of the RR Lyrae variables in this cluster have been shown to be variable in period or form of light curve that this information cannot be included in the table. For further particulars see especially Martin, ref. 118, and Wright, ref. 136.

†Two periods given by Martin.

NGC 5139

Variables Nos. 28, 31, 37, 93 are said by Bailey to be not variable.

Epochs of maximum from ref. D.

Refs. 14, 17, 20, 31, 40, 62, 67, 90, 99, 113, 116, 118, 119, 129, 131, 136, 143, 162, 165. Plates in 20 and 118.

1	- 5.2	-128.5	14.80	16.14	15021.378	0.5206324	765
2	+ 15.8	+ 52.6					894
3	+ 57.9	- 66.0	14.91	16.16	15021.225	0.558207	none
-4	- 43.5	- 8.8	14.9	16.0			559
5	+ 261.0	-22.3	14.76	16.09	15021.239	0.505894	1357
6	-123.9	+ 60.1	14.75	16.19	15021.452	0.5143207	361
7	- 4.8	+ 87.2	14.69	16.25	15021.064	0.4974290	775
8	- 81.7	- 23.4	not var				437
9	- 291.4	-207.8	14.84	16.22	15021.111	0.5415672	226
10	+ 153.6	+138.0	15.03	16.17	15021.270	0.5695127	1291
11	-152.6	-209.7	14.89	16.22	15021.131	0.5078919	321
12	- 3.8	-145.4	15.35	15.98	15021.015	0.3178890	776
13	- 26.0	-137.5	15.08	16.14	15021.323	0.4830535	644
14	- 49.0	-161.0	15.01	16.10	15021.179	0.6358993	537
15	- 90.8	-273.2	14.83	16.24	15021.299	0.5300771	411
16	- 301.4	- 93.1	14.73	16.24	15021.418	0.5115072	221
17	+ 142.4	-440.4	15.24	16.37	15021.265	0.5761344	none
18	+ 97.6	-295.3	15.08	16.34	15021.142	0.5163462	1202
19 .	+ 350.5	-245.6	15.64	16.20		0.631981	1388
20	+ 333.5	-271.6	14.74	16.13	15021.289	0.4912607	1380
21	+ 346.9	+ 17.9	14.88	16.29	15021.171	0.5157298	1386
22	+ 190.2	- 10.7	14.83	16.25	15021.200	0.481466	1320
23	- 113.0	+279.2	14.79	15.70	15021.082	0.5953756	374
24	- 147.6	+ 10.4	15.07	16.09	15021.563	0.6633499	328
25	- 124.4	- 31.4	14.77	16.23	15021.089	0.480048	362
26	-177.4	- 43.0	14.89	16.15	15021.239	0.5977479	296
27	- 110.2	-102.8	15.17	16.21	15021.566	0.5790981	379
28	- 25.0	-105.8	15.03	16.28	24290.335	0.470666	656
29	- 65.2	- 73.6					486
30	- 36.5	+ 58.0	14.88	16.19	22760.635	0.5120891	593

NGC 5272 (Messier 3) α 13^h 39^m.9, δ +28° 38'

CATALOGUE—Continued

NGC 5272

No.	x''	v''	Magnitudes	Epoch of	Period	Remarks
		2	Max. Min.	Maximum		
31	+ 33.1	+ 65.1	14.73 16.25	15021.542	0.5807218	982
32	+ 11.8	+ 60.1	14.86 16.38	15021.108	0.4953526	867
33	+ 70.5	- 89.0	$15.01 \ 16.22$	15021.217	0.5252255	1126
34	+ 135.4	+170.2	14.89 16.16	15021.136	0.5591078	1265
35	- 107.3	-278.2	$15.04 \ 16.24$	15021.032	0.530608	384
36	+ 172.0	- 35.4	14.86 16.26	15021.272	0.5455861	1308
37	- 236.7	+164.7	$15.14 \ 16.02$	15021.248	0.3266402	253
38	- 203.0	+127.7	15.06 16.26	24290.304	0.5580326	279
39	- 243.6	+121.4	15.07 16.17	15021.073	0.5870732	2 49
40	-271.2	+112.4	14.93 16.18	15021.609	0.5515419	234
41	- 93.3	+ 54.0	15.04 16.21	15021.441	0.4850291	407
42	- 78.6	+ 41.0	$14.85 \ 16.27$	15021.515	0.5902069	445
43	+ 99.9	+ 24.7	14.86 16.23	15021.191	0.5405023	1207
44	+ 170.0	+ 99.4	14.75 16.21	15021.368	0.506443	1307
45	- 241.2	-129.9	14.93 16.30	15021.349	0.5368966	252
46	- 128.1	- 51.5	$15.46 \ 16.24$	15021.264	0.613367	355
47	-117.5	- 73.2	14.98 16.20	15021.459	0.5410201	366
48	+ 126.9	-102.7	15.16 15.99	15021.088	0.6278087	1253
49	+ 140.0	-100.7	15.19 16.23	15021.266	0.5482222	1268
50	+ 8.8	-234.0	15.15 16.09	15021.327	0.513088	840
51	+ 30.8	-226.4	15.08 16.21	15021.486	0.5839856	965
52	- 76.8	+152.0	14.99 16.16	15021.485	0.516189	451
53	- 7.4	+122.8	14.70 16.13	15021.006	0.5048891	759
54	- 32.6	+106.4	14.94 16.22	15021.193	0.506493	616
55	-204.2	+324.4	14.85 16.21	15021.699	0.5298114	278
56	- 141.1	+358.6	$15.20 \ 15.94$	22760.623	0.3295969	338
57	+ 155.2	- 0.2	14.97 16.22	15021.618	0.5122311	1292
58	- 86.2	+ 46.2	14.78 16.16	22760.621	0.517101	-425
59	-109.8	-228.4	15.22 16.24	15021.332	0.5888026	378
60	-297.4	-315.4	15.20 16.14	15021.389	0.7077216	222
61	+ 190.2	+363.0	14.88 16.20	15021.076	0.5209367	1321
62	+ 90.2	+417.0	15.21 16.10	15021.331	0.6524063	1187
63	+ 37.2	+341.9	14.93 16.14	15021.094	0.5704204	999
64	+ 114.8	+330.4	15.05 16.10	15021.324	0.6054592	1234
65	+ 125.4	+327.5	14.74 16.09	15021.503	0.6683397	1250
66	-101.4	+121.4	15.20 16.01	15021.323	0.6201973	396
67	- 131.4	+123.0	15.21 16.12	15021.411	0.5683681	351
68	+ 21.9	+174.8	14.8 16.3		0.355974	922
69	+ 80.6	+141.0	15.09 16.18	15021.553	0.5665806	1164
70	+ 37.6	+152.2	15.12 15.70	15021.315	0.486064	1003
71	+160.6	- 2.0	15.12 16.20	15021.168	0.5490517	1298
72	+ 445.5	- 2.2	14.61 16.37	15021.327	0.4560721	1409
73	+438.5	+ 62.2	15.0 16.0	15001 450	0 4001415	1406
74	+ 88.2	+151.0	14.87 16.26	15021.452	0.4921415	1181
75	+ 49.0	+159.5	15.23 15.99	15021.411	0.3140813	1057
10	- 14.4	- 88.2	14.72 16.41	15021.293	0.5017529	710
11	- 94.4	+ 27.8	14.85 16.36	15021.451	0.4593422	404
NGC 5272

123

124

- 259.

_

66.4

-985.

-201.4

15.16

15.3

16.75

16.2

No.	x''	y''	Magnitudes	Epoch of	Period	Remarks
			Max. Min	1. Maximum		
78	+ 47.5	+ 66.4	15 10 16	13 15021 249	0 6119228	1051
79	+ 43.4	+349.4	14.81 16 5	15021.210	0 4832979	1041
80	+416.8	+284.6	15 05 16 9	15021, 220 27 15021 433	0.5385169	1400
81	+ 342.8	+351 1	14 67 16 2	15021,105	0.5291108	1384
82	-102.6	-601.8	14.92 16 2	15021.520 27 15021.527	0.5245027	391
83	- 441.6	+113.4	14.66 16.2	15021.046	0.5012423	181
84	+ 64.0	+165.2	15.20 16.1	4 15021.248	0.5957289	1105
85	+ 306.2	+225.8	15.00 15.8	22760 517	0.355820	1373
86	+ 513.0	-114.2	15.31 16.1	3 15021.016	0.2926615	1422
87	+ 110.6	+ 60.2	15.31 15.9	22760.535	0.357480	1222
88	- 35.0	-70.2	14.9 16.0	24290.324	0.298519	597
89	+ 28.0	-110.8	14.86 16.1	5 15021.507	0.5484778	948
90	+ 97.2	-188.2	14.80 16.2	15021.461	0.5170344	1201
91	- 14.3	-550.0	15.05 16.2	15021 259	0.5301710	713
92	- 29.0	-408.4	14.88 16.2	15021.083	0.5035579	623
93	- 319.4	-396.6	15.30 16.2	2 15021.177	0.6023041	214
94	-488.4	-224.6	14.84 16.2	1 15021.118	0.5236921	173
95	-154.7	+ 15.4	13,73 14.4	2	103.19	318
96	-164.2	-234.0	14.78 16.1	3 15021.019	0.4994538	305
97	- 130.0	-196.7	15.53 16.0	1 15021.524	0.334927	353
98	+ 132.4	- 3.2	not var.			1259
99	+ 201.8	- 55.0	14.8 15.8			1330
100	+ 69.9	+ 97.3	15.3 16.2	2	0.618813	1122
101	+ 46.4	+ 83.7	15.50 16.1	4 15021.101	0.643900	1048
102	+ 58.4	+114.9	15.2 15.9	variable?		1090
103	+ 58.1	+120.4	not var.			none
104	-25.8	+145.5	14.74 16.0	9 15021.288	0.5699246	650
105	- 20.9	+191.6	15.17 15.6	6 15021.315	0.2877445	679
106	-48.0	+168.0	15.17 16.2	0 15021.310	0.5471636	541
107	- 75.8	+335.0	15.02 15.9	9 15021.443	0.3090344	455
108	219.0	+310.9	14.77 16.2	15021.083	0.5196047	264
109	- 89.3	+ 2.7	14.86 16.3	1 15021.033	0.5339259	416
110	- 99.4	-15.8	15.02 16.2	4 15021.397	0.5353700	397
111	-92.7	+ 21.9	14.96 - 16.1	8 15021.402	0.5101921	409
112°	-144.6	-719.4	not var.			333
113	+ 199.8	-689.8	14.90 16.4	3 15021.241	0.5130031	1328
114	+ 11.8	+622.0	15.08 16.2	4 15021.515	0.5977254	873
115	+ 445.0	+664.7	14.69 16.2	5 15021.297	0.5133533	1410
116	- 491.8	+465.2	14.80 16.2	2 15021.441	0.5148090	170
117	+ 89.6	-467.6	15.26 16.2	3 15021.579	0.6005122	1184
118	+ 144.4	-292.2	14.73 16.2	8 15021.272	0.4993795	1277
119	+ 253.4	+106.2	14.73 16.1	6 15021.460	0.5177510	1353
120	- 295.8	+231.4	15.36 16.0	5 15021.284	0.6401377	223
121	- 43.6	+ 56.1	15.41 16.2	5 22760.550	0.5351935	561
122	- 33.5	- 46.4	14.6 16.1		0.5017	608

15021.395

0.5454416

0.752438

244

479

NGC 5272

No.	x''	у′′	Magni Max.	tudes Min.	Epoch of Maximum	Period	Remarks
125	+ 186 3	-132.8	15 41	16.08	15021_029	0.3498210	1317
120	- 15.1	-146.4	15.50	16.03	15021.208	0.3484044	700
120	⊥ 95.6	- 63 6	not vai	r 10.00	10021.200	0.0101011	1198
127	+ 114.6	+131 4	15 07	15 97		0 2922661	1231
120	- 43.6	+772	15.2	16 1		0.305471	560
130	+ 4 2	+ 81.6	15.10	16.13	22760.347	0.5688389	818
131	- 73.2	+ 27.4	15.18	15.94	15021.318	0.2976902	459
132	- 53.6	-22.0	15.3	16.4	24290.387	0.3398479	524
133	- 58.6	+ 43.5	14.89	15.96	15021.482	0.5507230	503
134	-22.4	+ 52.4	14.9	16.3	24290.282	0.6190	669
135	- 27.0	+ 38.0	15.0	16.5		0.56843	636
136	-25.4	+ 33.4	15.6	16.2			643
137	+ 53.0	- 18.8	14.9	16.2	15021.155	0.575146	1072
138	- 263.6	+ 41.9	not va	r.			238
139	+ 34.5	+ 28.0	15.25	16.12	22760.465	0.560004	985
140	- 15.7	+108.9	15.10	15.88	22760.216	0.3331259	708
141	-1497.5	-249.9	14.9	16.4		0.2695477	-18
142	- 30	- 59	15.6	16.6	24290.397	0.568627	620
143	- 34	+ 16	15.4	16.4	24290.337	0.51111	604
144	+ 54	-100	14.8	16.7	24290 , 565	0.59674	
145	+ 29	+ 8	14.9	16.5	24290.528	0.514456	944?
146	+ 96	- 59	14.6	16.5	24290.563	0.596740	1193?
147	- 21	+ 46	15.1	16.3	24290.005	0.34644	671
148	- 7	+ 37	15.3	16.4	24290.170	0.467246	755
149	+ 34	+ 52	14.7	16.5	24290.228	0.54985	
150	+ 69	+ 37	14.8	16.7	24290.359	0.52397	1119
151	+ 4	- 40	14.9	16.3	24290.191	0.51705	
152	2 + 77	+ 50	15.0	16.3	24290.355	0.32641	1151?
153	3 - 38	+ 60	not va	ır.			585
154	+ 2	- 29	12.9	14.0	24647:	15.7677	801
155	5 - 64	- 74					486
150	3 - 21	- 42	not va	ar.			678
157	7 - 17	+ 35	14.2	15.7	24647.650:	0.5283	698
158	3 - 16	- 41	15.2	16.5	24647.564:	0.50809?	703
159	→	+ 16	14.9	16.6	24647.602:	0.5337	714
160) - 9	- 44	14.9	16.1	24647.446	0.64792	742
16.	1 + 1	- 58	15.4	16.4	24647.567:	0.49874	901
162	2 + 28	- 32	not va	ar.			950
16	-10	- 32	not va	ar. 15 0			702
10-	+ - 21	- 30	10.3	10.9	91617 514	0 109690	909
10	5 + 73 6 - 07	+ 20	14.7	16.9	24047.044	0.489038	10.2
10	- 97 7 - 78	- 37	15.1	16.5	21617 419	0.60215	417
10	8 - 15	- 31	11.0	16.0	24047.448	0.09240	447
16	- 40	- 35	not v	10.0 ar	24047.017	0.5770	627
10	- 40	00	not v				0.21

NGC 5272

CATALOGUE—Continued

No.	x''	У′′	Magnitudes	itudes Epoch of		Remarks
			Max. Min.	Maximum		
170	- 28	+ 32	15.1 16.1	24647.716:	0.43725	633
171	- 27	+ 16	15.0 16.1	24647.864	0.4303	638
172	- 21	+ 25	14.9 16.5	24647.700	0.59400	677
173	- 13	+ 39	15.2 16.6	24647.670:	0.606990	
174	- 9	- 34	15.1 16.1	24647.710	0.4082	743
175	+ 42	+ 26	14.9 16.2	24647.914	0.60780	
176	+ 46	+ 32	14.8 16.4	24647.621	0.55599	
177	+ 63	- 29	15.0 - 16.3	24647.953	0.34835	1102
178	+ 79	+ 46	15.2 16.5	24647.755	0.26499	1153
179_{-}	+ 39	-774	not var.			
180	- 19	- 27	not var.			676?
181	- 30	- 14	not var.			
182	- 19	+ 60	not var.			
183	+ 29	+ 7	not var.			944?
184	- 25	- 14	14.9 16.4	24647.841	0.517	645?
185	- 15	+ 32	15.2 16.1			705?
186	+ 12	- 64	15.1 16.1	24647.670	0.675	
187	- 23	+ 9	14.9 16.2	24647.961	0.3927	
188	- 27	+ 24	15.0 16.0	24647.615:	0.3677	641?
189	-25	-21	15.2 16.0	24647.964	0.668	654
190	- 8	+ 28	14.8 16.5	24647.936	0.501	749
191	0	+ 24	15.1 16.1	24647.981	0.512	802
192	- 2	+ 3	15.0 16.1	24647.933:	0.525	783
193	+ 15	- 7	14.8 16.3	24647.777	0.630	881
194	+ 17	- 13	15.1 16.4	24647.758	0.549	892
195	- 13	- 29	15.0 16.2	24647.470:	0.600	720
196	+ 47	+ 1				1052
197	+ 58	+ 10	15.1 16.5	24647.689	0.500075	1092
198	- 23	+ 15	15.2 16.0	24647.923:	0.3617	666
199	- 19	+ 13	14.8 16.3	24647.699:	0.488	
200	- 4	+ 21				769
201	+ -1	- 9				none
202	- 379.7	+101	15.4 15.8			190
203	- 30.2	-308	15.56 15.72	2	0.28719	632
204	- 106.4	- 18	15.76 - 15.93)	0.9170	390

Refs. 1, 8, 10, 11, 14, 17, 19, 20, 22, 25, 28, 31, 32, 38, 40, 43, 45, 50, 55, 56, 601, 61, 76, 80a, 84, 86, 98, 101, 105, 109, 110, 111, 115, 130, 135, 141, 144, 165, 179, M. Plates in 20, 25. Sandage and Roberts (ref. M) strongly suspect v.Z. 329 is variable with small amplitude,

0.15, and hope other observers will try to corroborate this.

Just as for NGC 5139, most of the variables have been shown to have period changes, see especially Martin, ref. 144 and Hett, ref. 141. These cannot be included in the table. The value given for the period is usually from the latest work on the star.

The data for this cluster have been combined from many sources as follows: Positions: Nos. I-137 Bailey, 138-141 Larink, 142-183 Müller, 184-199 Greenstein, 200-201 Shapley. Magnitudes from Greenstein. Epochs: 1-153 from Müller, 154-199 Greenstein, data on No. 202 from Schwarzschild, Nos. 203 and 204 from Sandage, with von Zeipel's positions.

NGC 5272

In a further attempt to clear up some of the confusion of identification of the variables in this cluster (discussed in detail in the last catalogue), I have identified as far as possible the variables with the numbers in von Zeipel's catalogue (Ann. l'Obs. Imp. Paris, Mém., v. 25, F 1-101, 1908). In cases where the variable is definitely not in the catalogue, this is indicated by "none" in the number column. Where no satisfactory identification has been made, a blank is left; and the number is questioned if doubt exists.

There is doubt as to whether vars. 145 and 183 correspond to v.Z. 944 or 961. Shapley's Variable 18 is definitely v.Z. 944; but it is not certain whether his Var. 18 is the same as either 145 or 183.

NGC 5286 α 13^h 43^m.0, δ -51° 07'

No variables found. Ref. 71. No map.

x''	y''	Magn	itudes	Epoch of	Period	Remarks
	-	Max.	Min.	Maximum		
+858	- 95	15.6	16.7	30553.674	0.577415	
-62	-110	15.5	16.6	30554.720	0.588523	64
- 31	- 8	15.4	16.7	30550.623	0.578065	95
- 80	+ 9	15.5	16.6	30556.602	0.337968	56
- 64	+112	15.7	16.7	30519.697	0.380519	61
+122	- 24	15.2	16.6	29786.653	0.62096	202
-210	-225	15.7	16.7	30519.697	0.703423	20
+ 23	- 6	15.8	16.7	30520.617	0.629120	141
+ 31	+ 15	15.5	16.7	30170.656	0.685027	148
+ 85	+ 46	15.8	16.7	30519.697	0.709273	186
+117	+ 68	15.7	16.7	30884.625	0.37799	198
+ 17	- 88	16.0	16.5	30880.665	0.2942387	134
- 49	- 73	16.0	16.7	30556.702	0.341557	83
- 47	+ 52	15.8	16.5	30880.599	0.440041	84
+223	+ 20	15.9	16.5	30519.618	0.28672	227
-149	-175	16.0	16.5	30553.612	0.29667	37
- 60	- 30	15.9	16.4	30519.713	0.370117	68
+ 44	+ 41	16.0	16.7	30519.697	0.37406	166
	$\begin{array}{r} \mathbf{x''} \\ +858 \\ - & 62 \\ - & 31 \\ - & 80 \\ - & 64 \\ +122 \\ -210 \\ + & 23 \\ + & 31 \\ + & 85 \\ +117 \\ + & 17 \\ - & 49 \\ - & 47 \\ +223 \\ -149 \\ - & 60 \\ + & 44 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x" y" Magnitudes Max. $+858$ -95 15.6 16.7 -62 -110 15.5 16.6 -31 -8 15.4 16.7 -80 $+9$ 15.5 16.6 -31 -8 15.4 16.7 -64 $+112$ 15.7 16.7 $+122$ -24 15.2 16.6 -210 -225 15.7 16.7 $+23$ -6 15.8 16.7 $+31$ $+15$ 15.5 16.7 $+85$ $+46$ 15.8 16.7 $+117$ -68 15.7 16.7 $+117$ -88 16.0 16.5 -49 -73 16.0 16.7 $+47$ $+52$ 15.8 16.5 $+223$ $+20$ 15.9 16.5 -149 -175 16.0 16.5 -40 -30 15.9 16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x"y"Magnitudes Max.Epoch of MaximumPeriod $+858$ -9515.616.730553.6740.577415-62-11015.516.630554.7200.588523-31-815.416.730550.6230.578065-80+915.516.630556.6020.337968-64+11215.716.730519.6970.380519+122-2415.216.629786.6530.62096-210-22515.716.730519.6970.703423+23-615.816.730520.6170.629120+31+1515.516.730170.6560.685027+85+4615.816.730519.6970.709273+117+6815.716.730884.6250.37799+17-8816.016.530880.6650.2942387-49-7316.016.730519.6970.440041+223+2015.916.530519.6180.28672-149-17516.016.53053.6120.29667-60-3015.916.430519.7130.370117+44+4116.016.730519.6970.37406

NGC 5466 α 14^h 03^m.2, δ +28° 46′

No. is from Hopmann's Catalogue, A.N., v. 229, p. 209, 1927. Refs. 78, 79, 157. Prints in 78, 157.

NGC 5634 α 14^h 27^m.0, δ -05° 45'

1	- 56.5	- 19.5	16.41	17.39	0.65872
2	- 25.4	+ 83.1	16.19	17.38	
3	-45.1	+ 41.9	16.48	17.47	
4	+ 54.2	-65.2	16.55	17.39	
5	- 11.6	-162.9	16.72:	17.19	
6	+ 43.4	-52.6	16.69	17.05:	
7	- 0.4	- 4.0			

Ref. 156, with plate.

NGC 5694 α 14^h 36^m.7, δ -26° 19' No variables found. Ref. 104. No map.

Baade's Cluster α 15^h 13^m.5, δ +0° 4'

No.	x′′	у′′	Magnitudes Max. Min.	Epoch of Maximum	Period	Remarks
1	- 97	+ 25	16.80 17.55			
2	- 85	-246	16.90 17.60			
3	+143	-166	16.95 17.50			
4	+ 35	-238	16.90 17.60			
5	- 84	+ 94	17.05 17.50			

5 suspected variables.

Ref. 176 with print.

NGC 5897 α 15^h 14^m.5, δ -20° 50′

1	-109	-201	15.8	16.5
2	- 57	- 97	15.8	16.4
3	- 40	- 4	15.8	16.5
4	+71	+ 20	15.5	15.9

Ref. 187 with plate.

NGC 5904 (Messier 5) α 15^h 16^m.0, δ +02° 16'

1	+ 27.7	+161.1	14.31	15.41	27563.794	0.52178673
2	-343.5	- 31.5	14.74	15.60	27601.700	0.526
3	+160.1	+113.7	14.64	15.33	27567.842	0.60018398
4	- 12.3	+73.8	14.65	15.89	27627.708	0.44963886
5	- 7.8	+ 51.6	14.83	16.06	27567.929	0.545903
6	+ 27.2	- 46.6	14.55	15.61	27567.856	0.54883108
7	- 5.1	-191.3	14.42	15.57	27601.730	0.49439008
8	+134.0	-133.2	14.55	15.58	27605.697	0.54622519
9	+195.0	+ 88.0	14.68	15.50	27563.855	0.6988956
10	+107.4	+382.0	14.43	15.77	27567.825	0.53066335
11	-154.5	+ 84.5	14.43	15.58	27563.817	0.59589173
12	-175.5	-17.3	14.40	15.73	27601.762	0.46771968
13	+ 11.0	-65.4	14.75	15.64	27567.800	0.5131237
14	-145.6	+103.7	14.28:	15.34:	27567.974	0.4872433
15	+192.0	+ 3.6	14.84	15.32	27567.908	0.33676094
16	+ 91.0	+ 83.9	14.29	15.53	27567.781	0.64762455
17	- 26.1	+ 44.3	14.80	15.91	27567.723	0.601354
18	+151.7	-107.7	14.83	15.39	27567.773	0.464
19	+233.7	-129.9	14.11	15.68	27601.706	0.46995413
20	-255.5	-25.0	14.50	15.29	27601.729	0.6094760
21	+322.6	+74.0	14.46	15.52	27605.684	0.6048946
22	-205.7	+383.5	not var			
23	-253.4	- 10.9	not var			

NGC 5904

No.	x''	у″	Magni Max.	itudes Min.	Epoch of Maximum	Period	Remarks
24	- 46.8	- 71.7	14.77	15.65	27567.821	0.47837785	
25	- 28.9	-128.0	13.83	14.73	27567.766	short	
26	+ 21.8	+101.5	14.42	15.46	27601.761	0.6225647	
27	- 6.7	- 59.2	14.37	15.74	27888.894	0.4703	
28	+132.2	-121.1	14.50	15.68	27540.882	0.54394489	
29	-374.7	- 76.6	14.56	15.52	27567.700	0.4514	
30	+ 22.8	-212.8	14.80	15.49	27567.761	0.5921760	
31	+151.7	-141.7	14.79	15.36	27567.872	0.30058294	
32	+201.9	-150.6	13.98	15.50	27605.754	0.45778653	
33	- 21.1	+127.5	14.24	15.55	27601.738	0.5014/264	
34	+ 84.3	+ 59.5	14.00	15.52	27507.727	0.20211071	
30	- 12.2	-114.7	14.08	15.10	21001.800	0.30811974	
30	- 8.4	- 52.2	14.90	15.91	27805.769	0.0277	
01 90	+ ++./	-07.0	14,49	15.00	27005.702	0.43879470	
20	- 195 2	-205.2	14.45	15.61	27563 832	0.5890352	
-10	-125.5 ± 121.8	-203.2 ± 113.5	14.20	15.01 15.26	27605.698	0.31732857	
10	+ 19.3	+231.4	14 23	15.20 15.64	27567 879	0.48857528	
42	-123 2	-120.8	11.20	12 24	27567 8	25.738	Sp.
43	-201.8	+154 3	14 82	15 48	27601 767	0.6602275	P +
44	-102.5	+ 31.1	14.97	15.33	27601.732	0.247?	
45	-116.7	+ 65.7	14.74	15.90	27567.774	0.61663546	
46	- 80.0	+ 69.1	not var				
47	-75.3	+ 58.1	14.84	15.96	27563.861	0.5397300	
-48	-62.5	+106.3	not var	-			
49	+ 52.7	+177.5	not var	<i>-</i> .			
50	+ 38.0	+109.1	14.00:	14.54:		irr.?	Sp.
51	·+ 0.3	+135.5	var?				
52	+107.9	+ 35.3	14.49	15.57	27563.804	0.50178498	
53	+ 68.9	+ 19.2	14.98	15.28	27601.70	0.37360	
54	+ 30.3	+ 57.2	14.62	15.68	27567.721	0.45410915	
55	+ 80.1	-163.2	14.87	15.26	27601.734	0.32889680	
56	- 68.9	+ 96.5	14.75	15.86	27889.931	0.53469099	
57	- 30.6	+ 99.7	14.94	15.43	27567.897	0.28467869	
58	- 605.1	+168.2	14.63	15.65	27601.716	0.491266	
59	- 150.0	- 35.5	14.42	15.33	21040.936	0.54202572	
60	- 109.7	+ 8.2	15.04	15.74	27907.79	0.285218?	
10	- 204.9	- 31.4 9.16 0	14.03	15.00	27507.820	0.30301702	
63	± 212.0	- 210.8	14.75	15.40	27001.704	0.201409	
64	-51.9	-2.18 0	14.20	15.64	27507.831	0.49707710	
65	- 150 0	- 03.8	14.04	15.60	27698 790	0.48065810	
66	+ 218.3	+406.8	14.20	15.36	27567 813	0.35068	
67	-1028_{-2}	-59.8	14 83	15.30	27567 733	0.349046	
		00.0	11.00	10.00	21001.100	0.010010	

NGC 5904

No.	x''	y''	Magnitudes Max. Min.	Epoch of Maximum	Period Remarks
68	+ 897.5	+ 47.6	14.80 15.33	27628.727	0.3342771
69	+ 653.3	+751.6	14.80 15.72	27567.761	0.49487432
70	+ 393.8	+626.4	14.55 15.63	27567.930	0.5585282
71	+ 664.1	+290.3	14.45 15.70	27541.011	0.5024681
72	+ 689.7	+ 38.3	14.53 15.57	27596.82	0.562
73	+ 17.3	+604.7	14.63 15.31	27601.753	0.34011278
74	+ 202.8	+162.8	14.18 15.46	27626.684	0.45399611
75	+ 78.6	-412.8	14.66 15.42	27596.816	0.6854141
76	+ 80.5	-309.2	14.73 15.18	27563.813	0.4324211
77	-171.5	-184.8	14.68 15.42	27605.721	0.8451134
78	+ 65.5	+159.7	14.86 15.28	27567.727	0.26481742
79	- 133.5	-32.2	14.95 15.51	27567.884	0.33313840
80	- 48.6	+111.6	15.05 15.54	27562.986	0.33654242
81	-72.2	-121.7	14.62 15.54	27567.972	0.5573241
82	- 67.8	+ 12.4	14.86 15.72	27563.798	0.5584455
83	- 84.7	- 87.8	14.80 15.66	27567.783	0.5533080
84	+ 43.7	- 31.9	11.54 12.61	27602	26.5 Sp.
85	+ 38.3	- 34.4	14.80 15.70	27567.970	0.52741
86	+ 34.6	- 33.0	14.50 15.83	27567.856	0.56733
87	+ 122.0	- 1.8	14.84 15.21	27540.914	0.7383875
88	+ 65.2	+ 61.8	15.08 15.48	27563.832	0.32808270
89	+ 60.0	+ 64.7	14.79 - 15.69	27626.707	0.55844189
90	- 44.7	+ 15.3	14.67 15.88	27540.828	0.5571534
91	- 36.0	+ 35.0	15.04 15.96	27567.927	0.584944
92	- 56.6	-123.5	14.28 15.58	27567.963	0.46358
93	+ 44.0	- 35.7	14.54 15.81	27567.771	0.55231
94	- 23.5	+ 17.4	15.26 - 16.11	27601.728	0.53141
95	-47.2	+102.8	15.13 15.80	27626.689	0.29082
96	- 12.4	+ 32.9	14.96 - 16.15	27563.778	0.51225
97	+ 48.9	-92.5	14.18 15.61	27601.754	0.54466
98	+ 37.3	+ 20.0	15.26 15.71	27605.737	0.30639
99	+ 34.4	- 0.1	15.32 15.89	27567.739	0.32134
100	+ 2.8	+ 48.7	15.30 16.01	27628.710	0.29434
101-	-281.6	+ 36.0	17.15		SS Cyg?
102	+ 14.8	- 14.8			prob. RR Ly
103	+ 20.5	- 8.8			prob. RR Ly

Epochs from ref. K, unpublished.

Refs. 2, 3, 4, 5, 6, 7, 11, 12, 14, 15, 17, 20, 24, 26, 31, 33, 40, 42, 53, 54, 60, 82, 137, 165, K. I lates in 20, 33, 137.

NGC 5986 α 15^h 42^m.8, δ -37° 37′ 1 variable at a radial distance of 1′.7 from centre.

Refs. 14, 20. No map.

Remarks	Period	n of uum	Epoch Maxim	tudes Min.	Magni Max	У″	x''	No.
Sp.	5.70	3 1.	29406.8	14.5	13.1	+ 49	-137	1
				15.3	14.7	- 19	+ 22	2
short per.				16.3	15.6	+ 56	+104	3
short per.				16.2	15.6	+ 61	- 85	-1
short per.				16.2	15.7	- 67	+ 14	5
S Sco	7.13	17°	32036	15.8	9.3	+296	+520	6
R Sco	2.53	22	32142	15.5	9.5	+112	+502	7
T Sco			00551		6.8	+ 2.7	+ 4.0	Nova

NCC 600	2 (Massie	r 80) o	/ 16h 14m	8 1 6	$-22^{\circ}52'$

A suspected variable near this cluster is No. 101570 in Russian "Catalogue of Stars Probably Variable," 1951.

Refs. 20, 69, 122, 148, 165. Plates in 20, 148. Ref. 122 gives bibliography of nova.

1	-281	+ 42	13.46	13.97	29706.315	0.288872	
2	-248	-195	13.05	14.10	29676.448	0.5356817	
3	-208	-507	12.92	14.08	29723,221	0.506651	
4	-185	-340	11.0	12.5		semireg.	Sp.
5	-185	- 93	13.57	13.99	29522.035	0.622401	
6	-115	+318	13.54	14.09	29705.377	0.320504	
7	-113	+231	12.99	14.28	29748.231	0.4987743	
8	-110	+111	12.88	14.22	29676.458	0.5081753	
9	-104	+105	12.75	14.16	29676.332	0.5718921	
10	- 68	+159	12.68	14.18	29717.391	0.4907161	
11	- 64	-297	13.32	14.14	29496.021	0.4930763	
12	- 53	-207	13.04	14.38	29676.323	0.4461309	
13	- 47	+270	12.37	13.08			Sp.
14	- 47	-244	12.96	14.40	29717.295	0.4635292	
15	- 32	+436	12.98	14.25	29496.035	0.4437854	
16	- 29	+ 69	13.05	14.18	29705.381	0.5425452	
17	- 8	+ 20	13.40	13.74	29708.319	0.855469	
18	+ 4	+ 27	12.84	14.20	29676.446	0.4787915	
19	+ 11	+358	12.76	14.18	29511.075	0.4678119	
20	+ 13	- 63	13.24	13.60	29676.381	0.3094164	
21	+ 19	- 4	12.73	14.10	29705.436	0.471986	
22	+ 34	+ 80	13.40	13.98	29676.410	0.6030634	
23	+ 38	- 26	13.26	13.77	29676.389	0.2985478	
24	+ 49	+ 48	13.12	14.06	29676.450	0.5467733	
25	+ 70	+ 70	13.08	14.08	29723.276	0.6127352	
26	+ 94	- 72	12.80	14.14	29538.993	0.5412200	
27	+ 118	+255	12.90	14.09	29723.260	0.6120184	
28	+ 259	+ 84	12.60	14.02	29676.411	0.522322	
29	+ 326	+598	12.88	14.02	29705.367	0.5224857	
30	+ 340	- 69	13.29	13.87	29676.458	0.2697501	
31	+ 353	+ 45	12.72	14.03	29676.272	0.5053135	

NGC 6121 (Messier 4) α 16^h 20^m.6, δ -26° 24′

N	G	C	6	1	2	1	
_	_		-		_	_	

No.	x''	y''	Magnitudes	Epoch of	Period	Remarks
			Max. Min.	Maximum		
32	+746	- 40	12.98 13.96	29705.446	0.579109	
33	+ 805	+630	12.70 13.96	29676.340	0.6148277	
34	- 820	+416	13.16 14.36	29723.338	0.554843	
35	- 377	+ 62	13.44 14.15	29705.441	0.627042	
36	- 208	-259	13.26 14.18	29676.370	0.541310	
37	- 39	+ 2	$13.46 \ 13.76$	29522.064	0.247352	
38	- 23	- 92	13.38 14.09	29496.053	0.577848	
39	+ 1	- 80	13.62 14.06	29676.463	0.623980	
40	+ 25	+ 49			0.40151	
41	+ 65	-150	13.53 13.97	29676.402	0.2517311	
42	+ 377	+558	13.33 13.78	29526.164	0.303708	
43	+1263	+332	12.92 13.48	29748.245	0.320637	

Refs. 21, 90, 93, 126, 138, 145, 161, 165. Plates in 90, 126.

NGC 6144 α 16^h 24^m.2, δ -25° 56′

1	+481	-117	15.3	16.3	

Ref. 187.

NGC 6171 α 16^h 29^m.7, δ -12° 57′

1	- 112.8	-522.0]14.16 [16.75	long per.
2	+ 148.8	-388.8	15.62	16.29	
3	- 224.4	-183.6	15.55	16.14	
4	- 99.6	-156.6	15.64	16.14	
5	+ 231.0	-161.4	15.74	16.21	
6	- 10.8	-67.2	15.68	16.15	
7	+ 42.0	-61.2	15.57	16.64	
8	+ 12.0	-42.0	15.57	16.52	
9	-26.4	- 19.8	15.91	16.33	
10	- 57.0	+ 8.4	15.48	16.65	
11	+ 9.6	+ 33.0	15.69	16.46	
12	+ 58.8	+ 61.2	15.27	16.48	
13	- 27.0	+72.0	15.45	16.59	
14	+ 17.4	+ 82.2	15.35	16.45	
15	+ 19.2	+120.0	15.57	16.12	
16	- 67.2	+113.4	15.69	16.51	
17	- 99.0	+71.4	15.35	16.45	
18	+ 77.4	+215.4	15.75	16.46	
19	+ 232.8	+162.6	15.77	16.25	
20	+ 31.2	+ 51.0	15.66	16.40	
21	+ 81.0	-144.6	16.33	16.78	
22	-1354.2	-183.0			
23	-263.4	+ 19.2	15.61	16.13	
24	0.0	+ 8.4	15.66	16.46	

Ref. 121, with chart.

No.	x''	у''	Magni Max.	tudes Min.	Epoch of Maximum	Period	Remarks
1	+73.06	- 24.86	13.2	15.0	27685.763	1.45899	816, Sp.
2	-54.10	- 3.04	12.6	14.1	27308.868	5.11003	306, Sp.
3	-127.70	+ 16.52	15.58	15.79	prob. 1	iot var.	135
4	-47.34	+ 58.18	15.04	15.23	prob. r	ot var.	322
5	+ 71.62	- 14.06	14.33	14.94	24313.429	0.298?	806 <i>β</i>
6	+ 92.68	+ 76.60	13.5	14.8	27274.867	2.11283	872, Sp.
7	- 39.78	-82.72	14.72	15.17	24313.102	0.24?	344
8	- 93.02	+ 11.29	14.2	15.6	28038.654	0.750306	206
9	+ 71.62	- 14.06	14.0	15.1		short?	806α
10	-5.40	- 70.73	13.1	14.0		semireg.	487, Sp.
11	-45.78	-75.88	12.9	13.8		92.5	324, Sp.
12	-105.88	+ 53.46	15.0	15.35	prob. 1	iot var.	187
13	-45.37	- 31.30	14.26	14.50	prob. r	ot var.	327
14	+ 3.18	+207.64	16.16	16.45	prob. 1	iot var.	527
15	+79.03	-115.34	13.32	13.67		irreg.	835

NGC 6205 (Messier 13) α 16^h 39^m.9, δ +36° 33'

Var. No. 15 and period for No. 11, found by Arp, unpublished, ref. H. Numbers in righthand column are identification in Ludendorff's Catalogue, *Potsdam Pub.*, v. 15, no. 50, 1905. Kollnig-Schattschneider's No. 5, for which the Ludendorff no. was erroneously given as 200, is the same as No. 8 above.

Variability of Nos. 3, 4, 12, 13, 14 questioned by Arp and Sawyer from unpublished material. Refs. 18, 20, 23, 27, 29, 30, 37, 40, 76, 133, 134, 142, 147, 165. Plates in 20, 134.

NGC 6218 (Messier 12) α 16^h 44^m.6, δ -01° 52′

1	+34	-62	11.9	13.2	27306.708	15.508	Sp.
D (44		0 101 105	DI 1 100				

Refs. 11, 102, 113, 123, 124, 165. Plate in 123.

NGC 6229 α 16^h 45^m.6, δ +47° 37′

NGC 6229

No.	x''	У″	Magnitudes Max. Min.	Epoch of Maximum	Period	Remarks
16	+ 47.0	- 24.2	17.31 17.94			
17	- 96.3	-75.0	17.08 17.72			
18	- 36.1	+ 32.2	17.34 18.00			
19	+ 53.4	- 44.4	16.96 18.00			
20	- 27.5	- 36.1	16.91 18.05			
21	+117.3	- 61.6	17.12 17.94			
22	+ 4	- 7	15.2 16.3			prob. slow

Note: Var. No. 1 in 1939 catalogue is now No. 8. Refs. 36, 113, 156, 187. Plate in 156.

NGC 6235 α 16^h 50^m.4, δ - 22° 06'

	$\frac{1}{2}$	-16 + 58	+ 39 -211	$\frac{16.5}{16.5}$	17.2 17.3	
--	---------------	----------	-----------	---------------------	--------------	--

Ref. 187 with plate.

NGC 6254 (Messier 10) α 16^h 54^m.5, δ -04° 02'

1	+ 5	+ 22	13.2	13.8			Sp.
2	+ 30	+120	11.9	13.7	26607.712	18.754	Sp.
3	-209	+106	13.10	13.82		7.87	

Var. No. 3 found by Arp, unpublished, ref. H. Refs. 14, 102, 113, 123, 124, 165. Plate in 123.

NGC 6266 (Messier 62) α 16^h 58^m.1, δ -30° 03'

1	+ 41.0	+ 6.1
2	- 26.6	-68.9
3	- 89.2	- 5.8
-1	- 94.6	- 39.6
5	-163.4	+123.4
6	-81.2	+ 33.1
7	+ 22.6	+169.1
8	- 94.6	+163.4
9	-92.7	+214.0
10	-452.7	+160.0
11	-456.2	+128.3
12	-203.4	+268.9
13	+ 1.6	+ 30.2
14	-92.2	+264.7
15	+122.8	+303.0
16	- 74.8	+ 94.1

No.	x''	у′′	Magnitudes Max. Min.	Epoch of Maximum	Period	Remarks
17	- 21.4	+102.7				
18	- 33.4	+ 91.4				
19	- 15.3	+ 65.2				
20	+131.4	+159.8				
21	+105.4	+ 80.6				
22	+ 62.6	+ 12.6				
23	- 74.3	- 37.4				
24	+ 62.6	- 39.0				
25	+150.4	- 73.4				
2 6	-186.8	-302.1				

Refs. 14, 20 with plate.

NGC 6273 (Messier 19) α 16^h 59^m.5, δ -26° 11′

1	+ 4	+ 48	14.1	15.1	
2	+14	+123	13.4	14.7	
3	-28	- 6	14.2	15.2	
4	-2	- 24	15.1	15.7	

Ref. 152 with plate.

NGC 6284 α 17^h 01^m.5, δ -24° 41′

1	- 24	+ 36	15.6	16.1
2	- 47	- 17	16.1	17.0
3	-28	- 13	15.3	15.7
-1	+ 22	- 18	15.4	16.3
5	+109	-205	16.4	17.0
6	+139	+221	15.9	16.4

Ref. 152 with plate.

NGC 6287 α 17^h 02^m.1, δ -22° 38′

1	-152	-40	16.2	17.1		
2	+ 46	-26	15.7	15.9		
3	+ 26	+44	16.1	16.8		

Ref. 152 with plate.

NGC 6293 α 17^h 07^m.1, δ -26° 30′

1	+ 81.0	+49.5	15.9	16.6		
2	-135.6	+64.5	15.8	16.7		
3	+48.6	+18.6	15.5	15.8		
4	+ 92	-81	16.1	17.1		
5	+78	-83	15.7	16.5		

Refs. 51, 152 with plate.

NGC 6266

NGC 6333 (Messier 9) α 17^h 16^m.2, δ -18° 28′

No.	x''	y''	Magni	tudes	Epoch of	Period	Remarks
			Max.	Min.	Maximum		
1	+ 91	- 76	15.6	16.9	29427.886	0.585727	
2	+ 40	- 31	15.6	16.4	29436.854	0.628191	
3	+207	-210	15.7	16.85	32000.735	0.605397	
4	+ 23	- 35	15.8	16.95	30520.749	0.670076	
5	+ 34	- 7	16.0	16.8	29435.870	0.274708	
6	- 70	- 14	15.7	16.95	29435.870	0.607795	
7	-111	- 80	15.95	17.2	29434.860	0.628456	
8	- 73	- 99	16.05	16.9			
9	+334	-191	16.0	16.75	30933.704	0.322990	
10	+ 37	+ 26	16.2	16.9	30553.653	0.242322	
11	- 4	- 7	15.7	16.8			
12	-275	-136	15.85	16.95	29408.951	0.571784	
13	+259	+ 11	16.7	17.8	30554.694	0.47985	

Ref. 32a, 87, 163, 177 with plate.

NGC 6341 (Messier 92) α 17^h 15^m.6, δ +43° 12'

1	+127.5	+ 41.3	14.64	15.53	27340.211	0.702807	
2	+ 91.2	+ 69.2	14.50	15.52	27340.329	0.643886	
3	+ 53.7	+252.7	14.58	15.70	27340 , 344	0.637494	
4	- 76.0	+ 58.0	14.52	15.43	27340.111	0.628911	
5	+ 81.6	- 53.7	14.50	15.51	27340.302	0.619707	
6	+ 38.7	+ 43.3	14.53	15.40	27340.360	0.600001	
7	+ 1.6	- 50.5	14.14	14.58	27340.373	0.515075	
8	+208.9	+208.0	14.70	15.79	27430 . 366	0.6735605	
9	+ 18.0	- 48.1	14.75	15.24	27340.218	0.61	
10	+ 83.0	+ 36.3	14.79	15.39	27340.283	0.377315	
11	+ 71.2	- 67.1	14.74	15.29	27430.301	0.3084416	
12	- 29.9	- 97.8	14.80	15.16	27340.009	0.4099586	
13	+153.4	- 60.1	14.93	15.08			
14	-316.0	+245.7	14.80	15.10	27340.089	0.346178	field,
							W UMa
15	+ 30	-102	14.6	15.2			
16	- 2	+77	14.0	14.5			

Of 2 other stars suspected by Nassau as variables, his No.15 is considered non-variable, No. 16 is still suspect, ref. 184.

Refs. 64, 76, 114, 120, 125, 153, 184. Plates in 120, 184.

1100 0000	u 11 10	, 0 11 1				
1	- 15	- 24	16.3	17.2		
2	+101	-110	16.8	17.1		
3	- 24	+ 45	16.0	[17.5]		
4	+187	+ 47	15.9	[17.5]		
5	-255	+152	15.7	[17.5]		

NGC 6356 α 17^h 20^m.7, δ -17° 46'

Ref. 187 with plate.

No.	x''	У″	Magnitudes Max. Min.	Epoch of Maximum	Period	Remarks
1	00	00		-		
2	- 29	-100				
3	- 83	- 89				
4	- 79	- 88				
5	+ 81	- 14				
6	+ 54	+175				
7	+ 22	+104				
8	-263	+108				
9	-207	+138				
10	+186	+352				
11	- 28	+ 48				
12	-245	-104				
13	-234	-120				
14	+370	+ 28				
15	+ 51	+ 2				

NGC 63	362 α	17^{h}	$26^{m}.6.$	δ	-67°	01'
---------------	-------	----------	-------------	---	---------------	-----

2 unpublished variables.

Refs. 47, 87. No map.

NGC 6366 α 17^h 25^m.1, δ -05° 02'

1	- 26	- 42	15.5	17.0
2	+305	-390	15.7	16.8

Ref. 134, with plate.

NGC 6397 α 17^h 36^m.8, δ -53° 39′

1	+210.7	+448.4	11.2	16.0	13727.6 314.6
2	-279.0	-424.6	13.8	14.8	45 or 60?
3	-220.0	- 33.5	14.6	15.5	33119.320 0.330667

Unpublished co-ordinates and magnitudes for No. 3 from Swope, ref. O. Refs. 11, 20, 66, 90, 183. Plate in 20.

NGC 6402 (Messier 14) α 17^h 35^m.0, δ -03° 13'

	1	+ 17	+ 47	14.3	16.0	18.75	Sp.
	2	-116	-119	15.4	16.3	2.7952	Sp.
4	3	- 3	- 90	16.2	17.0		
4	ŧ	+169	+73	16.3	17.5		
ł	5	-136	+ 90	16.1	17.5		
(3	+ 34	- 77	15.8	16.4		
,	7	+ 62	- 97	14.9	16.2	13.59	Sp.
	3	+ 96	+ 35	16.6	17.7		
9	.)	+151	- 39	16.3	17.5		
1)	- 51	-205	16.3	17.4		

Variable Stars in Globular Clusters

CATALOGUE—Continued

NGC 6402

No.	x''	y''	Magni Max.	tudes Min.	Epoch of Maximum	Period	Remarks
11	+196	-223	16.0	17.3			
12	+224	-177	16.2	17.6			
13	- 29	-118	16.3	17.6			
14	+ 54	+ 1	16.2	17.5			
15	-135	+147	16.1	17.5			
16	- 79	- 36	16.2	17.4			
17	-228	+122	14.8	15.7			Sp., field?
18	+ 61	- 22	16.1	17.7			
19	-128	+ 2	16.3	17.6			
20	-145	+ 98	16.3	17.4			
21	+72	+125	16.3	17.4			
22	+70	+ 95	16.4	17.6			
23	+74	+281	15.9	17.4			
24	- 2	+75	16.1	17.6			
25	-28	-312	16.4	17.5			
2 6	- 85	+ 27	16.5	17.5			
27	-421	+151	15.4	16.2			
28	-465	+372	15.0	16.0			
29	- 68	-152	15.7	16.2			
30	+ 76	-12	16.2	17.5			
31	- 41	+ 32	16.0	17.0			
32	+ 36	+147	16.2	17.1			
33	-138	+ 12	16.2	17.3			
34	- 70	+ 26	16.4	17.6			
35	-112	- 49	16.2	17.4			
36	+204	-346	16.4	17.5			
37	+ 5	+ 18	16.4	17.7			
38	+ 11	- 17	16.0	17.0			
39	+ 46	- 2	16.1	17.6			
40	+253	+310	16.4	17.1			
41	- 13	- 3	16.0	17.1			
42	+ 36	+ 12	15.9	17.1			
43	+ 68	+ 23	16.2	17.3			
44	+ 20	+116	16.3	17.5			
45	- 90	+ 94	15.7	10.4			
46	+ 91	- 66	10.4	17.4			
47	- 89	+ 26	16.5	17.0			
48	- 4	+ 40	10.3	17.7			
49	- 98	- 19	10.0	10,9			
50	- 15	- 38	10.1	17.0			
51	+104	- 305	10.5	17.0			
52	+ 82	+ 39	10.5	17.0			
53	+134	+129	10.4	17.6			
54	+121	+113	10.0	17.0			
66	+ 33	+100	10.0	17.0			

No.	x''	y''	Magnitudes Max. Min	Epoch of Maximum	Period	Remarks
56	- 68	-184	16.4 17.	4		
57	+134	-116	16.3 17.	6		
58	-123	- 34	16.4 17.	3		
59	- 32	+ 30	16.4 17.	7		
60	+ 41	+ 54	16.2 17.	7		
61	+ 12	- 43	16.1 17.	7		
62	-232	-154	16.5 17.	6		
63	+122	- 63	16.5 17.	4		
64	- 51	-169	16.5 17.	5		
65	-125	+ 13	16.4 17.	2		
66	-133	+ 37	16.6 17.	4		
67	+ 34	+ 14	16.1 17.	5		
68	+ 10	- 19	16.6 17.	5		
69	+140	+ 26	16.6 17.	3		
70	+ 43	- 23	16.0 17.	2		
71	-116	- 50	16.5 17.	7		
72	+122	-119	16.5 17.	5		

NGC 6402

Refs. 102, 113, 117, 123, 165. Plate in 123.

NGC 6426 α 17^h 42^m.4, δ +03° 12'

L .	-170	+44		
2	-204	53		
3	- 94	-33		
1	- 77	-74		
5	- 68	-22		
3	- 46	+52		
7	+ 10	- 4		
3	- 15	-53		
)	- 39	-85		
)	+ 46	+11		
	+285	- 7		

Variables found by Baade, unpublished, ref. I; positions measured by Sawyer, ref. R.

1	-67.5	+34.4	17.29	17.65	32416.672	0.269949	222	
2	+ 0.5	+39.7	17.18	18.28	32740.861	0.481903	133	
3	+14.7	+37.2	17.30	18.11	32705.874	0.223892	44	
4	+25.6	+ 8.3	17.27	18.59	32387.747	0.563826	170	

NGC 6522 α 18^h 00^m.4, δ - 30° 02'

No.	x''	y''	Magnitudes Max. Min.	Epoch of Maximum	Period	Remarks
5	+66.0	-42.6	17.62 18.09	32349.871	0.222755	37
6	+96.5	+30.5	17.77 18.23	32416.753	0.192392	247
7	-51.5	+62.7	17.02 17.61		irreg.	172, field
8	-20.2	+49.6	15.94 17.11	32290.987	0.635019	27, field
9	-19.5	-64.9	16.79 17.27	32740.786	0.426448	232, field

New variables found by Baade, light elements by S. Gaposchkin, ref. I.

Baade considers Nos. 2, 3, 4, 5, cluster members, Nos. 1 and 6 possible members, 7, 8, 9, field stars. Numbers at right are those assigned by Baade and Gaposchkin to variables in this galactic centre field.

Ref. 164.

NGC 6522

NGC 6528 α 18^h 01^m.6, δ -30° 04'

Baade finds a few variables from rich galactic centre field projected against this cluster, but considers no variables yet found are cluster members. Ref. I.

NGC 6535 α 18 ^h	01 ^m .3, δ	$-00^{\circ} 18'$
-----------------------------------	-----------------------	-------------------

1	-197	+65	16.3	17.3		

1 variable unpublished? Ref. A. Ref. 187 with plate.

NGC 6539 α 18^h 02^m.1, δ -07° 35'

1 unpublished variable. Ref. A.

NGC 6541 α 18 ⁿ 04 ^m .4, δ -42	S -	14′
--	-----	-----

1	-18	-126	12.5	[16]
---	-----	------	------	------

New position for Wood's variable determined by McKibben-Nail, ref. J. Refs. 63, 70. No map.

NGC 6553 α 18^h 06^m.3, δ -25° 56′

1	+186	+ 20		().5642
2	+75	-152		(0.5818 prob. field
3	- 23	- 38		(0.4886
4	+ 16	- 2]100)
5	- 71	-12]100)
Nova	-131:	-281:	8 [12	30955	N Sgr 1943

2 suspected variables.

Unpublished data on new variables from Thackeray, co-ordinates of nova by Thackeray and Morrisby, ref. P.

Refs. 51,166 (cluster no. is misprinted as 6533), 178. No map.

NGC 6584 α 18^h 14^m.6, δ -52° 14′

No variable in cluster. Ref. 71. No map.

No.	x''	y''	Magni	tudes	Epoch of	Period	Remarks
			Max.	Min.	Maximum		
1	+174.0	+188.5	15.1	16.4			
2	- 47.3	+ 63.1	14.3	14.8			
3	- 32.9	+111.0	14.6	15.4			
-4	- 34.5	+ 33.6	13.6	14.8	32759.765	14.0 :	Sp.
5	- 44.8	+ 16.4	14.9	15.8			
6	+ 34.1	+ 50.4	14.3	15.2			
7	+172.2	+102.7	15.9	17.0			
8	+227.3	-222.3	14.9	16.3			
9	-158.6	-252.4	14.9	15.9			
10	+ 96	- 79	13.5	14.6			
11	- 14	+ 35	15.0	16.3			
12	+148	- 49	14.9	16.5			
13	- 92	- 24	15.2	16.7			
14	-131	-100	15.7	16.2			
15	-472	-186	15.8	17.0			
16	+432	-372	15.9	17.0			

NGC 6626 (Messier 28) α 18^h 21^m.5, δ -25° 54'

Refs. 11, 14, 20, 165, 170. Plate in 20.

NGC 6656 (Messier 22) α 18^h 33^m.3, δ -23° 58′

1	- 54.0	- 10.0	13.9	14.9	29425.892	0.615543	348
2	+158.6	+ 69.2	13.1	14.3	29436.917	0.6418	857
3	+214.7	+420.2	14.6	[15.2]	29434.918	0.340	
-1	- 4.0	- 68.0	13.6	14.6	29438.96	0.716391	465
5	-178.2	- 33.8	12.0	12.8			158, Sp.
6	- 74.4	-100.0	13.6	14.5	29429.938	0.638547	299
7	-342.4	+411.2	13.5	14.5	29424.947	0.6495191	82
8	- 39.5	- 64.8	12.0	12.7	13373.6	61:	382, Sp.
9	-211.2	- 35.0	12.7	13.3	16761.5	87.71	135, Sp.
10	- 39.0	-125.0	13.5	14.6	29438.919	0.646020	389
11	- 14.4	+ 14.0	12.9	13.8	29436.917	1.69050	461, Sp.
12	+ 0.8	- 77.8	14.2	14.5	var.?		531
13	+ 76.4	+158.9	13.5	14.5	29439.920	0.6725217	719
14	+250.8	+486.4	13.8	[15.5]	18160.6	200.2	field, Sp.
15	+115.3	- 83.2	14.0	14.5	29439.844	0.3721	804
16	+185.0	- 17.8	14.0	14.5	29429.938	0.3237	877
17	-438.0	+126.0	14.6	[15			
18	- 86	+433	13.7	14.4	29425.892	0.3249	259
19	- 33	+130	13.9	14.5	29424.947	0.384010	381

No.	x''	y''	Magnitudes	Epoch of	Period	Remarks
			Max. Min.	Maximum		
20	-120	-123	13.7 14.5	29429.938	0.430061	221
21	+ 36	+ 88	13.8 14.8	29425.892	0.3265	601
22	-1089	+213	13.7 14.9	29424.947	0.624538	
23	- 5	- 14	14.1 14.9	29432.919	0.3557	505
24	- 26	+ 10	13.8 14.2	29425.892	0.415:	427
25	+326	+375	13.9 14.4	29425.892	0.4023595	952

NGC 6656

Numbers at right identify star in Chevalier's catalogue, $Z\delta$ -Sè Ann., v. 10, C, pp. 1-51, 1918.

Refs. 11, 14, 20, 48, 68a, 81, 155, 165. Plates in 20, 155.

NGC 6712 α 18^h 50^m.3, δ -08° 47'

1	- 63	- 17	15.8	17.0			
2	+71	+ 17	14.0	14.9	28728:	105:	AP Sct
3	- 28	- 96	16.2	17.0			
4	+181	- 28	16.4	16.9			
5	+ 67	- 74	15.6	16.8			
6	+ 18	- 39	15.6	16.6			
7	-130	- 17	14.2	[17.0			
8	+ 24	+ 60	14.6	15.8			
9	- 1	+290	16.4	[17.4]			
10	- 99	+ 30	15.2	16.0			
11	-122	-339	16.0	16.6			
12	+ 31	+ 38	16.0	17.4			

Co-ordinates of No. 1 shifted slightly to conform with other variables. Some unpublished variables, ref. A.

Refs. 36, 151, 187. Chart in 151, plate in 187.

NGC 6715 (Messier 54) α 18^h 52^m.0, δ -30° 32'

1	+ 83	+ 10	16.7	17.5	
2	- 6	+ 90	16.8	17.5	
3	- 14	+ 179	17.1		
-1	- 38	+ 311	17.1		
5	- 129	+ 43	17.2		
6	+ 210	-177	17.0		
7	+ 54	-165	17.2		
8	+ 365	- 330	· 16.8	17.6	
9	- 67	- 637			
10	+ 115	- 530			
11	- 106	-1086			
12	- 220	- 248	16.7	17.3	
13	- 238	+ 451			

No.	x''	у''	Magnitudes Max. Min.	Epoch of Maximum	Period	Remarks
14	+ 240	+ 213	17.2			
15	+ 124	- 63	17.1			
16	+ 87	- 917				
17	+ 697	- 435				
18	+ 511	+ 382				
19	-1260	- 190	16?			
20	+ 106	+ 95	17.2			
21	+ 85	- 231	17.2			
22	+ 11	- 171	17.2			
23	+ 240	+ 210	17.2			
24	+ 453	+ 55				
25	+ 147	+ 337	16.8 17.4			
2 6	+ 187	- 150				
27	+ 209	- 306	17.1			
28	+ 68	+ 161	17.1			

NGC 6715

Ref. 180 with plate.

NGC 6723 α 18^h 56^m.2, δ -36° 42′

1	+75.6	-197.4	15.10	15.80	23618.56	0.5384149	
2	+135.2	- 76.9	14.45	16.05	23618.68	0.5048	
3	-244.9	+ 6.0	14.70	15.80	23618.90	0.4949	
-1	+ 17.1	+ 77.4	14.55	15.90	23618.79	0.4524	
5	- 4.8	+ 50.8	15.20	16.00		0.49	
6	+ 7.1	+ 46.2	14.90	16.05	23618.80	0.4812	
7	+197.9	- 70.1	15.20	15.75	23618.91	0.4675	
8	+ 15.9	+ 10.8	14.75	15.60		0.53	
9	+73.6	+ 17.2	14.70	15.80	23618.71	0.5779	
10	+149.6	+ 84.2	15.10	15.60	23618.60	0.33855	
11	+133.3	+228.8	14.85	15.65	23618.70	0.5342935	
12	+ 45.1	- 45.0	14.95	15.85	23618.53	0.5333	
13	- 46.8	- 70.8	14.80	16.00	23618.48	0.5078	
14	- 37.9	- 43.0	14.95	15.80	23618.91	0.6190	
15	- 93.4	+165.7	14.40	15.80	23618.74	0.4355162	
16	- 46.4	+ 91.6	14.75	15.65	23618.67	0.4114	
17	+ 43.9	-102.0	14.4	15.7		0.5301595	
18	-139.2	- 24:	14.6	15.3		0.5263801	
19	-174.0	-120:	14.6	15.5		0.5347108	

The three variables found by van Gent have been given numbers 17, 18, 19. Refs. 14, 20, 73, 74, 91, 96. Plate in 20, charts in 96.

NGC 6752 α 19^h 06^m.4, δ -60° 04′ 1 variable, 4′ from cluster centre.

Refs. 11, 14, 20. No map.

No.	x''	У''	Magnitudes Max. Min.	Epoch of Maximum	Period	Remarks
1	+57	- 57	15.7 17.0			
2	- 6	-100	16.7 17.2			
3	+31	- 10	15.5 [17.4]			
4	+42	+ 39	15.4 [17.5			

2? unpublished variables. Ref. A.

NGC 6760 $\propto 10^{h} 08^{m} 6$ $\delta \pm 00^{\circ} 57'$

Ref. 187 with plate.

NGC 6779 (Messier 56) α 19^h 14^m.6, δ +30° 05'

			and state of the state of the state	the second se				-
1	+ 44.69	+74.10	15.0	16.2	30899.341	1.510019	363, Sp.	
2	+ 18.16	+ 33.09	15.1	15.6			326	
3	+ 25.10	+ 91.69	14.4	15.1		semireg.	337, Sp.	
-4	-112.13	-159.46	15.9	16.4			141	
5	+ 6.79	-134.78	14.4	15.2		semireg.	305	
6	- 2.02	+ 37.06	12.9	14.8	30172.7	90.02	284, Sp.	
7	+293.48	-213.24	15.6	16.3		irreg.	504	
8	- 97.63	-335.90	15.9	16.7		semireg.	150	
9	+177	+525	15.6	16.1		semireg.		
10	-431.53	+ 88.33	16.4	17.4	30967.473	0.5988948	;	
11	-415.58	+283.80	15.5	16.3	33152.555	0.07564	17	
12	-243.96	- 95.41	15.6	16.4			68	

Right-hand column gives identification no. in Küstner's Catalogue, Bonn Veroff., no. 14, 1920.

Refs. 35, 51, 134, 146, 154, 165, 169, 171, 187. Plates in 51, 134, 154.

NGC 6809 (Messier 55) α 19^h 36^m.9, δ -31° 03'

1	+304.2	- 55.6	32413.39	0.57997286	HV 658
2	-214.9	- 26.0	32467.18	0.4061601	HV 659
3	+78	-304	32413.22	0.6619023	HV 12213
-1	+108	+ 59	32413.34	0.3841702	HV 12214
5	- 41	- 74		0.2?	HV 12215
6	+111	- 20	32413.32	0.388904	HV 12216

Refs. 20, 75, 77, 174. Plate in 20.

NGC 6838 (Messier 71) α 19^h 51^m.5, δ +18° 39'

1	+140	+ 24	13.5	14.9	Z Sge
2	+ 44	-146	13.8	14.7	4873
3	+ 44	- 70	15.2	17.0	ecl.
4	+266	+ 31	14.7	15.3	

Number for Var. 2 from Russian catalogue of suspected variables, 1951. Refs. 83a, 182, 187 with plate.

No.	x''	у''	Magnitudes Max. Min.	Epoch of Maximum	Period	Remarks
1	+ 15.6	-83.4				
2	- 9.0	+54.0				
3	+ 18.0	+85.5				
4	- 18.0	-84.6				
5	+108.0	-36.0				
6	+ 8.4	-81.0				
7	-24.6	+78.0				
8	- 13.5	-41.4				
9	+ 45.6	-24.0				
*10	- 43.5	+50.4				
11	+121.2	+84.0				
12	+ 39.6	+75.0				

NGC 6864 (Messier 75) $\alpha 20^{h} 03^{m}.2, \delta -22^{\circ} 04'$

*Suspected. Four additional suspected variables, numbered 13-16, are omitted. Ref. 51, with plate.

NGC 6934 $\alpha 20^{h} 31^{m}.7, \delta + 07^{\circ} 14'$

1	- 45	- 39	15.9	17.3	
2	- 40	- 14	16.0	17.4	
3	0	+ 58	15.9	17.3	
4	+ 39	+ 58	15.6	17.2	
5	+ 59	+221	15.9	17.2	
6	- 27	- 33	16.1	17.5	
7	+ 92	+ 59	16.2	17.3	
8	+100	+ 50	16.3	17.1	
9	+ 63	+ 18	15.9	17.4	
10	-135	+ 72	15.8	17.2	
11	+ 17	+ 28	16.6	17.5	
12	+ 29	- 44	15.6	17.1	
13	- 47	+ 25	16.0	17.2	
14	- 7	- 90	15.8	17.4	
15	+ 10	- 53	15.2	15.8	
16	+ 36	+ 18	16.1	17.4	
17	- 73	-107	16.2	17.4	
18	+ 49	- 8	16.1	17.1	
19	+ 30	+ 1	15.9	17.4	
20	- 26	+ 17	16.0	17.3	
21	- 35	- 3	16.1	17.5	
22	-240	-173	16.0	17.2	
23	- 31	- 16	16.4	17.4	
24	+ 37	- 53	16.3	17.3	
25	+ 50	+ 37	15.9	17.4	
26	+ 31	-196	16.4	17.2	
27	-148	+180	16.2	17.2	
28	-234	+100	15.7	17.3	

1100 070	*					
No.	x''	у''	Magnitudes Max. Min.	Epoch of Maximum	Period	Remarks
29	- 85	-183	15.7 17.3			
30	+161	+127	16.2 17.2			
31	+146	-101	16.0 17.3			
32	- 10	+ 51	15.8 17.1			
33	+ 37	+ 12	16.0 17.2			
34	- 21	+ 16	16.1 17.4			
35	+157	-142	16.0 17.5			
36	+ 10	- 35	15.6 17.0			
37	+ 23	+ 10	16.0 17.3			
38	+ 12	- 18	16.2 17.3			
39	+ 8	- 16	16.1 17.3			
40	- 8	+ 26	15.7 16.3			
41	+ 30	- 39	16.2 17.5			
42	+ 55	+ 20	15.9 - 17.3			
-43	+ 21	+ 27	15.9 17.4			
44	- 43	- 30	15.8 17.3			
45	- 32	- 9	15.8 17.2			
46	+ 14	- 24	16.4 17.4			
47	+ 10	- 26	16.3 17.3			
48	+ 33	+ 52	16.0 17.4			
49	+ 13	- 55	16.2 17.3			
50	+ 15	- 37	16.4 17.3			
51	+ 7	-25	15.4 16.1			

NGC 6934

Refs. 102, 107, 113, 123. Plate in 123.

Numerous periods, all RR Lyrae type, are nearly ready for publication by Sawyer, ref. R

NGC 6981 (Messier 72) α 20^h 50^m.7, δ -12° 44′

1	+ 43.5	- 54.0	16.45	17.25	33129.400	0.619818	
2	+ 99.0	+194.4	15.95	17.30	33126.405	0.4652687	
3	- 52.5	-58.5	16.10	17.30	33809.553	0.4976104	
4	-106.5	+ 37.5	16.25	17.35	33147.462	0.5524877	
5	- 38.4	- 21.6	16.40	17.43	22163.738	0.4991	
6	+78.0	+78.6	16.70	17.10			
7	- 3.6	+ 55.5	16.20	17.29	22163.896	0.52463	
8	- 6.6	+ 89.4	16.20	17.50	33145.372	0.568392	
9	+ 11.4	+ 50.4	16.30	17.34	22162.61	0.5902	
10	-48.6	-73.5	16.20	17.30	33857.504	0.5581805	
11	+ 57.0	- 36.6	16.35	17.25	33856.570	0.521466	
12	+ 9.0	- 21.6	16.31	17.17	22163.90	0.4111	
13	+ 13.5	+ 17.4	16.10	17.15	22161.907	0.54182	
14	-13.5	+ 36.0	16.40	17.06	22163.90	0.5904	
15	- 64.5	-21.0	16.20	17.35	33125.435	0.5403524	
16	- 4.5	- 19.5	16.30	17.37	22163.83	0.5641	

NGC 6981

No.	x''	у″	Magni Max.	tudes Min.	Epoch of Maximum	Period	Remarks
17	- + 3.6	- 43.5	16.45	17.35	33125.483	0.573539	
18	- 26.4	- 37.5	15.70	16.28	22162.88	0.52016	
19	+ 3.0	+112.5	17.15	17.30	not var.		
20	- 54.6	+ 15.0	16.50	17.40	33857.420	0.595046	
21	- 82.5	+ 12.6	16.10	17.50	33145.370	0.5311618	
22	-113.4	+ 1.5	17.10	17.25	not var.		
23	- 99.0	+116.4	16.20	17.25	33834.550	0.5850834	
24	- 15.6	-24.0	16.20	16.55	22161.92	0.4973:	
25	-133.5	+ 67.5	16.50	17.15	33481.810	0.3533494	
26	- 91.5	-45.0	16.90	17.20			
27	+209.4	-234.0	15.85	17.25	33856.560	0.6739040	
28	- 65.4	+ 81.0	16.30	17.15	33853.437	0.5672533	
29	+ 36.0	-52.5	16.40	17.37	22161.83	0.36865	
30	+71.4	- 97.5	16.50	16.90			
31	+ 5.4	+ 36.6	16.50	17.22	22162.02	0.55465	
32	-138.0	- 42.0	16.55	17.30	33834.545	0.5282821	
33	+ 2.4	- 60.6	16.95	17.25			
34	- 6.0	+ 7.5	16.06	16.73			
35	+231	+ 27	16.2	17.4			
36	- 12	0	16.0	16.8			
37	+ 7	- 8	15.5	16.5			
38	+ 5	- 9	16.6	17.3			
39	+195	+243	16.8	17.6			
-40	+ 18	+ 16	16.4	17.4			
-41	- 15	- 20	16.7	17.5			

Refs. 36, 51, 52, 185, 187. Plates in 51, 185, 187.

NGC 7006 α 20^h 59^m.1, δ +16° 00′

1	-177.9	+114.8	
2	- 35.3	- 37.3	
3	- 24.4	+ 34.2	
4	- 21.0	- 41.1	not var.
5	- 20.9	+ 38.4	
6	- 13.5	- 44.5	
7	+ 3.2	- 36.9	not var.
8	+ 34.4	+ 13.5	
9	+ 39.4	+ 16.6	var.?
10	+ 42.8	- 11.8	
11	+148	+ 50	
12	+122.0	- 64.0	
13	+102.7	+40.2	
14	+ 35.3	+128.3	
15	- 11.5	+114.8	
16	- 39.6	+135.5	

84

Variable Stars in Globular Clusters

CATALOGUE—Continued

No.	x''	у′′	Magnitudes Max. Min.	Epoch of Maximum	Period	Remarks
17	- 99.3	+ 85.5				
18	- 29.6	-89.5				
19	- 0.6	- 25.3		26586.	252:	
20	- 21.2	-24.4				
21	-21.5	- 18.4				
22	-12.6	-15.8				
23	- 27.6	- 7.5				
24	-25.8	- 2.9				
25	-19.2	+ 5.2				
2 6	- 10.6	- 2.9				
27	- 11.8	+ 0.3				
28	-15.8	+ 4.3				
29	+ 35.0	+ 31.6				
30	+ 5.2	+ 16.6				
31	+ 10.0	+ 11.2				
32	+ 20.9	+ 13.8				
33	+ 31.9	+ 22.4				
34	+ 26.4	+ 9.2				
35	+ 36.2	- 2.0				
36	+ 25.5	- 3.7				
37	+ 18.9	- 3.4				
38 -	+ 21.5	- 18.4				
39	+ 11.5	-25.3				
40	+ 9.7	- 14.3				
41	+ 1.4	-11.2				
42	+ 9.5	- 7.5				
43	- 4.0	- 28.7				

Data supplied by Sandage who has prepared Hubble's work on these variables for publication in *P.A.S.P.*, with print. Co-ordinates of all variables now on Hubble's system, which differs from Shapley and Mayberry's by x = +3".2, y = +1".1. Ref. M. Refs. 51, 57.

NGC 7078 (Messier 15) $\alpha 21^{h} 27^{m}.6, \ \delta + 11^{\circ} 57'$

NGC 7006

1	-118.6	+ 24.4	14.36	15.54	15021.990	1.437478	156, Sp.
2	-171.7	+ 6.0	15.14	15.95	15021.078	0.684270	91
3	-248.0	- 46.8	15.34	16.03	15021.097	0.3891545	61
4	-112.6	-163.6	15.31	16.08	15021.277	0.3135750	162
5	-100.3	-212.5	15.33	16.00	15021.291	0.384619	186
6	+ 24.4	+ 76.5	15.20	16.29	15021.603	0.665971	680
7	+ 10.1	+ 73.2	15.56	16.16	15021.134	0.367586	611
8	- 0.6	+126.8	15.22	16.14	15021.330	0.646251	564
9	+ 15.6	+138.7	15.12	15.98	15021.425	0.715284	632
10	+125.6	+ 1.7	15.50	16.04	15021.370	0.386395	976
11	+172.3	- 21.8	15.28	16.07	15021.243	0.3435678	1034
Contraction of the Advancement o	and the state of t						

NGC 7078

No.	x''	у''	Magnitud May M	es Epoch	of Period	Remarks
10	1109.0	50.7	15 00 10			1017
12	+105.0	- 50.7	15.22 10	13041.03	0.092904	1017
10	+120.0	- 08.8	15.12 10	15021.5	00 0.074901	980
15	\pm 81 7	-200.2	15 99 16	15021.1	6.1 0.581386	903 80.1
16	+101.9	+129.8	15.50 15	5.10 15021.0	56 0.69464	0.12
17	+ 83.7	+110.6	15 40 15	5.90 15021.2	16 0.666979	901
18	+77.3	+100.4	15.50 16	15021.2	0.37816	886
19	+111.3	+160.4	14.85 16	5.10 15021.5	52 0.572293	964
20	+ 81.2	- 9.8	15.27 16	6.17 15021.2	61 0.700570	891
21	+ 34.4	- 57.5	15.25 16	.20 15021.3	0.624690	732
22	-330.8	-45.8	15.18 16	6.04 15021.5	66 0.721728	30
23	+192.0	+256.1	15.07 15	5.95 15021.19	0.632690	1053
24	-106.7	- 6.1	15.42 16	5.17 15021.08	0.369697	173
25	+302.9	- 10.7	15.10 16	6.00 15021.4	0.665329	1093
26	+ 23.5	+331.9	15.33 15	5.97 15021.2	72 0.402326	675
27	+222.5	+248.2	var.?			1065
28	+309.9	+534.2	15.19 16	6.15 15021.6	32 0.670640	
29	+163.3	+212.2	15.13 16	6.06 15021.2	81 0.574062	1020
30	-165.0	- 3.4	15.42 16	6.00 15021.2	93 0.405976	102
31	-112.6	+245.6	15.30 10	6.07 15021.3	75 0.435693	164
32	-50.4	+107.8	15.14 15	5.98 15021.0	66 0.605400	332
33	-41.2	-29.4				380?
34	-55.4	-54.5	var.?			322
35	-34.0	-163.6	15.40 10	3.11 15021.2	78 0.383997	412
36	- 27.7	- 81.6	15.18 16	6.26 15021.3	71 0.624142	437
37	-25.2	-77.4				451
38	+ 7.6	-146.2	15.29 10	6.16 15021.3	28 0.375274	600
39	+ 20.5	-124.8	15.34 10	5.14 15021.2	59 0.389984	659
40	+131.8	-116.7	15.34 10	5.00 15021.3	20 0.377390	986
41	+ 62.9	- 55.4	15 04 14	15001 1	10 0 00010	835
42	+227.5	-30.8	15.34 10	15021.1	10 0.360167	1066
43	+410.7	+103.2	15.25 18	0.88 15021.0	41 0.406744	1122
44	+ 91.3	+ 3.0	15.20 10	15021.3	73 0.595568	920
40	+ 00.9	- 31.0	15.19 10	1.14 10021.0	21 0.00210	804
40	+ 30.0 + 45.7	+ 33.4	15.40 10	1.04 10021.2	10 0.092730	814:
48	+ 40.7	4.0 	15 25 16	1.04 1.021.0 1.17 1.5021.2	04 0.002900	997
40	+ 10.3	± 166.6	14 75 1	5.17 15021.2 5.35 15021.0	00 0.37888137 0.417079	041 765
50	+165.0	± 100.0	15 35 16	15021.0	62 0.20850	1022
51	+ 62	- 91 1	15.50 10	3.00 15021.2 3.03 15021.1	58 0 307757	590
52	+192.4	-22.6	15 12 16	15021.1	06 0.577608	1055
53	-92.6	-111.0	15 28 14	5.91 15021.3	01 0.414135	210
54	+10.8	+ 88.4	15.58 16	5 13 15021.2	40 0 398325	612
55	+ 65.3	- 18.8	15.49 16	15021.2	75 0.719615	850
	,					

NGC 7078

No.	x''	у''	Magnitudes Max. Min	Epoch of Maximum	Period	Remarks
56	+ 57.4	0.0	15.19 16.	11 15021.249	0.570307	820
57	+75.2	-56.4	15.26 15.	97 15021.243	0.348935	872?
58	- 55.6	+ 8.8	15.64 16.3	32 15021.388	0.420463	321
59	+ 41.3	+ 41.5	15.50 16.	10 15021.117	0.565260	770
60	+ 53.4	-59.3	15.29 16.0	00 15021.118	0.691852	805
61	-67.3	-40.2	15.43 16.1	16 15021.526	0.61030	281
62	-71.6	+ 39.6	15.65 16.2	26 15021.161	0.38818	264
63	+49.8	+ 31.0	15.54 16.4	1410021.076	0.67370	790?
64	- 46.2	+ 19.1	15.61 16.5	24 15021.207	0.351695	350
65	-102.4	- 38.7	15.43 16.	18 15021.377	0.756048	177
66	- 68.4	-112.4	15.41 16.	10 15021.191	0.379330	275
67	- 86.6	- 10.4				227
68	-31.8	+ 12.6				420
69 70	- 37.0	- 25.2				
70	- 34.0	-19.2				
/ 1 79	- 34.8	- 12.0				
72 72	- 2.2	+ 34.8				556
10	- 3.7	+ 20.0				
74 75	+ 30.3	-30.3				754
76	+ 2.2 + 0.7	- 28.9				
70	-11.8	-20.9				
78	- 6.7	+ 47.4				599
79	+ 21.5	-23.7				000
80	- 47 4	-26.6				345
81	-21.5	- 5.9				010
82	-20.7	+ 1.5				
83	+ 16.3	- 7.4				
84	+ 18.5	- 16.3				
85	+ 20.7	+ 2.2				
86	+ 12.6	+ 4.4	13.4 14.0	3		prob. Cep.
87	+ 23.7	- 23.7				proble dep.
88	+ 2.2	+ 26.6				
89	-23.7	- 6.7				463
90	+ 31.1	+ 4.4				
91	+ 67.3	+ 28.9				847
92	+ 9.6	- 25.2				610
93	+ 27.4	- 33.3				705
94	+ 3.7	+ 28.9				
95	+ 5.2	- 40.0				599

8 variables still unpublished? Ref. 76. Numbers at right are from Küstner's catalogue, Bonn Veröff., no. 15, 1921. (No. 37 might be 452.)

Refs. 14, 17, 20, 34, 39, 41, 45, 76, 95, 100, 128, 165, 172. Plates in 20, 41, 172.

No.	x''	У″	Magni Max.	tudes Min.	Epoch of Maximum	Period	Remarks
1	+ 25.6	+79.4	13.2	14.8	26607.800	15.5647	Sp.
2	- 45.8	+ 71.1	14.6	16.1	21454.971	0.527858	
3	+222.9	- 39.6	15.1	16.4	26921.936	0.619705	
4	- 26.8	+ 31.5	15.2	16.6	26628.644	0.564247	
5	- 44.4	+ 2.1	13.2	14.9	26628.644	17.5548	Sp.
6	+ 11.8	- 45.4	13.2	14.9	22162.928	19.3010	Sp.
7	+153.0	-189.2	15.1	16.4	27274.901	0.594857	
8	- 66.9	- 56.8	15.1	16.4	27273.896	0.643677	
9	-173.2	-128.2	15.2	16.4	27274.901	0.609291	
10	+ 90.6	+ 38.8	15.2	16.4	27275.909	0.466910	Sp.
11	+ 85	+ 8	12.5	14.0	31259.8	67.086	
12	- 62	+ 43	15.1	16.5	26628.776	0.665616	
13	- 77	+73	15.1	16.4	26924.972	0.706616	
14	+ 83	- 68	15.4	16.4	20749.843	0.693785	
15	+ 80	- 76	15.7	16.4	26944.880	0.430152	
16	- 31	- 27	15.3	16.5	27275.950	0.655917	
17	+ 2	- 63	15.2	16.3	27274.901	0.636434	

NGC 7089 (Messier 2) $\alpha 21^{h} 30^{m}.9, \delta -01^{\circ} 03'$

Refs. 11, 13, 14, 16, 20, 88, 102, 112, 123, 165, 169. Plates in 20, 112, 169.

NGC 7099 (Messier 30) $\alpha 21^{h} 37^{m}.5, \delta -23^{\circ} 25'$

1	+ 30.0	- 60.6	14.98 16.31	32414.485	0.74365	
2	+ 58.6	-126.2	14.92 16.04	32060.46	0.6535049	
3	- 96.7	- 39.6	14.91 16.06	32039.59	0.69632	
-1	-339:	- 51:	16.4 [18	32450.	11-15 SS	5 Cyg

Refs. 11, 14, 20, 167, L. Plates in 20, 167.

NGC 7492 α 23^h 05^m.7, δ -15° 54′

1	+1.2	+96.6
---	------	-------

4 suspected variables and 8 unpublished variables. Refs. 51, 87. Plate in 51.

REFERENCES TO VARIABLE STARS IN GLOBULAR CLUSTERS IN CHRONOLOGICAL ARRANGEMENT

- 1. 1889 Pickering, E. C., A.N., v. 123, p. 207.
- 2. 1890 Common, A. A., M.N., v. 50, p. 517.
- 3. 1890 Fleming, M., Sid. Mess., v. 9, p. 380.
- 4. 1890 Fleming, M., A.N., v. 125, p. 157.
- 5. 1890 Packer, D. E., Sid Mess., v. 9, p. 281; E.M., v. 51, p. 378.
- 6. 1890 Packer, D. E., Sid Mess., v. 10, p. 107.
- 7. 1890 Packer, D. E., E.M., v. 52, p. 80.
- 8. 1891 Porro, F., A.N., v. 127, p. 197.
- 9. 1894 Pickering, E. C., A.N., v. 135, p. 129.
- 10. 1895 Belopolsky, A., A.N., v. 140, p. 23.
- 11. 1895 · Pickering, E. C., H.C., no. 2; A.N., v. 139, p. 137; Ap.J., v. 2, p. 321.
- 12. 1896 Pickering, E. C., A.N., v. 140, p. 285.
- 13. 1897 Chèvremont, A., Bull. Soc. Astr. France, v. 11, p. 485.
- 14. 1897 Pickering, E. C., H.C., no. 18; A.N., v. 144, p. 191; Ap.J., v. 6, p. 258.
- 15. 1898 Barnard, E. E., A.N., v. 147, p. 243.
- 16. 1898 Chèvremont, A., Bull. Soc. Astr. France, v. 12, p. 16, 90.
- 17. 1898 Pickering, E. C., H.C., no. 24; A.N., v. 146, p. 113; Ap.J., v. 7, p. 208.
- 18. 1900 Barnard, E. E., Ap.J., v. 12, p. 182.
- 19. 1900 Pickering, E. C., H.C., no. 52; A.N., v. 153, p. 115; Ap.J., v. 12, p. 159.
- 20. 1902 Bailey, S. I., H.A., v. 38.
- 21. 1904 Leavitt, H. S., H.C., no. 90; A.N., v. 167, p. 161.
- 22. 1906 Barnard, E. E., A.N., v. 172, p. 345.
- 23. 1909 Barnard, E. E., Ap.J., v. 29, p. 75.
- 24. 1909 Barnard, E. E., A.N., v. 184, p. 273.
- 25. 1913 Bailey, S. I., H.A., v. 78, p. 1-98; Viert. der Astr. Ges., v. 48, p. 418.
- 26. 1913 Barnard, E. E., A.N., v. 196, p. 11.
- 27. 1914 Barnard, E. E., Ap.J., v. 40, p. 179.
- 28. 1914 Shapley, H., Mt. W. Cont., no. 91 = Ap.J., v. 40, p. 443.
- 29. 1915 Shapley, H., P.A.S.P., v. 27, p. 134.
- 30. 1915 Shapley, H., P.A.S.P., v. 27, p. 238.
- 31. 1916 Bailey, S. I., H.C., no. 193.
- 32. 1916 Shapley, H., P.A.S.P., v. 28, p. 81.
- 32a. 1916 Shapley, H., P.A.S.P., v. 28, p. 282.
- 33. 1917 Bailey, S. I., H.A., v. 78, pt. 2.
- 34. 1917 Bailey, S. I., Pop. Astr., v. 25, p. 520.
- 35. 1917 Davis, H., P.A.S.P., v. 29, p. 210.
- 36. 1917 Davis, H., P.A.S.P., v. 29, p. 260.
- 37. 1917 Shapley, H., Mt. W. Cont., no. 116, p. 79.
- 38. 1917 Shapley, H. and Davis, H., P.A.S.P., v. 29, p. 140.
- 39. 1918 Bailey, S. I., Pop. Astr., v. 26, p. 683.
- 40. 1918 Shapley, H., Mt. W. Cont., no. 151 = Ap.J., v. 48, p. 89.
- 41. 1919 Bailey, S. I., Leland, E. F., and Woods, I. E., H.A., v. 78, pt. 3.
- 42. 1919 Barnard, E. E., Pop. Astr., v. 27, p. 522.
- 43. 1919 Sanford, R., Pop. Astr., v. 27, p. 99.
- 44. 1919 Shapley, H., P.A.S.P., v. 31, p. 226.
- 45. 1919 Shapley, H., Mt. W. Cont., no. 154 = Ap.J., v. 49, p. 24.
- 46. 1919 Woods, I. E., H.C., no. 216.
- 47. 1919 Woods, I. E., H.C., no. 217.

Publications of the David Dunlap Observatory

- 48. 1920 Bailey, S. I., Pop. Astr., v. 28, p. 518.
- 49. 1920 Shapley, H., Mt. W. Cont., no. 175 = Ap.J., v. 51, pp. 49-61.
- 50. 1920 Shapley, H., Mt. W. Cont., no. 176 = Ap.J., v. 51, p. 140.
- 51. 1920 Shapley, H., Mt. W. Cont., no. 190 = Ap.J., v. 52, p. 73.
- 52. 1920 Shapley, H. and Ritchie, M., Mt. W. Cont., no. 195 = Ap.J., v. 52, p. 232.
- 53. 1920 Turner, H. H., M.N., v. 80, p. 640.
- 54. 1920 Turner, H. H., M.N., v. 81, p. 74.
- 55. 1921 Larink, J., A.N., v. 214, p. 71.
- 56. 1921 Shapley, H., H.B., no. 761.
- 57. 1921 Shapley, H. and Mayberry, B. W., P.N.A.S., v. 7, p. 152.
- 58. 1922 Baade, W., Ham. Mitt., v. 5, no. 16.
- 59. 1922 Bailey, S. I., H.C., no. 234.
- 60. 1922 Barnard, E. E., Pop. Astr., v. 30, p. 548.
- 60a. 1922 Graff, K., A.N., v. 217, p. 310.
- 61. 1922 Larink, J., Berg. Abh., v. 2, no. 6.
- 62. 1922 Shapley, H., H.C., no. 237.
- 63. 1922 Shapley, H., H.B., no. 764; A.N., v. 215, p. 391.
- 64. 1922 Woods, I. E., H.B., no. 773.
- 65. 1923 Bailey, S. I., H.B., no. 792.
- 66. 1923 Bailey, S. I., H.B., no. 796.
- 67. 1923 Innes, R. T. A., U.C., no. 59, p. 201.
- 68. 1923 Shapley, H., H.B., no. 783.
- 68a. 1923 Shapley, H., H.B., no. 781.
- 69. 1924 · Bailey, S. I., H.B., no. 798.
- 70. 1924 Bailey, S. I., H.B., no. 799.
- 71. 1924 Bailey, S. I., H.B., no. 801.
- 72. 1924 Bailey, S. I., H.B., no. 802.
- 73. 1924 Bailey, S. I., H.B., no. 803.
- 74. 1924 Bailey, S. I., H.C., no. 266.
- 75. 1925 Bailey, S. I., H.B., no. 813.
- 76. 1925 Guthnick, P. and Prager, R., Sitz. Preuss. Akad. Wiss., v. 27, p. 508.
- 77. 1925 Paraskévopoulos, J. S., H.B., no. 813.
- 78. 1926 Baade, W., Ham. Mitt., v. 6, no. 27, p. 61.
- 79. 1926 Baade, W., Ham. Mitt., v. 6, no. 27, p. 66.
- 80. 1926 Baade, W., Ham. Mitt., v. 6, no. 27, p. 67.
- 80a. 1927 Schilt, J., Ap.J., v. 65, p. 124 = Mt. W. Cont., no. 330.
- 81. 1927 Shapley, H., H.B., no. 848.
- 82. 1927 Shapley, H., H.B., no. 851.
- 83. 1928 Baade, W., Ham. Mitt., v. 6, no. 29, p. 92; A.N., v. 232, p. 193.
- 83a. 1928 Baade, W., A.N., v. 232, pp. 65-70.
- 84. 1929 Slavenas, P., A.N., v. 240, p. 169.
- 85. 1930 Baade, W., A.N., v. 239, p. 353.
- 86. 1930 Rybka, E., B.A.N., v. 5, pp. 257-70.
- 87. 1930 Shapley, H., Star Clusters, pp. 45-46.
- 88. 1930 Shapley, H., Star Clusters, p. 51.
- 89. 1931 Baade, W., A.N., v. 244, p. 153.
- 90. 1931 Sawyer, H. B., H.C., no. 366; Pub. A.A.S., v. 7, p. 35.
- 91. 1932 van Gent, H., B.A.N., v. 6, p. 163.
- 92. 1932 Grosse, E., A.N., v. 246, p. 377.
- 93. 1932 Hogg, F. S. and Sawyer, H. B., P.A.S.P., v. 44, p. 258.
- 94. 1932 Sawyer, H. B., H.C., no. 374.
- 95. 1932 Wemple, L., H.B., no. 889.

- 96. 1933 van Gent, H., B.A.N., v. 7, p. 21.
- 97. 1933 Grosse, E., A.N., v. 249, p. 389.
- 98. 1933 Guthnick, P., Sitz. Preuss. Akad. Wiss., v. 24, p. 24.
- 99. 1933 Hertzsprung, E., B.A.N., v. 7, p. 83.
- 100. 1933 Levy, M., H.B., no. 893.
- 101. 1933 Müller, Th., Berl. Babels., Veröff., v. 11, p. 1.
- 102. 1933 Sawyer, H. B., Pub. A.A.S., v. 7, p. 185.
- 103. 1933 Shapley, H., Hand. d. Astr. v. V, p. 719.
- 104. 1934 Baade, W., P.A.S.P., v. 46, p. 52.
- 105. 1934 Guthnick, P., Sitz. Preuss. Akad. Wiss., v. 25 = Naturwiss., v. 22, p. 319.
- 106. 1934 Sawyer, H. B., Pub.A.A.S., v. 8, p. 20.
- 107. 1934 Sawyer, H. B., Pub.A.A.S., v. 8, p. 149.
- 108. 1935 Baade, W., Mt. W. Cont., no. 529 = Ap.J., v. 82, pp. 396-412.
- 109. 1935 Greenstein, J. L., A.N., v. 257, pp. 301-30.
- 110. 1935 Greenstein, J. L., H.B., no. 901, p. 11.
- 111. 1935 Miczaika, G. R., Pop. Astr., v. 43, p. 260.
- 112. 1935 Sawyer, H. B., Pub. D.A.O., v. 6, no. 14.
- 113. 1936 Shapley, H., Hand d. Astr., v. VII, p. 536.
- 114. 1937 Guthnick, P., Viert. der Astr. Ges., v. 72, p. 160.
- 115. 1937 Joy. A. H., Pub. A.A.S., v. 9, p. 45.
- 116. 1937 Martin, W. Chr., Photographische Photometrie van Veranderlijke Sterren in ω Centauri. (Proefschrift) Leiden, Luctor et Emergo.
- 117. 1937 Sawyer, H. B., J.R.A.S.C., v. 31, p. 57.
- 117a. 1938 Luyten, W. J., Pub. Obs. Univ. Minn., II, no. 6.
- 118. 1938 Martin, W. Chr., Leiden Ann., v. 17, pt. 2, pp. 1-166.
- 119. 1938 Martin, W. Chr., B.A.N., v. 8, p. 290.
- 120. 1938 Nassau, J. J., Ap.J., v. 87, p. 361.
- 121. 1938 Oosterhoff, P. Th., B.A.N., v. 8, p. 273.
- 122. 1938 Sawyer, H. B., D.D.O. Comm., no. 1.
- 123. 1938 Sawyer, H. B., Pub. D.A.O., v. 7, no. 5.
- 124. 1938 Sawyer, H. B., Pub. D.D.O., v. 1, no. 2.
- 125. 1939 Hachenberg, O., Zeit. f. Astr., v. 18, p. 49.
- 126. 1939 Greenstein, J. L., Ap.J., v. 90, p. 401.
- 127. 1940 Dowse, M., H.B., no. 913.
- 128. 1940 Dodson, H. W., Cornwall, E. R., Thorndike, S. L. Pub. A.A.S., v. 10, p. 48.
- 129. 1940 Hertzsprung, E., B.A.N., v. 9, p. 117.
- 130. 1940 Joy, A. H., Mt. W. Cont., no. 637; Ap.J., v. 92, p. 396.
- 131. 1940 Martin, W. Chr., B.A.N., v. 9, p. 60.
- 132. 1940 Oosterhoff, P. Th., B.A.N., v. 9, p. 57.
- 133. 1940 Sawyer, H. B., Pub. A.A.S., v. 10, p. 66.
- 134. 1940 Sawyer, H. B., Pub. D.D.O., v. 1, no. 5.
- 135. 1940 Schwarzschild, M., H.C., no. 437.
- 136. 1940 Wright, F. W., H.B., no. 912.
- 137. 1941 Oosterhoff, P. Th., Leiden Ann., v. 17, pt. 4, pp. 1-48.
- 138. 1941 de Sitter, A., Natuur. Tijds. Ned. Indie., dl. 101, afl. 2, pp. 51-3.
- 139. 1941 Shapley, H., P.N.A.S., v. 27, pp. 440-45; Harv. Repr., no. 228.
- 140. 1941 Wright, F. W., H.B., no. 915.
- 141. 1942 Hett, J. H., A.J., v. 50, pp. 77-91.
- 142. 1942 Kollnig-Schattschneider, E., Königstuhl-Heidel. Veröff., Bd. 15, no. 2; A.N., v. 273, Heft. 3.
- 143. 1942 Kooreman, C. J., B.A.N., v. 9, pp. 271-3.
- 144. 1942 · Martin, W. Chr., Ap.J., v. 95, pp. 314-8.

- 145. 1942 Sawyer, H. B., J.R.A.S.C., v. 36, p. 213; Comm. D.D.O., no. 8.
- 146. 1942 Sawyer, H. B., Pub. A.A.S., v. 10, p. 233.
- 147. 1942 Sawyer, H. B., Pub. D.D.O., v. 1, no. 11.
- 148. 1942 Sawyer, H. B., Pub. D.D.O., v. 1, no. 12.
- 149. 1942 Wright, F. W., H.B., no. 916.
- 150. 1943 Oosterhoff, P. Th., B.A.N., v. 9, pp. 397-9.
- 151. 1943 Oosterhoff, P. Th., B.A.N., v. 9, p. 411.
- 152. 1943 Sawyer, H. B., Pub. D.D.O., v. 1, no. 14; Pub. A.A.S., v. 10, p. 334 (Abs.).
- 153. 1944 Oosterhoff, P. Th., B.A.N., v. 10, pp. 55-58.
- 154. 1944 Rosino, L., Pub. Oss. Bologna, v. IV, no. 7.
- 155. 1944 Sawyer, H. B., Pub. D.D.O., v. 1, no. 15.
- 156. 1945 Baade, W., Mt. W. Cont., no. 706; Ap.J., v. 102, pp. 17-25.
- 157. 1945 Sawyer, H. B., Pub. D.D.O., v. 1, no. 17.
- 158. 1946 · Sawyer, H. B., Pub. D.D.O., v. 1, no. 18.
- 159. 1947 · Greenstein, J. L., Bidelman, W. P., and Popper, D. M., P.A.S.P., v. 59, p. 143.
- 160. 1947 van den Hoven van Genderen, E., B.A.N., v. 10, pp. 241-8.
- 161. 1947 de Sitter, A.; Oosterhoff, P. Th., B.A.N., v. 10, pp. 287-303.
- 162. 1948 van Gent, H. and Oosterhoff, P. Th., B.A.N., v. 10, pp. 377-82.
- 163. 1948 Sawyer, H. B., A.J., v. 53, p. 203.
- 164. 1949 Gaposchkin, S., A.J., v. 54, p. 185.
- 165. 1949 Joy, A. H., Ap.J., v. 110, pp. 105–16; Mt. W. and Pal. Repr. no. 5; A.J., v. 53, p. 113 (1948).
- 166. 1949 Mayall, M. W., A.J., v. 54, p. 191.
- 167. 1949 Rosino, L., Pub. Oss. Bologna, v. V., no. 9.
- 168. 1949 Rosino, L., Pub. Oss. Bologna, v. V., no. 10.
- 169. 1949 Sawyer, H. B., J.R.A.S.C., v. 43, pp. 38-44; Comm. D.D.O., no. 18.
- 170. 1949 Sawyer, H. B., A.J., v. 54, p. 193.
- 171. 1950 Rosino, L., Pub. Oss. Bologna, v. V., no. 12.
- 172. 1950 Rosino, L., Ap. J., v. 112, p. 221.
- 173. 1950 Thackeray, A. D., M.N., v. 110, pp. 45-48; Comm. Radcliffe Obs., no. 15.
- 174. 1951 King, I., H.B., no. 920.
- 175. 1951 McKibben-Nail, V., H.B., no. 920.
- 176. 1951 Rosino, L., Pub. Oss. Bologna, v. V., no. 15.
- 177. 1951 Sawyer, H. B., Pub. D.D.O., v. 1, no. 24.
- 178. 1951 Thackeray, A. D., M.N., v. 111, p. 206.
- 179. 1952 Belserene, E. P., A. J., v. 57, pp. 237-47.
- 180. 1952 Rosino, L., Pub. Oss. Bologna, v.V., no. 18.
- 181. 1952 Rosino, L., Pub. Oss. Bologna, v.V., no. 20.
- 182. 1952 Sawyer, H. B., A.J., v. 57, p. 26.
- 183. 1952 Swope, H. H., Greenbaum, I., A.J., v. 57, pp. 83-91.
- 184. 1953 Arp, H. C., Baum, W. A., Sandage, A. R., A.J., v. 58, pp. 4-10.
- 185. 1953 Rosino, L., Pub. Oss. Bologna, v. VI., no. 2.
- 186. 1953 Rosino, L., Pietra, S., Mem. Soc. Astr. Ital., v. 24, no. 4.
- 187. 1953 Sawyer, H. B., J.R.A.S.C., v. 47, pp. 229-236; Comm. D.D.O., no. 34.

UNPUBLISHED REFERENCES, 1939

- A. Baade, W., Letter summarizing Mt. Wilson observations.
- B. Greenstein, J. L., Letter.
- C. Nassau, J. J., Letter.
- D. Oosterhoff, P. Th. L., Letter giving Leiden data.
- E. Sawyer, H. B., Unpublished observations.
- F. Shapley, H., Letter summarizing Harvard data.
- G. Hubble, E. P., Conversation with author.

Variable Stars in Globular Clusters

Correspondence of Recent Years Pertaining to this Catalogue

- H. Arp, H.
- I. Baade, W.
- J. McKibben-Nail, V.
- K. Oosterhoff, P. Th.
- L. Rosino, L.
- M. Sandage, A. R.
- N. Shapley, H.
- O. Swope, H. H.
- P. Thackeray, A. D.
- Q. Wright, F. W.
- R. Unpublished material in files of writer, H. B. Sawyer.

Υ.

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

Number 3

1

NEW RADIAL VELOCITIES FOR FAINT STARS WITH LARGE TANGENTIAL MOTIONS

• BY

NANCY G. ROMAN

1955 TORONTO, CANADA

NEW RADIAL VELOCITIES FOR FAINT STARS WITH LARGE TANGENTIAL MOTIONS

By NANCY G. ROMAN*

A search in recent literature for high-velocity stars revealed about fifty stars whose radial velocities were unknown but whose proper motions and spectral types indicated large space velocities. Many of these were A- and F-type stars for which the high proper motions, if correct, were particularly unusual. Thus it seemed desirable to complete the observational data for these stars by obtaining radial velocities as well as spectroscopic parallaxes and magnitudes. Dr. John F. Heard, Director of the David Dunlap Observatory, kindly agreed to the co-operation of that institution in this project. The author hoped originally that she could complete the major portion of the observing for the programme during a two and a half month visit to the David Dunlap Observatory early in 1953, but the faintness of the stars and unfavourable weather made this impossible. Instead, members of the observatory staff co-operated in securing the necessary plates during the following vear.

The spectra were photographed with the $12\frac{1}{2}$ -inch camera on the one-prism spectrograph which gives a dispersion of 66 A./mm. at H γ . These plates were taken and measured in the same manner as those for the large programme being carried out by the observatory on the radial velocities of stars in the A.G. zone, $+25^{\circ}$ to $+30^{\circ}$. The measurement of a large number of standard stars taken in connection with both programmes indicates that the velocities are on the international system.¹ At least three good plates were obtained for each star. In addition, a number of less well exposed plates were also measured. These showed no systematic difference when compared with the stronger plates, but, as the accidental errors proved to be larger in most cases, the velocities from these weaker plates were included in the mean with half weight.

Table I contains the data for thirty-seven of these stars. The designation is either the H.D. number or the B.D. number. V, B-V and U-B are respectively the photoelectric yellow magnitude, the blue-yellow colour, and the ultra-violet-blue colour, on the

*Yerkes Observatory, Williams Bay, Wisconsin; visiting astronomer at the David Dunlap Observatory, 1953.

V, B, U system² measured at the McDonald Observatory with the 13-inch reflector. The spectral types have been determined from plates of lower dispersion (near 120 A./mm. at $H\gamma$) taken with either the 40-inch refractor of the Yerkes Observatory or the 82-inch reflector of the McDonald Observatory and are on the MK system.² For stars earlier than F2, it is impossible to distinguish between luminosity classes IV and V on the plates used, and for these stars the symbol "V" is used to indicate that the star is not a giant. It is likely that all of these stars are dwarfs. The probable errors are computed from the range of the individual velocities according to the factors given by Schlesinger.³ An asterisk refers to a note at the end of the table.

For a few stars on the original list the high tangential velocities were found to be spurious because of errors in the published spectral types; several stars proved to be too faint for the programme; and two are in the *General Catalogue of Stellar Radial Velocities*⁴ which appeared while the programme was in progress. Table II lists the data for eight of these stars for which at least one good plate was obtained before they were dropped from the list. These velocities are of much lower weight than those in Table I and are given only because, where no other measure is available, these might prove useful for statistical discussions. The arrangement of the data is the same as that in Table I.

Table III lists the proper motions, spectroscopic parallaxes, space velocities, and the elements of the galactic orbits for the stars in Tables I and II. The sources of the proper motions are as follows: Yale, the photographic repetition of the AG zones;⁵ GC, the Boss General Catalogue;⁶ Yerkes, a Yerkes parallax series; AGK₂, the Zweiter Katalog der Astronomishen Gesellschaft;⁷ Oxf., the Astrographic Catalogue, Oxford Section;⁸ and GFH, proper motions computed from the positions in the Geschichte des Fixsternhimmels,9 in the Index der Sternörter,¹⁰ and the Yale positions. X, Y, and Z are the velocities relative to the local centroid in the directions $(1 = 57^{\circ}.5, b = 0^{\circ}), (1 = 147^{\circ}.5, b = 0^{\circ}), and b = 90^{\circ}$ respectively. In computing the orbits, it is assumed that they are Newtonian orbits passing through the sun's neighbourhood which is 8.2 kpc. from the galactic centre and at which the circular velocity is 216 km./sec. A more careful investigation of the proper motions of the stars on this programme indicates that some of the motions were based on erroneous AG positions and that hence, the high velocities originally derived were fictitious. This is the case for B.D. + 53° 104, H.D. 24000, H.D. 27821, B.D. + 29° 734, H.D. 36542, B.D. + 50° 1359, and H.D. 104817. The high velocity for B.D. + 53° 104 now results from the very small parallax and is probably not significant. As is indicated in the notes to Table I, the observational data for H.D. 11397 appear to be contradictory.

The occurrence of radial velocities larger than 60 km./sec. for one quarter of the stars in Table I (although these were chosen for high tangential motions) substantiates the fact that most of these stars are really high-velocity stars. The subdwarfs have already been discussed and shown to belong to an extreme high-velocity group.¹¹ Several of the stars show their membership in the highvelocity class by the decided weakness of their spectral lines; as indicated in the notes, two of the latter may be somewhat below the main sequence. Perhaps the most interesting stars are the apparently normal A dwarfs, H.D. 60778, 74721, 86986 and 117880, whose space velocities relative to the sun are 258, 323, 363 and 384, km./sec. respectively. Although effectively all of these motions are in the tangential direction, the proper motions have been checked and the stars would have to lie appreciably below the main sequence to reduce these velocities to values of the order of 40 km./ sec.

The author wishes to express her sincere appreciation to the members of the David Dunlap Observatory Staff for their willing co-operation in this project. The programme was supported by a grant from the United States Office of Naval Research.

References

- 1. Trans. I.A.U., vol. 7, p. 311, 1950.
- 2. Morgan, W. W. and Johnson, H. L., Ap. J., vol. 117, p. 313, 1953.
- 3. Schlesinger, F., A.J., vol. 46, p. 161, 1937.
- 4. Wilson, R. E., Carnegie Inst. Wash. Pub. 601, Washington, 1953.
- 5. Trans. Yale Astr. Obs. vols. 4, 5, 7, 9-12, 16-22, 24, 1925-1953.
- 6. Carnegie Inst. Wash., Washington, 1937.
- 7. Hamburg-Bergedorf.
- 8. Edinburgh, 1907.
- 9. Karlsruhe.
- 10. Schorr, R. and Kruse, W., Bergedorf, 1928.
- 11. Roman, N. G., A.J., vol. 59, p. 307, 1954.

Richmond Hill, Ontario May 11, 1955

Programme Stars
FOR
DATA
Spectroscopic
AND
PHOTOMETRIC

P.E. km./sec.	$ \begin{array}{c} 1.7 \\ 2.3 \\ 2.9 \\ 2.5 \end{array} $	$\begin{array}{c} 1.1 \\ 2.4 \\ 1.0 \\ 2.8 \\ 2.4 \end{array}$	4.3 3.4 2.5 13.1	$\begin{array}{c} 0.8\\ 10.5\\ 4.4\\ 6.4\\ 3.4\end{array}$	3.8 3.4 2.5 1.0
Rad. Vel. km./sec.	$\begin{array}{r} + \\ + \\ - \\ 12.1 \\ - \\ 50.3 \\ + \\ 38.5 \\ + \\ 0.8 \end{array}$	+ 59.4 + 11.7 + 81.9 + 62.9	$\begin{array}{c} + 12.1 \\ - 121.4 \\ + 48.9 \\ - 2.0 \\ - 16.7 \\ \end{array}$	$\begin{array}{c} 79.9 \\ + \\ 47.0 \\ + \\ 9.0 \\ 5.7 \end{array}$	$\begin{array}{r} + 55.4 \\ - 80.2 \\ + 130.9 \\ - 12.1 \\ - 9.2 \end{array}$
Wt.	2 2 4 4 6 0	4400000	43332	00000000 7/2 7/2/6	4 3 0 4 2 2 2 2 2 2
No. of Plates	42440	44440	**	40444	49444
Sp. Type	F9 V A0 V F5 V* F0 V	G2 V* F2 V K7 V K3 V	B9 V G2 V B9 V A5 V*	$\begin{array}{c} F8 & V*\\ A1 & V\\ F2 & sd\\ A0 & V\\ A1 & V \end{array}$	F5 V* K2 V F2 V A7 m* G2 V
U-B	$^{+0.00}_{-0.00}$	+0.03 +0.24 -0.05 +0.51	-0.08 -0.01 +0.12 -0.12 +0.12	-0.10 +0.14 +0.12 +0.12 +0.13 +0.16	-0.13 +0.40 +0.02 +0.08 +0.04
B-V	+0.53 +0.15 +0.45 +0.68 +0.28	+0.62 +0.31 +0.31 +0.31 +0.32 +0.91	$^{+0.29}_{-0.00}$ $^{+0.67}_{-0.00}$ $^{+0.20}_{-0.00}$	+0.53 +0.10 +0.30 +0.03 +0.12	+0.42 +0.83 +0.30 +0.22 +0.66
Mag. (V)	8.86 9.27 9.27 8.55 8.55	8.22 8.76 8.14 9.37 9.37	9.88 9.33 8.64 8.66 10.06	$\begin{array}{c} 8.50\\ 9.10\\ 9.35\\ 8.72\\ 7.99\end{array}$	$\begin{array}{c} 9.22\\ 10.09\\ 8.64\\ 7.68\\ 9.49\end{array}$
\$ (1900)	$\begin{array}{c} - & 0^{\circ}11' \\ +54 & 5 \\ - & 8 & 51 \\ - & 16 & 48 \\ - & 10 & 13 \end{array}$	-652 +2926 -1640 +268 +2413	+29 7 +55 18 +15 18 -10 5 +50 46	+19 10 + 0 4 + 25 10 + 13 38 + 15 4	+ 2 37 +50 55 -11 29 +2 1 +2 2 +22 21
(1900)	$\begin{smallmatrix} h & m \\ 0 & 12.7 \\ 0 & 31.2 \\ 0 & 33.5 \\ 1 & 46.9 \\ 2 & 8.6 \end{smallmatrix}$	$\begin{array}{c} 3 & 23.4 \\ 3 & 44.3 \\ 4 & 4.5 \\ 4 & 18.4 \\ 4 & 21.8 \end{array}$	$\begin{array}{c} 4 & 40.3 \\ 5 & 0.2 \\ 5 & 25.6 \\ 5 & 27.3 \\ 6 & 44.6 \end{array}$	$\begin{array}{c} 7 & 24.6 \\ 7 & 31.0 \\ 8 & 38.5 \\ 8 & 40.4 \\ 9 & 57.1 \end{array}$	$\begin{array}{c} 11 & 10.7 \\ 11 & 20.6 \\ 11 & 27.8 \\ 11 & 59.1 \\ 12 & 3.9 \end{array}$
Name	$+53^{\circ}104$ $+53^{\circ}104$ 11397 13721	21543 24000 26298 27821 $+24^{\circ}$ 659	$+29^{\circ}$ 73.1 $+55^{\circ}$ 960 36283 36542 $+50^{\circ}1359$	$\begin{array}{c} 59374 \\ 60778 \\ +25^{\circ}1981 \\ 74721 \\ 86986 \end{array}$	97916 + $51^{\circ}1664$ 100363 + $22^{\circ}2442$

TARLE I

	$^{4.8}_{0.9}$	6.9 3.0 9 7	$\begin{array}{c} 0.9\\ 2.2\\ 0.9\\ 1.8\\ 1.8\end{array}$	4.1 1.3	he strength of the star. te although
	-20.6 -18.3	-5.8 -64.8 -128.3	$\begin{array}{c} - & 2.1 \\ + & 19.7 \\ + & 27.9 \\ - & 44.0 \end{array}$	-295.6 -27.8	ocity giants. T proper motion um is composi
	441	$4^{1/2}$	441 21 21 21 21 21 21 21 21 21 21 21 21 21	4 4	ne high-vel very large j t the spectu
	1040	5 73 4	N 4 4 4 4	4	ypical of th with the v idence tha
(F9 V G2 V	F_{0}^{A3} V F $_{1}^{A3}$ V F $_{1}^{A}$ sd	6286 6328 6328 63	F6 sd G2 V	CH. This is t s inconsistent mal G8 giant is no other ev
	-0.06	+0.19 -0.08 -0.23	+0.22 +0.16 0.00 +0.06 +0.03	-0.21 +0.14	ally strong I but this is e for a nori ype. There
	$^{+0.58}_{-0.59}$	+0.32 +0.38 +0.37	+0.67 +0.72 +0.60 +0.61 +0.61	+0.43 +0.63	and unusue r is class II also too blu t sequence. of its early t
	$9.36\\ 8.40\\ 8.40$	$8.88 \\ 9.36 \\ 9.36$	8.11 8.66 8.42 9.30 9.30	9.47 7.88	k cyanogen that the sta e colour is : w the mair nd in spite o
	$+13 & 6 \\ +14 & 2 \\ 14 & 2 \\$	-148 + 523 +2611	$ \begin{array}{c} -16 & 0 \\ -15 & 43 \\ - & 9 & 1 \\ + & 0 & 34 \\ + & 4 & 30 \end{array} $	$+17\ 36$ $-10\ 12$	s are weak. has very wea II indicates : ole III.) Tho r may be belo shows a G-ba
	13 35.0 14 36.7	$\begin{array}{c} 15 & 14.0 \\ 15 & 50.2 \\ 19 & 28.4 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 6.7 23 52.3	The lines The star of the Sr (See Tak This star 59 The star
	$+13^{\circ}2698$ $+14^{\circ}2771$	136161 142575 $+26^{\circ}3578$	$191069 \\ 192031 \\ 198273 \\ 205027 \\ + 4^{\circ}4762$	$+17^{\circ}4708$ 224383	H.D. 3567 H.D. 11397 H.D. 21543 B.D. + 50° 13

TARLE I (Continued)

the large range in velocity (-63 to +23) may indicate that it is a spectroscopic binary. This star may be below the main sequence. The lines are weak. A metallic line star. The K-line would indicate the type A3.

H.D. 59374 H.D. 97916 H.D. 104817

Name	(1900)	(1900)	(V)	B-V	U-B	Sp. Type	Plates	Wt.	km./sec.
	h m		1	3 - -		00 11	-	-	0.06.1
3556	0 33.4	+ 5°20'	8.77	+0.59	+0.10	60 V	_		0.06+
11592	1 48.7	+10 8	6.78	+0.46	-0.05	F5 V	_	_	-20.0
19618	3 4.4	+15 1	9.05	+0.84	+0.51	N-VI 0N	1	-	-23.2
75530*	8 45.4	- 2 -	9.18	+0.74	+0.22	G8 V		-	+40.1
$+58^{\circ}1199$	9 29.5	$+58\ 23$	9.96	+0.63	+0.03	C3 V	2	$1^{1/2}_{1/2}$	-16.2
107.159	19 16.0	- 10.55	8 25	+0.29	+0.10	$F0 D^*$	2	11_2	-15.5
107813	12 18 2	- 6 29	9.41	+0.35	-0.11	$F2 V^*$	2	$1\frac{1}{2}$	-24.8
117880	13 28.1	-18 0	9.08	+0.04	+0.06	$\Lambda 0 \Lambda$	~	$2\frac{1}{2}$	-44.6

STARS DROPPED FROM PROGRAMME TABLE 11

NOTES TO TABLE II

One McDonald plate gives the velocity +30.2 km./sec. A strontium star. The lines are very weak although not quite as weak as in an F-type subdwarf. H.D. 75530 H.D. 107452 H.D. 107813

111	GALACTIC ORBI
TABLE	VELOCITIES AND
	SPACE

	а	kpc.	15.7	54.1	9.5	0.8	5.3	5.4	18.0	18.0	9.5	0.0	5.3	4.4	5.4	8.5	20.4	4.2	4.1	4.5	4.2	9.3	17.8	7.2	4.6	$6.4 \\ 10.5$
	ð		0.74	1.14	0.79	10.9	0.51	0.61	0.54	0.68	0.14	0.40	0.51	0.86	0.54	0.14	0.61	0.98	0.98	0.80	0.93	1.00	0.65	0.47	0.81	$0.39 \\ 0.76$
	Z	(pu	- 33	+205	+199	- 133	- 11	- 11	- 38	6 –	- 4	+ 39	-202	-117	- 54	+ 45	- 31	-24	-179	- 23	-175	+ 39	+103	-107	+50	- 1 - 25
ITS	Υ	ometres/seco	+169	- 85	-183	-229	1	+ 68	+	+133	+ 28	+ 93	*	-27	+ 45	+ 29	+ 39	+ 48	- 38	+ 29	-21	-230	-119	+ 96	- 51	$^{+62}_{+181}$
ALACTIC ORB	х	(kile	- 14	+ 89	-359	-939	- 67	<u> </u>	+ 23	+ 18	+ 14	6 -	- 67	-136	-69	+ 2	+ 55	-185	-182	-119	-271	-233	+ 25	- 37	-120	- 40 - 58
CITIES AND G	$\pi_{_{\mathrm{B}\mathrm{p}}}$:	0.011	0.00088	0.0063	0.0017	0.0076	0.024^{*}	0.0030	0.0105	0.0096	0.032	0.00105	0.0115	0.020	0.0018	0.0026	0.012	0.0022	0.013	0.0021	0.0036	0.0066	0.018	0.0083	0.0087 0.0105
SPACE VELO	Source		Yale	AGK ₂ -Yale	Yale	Yale	Yale	GC	GFH	Yale	BAN 274	Yale	Oxf-Yale	GC	GC	GFH	AGK2-Yale	GC	Yale	GC	GC	GC	GC	Yale	Yale	Yale Yale
	μδ		± 0.093	+0.036	-0.564	-0.327	-0.118	-0.205	0.000	+0.182	+0.007	+0.100	-0.042	-0.366	-0.374	+0.008	+0.014	-0.452	-0.116	-0.334	-0.142	-0.227	-0.011	+0.074	-0.149	-0.029 + 0.044
	μα	=	+0.339	-0.025	+0.012	+0.135	+0.031	+0.353	-0.041	+0.044	-0.019	+0.367	-0.025	-0.049	-0.038	-0.014	-0.033	+0.038	-0.036	-0.103	-0.043	+0.139	+0.218	-0.454	+0.038	-0.114 -0.394
	Star		1368	+53°104	3567	11397	13721	21543	24000	26298	27821	$+24^{\circ}659$	+29°734	+55°960	36283	36542	$+50^{\circ}1359$	59374	60778	$+25^{\circ}1981$	74721	86986	97916	+51°1664	100363	$+22^{\circ}2442$

5	kpc.	6.7	5.6	9.6	4.6	4.4	5.5	6.1	7.8	6.8	8.2	11.3	5.7	10.8	7.4	5.7	4.6	4.3	7.4	5.2	4.4	
e		0.68	0.61	0.46	0.76	0.84	0.45	0.39	0.34	0.46	0.27	0.98	0.62	0.25	0.32	0.44	0.74	0.86	0.06	0.65	0.88	
Ζ	(pu	- 30	+ 29	-116	+ 93	- 29	- 47	+ 35	+ 46	~ +	- 62	+ 74	+ 4	- 19	-30	-56	- 81	+149	- 29	- 24	-247	
γ	ometres/seco	-130	+ 80	-105	+ 32	+ 29	+ 15	- 51	- 77	- 87	+ 65	+241	+ 88	- 32	- 70	- 42	+ 5	- 78	+ 24	+ 66	+ 51	
X	(kile	- 73	- 74	00 	-110	-130	- 58	- 44	- 18	- 42	00 	-260	- 75	+ 24	- 21	-54	-107	-191	1	- 84	-290	
Trap		0.0087	0.0175	0.0038	0.0076	0.013	0.025	0.024	0.0175	0.018	0.0125	0.0125	0.022	0.0125	0.020	0.014	0.019	0.0069^{*}	0.0058	0.0058	0.0017	
Source		Yale	Yale	Yale	GC	Yale	Yale	Yale	Yale	Yale	Yale	Yerkes	GC	Yale	GC	Yale	Yale	Yale	GC	Yale	Yale	
μ_{δ}		-0.286	-0.087	-0.101	+0.034	-0.174	-0.412	-0.272	-0.150	-0.322	-0.008	+0.071	-0.159	-0.092	-0.288	-0.297	-0.519	-0.310	-0.034	-0.071	-0.135	
μ_{α}		+0.127	-0.382	+0.091	-0.289	-0.004	+0.168	-0.350	-0.341	-0.290	+0.280	+0.510	+0.461	+0.135	-0.177	-0.069	-0.209	+0.219	-0.019	+0.110	-0.061	
Star		$+13^{\circ}2698$	$+14^{\circ}2771$	136161	142575	$+26^{\circ}3578$	191069	192031	198273	205027	$+4^{\circ}4762$	$+17^{\circ}4708$	224383	3556	11592	19618	75530	$+58^{\circ}1199$	107452	107813	117880	

NOTES TO TABLE III

This assumes that the absolute magnitude is 5.1. A.D.S. 7447, a triple star. To allow for the other components, $0^{m}6$ has been added to the magnitude given in Table II. H.D. 21543 B.D. +58°1199

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

Number 4

THE RADIAL VELOCITIES, SPECTRAL CLASSES AND PHOTOGRAPHIC MAGNITUDES OF 1041 LATE-TYPE STARS

JOHN F. HEARD Director

,

1956 Toronto, canada

THE RADIAL VELOCITIES, SPECTRAL CLASSES AND PHOTOGRAPHIC MAGNITUDES OF 1041 LATE-TYPE STARS

INTRODUCTION

In 1946 the late Frank S. Hogg, then Director of this Observatory, set out to design a long-range programme to measure the radial velocities of a large group of late-type stars, believing that stars of this kind had been neglected in comparison with early-type stars. To make the observational material most useful he decided to choose stars for which proper motion data were already available and to choose them so that the observational material would provide information well suited to galactic studies. With these points in mind, he chose the declination zone $+25^{\circ}$ to $+30^{\circ}$ which includes both the solar apex and the north galactic pole, and he selected from the Yale Catalogue of the Positions and Proper Motions (Schlesinger and Barney, 1933) the stars listed with photographic magnitudes brighter than 9.01 and of spectral types G0 and later for which radial velocities were not then known. The final programme included 1041 stars. Because of systematic errors in the photographic magnitudes of the Yale Catalogue the selected stars are for the most part fainter than 9th magnitude, and because of errors in the Henry Draper classification many are of type F.

The observations for this programme occupied a large part of the observing time of the 74-inch telescope from 1946 until 1954. As the observing and measuring of the spectrograms proceeded, it became apparent that the velocity data would be much more useful if spectral and luminosity classes and improved photographic magnitudes could be added. Accordingly, classification and photometric programmes were undertaken for the same stars. The present report combines the results of these three separate programmes.

The Radial Velocities

Observations. In conformity with earlier practices at this Observatory, four or more measurable spectrograms distributed over a reasonable interval of time were obtained for each star; the total number for this programme was about 4600. Eighty-three per cent. of the spectrograms were obtained with the $12\frac{1}{2}$ -inch camera of the one-prism spectrograph yielding a dispersion of 66 A./mm.at H γ , the remainder (mostly of the brighter stars) with the 25-inch camera, dispersion 33 A./mm. Kodak Spectroscopic 103a–O plates were used almost exclusively. Exposure times ranged from one-half hour to two hours.

Throughout the observations of the programme stars, spectrograms were also obtained of a selection of the fainter standard velocity stars of G- and K-type listed in the *Transactions of the International Astronomical Union*, vol. 7; in all, 156 spectrograms of 18 standards were obtained with the smaller dispersion and 45 spectrograms of 14 standards with the larger dispersion. The purpose was to provide a control in the manner outlined below.

All regular observers took part in the observations. Particular credit is due to G. F. Longworth and F. Hawker of the technical staff for much of the observing and for maintenance of the telescope and spectrograph and to Miss Ruth Northcott and Dr. J. B. Oke for their vigilance over the progress of the observing and the maintenance of plate quality.

Measurements. Measurement and reduction were carried out by methods reported in our earlier Publications (vol. 1, nos. 3, 13, and 16). On good quality plates the number of lines measured was about 20. The spectrograms of the standard velocity stars were measured in the same manner as those of programme stars.

Most of the regular members of the staff and a number of summer assistants shared the task of measuring the plates. Miss Northcott supervised the work of the assistants.

Stars of Variable Velocity. A question which merits discussion in any radial velocity study is the incidence of velocity variation. In the past it has been customary to assign variability in a rather arbitrary manner from a look at the individual velocities with allowance for the precision of measurement. We wished to employ a more objective means of deciding to what degree the measures indicated variability. The following method was developed along lines suggested by Dr. Donald A. MacRae.

Reference has already been made to a group of spectrograms of standard velocity stars taken and measured under the same circumstances as the programme stars. We assume that these measures of standards form a population subject to the same error dispersion as the programme stars, except that they lack whatever dispersion may be present among the measures of some programme stars by reason of true variation of velocity. The problem is to identify what programme stars possess this additional "error" dispersion.

Consider first the standard velocity stars.

Say we have h plates of r stars on which we have measured a grand total of N lines.

Let us compute the deviation of each line-measure from the mean for the plate; call these the "within-plate" deviations. Call the sum of the squares of the deviations of all these N lines S_w .

Let us also compute the deviation of each plate mean from the weighted star mean; call these the "among-plate" deviations. Multiply the square of each "among-plate" deviation by the number of lines measured on the plate and call the sum of these products S_a .

Now if there were no source of error other than the errors of setting on the lines, we would have

$$\frac{S_w}{N-h} = \frac{S_a}{h-r}.$$

But we can expect an error involving systematic shift of all lines on a plate for a variety of reasons. Call this the "plate error" and let the estimate of it be ω .

It can be shown that

$$\omega^2 = \frac{1}{N} \left(S_a - \frac{h-r}{N-h} \cdot S_w \right).$$

We evaluated this for "standard" plates for both 66A./mm. and 33 A./mm. dispersions and found

 $\omega = 5.0$ km./sec. for the 66 A./mm. $\omega = 2.6$ km./sec. for the 33 A./mm. Now consider a programme star for which we have h' plates with a total of N' lines.

We compute S'_w and S'_a for this star.

Then the quantity, F, given by

$$\frac{1}{F} = \frac{S'_w}{N'-h'} \cdot \frac{h'-1}{S'_a} + \frac{N'\omega^2}{S'_a},$$

can be shown to be Snedecor's ratio of variances for degrees of freedom h'-1 and N'-h'. Using Snedecor's table of F's, — see, for example, Weatherburn (1949)—we can now say whether or not the scatter shown by the programme star's velocity measures from plate to plate is significant If the F value computed exceeds Snedecor's "1% point", then there is a probability smaller than one per cent. that the amount of scatter has arisen by chance and it is strongly suggested that the radial velocity of the star is variable. If the F value exceeds Snedecor's "5% point", but not the "1% point", then the probability that the amount of scatter has arisen by chance is between one and five per cent. and it is less strongly suggested that the star's velocity is variable. If the F value is less than Snedecor's "5% point", we can hardly consider that the observations suggest variable velocity.

For all of the stars we have made this computation and it is on the basis of this that we have assigned positive variability (strongly suggested) or questionable variability (less strongly suggested). We have also used the measures for the standard velocity stars to establish the weights to apply to the different measures in obtaining the mean velocity for a star. We used weight 4 for good plates of the higher dispersion, 1 for good plates of the lower dispersion and $\frac{1}{2}$ for plates on which fewer than 10 lines could be measured.

A more complete study of the available statistical data may be made at a later time.

Spectral Classification

A decision was made during the course of the investigation to reclassify the spectra of all the 1041 stars using the MK system (Johnson and Morgan, 1953). To this end a series of spectrograms of MK standard stars was obtained, using both dispersions and the same emulsion as for the programme stars. For each dispersion, a careful study of the series revealed the criteria which would be most useful in the various ranges of spectral and luminosity classes, and a routine was developed for "converging" on the correct class of a spectrogram, using both the general appearance of the spectrum and the estimated intensity ratios of the lines and making continual reference to the spectrograms of the standards. Evidence has been adduced that the classification made with our spectrograms does not depart systematically from that made with the smaller dispersions and wider spectra on which the MK system was developed.

The classifications reported here are mostly those made by Miss Barbara Creeper (Mrs. V. Gaizauskas) using the 66 A./mm. spectrograms. For a few dozen stars for which there were no plates of this dispersion, classifications made by Dr. Ian Halliday from 33 A./mm. spectrograms were listed.

Difficulty was encountered with the M-type stars. With our spectrograms we found it difficult to assign a sub-classification to those stars which were recognized as giants of spectral class later than M2; all such are listed merely as M III.

Photometry

A casual comparison between the photographic magnitudes of the Yale *Catalogue* and visual magnitudes listed there and elsewhere sufficed to show that the photographic magnitudes are unsatisfactory, the errors sometimes amounting to a magnitude. Therefore it appeared most desirable to undertake a photometric programme for our stars. This was done by Dr. Donald A. MacRae of this Observatory in collaboration with Dr. Jurgen Stock of the Warner and Swasey and the Hamburg Observatories. They will publish soon a more complete account of this work than the following brief summary.

Through the kindness of Dr. O. Heckmann, Director of the Hamburg Observatory, 80 fields distributed around the sky at declination $+27\frac{1}{2}^{\circ}$ were photographed with the "original" Schmidt telescope at Hamburg. These fields so overlapped that all our programme stars appeared on two films at least. The films, which cover an area 7.5° in diameter, were Perutz Phototechnical B emulsion exposed behind Schott filters BG3 and GG13, each 1 mm. thick. For the measurement of the films, the Eichner Astrophotometer of the Warner and Swasey Observatory was made available

through the kindness of the Director, Dr. J. J. Nassau. Many of the films were also measured on the iris photometer of the Hamburg Observatory. Dr. Stock supervised this part of the work.

To make possible the conversion of the astrophotometer readings to magnitudes, 24 sequences, involving 165 of the programme stars between 7.0 mag. and 10.0 mag., were selected. These stars were observed photoelectrically by Mr. G. Bakos, under Dr. MacRae's supervision, using the photometer attached to the 19-inch telescope of this Observatory. Each star was observed twice at least and the magnitudes, reduced to the B-V system of Johnson and Morgan, will be published separately.

Magnitudes, m_e , on the colour system of the Schmidt films were derived from the photoelectric measures by means of the equation,

$$m_e = B + 0.33 \ (B - V),$$

and the 24 sequences were used to calibrate the astrophotometer measures. The quantities listed in Table I are the resulting photographic magnitudes. It is believed that residual field errors are negligible. The average mean error of a final magnitude is ± 0.045 .

TABULATION OF RESULTS

The main body of the results is given in Table I. Following is a description of this table.

- Column 1 gives the A.G. designations of the stars.
- Column 2 gives the H.D. designations where applicable. A note has been added whenever any ambiguity could arise as to either designation or as to which component of a double star is meant.
- Columns 3 and 4 give the 1950 positions which have been rounded off from the positions given in the Yale Transactions, vol. 24.
- Column 5 gives the photographic magnitudes derived by MacRae and Stock as described in the foregoing section. The magnitudes are from the photographic photometry in all cases except for those values marked with an asterisk which refers to stars which, for one reason or another, were measured only photoelectrically.
- Column 6 gives the spectral classes assigned from our spectrograms as described in an earlier section. A colon refers to a classification which is doubtful, either because the plates are poor (when no note is given), or for some specific reason referred to in a note. Stars classified as M III are those which have been recognized as giants later than M2 but to which sub-classes could not be assigned with confidence.

(Continued on page 137.)

TABLE I

•

A.G.	H.D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	P1.	Ref.
14436 14441 4 12 29	225292 111 249 598	00 02.4 03.4 04.0 04.8 07.9	+27 23 28 00 28 17 26 10 28 23	7.24 8.36 7.50 8.45 9.00	G8 III K5 III G9 III K1 IV	var. + 12.9 + 4.4 + 15.5 - 7.4	0.7 0.3 1.6 1.5	6 5 4 5 4	п
35 37 63 121 131	664 1406 1501	00 08.4 08.8 10.8 15.7 16.8	+29 16 30 10 26 46 30 07 26 11	$\begin{array}{c} 8.88\\ 8.54\\ 10.42\\ 8.34\\ 8.55\end{array}$	F5 V K0 V K2 III K3 III G8 III	+ 9.0 - 3.1 - 15.6 - 37.1 - 10.9	1.8 1.0 1.9 1.0 1.2	6 4 6 4 5	
145 146 188 199 207	1605 1633 1996 2084 2190	00 17.9 18.1 21.8 22.7 23.4	+30 42 26 14 26 07 29 49 28 40	8.35 9.17 9.40 9.37 9.37	K1 III K5 III K1 III G8 II M0 III	+ 10.1 + 23.5 var? + 6.9 - 50.7	1.2 0.8 1.7 0.7	4 4 6 6 4	II
225 230 258 273 274	2315 2343 2552 2713 2732	00 24.6 24.8 26.7 28.2 28.2	+25 18 30 37 28 33 27 50 29 15	8.96 9.39 9.28 9.29 9.40	K3 III K1 III K3 III F2 IV K1 III	- 35.7 var. + 33.4 - 4.2 - 15.1	1.5 1.3 2.9 1.3	4 7 5 6 4	II
288 289 343 352 366	2839 2854 3252 3333	00 29.3 29.4 33.2 33.9 35.2	+28 15 27 23 28 50 29 34 25 33	9.24 9.47 9.53 9.27 9.79	K1 III G0 V K1 III K0 III G8 III	- 26.4 - 0.5 - 33.4 + 9.5 - 14.7	$ \begin{array}{c} 1.2 \\ 1.3 \\ 0.4 \\ 1.2 \\ 1.6 \end{array} $	5 4 4 4 6	
375 382 387 412 434	$3590 \\ 3650 \\ 3766 \\ 4006 \\ 4268$	00 36.3 36.8 38.0 40.1 42.6	+26 03 26 28 29 44 29 50 27 41	8.67 9.55 9.45 8.63 9.65	K3 III G0 V F5 V K2 II-III K2 III	+ 0.9 - 17.8 - 24.5 - 20.7 var?	0.8 2.3 1.5 9.8	4 5 4 4 6	II
444 450 452 467 468	4312 4372 4388 4550 4549	00 43.1 43.7 43.8 45.1 45.1	+25 54 30 40 30 41 26 01 26 49	9.43 8.41 $*$ 8.80 $*$ 8.16 9.41	K5 II K1 III K3 III K0 III K2 III	- 18.5 + 13.6 - 24.8 - 4.0 - 30.9	1.2 0.7 0.2 0.6 0.9	5 4 4 5 4	
477 486 493 498 510	$4686 \\ 4744 \\ 4798 \\ 4831 \\ 4963$	00 46.5 47.2 47.6 48.0 49.2	+28 27 30 11 28 06 25 19 27 30	8.20 8.71 8.47 8.17 9.06	G8 III K0 III K1 III G8 III K1 III	- 2.0 162.8 - 9.3 - 10.7 + 25:5	1.0 1.2 1.0 0.3 1.6	4 4 5 5 5	111
521 527 533 537 555	5007 5092 - 5137 5164 5411	$\begin{array}{cccc} 00 & 49.7 \\ & 50.4 \\ & 50.9 \\ & 51.1 \\ & 53.6 \end{array}$	+25 31 30 05 29 13 28 17 28 53	9.14 9.05 7.49 8.48 9.87	K1 III K3 III K0 III K1 III K1 III	 14.3 23.2 10.6 14.0 2.8 	1.4 0.7 1.2 1.1 1.0	5 4 4 4 4	

A.G.	H.D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P.E.	P1.	Ref.
559 560 571 574 582	5449 5462 5585 5584 5650	00 54.0 54.0 55.2 55.3 55.8	+28 32 26 04 29 15 30 03 26 31	8.73 9.73 8.64 9.18 9.27	K0 III M III K3 III G0 IV K5 III	+ 4.8 - 6.5 + 23.9 + 7.2 - 24.4	1.2 1.9 1.3 1.2 1.3	4 4 5 4 4	
586 600 614 627 628	5705 5917 6132 6274 6286	56.3 58.3 01 00.2 01.3 01.4	+27 23 28 44 29 43 26 17 26 19	8.67 9.35 9.15 9.58 9.35	K3 III G8 III K2 III F7 V G2 V	- 7.6 + 21.8 - 26.5 - 28.1 var.	0.7 1.3 2.2 0.9	4 4 5 4 7	II
647 702 704 706 710	6525 7299 7300 7308	01 03.9 10.8 10.8 11.0 11.2	+29 26 29 28 26 11 25 59 26 01	9.42 7.91 9.54 9.81 11.14	K1 III G8 III-IV K2 III K5 III K2 III	- 2.4 - 10.3 + 15.9 var. + 14.6	1.9 0.5 1.0 2.1	7 4 6 8 6	II
714 721 778 812 814	7352 7426 8300 8747	01 11.4 12.1 19.9 24.0 24.1	+25 34 26 11 26 18 26 59 27 15	8.66 8.79 9.13 8.07 10.48	G0 V K0 III K1 III K0 III K3 III	- 18.0 + 2.6 - 22.1 - 5.6 + 30.4	1.8 1.3 0.8 0.6 1.6	5 4 4 4 7	
817 849 851 867 878	8791 9224 9269 9446 9638	01 24.3 28.5 29.0 30.5 32.2	+25 11 29 09 30 22 29 01 28 51	9.36 7.98 9.31 9.14 9.34	K3 II G0 V K0 III G5 V K2 II	- 15.9 + 13.6 + 42.1 + 21.2 - 19.1	1.7 0.7 1.4 0.5 1.9	4 6 4 4	
887 903 916 929 962	9714 9984 10095 10296 10766	01 32.8 35.1 36.4 38.4 43.0	+28 01 25 39 27 30 28 14 26 09	8.16 9.83 8.53 9.45 9.25	K1 III G8 III K3 III K1 III F8 IV	+ 7.7 + 39.4 - 36.0 - 4.2 + 6.2	0.8 1.2 1.0 2.5 2.1	8 5 6 6	
966 968 973 977 983	10829 10866 10981	$\begin{array}{c} 01 & 43.7 \\ & 43.8 \\ & 44.3 \\ & 44.9 \\ & 45.6 \end{array}$	+29 18 30 33 25 55 28 14 30 32	9.25 8.80 9.09 9.57 9.19	F5 V F7 IV K3 III K1 III G8 III	+ 1.4 + 5.2 + 22.9 + 31.6 + 11.3	2.6 2.1 0.8 0.7 1.5	7 5 4 4 5	
991 993 999 1023 1026	11120 11130 11453 11464	01 46.7 47.1 47.3 50.3 50.4	+28 27 25 30 29 13 28 34 25 48	9.66 9.33 8.79 8.57 9.02	K0 III G8 V K1 V K5 III K0 III	- 65.2 - 3.5 - 36.4 + 5.0 + 17.8	1.1 1.4 1.2 1.0 1.6	4 6 5 4 6	III
1037 1042 1046 1054 1077	11650 11680 11721 11781	01 52.1 52.3 52.8 53.4 55.6	+27 36 27 01 25 52 27 14 25 33	8.81 9.16 9.21 8.91 9.10	K1 II-III K1 III G8 III G0 V G2 V	- 3.8 - 32.8 + 30.9 - 2.4 - 1.1	1.7 2.0 1.3 0.3 0.4	5 4 4 4 4	

A.G.	H. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P.E.	P1.	Ref.
1082 1084 1094 1097 1102	12029 12052 12232 12260 12402	01 55.8 56.0 57.8 58.1 59.3	+29 08 28 37 29 41 29 18 28 10	8.96 9.25 8.96 9.27 7.60	K2 III G8 III F2 V K2 III K1 III	+ 40.0 + 28.0 + 8.2 - 3.6 + 17.4	0.3 1.2 1.9 2.3 0.3	5 4 4 5 5	
1103 1113 1122 1128 1139	12426 12535 12638 12728 12897	$\begin{array}{cccc} 01 & 59.5 \\ 02 & 00.7 \\ & 01.5 \\ & 02.6 \\ & 04.1 \end{array}$	+29 31 27 15 25 41 28 52 26 05	9.72 8.56 8.26 9.12 8.36	K0 III K2 III G8 III K1 III K1 III	+ 10.7 + 36.5 - 17.9 - 8.4 + 0.2	1.8 1.0 1.0 1.9 1.4	5 5 4 4 5	
1143 1145 1158 1178 1181	13017 13565 13610	02 04.8 05.1 07.5 10.2 10.5	+29 24 29 20 29 35 30 20 25 09	9.58 9.81 9.30 9.00 9.34	K0 III K5 III F8 V K0 II F8 IV	+ 25.4 + 4.5 + 28.1 + 18.6 - 48.3	2.8 0.8 3.0 1.0 0.5	5 5 4 4	
1186 1192b 1200 1209 1222	$13691 \\ 13747 \\ 13836 \\ 13943 \\ 14146$	02 11.2 11.7 12.6 13.5 15.0	+26 24 28 28 27 08 29 34 28 47	8.81 7.72 9.06 9.51 9.07	K1 III K1 IV G8 V G8 TH M0 HI	- 7.8 var? + 3.9 + 18.4 + 33.4	0.8 0.5 1.0 0.9	4 5 4 4	II
1248 1251 1252 1264 1265	14456 14479 14490	02 17.9 18.1 18.2 19.2 19.2	28 18 30 27 29 42 27 23 30 04	9.14 9.58 9.38 9.22 9.24	G8 III K1 II-III F8 V K0 III F2 II :	+ 2.8 + 24.8 + 28.2 - 64.4 - 1.9	1.6 1.8 2.8 0.6 2.6	5 6 5 4 6	III
1269 1271 1292 1293 1295	$14608 \\ 14624 \\ 14875 \\ 14876 \\ 14874$	02 19.5 19.4 21.8 21.8 21.9	+30 06 26 03 29 01 27 26 30 25	9.20 9.40 8.94 9.48 9.4	K2 III G5 V K3 III K3 III G0 V	+ 0.9 + 50.2 - 9.1 + 9.0 + 6.0	1.4 2.5 1.3 0.8 1.2	4 6 4 5 4	
1297 1301 1304 1324 1330	14918 14949 14969 15256 15326	02 22.2 22.4 22.6 25.3 25.8	+25 16 27 28 29 39 29 39 29 28	8.90 9.44 8.96 8.32 8.34	G5 III K2 II K3 III G5 III F8 V	- 9.5 var. - 27.8 - 13.7 - 16.7	1.7 0.3 0.9 1.8	5 6 4 5	II
1371 1376 1429 1436 1447	16099 16139 17119 17190 17283	$\begin{array}{cccc} 02 & 33.1 \\ & 33.4 \\ & 42.6 \\ & 43.3 \\ & 44.3 \end{array}$	+29 39 27 15 30 07 25 27 26 32	9.64 9.28 8.97 8.76 9.23	K3 III G8 II F5 V K1 IV K1 III	- 58.5 + 26.3 - 14.1 + 14.9 - 37.3	1.9 1.8 1.4 0.8 1.1	4 5 4 4	
1454 1455 1473 1474 1497	17382 17396 17674 17673 17963	02 45.2 45.3 48.1 48.1 51.0	+26 52 30 08 30 05 30 18 29 54	8.57 9.22 8.29* 9.23* 9.71	K1 V G0 V G0 V K1 III F6 V	+ 9.4 + 12.6 + 5.2 - 19.8 + 25.0	1.4 2.1 2.3 1.8 2.0	7 6 5 5	

A.G.	H.D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec.)	Ρ.Ε.	P1.	Ref.
1516 1517 1521 1528 1530	18189 18202 18328 18403 18450	$\begin{array}{cccc} 02 & 53.1 \\ & 53.3 \\ & 54.6 \\ & 55.3 \\ & 55.9 \end{array}$	+25 53 28 58 29 31 27 08 26 34	9.41 7.55 9.38 9.49 9.31	G8 III G8 III F8 V G0 IV K2 V	- 21.1 + 29.6 - 3.0 - 62.1 + 35.7	$ \begin{array}{c} 1.3\\ 0.7\\ 2.3\\ 1.4\\ 2.2 \end{array} $	4 4 5 6 6	III
1537 1541 1559 1564 1572	18554 18602 18929 19079 19165	02 56.9 57.4 03 00.5 02.1 02.8	+30 25 30 22 27 23 30 00 27 30	9.46 9.75 8.74 9.21 9.06	K1 III G8 III G8 III F7 IV F6 V	+ 6.0 - 13.4 - 18.6 + 21.2 + 85.4	$ \begin{array}{c} 1.0\\ 1.8\\ 0.7\\ 2.0\\ 1.7 \end{array} $	4 4 5 5 5	III
1584 1599 1652 1653 1699	19485 19823 20671 20680 21451	03 05.7 09.2 17.6 17.6 25.4	+25 24 29 38 28 39 26 45 26 06	8.97 9.75 9.41 9.59 9.34	G5 V G0 V F8 IV K2 III K3 III	var. - 31.6 - 19.7 - 12.0 - 19.0	0.9 1.1 2.1 0.7	$17 \\ 4 \\ 4 \\ 5 \\ 4$	II
1727 1747 1758 1791 1813	21820 22269 22403 22849 23141	03 29.1 33.0 34.2 38.2 40.8	+29 22 27 26 25 50 29 21 26 13	9.43 9.02 8.17 9.58 8.96	KO III K1 III G2 V K1 IV K1 III	+ 32.2 + 15.7 var. + 8.1 - 24.9	0.4 0.5 2.1 1.1	6 4 6 4 4	II
1818 1824 1894 1902 1906	23169 23257 24301 24365 24399	03 40.9 41.7 49.9 50.6 50.8	+25 34 27 46 26 32 28 00 26 45	9.39 7.60 8.77 9.00 8.89	G2 V G5 V G0 IV G8 V G8 II	+ 17.4 + 49.0 + 26.0 + 21.3 + 4.6	$0.3 \\ 1.3 \\ 1.2 \\ 1.4 \\ 1.3$	4 5 5 4 4	
1911 1930 1958 1967 1993	24505 24768 25296 25461 25834	03 51.9 54.2 59.2 04 00.7 03.7	+28 03 25 08 27 59 29 04 30 08	9.01 8.78 8.50 9.27 9.56*	G5 III G8 III G8 III K1 V K1 II	- 9.4 + 6.8 - 20.8 - 9.3 + 22.8	0.8 0.9 1.7 1.5 1.3	4 4 5 5	
1999 2000 2001 2009 2023	26081 26090 26126 26372 26710	04 05.6 05.8 06.0 08.2 11.5	+25 45 29 04 28 31 26 22 26 08	9.16 9.16 8.93 9.50 8.00	G8 II G0 IV F8 V F8 V G2 V	- 11.1 + 36.2 + 2.6 - 10.9 - 9.3	0.9 0.4 1.1 2.8 1.6	4 4 6 5	
2025 2065 2124 2157 2180	26766 27741 29246 30111 30467	04 12.0 20.6 34.3 42.7 46.0	+29 47 28 04 25 38 28 34 26 56	8.62 9.19 9.26 8.31 8.76	K1 IV / G0 V K2 III G8 III F8 IV	+ 9.0 - 8.4 + 39.1 + 23.0 - 21.2	0.7 1.0 1.1 1.7 1.9	4 6 5 6 5	
2204 2248 2249 2255 2265	30945 31782 31781 31867 32093	04 49.9 56.5 56.6 57.2 .58.7	+26 42 25 52 26 11 25 04 26 35	9.44 8.20 9.14 8.86* 9.15	K3 III K0 IV - F8 V G2 V G2 V	+ 27.2 - 67.8 + 22.2 - 25.4 - 1.0	1.7 1.5 1.2 1.0 1.6	5 5 4 4	III

A.G.	Н. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	Pl.	Ref.
2271 2277a 2298 2302 2338	32387 32477 32835-6 32963 33463	05 00.8 01.4 04.0 04.8 08.5	+24 54 30 19 26 56 26 16 29 51	8.26 9.61 8.76 8.36 8.74	G8 V M0 III F5 V, A G2 V M2 III	+ 57.9 + 36.2 + 27.0 - 62.0 + 14.0	1.0 2.2 3.8 0.4 2.7	4 6 4 4 5	N III
2344 2603 2606 2615 2627b	33585 37800 37956	05 09.3 38.8 38.8 39.3 40.2	+26 24 29 15 26 14 29 50 29 11	7.84 9.06 10.63* 9.51 7.96	G5 III F8 V M0 III F8 IV K1 III	var? - 4.0 + 21.8 + 3.0 + 28.8	1.2 2.0 0.7 1.0	5 6 4 5 5	п
2657 2672 2696b 2714 2763	38142 38261 38524 38750 39416	$\begin{array}{c} 05 & 41.\ 6 \\ & 42.\ 5 \\ & 44.\ 5 \\ & 46.\ 0 \\ & 50.\ 4 \end{array}$	+24 54 25 06 25 33 25 38 25 04	9.08 8.98* 7.94 9.14 8.54	G8 III K2 III K1 III K2 II G2 II	+ 23.1 - 5.1 - 17.2 - 6.6 + 0.2	1.6 1.4 0.6 1.9 2.5	4 4 5 6	
2784 2805 2834b 2845 2940	39713 39949 40280 40460 41430	05 52.3 54.0 55.8 57.0 06 03.1	+29 10 27 19 25 46 27 16 29 06	8.86 8.58 7.83 7.88 9.03	G5 III G0 II K0 III K0 III K3 III	<pre>- 71.9 + 13.7 + 2.0 + 98.5 + 21.1</pre>	1.7 1.6 1.5 1.4 1.9	5 5 5 4	III
2946 2967 2994 3028 3036	4145641708419944239742454	06 03.3 04.8 06.3 08.5 08.9	+26 32 27 26 27 12 25 01 29 30	8.82 8.81 9.14 8.68 8.74	G8 III G0 V G5 II G0 IV G2 Ib	- 21.0 + 34.8 + 8.0 + 39.8 + 11.4	1.6 1.8 0.8 0.2 0.4	4 6 5 4 4	
3061 3093 3107 3113 3146	42981 43383 43581 43693 44030	06 11.7 13.8 15.0 15.6 17.5	+25 16 25 31 26 27 28 05 25 38	9.84 8.98 9.26 9.39 9.45	K2 II F8 V K0 II K2 III K5 III	- 6.4 + 12.7 + 47.9 + 9.6 -103.8	1.5 1.6 2.2 J.0 1.1	4 4 4 4	III
3167 3176 3194 3204 3240	4431644391446154478045207	06 19.3 19.6 20.7 21.6 24.3	+28 56 28 01 29 00 25 05 29 40	9.20 9.34 9.32 7.76 8.48	K1 III K0 Ib F6 V K2 III F8 II	- 14.0 - 9.4 var? var. - 35.0	1.9 0.8 1.9	4 4 5 5	II II
3247 3255 3288 3289 3307	$\begin{array}{r} 45336 \\ 45427 \\ 45800 \\ 45824 \\ 46159 \end{array}$	06 24.9 25.4 27.6 27.7 29.9	$\begin{array}{rrrr} +29 & 16 \\ 27 & 40 \\ 25 & 55 \\ 26 & 41 \\ 29 & 27 \end{array}$	9.58 9.23 9.52 9.08 9.25	K5 III K1 III G8 II K0 III G8 III	- 1.0 - 51.3 + 15.5 - 10.1 + 34.8	2.7 2.1 0.7 1.2 2.4	5 5 4 6 4	
3309 3320 3326 3340 3367	46160 46277 46336 46532 46944	06 29.9 30.5 30.8 31.9 34.2	+27 52 28 01 27 05 24 58 28 01	9.46 9.07 9.19 9.46 9.38	K5 III K0 II K0 III K2 III F7 V	+ 7.9 - 2.5 + 36.6 + 3.2 + 65.2	1.8 0.4 1.4 1.5 2.2	4 4 4 5	

A.G.	H.D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	Pl.	Ref.
3424 3433 3440 3441 3442	47730 47836 47960 48008	06 38.1 38.6 39.1 39.3 39.2	+29 46 27 08 25 31 29 29 25 25	9.53 8.78 9.50 9.76 9.32	K1 III G8 III M0 III G8 III F6 V	+ 5.7 + 10.0 + 10.1 - 48.3 + 1.6	1.2 2.2 1.7 1.9 2.8	4 4 4 4	
3471 3474 3475 3504 3513	48591 48640 48638 49141 49365	$\begin{array}{cccc} 06 & 42.3 \\ & 42.3 \\ & 42.4 \\ & 45.1 \\ & 46.2 \end{array}$	+29 25 24 44 27 44 26 46 28 36	8.76 9.54 8.40 10.30 9.00	F8 V K1 Ib K3 III K0 III G0 IV	var. + 24.5 - 35.5 - 1.1 - 29.3	1.6 1.3 2.0 2.6	6 5 4 5 4	Π
3518 3615 3646 3647 3654	49500 51101 51690 51689 51834	$\begin{array}{ccc} 06 & 46.6 \\ & 53.9 \\ & 56.3 \\ & 56.3 \\ & 56.9 \end{array}$	+25 33 24 43 25 18 25 18 29 51	8.85 8.06 9.50 8.53 9.02	K0 III K0 III F8 V F8 V K4 III	+ 61.4 + 23.4 + 6.4 + 23.6 - 13.7	2.1 1.8 1.4 2.7 3.3	6 5 5 4 4	N
3657 3668 3669 3670 3682	51886 52071 52101 52147	$\begin{array}{ccc} 06 & 57.1 \\ & 57.9 \\ & 58.0 \\ & 58.0 \\ & 58.3 \end{array}$	+26 57 27 14 29 48 29 17 26 18	8.68 8.57 8.98 8.74 9.05	G8 III K2 IV K0 III G5 III G5 III	- 6.6 + 94.7 + 40.0 + 10.1 + 18.1	$ \begin{array}{c} 1.5\\ 2.4\\ 1.2\\ 1.4\\ 2.6 \end{array} $	5 4 5 5 5	III
3708 3737 3775 3792 3808	52765 53472 54370 54825 55080	$\begin{array}{c} 07 & 00.5 \\ & 03.1 \\ & 06.6 \\ & 08.4 \\ & 09.4 \end{array}$	+25 10 24 56 26 36 26 29 26 39	8.83 8.88 9.15 8.24 8.65	G8 III K5 III K2 III K0 II G8 II	+ 16.9 + 9.3 + 23.8 + 41.5 + 14.1	$ \begin{array}{c} 1.2 \\ 2.7 \\ 1.5 \\ 0.6 \\ 1.6 \end{array} $	5 5 4 4 4	
3828 3834 3865b 3866 3873	55578 56176 56224 56418	07 10.8 11.5 14.0 14.2 14.8	+28 39 28 32 26 47 26 27 26 25	9.34 9.58 7.70 8.86 8.98	F8 V G8 V G7 IV K3 III K1 III	+ 7.5 + 17.7 - 5.1 +109.6 + 1.1	2.1 3.1 0.7 2.3 2.7	4 5 4 4	Ш
3874 3880 3890 3897 3918	56417 56513 56629 56761 57267	07 14.9 15.4 15.9 16.4 18.5	+27 14 27 21 29 17 26 55 26 15	8.95 8.90 8.79 8.25 8.65	G8 III G2 V G8 III G8 III G2 V	- 8.8 - 27.4 + 16.1 + 0.8 var.	1.5 1.2 1.9 2.5	4 4 4 4 7	N, II
3928 3974 3980b 4019 4044	57470 58683 58898 59684	07 19.6 24.7 25.6 29.1 31.4	+29 55 27 24 27 39 27 14 28 51	9.28 8.62 8.06 8.66 9.29	K1 III G8 III K2 III K1 III G0 IV	- 26.4 + 55.7 var? + 59.4 + 0.6	1.4 0.5 2.3 0.5	4 4 4 4	11
4046 4051 4119 4143 4152	60235 60298 61645 62285 62567	07 31.6 31.8 38.2 41.1 -42.5	+28 37 25 04 26 00 25 54 26 07	9.22 8.18 9.54 7.43 9.34	K3 III G0 V K2 III K5 III K5 III	+ 34.3 -134.5 - 28.5 + 1.6 - 6.0	3.1 2.6 3.0 0.9 0.6	5 4 4 4 4	III

A.G.	H.D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	Ρ.Ε.	Pl.	Ref.
4161 4173 4178 4194 4198	62857 63016 63138 63410 63433	$\begin{array}{c} 07 & 43.9 \\ & 44.9 \\ & 45.4 \\ & 46.7 \\ & 46.8 \end{array}$	+26 09 28 48 28 53 26 23 27 29	9.28 8.68 8.18 8.06 7.71	G5 IV - G8 III K0 III G8 III G5 IV -	+ 17.1 - 8.2 + 20.4 + 81.4 - 15.7	1.3 2.4 1.6 1.4 0.7	4 5 4 4	III
4202 4209 4214 4261 4303	63495 63712 63816 64833 65934	07 47.2 48.3 48.8 53.8 59.1	+28 52 29 18 24 57 26 14 26 47	9.17 8.17 8.97 8.81 8.87	K1 III G8 III K1 III K1 III G8 III	- 6.4 var? + 8.2 - 35.3 + 34.4	3.1 1.7 1.7 0.5	4 5 4 4	II
4377 4384b 4386 4389 4390	67402 67542 67544 67613 67628	08 05.8 06.5 06.4 06.7 06.9	27 38 29 14 24 58 25 42 29 16	8.17 7.72 8.59 9.35 9.48	K0 III G5 II G8 III K5 III K5 III	+ 12.4 var? + 3.7 + 34.2 + 0.9	1.3 0.9 1.8 0.8	4 6 4 4	II
4392 4430 4451 4453 4454	67709 68724 69312 69349 69364	$\begin{array}{c} 08 & 07.2 \\ & 11.6 \\ & 14.3 \\ & 14.5 \\ & 14.6 \end{array}$	+27 14 26 53 27 12 27 33 25 00	9.51 9.21 9.10 9.04 8.83	K1 III K0 III K1 III K1 III K0 III	+ 45.3 - 32.1 var? + 2.9 - 19.6	2.7 I.3 1.5 1.1	4 4 4 5	II
4481 4488 4494 4499 4511	69866 70030 70178 70402 70688	08 17.0 17.7 18.5 19.8 21.2	+27 02 25 30 28 59 27 41 28 55	9.20 9.17 9.22 9.08 9.44	K1 III K3 III G5 IV 🖌 G8 III F6 V	- 5.3 + 38.4 + 43.4 - 39.6 + 41.8	2.6 2.3 3.7 1.6 1.6	4 4 4 4 4	
4525 4526 4529 4531 4554	71008 71028 71093 71132 71730	$\begin{array}{c} 08 & 23.0 \\ & 23.1 \\ & 23.4 \\ & 23.6 \\ & 26.7 \end{array}$	+28 48 28 34 28 04 28 14 24 31	9.00 9.32 7.40 9.32 8.35*	K1 III K0 III K5 III G8 IV K0 III	- 1.8 var? + 24.8 + 19.8 + 32.8	3.5 0.6 2.6 1.7	5 5 4 4 4	II
4588 4598 4612 4632 4670	72559 72907 73160 73509 74260	08 31.6 33.3 34.8 36.8 40.9	+28 37 28 53 26 25 28 41 27 24	9.08 9.16 9.33 9.31 9.50	F6 V G8 II K2 III F8 V K3 III	- 19.4 - 3.8 + 39.9 var? + 12.7	0.9 2.2 0.4 1.8	5 4 4 4 4	II
4671 4682 4684 4690b 4693	74348 74624 74669 74811 74925	$\begin{array}{cccc} 08 & 41. \ 4\\ & 43. \ 0\\ & 43. \ 2\\ & 44. \ 1\\ & 44. \ 9\end{array}$	+28 38 28 34 27 47 28 21 28 10	9.43 9.02 8.43 7.40 9.30	G0 IV F5 III K1 IV G2 IV G0 IV	+ 2.3 + 27.8 + 27.6 - 1.8 - 13.6	2.1 2.4 0.8 0.9 3.1	4 4 4 4	Ν
4702 4714 4715 4717 4727	75216 75646 75663 75935	08 46.7 49.0 49.0 49.3 50.9	+29 38 25 55 25 54 29 03 27 06	8.71 9.13 9.06 9.44 9.35	K2 III G0 IV K2 III K3 III G8 V	var? + 14.3 - 7.1 + 20.2 - 18.7	2.6 2.5 2.7 0.7	4 4 4 4 4	II

A.G.	H. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	Ρ.Ε.	P1.	Ref.
4730 4743 4754 4758	76010 76332 76657 76752	08 51.4 53.4 55.4 55.9	+27 07 28 52 26 41 25 36	9.06 9.34 9.08 7.94	M0 III G2 V K0 III G2 V	+ 29.6 + 18.6 + 23.7 - 10.1	1.2 0.3 1.8 0.8	4 4 4 4	
4760	76766	56.0	26 07	8.25	F8 V	+ 15.3	0.3	4	
4764 4768 4771 4796 4799	76864 76866 76976 77313 77444	56.8 56.8 57.3 59.6 09 00.3	29 13 24 49 28 52 26 03 27 25	9.46 9.32 9.70 8.44 9.70	K3 III F5 V M0 III K1 III K4 III	- 0.3 + 12.2 + 20.9 + 16.7 - 30.9	1.9 2.6 2.7 2.1 1.0	5 5 4 4 4	
4809 4813 4814 4823 4829	77586 77694 77729 77948 78194	09 01.4 01.9 02.1 03.3 04.7	+29 28 24 48 26 22 26 20 28 12	9.64 9.33 9.42 9.52 9.29	M III K2 III K2 IV K0 III K1 II	+ 88.2 + 42.3 +104.5 - 10.7 + 57.2	2.72.53.32.13.2	4 4 4 5	
4834 4835 4836 4856 4859	78277 78887 78967	09 05.1 05.4 05.5 08.4 09.0	+27 46 27 44 27 45 25 38 29 05	8.87 8.76 8.84 9.29 9.30	G2 IV G0 V G0 V K0 II K1 III	var? + 32.6 + 28.2 0.0 + 22.0	2.0 0.3 1.4 1.2	4 4 4 4	П
4869 4875 4878 4906 4914	79214 79318 79373 80217 80327	09 10.7 11.2 11.6 16.3 16.9	+24 30 25 30 25 13 26 28 24 38	9.31 9.56* 8.46 8.35 8.45	K0 III K0 III K3 III K4 III F8 V	- 6.3 - 8.6 + 31.6 + 9.9 - 32.1	2.0 3.0 2.2 1.6 3.1	4 5 4 4	N
4930 4936 4958 4968 4994	80819 81058 81505 81855 82331	09 19.8 21.2 23.8 26.0 29.2	+25 58 26 08 26 34 26 26 27 03	9.20 8.38 9.28 9.84 9.21	K0 III K2 III G8 III K3 III K1 III	+ 74.1 - 14.6 + 20.9 + 1.1 - 5.9	2.2 3.1 0.5 2.0 2.2	4 4 4 4	III
5030 5038 5041 5042 5054	83098 83224 83341 83340 83617	09 33.9 34.7 35.5 35.6 37.5	+27 59 24 37 25 36 28 14 25 15	8.53 9.63 9.86 8.65 9.56	K2 III F6 V G8 III G0 IV G0 IV	- 6.0 var. * + 54.8 + 23.4 + 13.1	0.9 1.3 2.9 2.9	4 5 4 5	II
5055 5059 5061 5065 5083	83632 83807 83820 83935 84440	09 37.7 38.7 38.8 39.5 43.0	+26 14 28 11 29 06 25 49 27 17	9.91 9.16 9.82 8.71 9.13	KO III F8 V K1 III K1 III K1 III	+ 89.8 var. + 20.4 + 15.9 + 12.2	1.6 1.8 1.7 1.3	4 4 4 5	III II
5087 5090 5122 5126 5132	84577 85428 85440 85615	09 44.0 45.1 49.4 49.6 50.8	 27 23 27 21 25 21 28 01 25 54 	9.58 9.40 8.94 8.61	K0 III : F6 V K2 III G8 III K2 III	- 10.6 - 0.5 + 71.5 0.0 - 12.1	1.1 1.7 2.4 1.0 0.5	4 5 4 4 4	III

A.G.	H.D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	P1.	Ref.
5145 5147 5156 5159 5173	85946 85976 86131 86168 86460	09 53.0 53.2 54.4 54.5 56.4	+27 05 26 14 28 48 25 02 27 46	9.13 8.98 8.96 9.70 8.54	K0 III G8 III K2 III K1 III G0 IV	var? - 10.0 - 18.8 + 10.3 + 5.7	1.8 1.0 1.9 1.5	4 4 5 4 4	Π
5179 5180 5182 5183 5216	86590 86680 86778 86801 87680	$\begin{array}{c} 09 & 57.2 \\ 57.8 \\ 58.4 \\ 58.7 \\ 10 & 04.4 \end{array}$	+24 48 28 25 29 02 28 48 29 29	8.95 8.78 8.70 9.48 8.82	K0 V G0 V K2 III G0 V G2 V	var. + 8.4 - 0.3 - 4.6 - 25.5	2.5 1.1 0.5 2.4	4 5 4 4 5	Ш
5223 5229 5248 5251 5254	87804 88008 88416 88476 88532	10 05.3 06.5 09.5 09.9 10.3	+27 03 24 48 27 21 28 29 28 32	9.46 9.43 9.85 8.14 9.78	G8 III G5 V K0 IV G8 III K0 IV	+ 1.6 var? - 0.6 + 4.7 var.	2.8 2.2 1.7	4 5 4 5	II
5255 5280 5298 5300 5308	88533 89055 89361 89415 89557	10 10.3 14.1 16.4 16.9 17.8	+27 40 26 07 24 37 29 37 29 12	9.30 8.34 9.00 9.81 8.79	G5 V G0 V K2 III F5 V G8 III	- 39.3 - 14.4 + 19.4 + 14.4 + 28.3	2.8 0.8 2.0 1.4 0.6	4 4 4 4	
5311 5312 5313 5336 5341	89629 89631 89630 90009 90183	10 18.2 18.4 18.4 21.0 22.3	+27 59 26 57 27 08 25 49 24 52	9.21 9.06 9.35 8.33 8.97	G8 IV 🛩 F5 V F8 V K2 III G0 V	+ 18.1 + 7.7 - 12.2 - 1.0 - 5.3	$3.1 \\ 1.0 \\ 1.7 \\ 1.7 \\ 3.4$	5 4 4 4 4	
5346 5355 5356 5361 5369	90346 90442 90443 90567 90682	10 23.5 24.2 24.2 25.1 26.0	+24 58 26 54 25 12 27 28 27 11	8.64 9.28 9.04 9.28 9.64	K1 III K1 V K1 III F8 V K3 III	- 20.0 var. var. + 32.8 + 6.3	2.5 3.1 1.7	4 5 5 4 4	II II
5377 5379 5382 5390 5393	90841 90861 90932 91148 91164	10 27.0 27.1 27.6 29.0 29.2	+28 49 28 50 27 36 24 20 24 59	9.64 8.36 9.70 8.81* 9.07	K2 III K2 III K1 III G8 V K0 III	+ 27.3 + 39.8 - 40.6 - 24.4 + 17.1	1.1 0.4 1.6 1.0 3.1	4 5 4 4 4	
5397 5398 5407 5417 5419	91348 91366 91545 91685 91842	10 30.5 30.5 32.0 32.9 34.0	+28 02 25 23 28 13 29 22 28 02	9.53 9.02 8.32 9.28 9.76	G8 III K1 III K2 III F7 V K1 III	+ 10.6 - 0.5 - 21.6 - 30.7 + 39.0	2.2 3.0 1.3 4.1 2.9	4 4 5 5 5	
5420 5421 5432 5451 5475	91855 91950 92108 92456 92824	10 34.0 34.6 35.7 38.1 40.7	 +26 26 25 20 26 11 25 58 26 02 	9.76 9.28 9.35 9.24 9.34	K0 III G2 V K0 III K1 III F8 V	- 6.6 + 42.0 + 32.9 + 23.0 - 10.2	2.9 1.1 1.0 2.7 1.8	4 5 4 4 4	

A.G.	н. р.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	Ρ.Ε.	P1.	Ref.
5489 5490 5503 5545 5565	93215 93242 93391 94336 94833	10 43.4 43.6 44.6 50.8 54.5	+26 01 25 53 27 10 26 28 25 32	9.98 9.42 9.30 9.12 9.39	G5 V K0 III K5 III M III F8 V	- 10.5 + 7.0 + 3.3 + 6.9 - 21.1	1.0 0.7 2.1 2.8 2.3	4 4 4 4	
5567 5571 5582 5591 5593	94834 94966 95188 95363 95364	10 54.6 55.5 57.1 58.2 58.3	+24 25 24 39 25 33 27 24 24 20	8.6 8.64 9.44 9.64 9.37	K1 IV K1 III G8 V F7 V G2 V	+ 4.7 - 6.5 + 6.8 var. + 12.3	1.8 1.4 2.7 2.5	4 4 5 5 4	п
5603 5611 5628 5635 5671	95725 95978 96234 96393 97476	11 00.5 01.9 03.4 04.3 10.6	+29 12 29 27 24 30 26 00 27 27	8.70 9.57 9.68 9.58 9.58	K1 II K2 III K0 III K0 III K4 III	- 12.8 - 45.4 + 11.6 + 15.1 + 9.4	$ 1.1 \\ 2.7 \\ 1.9 \\ 1.3 \\ 1.6 $	4 5 5 4 4	
5676 5684 5698 5713 5765	97658 97777 98155 98562 99594	11 11.9 12.7 15.1 18.0 25.0	+25 59 26 43 25 19 23 53 26 44	8.96 9.71 9.17 9.59* 9.73	K1 V G8 III K0 III G2 V K2 III	+ 3.4 + 1.1 - 6.1 + 12.0 - 0.2	1.6 1.8 2.1 3.2 1.0	4 4 5 5	
5780 5781 5787 5790 5815	99947 99957 100041 100179 100947	11 27.4 27.5 28.3 29.2 34.6	+25 10 25 35 28 44 24 35 28 03	9.16 9.58 9.02 9.02 9.11	KO III K3 III M III K4 III K1 III	 * 39.1 * 9.8 * 87.0 * 26.4 - 14.8 	1.6 1.6 1.3 1.3 2.6	5 4 4 5 4	III
5818 5829 5838 5847 5851	100993 101289 101396 101856 101906	11 34.8 36.9 37.6 40.9 41.2	+25 42 25 35 26 26 27 51 24 17	8.77 8.49 9.30 9.27 8.24	F8 V G0 V K1 V K0 III G2 V	+ 11.2 - 8.1 - 6.7 + 4.6 + 5.3	2.8 1.4 1.4 1.8 0.7	5 5 4 5 4	
5863 5864 5879 5882 5887	102142 102161 102404 102494 102646	11 42.8 42.9 44.7 45.3 46.6	+27 30 25 23 24 42 27 37 28 24	8.23 9.07 9.37 8.26 8.55	G5 V G0 V K2 III G8 IV K0 III	+ 9.5 + 22.2 - 5.3 - 21.1 + 12.4	1.0 3.2 1.3 0.7 1.0	4 5 4 5	
5922 5946 5956 5962 5964	103614 104076 104392 104590 104589	11 53.4 56.7 58.7 12 00.1 00.2	+25 46 24 54 24 30 24 44 25 36	8.87 8.88 9.74 8.95 9.36	F6 V G0 V K2 III K2 III K1 III	var? + 1.9 - 13.1 - 3.2 + 28.0	2.2 2.3 2.8 1.5	6 5 5 5 4	п
5974 5981 6015 6020 6022	104784 105020 105771 105898 105964	12 01.5 03.0 07.9 08.7 09.1	+25 13 28 47 29 21 25 02 26 01	8.62 9.66 8.59 8.19 9.22	F8 V K3 III K0 III G2 V G0 V	+ 3.1 - 33.1 - 3.5 - 37.7 + 14.2	2.6 3.2 1.1 2.1 2.5	7 7 4 5 5	

A.G.	H. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag	Class	Velocity (km./sec)	P. E.	P1.	Ref.
6031 6035 6052 6054 6060	106184 106398 106857 106947 107132	12 10.5 11.8 14.8 15.3 16.5	+28 55 26 47 29 00 25 20 25 07	9.75 8.41 9.54 9.31 9.41	K5 III G8 III F5 V F7 V F7 V	+ 6.5 + 58.6 - 6.1 + 5.0 + 2.1	1.2 2.4 1.4 1.0 2.1	4 5 4 4	
6078 6085 6091 6125 6134	107468 107611 107725 108466 108675	12 18.6 19.4 20.1 25.1 26.5	+26 00 27 35 26 54 28 23 29 10	9.52 9.04 9.77 8.56 9.17	K1 III F6 V K2 III K2 III F6 IV-V	+ 34.3 + 3.2 - 1.7 - 27.1 var?	2.0 1.5 2.4 2.3	4 4 4 5	II
$6140 \\ 6146 \\ 6149 \\ 6163 \\ 6170$	108805 108976 109012 109282 109463	12 27.5 28.6 29.1 31.0 32.3	+26 24 28 00 27 20 24 43 24 30	9.24 9.07 9.03 9.16 9.35	G8 III F6 V K2 III M III K5 III	- 23.0 - 1.2 - 18.1 + 0.5 - 26.1	1.9 1.0 1.8 3.2 1.7	4 4 6 4	
6172 6175 6177 6182 6222	109482 109552 109627 109823 110788	12 32.3 33.0 33.5 35.2 41.9	+29 22 29 07 25 42 28 54 28 15	9.31 9.07 9.10 9.71 9.35	G8 II F8 IV K2 III G0 IV G8 III	+ 0.7 + 20.9 + 1.0 + 8.2 - 30.6	3.0 3.1 2.9 1.6 2.9	5 5 4 4	
6227 6246 6249 6259 6274	110883 111285 111541 111842	12 42.6 45.5 45.8 47.4 49.5	+27 40 24 22 25 25 26 42 25 57	8.98 8.93 11.07 8.32 9.68	K2 III G8 III K2 III K1 III K5 III	+ 7.0 - 31.2 - 18.2 - 8.6 - 32.5	1.9 1.1 3.1 1.7 2.4	4 5 4 4	
6280 6294 6295 6313 6321	112001 112257 112299 112753 113094	12 50.6 52.7 53.0 56.3 58.6	+27 04 28 02 26 01 27 45 24 35	8.53 8.72 9.19 8.81 9.31*	G0 IV G2 V F8 V G0 V K1 III	- 12.0 - 38.5 + 3.6 var? - 10.3	2.7 1.0 0.4 2.7	5 4 4 5 5	II
6325 6343 6359 6364 6368	113242 113771 144037 114093 114172	12 59.7 13 03.3 05.0 05.6 06.2	+29 16 26 51 26 47 25 06 29 39	9.68 8.77 9.06 7.99 9.29	F8 V K0 III K1 III G8 III G0 V	- 5.7 - 8.6 - 6.4 - 5.9 - 36.8	1.5 2.2 0.7 0.9 2.2	4 4 5 4 4	
$6385 \\ 6407 \\ 6411 \\ 6416 \\ 6421$	$114636 \\ 115103 \\ 115256 \\ 115339 \\ 115613$	1 3 09.1 12.2 13.2 14.0 15.6	+26 39 29 40 29 00 28 00 27 43	9.77 9.23 9.06 9.13 9.24	K1 III F6 V K3 III G8 V F8 V	- 24.9 - 9.1 + 19.2 + 24.6 + 3.8	2.2 2.9 1.9 2.6 3.2	6 6 5 5 5	
6430 6435 6438 6443 6454	115762 115929 116029 116232 116329	13 16.5 17.5 18.3 19.6 20.3	+24 52 28 22 24 55 26 16 26 06	9.39 8.76 9.05 8.76 9.52	G2 V F6 V K1 III G8 III F7 V	- 12.0 - 12.6 - 2.1 - 22.8 - 27.3	1.8 0.7 1.9 1.8 2.2	4 4 5 4	

A.G.	H. D.	F.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec.)	P. E.	P1.	Ref.
6477 6478 6501	117028 117062 117555	13 24.8 25.1 28.4	+29 08 24 34 24 49	9.46 9.02 9.02	G8 III F2 V G5 II	+ 26.7 var? var.	1.2	4 5 7	II N, II
$\begin{array}{c} 6529 \\ 6546 \end{array}$	118658	32.8 35.6	$\begin{array}{c} 25 & 04 \\ 27 & 04 \end{array}$	9.47 9.79	G8 V K0 III	- 2.3 - 5.4	0.5 2.1	4 4	
6552 6556	118823 118905	$13 \ 36.5 \ 37 \ 1$	+24 30	9.25 8.46	K2 III K1 III	- 11.6	2.1	5	
6559	118971	37.7	26 11	8.91	G8 III	+ 33.1	1.4	5	
6582	119665	41.8	25 32	9.39	F6 V	- 0.8	2.2	4	
6584	119748	42.2	29 14	9.76	K1 III	- 29.9	1.0	4	
6590	119944	13 43.6	+27 29	9.65	K2 III	+ 13.8	2.2	4	
6618	120421	48 9	20 00	0.52	KI III	- 4.4 Var	1.1	4 6	TT
6619	120803	48.9	24 57	9.05	K1 III	- 47.4	2.5	6	11
6623	120895	49.5	24 56	9.91	K3 III	- 18.3	0.8	4	
6633	121131	13 50.8	+28 04	9.44	K1 V	+ 40.3	1.4	4	
6634	121149	50.8	27 54	9.29	G0 V	- 22.0	2.0	4	
6630	121184	51.1	24 24	9.89	K3 III	- 18.6	1.7	5	
6646	121103	51.9	28 34	9.15	K0 III	- 40.0	1.6	4	
6663	121844	13 55.2	+25 15	9.37	K1 III	- 62.1	2.7	4	
6669	122052	56.6	24 56	8.67	G0 III	- 26.1	2.4	6	
6693	122693	14 00.5	24 48	8.74	F8 V	+ 1.0	0.4	4	
6699 6699	122796	01.0	24 50 27 45	9.73	K3 III K1 III	var. - 32.5	1.8	5 5	11
6705		14 02.5	+26 05	9.79	K0 V	- 12.7	1.6	5	
6726	123612	06.0	24 33	8.43	K5 III	- 25.4	2.1	4	
6732	123822	07.1	25 41	9.77	G8 III	- 0.3	2.2	4	
6734 6738	123877 124019	07.4 08.2	$26 \ 05$ $27 \ 52$	9.93 9.33	K5 III G2 V	+ 21.0 - 20.2	2.9 0.4	5 4	
6788	125320	14 15.9	+27 02	9.12	G5 IV	+ 21.1	3.0	4	
6802	125728	18.5	26 18	7.99	G8 II	÷ 26.1 .	1.9	4	
6808	126009	20.0	29 36	8.65	M III	- 14.4	1.7	8	
6820 6821	126307 126327	21.8 21.9	$\begin{array}{ccc} 27 & 38 \\ 25 & 56 \end{array}$	8.45 var.	K4 III M III	+ 31.6 - 7.7	1.1 3.0	4 5	N
6832	126598	14 23.7	+26 29	9.22	K4 III	var.		7	II
6838	126778	24.7	28 49	9.39	G8 IV /	-130.1	1.5	4	III
6847	126970	25.8	29 29	8.91	G5 IV	- 48.1	1.5	4	
6848 6852	126991 127093	26.0 26.5	24 44 26 05	8.81	G2 V	- 82.9	1.8	4	III
0001	197900	20.0	20 00	0.10	1/1 111	т э. ө	1.0	4	
6888	127386	14 28.2	+25 19	8.99	pec.	var.	0.5	5	N, II
6889	128095	32.2	24 37	9.33	G8 III K1 IV	- 12.9	2.5	4	
6894	128185	32.6	28 37	8.67	F8V	~ 6.5	2.5	4	
6937	129357	39.2	29 17	8.72	G2 V	~ 33.9	2.2	4	

A.G.	H.D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	Pl.	Ref.
6940 6960 6971 6983 7008	$129412 \\130215 \\130500 \\130766 \\131509$	14 39.5 43.9 45.6 47.0 51.1	+24 45 27 43 25 41 25 21 28 43	8.27 9.07 9.72* 8.43 9.22	F7 V K2 V G8 II-III K3 II K0 V	 2.5 16.2 3.9 11.5 43.7 	2.0 0.8 3.1 1.1 2.1	4 4 5 8 4	
7022 7032 7035 7039 7042	$131972 \\ 132256 \\ 132304 \\ 132524 \\ 132737$	14 53.8 55.2 55.5 56.6 57.7	+24 35 25 31 24 52 25 15 27 21	8.10 8.16 8.82 8.73 9.03	K2 III G2 IV K3 III K0 III K0 III	+ 4.0 - 3.9 - 38.3 - 18.4 - 20.7	1.8 2.2 3.2 1.9 0.6	4 4 4 4	
7061 7062 7079 7089 7090	133460 133459 133922 134246 134282	01.6 15 01.7 04.2 05.9 06.1	26 14 +27 17 26 38 28 43 26 54	7.95 8.93 9.78 8.47 9.25	F8 V K4 III K4 III G8 III G8 II	<pre>* 3.7 * 8.2 var? * 10.4 - 5.2</pre>	0.7 2.1 1.4 1.2	4 4 6 4 4	II
7106 7116 7152 7155 7181	134680 135145 136231 136274 136901	15 08.2 10.7 16.6 16.9 20.3	+27 37 28 07 25 57 25 52 25 48	9.68 9.19 9.31 8.94 8.91	G8 III G0 V G0 V G8 V K1 III	var. - 54.4 + 14.8 - 28.6 var.	1.1 1.6 1.1	6 5 5 10 9	Ш
7183 7201 7220 7256 7276	137003 137688 138156 139007 139550	$\begin{array}{c} 15 & 20.7 \\ 24.4 \\ 27.3 \\ 32.7 \\ 35.8 \end{array}$	+28 14 28 18 27 16 25 10 25 48	8.67 9.27 9.55 8.75 9.41	G8 III K3 III G5 III F8 V G8 III	- 9.8 + 28.6 - 36.1 - 22.2 + 11.1	1.8 2.1 2.2 2.6 0.8	5 4 4 4 4	
7280 7281 7298 7326 7333	139608 139749 140385 140913 141176	$\begin{array}{c} 15 & 36.1 \\ & 36.9 \\ & 40.2 \\ & 43.1 \\ & 44.7 \end{array}$	+24 41 25 54 29 47 28 37 25 14	8.2 8.87 9.37 8.81 9.07	M III G0 V G2 V G0 V G2 IV	- 23.2 + 8.1 - 44.8 - 14.5 - 17.5	1.0 1.6 1.4 0.2 2.0	4 4 4 5	
7353 7367 7377 7378 7385	$141690 \\ 142053 \\ 142209 \\ 142243 \\ 142243 \\ 142418$	$\begin{array}{c} 15 & 47. \ 4\\ & 49. \ 4\\ & 50. \ 3\\ & 50. \ 5\\ & 51. \ 5\end{array}$	+25 37 25 27 28 45 29 04 29 37	9.27 8.87 9.40 9.25 9.41	G0 IV K1 II-III K3 III K3 III K1 III	var. - 10.6 - 15.8 - 17.5 + 9.1	1.0 2.0 2.3 2.6	5 5 4 5 5	II
7398 7399 7415 7418 7419	142898 142929 143271 143272 143313	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+27 12 25 19 27 00 26 41 25 43	9.24 9.01 9.43 9.35 9.59	K1 IV F8 V G8 III K0 II-III K2 V	- 31.5 - 34.1 + 1.3 + 3.6 var.	1.2 2.0 1.8 1.6	4 5 4 4 6	II
7420 7441 7444 7468 7505	$143688 \\ 143705 \\ 144287 \\ 145374$	$\begin{array}{c} 15 & 56.5 \\ & 58.9 \\ 58.9 \\ 16 & 02.0 \\ & 07.5 \end{array}$	+27 53 24 36 29 05 25 23 27 06	8.95 9.31 8.73 8.24 8.28	K0 V F6 V G0 V G8 V K1 III	- 67.4 + 27.2 var. - 44.5 + 6.4	1.2 3.4 0.7 1.5	4 5 5 8 4	п

A.G.	H.D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	P. E.	P1.	Ref.
7507 7511 7513 7537 7603	$145404 \\ 145458 \\ 145457 \\ 145890 \\ 147487$	16 07.7 08.0 08.0 10.3 19.2	+26 08 25 37 26 52 26 34 27 29	9.20 8.67 8.14 9.15 9.15	G0 V G8 II-III K0 III K1 III G0 V	- 19.6 - 4.5 - 3.3 var? - 58.2	0.8 1.2 1.1 1.0	4 4 7 4 4	II
7608 7612 7629 7685 7690	147527 147665 147980 149067 149132	16 19.4 20.2 21.9 29.4 29.7	+29 07 24 52 28 30 25 57 29 43	9.41 9.50 8.80 9.26 9.25	F5 IV F8 V K1 II-III G8 II K2 II	- 33.5 - 7.0 - 28.8 - 4.1 - 18.2	1.4 1.6 2.1 1.8 1.2	5 5 4 4 4	
7692 7698 7704 7709 7721	$149142 \\ 149241 \\ 149403 \\ 149474 \\ 149803$	16 29.8 30.4 31.5 32.0 33.9	+26 08 27 49 24 59 25 35 29 51	8.97 9.49 9.33 9.65 8.90	G8 III K5 III G0 V K3 III F7 V	+ 41.3 - 0.6 - 12.3 - 8.1 + 1.2	1.7 1.6 3.4 1.2 0.7	5 5 5 4	
7734 7735 7737 7742 7756	150087 150086 150102 150205 150431	16 35.7 35.6 35.8 36.3 37.9	+27 28 28 56 27 09 29 46 25 38	9.24 9.74 9.08 8.32 9.47	G8 III G8 III M2 III G5 V G8 III	- 2.1 + 1.1 + 12.7 + 29.9 - 14.0	1.8 1.0 2.7 1.5 0.8	5 4 5 4 4	
7761 7769 7774 7776 7779	150567 150665 150799 150889	16 38.7 39.5 40.1 40.2 40.9	+29 01 26 11 25 31 25 31 25 57	9.13 9.14 9.52 9.79 9.07	K3 III K0 III F7 IV-V F8 IV K2 III	- 50.4 - 3.9 - 15.5 - 28.7 - 54.4	1.3 1.8 2.4 2.9 1.6	4 4 7 5 4	
7799 7806 7826 7833 7847	151256 151369 151625 151780 152032	16 43.2 44.0 45.4 46.5 48.0	+24 40 26 08 28 29 26 41 26 18	9.57 9.35 8.82 9.25 8.57	K1 III G2 IV G0 IV K1 III G8 II-III	+ 10.5 - 3.6 - 38.4 - 19.9 - 19.5	1.1 2.2 2.4 1.2 1.9	4 4 4 4	
7857 7860 7884 7908 7940	152264 152306 152748 153224 153698	16 49.2 49.5 52.1 54.9 57.9	+29 39 28 12 27 40 29 40 27 23	8.41 8.23 9.15 8.80 9.21	G0 V G8 III G8 II F8 V M III	- 25.2 + 6.0 - 13.7 - 17.4 - 20.1	1.9 1.1 2.4 1.4 1.3	4 4 4 5	
7956 7969 7973 7989 8001	154049 154183 154510 154635	17 00.0 00.9 01.1 02.8 03.7	+25 06 25 43 24 55 28 10 25 34	9.41 9.33 9.51 8.59 9.24	КЗ III G0 V K1 III K1 III K0 П	- 86.0 - 21.7 - 49.5 + 2.5 - 49.0	1.7 2.4 2.1 1.0 1.0	4 5 6 10 4	III
8009 8026 8032 8046 8063	154760 154942 155041 155344 155675	17 04.3 05.5 06.0 07.9 10.1	+26 35 28 11 29 13 26 31 25 18	9.31 8.77 9.13 8.50 9.24	G2 V K1 III K2 III K2 III F8 V	- 14.3 - 20.4 - 29.2 + 4.0 - 23.8	1.5 2.1 2.2 0.9 1.7	4 4 5 4 4	

A.G.	H.D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	Ρ.Ε.	Pl.	Ref.
8066		17 10.2	+29 35	9.48	G8 II-III	- 29.5	1.1	4	
8072	155839	11.2	25 03	9.18	K5 III	+ 0.8	0.8	5	
8073	155878	11.2	27 59	9.17	G8 II	+ 3.0	1.1	4	
8077	155989	11.9	26 14	9.43	G5 III	var.		5	II
8079	156002	12.1	26 53	9.10	F5 IV	- 9.7	3.6	5	
0010	100001		20 00					-	
8084		17 12.2	+29 38	8.99	G0 V	+ 17.9	0.8	4	
8085	156093	12.5	26 07	8.42	K3 III	- 20.3	2.2	5	
8098	156362	14.0	27 11	8.27	K2 III	- 51.1	0.8	4	
8104	156454	14.6	26 38	9.41	G2 V	- 0.3	3.1	4	
8114	156563	15.3	25 05	9.56	G8 V	- 11.7	2.6	4	
8117	156652	17 15.6	+28 58	8,81	M III	- 36.4	2.0	5	
8127	156774	16.4	26 59	9.04	K2 III	- 48.3	3.1	5	
8128	156775	16.5	25 51	8.19	K1 III	- 4.8	1.4	4	
8135	156966	17 4	27 20	8.89	M2 III	+ 72.7	2.0	4	Ш
8152	157294	19 3	26 01	9 04	G8 III	- 48 6	3 1	5	
0102	101201	10.0	20 01	0.01	00 m	101 0	0.1	0	
8189	158038	17 23.8	+27 21	8.76	K2 II	+ 15.6	0.9	4	
8207	158332	25.6	26 50	8.80	K1 IV 🦯	- 18.8	2.2	4	
8223	158521	26.8	26 46	8.82	F6 V	- 1.1	1.2	4	
8244	158823	28.3	29 33	9.25	K3 III	- 42.9	1.4	4	
8283	159479	31.9	26 42	9.56	K2 III	- 21.3	1.6	4	
8291	159608	17 32 4	+29 48	9 89	M2 III	- 60.2	3.2	6	
8309	159948	34 4	25 39	8 97	K2 III	+ 6.3	0.6	4	
8311	159968	34 4	27 36	8 44	M III	- 35.0	1 4	4	
8338	160508	37 9	26 47	8 Q1	F8 V	+ 25 1	1 8	4	
9350	160679	29 1	20 16	0.01	KU III	+ 35 5	1 8	4	
0110	100010	50.1	25 10	5.05	100 111	F JJ.J	1.0	1	
8372	160952	17 39.7	+29 37	9.04	G8 III	+ 30.6	0.3	4	
8380	161112	40.6	26 34	8.82	KO III	- 5.6	1.7	5	
8387	161197	41.1	24 49	8.91	G2 IV	+ 26.5	1.7	4	
8390	161196	41.1	29 40	8.96	M III	+ 2.4	2.0	4	
8392	161268	41.5	27 03	8.91	K1 II	- 23.4	2.4	4	
8492	162901	17 50 4	+25.00	8 95	K2 III	- 94	2 4	5	
8506	163077	51 3	25 00	8 82	G8 V	+ 12 3	1 3	4	
8523	163331	52 5	27 37	9 16	KI III	+ 8 5	2 3	4	
8559	163949	55 6	28 00	0.10	F6 V	+ 16 5	1 5	4	
8563	163970	5.88	27 51	9.60	G0 V	- 28.3	2.8	4	
9564	162060	17 55 0	190 15	0 50		+ 8.0	9 9	Л	
0504	103909	17 55,8	+20 10	9.52	Go III	T 0.0	1 0	4	
0509	164042	56.2	21 24	9.10	K4 III	- 40.9	1.0	0	
00/1	164079	56.4	28 00	9.21	FZ V	† 43.4	1.0	4	
0017	164923	18 00.4	25 00	9.80	K2 III	- 23.5	2.0	4	
8651	165473	03.0	29 05	8.29	K0 II	+ 18.4	1.4	4	
8654	165589	18 03.5	+28 41	8.31	K1 III	+ 11.5	1.1	4	
8656		04.0	25 41	9.09	F6 V	- 21.4	2.7	5	
8669	165989	05.5	26 24	8.22	G8 III	- 1.9	1.0	4	
8677	166070	05.8	27 23	9.33	K1 IV	- 27.6	1.4	4	
8683	166093	05.9	29 49	8.89	K3 II	- 25.0	1.6	4	

A.G.	H. D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Ve?ocity (km./sec)	P. E.	P1.	Ref.
8685 8706 8707 8709 8712	$166181 \\ 166683 \\ 166730 \\ 166781 \\ 166822$	18 06.3 08.6 08.8 09.1 09.3	+29 41 29 04 27 58 26 39 25 19	8.37 9.06 9.41 8.22 9.09	G5 V G8 III K1 III G5 III G0 IV	var. - 17.5 - 29.0 - 34.9 - 1.3	.3.0 1.0 2.0 1.7	5 6 5 4 4	II
8713 8715 8716 8717 8732	166842 166867 166895 166914 167132	18 09.5 09.5 09.5 09.7 10.9	+25 33 29 54 30 07 25 22 25 38	8.14 8.59 9.21 9.51 9.46	K1 III K0 IV F6 V F8 IV-V K1 III	- 59.3 + 17.3 - 20.7 - 9.9 + 11.6	1.8 1.2 2.2 3.2 1.0	4 4 5 4	
8742 8753 8773 8783 8818	167275 167472 167782 168038 168622	18 11.4 12.2 13.7 14.8 17.6	+26 14 28 12 25 47 27 05 27 28	8.79 8.19 9.70 9.07 9.70	K1 III K1 II G8 II F7 IV K2 III	- 3.7 - 1.8 - 18.3 + 9.8 - 30.3	0.8 1.1 1.8 2.4 1.7	4 4 4 4	
8824 8836 8849 8870 8887	168956 169245 169573 169797	18 18.1 19.3 20.7 22.2 23.3	+26 29 26 41 26 12 26 18 26 03	10.87 9.12 9.47 9.63 8.92	K3 III F6 V F8 V K2 III G8 III	+ 8.7 - 25.3 - 13.4 + 28.5 - 19.9	$2.4 \\ 2.1 \\ 2.1 \\ 1.2 \\ 0.7$	4 4 5 4	
8889 8898 8958 8975 8976	169819 170619 170737 170738	18 23.5 23.8 27.3 27.9 27.9	+25 58 29 23 29 31 26 37 25 44	9.95 9.33 8.45 9.11 9.21	K2 III K2 II K0 III G5 V G8 III	+ 7.4 - 3.4 - 26.7 -136.7 - 27.8	2.2 1.2 1.0 2.2 2.1	8 4 5 4 4	III
8990 9008 9013 9036 9050	170951 171164 171232 171550 171830	18 29.1 30.0 30.6 32.4 33.8	+25 08 28 51 25 27 29 42 27 10	10.05 9.61 8.66 8.00 9.41	M III K2 III G8 III K0 III G8 III	- 2.7 - 24.4 - 30.6 - 12.4 - 75.8	2.8 1.8 0.9 1.7 3.1	5 4 4 5 4	
9077 9080 9091 9109 9180	172132 172169 172311 173367	18 35.3 35.5 36.4 37.6 41.7	+29 01 29 32 28 15 26 09 28 04	9.51 8.39 9.82 9.78 9.59	K2 III K4 III G8 III F8 V K0 III	+ 12.2 - 24.7 - 35.4 - 37.6 + 3.5	2.7 0.8 1.6 2.7 3.0	5 4 4 4 5	
9186 9223 9236 9244 9245	173435 173909 174104 174126	18 42.2 44.8 45.3 45.8 45.8	+26 11 27 26 28 22 28 40 28 35	9.61 8.95 9.77 9.25 9.30	K0 III G8 III G0 V G0 Ib K2 II	- 3.3 + 23.6 - 68.3 - 14.3 - 9.2	2.8 2.1 1.9 3.0 2.8	5 4 4 4 5	
9263 9288 9295 9319 9330	174414 174695 174764 175036 175204	18 47.2 48.7 49.1 50.4 51.3	+27 40 28 28 29 40 26 28 25 19	8.46 8.57 9.77 8.94 8.93	K1 III K1 III G0 V G5 III	+ 14.8 + 2.1 - 4.4 - 51.5 - 46.5	1.6 1.9 1.7 2.1 3.2	4 4 4 4	

A.G.	H.D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec)	Ρ.Ε.	Pl.	Ref.
9358 9364 9383 9417 9449	175578 175940 176230	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+29 58 26 56 28 08 28 06 29 32	8.77 9.31 8.40 8.87 9.01	G5 III G8 III K2 III K1 II F8 V	- 32.4 - 4.1 - 31.3 - 45.2 + 10.4	1.2 2.2 2.2 2.2 1.1	4 5 4 4	
9459 9472 9486 9516 9575	176695 177251 178029	18 57.9 58.3 59.4 19 00.7 03.9	+26 17 28 36 26 19 29 13 29 15	9.61 9.17 9.35 9.04 9.19	G8 III G8 III K1 III G8 III G8 III	+ 17.7 var. - 2.1 + 16.9 + 11.4	0.7 1.1 2.1 1.6	4 5 4 5 4	II
9585 9594 9607 9629 9659	178450 178798	19 04.5 05.0 05.6 06.9 08.6	+28 38 29 07 30 10 30 13 28 16	9.91 9.47 8.83 8.53 9.29	F8 V G2 V G8 V K3 III F6 V	+ 2.2 - 7.8 var. - 12.1 - 52.4	1.2 1.4 0.9 1.4	4 4 5 6 4	11
9675 9763 9797 9865 9877	180502 181047 182056 182218	19 09.4 13.7 15.8 19.7 20.5	+26 19 29 02 25 16 30 16 27 04	8.83 8.77 8.99 9.25 9.29	G5 III G0 IV G8 V K2 II K1 III	var? - 4.3 - 84.6 + 7.8 - 7.3	1.1 1.5 1.5 2.5	5 4 4 4 5	II III
9882 9929 9949 9950 10014	182256 182617 183399	19 20.7 22.3 23.3 23.4 26.3	+25 14 28 29 25 37 26 14 29 21	8.94 9.09 9.63 9.71 8.09	F5 IV K1 III K1 II-III K2 II K1 III	- 57.4 + 9.3 + 27.5 - 59.7 - 13.5	2.4 1.5 1.8 1.0 1.0	5 4 4 5 5	
10039 10072 10077 10103 10108	183753 184150 184538 184590	19 27.9 30.0 30.4 32.0 32.2	+28 37 30 05 25 19 25 42 25 15	9.59 9.49 9.45 8.97 9.27	K3 II K3 III pec. K2 III M1 III	+ 26.7 - 30.0 - 4.2 - 25.1 + 28.3	1.4 0.4 0.3 0.6 1.0	6 4 4 4 6	Ν
10122 10133 10151 10154 10175	184719 185151	19 32.7 33.0 33.6 34.0 34.7	+29 03 28 59 30 17 26 23 27 46	9.31 9.55 9.73 9.52 9.59	K5 III F7 V G8 II K1 III K1 III :	- 24.4 - 37.0 - 11.3 - 52.9 + 4.4	1.6 0.4 2.6 2.5 3.6	5 4 5 4	Ν
10181 10182 10184 10188 10268	185270 185241 185269 185289 185982	19 35.2 35.1 35.2 35.3 38.7	+26 02 28 04 28 23 26 15 27 37	8.94 9.54 7.35 8:41 9.29	F8 V K0 III G0 IV G8 III G8 III	- 25.5 - 36.5 0.0 - 13.1 + 8.1	1.3 1.0 1.0 1.1 3.1	4 4 5 4	
10292 10299 10315 10333 10377	186223 186260 186517 186860	19 40.1 40.3 41.0 41.9 43.7	+27 04 26 57 27 49 27 19 30 08	9.47 9.24 9.22 9.11 9.81	K2 III K0 III F8 V K1 III M III	- 30.8 - 0.5 - 19.1 - 37.6 + 7.5	0.7 1.9 1.2 1.3 2.2	4 4 4 4 4	

A.G.	H.D.	R.A. (1950)	De (19	c. 50)	Ptg. Mag.	Class	Velocity (km./sec)	Ρ.Ε.	P1.	Ref.
10414 10426 10444 10445 10454	$187162 \\ 187280 \\ 187462 \\ 187460 \\ 187548 \\$	19 45. 46. 47. 47. 47.	4 +28 2 28 1 27 1 29 4 28	22 12 37 45 29	9.47 9.51 7.71 9.25 8.73	G8 III K2 III G0 V G8 III G0 V	- 12.5 - 10.6 + 3.5 - 6.1 + 14.2	2.1 2.3 0.5 2.7 1.1	5 4 6 5	
10456 10465 10499 10509 10528	187565 187614 187921 188015 188121	19 47. 47. 49. 50. 50.	5 +29 9 26 5 27 0 27 5 28	15 57 20 58 25	8.74 7.63 var. 9.09 9.21	F8 V G8 III G5 IV G0 IV	var. var. var? + 2.6 - 13.9	0.7 0.6	5 5 4 4 4	II II N, II
10546 10548 10582 10601 10644	188259 188258 188566	19 51. 51. 52. 53. 55.	2 +26 2 27 8 25 3 29 2 29	22 58 12 51 48	8.99 8.32 8.91 9.36 9.20	K1 III K2 III K2 III K3 III G0 V	- 26.9 - 35.3 - 9.5 var. - 9.6	$ 1.4 \\ 1.1 \\ 2.2 \\ 2.7 $	4 4 5 5 4	11
10646 10650 10668 10704 10713	189087 189108 189317 189671 189753	19 55. 55. 56. 58. 58.	2 +29 4 28 3 28 2 26 5 27	41 34 28 03 00	8.73 7.83 8.34 7.88 9.79	K1 V G8 III F6 V G8 II K4 II	- 27.1 + 10.2 - 35.4 - 20.9 - 8.0	2.3 1.0 1.7 0.3 1.0	5 5 4 4 4	
10724 10731 10742 10753 10771	189796 189884 189943 190228	19 58. 59. 59. 59. 20 00.	8 +29 2 27 5 30 9 29 9 28	41 03 05 45 10	8.46 8.90 8.70 9.45 8.36	G0 V K2 III G5 III F5 Ib G5 IV	- 4.7 - 10.2 + 17.6 - 3.3 - 48.7	1.9 0.7 1.6 1.4 0.4	4 4 4 4	
10799 10813 10814 10818 10831	190470 190605 190630 190749	20 02. 02. 02. 02. 03.	1 +25 7 26 8 25 8 30 5 29	39 20 55 22 44	9.04 9.23 8.50 9.39 9.59	K3 V G0 V G2 V K2 III K1 III	- 6.6 - 43.8 + 22.0 + 16.5 + 0.6	2.1 2.5 2.3 1.1 2.0	4 4 4 4	
10833 10837 10838 10843 10844	190787 190885	20 03. 03. 03. 04. 04.	7 +27 8 29 9 29 1 27 1 28	59 37 37 59 46	9.78 9.72 9.20 9.84 9.54	M III F6 V K3 III K3 III G0 V	+ 17.9 var? - 10.0 - 36.2 - 16.3	1.4 1.8 2.0 1.4	4 5 4 4	Π
10850 10899 10924 10925 10961	191010 191445 191590 191615 191875	20 04. 06. 07. 07. 09.	7 +25 9 28 7 29 8 25 0 29	32 32 35 23 33	9.42 9.93 9.28 9.09 9.84	G5 Ib K3 III K2 III K0 III K3 III	+ 21.9 + 39.0 0.0 - 94.0 - 25.0	1.1 1.7 2.2 0.7 2.0	4 4 5 4	III
10962 10971 11011 11012 11015	191898 191945 192287 192286 192405	20 09. 09. 11. 11. 11.	2 +25 4 29 2 25 0 30 6 27	59 01 05 20 23	9.56 9.36 9.49 9.37 8.73	G0 V M0 III M III G8 III F7 V	+ 11.4 - 17.4 - 7.3 - 75.9 - 24.3	2.3 1.4 2.6 0.8 1.7	4 4 5 4 4	

A.G.	H.D.	R (1	.А. 950)	De (19	с. 50)	I N	Ptg. Iag.	C	lass	Ve (kr	elocity n./sec)	P.E.	P1.	Ref.
11036 11053 11072 11086 11110	192732 192892 193011 193221	20	12.7 13.3 14.3 14.9 16.1	+26 29 26 29 25	38 52 20 57 21	9 9 8 9 9	.46 .18 .55 .70 .13	G5 K0 G9 K1 K2	111 111 111 111 111 111		23.1 11.1 17.1 29.9 11.4	1.9 2.8 1.2 1.1 1.6	4 4 4 4	N
11122 11140 11216 11233 11254	193347 193488 194071 194403	20	16.7 17.5 20.5 21.2 22.5	+26 27 28 28 25	50 16 05 38 45	8 9 9 9	.80 .85 .06 .67 .71	M2 F6 G8 K1 K3	2 III IV III III III	- + - + -	36.7 10.3 12.8 53.2 2.8	1.2 3.4 0.3 1.0 2.8	4 5 4 4 4	N III
11271 11273 11332 11368 11384	194510 194525 195216 195273	20	23.1 23.0 25.5 26.9 27.4	+25 30 27 27 26	33 24 53 41 46	8 9 10 9 8	.90 .04 .19 .95 .85	F7 G0 G8 K5 K1	IV III III III III	* - -	0.6 38.6 14.7 46.0 31.6	2.2 2.0 1.9 2.4 2.1	5 4 4 4	Ν
11420 11424 11440 11447 11453	195509 195667 195712 195790	20	28.7 28.8 29.7 29.9 30.3	+27 26 26 26 27	47 31 53 54 21	9 8 9 9	. 66 . 58 . 45 . 45 . 28	K2 K0 K3 G8	III III III III III	- + + + +	17.4 2.7 17.9 7.8 8.9	2.1 1.9 1.1 1.7 1.0	4 4 4 4 4	
11456 11470 11471 11480 11519	195834 195967 196034	20	30.6 31.3 31.5 31.8 31.8 34.3	+28 29 25 25 26	53 21 40 27 13	9 9 9 10	. 99 . 41 . 32 . 82 . 06	K3 K2 G8 K3 K1	II III III III III	- + + -	3.5 26.7 10.4 31.7 55.9	1.2 2.7 2.6 1.1 0.5	4 4 4 4	
11525 11546 11571 11573 11579	196448 196866	20	34.4 35.5 36.8 37.2 37.4	+29 30 26 25 26	02 00 31 54 27	9 9 8 10	. 60 . 31 . 74 . 70 . 21	G0 G0 G8 K2 K2	V V V III III	+ + -	4.6 21.5 3.9 76.5 3.6	1.1 1.9 0.8 1.0 0.7	4 4 4 4	
11581 11584 11598 11623 11625	196928 196940 197020 197207 197227	20	37.4 37.5 38.1 39.2 39.3	+27 26 25 30 29	55 08 52 01 09	9 9 9 8 8	. 64 . 56 . 57 . 99 . 73	K4 G8 G0 G5 F7	III III V V IV		17.9 6.0 6.1 52.5 16.3	2.6 2.4 1.6 0.5 1.5	5 4 4 4 4	N
11630 11631 11648 11661 11662	197264 197263 197395 197515 197514	20	39.6 39.6 40.4 41.3 41.2	+26 28 30 25 27	56 05 05 25 04	9. 8. 9. 9.	. 85 . 99 . 53 . 43 . 60	K0 G0 K2 K5 M	HI V III III III	-	0.9 2.4 7.6 46.8 19.2	1.8 1.7 1.3 0.6 1.7	4 4 4 4	
11663 11668 11755 11765 11767	197550 197605 198198 198238 198254	20	41.3 41.8 43.7 46.1 46.1	+30 27 29 26 28	02 16 27 13 21	9. 9. 9. 9.	81 25 27 90* 62	K0 F5 G8 K5 K1	111 11 111 111 111 111	+ + + + -	9.8 13.7 16.0 23.2 15.0	1.4 0.9 2.1 1.3 3.0	4 4 4 4 4	N

A.G.	H.D.	R (1	.A. 950)	Də (195	c. 50)	1	Ptg. Mag.		Class	٦ (k:	elocity m./sec)	Ρ.Ε.	Pl.	Ref.
11779 11808 11809 11814 11817	198313 198483 198482 198526 198550	20	$\begin{array}{r} 46.5\\ 47.6\\ 47.5\\ 47.9\\ 48.1 \end{array}$	+28 25 30 28 29	37 35 28 48 12		9.31 8.55 9.54 9.91 9.81	F C F F	C1 IV G0 V C2 III C1 III C5 V	- + -	63.4 14.6 15.8 0.9 13.3	1.9 1.7 2.2 1.1 1.0	4 4 4 4	
11823 11855 11919 11923 11941	198821 199375 199440 199598	20	48.4 50.0 53.9 54.2 55.5	+28 28 27 27 26	31 40 23 19 13	:	9.67 9.47 8.03 9.67 7.66	H H H C	<pre><0 III <2 III <2 III <2 III <1 III <1 III <1 V</pre>	-	7.2 23.0 12.8 45.1 27.1	1.8 1.4 1.6 0.9 1.3	4 4 6 4 4	
11958 11965 11970 11990 12015	199717 199763	20	56.0 56.2 56.3 57.8 59.6	+29 30 30 29 27	05 12 26 05 03		9.57 7.67 9.93 9.75 9.77	H () () () () () ()	KO III G9 III G0 IV F8 V) IV-V	-	23.8 var? 26.6 2.2 9.0	2.0 0.8 2.3 2.1	4 5 4 4 5	II
12031 12032 12035 12042 12050	200391 200425 200451 200491 200546	21	00.3 00.4 00.5 00.8 01.2	+27 25 26 28 27	37 58 19 47 08		9.11 8.42 9.49 8.96 9.58		GO III F8 V K5 III G8 III M2 III	-	var. 24.9 29.7 5.2 18.0	1.1 1.9 0.4 1.3	54 4 4 4 4	Ш
12059 12069 12130 12135 12158	200578 200679 201094	21	01.4 01.9 04.5 04.7 05.6	+28 26 26 30 30	54 09 21 15 10		8.05 9.76 9.94 9.92 9.38	C H H H	G8 III <1 III <2 II <0 III G0 V	- - + -	25.0 16.3 3.8 21.3 12.7	0.5 1.5 1.1 1.9 1.8	4 4 4 4	
12166 12185 12199 12205 12228	201346 201490 201626 201669 201860	21	06.0 07.0 07.8 08.1 09.4	+28 30 26 27 26	25 10 25 06 08		9.46 8.57 9.53 8.94 9.48		K1 IV F7 V Dec. G8 III G0 V	- + - +	71.0 1.0 150.8 5.9 36.2	2.0 0.8 0.7 0.3 1.2	5 4 15 4 4	N, III
12281 12296 12298 12352 12372	202365 202521 202573 203030 203171	21	12.4 13.4 13.7 16.8 17.6	+ 27 27 25 26 27	57 48 14 01 18		9.01 9.13 8.16 7.30 9.02	H G G	KO III K2 III G5 V : G8 V G0 V	- + -	10.8 15.5 28.4 12.9 17.9	2.9 .0.7 0.9 1.9 1.4	4 4 4 4	
12381 12385 12398 12402 12426	203288 203471	21	18.4 18.5 19.0 19.4 20.5	+26 29 30 28 30	02 55 04 21 28	:	9.38 9.62 9.77 9.38 9.53	H H I O F	<5 III <1 III <2 III G5 V <0 III	+ + -	16.7 47.1 7.4 18.9 1.8	2.0 0.6 2.9 2.2 0.8	4 4 5 4 5	
12442 12483 12514 12538 12539	203733 204079 204388 204539 204540	21	21.1 23.3 25.3 26.5 26.5	+29 27 27 26 25	36 00 39 12 42		9.08 9.43 9.58 9.21 8.44	H H H H	K1 III K1 V K5 III K3 III K2 III	-	46.7 30.9 24.7 44.8 23.7	1.4 1.5 0.6 0.7 0.5	4 4 4 5	
A.G.	H. D.	R.A (195	A. De 50) (19	ec. 50)	Ptg. Mag.	Cla	.ss (1	Velocity km./sec)	P.E.	Pl.	Ref.			
---	--	-------------------------------------	---	----------------------------	---	--	---	---	-----------------------------------	-----------------------	----------			
12553 12554 12566 12592 12596	204642 204658 204711 204923 204934	21 2' 2' 2' 28 28	7.1 +28 7.2 28 7.6 25 8.9 25 9.0 28	22 39 36 50 09	8.14 9.42 9.68 9.89 9.64	K2 I G0 V K2 I K3 I K1 I	11 7 11 11 11	+ 19.9 var? - 15.8 - 23.0 + 2.5	0.4 1.6 2.0 0.3	4 5 4 4 4	Ш			
12598 12643 12644 12677 12691	204921 205287 205316 205626	21 29 33 33 33 33 33	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	03 23 40 48 09	9.18 9.98 9.61 9.52 9、95*	K2 I K5 I K0 I G0 V F8 V	II II II V	- 25.7 - 41.7 - 17.2 - 21.1 - 2.7	2.0 0.8 1.5 1.0 1.1	4 4 4 4				
12692 12704 12707 12709 12781	205627 205700 205760 206332	21 33 34 34 34 38	3.7 +26 4.2 29 4.5 29 4.7 25 8.5 28	09 19 27 23 32	9.98 ⁵ 8.78 9.36 9.84 8.24	* F8 \ F5 \ G8 I K1 I G0 \	T T II II	- 8.7 - 7.5 + 0.3 - 10.6 - 42.8	1.6 1.9 2.6 1.7 0.8	4 5 4 4				
12786 12787 12789 12834 12842	206374 206373 2 0 6385 206889	21 38 38 38 41 42	8.8 +26 8.8 29 8.8 30 1.9 26 2.2 29	31 07 04 17 02	8.51 9.08 9.12 9.36 8.56	G8 V G0 V K5 I G2 V K1 I	T T T T T	- 41.1 - 91.8 + 13.2 - 45.2 - 8.1	1.2 1.7 1.6 1.2 0.8	4 4 4 4	ш			
12846 12854 12856 12885 12902	206899 206978 206979 207243 207379	21 42 42 43 44	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	05 11 00 52 30	$10.00 \\ 9.65 \\ 9.41 \\ 9.62 \\ 9.12$	K5 I G0 I K2 I K0 I K1 I	II V II II II	+ 5.1 - 12.5 - 73.4 + 11.9 - 4.2	$2.1 \\ 1.9 \\ 1.4 \\ 1.9 \\ 2.0$	4 4 4 5				
12915 12947 12985 12998 13000	207470 207740 208277 208379 208415	21 46 48 52 53 53	5.3 +28 3.4 28 2.3 30 3.2 25 3.2 30	29 32 00 42 35	9.58 8.96 9.52 9.41 9.04	G8 II G5 V G5 I G0 V K0 II	II · ·	- 0.9 + 8.5 var. var? - 0.2	1.9 1.3 1.5	4 4 5 5 4	II II			
13008 13020 13032 13037 13039	208457 208641 208658	21 53 54 54 55 55	3.6 +26 4.1 26 4.9 27 5.0 28 5.2 28	10 13 45 35 42	9.29 9.64 9.61 9.47 9.76	G0 F G5 V G0 E K1 E G5 V	V · · · · · · · · · · · · · · · · · · ·	- 3.6 - 33.1 + 1.4 + 15.1 - 16.8	2.2 1.8 2.1 1.1 0.9	4 4 5 4				
$13040 \\ 13047 \\ 13070 \\ 13072 \\ 13076$	208700 208750 208951 208987	21 55 55 57 57 57	5.2 +29 5.6 26 7.0 28 7.0 30 7.2 29	04 59 24 18 39	8.84 9.58 9.76 9.24 9.94	K3 II G0 F G0 V K2 II K5 F		- 13.1 - 63.6 - 35.5 - 20.7 var?	0.5 4.0 1.8 0.3	4 5 4 4 5	II			
$13135 \\ 13140 \\ 13144 \\ 13147 \\ 13157$	209457 209500 209543 209598 209680	22 00 01 01 01 02	0.7 +29 1 29 3 26 7 28 2.3 29	27 30 42 06 43	10.21 9.92 9.49 var. 10.26	K5 II K5 II K0 II M II K5 II		- 7.3 + 15.9 - 5.9 - 19.4 - 5.6	2.2 0.9 0.9 0.8 1.8	5 4 4 4 6	N			

A.G.	H. D.	R (1	.A. 950)	De (195	c. 50)	I N	Ptg. Iag.	С	lass	V (k	elocity 1n./sec.)	Ρ.Ε.	P1.	Ref.
13167 13169 13179 13188 13192	209745 209858 209994 210026	22	02.9 02.9 03.6 04.5 04.7	+25 29 27 28 26	25 37 44 04 23	9 9 8 9 8	.71 .38 .59 .94 .79	F8 F8 F8 K0	3 V 3 V 3 V 9 III 1 III	-	4.8 21.8 0.6 10.5 14.0	2.8 0.8 1.5 1.0 0.8	6 4 6 4 4	
13194 13246 13250 13262 13271	210608 210685 210789	22	04.8 08.6 08.7 09.3 10.1	+26 25 29 27 25	48 34 24 01 14	10 9 9 9 9	.08 .93 .87 .52 .52	K3 K3 K1 K2	5 III 3 III 0 III 1 III 2 III		- 21.5 - 2.0 - 8.5 - 18.3 - 43.8	$ \begin{array}{c} 1.6\\ 2.4\\ 1.6\\ 1.3\\ 0.6 \end{array} $	8 4 4 4 4	
13283 13325 13331 13340 13344	210925 211407 211460 211555 211606	22	$10.9 \\ 14.0 \\ 14.4 \\ 15.1 \\ 15.5 $	+25 26 28 26 26	42 01 55 08 41	8 9 8 8	.05 .49 .02 .62 .90	K0 K0 K0 K0) III) III 3 III) III 5 II		- 62.4 + 5.4 var. - 23.4 - 8.3	1.3 0.5 0.3 1.0	6 4 5 4 4	II
13366 13391 13393 13422 13439	211884 212280 212289 212567 212750	22	17.6 20.3 20.4 22.5 23.8	+25 30 30 28 28	28 06 30 26 16	9 8 9 9 9	. 46 . 59 . 49* . 68 . 57	K3 G0 K1 K1	5 III) IV 1 II) III 1 III		- 23.8 var. + 5.0 - 19.3 + 1.4	2.6 1.4 1.7 0.3	5 4 4 6 4	N, I
13466b 13477 13479 13518 13532	213025 213177 213178 213803	22	25.8 26.7 26.8 30.0 31.3	+26 29 28 25 29	46 32 46 20 20	7 9 8 9 9	. 92 . 17 . 75 . 50 . 34	G8 K0 G8 K0	B III D II 1 III B II D III		- 39.7 - 2.3 - 7.5 var. - 13.2	1.7 0.6 0.8 1.6	5 4 4 5 4	п
13540 13547 13552 13555 13568	213857 213947 213992 214023	22	 31. 7 32. 3 32. 5 32. 7 33. 4 	+29 26 29 30 29	29 20 42 33 51	9 8 9 9	. 58 . 93 . 67 . 20 . 44	K(K K G	D III 4 III 3 III 3 III 8 III		- 39.0 + 20.0 + 7.7 - 38.0 var?	1.1 0.4 1.6 1.4	5 4 4 4 7	II
13570 13575 13583 13592 13596	214202 214265 214332 214434 214458	22	33.9 34.3 34.6 35.6 35.6	+29 27 29 26 29	29 31 29 10 40	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 63 . 49 . 32 . 17 8. 72	G8 K0 K2 K2	8 III 0 III 8 III 2 II 2 II 2 III	•	- 1.8 - 17.7 - 12.3 - 1.4 - 41.6	2.8 0.3 2.6 2.1 0.7	4 4 5 5 4	
13639 13664 13675 13705 13715	215274 215360 215732 215944	22	39.1 41.3 41.9 44.6 46.1	+29 29 29 29 29	47 50 21 39 51		. 92 . 91 . 58 . 27 . 00	K G M K F	3 III 5 V III 3 III 8 V		- 37.7 - 11.6 - 64.6 + 0.5 * 3.4	1.8 0.8 1.4 1.0 0.8	4 4 4 4	
13716 13748 13758 13760 13769	215956 216331 216465 216502 216586	22	46.2 49.4 50.4 50.8 51.4	28 29 29 26 28	28 47 11 43 22	2 8 8 8	. 10 3. 75 3. 81 3. 86 3. 84	G(G) F K	0 V 5 II 5 V 2 III 1 III		- 17.4 - 9.8 0.0 - 9.8 - 50.4	1.6 1.1 1.3 1.0 1.4	5 4 5 4 4	

A.G.	H. D.	R (1	.A. 1950)	De (19	ec. 50)		Ptg. Mag.		Class	(Vélocit km./se	у с.)	Ρ.Ē.	Pl.	Ref.
13772 13777 13780 13813 13821	216632 216685 216723 217230	22	51.8 52.2 52.5 56.5 57.1	+27 29 27 27 29	45 06 45 14 49	1	8.29 9.30 8.36 9.14 0.21	F F C C	78 V 78 V 58 III 58 III 55 V		- 17.7 - 9.2 - 15.2 + 17.8 var?		1.4 1.0 0.5 0.7	4 4 6 4 4	IÍ
13839 13850 13862 13863 13870	217576 218113	22 23	59.0 00.3 01.8 01.9 02.7	+28 28 28 27 27	26 56 34 33 56		9.24 9.60 9.42 9.82 9.64	K C C K	0 111 92 V 92 V 90 IV 55 111		var. + 3.1 var? - 37.6 - 20.8	5	3.2 1.5 2.5	6 5 4 6	II II
13876 13877 13879 13894 13901	218153 218170 218199 218356 218454	23	$\begin{array}{c} 03.1\\ 03.1\\ 03.3\\ 04.7\\ 05.4 \end{array}$	+25 28 30 25 30	44 43 27 12 10		9.07 9.18 9.43 6.53 9.03	G M K K1 K	8 11 12 111 11 11 11-111 14 11		- 80.5 - 56.4 - 6.0 - 25.3 - 19.2) } }	1.1 1.4 0.4 1.1 0.6	5 4 4 4	III N
13910 13919 13923 13940 13990b	218610 218660 218880 219418	23	05.9 06.7 07.1 08.8 12.9	+30 26 29 29 25	11 39 24 46 24		9.30 9.34 8.10 8.30 9.52	G K K G	8 111 2 111 2 111 2 111 0 111 5 111		- 6.9 - 3.3 + 11.2 + 41.9 + 39.6);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	0.9 1.5 0.9 1.0 0.7	4 7 5 4 5	
13996 14006 14015 14021 14059	219538 219654 219736 219800 220286	23	13.8 14.9 15.5 16.0 19.9	+30 29 30 27 29	24 36 11 20 10		9.04 9.32 8.41 8.29 9.28	K N K G	12 V 11 III 2 III 30 III 30 IV		+ 10.0 + 3.3 - 3.8 var. - 16.1		1.6 1.6 1.3 1.0	4 6 7 5 5	II
14060 14084 14120 14121 14136b	220288 220684 221133 221170 221364	23	20.0 23.1 26.9 27.0 29.0	+25 25 25 30 28	39 55 32 09 23		8.38 9.26 9.26 9.04 7.02	K G K G	3 III 8 III 2 III 60 V 30 III		+ 25.8 + 0.1 - 22.9 -119.8 - 4.0	1	1.8 2.3 1.4 3.0 1.2	4 7 4 4	III
14142 14144 14180 14185 14190	221469 221478 222033	23	29.8 30.0 34.6 34.8 36.3	+26 26 30 25 25	17 15 24 30 40		8.98 9.18 8.02* 9.97 9.76	F8 G8 G G K	IV-V II-III 0 V 8 III 1 III		- 14.8 + 22.0 - 12.6 - 11.8 - 4.6		0.6 2.0 0.8 2.1 0.9	5 4 5 4	
14195b 14201b 14203 14232 14255	222317 222390 222391 223019	23	37.0 37.5 37.5 41.3 43.2	+27 27 26 30 26	58 14 31 27 04		7.95 8.00 8.34 9.70* 9.40	G K G K	5 V 1 III 0 III 0 V 3 III		var. - 11.4 - 2.1 + 6.4 - 11.2		1.0 0.5 2.1 1.0	6 4 4 4 4	Ш
14261 14267 14276 14279 14292	223094 223138 223211 223231 223332	23	43.9 44.3 45.0 45.1 46.1	+28 28 25 26 28	26 09 18 54 06		8.97 8.55 7.3 9.69 9.06	K M K K	5 111 1 111 3 111 2 11 5 11		+ 20.'8 - 1.7 - 18.3 - 6.3 + 11.8		0.5 0.9 0.6 1.6 0.8	4 4 4 4	

A.G.	H.D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	√elocity (km./sec)	Ρ.Ε.	P1.	Ref.
14301	223424	23 46.8	+26 45	9.01	KO III	+ 4.8	2.7	6	
14333	223869	50.6	25 43	8.67	K1 III	+ 16.7	.1.7	4	
14346	224085	52.5	28 21	8.71	K2 III	var.		7	N, II
14376	224458	55.5	29 42	9.52	G8 III	- 55.2	1.0	6	
14406	224882	58.9	30 27	8.44	G0 IV	- 14.5	1.1	5	
14407	224895	23 59.0	+28 09	8.16	K2 III	- 11.4	1.7	4	

NOTES TO TABLE I

- A.G. 2298 The spectrum is composite; the hydrogen lines of the A-type spectrum are very broad as are also some of the metallic lines. The velocity refers to the F-type spectrum.
- A.G. 3518 CN λ 4215 is weak as in the spectra of high-velocity stars.
- A.G. 3918 The spectrum has been reported as composite (Ap.J., vol. 112, p. 48, 1950). It is apparent on our plates.
- A.G. 4671 Refers to south preceding component of H.D. 74348.
- A.G. 4875 The star has a very close fainter companion.
- A.G. 6501 The lines are very diffuse.
- A.G. 6821 RX Boo. Hydrogen emission lines.
- A.G. 6861 The lines are diffuse. The strength of the hydrogen lines suggests type F0 and the strength of λ 4077 suggests brighter than class V. Other features are contradictory and vary from one plate to another.
- A.G. 10077 The hydrogen lines and the lines near λ 4250 indicate F0 type or earlier. The iron lines, λ 4227 and the G band indicate F6.
- A.G. 10175 Ca II emission appears on one plate. The plates are poor and there is uncertainty about the luminosity.
- A.G. 10499 SV Vul, a known Cepheid. The classification from our plates ranges from F8 Ib to G5 Ib.
- A.G. 11110 Two plates give K2 III; a third gives G8 III.
- A.G. 11140 One plate gives luminosity II.
- A.G. 11332 The south preceding component of a pair.
- A.G. 11623 The south following component of a pair.
- A.G. 11765 ADS 14315. The data refer to the brighter component.
- A.G. 12199 A CH star. (See Jour. Roy. Astr. Soc. Can., vol. 47, p. 65, 1953).
- A.G. 13147 TW Peg.
- A.G. 13391 One plate shows double lines.
- A.G. 13894 56 Peg. Ca II emission and strong hydrogen lines have been recognized. (See L. O. B., vol. 6, p. 149, 1911).
- A.G. 14346 A known spectrographic binary with Ca II emission and weak hydrogen lines. (See Jour. Roy. Astr. Soc. Can., vol. 46, p. 103, 1952).

- Column 7 gives the mean radial velocities. When the designation "var." appears, it means that the data strongly suggest variable velocity; "var?" means that variable velocity is less strongly suggested. Assignment of these classifications has been made on the basis of a statistical treatment of the data as described earlier. For both "var." and "var?" stars, no mean velocities are given, but the individual velocities are listed in Table II.
- Column 8 gives the probable errors of the mean velocities derived from the individual plate velocities in the usual manner. Notwithstanding the remarks made with reference to column 7, one can expect that a number of the stars with probable errors in excess of 2 km./sec. are variable in velocity; but it is not possible to say which ones with any degree of confidence.

Column 9 gives the numbers of plates used for the velocity determination.

Column 10 refers to inclusion in a series of notes following the table (N) or to inclusion in Table II (II) or in Table III (III).

STARS WITH VARIABLE VELOCITY (TABLE II)

In Table II are listed the individual velocities, along with the Julian Days of the observations, of those stars which, on the basis of the statistical criteria mentioned earlier, have been listed in Table I as having certain or almost certain velocity variations (var.) or as having less strongly suggested variations (var?). There are 43 of the former and 31 of the latter. In two instances where many observations are at hand and an orbit will be published soon, the individual velocities are not listed.

HIGH-VELOCITY STARS (TABLE III)

On the basis of radial-velocity data alone, it is possible to classify a number of the stars as high-velocity stars. Table III lists all the programme stars, 31 in number, for which the radial velocities, after correction for solar motion (Apex 18h, $+30^{\circ}$; velocity 20 km./sec.), exceed 65 km./sec. Sixteen of these stars (marked R) have been listed by Miss Roman in her recent *Catalogue of High Velocity Stars* (1955).

EARLIER PUBLICATION OF SOME OF THE RADIAL VELOCITIES

Radial velocities of 223 of the stars included in this report were reported in 1950, when the data were less complete, to R. E. Wilson and were included by him in his *General Catalogue of Stellar Radial Velocities* (1953). The velocities given in Table I differ in a number of cases by one or two km./sec. from the velocities reported in Wilson's *Catalogue*, either because of the effect of subsequent observations or by virtue of different weighting. Aside from these small differences, the corrections to Wilson's *Catalogue* are as follows.

The following stars, reported as spectroscopic binaries in Wilson's *Catalogue* are now, as a result of more careful analysis, believed to have constant velocity: A.G. 366, 382, 444, 647, 714, 983, 2157, 2714, 2845, 3240, 4051, 6808, 6983, 7155, 7468, 7989, 9629, 13283, 13870, 13918, 14015, 14060, 14084.

A.G. 628 reported in Wilson's *Catalogue* as having constant velocity is now believed to be probably variable in velocity.

The velocity assigned to star number 14428 in Wilson's *Catalogue* (B.D. 29° 4828) really belongs to A.G. 13821 (B.D. 29° 4830).

Acknowledgments

As well as to those whose names appear in this report, the writer wishes to offer sincere thanks to the members of the Observatory staff for the many hours of observing, measuring and computing which have been put into this work over the past ten years. Thanks are also due to Dr. W. W. Morgan of the Yerkes Observatory and to Dr. Nancy Roman of the U.S. Naval Research Laboratory for advice in the matter of spectral classification.

References

Johnson, H. L. and Morgan, W. W. 1953, Ap. J., vol. 117, p. 318.

Roman, Nancy G. 1955, Ap. J. Supp., vol. 2., p. 198.

Schlesinger F. and Barney I. 1933, Trans. Astr. Obs. Yale, vol. 9.

Weatherburn, C. E. 1949, "A First Course in Mathematical Statistics", 2nd Ed., Cambridge University Press.

Wilson, R. E. 1953, Carnegie Inst. of Washington Pub. 601.

Richmond Hill, Ontario, June 5, 1956.

TABLE II

Star A.G.	Julian Day (243)	Velocity (km./sec.)	Star A.G.	Julian Day (243)	Velocity (km./sec.)
14436	$2066.801 \\ 2422.814 \\ 3186.752 \\ 3197.722 \\ 3515.875 \\ 3542.761$	+ 1.9 + 13.6 + 21.9 + 14.8 + 18.6 + 14.9	1301	$\begin{array}{c} 2568.531 \\ 2895.612 \\ 3159.893 \\ 3325.562 \\ 3581.790 \\ 3710.538 \end{array}$	- 2.4 + 6.4 + 18.3 + 7.5 + 14.5 - 42.9
188	2780.829 2850.639 3151.834 3189.704	-23.8 - 6.8 -27.1	1584	17 plates. Dou An orbit will l	able lines be computed
	3139.704 3554.744 3576.674	-19.4 -23.0	1758	2112.805 2453.891 2467.858 2591.510	-44.2 -87.7 -52.6
230	$\begin{array}{c} 2772.854 \\ 2823.720 \\ 3169.772 \end{array}$	-27.1 -22.2 -0.3		2591.510 3554.897 3587.785	-4.0 +61.1 +58.5
	$\begin{array}{c} 3228.622 \\ 3568.686 \\ 3608.597 \\ 4041.527 \end{array}$	-0.9 -25.9 -21.9 -6.0	2344	$\begin{array}{c} 2120.862 \\ 2129.853 \\ 2883.751 \\ 3008.546 \\ 3575.000 \end{array}$	-7.2 -20.5 -5.8 -9.9 -1.6
434	$\begin{array}{c} 2784.844\\ 2823.741\\ 2826.745\\ 3181.790\\ 3571.697\\ 4651.803 \end{array}$	$-11.1 \\ -13.7 \\ -22.4 \\ -17.2 \\ + 5.3 \\ -19.8$	3194	$\begin{array}{c} 2839.944\\ 3229.837\\ 3316.652\\ 3352.528\\ 3710.611 \end{array}$	+ 6.6 +11.2 -20.1 + 6.8 +30.6
628	$\begin{array}{c} 2529.567\\ 2804.822\\ 3162.850\\ 3175.778\\ 3584.717\\ 3940.772\\ 4651.856\end{array}$	$ \begin{array}{r} -3.5 \\ -7.8 \\ -4.6 \\ -20.2 \\ -29.6 \\ -42.3 \\ -30.4 \end{array} $	3204	$\begin{array}{c} 4667.710\\ 2140.842\\ 2203.694\\ 2461.935\\ 2143.847\\ 3315.716\end{array}$	+ 4.3 + 5.5 + 1.2 +24.4 + 1.8 +11.4
706	$\begin{array}{c} 2491.673\\ 2806.819\\ 2823.760\\ 2828.742\\ 2841.710\\ 3570.729\\ 3960.682\end{array}$	-14.2 -45.8 -57.6 -54.6 -53.2 -24.4 -14.6	3471	3603.868 3935.937 3937.881 3955.866 4668.745 4676.776	+102.0 +84.2 +48.7 +54.5 +41.7 +63.9
119 2 b	$\begin{array}{r} 4652.715\\ 2079.853\\ 2203.525\\ 2429.836\\ 3197.846\\ 3556.831\end{array}$	-15.5 + 7.6 + 19.7 + 16.0 + 17.4 + 30.6	3918	$\begin{array}{c} 2144.895\\ 2639.546\\ 4311.955\\ 4347.711\\ 4391.844\\ 4394.802\\ 4501.587\end{array}$	$\begin{array}{r} - 0.8 \\ +46.6 \\ + 0.1 \\ + 0.5 \\ - 0.4 \\ +23.7 \\ +22.8 \end{array}$

STARS WITH VARIABLE RADIAL VELOCITY

Star A.G.	Julian Day (243)	Velocity (km./sec.)	Star A.G.	Julian Day (243)	Velocity (km./sec.)
3980b	$2169.822 \\ 2283.562 \\ 3644.776 \\ 4062.600$	+32.8 +19.2 +19.7 +36.3	5145	$\begin{array}{c} 2615.718\\ 3687.765\\ 4785.835\\ 4818.601 \end{array}$	$ \begin{array}{r} - 0.1 \\ - 9.0 \\ -28.5 \\ -12.7 \end{array} $
4209	$\begin{array}{r} 2203.781 \\ 4080.606 \\ 4132.555 \\ 4133.556 \\ 4833.615 \end{array}$	$-24.8 \\ -27.6 \\ -1.4 \\ -26.7 \\ -14.2$	5179	$\begin{array}{c} 2391.836 \\ 3035.556 \\ 4719.958 \\ 4813.699 \end{array}$	+83.9 +101.9 -17.0 - 6.9
4384b	$\begin{array}{c} 2139.822\\ 2165.870\\ 2202.760\\ 2257.641\\ 3320.730\\ \end{array}$	+ 1.9 + 18.3 + 17.5 + 14.9 + 28.9 + 28.9	5229	$\begin{array}{c} 2639.670\\ 3015.630\\ 4792.783\\ 4828.606\\ 4833.702 \end{array}$	+ 6.2 -23.0 - 0.4 - 9.2 - 3.9
4451	$\begin{array}{r} 4736.664\\ 2644.556\\ 3664.750\\ 4668.879\\ 4746.658\end{array}$	+26.9 -38.8 -38.3 -25.8 -54.0	5254	$\begin{array}{c} 2989.676\\ 3344.767\\ 3398.625\\ 4134.625\\ 4434.578\end{array}$	$ \begin{array}{r} -34.3 \\ -17.3 \\ -10.1 \\ -31.0 \\ -50.7 \end{array} $
4526	$\begin{array}{c} 2624.614\\ 2982.622\\ 3681.751\\ 4750.633\\ 4791.527\end{array}$	+34.1 +45.2 +64.8 +22.6 - 4.1	5355	3693.788 3743.645 4813.841 4819.769 4841.634	+23.7 - 7.1 - 16.4 - 16.8 - 20.6
4632	$\begin{array}{c} 2888.900 \\ 2968.681 \\ 4765.676 \\ 4791.733 \end{array}$	-30.2 -23.5 -49.3 -26.8	5356	$\begin{array}{c} 2672.561\\ 2675.580\\ 3771.572\\ 4132.708\\ 4811.576\end{array}$	-24.4 -16.5 +5.0 -20.6 -27.8
4702	$\begin{array}{c} 2587.765\\ 3281.833\\ 4699.965\\ 4777.608 \end{array}$	$ \begin{array}{r} - & 3.2 \\ + & 2.6 \\ - & 2.6 \\ + 25.3 \\ \end{array} $	5591	$\begin{array}{r} 4344.576\\ 2275.688\\ 3322.847\\ 4755.849\\ 55.849$	-12.6 +16.9 -13.0
4834	$\begin{array}{c} 2899.917 \\ 4099.630 \\ 4771.837 \\ 4793.644 \end{array}$	+27.2 + 6.3 + 1.0 +11.8	5922	4828.757 4833.739 3010.700 3692.882	$+33.2 \\ -33.6 \\ -32.1 \\ -29.2$
5038	$\begin{array}{c} 2888.921 \\ 2977.727 \\ 4705.920 \\ 4800.647 \\ 4841.556 \end{array}$	+18.6 - 3.2 +35.7 -16.2 +13.4		$\begin{array}{c} 3775.638\\ 4165.710\\ 4557.624\\ 4796.803 \end{array}$	-16.7 + 0.4 -21.5 -42.7
5059	$\begin{array}{c} 2573.819 \\ 2974.726 \\ 3763.597 \\ 4809.794 \end{array}$	$+42.9 \\ -13.3 \\ +20.0 \\ -34.4$	6134	$\begin{array}{c} 3011.716\\ 3381.729\\ 4080.817\\ 4186.604\\ 4755.926 \end{array}$	$ \begin{array}{r} -33.0 \\ -18.0 \\ -14.9 \\ -6.4 \\ -30.8 \\ \end{array} $

Star A.G.	Julian Day (243)	Velocity (km./sec.)	Star A.G.	Julian Day (243)	Velocity (km./sec.)
6313	$\begin{array}{c} 2275.783\\ 3037.681\\ 3779.649\\ 4132.674\\ 4188.679\end{array}$	-5.5 -16.6 + 9.3 + 9.4 - 7.6	7106	$\begin{array}{c} 2369.650\\ 2994.869\\ 3057.703\\ 3080.640\\ 3434.694\\ 4126.804 \end{array}$	-30.3 + 2.0 -41.2 -22.0 -20.0 -40.0
6478	$\begin{array}{c} 3036.700\\ 3425.638\\ 4086.851\\ 4198.668\\ 4226.592 \end{array}$	+15.9 +30.7 + 3.0 - 6.1 + 1.1	7181	$\begin{array}{c} 2303.793\\ 2718.644\\ 3061.710\\ 3423.724\\ 3490.608 \end{array}$	-0.4 -21.6 -21.7 -0.7 -16.2
6501	$\begin{array}{r} 3053.652\\ 3393.762\\ 4126.724\\ 4228.592\\ 4235.585\\ 4501.738\end{array}$	-42.6 - 6.8 +16.2 +16.6 -14.3 -31.8	7959	4111.846 4482.803 4504.803 4525.713	+ 9.2 - 9.9 + 5.7 - 11.4
6618	4507.672 2982.868 3028.727 3423.685	-53.2 -1.9 -13.2 +36.5	4393	2737.624 3031.760 3079.671 3413.785 4569.673	-43.1 -26.8 -49.0 -9.3 -44.5
6694	$\begin{array}{r} 4162.744\\ 4210.622\\ 4796.940\\ \hline \\ 2639.811\\ 3033.734 \end{array}$	-24.2 -19.7 -14.2 -19.2 -52.8	7419	3015.865 3057.757 3086.675 3757.829 3822.651 4810.928	-9.3 +50.4 +11.2 -39.6 +12.4
6832	$\begin{array}{c} 3370.855\\ 3718.866\\ 4195.712\\ 2720.606\\ \end{array}$	-6.9 +10.0 -41.5 +14.2	7444	$\begin{array}{r} 4819.928\\ 2722.672\\ 3053.747\\ 3404.816\\ 3409.804\end{array}$	-52.8 + 8.2 -13.0 +18.5 +12.1
	$\begin{array}{c} 3037.744\\ 3380.795\\ 3426.692\\ 3470.639\\ 3490.583\\ 4536.747\end{array}$	$ \begin{array}{r} - 4.3 \\ +22.2 \\ -16.0 \\ +10.6 \\ + 4.6 \\ + 3.4 \end{array} $	7537	3405.304 3821.654 2712.717 3033.815 3061.746 3067.726	+12.1 +12.1 +23.8 +36.9 +12.0 +21.0
6861	$\begin{array}{c} 2703.682\\ 3028.776\\ 3731.842\\ 3757.770\\ 4188.724 \end{array}$	-12.7 +59.2 +13.2 +49.7 -23.3	8077	$\begin{array}{c} 2728.751\\ 3023.893\\ 3044.839\\ 3840.652\\ 4218.688\end{array}$	$\begin{array}{r} -2.6 \\ -17.9 \\ +25.3 \\ -19.7 \\ -17.8 \end{array}$
7079	$\begin{array}{c} 2949.961\\ 2977.918\\ 3034.760\\ 3098.612\\ 4565.667\\ 4918.883\end{array}$	-18.1 + 2.5 - 2.4 + 5.2 + 10.7 - 1.3	8685	$\begin{array}{c} 2760.665\\ 3136.587\\ 3507.653\\ 3772.875\\ 4303.521 \end{array}$	-56.3 -31.2 -32.7 +30.8 +29.4

Star A.G.	Julian Day (243)	Velocity (km./sec.)	Star A.G.	Julian Day (243)	Velocity (km./sec.)
9472	2765.690 3067.837 4195.774 4284.650	+13.0 +14.1 -10.2 -19.4	12031	54 plates. D An orbit is puted	Oouble lines. 5 being com-
	4603.704	-3.8	12554	$2792.718 \\ 3178.665$	-9.0 -18.4
9607	$\begin{array}{r} 2347.796 \\ 3094.843 \\ 3098.758 \\ 4173.849 \end{array}$	+ 3.2 + 12.5 - 2.9 - 52.4		$\begin{array}{r} 4209.824 \\ 4618.778 \\ 4756.476 \end{array}$	-19.0 + 2.9 - 39.7
	4513.856	+8.9	12985	2798.812 3121.307	-13.2 + 5.6
9675	2426.646 2744.745 3833.753 4109.724	-19.2 -18.6 -45.2 -34.4		3945.588 3962.606 4610.781	-8.2 +21.2 + 4.7
	4548.767	-35.0	12998	2793.698 3585.544	-35.1 -11.7
10456	2765.740 3144.662 3571.509 4567.786	-24.6 -31.0 -1.9 -23.8		3945.615 3962.564 4629.717	-38.2 -11.3 -20.6
	4636.545	-34.5	13076	$2798.710 \\ 3202.610$	-46.6 -37.4
10465	$\begin{array}{c} 2098.549\\ 2262.844\\ 2480.991\\ 3515.670\end{array}$	-10.5 -5.8 -6.0		$\begin{array}{c} 3897.699 \\ 3941.654 \\ 4629.671 \end{array}$	-20.3 -23.8 -21.7
	4583.741	-7.1	13331	$2066.757 \\ 2067.738$	$-37.9 \\ -37.6$
10499	2790.660 3150.639 4275.615 1569.745	-4.9 -10.2 -6.6		$\begin{array}{c} 2068.726 \\ 3509.746 \\ 3857.865 \end{array}$	-33.3 -19.8 -33.8
10601	2772 680	± 10.7	13391	2390.838 2748.855	+30.8 +11.3
10001	$\begin{array}{r} 2835.523\\ 3154.582\\ 4225.755\end{array}$	-13.4 + 23.2 - 13.9		3130.816 3883.795	+ 4.7 $\{-39.4$ +40.3
	4582.788	+11.1	13518	2788.749 2864.538	+ 5.7 - 4.6
10837	$3141.785 \\ 4273.628 \\ 4583.769 \\ 4612.700$	-11.4 -39.8 -26.2 -12.6		3150.751 3532.714 3919.709	+12.3 +30.4 +22.0
11065	4638.537	-22.3	13568	2779.781 2785.762	+ 1.8 - 3.2
11965	$2028.789 \\ 2066.690 \\ 2079.660 \\ 3508.731 \\ 4699.494$	-55.3 -55.3 -57.4 -44.8 -41.6		$2841.610 \\ 3555.683 \\ 3996.473 \\ 4266.740 \\ 4277.694$	+ 8.9 +19.9 - 9.8 +18.6 + 9.8

Star A.G.	Julian Day (243)	Velocity (km./sec.)	Star A.G.	Julian Day (243)	Velocity (km./sec.)
13821	$\begin{array}{r} 4912.828\\ 4972.822\\ 4974.819\\ 5008.718\end{array}$	-15.6 -43.1 -36.2 -20.0	14021	$\begin{array}{c} 2454.739\\ 3136.840\\ 3199.685\\ 3541.723\\ 3955.626\end{array}$	-20.7 -45.8 -23.8 -20.3 -10.7
13839	$\begin{array}{c} 2785.765\\ 3530.792\\ 3532.743\\ 3884.778\\ 3970.615\\ 4269.782\\ \end{array}$	+ 0.8 +24.9 +34.2 + 9.7 +19.5 + 0.3	14195b	$\begin{array}{c} 2101.692\\ 2109.711\\ 3129.840\\ 3190.702\\ 3514.819\\ 4659.578\end{array}$	$-18.9 \\ -35.6 \\ +32.6 \\ +31.1 \\ +20.2 \\ -0.9$
13862	2765.838 2820.685 3170.716 3222.621 3982.549	+26.5 + 1.2 +12.0 -12.0 + 3.9	14346	$\begin{array}{c} 2100.726\\ 2873.563\\ 3149.832\\ 3199.728\\ 3507.878\\ 3542.747\\ 4266.702 \end{array}$	$\begin{array}{r} -46.7 \\ -34.2 \\ -37.5 \\ -5.4 \\ -36.8 \\ +3.3 \\ -54.2 \end{array}$

TABLE III High-Velocity Stars

AG	V*	10	V*
n.g.	KIII./ Sec.	n.g.	km./sec.
100 D			
486 R	-160.7	5055 R	+ 85.1
991	- 67.1	5122	+ 67.2
1264	- 68.4	5787	+ 89.6
1528	- 68.3	6838 R	-116.5
1572 R	+79.1	6848	- 69.4
2248 R	- 78.5	7956	- 66.7
2302 R	-72.5	8135	+ 92.4
2845 R	+ 87.3	8975 R	-116.8
3146 R	-115.1	9797	- 65.6
3668 R	+ 84.4	10925 R	- 76.4
3866 R	+ 99.3	11233	+70.5
4051 R	-144.7	12199	-135.7
4194 R	+ 71.9	12787	- 78.0
4809	+ 82.4	13876	-72.2
4814 R	+ 98.0	14121 R	-112.5
4930	+ 68.4		

*Radial velocity corrected for solar motion. R Listed in Roman's Catalogue of High-Velocity Stars. 1.1

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

NUMBER 5

A CATALOGUE OF DWARF GALAXIES

BY

SIDNEY VAN DEN BERGH

1959 TORONTO, CANADA

-

A CATALOGUE OF DWARF GALAXIES

By Sidney van den Bergh

Abstract

A catalogue of dwarf galaxies north of $\delta = -23^{\circ}$ has been compiled from the Palomar Sky Survey prints. The data indicate that the distribution of dwarf galaxies over the sky is non-uniform. A strong concentration of dwarf irregular galaxies is found in the vicinity of M 94 in Canes Venatici.

Introduction

Of the 22 known probable members of the local group of galaxies, 17 are low luminosity dwarfs. Holmberg (1950) has shown that dwarf galaxies also occur in the M81 and M101 groups. More recently Reaves (1956) has discussed the numerous dwarf galaxies which occur in the Virgo Cluster.

Dwarf Criteria

Inspection of the Palomar Sky Survey prints of clusters of galaxies shows that a class of faint objects can be isolated by the following criteria:

A, Low surface brightness.

B, Little or no central concentration of light on the red prints. In view of the fact, that these objects are found to be more frequent in clusters than in the general field, it is reasonable to assume that they are dwarf galaxies. This conclusion is supported by the similarity which many of these objects have to dwarf galaxies in the local group. Almost all objects which satisfy criteria A and B are probable dwarf galaxies. However, many galaxies which are known or probable dwarfs do not satisfy *both* criteria.

Types of Dwarf Galaxies

The following types of dwarf galaxies may be distinguished:

Dwarf Irregulars (DIr)

Almost all dwarf irregular galaxies were found to be similar to one of the following prototypes in the local group, NGC 6822, IC 1613 and the Wolf-Lundmark system.

Dwarf Spirals (DSp)

Two distinct types of dwarf spirals exist. The most easily recognizable type consists of a short bright bar superimposed on a background of low surface brightness. This type is probably a dwarf edition of the normal barred spiral, from which it can be distinguished by the fact that no spiral arms emanate from the tips of the bar.

The second type of dwarf spiral is similar to the IC 1613 type of irregular galaxy. However the resolved images of stars and nebulosity are not distributed at random but lie in elongated patches resembling segments of a spiral arm.

No dwarf spirals are known in the local group.

Dwarf Ellipticals (DEl)

The surface brightness and central concentration criteria have not proved to be successful in distinguishing between giant and dwarf ellipticals on the Palomar *prints*. As a result the catalogue contains very few dwarf ellipticals.

Dwarf Spheroidal Galaxies (DSph)

The Draco System is the prototype of this kind of galaxy. These objects, which have a very low surface brightness, are rather easy to identify at large distances. Their identification becomes more difficult when they are relatively near by and completely resolved into stars. In this case their appearance on the Sky Survey prints is quite similar to that of a distant cluster of galaxies.

IC 3475 in the Virgo Cluster is the brightest known member of this class.

The Catalogue

The catalogue was compiled from the Palomar Sky Survey prints. It contains all dwarf galaxies with diameters larger than one minute of arc north of $\delta = -23^{\circ}00'$, which satisfy criteria A and B. It is hoped that the catalogue will prove useful as a finding list for future investigations. Only a few of the galaxies in the catalogue are contained in the NGC, the IC and Holmberg's list of dwarf galaxies. Twelve of the dwarf galaxies in the catalogue are known members or possible members of the local group.

Dwarf Galaxies

The first three columns of Table I are self-explanatory. The fourth column (ϕ) contains the maximum diameter of the galaxy on the blue print in millimetres (1 mm. = 67 sec. of arc). The fifth column gives the classification type of the galaxy. The sixth column gives the surface brightness (S) on the blue print on a scale (--, very low) to (++, relatively high). The seventh and eighth columns give the degree of resolution on the red (R) and blue (B) prints respectively on the following scale: -, unresolved; \pm , incipient resolution; +, clearly resolved; and ++, resolved stars only.

The ninth column (C) gives an estimate of the colour of the object on a scale (0.0, very blue) to (1.0, very red). For C = 0.6 the brightness on the red and blue prints is equal. An N in the last column refers to a note at the end of the table.

The Colours of Dwarf Spirals

The individual colours, estimated on the scale C = 0.0 (very blue) to C = 1.0 (very red), are quite uncertain. However the mean colours for different types of galaxies are probably significant and are tabulated here. In deriving the mean colours dwarf galaxies near the galactic equator were excluded.

Туре	С	nobs
DIr	0.24	100
DSn	0.30	49
DSph	0.50	12
DEI	0.48	5

The Distribution of Dwarf Galaxies

The dwarf galaxies of Table I occur almost exclusively outside the 'zone of avoidance' at low galactic latitude. However even at high galactic latitude their distribution is distinctly non-random. In general the distribution of dwarf galaxies over the sky is similar to that of the brightest giant galaxies. However some small clusters of dwarf galaxies occur which are not associated with giant galaxies. The distribution of dwarf irregular galaxies, with diameters larger than two minutes of arc is shown in the figure. The mean distance of these dwarfs is probably smaller than that of the dwarf galaxies with a diameter less than two minutes of arc. More than half of these objects (excluding members of the local group) are located within 20° of M 94 (NGC 4736). This region also contains a large number of smaller dwarf irregular galaxies and dwarf spirals. In this connection it is of interest to note that the M 94 region is particularly rich in late type giant spirals and giant irregular galaxies.

A somewhat less conspicuous concentration of dwarf galaxies, occurs in the vicinity of M 81. This group contains a mixed population of *DIr*, *DSp*, and *DSph* galaxies.

The very pronounced clustering of dwarf galaxies in the Virgo cluster (Reaves 1956) does not show up well in our data. The reason for this is that almost all the dwarfs in the distant Virgo Cluster have diameters smaller than one minute of arc.

The positions are shown of dwarf irregular galaxies with diameters larger than two minutes of arc. (Probable members of the local group are not shown.) The circle indicates the position of the M 94 group.

References

Holmberg, E. 1950, Lund Medd, ser. II, no. 128. Morgan, W. W. 1958, Publ. A.S.P., vol. 70, p. 364. Reaves, G. 1956, A. J., vol. 61, p. 69.

Note added in proof: Most of the spiral and irregular galaxies listed in the catalogue are of luminosity classes IV-V and V on the D.D.O. system. However, a few objects of luminosity class IV are included.

Richmond Hill, Ontario January 15, 1959

	TA.	BLE I	
CATALOGUE	OF	DWARF	GALAXIES

No.	$\alpha(1855)$) $\delta(1855)$	φ	Туре	S	Reso R	olution B	С	Notes
1	0 ^h 11 ⁿ	$-19^{\circ}50'$	1.0	DSp?	±	±	÷	0.2	
2	12	+1005	1.0	DSp	+	±	+	0.2	N
3 1	20	+4740 +3040	0.0	DEI	+		_	0.8	N
5	39	-1220	1.5	DJr	- -	_	- -	0.2	
6	43	-2150	1.0	DIr/DSn	+	_	+	0.0	N
7	54	+0650	1.0	DIr	+		+	0.0	- 1
8	57	+01 20	15.0	DIr	÷	+	+	0.2	N
9	1 02	+48 50	1.5	DIr	+	_	±	0.4	N
10	14	+11 40	1.5	DIr/D?Sp	+	-	\pm	0.2	
11	22	$+25\ 05$	1.5	DSp	+	-	+	0.2	N
12	27	+03 40	1.5	D	±	-		0.2	
13	32	+15 10	1.5	DSph/DIr	_	_		0.2	N
14	41	-13 10 -13 30	1.0	DSp DF1	#	±	+	0.0	
16	42	+17.25	1.0	DEI	-	_	_	0.0	N
17	55	+21 15	1.5	DSp	+	_	+	0.0	14
18	2 03	+0605	1.0	D?	+	_	2	0.4	
19	16	$+35\ 20$	1.5	DIr	±		±	0.6	
20	19	-10 30	2.0	D?Sp	+	±	+	0.4	N
21	19	-22 05	1.5	DIr/DSph	\pm	_	-	0.4	N
22	24	+3800	1.0	DIr	±	-	-	0.2	N
23	24	-11 25	1.0	DSp	±	-	±	0.4	N
24	20	+3950	1.5	DIr/DSp	+	_	±	0.8	N
20	20	+32 50 +20 05	2.0	DIr DIr	±	±	+	0.2	IN
20	20	+2505 +0040	1.0	DIr	T	_	_	0.0	N
28	40	+03 15	3.0	DIr?	_	_		0.0	TA
29	$\hat{42}$	+0130	3.0	DIr		_	+	0.4	N
30	44	-01 45	1.5	DSp	+	_		0.2	N
31	3 07	-03 20	1.5	DIr/DSp	+	+	+	0.2	N
32	07	$-05\ 20$	1.0	DIr/DSp	+	±	+	0.4	
33	4 29	+7440	1.0	DSp	+	-	\pm	0.4	
34	41	00 00	1.0	D?Ir	±	_	-	0.4	N
35	50	+16 10	1.0	DIr	±	±	±.	0.8	N
30 27	5 UI 13	-10 30 -21 45	1.0	DI-2	±		±	0.4	NT
38	16	+73 35	1.0	DI	_	H	±	0.0	14
39	36	$+75\ 15$	2.0	DSph	_	_	-	0.4	
40	6 53	+5640	1.0	DIr	+	-	\pm	0.4	N
41	58	+5340	1.0	DIr	±	_	+	0.4	
42	7 13	$+69\ 30$	5.0	D?Ir?	+	+	+	0.2	N
43	18	+41 05	1.0	DIr	+	_	\pm	0.2	
44.	20	$+67\ 10$	1.5	DSph		-	-	0.4	N
45	28	+03 05	2.0	DIr	+	-	-	1.0	N
40	31 24	+40.25 +17.05	1.0	DSpnr DI-2	+	_		0.4	N
48	54 47	+17 03 +58 25	0.0 1.5	DIrr DSp?	+	_	_	0.4	TN
49	8 01	+46.55	1.0	DSp:	+	_	_	0.2	
50	04	+71 10	6.5	DIr	+	+	+	0.2	N
51	08	+7455	1.0	DSp	+	+	+	0.4	N
52	19	$+42\ 20$	1.0	DEI	±		_	0.4	
53	21	+6640	1.0	DIr	+	+	+	0.2	

No.	α(1855)	δ(1855)	φ	Туре	S	Reso R	Iution B	С	Notes
$54 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 $	9h 00 m 03 03 04 05 06	$\begin{array}{r} +06^{\circ}30' \\ +36 & 05 \\ -22 & 25 \\ -14 & 25 \\ +20 & 00 \\ +39 & 50 \end{array}$	$ \begin{array}{c} 1.5 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ \end{array} $	DIr/DSph DIr DSph? DIr DIr DSp	+++++++++++++++++++++++++++++++++++++++	+	- + - + + +	$\begin{array}{c} 0.6 \\ 0.2 \\ 0.8 \\ 0.2 \\ 0.4 \\ 0.4 \end{array}$	N
$ \begin{array}{r} 60 \\ 61 \\ 62 \\ 63 \\ 64 \end{array} $	$13 \\ 14 \\ 15 \\ 28 \\ 42$	$-11 35 \\ -12 00 \\ -21 50 \\ +71 50 \\ +32 10$	$1.0 \\ 1.0 \\ 2.0 \\ 2.5 \\ 1.5$	DIr DIr DIr DIr DIr DIr	± ± ± - +	± ± -	+ + +	$0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2$	N N
	$ \begin{array}{r} 44 \\ 46 \\ 48 \\ 48 \\ 51 \\ 52 \\ 55 \\ \end{array} $	$\begin{array}{r} +02 \ 05 \\ +69 \ 45 \\ +81 \ 00 \\ +29 \ 30 \\ +31 \ 25 \\ +06 \ 00 \\ +67 \ 15 \end{array}$	$ \begin{array}{r} 1.0 \\ 1.5 \\ 1.5 \\ 2.0 \\ 3.5 \\ 3.0 \\ 1.0 \\ \end{array} $	DIr DIr DSp DSp DIr DIr DSph	- +++++		***	$\begin{array}{c} 0.2 \\ 0.2 \\ 0.4 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.6 \end{array}$	XXXXX
$72 \\ 73 \\ 74 \\ 75 \\ 76 \\ 77 \\ 78$	$\begin{array}{ccc} 10 & 00 \\ & 01 \\ & 01 \\ & 04 \\ & 04 \\ & 13 \\ & 16 \end{array}$	$ \begin{array}{r} +30 \ 15 \\ +30 \ 50 \\ +13 \ 00 \\ -04 \ 00 \\ -13 \ 05 \\ +71 \ 40 \\ +68 \ 20 \\ \end{array} $	$1.0 \\ 1.0 \\ 8.5 \\ 4.0 \\ 1.5 \\ 2.0 \\ 1.0$	DEİ DIr DEI DIr DIr DSp DSph		++ - + - + - +	- + + + + -	$\begin{array}{c} 0.4 \\ 0.2 \\ 0.4 \\ 0.0 \\ 0.2 \\ 0.6 \\ 0.6 \end{array}$	N N
79 80 81 82 83	$ \begin{array}{r} 17 \\ 19 \\ 19 \\ 20 \\ 28 \\ \end{array} $	+15 30 +70 45 +69 10 +71 20 +32 15	1.0 2.0 11.5 1.5 1.0	DSp DSp D?Ir? DIr? DIr	+ + + +	- ±+±-	++++++++++++++++++++++++++++++++++++++	$0.4 \\ 0.4 \\ 0.2 \\ 0.6 \\ 0.2$	Ν
84 85 86 87 88 89	$ \begin{array}{r} 23 \\ 34 \\ 35 \\ 40 \\ 40 \\ 43 \end{array} $	+35 15 -22 40 +61 05 +66 15 +14 50 +20 25	4.0 1.0 1.5 1.0 1.0 1.0	D?Sp DIr DIr DSph DIr DIr DIr	- ++ ++ - + ++	+		$\begin{array}{c} 0.4 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.2 \end{array}$	N N N
90 91 92 93 94 95	$\begin{array}{r} 45 \\ 58 \\ 11 \\ 05 \\ 06 \\ 13 \\ 17 \\ 20 \\ \end{array}$	$+08\ 25$ $+20\ 35$ $+54\ 20$ $+22\ 55$ $+03\ 20$ $+04\ 10$	$ \begin{array}{r} 1.0 \\ 1.0 \\ 5.0 \\ 2.0 \\ 1.5 \\ 1.0 \\ \end{array} $	DIr DIr DIr/DSp DSph DIr D?Sp	- ++ - ++ + - ++	- - ++ + +	+++++-	$\begin{array}{c} 0.4 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.6 \end{array}$	N N
96 97 98 99 100 101 102 103 104 105	30 42 43 44 45 48 50 51 51 51	$\begin{array}{r} +59 55 \\ +24 40 \\ +57 15 \\ +39 25 \\ +52 55 \\ +32 20 \\ +51 40 \\ -13 45 \\ -13 55 \\ +38 50 \\ 21 40 \end{array}$	$ \begin{array}{c} 1.0\\ 1.0\\ 3.5\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 2.5\\ 2.0\\ \end{array} $	DSp DIr DSp DIr DSp DIr DSp DIr DIr DIr	* * * * * * - * *	+	# + + + + + + +	$\begin{array}{c} 0.0 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.6 \end{array}$	N N

 TABLE I

 CATALOGUE OF DWARF GALAXIES (cont.)

TABLE I CATALOGUE OF DWARF GALAXIES (cont.)

No.	$\alpha(1855)$	$\delta(1855)$	φ	Туре	S	Reso R	lution B	С	Notes
107	11 ^h 52 ^m	$+38^{\circ}40'$	1.5	DSp	+	±	±	0.4	N
108	57	-0044	1.0	DIr	\pm	-	\pm	0.2	
109	12 00	+40 35	1.0	DIr		-	-	0.2	N
110	04	+0250	1.0	DSph	-	-		0.4	
111	04	+51 05	1.0	DIr	_		~	0.4	N
112	04	+1850	1.0	DIr?	++	—	±	0.2	N
113	07	+37 00	1.0	DSph		-	-	0.4	N
114	07	+13 35	1.0	DSp	±		\pm	0.2	
115	08	+14 20	1.0	DIr	±	-	-	0.2	
116	09	-1040	1.5	DIr	±	\pm	+	0.4	N
117	10	+29 35	1.0	DIr	±	-	±	0.2	
118	10	-1050	1.0	DIr	_	\pm	±	0.4	
119	13	$+47\ 10$	1.5	DSp	+	+	+	0.4	N
120	14	$+46\ 40$	1.0	DIr	±	\pm	+	0.0	
121	15	$+01\ 15$	1.0	DIr	±	_	+	0.0	
122	19	$+71\ 10$	1.5	DSp/DIr	+	-	+	0.4	
123	19	+59.05	2.0	DIr	±	_	+	0.0	
124	20	+13.55	1.0	DSp	+	-	_	0.0	
125	20	+44 15	3.0	DIr	+	土	±	0.0	N
126	20	+3800	2.0	Dir	+	_	土	0.0	N
127	21	+3800	1.0	DIr?	±	_		0.2	N
128	22	+03 35	1.5	DIr	±		±	0.2	
129	22	$+44\ 00$	2.0	DIr	±	±	+	0.0	N
130	22	+12 15	1.0	DIr	_	-	-	0.4	N
131	24	$+30\ 30$	1.0	DIr	±	-	±	0.2	
132	25	+13 35	1.0	DSph	±	_	_	0.6	N
133	26	+32.25	3.0	DIr	±	_	±	0.2	
134	26	-0150	1.0	DIr	±	_	±	0.2	
135	27	+16 00	1.5	DSp	+	土	+	0.4	N
130	28	+10 00	1.0	DIr	± .	_	±	0.4	IN
137	28	+0705	1.0	DSpn	±	_	_	0.4	NT
138	29	+0725	1.0	DIr	±	_	+	0.4	N
139	30	+07.55	1.0	DIr	. ±	_	+	0.4	NT
140	32	+0840	1.0	DSp	++	+	+	0.2	IN
141	30 97	+39 10 01 55	2.0	Dir	+	_	±-	0.2	. \
142	01 97	-04 33	2.0	DI	Ŧ	1	±	0.0	
140	01 27	+35 10	2.0	DIr	-	_	±	0.2	
1.15	20	± 12.50	1.0	DSP	T	Ŧ	Ŧ	0.4	N
140	20	-12 50	1.0	DEI DI#/DSp	± 1	_	_	0.0	. 4
140	40	± 37.15	2.0	DI	工	_	Ŧ	0.4	
140	40	-0130	1.0	DSph				0.2	
140	49	-04.50 -03.15	1.0	DJr/DSn	1	_	_	0.0	
150	42	$\pm 51 55$	1 5	DIr	-	1	1	0.1	N
151	43	-10.05	3 5	D?Sn		+	+	0 1	. 1
152	45	-05.30	1.0	DIr	-	_	-	0.2	
153	46	-11.20	1.5	DIr	+	_	+	0.2	
154	47	+2755	3.0	Dír	+	_	+	0.0	
155	49	+15.00	1.0	DIr	+	+	+	0.0	
156	50	+03.30	1.0	DIr	+	+	+	0.4	
157	51	+15 40	1.0	DEI?	+	-	-	0.4	
158	51	+03.35	1.0	DSn	+	+	+	0.6	
159	53	-1455	1.5	DSph		-	-	0.8	

-									
						Rese	lution		
No. α	(1855)	$\delta(1855)$	ϕ	Туре	S	R	В	С	Notes
160 10	0h 5.4m	02955/	1.0	DSa	.1	1.		0.0	
100 14	2" 04"	-03 33	1.0	DSh	T			0.0	NT
161	55	-1640	0.0	Dr	±	+	+	0.4	IN
162	58	-0725	1.0	DSp	+	±	+	0.4	IN N
163	58	$-07\ 10$	1.0	DSp	±	_	±	0.4	N
164	59	-16 45	1.0	DIr?	_	_	±	0.4	
165 13	3 01	+68 30	2.5	DIr	+	-	±	0.2	
166	06	+37 05	1.5	DIr	+	_	+	0.2	N
167	07	+47 05	1.0	DIr	±	土	+	0.2	
168	08	$+46\ 40$	3.0	DIr	+	+	+	0.0	
169	09	$+48\ 15$	3.0	DIr	+	+	+	0.0	
170	09	+26.10	1.0	DIr?	+	_	-	0.2	N
171	11	-07.40	1.0	DIr	÷		+	0 2	
172	12	+42.45	1.5	DSn	+		+	0.6	N
173	14	± 10.30	1 5	D2Sn	+	_	+	0.2	
174	10	-21.30	1.0	DIr			-4-	0.2	
175	20	158 35	1.5	DIr	-1-		- -	0.4	N
170	20	1 46 05	1.5	DSo	1			0.1	1.4
177	29	146 55	1.0	DSp	1	_	1	0.4	
170	20	-140 00	1.0	DSp	1	_		0.4	
170	20	+40 40	1.0	Dol.	==	-	- T	0.4	
179	00	+08.20	2.0	DIT		_	1	0.4	
180	31	-09 05	1.0	Disp	+	±	+	0.4	
181	34	+41 25	1.0	DIr	+	_	±	0.4	
182	36	+40.20	1.0	Dir	+		_	0.2	ът
183	45	+3845	2.0	DIr	+	_	_	0.2	IN N
184	48	+18 30	2.0	DSp?	±		_	0.2	IN
185	49	+54 35	2.5	Dlr	+	-	+	0.0	N
186 14	4 00	$+55\ 10$	1.0	DIr	+	\pm	+	0.0	N
187	09	+23 40	1.0	DIr	+	-	±	0.0	
188	09	$+17\ 15$	1.0	DSp	±	-	±:	0.4	
189	17	$+46\ 05$	1.0	DIr	±	_	土	0.2	
190	19	$+45\ 10$	1.0	DIr	+	_	±	0.2	
191	20	+5655	1.5	DSp	±	±	±	0.6	
192	24	$+45\ 05$	1.0	DSp	±		±	0.2	
193	30	$+59\ 10$	1.0	DSp	+	±	+	0.2	
194	31	+5750	1.0	DIr	±	_	_	0.4	
195	31	$-08\ 00$	2.0	DIr	_	_	+	0.0	
196	38	$+08\ 30$	1.0	DIr	_	_	_	0.4	
197	42	-09.30	2.0	D?Sp	+	+	+	0.2	N
198	57	+53.15	1.0	DIr	÷	+	÷.	0.2	
199 1	5 07	+6750	20.0	DSph		++	++	?	N
200	32	+4440	1.0	DSp	+	· +		0.2	
201	35	+00.55	1 0	DIr?	+	_	+-	0.4	N
202	45	+1645	2.0	DIr	-	_	+	0.0	
203	55	+82.15	1 0	DSp	+	_	+	0.4	
204 16	6 12	+47 25	1.5	DSn		+	+	0.2	
205	16	+64 15	1.0	DSn			+	0.2	N
206	51	+53 20	1.0	DSp			-	0.2	N
207 1'	7 13	+14 35	1 0	DSp				0.2	11
207 1	18	158 05	8.0	DSph			+ +	2	N
200 10	0 27	-15 10	12 5	DJr		1	1	0.2	N
203 18	0 30	-12.95	1 5	DEL/DI-	T	T	-	0.0	N
210 20	9 09	-10 20	1.0	DEI/DI	. 1.			0.0	TA
211 44	00	-10 00	1.0	DSa	1	1	.1	0.0	
212	03	-41 00	1.0	pop	T -	T	T	0.0	

 TABLE I

 CATALOGUE OF DWARF GALAXIES (cont.)

		TABL	E I	
CATALOGUE	OF	Dwarf	GALAXIES	(concluded)

No.	$\alpha(1855)$	$\delta(1855)$	φ	Type	S	Resol R	ution B	С	Notes
213 214 215 216 217 218 219 220 221 222	$\begin{array}{cccc} 22^{\rm h} & 27^{\rm m} \\ & 29 \\ & 32 \\ 23 & 21 \\ & 23 \\ & 28 \\ & 30 \\ & 42 \\ & 54 \\ & 56 \end{array}$	$\begin{array}{r} +32^{\circ}05'\\ -03 \ 40\\ -05 \ 30\\ +13 \ 55\\ +40 \ 10\\ +17 \ 25\\ -00 \ 30\\ +25 \ 25\\ -16 \ 15\\ +14 \ 30\end{array}$	1.52.01.04.02.51.01.51.011.011.01.5	DIr D?Ir DIr/DE1 DIr/DSp D?Ir DIr DIr DIr DIr	#++##+++#	- ± - ± - ± - + -	*****	$\begin{array}{c} 0.2 \\ 0.0 \\ 0.0 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \end{array}$	N NNNN N

NOTES

- 2. Has two very faint companions.
- NGC 147; member of local group.
 Member of NGC 247, NGC 253 group.
- 8. IC 1613; member of local group.
- 9. Obscured.
- 11. Good example of dwarf barred spiral.
- 13. Near M 74.
- 16. Largest of a small cluster of dwarfs.
- In NGC 945 group.
 Near NGC 908.
 Elongated.

- 23. In NGC 945 group.
- 24. Obscured.
- 25. Near NGC 925.
- 27. In a cluster.
- 29. In a cluster.
- 30. In a cluster.
- 31. Near NGC 1253.
- 34. Obscured.
- 35. Obscured.
- 37. Star projected on nucleus.40. Has DSp companion.
- 42. NGC 2366.
- 44. Near NGC 2403.
- 45. Obscured. Emission nebula?
- 47. Galactic nebula?
- 50. Ho II.

- Has dwarf companion.
 Near NGC 2781.
 Near NGC 2835. Very elongated.
- 63. Ho I.
- 65. Near NGC 3044.
- 66. Near M 81; M 81 also has another dwarf companion.
- 67. NGC 3057.
- 68. Companion to Leo A?
- 69. Leo A = Leo III; possible member of local group.
- 70. Sextans B; possible member of local group.
 74. Regulus system = Leo I; probable member of local group.

- 75. Sextans A; possible member of local group.
- 81. IC 2574.
- 84. May be low density spiral like NGC 4236.
- 88. In a cluster.
- 89. Elongated.
- 93. Leo B = Leo II; probable member of local group.

95. NGC 3664. Reproduction of this dwarf (?) barred spiral in Morgan (1958).
100. Near NGC 3953.
102. Near NGC 4026.
107. NGC 4025.

- 109. Near NGC 4145.
- 111. Near NGC 4157.
- 112. Elongated.
- 113. Near NGC 4214.

- 116. Very elongated.
 119. NGC 4288.
 125. Near NGC 4449.
 126. Blue nucleus.
- 127. Blue nucleus.
- 129. Near NGC 4449.
- 130. IC 3418? 132. IC 3475.
- 135. NGC 4523.
- 136. IC 3522.
- 138. IC 3576. 140. IC 3617. 141. IC 3687. 145. IC 3720.

- 150. NGC 4707. Star projected on nucleus.
- 161. Very elongated, multiple nuclei. Has three dwarf companions.
- 162. Near NGC 4958.
- 163. Near NGC 4958. 166. Ho VIII; near NGC 5033.
- 170. Elongated. 172. Near M 63.
- 175. Near NGC 5204.
- 183. Elongated.
- 184. Nucleus very blue.
- 185. Ho IV.
- 186. NGC 5477; companion of M 101.
- 197. Colliding giant spirals?
- 199. Ursa Minor system; probable member of local group. This system was overlooked during the search for dwarf galaxies; it has however been included in the catalogue for the sake of completeness.
- 201. Very elongated.
- 205. Has dwarf companions.
- 206. Has distant DIr companion.
- 208. Draco system; member of local group.
- 209. NGC 6822; member of the local group. Obscured.
- 211. Has dwarf companion.213. Blue nucleus.
- 216. Pegasus system; possible member of local group.
- 217. Obscured.
- 218. Brightest member of a small cluster of dwarf galaxies.
- 219. Near NGC 7716.
- 221. Wolf-Lundmark system; possible member of local group.

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

NUMBER 6

A RECLASSIFICATION OF THE NORTHERN SHAPLEY-AMES GALAXIES

SIDNEY VAN DEN BERGH

1960 TORONTO, CANADA

A RECLASSIFICATION OF THE NORTHERN SHAPLEY-AMES GALAXIES

INTRODUCTION

The Shapley-Ames catalogue of galaxies brighter than the thirteenth magnitude, which was published almost thirty years ago, is still the only complete survey of bright extra-galactic nebulae, which covers the entire sky. The nebular types given in the Shapley-Ames (1932) catalogue were derived from thirteen different sources and are both inhomogeneous and incomplete. The recent publication of the Palomar Sky Survey has made it possible to reclassify all the northern Shapley-Ames galaxies on a homogeneous system. 935 of the 1,249 galaxies contained in the Shapley-Ames catalogue are located in the region north of $\delta = -27^{\circ}$, which is covered by the Palomar Sky Survey.

THE CATALOGUE

The first three columns contain the name of each galaxy and its 1950 co-ordinates, taken from the Shapley-Ames catalogue. For convenience the entries have been arranged in order of increasing NGC or IC number, rather than by right ascension for 1950.

The fourth column contains the DDO type and luminosity class. The classification system for galaxies of types Sb, Sc, Ir, SD and N has been described elsewhere (van den Bergh 1960a, 1960b).

A short description of types E, Sa and SBa is given below:

- E—Unresolved galaxies with elliptical isophotes. Surface brightness decreases smoothly with increasing distance from the nucleus. E and S0 galaxies cannot be distinguished on the Sky Survey prints. Highly flattened objects of type S0 have therefore been denoted by the symbols E8 and E9.
- Sa—Unresolved galaxies with more or less elliptical isophotes. Surface brightness decreases more abruptly at edge of disk than in type E.
- SBa-Smooth unresolved main body and bar. In some cases surrounded by unresolved halo or ring segments.

The spectral types in column 5 were taken from Humason *et al.* (1956). The Yerkes concentration class Y in column 6 was taken from Morgan (1958). The integrated colours C_0 in column 7 were taken

from Holmberg (1958) and corrected for galactic absorption by the equation

$$C_0 = C - 0.06 \operatorname{cosec} |b^I| \tag{1}$$

The diameters in column 8 were measured on the blue prints of the Palomar Sky Survey. For galaxies of types Sa, Sb, Sc and Ir the diameters are maximum diameters. On the whole these diameters agree rather well with those given in the Shapley-Ames catalogue. From those galaxies with diameters $\varphi \ge 1.0$ minutes of arc one obtains

Sb I, I–II, II $\tilde{\varphi}_{\text{SA}} = 1.00 \, \tilde{\varphi}_{\text{DDO}}$ (2)

Sc I, I–II, II $\tilde{\varphi}_{8A} = 0.98 \ \tilde{\varphi}_{DDO}$ (3)

Sc II-III, III, III-IV $\tilde{\varphi}_{SA} = 1.07 \ \tilde{\varphi}_{DDO}$ (4)

S IV, IV–V, V
$$\tilde{\varphi}_{SA} = 1.06 \ \tilde{\varphi}_{DDO}$$
 (5)

The smooth radial decrease of the surface brightness in elliptical galaxies makes it impossible to determine maximum diameters with confidence. The diameters which are given in the catalogue might be described as "diameters of maximum contrast" on the Sky Survey prints. It should be emphasized that these diameters are quite uncertain. For elliptical galaxies the relation between the Shapley-Ames and DDO diameters is given by

E
$$\tilde{\varphi}_{SA} = 1.36 \,\tilde{\varphi}_{DDO}$$
 (6)

The apparent integrated magnitudes of galaxies were taken from the following sources and are listed in order of preference:

- 1. Holmberg (1958).
- 2. Stebbins and Whitford (1952).
- 3. Humason et al. (1956).
- 4. Pettit (1954).
- 5. Shapley and Ames (1932).

The Pettit and the Stebbins and Whitford magnitudes were not used in those cases in which the maximum diameter of the galaxy greatly exceeded the size of the diaphragm used in their photoelectric observations. Only magnitudes by Holmberg are given in two decimals.

Column 10 gives the distance moduli of those galaxies to which luminosity classes could be assigned. The magnitude calibration was

160

taken from Table I. The apparent distance moduli were corrected for galactic absorption by the equation

$$(m-M)_0 = (m-M) - 0.24 \operatorname{cosec} |b^I|$$
 (7)

Those distance moduli in column 11 which are given to one decimal were derived from the observed radial velocities of individual field

TABLE I

Type and Class	$ar{M}_{pg}$	Type and Class	\bar{M}_{pg}
Sb I	-20.4	Sc I	-20.0
Sb I–II	-19.9	Sc I–II	-19.7
Sb II	-19.4	Sc and Ir 11	-19.4
Sb II-III	-18.6	Sc and Ir II-III	-18.9
Sb III	-18.0	Sc and Ir III	-18.3
		Sc and Ir III-IV	-18.0:
		S and Ir IV	-17.3:
		S and Ir IV-V	-16.1:

MAGNITUDE CALIBRATION OF LUMINOSITY CLASSES

galaxies. Those given to two decimals were obtained from the mean redshifts of cluster members. A Hubble constant of 100 km./sec./mpc. was assumed.

The number of individual distance moduli obtained by different methods are given below:

From	DDO luminosity classifications	.411
From	radial velocities of field nebulae	. 365
From	cluster moduli	. 244

An asterisk in the last column refers to a note at the end of the table.

THE SPACE DISTRIBUTION OF GALAXIES

The catalogue contains distance moduli for 82 per cent. of the northern Shapley-Ames galaxies. The data are therefore sufficiently complete to investigate the spatial distribution of the nearer galaxies:

$$26.5 \le m - M_0 \le 27.5$$

Eight of the ten Shapley-Ames galaxies within this distance interval are members of the M81 group.

Most of the galaxies in this distance interval are members of the Canes Venatici cluster. No other clusters are apparent in the figure.

Only two small clusters show on the figure. They are the M96 group ($\alpha \simeq 10^{h}40^{m}$, $\delta \simeq + 13^{\circ}$) with $\bar{V}_{c} = +$ 676 km./sec. and the M66 group ($\alpha \simeq 11^{h}10^{m}$, $\delta \simeq + 14^{\circ}$) with $\bar{V}_{c} = +$ 598 km./sec. The small difference in radial velocity and the small angular separation of these two groups suggests that they are physically associated.

(Continued on page 196)

162

N	11111	11111	* 1 1 1 1		1 1 1 1 1	* 1 1 1 1
m-M ₀ (V)	32.6 33.4 28.4	33.2 31.4	331, 3 33, 4	11811 11811	31°6	29.7 32.1
(W) ⁰ ₩=ш	30.0 28.0	330.9 330.9 330.0	32.0 32.8	23.6 23.6 32.3:	26.5 31.6: 32.3	327 30°8 30°8
mpg	13.2 13.0 12.2 13.1	12.7 10.57 12.4 11.17 12.8	13.0 10.29 8.89 11.8 12.8	9.06 4.33 13.5 12.9	9.47 7.0: 12.4 13.0 13.0	13.0 11.5 12.5 13.0 13.0
Diameter	$1^{\circ}_{-}0 \times 0^{\circ}_{-}7$ $5^{\circ}_{-}0 \times 0^{\circ}_{-}7$ $8^{\circ}_{-}0 \times 5^{\circ}_{-}5$ $1^{\circ}_{-}1 \times 0^{\circ}_{-}9$	2.2 × 0.4 4.5:× 2.5: 3.1 × 1.1 2.8 × 2.1 1.2 × 1.2	1.2 × 0.7 2.2:× 2.2: 10: × 4.5 4.5 × 2.4 1.6 × 1.0	3.4 x 2.8 160: x35: 0.8 x 0.6 1.2 x 0.8 1.0 x 1.0	18.2 x 4.5 24.6 x 4.5 3.3 x 2.5 1.1 x 0.9 0.9 x 0.8	1.1 × 0.8 1.3 × 1.3 2.4 × 2.1 1.6 × 1.1
co	8 8 8 8 7 8 9 9 8 7 8 8 1 7 3 9 8	0.59	0.62	0.74 0.70	8 5 8 8 8 8 3 8 7 8 7 8 3 8	f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Y	×201 8 €+	م 1 اثر ا	8 8 8 8 <i>0</i> 0	****	0 111 0	1411
Sp	E FC	67	60 63 63			F0
Type and Class	E3 S(t?) Sb III S ⁻ IV-V Sc*:	E8 E4:p Sb ⁺ II: Sc(*) I Slib I	Pec(t?) E0: E6:(t?) Sb ⁻ I Sb I	E2 Sb I-II E2 or Sa Sc II: Ir or Sc	S ⁻ IV Sc(*)por SD Sb ⁴ n II: Sc II El	St EO(p?) Sc I-II Scn II-III: Sla
$\delta(1950)$	+27°27° +25 39 -25 15 -23 27 +10 12	+02 33 +48 14 =09 58 =20 12	1 4 27 4 48 04 4 41 25 1 4 09 4 25 14	+40 36 +41 00 -01 48 -00 24	-21 01 -25 34 -11 45 -05 28	-07 20 +47 18 -10 13 -07 51
α(1950)	0 ^h 06.5 07.3 07.4 11.4 19.6	26.7 30.4 31.6 32.3 34.9	36.6 36.1 37.6 38.0 38.7	40.0 40.0 40.1 43.7	44.6 45.1 47.6 47.6 8	48.5 49.2 54.0 57.3 1 ^h 00.8
NGC	16 24 95 95	128 147 151 157 175	178 135 205 210 214	221 224 227 237 245	247 253 258 268 274	275 278 337 337

- 163 -

N	E E E E E	* * * * *	1111	1.1.1.1.1	11111	
m-M ₀ (V)	1 1 1 222° 3 30° 3 1 1 1 30° 3	31.9 31.8 32.1 31.7	32.1 31.5 31.6 31.6	1 20 1 1 31 - 20 1 1 1 - 20 1 1	28.5: 31.2 31.3 31.4	ະດີ ເດີຍ ເດີຍ ເດີຍ ເດີຍ ເດີຍ ເດີຍ ເດີຍ ເດ
$m-M_0(M)$	29.5 28.4:	31.2 31.7:	30.5	24.6 30.9 29.4	2 1 1 1 2 0 1 1 1 1 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31.7: 31.1
Bdw	11.16 11.74 12.6 12.4 13.1	13.0 11.10 12.3 12.35 13.0	11.6 13.0 11.37 11.4 12.1	6.19 12.6 9.74 12.4 13.0	11.31 12.8 12.7 12.5 11.3	13.0 13.7 12.91 11.10 13.0
Diameter	2'1 x 2'0 3.9 x 3.6 2.6 x 2.0 1.7 x 1.1 1.0 x 0.6	4.2 X 3.3 2.7 X 2.2 1 1 X 2.2	1.8 × 1.7 0.9 × 0.7; 4.1 × 2.2 1.6 × 1.0 1.5 × 1.2	65 x35 2.5 x 1.0 10.6 x 9.0 0.9 x 0.8 0.9 x 0.5	5.5 × 1.5 1.6 × 0.8 2.2 × 0.8 1.2 × 1.0 1.6 × 1.1	0.9 × 0.8 1.9 × 1.6 0.9 × 0.6 1.9 × 1.6
c ^o	0.79 0.24	0.78	1 1 5 1 1 9 3 1 1 1 0 1 1	0.28	0.34	1 8 2 2 1 1 1 8 2 2 1 1 1 0 ° 2 2 1 1 1 0 ° 2 2 1 1
Υ	afa afa	af K?	1 X J X I	بر بر <u>مر</u> ۱	a I I X X	火 80 m m 1
Sp	E I I I I	62 62 62	63110	A7 65	6116	G5 G4 G4
'Fype and Class	E0 Scp III-IV S IV-V Sc* E4(p?)	Et Sb- I Sc I-II: Pec S(B)b(n?)	E1 E2: Sc II E2 E2	Sc II-III Sb II-III Sc I E1 E4	SBc III Sb ⁻ S(n*) Sbn E3	El E Sc II: Sbnt I E2
5(1950)	+35°27° +00 43 -01 07 +03 09 +16 14	+03 10 +05 00 +12 39 +03 32 +01 28	+09 16 +01 30 -22 56 -07 07 17	+30 24 -07 35 +15 32 +07 45 +27 38	+27 11 +27 11 100 57 +03 57 113 59	+05 23 +32 58 +35 41 +18 46 +31 12
α(1950)	1 ^h 06 ^m 6 10.4 13.0 17.1 17.5	17.5 19.1 21.3 22.0 22.0	222.1 222.0 28.0 30.38	31.1 32.6 34.0 44.5	45.0 46.7 48.6 50.7 50.6	53.8 54.6 54.6 57.3
NGC	404 450 470 473	474 488 514 520 521	524 533 578 584 596	598 615 628 636 670	672 681 701 718 720	741 750 772 777

N	1 1 2 1 1	1111	TLLL	1.1.1.1.1	F E T 3 1	1 1 1 1 1
m−M ₀ (V)	33. 33. 31.4 33.1	33.1 27.0: 31.1	29 . 1 30 . 7	31: 31: 1 - 1 - 1	1 8 1 1 3 1 0 1 1 3 1 0 1 1 3 1 1 0 1 1 3 1 1 0 1 1 3 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1	26.7: 30.2 31.4 31.3
m-M _O (M)	30.2 	31.3 31.3 31.0	28°8 30°5	32.6 31.0: 31.7: 29.7:	500°-1	29.0: 30.5 29.5
mpg	11.9 12.4 12.0 11.6 12.4	12.6 10.85 12.2 10.74 12.4	10.53 11.21 12.84 12.8 13.1	13.0 12.1 12.7 12.7	10.48 12.8 12.5 11.69 11.38	11.74 9.63 11.43 11.1 11.45
Diameter	3.7 x 0.9 1.2 x 0.9 1.2 x 0.9 3.5 x 2.3 1.7 x 1.1	1.1 × 0.7 11.8 × 1.1 2.8 × 2.2 5.0 × 2.3 1.2 × 1.2	9.5 x 4.3 3.3 x 2.5 1.9 x 1.3 1.2 x 0.5 2.0 x 0.5	1.8 x 0.6 2.5 x 0.9 1.1 x 1.0 1.8 x 1.8 1.8 x 1.4	4.0 x 1.2 1.9 x 0.6 4.5 x 2.6 1.3 x 1.0 6.7:x 1.5	6.0 × 5.0 4.5 × 4.2 2.1 × 1.1 2.2 × 1.2
°°	I I I I I I I I I I I I I I I I I I	0.61	0.250.81	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.78	0,36 0,64 0,33 0,35
Y	0011104	a gk: af	a A X I I I	10411	111×1	9 9 1 2 2 1 9 9 1 2 2 1 9 9 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Sp	65 .	61	F0 63	14111 14111	62116	F0:
Type and Class	Sb ⁻ II-III Sa E2 Sc II Sc II Sc I:	E4 Sb Sb ⁴ II Sc I Scp II-III:	S(B)c II-III SBa Sc III-IV SD? E8	S(B?)b ⁺ I-II Sc(n) II: Sbn II: S IV: Sbn	E7p Pec or Sc* Scn E2 Sb II-III	Sc* III-IV: Sbp S(B)c II Sc I-II Sc* III:
6(1950)	-06°12° -07 03 +10 46 +15 45 +14 19	+33 02 +42 07 -05 45 -21 27 -25 01	+33 22 -01 22 +36 56 -01 19	-03 09 +29 06 +20 44 -07 22	+ 38 52 + 08 20 + 08 45 + 00 16	+37 08 -00 14 +01 10 -07 47 -00 42
α(1950)	1 ^{h57#2} 58.6 2 ^{h05.6} 12.8 15.3	19.1 19.3 20.8 22.9	24.3 25.1 26.0 28.0	28°1 31°3 31°2 33°2	37.2 37.0 38.5 39.6	40°2 40°1 43°5 43°5 9
NGC	779 788 821 864 877	890 891 908 922	925 936 941 955	958 972 991 1022	1023 1035 1048 1052 1055	1058 1068 1073 1084 1087

N	1.1.1.1.1	1 1 1 L I	1 1 1 1 1		I I I I I	
m−M ₀ (V)	1 1 3 0 1 1 1 3 0 1 1 1 3 0 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1	31.1 32.0	32.0 31.2 33.5	30°9 30°9 11°0	1 1 1 1 30°0	31.4 31.4 31.1
m-M _O (M)	29 • 5 • 28 • 6 •	31.0	30.2 31.2	31.2 30.4	29,2 30,7 32,2;	29.5 31.4: 30.9
pg^m	12.51 12.51 11.85 13.0 13.1	13.0 13.0 11.3 11.3 11.7	12.6 10.46 13.0 12.1 12.7	13.0 11.11 11.1 11.8 11.8 12.22	11.0 12.26 12.5 13.1	12.5 12.5 11.5 11.5
Diameter	2.8 x 1.0 1.1 x 0.5 2.2 x 1.9 0.8 x 0.7	1.1 × 0.2 5.4 × 3.1 5.5 × 3.7 0.9 × 0.7 2.2 × 1.2	1.1 × 0.5 7.0 × 5.5 1.8 × 1.0 3.5 × 2.2 0.6 × 0.5	1.0 × 0.8 5.7 × 3.5 3.4 × 3.2 1.9 × 1.7 4.2 × 1.1	3.4 x 1.0 5.2 x 0.9 2.5 x 0.9 1.4 x 0.9 2.0 x 1.2	1.6 × 1.3 5.6 × 3.5 1.4 × 1.3 2.4 × 1.8 2.1 × 1.8
co	0.45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.11	0.58	0.35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Υ	ы 1 а ро 1 н	21411	14111	1643641	X I I I I	1 1 1 6 X
Sp	F2: Em	60111	G4	11011	0 1 1 1 1 0 1 1 1 1	11
Type and Class	S ⁿ IV: Pec Ir ⁴ IV: S(B)b ⁷ II? E1	Snn: Sp or N S(B?)c I E2 Sa	B5 Sc I Sb ⁴ t Sc II E2	E2 SBb I S(B)a Sc II-III Sbn(*)	ET S ⁻ IV: S II-III S S(B) b ⁻ II:	SB [*] p IV S(B)a Sc II-III: Sc I-II E3
6(1950)	-00°27 ¹ -10 14 +25 03 +46 12 -15 02	+42 08 -19 06 -23 04 -15 48 -26 15	-15 48 -20 46 -25 58 +11 18	-19 16 -19 35 -26 14 -15 35 -21 43	-21 31 -08 34 -21 00 -13 50 -05 16	-19 41 -25 06 -24 40 -23 11
α(1950)	2 ^h 44 ^m 0 52.2 56.7 3 ^{h00.1} 59.3	01.3 59.7 00.4 01.3 02.0	03,8 07,5 08,8 11,4 15,6	17.0 17.5 19.8 22.3	24.1 25.6 30.9 31.2	31. 321. 35. 35. 36. 36.
NGC	1090 1140 1156 1169 1172	1175 1179 1187 1199 1201	1209 1232 1241 1255 1270	1297 1300 1302 1325 1325	1332 1337 1353 1353 1358	1359 1371 1376 1385 1395

N	ĩ	¥	I	×	ł	1	I	ŧ	t	g	1	1	1	t	I	1	8	1	*	۲	t	1	I	ŧ	1	1	8	1	1	1	8
m~M₀(V)	30.7	27.9:	31.2	30.7	33.0	1		30.5	31.4	E T E	I I I	33.0	I F f	1 7 3	29.7	33.0	25.4:	33.4	8 1 1	28.6:	8 1 1	30.9	1 1 1	T T B	32.9	8 1 1	28.4:	1	31.4	33.0	31.1
(W) ⁰ W-w	30.5	I F B	E T F	30.5	32.4:	90 1.	• T • 7 0	I F B	E T E	I T E	a F T	I I I	E 1 E	I I I	I I I	i i i	I I I	1 • 1	1 1 1	1 1 1	1 I I	31.4	31,0	31.8:	E T B	1 1 1	30.0:	21 2 .	30.9	1	30.4
щpg	10.4	12.3	11.2	12.8	12.9	190	0 • 0 •	12°0	12.9	13.0	13.0	12.9	12.8	12,9	12.3	13.0	11.75	12.2	13.1	11.26	13.1	12.4	13.2	12.9	12.1	13.0	1.2.1	10 20	12.0	11.68	11.61
Diameter	6,8 x 4,5	0.8 x 0.7	1.1 X 1.1	1.7×0.8	1.7×1.1	9 U ~ U 6		1.U X U.8	1.0×0.9	1.0×0.7	1.7 x 0.9	0.8 × 0.6	1.9×0.5	3.2 × 0.5	2.4 x 0.9	0.7×0.5	2.1×0.8	0.8×0.6	1.8×0.3	2.6 × 1.9	0.6 × 0.5	2.0×1.1	1.1×0.9	1.0×0.8	0.9×0.8	0.6×0.5	7 6 × 3.1		2.2 × 1.1	3.7×1.6	5.4 × 1.1
c _o	1 1 1	1 1 1	1	1	E E E		E S	t 1	F T 1	1 1 1	1 6 1	E 1	1	1	1 E E	1 2 1	I I I	I I I	1 1	0.38	T T	1	1 1 1	1 1 1	I I I	1 1 1	8	44	- 1 - F	0.45	0.54
Y	ж	1	I	ſ	I		ŧ	I	1	٢	ĩ	t	1	ĩ	a	t	g	ł	t	Ļ	ı	ĩ	ť	ĩ	1	£	1		1 1	لى ا	1
Sp	ŧ	G4	G 3	F-8	GO		Į -	64	G2	T E	ę	60	t t	ł	t t	G5	Em	G7	ľ	F8	7. M	Ĩ	t	1. 18	G4	Ĩ	1		10		T X
Type and Class	S(B)b ² I	El	EO	Sb [*] (t?) III	Sb I-II:	cht T.	T 100	E2	El	S(B)a	SBa	E2	Sa	S	Scp or S(B)cp	E3	1rp III-IV?	E2	S(n)	Scn	E2	Shb ⁻ II	Sc* III	Sb ⁺ II:	Blt	E2	S(N) CIII			Shuth I(2)	Sh II
6(1950)	-26°30"	-18 51	-18 44	-22 43	-04 48	07 05	-T3 40	-22 16	-22 05	-18 27	-18 47	-04 08	-16 32	-02 20	-21 18	-21 11	+64 45	-05 10	-03 24	-02 56	-01 53	-20 32	-04 53	-06 24	-04 56	-07 49	-96 06		-15 47	10 24	-21 59
α(1950)	3 ^h 36 ^m 8	37.2	37.9	38.7	39.5	0	40.2	40.6	42.6	42.8	43.1	44.0	46.1	4h01.8	04.7	06.2	26.0	29.2	34.6	38°9	39 . 1	40.1	44°0	46.2	54.4	57.3	£7 0	- pole	10.0	36.8	31.2
NGC	1398	1400	1407	1415	1417	1 4 0 4	T75T	1426	1439	1440	1452	1453	1461	1507	1518	1521	1569	1600	1625	1637	1638	1640	1659	1667	1700	1726	1 7 A A	1001	1 / 04	1961	1964

- 167 -

N	11811	** 1 1 1	11111		1 1 1 1 1																									
(A) ⁰ M-m	31.1 29.9	32.0 30.6 32.0	32.1 31.7 33.0 31.9 31.8	33.3 26.53 22.53 32.9 32.9	28.5: 32.8 31.3 27.8:	32.0 32.0 31.6																								
(31.7:	30 . 6 :	31 . 4 : 	27.0: 26.6 32.0: 30.2:	29.0 32.6 28.8	28.23 31.83																								
mpg	11.9 11.26 13.0 12.6	11.4 11.8 12.7 12.18	11.91 12.25 13.3 11.03 12.5	13.1 11.41 8.80 13.0 12.7	12.13 12.6 12.30 12.3 11.88	123.22 12																								
Diameter	1.6 x 1.3 5.1 x 2.8 0.9 x 0.7 1.7 x 1.3	2.8 × 1.9 2.1 × 0.9 3.1 × 1.6 2.3 × 1.5	2.2 × 1.9 1.0 × 0.9 0.7 × 0.6 5.7 × 2.8 2.1 × 1.3	1.0 × 0.8 4.5;× 2.0; 16.8;×10.0; 1.2 × 1.0	2.5 × 1.9 2.3 × 1.1 2.4 × 1.3 1.1 × 1.0 1.1 × 1.0 4.9 × 2.2	1.1 × 0.9 1.8 × 0.7 1.2 × 0.8 2.6 × 2.0 1.7 × 0.9																								
co	10°444	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.24 0.90 0.39	0.22	0.35																									
Y		11114	a f k k	06 – 2 m n m	e ta ba e og a	gk a																								
$_{\rm Sp}$	F0 1111	G1 G2	6 22 6 22	01 F 1 1		F5 a																								
Type and Class	Scp Snnt Sa Sb I-II:	Sct I: St SBa S(B)b ⁻ II: or N Sbn:	Sc* I: E1 E1 p? Sb I or Sc I Sc II-III	Sbn: S ⁺ IV-V or Ir ⁺ IV-V Sc III Sb ⁺ t III:	S ⁺ IV SBb ⁻ I S(B)cp II? SD: S ⁺ IV	Sb(t?) E6 Sb III: or Sbn Ir ⁴ IV-V Sc II:																								
6(1950)	-23°49° +78 23 -09 44 -21 44	-21 21 -21 21 -21 21 -27 14 +84 30	+85 52 +85 50 +75 19 +30 20 +18 52	+64 54 +69 08 +65 43 +73 06 +60 31	+50 54 +73 45 -11 17 +46 09	+21 30 +57 58 +73 35 +50 11 +28 38																								
α(1950)	5 ^h 58 ^m 6 6 ^h 10.7 01.1 05.9 10.1	14.3 14.3 18.7 7 ²² 5 7 ¹⁰¹ .3	11.0 16.5 03.8 05.4 05.4	11.6 23.6 32.0 52.7	68 ^h 09.2 03.3 09.7 11.1	111,3 114,9 118,8 22,2 2																								
NGC	2139 2146 2149 2179 2196	2207p 2207f 2217 2223 2268	2276 2300 2314 2336 2336	2347 2366 2403 2441 2460	2500 2523 2525 2537 2537 2541	2545 2549 2551 2552 2608																								
N	ł	1	ł	8	1	8	ł	8	1	1	ł	1	8	1	1	8	ł	1	4	8	E	1	Ŧ	1	1	1	1 -1	ĸ	8	1
----------------------	-------------	-----------	-----------	-------------	-------------	------------------------	------------	-------------	-----------	------------------------	-------------	-----------	-----------	-------------------	---------------	-------------	-------------	-----------	-------------	-----------	-----------	-------------	-------------	---------------------------	-------------	------------------------	-------------------	-------------	-------------------	-----------
ш-М ₀ (V)	30.7	31.9	32.6	33,1	32.8	30.8	30.8	33.1	29.4	27.3:	29,9	33.5	1	31.3	1	30.6	31.8	1	31,1	33.0	1	5 2 8	30.9	29,9	32.1	1		32.0	2002	1 0 I
(W) ^O M-m	29.2:	•	8	32,5	8	30.8	1	1 2 3	1	28.8	30.3:	1	31.5	32.8	31.6	30,8	8 7 8	31.5	l T B	1	29.2:	1	1 1 1	1 1 1	31.0	3() 7	• • • •	8 1 8) (]]]]	
mpg	10.9	12.8	12.6	12.7	13.1	12.6	10.92	13.2	11.33	10.53	12.04	13.2	12.5	12.8	12.7	11.87	12.7	12.5	12.3	13.5	12.57	13.3	11.2	11.3	11.9	19 7	- 1 1 C 1 T	0,21	12.0	12.9
Diameter	6,6 x 1,3	2.0 X 1.1	1.2 X 0.6	1.8 x 1.8	0.5 x 0.3	3.7 × 0.5	5.0:x 3.4:	0.8 x 0.7	2.8 x 2.5	8.0 x 1.3	3.0:× 1.6	0.8 x 0.6	1.6 x 1.0	2.3 x 1.1	3.2 x 1.0	4.4 X 1.1	1.3 x 0.5	2.5 x 1.0	2.3 x 0.8	0.8 x 0.6	1.7 × 1.7	0.9 x 0.5	2.0 x 1.0	2.3 x 1.9	2.1 X 1.6	3 2 × 1 3			0°0 X 1°T	0.8 X 0.8
co Co	2 1 1	1	1	1 1 1	T E J	:	0.65	1 1 1	0.59	0.72	0.57	11	3	3 t 1	1	0.34	1	1	1 1 1	1	0.32	1 1 1	8	1	I I I	1		1		
Y	gk	i-i	1	1	I	1	1	1	Х	20	k	X	a/af	f.g.	00	аf	Х	af	af	k	ŧ	ł	k:	gk	Ç	1	5	50 2	4 7	af
Sp	61	1 I 1	65	1	1	G5	G1	G4	F8	60	GS	G2	:	61	1	T B	T B	1	11	60	T B	1	GS	63	1	3	- 10:01	- C - J	12	
Type and Class	Sb II	SHOP	Sa	S(B)b I	۶	Sb ⁷ II-III	Snn	EI	Sa or Snn	Sb ⁻ II-III	Sbp II-III:	Ep	Sc.II	Sb [†] I	Sb II	Sc* II	SD:	Sc II	Sc	E2	S- IV:	E?	E5	Sa or Sb ⁻ II:	Sc II	Sb ⁴ II-III	Chut on Chun	The surp	Sant	Scp.
6(1950)	-22°481	AT 7/.+	+ 50 24	~03 57	+73 40	+50 28	+78 25	+19 16	+51 31	+33 38	+58 59	+51 33	+33 59	+45 07	+03 08	+78 16	+79 24	+60 41	+76 41	+18 31	-15 17	+21 39	+60 16	+07 15	+45 11	-14 36	410 10	-93 58	469 25	434 39
α(1950)	8h31#1	42.1	40°T	38°3	44.6	44.3	49.4	46.6	50.0	49.6	52°2	53°5	55.5	56.2	54 . 8	$9^{h}02.0$	07.3	03.7	08.2	02.5	04.5	05,4	07.8	07.7	08.9	09.1	10 0	10.1	14.9	13.7
NGC	2613	023	2039	2642	2646	2654	2655	2672	2681	2683	2685	2693	2701	2712	2713	2715	2732	2742	2748	2749	2763	2764	2768	2775	2776	2781	0780	2784	2787	2793

N	1	8	1	ł	*	8	1	1	8	R.	1	3	1	t	1	3	1	1	I	1	I.	8	t	ł	I.	1	1	1	1	1
m-M ₀ (V)	31.2	31.8	1 1 1	34.2	29.0	29.2	1	8	31.1	31.1	31,9	31.0	11	8	28.6:	3 5 5	32.4	8 7 8	8 1 1	r T 1	30,8	t F	I I I	30.5	31.6	8 7 8	31.3	26.53	31.2	30.8
m-M ₀ (M)	I I I	30.4	1	1 1	1 1 1	30.2	1	29.5:	1 1 1	t I B	1 T	3	31.8:	1	29,0	1 8 8	1 1 1	E F F	32.2	32.0:	R T R	32.2	30.5	31.0:	30.3:	1 7 9	E 7 1	1 1 1	E E E	31.1
npg	13.1	12.4	12.9	13.5	12.0:	10.10	13.0	12.8	12.6	12.0	12.5	12.6	12.4	13.1	9.48	12.9	13.6	13.2	12.4	12.9	11.9.	13.1	12.9	11.89	12.4	12.79	11.9	10.73	12.6	11.11
Diameter	2°3 x 0°6	1.6 x 0.5	3.0 x 0.7	8 8 8 8	5.8 x 2.8	6.4 × 2.4	0.9 x 0.5	2.1 x 1.4	1.1×1.0	4.4 x 3.5	0.8 x 0.5	1.0×0.7	1.3 x 1.2	0.5 x 0.5	11.0 × 4.6	1.0 x 0.8	0.6 x 0.5	0.5 x 0.5	3.2 x 2.4	1.5 x 1.2	1.3 x 0.9	1.2 x 0.6	2.1 x 1.5	2.2 x 1.1	2.2 x 2.0	1.2 × 0.8	1.5 x 0.9	3.5 x 1.3	1.8 x 1.0	5.5 x 5.0
°0	1 1 1	1 1 1	1 1 1	1	I I I	0.64	8	1	1	1	I I I	2 7 1	t t 1	1 1 1	0.39	8 8 9	1 1 1	t t	t t	E E	I I	1 2 1	1 1 1	0.43	T T E	0.93	I I I	0.55	1	0.53
Y	8	I	1	ł	ł	X	ы	1	I	X	I	Х	1	1	ς ι	r	ı	ŧ	ł	af	×	fg	20	÷	1	1	I	B	ı	fg
Sp	F5:	G 3	ę	60	1	60	ī	I	G3	63	G 2	64	ę	1	F0	r 1	F-8	۲ ع	ľ	ŕ	G2	t E	1 I	F5:	ĩ	Ĩ	G S	f 1	G5	63
Type and Class	S(nn?)t	Sb ⁺ II-III	Sbp III: or N	Вt	Sp	Sh ² I	Sa	S- IV:	El or Sa	SBa	E4	E3	Sh ^t (t?) I-II:	EO	Sb ⁺ I-II	Sb"	E2p	EO	S(B)b ⁻ I	Sb II:	Sap	Sh II	Sb ⁺ III	Scn II:	Sc* III:	Pec	Sa	SD	SBa	Sb ⁻ I
6(1950)	+42°10"	-16 06	-23 24	+33 59	-22 08	+51 12	+40 22	-16 18	-11 41	+34 44	-22 58	+62 44	-11 25	-14 30	+21 44	-16 32	+10 22	-16 11	-20 54	+34 14	+59 05	+3607	+05 24	+32 05	+00 34	+32 10	-03 29	+08 08	-20 15	+72 31
α(1950)	$9^{h_14m_4}$	13.9	14.1	16.8	15.7	18.6	18.6	17.8	19.1	21.3	21.2	25.7	24 ° 8	28.5	29.3	29.3	31.0	32.8	34.5	36.2	39.1	38,3	38°3	40.0	39.5	40.3	40.0	43°2	41.3	46.0
NGC	2798	2811	2815	2832	2835	2841	2844	2848	2855	2859	2865	2880	2889	2902	2903	2907	2911	2924	2935	2942	2950	2955	2962	2964	2967	2968	2974	2976	2983	2985

N	1111*		1 1 1 1 1 1	1114	11111	1 1 1 1 1
$m-M_O(V)$	31.6	30,9 30,8 30,9 30,9	26.53	31.2 31.7 30.8 26.53	31.7 30.5	26.1: 28.1: 32.8 32.3
т-М _О (М)	32.0	31.9 29.7: 27.4	31.3:	30.6: 31.6: 30.3	30.2:	26.7: 32.7: 32.5 30.8:
шрg	12.2 13.1 13.0 13.0	12.8 12.04 12.7 12.7 12.85 12.8	9.20 12.7 13.2 12.6 12.8	12.6 12.6 12.9 12.6 10.57	12.1 11.10 12.8 12.7 13.0	11.2: 10.2 12.5 11.3
Diameter	1,0 x 0,9 1,0 x 0,7 1,0 x 0,5 1,0 x 0,5	3.9 × 1.1 5.0 × 0.9 1.1 × 0.5 21.0:× 9.8 0.9 × 0.7	9.0:x 4.0: 2.7 x 1.5 1.1 x 0.4 4.6 x 0.5 1.7 x 1.1	3.3 x 1.3 1.7 x 1.0 0.5 x 0.5 1.8 x 0.5 2.3 x 1.9	0.6 x 0.4 	12: x 2.0 4.0 x 1.2 3.0 x 2.1 2.4 x 1.0 3.0 x 2.3
c _o	8 8 8 7 8 5 5 5 6 8	0.22	0.72	0.59	0 4 3 4 3 4 1 1 1	8 8 3 1 L 8 8 8 8 8 3 8 8 8 8
Y	11011	a a a b a b a b a b a b a b a b a b a b	נים ו היים	a the 1	KI BI	1 X I I X
Sp		F0 63 62	42 1 1 1 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01111	67
Type and Class	El Sb ⁺ II SD? Pectt Pectt	Sc II S(B)c III-IV: Sb Sb I-II Sa	Pec Sc IL-III: Sb: Sc: Sc II	Sb II-III: Sc II: Sb ⁺ III E2p	B3 Sbp(t) II: Sb ⁴ III: E2 E7	Ir IV-V E6 S(B)b ⁺ I: Sb ⁺ I: Sb I-II:
6(1950)	-21°03° -1809 +0557 -1406	+44 19 +33 39 +53 47 +59 18 +99 28	+69 56 +16 55 +59 32 +01 49 -18 24	+25 28 +04 31 +72 25 +32 37 +68 58	+26 41 +55 57 -22 33 +19 23 +24 58	125 55 107 28 112 10 473 39
α(1950)	9 ^h 42 ^m 0 43.1 43.5 43.6 43.3	45.8 45.6 51.5 51.5 49.2	51.9 50.3 51.0 51.0 52.8 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0	52.1 52.1 552.1 55.4	566 2 568 6 574 8 597 8 597 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10 ^h 00.8 02.8 04.2 07.7 12.8
NGC	2986 2989 2992 2993 2993	2998 3003 3021 3031 3032	3034 3041 3043 3044 3052	3054 3055 3065 3067 3067	3078 3079 3081 3091 3098	3109 3115 3124 3124 3145 3145

- 171 -

N	11111		1111*	1 1 1 1 1		
m-M ₀ (V)	34.2 34.2 30.45 30.2	30.45 28.1: 30.45 30.45 30.45	29.1 30.5 30.0	30.4 30.3 31.5 30.7	30.8 30.5	1 0 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
(W) ⁰ W-m	31.4:	31.1 29.4 30.6: 30.3:	29°9 31°8 1118	31.2 29.9: 31.5:	31.3	30.6 30.6
mpg	13.1 13.1 12.3 11.49 11.24	12.8 10.28 12.90 11.96 11.83	10.82 12.8 13.2 12.6 11.3	11.8 12.1 12.9 13.0 12.4	13.2 12.8 11.6 13.1 12.2	12.7 11.3 13.1 11.67 12.9
Diameter	1.0 × 0.5 0.6 × 0.5 2.3 × 2.1 4.4 × 1.7	0.8 x 0.7 5.6 x 5.6 1.4 x 0.9 0.9 x 0.9	9.0 × 3.2 4.2 × 0.9 2.0 × 0.3 1.0 × 0.8	1.8 × 0.9 4.4 × 1.0 1.3 × 0.7 2.0 × 0.7 1.1 × 0.9	1.3 x 0.8 2.6 x 1.2 1.0 x 0.5 2.5 x 0.6	0.5 × 0.5 4.0 × 3.0 2.4 × 0.9 6.2 × 3.2 1.8 × 0.8
c _o			0.32	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I I I I I I I I I I I I I I I I I I	0.22
×	1 1 수 없겨	a afr afr afr	af 1 1 1 1 1	1 00 00 1 00	g a ta i	م 11 م 12 م 12 م
Sp	661 67 67 63 1	F8 F3 G3 G1	621 1 1 63 1 1	62 F1 : 64 F51 :	62111	A 8 1 1 1
Type and Class	E5(p?) E2 Sc II: Snn Sbnt	<pre>\$b^t II-III \$c II \$(B)b^t III: \$bnt II-III: E0</pre>	Sc II Sb II E8 E2 Sbnt	E5 Sb II Ir+p IV: Sc* Sb ⁻ II:	Snn S* IV? Sc I SBa Sa	E0 Ir II Sn S(B)c II Sc III-IV
b(1950)	+03°22° +39 00 +22 59 +03 40 +03 43	+21 22 +41 40 +21 56 +22 05	+45 49 -17 44 -26 27 +20 09 +20 07	+28 46 +29 45 +65 18 +27 56 +28 46	-27 12 +21 55 +37 35 +14 26 +22 08	-27 16 +53 46 -27 20 +41 56 +47 40
α(1950)	10 ^h 10 ^m 1 10.9 11.7 11.2 11.7	13.9 15.2 15.4 15.4	16.7 16.2 16.3 20.7 20.7	24.5 26.5 29.2 30.2 30.2	31,3 32,1 34,0 34,0	34.3 35.7 36.1 36.7
NGC	3156 3158 3162 3166 3169	3177 3184 3185 3193 3193	3198 3200 3203 3226 3226	3245 3254 3259 3274 3277	3285 3287 3294 3300 3301	3309 3310 3312 3312 3319 3320

- 172 -

N		1111*			11111	
m-M ₀ (V)	30,4 28,5; 32,4	29.15 30.2 32.2 29.15	30.6 29.15 29.15 29.15 30.4	31.2 31.0 30.7 29.15 30.7	31.2 28.8:	8 8 8 8 8 3 1 9 7 8 8 8 3 8 8
ш-М _О (М)	30.3 29.5 31.5	29.6 30.0 31.6	30.4	1 8 8 8 1 2 1 8 1 1 1 1 1 1 1	30.6 31.1: 33.0:	6 6 8 8 8 7 8 8 9 7 8 8 8 6
ырg	$12.9 \\ 11.25 \\ 10.38 \\ 12.4 \\ 12.0 $	$10.48 \\ 13.0 \\ 10.89 \\ 11.9 \\ 10.05 \\ 10.05 $	12.4 11.3 10.5 12.1	12.4 12.8 112.9 11.5	13.1 11.48 12.0 12.59 12.9	12.6 12.9 13.1 13.0
Diameter	1.2 x 0.6 4.5 x 3.0 7.6 x 6.2 2.2 x 2.0 0.9 x 0.8	6.1:X 3.9 0.8 X 0.5 7.0:X 3.5: 1.9 X 1.7 5.0:X 4.0:	2.4 x 1.2 1.9 x 1.0 2.2 x 2.0 4.4 x 1.4 2.3 x 1.0	1.5 x 0.9 	0,8 x 0,5 3,5 x 2,8 3,4 x 2,8 5,8 x 0,8 2,5 x 2,2 2,5 x 2,2	2.1 × 0.5 1.1 × 1.1 2.1 × 1.0: 2.8 × 0.6
C ₀	0.32	0.65 0.30 0.69	1 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	I I I I I I I I I I I I I I I I I I I I	0.22	1 3 8 8 8 7 7 8 8 7 9 1 2 8 8 7
Y	gk f f f k	fg af gk	u XXX5	אלא ו שש מ	ਦਰ ਸੂਦਾ। ਹਰ	af a af a?
Sp	F5 G5	F5 F5 G0	62 62	60111 60111	1 1 1 1 1 1 3 5 6 1	8 8 5 7 7 8 8 8 8
Type and Class	SD ² Sb ² Sc II Sc II El	S(R)b II SD? S(R)c II Sc I Sbp	Sc III E5 E1 E7 Sc* III:	Sct Pec(t) Sb ⁴ III or Ir ⁴ IV? E5 SBa or E	E4 Sc II Sc II: St Sb I:	Sb Sc*t Snt Sb(nt) Sb:
6(1950)	+77°05° +14 00 +25 11 +15 09 +73 07	+11 58 +56 14 +63 30 +14 01 +12 05	+17 32 +14 15 +12 51 +12 54 +12 58	+33 15 +33 16 +73 57 +13 41 +28 15	+43 59 +06 07 +33 14 +36 54 +10 26	+23 11 +57 15 +54 34 +17 33 +57 22
α(1950)	10 ^h 40 ^m 6 39.5 40.7 41.0 43.5	41.3 42.3 43.4 44.0 44.2	44.5 45.1 45.2 45.7 45.8	47.1 47.2 50.1 48.3 48.6	48°9 48°7 49°5 49°4	49.9 51.6 51.8 53.0
NGC	3329 3338 3344 3346 3346 3348	3351 3353 3359 3367 3368 3368	3370 3377 3379 3384 3389	3395 3396 3403 3412 3414	3415 3423 3430 3432 3432 3433	3437 3445 3448 3455 3458 3458

- 173 -

N	I	ł	8	1	ł	1	1		1		1	1	Ł	*	1	1	1	I	ł	1	8	I	8	1	1	1	8	1	ł	ł	1
ти-М _О (V)	8	1) 1) 1)	8	30.1	28.8:		30.8		1 06	1 B • 1 • 8	0 00	0000	1	32.2	28,9:	1	8 1 5	29.3	8	1	30.5	28.87	8	28,9:	29.6	30,2	31,36	31.0	31,36	1 1	31.36
m-M ₀ (M)	31.4	32.8	31,9:	30,1	1	31 8.		1	1	30.9:	0 06	00.00	31,0:	B E E	29.2	1 1 1	31.1	1	8	31.3	1	29.3	31,3	t t	1	3 8 8	E T B	8	8	32.0	1 2 1
mpg	13.2	13,2	12.8	11.00	11,3	197	11.6	13.2	10 8	11.9	10.01	0°71	12.0	12.5	10.06	12.9	12.8	10.57	13.1	12.2	11,0	11.6	12.2	14.0	11.0	12.1	11.6	12.8	11.7	12.9	12.7
Diameter	2.6 x 1.4	2.2 x 0.8	1.5:X 1.1:	6.8 X 4.5	2.0 x 0.9	4 0 × 0 8	2.2 × 2.2	0.8 × 0.7		4.6 x 2.0	0 1 2 0 1		1.9 X 1.3	0.8 x 0.6	7.0:x 4.0:	1.1 x 0.8	2.6 x 0.9	7.7 x 1.3	2.6 x 1.0	2.2 x 1.4	2.0 x 1.0	2.5:x 0.9	3.6 x 2.8	0.7×0.5	1.7 X 1.5	1.4 x 1.0	1.3 x 1.0	1.5 x 1.1	1.6 X 0.8	4.3 X 1.8	1 1 1
c _o	E I I	1	1	0.32	3	1	1	2 E	1	8 5 2	1		f L I	E B B	0.76	1 1 2	î I I	0.38	I I I	I I I	1 1 2	8	1 1 1	E Z	1	8	E E	1	8	I P I	11
¥	8	I	af	Г В	gk	4	fr/p	0 0 0 1	· (1	0 7	Ç,	4 9	a	£	4-4	af	af	0	ſ	fg	X	μ.) G	I	gk:	Х	Х	gk?	1	af	8
Sp	9	1	I	G3	60	I B	F3:		I Z	T B	1	t C	1 (8 - 1	FO	63	î I	I I	F0 :	l I	1	G3	F 5	I	63	63 9	GO	G 2	F5	G3	f (Ca
Type and Class	Sb, II-III	Sb ⁺ I-II	$S(B)b^{\dagger}$ II:	Sc II	E6	Sh II:	Sb(12)	Sc*	S+	Sc* II:	Sc III		S(B)CTII:	E or Sa	Sb ^T II	SD?	Sb II-III	Sc*	Sa	Sc II	E5	Sb III	Sc* II	E3	El	E3	E2p	Sa	E5	Sc II	Snn:
6(1950)	-20°491	+46 23	+15 06	+29 15	+14 10	+03 53	+28 15	+11 21	+29 09	-22 50	408 18		80 77 T	+72 50	+00 14	411 00	+53 39	+55 57	×18 01	+48 39	-26 29	+13 06	+15 04	+18 18	+18 20	+18 26	+59 04	+0450	+58 17	+46 02	4.00 UZ
α(1950)	10h52m2	56.5	57.4	57.8	57°7	58.6	11 ^h 00.5	00.6	01.0	00.8	01.3		TTO	03.4	03.2	07.3	08.2	08.7	08.9	11.4	10.9	12.0	12.4	14°2	14.3	14.4	15.6	14°9	15.7	15.6	C°OT
NGC	3464	3478	3485	3486	3489	3495	3504	3506	3510	3511	3512	10100	0100	3516	3521	3547	3549	3556	3571	3583	3585	3593	3596	3605	3607	3608	3610	3611	3613	3614	ATOO

Z	1 1			8	1	1	1		8	1	1	1	1		8	8	1	1	1		1	1	1	1		1	8	1	*	1	8	8	1
m-M ₀ (V)	28.87	10000	10.07	1.8 . 82	1	1 5 8	30.3	••••	1 C	30.4	31.36	33.2	8 8		I T L	1	31.5	1	31 3	0.4.0	E 2 1	29.3	30.4	2 2 2	30.6	29.8	1 1 1	1 7 2	1	8 2 8	1 1 1	30.2	8
m-M ₀ (M)	29 . 3:		· 0 • 0 7	1	31.0:	8 7 8	30.6	•	8	1	31.2	31.6	8	1		.7.8.2	I E E	30.3	20 0	00.00	31.9	30.1	1 1 1	1 T 1	30.3	30.8	31.4:	32.0:	8	1 1	30.5	1	1
mpg	10.18	17.0 7.5 7.5	20°0	T0.23	12.9	12.8	10.91		0.71	11.6	11.52	11.82	12.3		- 7 - C -	TZ*9	11.9	12.6	8 11	0.44	T.Z., 9	11.0	12.5	13.2	12.3	11.7	13.O	12.8	12.1	13.1	12.2	11.24	13.0
Diameter	7'8 × 1'5		1	1 1 2 2	1.8 x 1.1	1.5 × 0.5	4.3 × 3.2	, - , - , -	0°T X T°T	1.1 X 1.0	5.7 x 4.4	3.2 x 1.9	1.2×0.9		0°0 × 1°7	1.3 X 1.3	1.6 x 1.2	3.7 × 0.8	3 6 7 1 3		2.9 X 2.3	4.0 × 1.7	1.0 x 0.9	1.3 × 0.5	2.8 x 1.8	2.4 x 1.8	1.3 x 1.3	1.0 X 0.8	1 1 1 1	0.9×0.7	3.5 x 1.2	ł I J	0.5 x 0.5
с ⁰	0.74		0,.00	0.63	2 8 8	1 1 1	0.39		11	1	0.28	0.48	1		8	1	1	9 I 1	1		8	1	8 8 1	I I I	1 1 1	11	1	t 1	1	1	1	0.54	I I I
Y	20.2	4 2 20 4	1 8	3	зf	1	с <u>н</u>	4	1.	д.	fg/g	aſ	аf	4 0	ā	ø	k	ĴĘ		σ	1	20	60	af:	4-4	r	ł	af	g	1	1	с <u>т</u>	1
Sp	000		75	f t	I R	1 1	8		1 -	64	60	ľ	1		8	1	G1	ł	l	2	ŧ	G2	63	ł	FO	F3:	1	1	ł	î B	1	60	1
Type and Class	Sbn II:			Sbnt	Scn* III:	E7	So I		: 8(8) 6	EI	Sc(n) I	Sc I	SDP			S(B) TV-V:	E2	Sh III	CHT TT		S(B)D II	Sb ⁻ II	Snn	SD:	Scn III	Sc(n*) II	Sb ⁺ II-III:	Sc II:	St + Pt	SD	Sb III-III	Snnt	EO
6(1950)	+13°231	110 10		+13 53	+27 15	+03 15	+53 28	000	-00 DQ	+03 31	+59 21	+20 27	+16 51	410 014	CO 07-	+03 35	+39 02	+11 37	-00 30	70 00	-26 28	+:13 52	+17 09	+57 09	+17 18	+17 30	+29 47	+25 56	+58 49	+17 11	+09 33	+53 21	+01 05
α(1950)	11h16m3	11.0	D • 1 +	17.7	17.9	7.71	18.3		T 9 0 T	18.5	19.6	19.2	20.3	1 1 0	T • T 7	21.7	22.1	21.9	200 8	0.44	22.8	23.5	23.9	24.8	24.5	25.1	25,3	25.5	26.0	25.5	27.6	29.9	29.8
NGC	3623	0700	1700	3628	3629	3630	3631		1.000	3640	3642	3646	3655		2002	3664	3665	3666	0240	2100	3673	3675	3681	3683	3684	3686	3687	3689	3690	3691	3705	3718	3720

N	8	8	I	8	1	1		ŧ	1	I	Ŧ	1	1	ł	I	ŧ	8	t	ł	8	1	8	8	*	T	8	ŧ	ł	t	I
m-M ₀ (V)	30.0	E B I	I I I	I F B	B T J	10 7 10	1 1 1	1	1 1 1	1	29.7	T P T	30.6	8	32.4	1 5 1	29.9	1 7 1	I I I	30.0	30.3	31.1	1 1	I I I	E I E	29.8	29.9	30.6	29.4	¥ T T
ш - М ₀ (М)	30,3	1 1 8	1 1 1	31.7:	1	31.2		1 1 1	31.7	1 T F	31.0	t P I	t t	t T T	t T	1 1 1	30.2:	31.3:	R J L	30.8:	30.8	30.2	I I I	1	30.6	30.5	t P 1	T T T	R E I	1
npg	10.84	11.88	12.9	12.6	12.00	12.05	12.5	13.0	12.6	12.9	11.30	12.6	13.0	13.0	13.0	12.0	11.6	13.0	12.9	11.1	11.7	12.4	13.0	12.8	13.0	10.79	11.3	11.7	11.4	13.0
Diameter	5°7 x 3°4	1.8 x 1.3	0.6 x 0.6	3.8 x 0.5	1.3 x 1.1	3.3 x 1.6	2.5 x 0.6	0.5 x 0.5	2.4 x 1.9	1.2×0.7	3.6 x 2,5	1.7 X 0.8	0.8 x 0.6	1.6 x 1.0	0.8×0.5	4.4 × 0.8	2.8 x 2.2	1.3 x 0.9	1.3 x 1.0	3.7 × 1.9	2.6 × 1.0	1.7×0.8	0.9×0.5	4.4 x 0.7	3,3 x 0,3	4.5 x 3.8	1.8 x 1.2	5.2 x 2.2	2.3 x 1.1	1.0×0.4
c _o	0.30	0.40	1 1 1	t I t	0.19	0.44		1 1 1	1	1 1	0.42	1 1 1	1 1 1	t I t	I I I	t t	1 1 1	1	1 1 3	I T T	8 1 1	1	1 1 1	t t	1	0.31	1 1 1	I t I	I I I	t t
Χ	af	1	ŧ	⊊ −1	a?	af	с	1	af	a	6-I	ø	t	1	t	аf	4-1	4-1	I	t	Х	ы		af	t	f g	k:	gk:	G -1	1
Sp	A 8	ł	1	l L	t T	I t	I I	1 L	ť	1 B	60	I	65	T R	61	I I	2	I I	r E	F2:	GS	61	l t	T E	ł	7	G7	63	GO	ľ
Type and Class	Sc(*) I-II	Pec	EO	Sb II:	Pec	Sc II	Sbn	EOD	ScII	Scp or SD	Sc I	SD	E2(p?)	Sbn	E4	Sbn	Sc* II-III:	Sb II-III:	S(B)a:	Scn I:	Sh ⁻ II	Sb ⁺ III	Sb ⁺ III?	S(n*)	Sb III	Sc I	E3	SBa	Sbn	Pec
6(1950)	161°74	+53 24	-09 34	+70 48	+54 48	+54 34	+48 11	+12 23	+56 33	+46 44	+11 45	+36 49	-05 53	-08 56	+14 03	+47 46	-16 35	+56 15	-10 41	+49 00	+56 22	+27 17	+26 46	+52 06	-26 37	+44 24	+37 16	+60 57	+48 08	-03 43
α(1950)	11 ^{h30} m7	31.0	31.7	33 . 1	33 .1	34.1	35.1	35.6	36.7	36.9	38.4	38.7	39.4	42.7	43 ° 2	43.5	44.6	45.0	45.5	46.1	46.7	46.6	47.5	48.3	49°9	50.2	50°3	50.6	51.1	51.1
NGC	3726	3729	3732	3735	3738	3756	3769	3773	3780	3782	3810	3813	3818	3865	3872	3877	3887	3888	3892	3893	3898	3900	3912	3917	3936	3938	3941	3945	3949	3952

N		11111	1 1 4 5 9		1.1.1.4 1	111*1
m-M ₀ (V)	30.1	E F S E L S Z Z S S S Z Z S S	30°3 32°6 11°4	29 9 30 . 7	30°81 30°81 30°81	2.9
m-M ₀ (M)	30.8 30.8 29.5	32.1 31.5	1 1 1 1 0 9 1 1 1 9 1 1 1 1 9	31.0:	9 - 1 - 1 - 1 3 - 1 - 1 - 1 3 - 1 - 1 - 1 3 - 1 - 1 - 1	30.5: 31.6: 31.3:
Bdw	10.71 12.8 12.6 12.9 11.9	12.7 12.4 12.7 11.8 12.9	10.62 12.9 11.6 12.9 12.9	12.9 11.7 11.6 11.6 13.0	12.8 11.48 12.8 10.9 11.48	12.8 12.8 12.5 10.81 12.1
Diameter	5,6 x 2,3 2,1 x 0,4 3,2 x 0,5 1,1 x 0,9 1,1 x 0,9	2.1 × 1.9 3.3 × 0.8 3.8 × 1.3 1.7 × 1.3 0.9 × 0.6	6.2 × 3.5 2.1 × 0.6 1.6 × 1.2 0.7 × 0.5 4.4 × 0.5	0.9 × 0.7 3.6 × 0.7 2.4 × 2.0 3.1 × 2.2 1.1 × 1.0	1.0 × 0.5 2.4 × 0.9 1.5 × 1.1 2.4 × 1.1	2.5 × 1.3 4.5 × 3.6 3.4 × 1.1
co	0.50	8 5 8 8 3 8 7 8 7 3 8 8 7 7	0.63	0 2 2 3 6 2 2 2 3 9 3 3 3 3 1	0.71	0,55
Χ	94 T F F F	af 8 8 1 8 8	af k k k s k	1 X Y I	1 X I Y I 2 X I Y I Y I Y I 2 X I Y I Y I Y I 2 X I Y I Y I Y I Y I 2 X I Y I Y I Y I Y I Y I Y I Y I Y I Y I	~ ~ ~ 1
Sp	6211163	7 3 8 E 3 E 8 E E 8	64 611		10151 1101	A5:
Type and Class	Sb ⁺ II or S(B)b ⁺ I Sb III S ⁻ IV: E8 E2	Sc I-II Sb II Sbt Sbn SD: SD:	S(B)b ⁺ I Sct E2(p?) Sa Sb	E2 E8 Sct Ir III:	E5 E6 S(B) IV? Sctt Sc(*) II	S(t) Sb ⁴ III: S(B) ^{b-} II: Sc(*) II Sb II:
6(1950)	+52°37° -22 54 -19 17 -13 42	+58,46 +07 02 +19 37 +48 37	+53 39 +55 35 +555 44 +48 28 +44 13	-18 05 +51 14 -18 59 +20 49	-17 34 +52 10 +13 41 -18 35 +62 25	+02 15 +48 55 +16 06 +14 48 +32 10
α(1950)	11 ^h 51 ^m 2 51.5 51.6 51.6 52.2	073002 44 50030 5003 500 500 500 500 500 500 500	0 - 1 - 3 - 5 - 0 • • • • • 0 • • • • • 0 • • • • • 0 • • • •	08000000000000000000000000000000000000		12 ^h 00.2 00.2 00.4 01.5
NGC	3953 3955 3956 3956 3957 3962	3963 3976 3981 3981 3985	3992 3995 3998 4008 4013	4024 4026 4027 4030 4032	4033 4036 4037 4038 4038	4045 4047 4050 4051 4052

- 177 -

N	11111		1.1.1.1.1	11111	1 * 1 1 1	
m-M ₀ (V)	29.9 29.6	30.0 30.28 30.28	30.28 30.28 30.9 32.0	28.2 30.2 29.6	28.20 30.0 30.28	32.0 32.0 30.28 30.28
m-M ₀ (M)	30.6 30.5; 30.5;	30.0: 31.5: 	29°5	30.2 29.8 31.4	31.4: 31.4:	29.6: 31.8 30.9:
mpg	12.8 13.2 12.79 11.03 13.0	10.88 11.9 12.3 11.63 12.29	11.79 12.5 11.0 12.9 12.9	12.1 12.3 12.4 12.2	12.6 11.3 12.7 12.0 12.9	12.6 12.6 12.32 11.75 11.7
Diameter	2.0:x 0.9 0.7 x 0.6 2.2 x 0.5 4.5 x 1.4 3.5 x 1.0	5.7 × 1.0 5.0 × 1.2 2.2 × 1.0 3.3 × 0.6 3.1 × 1.2	3.2 x 2.0 3.3 x 0.9 2.2 x 1.1 1.6 x 0.4 2.2 x 0.3	3.4 x 2.8 1.3 x 0.8 1.4 x 0.9 5.2 x 0.7 5.4 x 3.1	1.2 x 0.9 1.7 x 1.3 6.5 x 0.8 0.9 x 0.8	4.4 × 0.4 2.0 × 1.0 1.0 × 1.0 4.4 × 1.1 2.7 × 0.6
co	0.38	0.22 0.66 0.23	0.30	1 3 1 1 1 7 1 1 8 1 8 1 8 3 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.27
Υ	af/f a:	a f a k R f	а Ч В Х Х I	ر ا ترکیر ا	1 2 4 4 4 2 4 4 5 5 2 4 4 5 5 2 4 4 5 2 5 2 4 5 2	1414X
Sp		63 63	11911	F8 65 1 1 5 65 1 1 5 65	G2 A8:	1 1 1 L 8
Type and Class	Sb ⁻ III E1 Sb III: Sc* I-II: S ⁻ IV	Sc* II: Sbn I-II: Sc*t E8 SBc III:	SBb III Sa: E5p Sa: SD?	Sc(n) III E4 E4 Sb III to S- IV Sc* II	E2 Pec Sc(n?) II-III: Sb II: Sa	S ^T IV: Sc II E0 SBc II: E8
6(1950)	+18°43 [¶] +02 11 +50 38 +50 49 -14 16	+47 45 +49 51 +52 59 +43 21 +02 58	+03 09 +10 40 +65 27 +69 03 108 45	+30 12 +43 58 +42 49 +46 44 +40 10	+30 41 +39 41 +16 19 +50 46 +20 27	+44 01 +24 24 +13 29 +11 09 +01 35
α(1950)	12 ^h 01 ^m 6 01。9 02.8 03.0 03.3	03.03.03.03.03.03.03.03.03.003.0000.03.000000	05.6 05.6 06.1 06.3	06.7 07.0 07.1 07.5	08.0 08.0 08.1 08.6 08.6	09.1 09.4 10.2 10.3
NGC	$\begin{array}{c} 4064 \\ 4073 \\ 4085 \\ 4088 \\ 4088 \\ 4094 \end{array}$	4096 4100 4112 4111	$\begin{array}{c} 4123\\ 4124\\ 4125\\ 4128\\ 4129\end{array}$	$\begin{array}{c} 4136\\ 4138\\ 4143\\ 4143\\ 4144\\ 4145\end{array}$	4150 4151 4152 4157 4158	4160 4162 4168 4178 4178

N		1 1 1 1 1	1111	11111	1 1 * 1 1	1 1 1 1 1
$m-M_O(V)$	30,28 30,28 30,28 30,28	28.20 30.28 30.28 30.28 30.1	30,28 30,28 30,28 30,28 30,28 26,53	30,28 28,20 28,20 29,58 29,58	30.28 32.2 28.20 30.28 30.28	30, 28 30, 28 30, 28 30, 28 29, 58
ш-М _О (М)	31.7: 30.5: 29.8	27.9 30.5: 1.1.1	30.0 27.0	28.4 27.5: 30.2	30.1 	30.4: 29.7
npg	12.51 13.2 10.89 11.5 11.71	10.12 12.8 10.88 11.9: 12.2	12.89 13.03 13.0 12.58 10.05	12.6 11.39 10.48 12.4 11.6	10.37 13.0 8.90 12.7 11.7	12.6 12.0 13.13 12.35 11.33
Diameter	1.7 × 1.5 1.1 × 0.8 8.4 × 1.9 1.8 × 1.9 2.3 × 1.3	6.6:x 5.8: 1.1 x 0.4 7.4 x 0.9 4.5 x 0.9 2.6 x 0.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3 x 0.8 3.6 x 3.0 14.5 x 1.0 1.5 x 1.0 2.3 x 0.8	$\begin{array}{c} 4.6 \times 3.9 \\ 4.0 \times 0.5 \\ 19.5 \times 7.0 \\ 2.0 \times 0.9 \\ 0.9 \times 0.7 \end{array}$	0.9 × 0.8 1.2 × 0.4 1.5 × 1.0 6.7 × 1.3
c ₀	0.60	0.21 0.88 1.1	$\begin{array}{c} 0.97 \\ 0.95 \\ 0.89 \\ 0.15 \\ 0.15 \end{array}$	0.31	0.41	$\begin{array}{c} - & - \\ - & - \\ 0 & 83 \\ 0 & 44 \\ 0 & 79 \end{array}$
Υ	л ях і Гі ях і		fg/g a	a presentes a pres	a X X X X	111-4-24
$_{\rm Sp}$	110501	61 61 B		69111	62 60:	63 65 63 63
Type and Class	Sc II: Ir Sbt I-II: Ep Sc III	Ir ⁴ III-IV Sb ⁴ III: Sb II Sb Sa:	Sa or Sb ⁻ III E or Sa Sb ⁺ IV Sa or Snn Sb ⁺ IV or Ir ⁺ IV	SD S ⁻ 1V S ⁻ 1V S(B)b ⁺ 111 E7 or Sa	Sc I Sbj Sbj III: E2 E2	El E2 or Sa Sa Sc*t III: Sb ⁴ IL-III
6(1950)	+13°42 ¹ +36 54 +15 11 +33 29 +14 11	+36.36 +96.41 +13 25 +47 22 +48 10	+07 44 +07 54 +03 58 +07 28 +69 45	4 15 36 4 45 54 4 38 05 4 29 53 4 28 27	+14 42 +56 01 +47 35 +06 23 +06 06	+15 09 +13 03 +05 44 +25 37 +29 53
α(1950)	12 ^h 11 ^m 2 11.1 11.3 12.5 13.1	13.1 13.4 13.4 13.3	14.0 14.6 14.6 14.6 14.3	14.7 15.0 15.2	16.3 16.3 16.5 16.8 16.8	17.0 17.2 17.3 17.4 17.4
NGC	$\begin{array}{c} 4189\\ 4190\\ 4192\\ 4203\\ 4212\end{array}$	4214 4215 4216 4217 4220	4224 4233 4234 4235 4235	4237 4242 4244 4245 4251	4254 4256 4258 4260 4261	4262 4267 4270 4273 4273

- 179 -

	1 1 1 1 1	1 1 1 1 1	11*11		1 1 3 4 3
29.58 30.28 29.58 31.5	30.28 30.28 30.28 30.28 30.28	30.28 30.28 29.58 30.28 30.28	30.28 30.28 30.28 	30.28 30.28 30.28 30.28 30.28	30.28 30.28 30.28 30.28 30.28
31	30.2: 29.8:	29.8 31.4 29.8	31.4:	· · · · · ·	1 1 1 1 1 1 1 2 1 1 1 2 1 8 1 1 1 1
11.20 12.32 13.27 12.7 12.7	11.7 12.46 11.95 12.71 12.71	10.01 13.0 11.5 10.07 12.5	12.6 13.0 13.48 12.4 13.1	11.9 11.1 12.4 11.83 10.21	12.9 12.8 13.0 12.8 10.05
1,4 × 1,3 1,1 × 0.6 0,7 × 0,7 1,6 × 1,2 0,8 × 0,7	4.6 × 1.6 2.4 × 0.9 2.2 × 1.1 1.1 × 0.9 4.7 × 0.5	5,6 x 5,3 2,8 x 0,4 3,1 x 2,9 5,3 x 4,5 1,3 x 0,6	0.7 × 0.7 2.2 × 1.4 2.1 × 0.3 1.9 × 0.7 2.8 × 0.4	1.8 × 0.5 1.3 × 1.0 1.4 × 1.3 2.2 × 1.2 1.6 × 1.4	0.7 × 0.6 3.0 × 2.7 0.7 × 0.6 2.6 × 1.3 2.1 × 1.7
0.71 0.89 0.75 	 0.32 0.51 0.18 0.74	0.30	0 	0.79	 0.72
メ - 、 、 、 、 、	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	روناني بخاروم و اسب	ואאאאו	a a XX i i î	а 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1
65 63 63 63	E B B B B E B B B B	G1 62 65 65	63	65 65	65
E1 E5 E0 SIB(n?) II E1	Pec S(B)c* III-IV: S**t S* IV: or Ir ⁺ IV: Sc	Sc I Sb ⁻ II-III Sba Sb ⁺ III?	E0 SNa Sa: E6 Sb II-III:	E7 E2 S1a E1	El Snn El Snn Ep or Et
+29°34' +05 40 +29 35 +58 22 +75 40	+18 40 +11 47 +14 53 +11 47 +14 53	+04 45 +09 20 +30 10 +16 06 +05 31	+06 22 +17 00 +07 22 +47 16 -03 10	+16 58 +07 36 +39 39 +11 59 +13 10	+15 02 +05 12 +15 53 +10 17 +18 28
12 ^h 17 ^m 7 17.8 17.9 18.5 18.1	18.7 18.7 19.0 19.2 19.2	19.4 19.5 20.0 20.4 20.6	21.0 21.0 21.1 21.3 21.3	21.4 22.0 22.4 22.4 22.4	22.8 22.8 22.9 22.8 22.8
4278 4281 4283 4290 4291	4293 4294 4298 4299 4302	4303 4307 4314 4321 4324	4339 4340 4342 4346 4348	4350 4365 4369 4371 4374	4377 4378 4379 4380 4380
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4278 $12^{h}17_{m}^{m}$ $+29^{\circ}34^{\circ}$ E165k 0.71 1^{1}_{4} x 1^{1}_{3} 3 11.20 $$ 29.58 $$ 4281 17.6 $+05$ 40 E5 63 $ 0.89$ 11.1 x 0.6 12.32 $$ 29.58 $$ 4281 17.9 $+29$ 35 E0 63 k 0.77 x 0.7 13.27 $$ 29.58 $$ 4291 18.7 $+75$ 40 E1 0.77 x 0.77 10.24 21.27 31.28 $$ 4293 18.7 $+118$ 40 Pec $$ 0.8 x 0.77 12.4 $$ 29.58 $$ 4294 18.7 $+118$ 47 88.1 $$ 0.8 x 0.77 12.4 $$ 31.5 $$ 4293 18.7 $+118$ 47 88.1 $$ 0.18 $$ 30.28 $$ 4294 190.2 $+114$ 53 58.1 $$ 0.74 4.77 0.5 12.44 $$ 4299 199.2 $+114$ 53 56 11.77 $$ 30.28 $$ 4299 199.2 $+145$ 53 11.74 $$ 30.28 $$ 4299 199.2 $+114$ 53 56 11.77 29.4 30.28 $$ 4303 199.4 $+04$ 45 56 12.44 $$ 30.28 $$ <tr <="" td=""><td>4276$12^{h_1} T_m^{m_1}$+29°334'EI65k0.711.4x1.311.2029.58428117.8+05405E5E063-0.89111xx0.713.2729.58429118.1+7540E1E65x0.710.713.2729.5829.58429118.1+7540E163k0.611.7-1-29.5829.58429318.7+11475(1)c*11111512.420.912.4630.2829.58429419.7+11475(1)c*111170.912.4630.2830.28429919.2+114755*10.7411.7-1-30.2830.28429919.2+114755*10.7411.7-1-30.2830.28429919.2+11475*1711.95-1-30.2830.2830.28429919.4+04455*10.744.720.612.4420.912.4430.28430720.65*4.011.75*2.420.912.4420.612.4420.6</td><td></td></tr>	4276 $12^{h_1} T_m^{m_1}$ +29°334'EI65k0.711.4x1.311.2029.58428117.8+05405E5E063-0.89111xx0.713.2729.58429118.1+7540E1E65x0.710.713.2729.5829.58429118.1+7540E163k0.611.7-1-29.5829.58429318.7+11475(1)c*11111512.420.912.4630.2829.58429419.7+11475(1)c*111170.912.4630.2830.28429919.2+114755*10.7411.7-1-30.2830.28429919.2+114755*10.7411.7-1-30.2830.28429919.2+11475*1711.95-1-30.2830.2830.28429919.4+04455*10.744.720.612.4420.912.4430.28430720.65*4.011.75*2.420.912.4420.612.4420.6	
4276 $12^{h_1} T_m^{m_1}$ +29°334'EI65k0.711.4x1.311.2029.58428117.8+05405E5E063-0.89111xx0.713.2729.58429118.1+7540E1E65x0.710.713.2729.5829.58429118.1+7540E163k0.611.7-1-29.5829.58429318.7+11475(1)c*11111512.420.912.4630.2829.58429419.7+11475(1)c*111170.912.4630.2830.28429919.2+114755*10.7411.7-1-30.2830.28429919.2+114755*10.7411.7-1-30.2830.28429919.2+11475*1711.95-1-30.2830.2830.28429919.4+04455*10.744.720.612.4420.912.4430.28430720.65*4.011.75*2.420.912.4420.612.4420.6					

- 180 -

N	ł	1	I	ł	1	1	I	1	I	1	ł	1	ł	1	1	1	ł	1	ł	1	ł	1	1	ł	1	I	1	1	1	ł
m-M ₀ (V)	30.28	30.28	31.5	30.28	1 1 1	30.28	28.20	30.28	30.28	29.58	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	29.58	28.20	30.28	30.28	30.28	1	30.28	30.28	1
ш-М _О (М)	1	31.2	1 1 1	1	5 1 1	31.0	26.5:		t 1	30.1:	1	I I I	30.5:	30.1:	30.6:	31.1:	1	1	1	1	1	30.1	28.0	1	1 1	31,1:	30.1:	8	1	1 1 1
Mpg	12.9	12.9	12.8	11.73	12.8	11.81	10.66	10.10	12.8	10.9	12.11	12.2	12.5	12,32	12.84	13.1	11.09	12.9	11.86	10.92	11.61	11.7	9.90	10.81	13.2	12.8	13.0	11.7	11.5	12.5
Diameter	0.8×0.5	1.1×0.9	1.0×0.5	5.0 x 0.9	1.7×0.9	2.3 x 2.3	10.0:x 8.0	2.1 x 1.4	0.9 x 0.8	3.2×1.5	1.8 x 0.5	2.2 × 0.6	1.9×0.7	2.0 x 1.0	2.0 × 0.5	1.5 x 0.6	3.3 x 1.0	1.5×0.6	1.3 x 0.8	1 - - - -	1.8 × 0.9	2.8 x 1.0	4.1 x 3.4	3.0×2.5	1.3×0.3	1.3 x 1.1	2.4 × 0.5	2.4 x 2.0	1.2 x 1.0	2.0×0.5
c _o	1	1	1	0.61	1	0.76	0.31	0.79		1	0.72	t t	1	0.51	0.82	1	0.88	1 6 1	0.77	U.60	0.81	1	0.18	0.64	1 1	1	1 1 1	1	1	1 1 1
Y	ł	fε	0 1	1	af	D.	0 0	X	a	fg	ı	ł	e	I	I	!	fg	1	Х	٢3	k	ы С	cu cu	2	1	1	ŧ	2	1	f g ?
$_{\rm Sp}$	ł	1	1	1	I I	63	1	G7	I	62	i I	1	1	1	G_2	1	G3	1	G5	63	65	G2	F0:	63	1 8	1	ł	1	63	1
Type and Class	E:D	SBb ⁻ II-III	Sa:	Sbn	SB ^T IV?	SBb ⁻ 11	S ⁺ IV-V	E3	S(B)p	Scn* II:	E7	Ep	Sc* III:	Sbn III:	Sb ⁻ 111:	Sc* III:	2	SI)	E4	Snntt	E5p	Sb ⁻ II-III	Ir III	Sbn	S	Sb ⁺ 11-111:	S ⁺ IV:	S(B)a	E2	F.8
6(1950)	+16°45'	+00 50	+75 48	+12 56	+45 58	+18,29	+33 49	+13 13	+04 14	+31 30	+09 52	+15 19	+02 46	+09 42	+13 01	-07 54	+11 23	-08 01	+13 21	+13 17	+10 05	+28 54	+44 22	+17 21	+12 02	-01 40	+23 06	+03 51	+14 15	+45 08
a(1950)	12 ^h 23 ⁿ 0	23.1	22.4	23.3	23.1	23.4	23.4	23.7	24.0	24.0	24.3	24.4	24.4	24.6	24.7	24.9	24.9	25.0	25.2	25.3	25.6	25.8	25.8	25.9	26.2	26.3	26.2	26.4	26.5	26.4
NGC	4383	4385	4386	4388	4389	4394	4395	4406	4412	4414	7417	4419	4420	4424	4425	4428	4429	4433	4435	4438	4442	4448	4449	4450	4452	4454	4455	4457	4459	4460

- 1

N	I	1	1	1	L	1		8	1	1	1	1	1	L	I.	1	1	I	1	1	L	I	I	1	1	I	8	1	1	t
m-M ₀ (V)	30,28	1	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	1 1 1	30.28	30.28	28.20	30.6	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28
ш-М _О (М)	6 8 3	30.6:	1	1	1	8 1 1	3	1 1 1	1	8 1 8	30.0:	1	30.6	28.1:	6 2 6	30.0:	30.2	1	30.9:	1	30.3	1	6 1 9	30.4	30.2:	30.1:	30.1:	30.0	1	1
npg	12.0	13.0	12.5	9,33	11.3	12.7	13.4	11.4	12.3	13.3	12.24	9.56	12.0	10.09	10.9	11.93	10.07	12.8	12.3	11.10	12.22	12.9	10.6	11.29	12.17	10.38	10.94	12.9	11.4	10.86
Diameter	1.6×0.7	2.7 × 0.8	2.9 x 0.8	2.8 x 1.8	1.6 x 0.9	1.3×0.5	0.7×0.4	2.4 x 2.2	0.8 x 0.7	0.8 x 0.5	1.5 x 0.8	1.9 x 1.8	3.3 x 2.5	5.6 x 2.1	1.3 x 1.2	3.3 x 2.7	5.5 x 2.4	0.8 x 0.6	5.8 x 1.8	8.9 x 0.9	2.2 x 1.7	2.5 x 0.5	3.3:X 1.0	5.3 x 1.0	2.2 x 0.5	6.0 X 4.0	6.9 x 2.6	1.0×0.8	1.8 x 0.8	3.7 x 3.2
co		i I I	1	0.78	1	1 1 1	1	1	1	1	0.16	0.76	1	0.22	1	0.40	0.53	t 1	1 1 1	0.54	0,32	1	1	0.71	0.17	0.45	0.39	1	1 1 1	0.48
Y	gК	, "	fg:	X	Х	ı	1	ι	I	I	I	ж	1	аf	Ч	ata	fg	gk)	aſ	af	ı	5.	ומ	a	аſ	44	af	gk	20
$s_{\rm p}$	G 5	6	1	G7	67	G3	1	G 3	GS	1	1	GS	I I	A 5	G7	ł	GS	t t	l I	1	1	1	G4	G2	1 1	F_{0} :	1	1	G3	G.5
Type and Class	Sa	Sb III:	Sp	$E\hat{4}$	E4	E6	E4 or Sa	S(B)a	El	S(B)a?	Ir III-IV:	El	Sc II-III	Scn*t III:	El	S(B)c III: + ?	Sb ⁺ I	E:2	Scn II-III:	Sc	Sc III	Scp	E7	$Sh^{+}(n)$ II	Ir: III:	S(B)c I:	Sc(t) II:	Ir`IÝ	E6	SBbn
6(1950)	+13°28'	-22 54	+09 02	+08 16	+13 42	+14 21	+12 37	+13 55	+12 36	+09 17	+4158	+12 40	-07 48	+.1155	+26 03	+04 12	+14 42	+11 27	-07 17	+00 21	+08 56	+09 27	+0758	+02 56	+06 44	+08 28	+02 28	+1550	-03 31	+14 46
α(1950)	12h26m6	26.7	27.0	27.3	27.3	27.4	27.5	27.6	27.8	28.2	28.2	28.3	28.3	28.3	28.9	29.1	29.5	29.6	29.7	29.0	31.0	31.2	31.6	31.6	31.8	31.8	31.9	32.3	32.9	32.9
NGC	4461	4462	4469	4472	4473	4474	4476	4477	4478	4483	4485	4486	4487	4490	4494	4496	4501	4503	4504	4517	4519	4522	4526	4527	4532	4535	4536	4540	4546	4548

N	I.	ł	1	ŧ	1	1	1	*	ł	1	1	1	1	4	I	1	1	1	1	4	1	1	1	ŧ	1	1	1	1	1	I
m-M ₀ (V)	30.28	20.40	29.7	1	30.28	30.4	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	31.5	30.28	30.28	30.28	30.28	30.28	30.28	30.28	26.53	30.28	30.28	28.20	30.28	30.28	30.28
(M) ⁰ M-m	1	1	28,9	30.7:	1	30.5:	1	1	1	1 1 1	1 1 1	1	1	30.5	30.3	1	30.7	31.2	1 1 1	31.2:	1 1	30.9:	31.5:	1 1 1	1	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1
npg	12.6	0.11	10.26	12.9	12.17	10.30	11.98	11.66	10.11	11.8	11.63	12.5:	10.32	12.8	12.54	12.1	12.4	12.1	9.18	13.1	11.41	12.9	12.4	10.9	12.02	12.6:	11.08	11.0	13.2	13.1
Diameter	1.4 × 0.4	C'T X C'T	11.0:x 4.5	1.0×1.0	1.6 x 0.6	14.4 x 1.2	1 1 1 1	1 8 5 4	7.5:X 2.2	2.4 × 0.5	2.6 x 2.2	1.9:x 1.3;	4.4 x 3.5	1.3 x 1.0	2.6 x 0.7	1.0 x 0.8	2.8 x 0.8	3.5 × 2.7	6.0 x 2.5	1.1 × 0.8	2.8:X 2.2:	3.7 × 1.1	1	5.0 × 1.2	1.4 × 1.4	0.9 x 0.8	3.5×3.0	1.4×1.0	1.1 × 0.6	1.1×0.8
c _o	1 t 1	1	0.23	1	0.78	0.68	0.58	0.71	0.43	1	0.31	1 1	0.65	8	0.85	1 1 1	3 8 8	5 1 1	0.81	1 1 1	0.84	1	1	1	0.80	1	0.19		8 1 1	1 1 1
¥	1 -	¥	ບ	ЗĘ	I	εk	, c	Эſ	с <u>н</u>	К	1	1	ek) a D	4	х	1	1	Ч	ŧ	X	1	ŧ	а?	×	X	R	1.7	1	1
Sp	63	5	8	1	8	60	ł	1	00	67	1	0.9	63	ł	B F	GS	1	1	63	1	1	1	1	8	1	1	1	67	1	1
Type and Class	E7	CI I	Sc II-III	Sc* III-IV:	E6	Sb I:	Sc**t	Sc**t	Sh'n	E8	Snn*	Sa	Sbn	Sb ⁺ n III	Sb ⁺ III	Sa or Ep	Sb II-III	SBb ⁻ II	Sh ⁻	Sc* III:	SIJa	SBc* III:	Scn* II:	SD	SBa	En	SC++	E3	E: 5	Pec
6(1950)	+12°30'	±12 00	+28 14	+19 36	+11 43	+26 16	+11 32	+11 31	+13 26	+0731	+14 28	+09 50	+12 05	+0538	+04 35	+74 28	-00 16	-05 04	-11 21	+15 34	+10 27	-05 32	-04 52	+6153	+10 26	+07 35	+41 25	+1155	+07 56	+04 14
α(1950)	12h32m9	33.1	33.5	33.6	34.0	33.9	34.0	34.1	34.3	34.4	34.3	35.0	35.1	35.3	35.9	35.6	36.7	37.0	37.3	37.3	37.4	37.5	38.0	37.8	38.7	39.0	39.9	39.5	39.6	40.0
NGC	4550	4552	4559	4561	4564	4565	4567	4568	4569	4570	4571	4578	4579	4580	4586	4589	4592	4593	4594	4595	4596	4597	4602	4605	4608	4612	4618	4621	4623	4630

- 183 -

N	1-1	1	9	1	I	I	*	1	I.	I	1	1	1	ı	ł	1	ł	ì	ł	1	*	1		1	I	1	1	1	1
m-M ₀ (V)	28.20 30.28	1	30.28	30.28	30.28	30.28	30,28	30,28	30.28	30.28	30.28	29.4	30.28	30.28	30.28	30.28	30.28	1 1 1	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28
(M) ⁰ M-m	30.7	5 5 3	1	3 3 3	30.5:	1	1	1	30.4:	1	30.2	1	30.4	1 1 1	1	30.8:	1 1 1	1	1 1 1	1 1 1	30.0	30.6:	1	1	1	30.7:	1	1	8
mpg	9.71 12.1	13.0	10.8	12.2	12.11	11.6	12.05	9.88	11.21	12.69	11.03	10.74	12.4	12.1	11.8	11.40	13.44	12.7	13.1	12.2	13.0	11.48	11.8	12.6	10.4	11.56	10.2	12.2	12.8
Diameter	12.6 × 1.4 2.6 × 0.8	1.5×0.9	1.4 x 1.3	1.1 × 0.5	2.4 × 1.5	1.5 x 0.9	2.0×1.5	2.0 X 1.8	3.0 x 2.5	2.2 x 1.9	4.2 x 2.2	19.5 x 2.0	1.3×0.5	1.5 x 0.8	3.1 x 2.1	3.8 x 0.8	0.8 x 0.6	0.9 x 0.7	1.4 x 0.8	1.8 x 0.5	2.2 x 2.2	2.4 x 1.9	2.2 x 1.7	1.8 x 0.9	2.2 x 1.4	3.0×1.1	3.0×2.0	2.2 X 0.3	2.2:X 1.6
c _o	0.36	1 1 1	1	1	0.52	1	0.36	0.85	0.37	0.31	0.47	0.18	1	1	ł	0.50	0.24	1	1	;	1 1	0.47	1 1 1	1	1 1 1	0.77	1 1 1	1	1
χ	a/af: af	ı	k	20	ı	×	ŝ	ĸ	20	1	а	a	I	I	k	20	1	k ?	ı	ł	t	4	1	gk:	20	Ж	Х	1	fg
Sp	Em E	1	G2	63	1	ł	1	G7	8 5	1	1	1 1	L I	G 2	G3	1	1	ł	ł	1	1	1	1	8	G4	63	ł	1 I	1
Type and Class	Sc* III? Sc* II-III	NP	El	E5	S(B)b II-III:	Slla	Sc**	El	Scp II:	S ⁻ IV-V or N	Sc(*) II	Sctt	Sc(*) III	E5	S(B)a	Sc I-II:	Pec	ED	S- IV?	Sa	S IV	Sb [†] II:	Snn	E5	E4	Sb ⁻ II:	Sa or Snn*	SD?	Sn
6(1950)	+32°49° +00 11	+20 12	+02 57	+11 43	+13 31	+02 15	+11 51	+11 49	+16 40	-00 18	+13 23	+32 26	-09 49	+11 26	+03 19	-00 12	-00 17	+27 23	-09 48	-02 28	+04 36	+14 01	-03 04	+11 15	-05 32	+08 45	-08 24	-11 08	+03 39
α(1950)	12 ^h 39 ^m 8 40.0	40.2	40.3	40.2	40.3	40.8	41.0	41.1	41.2	41.4	41.4	41.6	42.1	42.0	42.6	42.6	43.0	42.8	44.7	44.7	45.3	45.2	45.6	45.7	46.0	45.8	46.5	46.5	46.6
NGC	4631 4632	4635	4636	4638	4639	4643	4647	4649	4651	4653	4654	4656	4658	4660	4665	4666	4668	4670	4682	4684	4688	4689	4691	4694	4697	4698	4699	4700	4701

- 184 -

N	1	ŧ	ı	I	ı.	*	I	I	I	T	ł	1	ł	ł	i.	ı	ł	ł	I	I.	1	ı	ł	I	I.	1		ł	I	I	I
m-M ₀ (V)	30.28	1	30.28	30.2	30.28	28.20	30.28	1	31.3	30.28	30.28	30.28	30.28	30,28	1	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	30.28	32.0	30.28		28.0	30.28	32.1	30.28
ш-М _О (М)	1	30.5	30.3	30.2	30.8:	28.1:		1	1	1	£ 1 4	1	1	1 1 1	1	8 1 8	30.6	1 1 1	29.6	30.3	1	1	1	30.5:	30.4			1	30.5	31.9:	1
m _{pg}	12.0	13.46	12.3	10.07	12.2	8.91	12.5	12.90	12.2	10.7	11.6	13.3	12.5	11.0	13.2	12.9	12.9	12.6	11.6	11.7	12.9:	12.7:	12.7	12.5	12.3	121		12.3	12.5	12.8	12.1
Diameter	3.3 x 0.5	1.8 x 0.9	2.2 x 1.3	10.0:x 5.5	5.5 x 3.0) 6 1	0.9×0.6		1.7×1.5	3.3:x 1.1	2.0 x 1.2	0.5 x 0.4	0.6×0.5	1	0.9 x 0.6	0.7×0.5	2.8 x 015	2.3×1.0	1.7×1.6	2.3×1.1	0.5×0.5	0.5×0.5	0.6 x 0.5	1.2 x 0.9	2.3 x 1.1	1 5 4 1 0		1.2 x 1.0	2.2 x 0.8	2.2 x 2.1	3.1×0.9
сo	ł	0.37	1	0.55	1	0.57	- 1	0.44		1 1 1	1	1	1	1	1	t t	1	1	1	1	1 1 1	1	8]]]	5 3 8		1	1	1	1	1
Y	20	44	af	ы) 1	÷.0	с і	ı	fρ	01	1	ł	ı	gk	, "	1	4	I	a	9	I	1	I	1	1		I	1	af	20	ı
Sp	I I	ł	1	G4	1	60	80		1	I I	G4	1	1	G2	8 1		ł	1	1	1 1	ł	I I	1	1	1		: :	F-8	1	63	5
Type and Class	E8	S IV	Sc* III	S(B)b I	Shep II-III:	Sh-n II.	E3 P	Dec(+)	San or Shn	Snn or Ep	Et?	F/2	E2	Snnt:	Sa	SD:	Sb III	Sa or Snn	Sc(*) III	Sc* II-III	E0(t})	E0(t?)	E2n	Sc* III:	Sc III	C	21111	SD	Sc* III	Sbp II:	S(B)nn?
ô(1950)	+15°26'	+25 44	+05 35	+25 46	-06 08	+41 23	-10 19	+96 01	+73 04	-00 55	+11 35	-15 08	-10 13	+11 31	-16 43	+04 45	+01 33	+02 27	-06 21	-10 16	-12 11	-12 12	-06 35	- ()9 58	+29 13	06 007	100 20	+46 48	+04 35	+58 37	-08 15
α(1950)	$12^{h}47^{m}_{m}1$	47.2	47.5	48.1	48.4	48.6	0.01	V OV	48.4	49.8	49.7	50.3	50.5	50.4	50.6	50.7	50.8	51.0	51.1	51.8	51.9	52.0	52.0	52.2	52.3		0.20	52.4	53.3	53.3	54.3
NGC	4710	4712	4713	4725	4731	1736	0015	LVLV	1750	4753	4754	4756	4760	4762	4763	4765	4771	4772	4775	4781	4782	4783	4786	4790	4793	1006	6617	4800	4808	4814	4818

185 _

N	1 * 1 1 1	1 1 1 * 1	11*11	1 1 *	1 + 1 + 1 + 1	11111
$m-M_O(V)$	30.28 27.8: 30.28 30.28 29.6	30.28 30.28 34.12 30.28	30.28 30.28 32.1 30.28 	32.4 30.28 30.28 30.28 30.28	30.28 30.28 	31.2 30.2
m-M ₀ (M)	10 30 28 8	29.8: 32.3: 11.1	29.9 31.8	26 20 1 1 2 20 20 20 20 20 20 20 20 20 20 20 20 20	31.3: 30.8:	29.7 31.8 31.2
mpg	12.9 9.27 12.6 11.4 12.9	12.0 13.1 13.2 13.2	12.7 11.9 112.8 132.8	13.0 12.9 12.8 12.2	12.7 11.5 13.2 12.2: 11.9	11.9 12.8 10.52 12.6 12.6
Diameter	0,6 x 0,5 6,5 x 3,2 4,2 x 0,7 2,0 x 0,7 3,9 x 0,9	6.8 × 0.8 1.1 × 1.0 2.2 × 1.3 1.6 × 1.4	1.8 × 1.0 1.7 × 1.5 2.1 × 2.0 1.7 × 1.0 1.0 × 0.8	0.8 × 0.7 0.9 × 0.6 5.0 × 1.9	4.0 × 1.0 1.7 × 0.7 1.0 × 0.7 2.0 × 1.5 1.1 × 0.9	2.0 × 1.1 1.8 × 1.6 4.4 × 1.7 2.2 × 1.2 1.2 × 0.8
co	0.70	 	1 1 1 1 1 1 1 1 1 1 1 3 3 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.57
Υ	t t B B B B B B B B B B B B B B B B B B	1 1 1 1 1	יהלים ו ניקרים ו	11111	gk i fy i	به به ۲۵ ۲۵ به ام
$_{\rm Sp}$	67 65 65	61163		G5 F1 - 1 - 5 *	63	11811
Type and Class	E2p ? Sb III S(B)a or Et Ir IV-V	Sb ⁻ III: Sb ⁺ II: Sa or Snn E4 N	Sp Sc* III or Ir III SBb I S(B)c(n*) E2(p?)	Sa S ⁺ * IV Ep(1?) N Sbp	Sn*: E6 Sc III: Snn	Sbn N? Sb- II Sb II Sb II-III
6(1950)	-13°24° +21 57 +01 51 -14 46 +35 08	+14 27 +37 35 +12 45 +28 15 -13 09	-13 41 +02 46 -14 15 +00 15 +37 35	-04 16 -07 49 -11 14 -10 05 -05 17	-06 14 -07 45 +28 00 -06 31 -15 15	-07 34 +01 55 +37 19 +23 11 +23 11
α(1950)	12 ^h 54 ^m 3 54.3 55.5 56.7 56.7	57.0 57.0 57.7 587.1 58.1	5 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	13h00.3 01.2 01.7 01.6	02.5 03.1 06.1 06.1	07.0 07.0 08.5 09.3 09.3
NGC	4825 4826 4845 4856 4856	4866 4868 4880 4880 4889	4899 4900 4902 4904 4914	4915 4928 4933 4939 4941	4951 4958 4961 4981 4984	4995 4999 5005 5012 5016

N	1 2 2 1 2	1 1 1 1 1		11111	$1 \rightarrow 1 \rightarrow$	1111
m-M ₀ (V)	32-2 30-0	 28.20 31.4 28.1:	32.0 31.1			28.20 30.3 30.2
m-M ₀ (M)		31.0: 28.4 29.2:			32 - 5 1	28.6 32.4 31.4 30.1
Bdw	13.3 12.2 10.61 13.1 12.2	11.9 9.26 11.7 11.6: 13.2	12.4 12.4 12.3 132.1	12.5 12.6: 12.9 12.4 12.1	12.6 12.5 8.88 10.47 12.9	11.62 12.9 11.9 10.36
Diameter	0.5 x 0.4 1.7 x 1.0 9.9 x 4.8 1.6 x 0.5 0.9 x 0.9	3.8 x 2.2 10.0:x 5.0: 1.2 x 0.9 5.6 x 5.6 0.5 x 0.5	0.9 x 0.6 6.6:x 1.0 2.8 x 2.0 1.0 x 0.6 2.0 x 0.6	5.6 × 4.7 3.3 × 2.1 1.5 × 0.7 1.8 × 0.8 1.4 × 1.0	7.6 × 0.7 2.2 × 1.3 10.0:× 5.5 	3.9 x 2.2 1.6 x 1.5 4.4 x 3.7 6.1 x 4.4 0.9 x 0.8
сo	0.37	0.55	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1		0.46	0.19 0.36
Υ	11 201 1	ר מאט ו	11111	- af: 	1 2 J X	
$_{\rm Sp}$	61	184111	62 62 		 F8: G2	 F8 F0:
Type and Class	E2 Sa+ Sb+t I-II: Sb+ III E0	Sbut II: Sb ⁺ II E2 S(B)c III-IV Pec?	E3 E8: Sb II-III or Sbn E4 Sc* II:	Sha or Shb ⁻ I-II Sc* II? Sb ⁺ III Sb ⁺ III Sc(*) II-III	Snn: Sb ⁺ 1-II Sc(t) I Pcc(t) E2	Ir ⁺ IV Sc I-II Sb ⁺ I-II Sc I BJ(p?)
6(1950)	-16°30' -19 15 +36 51 -16 20 -16 08	-16 23 +42 17 -26 36 -20 47 +31 44	-12 24 -21 34 -24 09 -20 21 -12 19	-27 11 +39 00 +27 14 -20 51 +02 22	-17 42 +17 19 +47 27 +47 31 +46 56	+58 40 +13 56 -17 38 +09 08 +35 55
α(1950)	13 ^h 10 ^m 3 10.3 11.2 12.4 12.8	14.3 13.5 15.3 16.2 16.2	16.9 17.5 17.7 17.7	19.0 19.6 20.5 23.7	27.1 26.9 27.8 28.2	28.3 33.0 35.1 39.1 39.9
NGC	5017 5018 5033 5037 5044	5054 5055 5061 5068 5068	5077 5084 5085 5087 5088	5101 5112 5116 5134 5147	5 170 5 172 5 194 5 198 5 198	5204 5230 5247 5248 5273

- 187 -

N	I	ł	I	1	1	1	1	1	I	I.	1	1	1	1	8	ł	1	1	*	1	1	I	I	1	1	1	3	1	ł	1
$m-M_O(V)$	1	1	31.3	31.7	1 1 1	31.6	1	1	1	1	8 1 8	1	31.8	1	30.2	30.7	32.2	1	31.4	i E I	8 8 8	1 1 1	1	1	8	1	:	1	31.6	28.20
(W) ^O M-m	32.2	31.4	31.3:	6 6 8	32,2:	1 ₹ 1	31.2	30.8	28.3:	31.0	33.0	32.2	8 8 8	1	1	31.2	31.5	1	 	1 1 1	31.8	32.6:	32.6	1	1 1 1	31.7	1	8	30.4	27.9
Bq ^m	13.0	12,3	13.0	12.5	13.0	11.1	12.6	13.1	12.5	13.2	12.9	13.0	12.1	13.2	11.13	11.04	11.4	13.0	12.0	13.2	12.7	12.4	13.0	13.0	12.71	11.98	12.8	13.1	12.1	8.20
Diameter	$5^{\circ}_{12} \times 0^{\circ}_{18}$	3.1 x 2.1	3.4×0.5	2.1 × 0.5	1.3×0.7	1.4 X 1.1	1.7×1.6	1.5 X 0.4	3.3 x 2.2	1.1 x 0.9	2.1 x 1.3	2.4 × 1.1	1.3×0.6	1.8×0.7	2.0 x 1.4	6.2 x 3.0	3.4 x 3.2	1.2 x 0.8	1	0.5:x 0.5:	2.0×1.9	2.1 x 1.0	1.4 x 1.0	2.9 X 0.4	1.9 x 1.1	2.0 x 1.6	1.9 x 1.0	0.7 x 0.6	4.0 x 1.2	22.0:x20.0:
c ^o	L I I	T I I	1	1	1	1	1	1		1 1 1	1	1]]]	1	0.79	0.46	1	1	1	ł	1	:	6 1 1	1	0.42	0.44	1	1	1 1 1	0.23
≻	1	I	I	X	I	X	I	ł	I	ı	C_==0	af	1	1	I	fg	G	fg	gk	1	fg:	af.	ł	gk) E	1	C===1	I	1 B	G
$_{\rm Sp}$	1	8	1	GS	1	68	I	1	R L	I L	1	1	63	1	GO	G2	63	1	F 8	1	1	1	1	1 1	1 1	1	1	1	G 2	F8
Type and Class	Sb ⁺ I	Sc II	Sb II-III:	E8	Sb II:	E2	Sc II-III	Sb ⁻ III	S- IV-V	S(B)b ⁺ III	Sb I	Sb ⁺ II	ES	Sbn	Ep	Sb ⁺ p I	Sb ⁺ I	Sa:	Sap	Sa	SBb II	Sb ⁺ t I:	Sb ⁺ I-II	E9	Sct	Sc(t) I	Sb(n)t	El	Sb ⁺ II-III	ScI
6(1950)	+44°05°	+04 11	+46 24	+61 14	+40 13	+60 26	-05 48	+39 49	-00 53	+33 43	+40 37	+38 09	+40 31	+41 30	+05 29	+05 15	+40 43	+59 45	+47 27	+37 51	+42 05	+37 39	+3909	+55 24	-05 49	-05 47	+59 34	+35 22	+49 25	+54 35
α(1950)	$13^{h}44^{m}3$	45.7	45.0	45.4	47.7	47.6	49.4	48.7	50.4	51.1	51.2	51.2	51.3	52.8	53.6	53.7	53.6	53.6	54.3	54.8	55.0	56.5	58.2	. 59.0	$14^{h}00.8$	00.8	59.1	01.2	00.9	01.4
NGC	5297	5300	5301	5308	5313	5322	5324	5326	5334	5347	5350	5351	5353	5362	5363	5364	5371	5376	5377	5380	5383	5395	5406	5422	5426	5427	5430	5444	5448	5457

N	1	1	I	8	Ł	I	8	1	1	1	*	1	ł	I	ł	1	T	1	I	1	1	I	1	Ł	ł.	8	I	ł	8	1
m-M ₀ (V)	32.2	31.7	28.20	I J L	31,6	32.0	1 1		32.9		33.5	32,6	30.8	31.1	30.9	1	28.20	1	1	1	1	33,0	31.7	32.0	31.1	1 J 1	I I I	32.8	8 8 8	1
m-M ₀ (M)	31.5	1 1 1	1 1 1	32.0:	1	1	29.8:	31.2	3 1 1	1 1 1	1 1 2	1	29.7:	1	1 1 1	31.3	28,3	1 1 1	1	1 1 1	32.7	1	1	1	1 1 1	32.7:	31.5:	1 1 1	31.4	1
рg	12.4	12.4	11.22	12.6	12,4	12.5	12.8	12.8	12,6	13.0	13.3	12.2	11.4	13.4	12.0	12.2	11.25	12.4	12.6	12.4	13,1	12.6	12.5	12.9	12.4	13.1	12.9	12.9	12,3	12.7
Diameter	2.0×1.9	0.9×0.7	4.0:x 2.9	1.1 X 0.9	0.8×0.7	0.8 x 0.5	3.8×0.5	3.9×0.8	1.8×0.8	1	l t t	0.9×0.8	5.6:× 1.1	0.9×0.3	1.0 x 0.8	2.6 x 2.0	5.5 x 3.0	1.4 × 0.8	1.3×1.1	1.0 × 0.9	1.3×1.0	1 1 1	0.7×0.7	0.8 x 0.6	0.9 x 0.9	2.1 x 0.9	2.0×1.0	1.2×0.9	1.8×1.7	1.1×0.9
c _o	1	1	0.24	1 1 1	1	I I I	1	1	1 1	1 1 1	1	1	1 1 1	1	1	1	0.28	l L I	1	1	I I I	1	1	1	1	1	1	1 3	1	[
Υ	1	ł	G4	يى	ı	ı	1	(gk	ı	52	ī	gk ?	gk	k	I	fg	1	I	G⊷t	1	20	1	ы	X	ı	Ļ	20	af	÷
$_{\rm Sp}$	1	G3	1	1	GS	GS	1	1	00	ł	F5:	G 3	G5	60	61	1	l I	1	ļ	:	l I	64	63	F5	G3	ł	1 1	1	ł	1
Type and Class	Sc II	E2	Scn*t	Sc**t I-II:	Sa:	~	S- IV:	Sb II-III	Snn	St	Snn?(t?)p:	EI	Sb ^T nt II-III:	د.	E2	Sc II.	S IV	Sct	Sbn	Sct:	Sc I	Snt	Sa or Ep	SI)	El	S(B)b ⁻ I-II:	Scn* II-III:	Sn:	Sc* II	Scn*t
6(1950)	-05°14°	+5508	+53 54	+50 57	+55 14	-04 49	-00 56	+25 34	+35 35	-07 11	+25 22	+36 43	+04 11	+03 28	+03 30	-00 10	+56 57	-16 30	-16 33	+14 52	-12 57	+3505	+5648	+46 22	+03 27	+29 02	+07 29	+31 25	+49 50	+08 18
α(1950)	$14^{h} 4^{m}_{0}0$	3.0	3.2	4.6	5.5	8,9	0 •0	12.6	14.1	15.0	15.7	16.4	17.8	18.4	18.5	19.8	18.0	21.5	21.7	21.4	22.3	22.0	25.1	25.6	27.1	27.1	28.1	28.0	28,1	29.9
NGC	5468	5473	5474	5480	5485	5493	5496	5523	5533	5534	5548	5557	5566	5574	5576	5584	5585	5595	5597	5600	5605	5614	5631	5633	5638	5641	5645	5653	5660	5665

- 189 -

N	I	8	1	1	1	1	I	ł	ł	ł	t	1	1	8	ł	1	I	I	ł	I.	8	I	8	I	ł	I.	I	1	1	1
m-M ₀ (V)	31.2	8	31.9	32.0	31.8	31.9	1	1 1 1	3 1 8	31.4	8 8 6	1 1 1	1 2 8	31.3	L L	•	1 8 1	1 1 1	8 3 1	1	•	8	31.28	31.5	31.28	32.7	31.28	31.28	31,28	31.28
m-M ₀ (M)	30.8	31.6	30.8:	31.2:	1 1 1	1 1 1	31.2	1	32.4	1 1 1	31.4	1	30.8	1	30.3	1 1 1	1 1 3	29.9:	1	L L L	i t t	8	30.1:	1 1 1	1 2 1	8 2 1	111	1 1 1	1	31.6
щpg	12.2	12.5	11.7	12.1	12.8	12.9	12.9	13.0	12.8	11.8	12.4	13.1	12.55	11.57	12.6	13.1	12.6	12.9	12.15	13.0	12.9:	12.8	12.4	12.6	12.0	13,4	12.7	11.7	11.16	11.56
Diameter	2,5 x 2,3	3.3 x 2.4	3.0×1.3	2.3 x 1.2	1.0×0.6	× 0.5	2.8:x 0.6	1.1 × 0.8	4.0 x 3.4	2.0×1.8	2.0 x 0.8	1 3 1 1	2.2 x 1.0	6.2 x 0.8	1.6 × 0.8	1.3 x 0.6	1.3 x 1.2	1.4 x 0.6	3.6 x 0.5	1.0 × 0.6	6.6 x 1.0	0.7×0.7	1.8 X 0.8	0.8×0.7	0.9 × 0.8	1.0×0.5	0.6 X 0.5	3.2 × 0.7	0.9 x 0.9	2.6 x 2.2
co	1	1	1	1	1	1	1 1 1	1	1	2 2 8	1 1 1	1	0.57	0.86	1	1 1 1	1	1	0.63	1 [1	11	1	I I I	1 [1 6 1	1	1	0.78	0.50
Y	(j)	af	(m)	¢	х	К	ŋ	I	X	Ø	I	1	I	gk	3	1	ı	ı	fg:	L I	ŧ	ı	ы) 1	k	1	Х	gk	k	20
Sp	ΡO	L I	I I	1	63	G2		1	1	F2:	1	I	1	G2	ł	1	I L	I I	1	8	6 2	1	60	67	G5	64	G5	62	60	G4
Type and Class	Sc* II-III	Sc III	Sc* II:	Sc(p?) II:	Sa	Snn:	Sb II-III	Sn?	S(B)b ⁻ I-II	Scn*	S(B)b ⁻ II	Snn	Sb ⁺ II-III	Sb(n?)	Sb ⁺ III	Scp	SBbn:	Ir ⁺ IV:	Sb or Sc	Sa	Sb(n?)p	EO	Sb ⁺ III:	El	El	E5(t})	En	Sa	EO	SBb ⁻ I
6(1950)	+04°401	+1008	+49 41	+58 08	+54 42	+48 57	+02 30	-00 11	+05 34	-00 05	-17 03	+42 03	+0154	+02 10	-00 01	-14 39	-18 53	-02 20	+03 45	-19 04	-00 54	-16 26	+02 05	-07 16	+01 54	+54 05	+01 24	+02 18	+01 48	+01 44
α(1950)	14 ^h 30 ^m 9	30.3	31.0	30.7	33.3	33.7	35.2	35.3	36.7	37.6	39.6	40.6	41.9	42.3	43.6	44.9	45.0	49.6	51.5	56.0	55.8	56.6	57.5	58.2	58.7	57.2	15h01.6	02.9	04.0	04.6
NGC	5668	5669	5676	5678	5687	5689	5690	5691	5701	5713	5728	5739	5740	5746	5750	5756	5757	5768	5775	5791	5792	5796	5806	5812	5813	5820	5831	5838	5846	5850

- 190 -

N	11	I	I	1	1	I	ł	1	1	1	1	1	1	8	1	1	1	T	1		I	1	1	1	I	I	1	1	ł
m-M ₀ (V)	31.28	1	30.0	31.6	30.1	1	31.7	32.2	32.0	1	29.3	1	1	30.8	1 	28.8:	31.6	31.7	32.5	5 5 8	32.1	29.8	1	31.7	1 I I	1	31.8	30.2	31.0
(W) ⁰ М-ш	1 1	1	1	1	30.5	1	1	32.6:	1 1 1	33.2:	30.1:	1	1	31,3:	32.6:	1	31.0	31.0	1	31.3:	32.0	30.7	1 1 1	31.9	31.1:	31.2	31.9	31.3:	31.1
mpg	12.6	12.8	10.9	12.4	12.2	12.4	12.6	12.5	12.7	13.1	11.04	13.0	12.5	11.7:	12.9	12.9	11.9	12.4	12.3	13.0	11.9	11.69	13.0	12.3	12.9	12.3	12.3	12.3	11.8
Diameter	1.8 x 0.4 2.3 x 1.1	1.7×0.5	2.8 x 1.0	2.9 x 0.9	4.5 × 1.1	2.4 x 2.4	0.8 x 0.7	1	0.8 × 0.7	4.4 x 3.2	11.1×0.7	2.4 x 0.4	1.1 x 0.8	3.6 x 3.0	1.0×0.9	2.0×0.8	2.4 x 1.8	2.3 x 1.6	1.2 x 0.8	2.6 x 0.5	4.9 x 2.2	5.6 x 1.7	0.8 x 0.6	3.2 x 1.8	2.1 x 1.0	4.3 x 1.3	2.0 x 0.9	2.0 X 1.1	8 8 8
c _o		1	8	8	1 1 1	1	1	1	1		0.55	8	1	1		1	1	1	1	1 1 1	1	0.36	8 3 5	1	1	1	1	8	1
Υ	gk.	еk	X	1	60	Ŧ	I	G3	ī	<u>с</u> ц	20	20	1	fg	af	af	μ	20	k	1	fg	af	a?	£	J	1	J	1	аf:
Sp	G1	i t	G2	GB	F8	1	G_2	F5:	G3	ł	G3	1	1	G ()	1	i 1	GO	F.8	G7	1	GO	F.8	1	F8	1	I I	G 2	F8:	F8:
Type and Class	Sa: Scn 12	E7D	E6p	Snn	Sb II-III	S ⁻ IV-V?	E1(p?)	Sb ⁺ * I:	El	S(B)b I:	Sb ⁺ II:	Sb.	Sb [†] t or Sct	S(B)b ⁺ I-II	Sc I:	SD	Sc II	Sc II-111	E3(p?)	Sb II-III:	Sb I	Sc II	۵.,	Sc I	Sb ⁺ II-III:	Sb II	Sc I	Sc II:	Sc* I-II
6(1950)	+02°45°	+03 14	+55 57	-14 05	+57 12	-09 53	-23 55	+42 14	-23 51	+55 42	+56 31	+55 36	-12 55	+05 15	+13 09	+64 55	+16 46	+12 20	+59 32	+14 22	+59 30	+62 28	+20 41	+00 50	+07 31	-02 11	+1956	+36 56	+78 18
α(1950)	15 ^h 05 ^m 3	0.7.0	05.1	11.0	08.4	12.4	15.2	13.2	15.6	14.1	14.6	15.4	18.8	19.5	27.6	27.2	34.2	36.1	37.6	40.6	38.6	. 50.7	16 ^h 03.1	07.4	16.3	19.3	30.1	41.3	34.8
NGC	5854	5864	5866	5878	5879	5885	5898	5899	5903	5905	5907	5908	5915	5921	5936	5949	5962	5970	5982	5984	5985	6015	6052	6070	6106	6118	6181	6207	6217

- 191 -

N	ł	1	1	1	I.	1	1	1	*	ł	1	I	L	1	1	1	I	I	1	I.	I	T	1	1	ł.	ĩ	ı	1	1 1
ш-М ₀ (V)	1	31.9	31.4	31.2	33.1	27.3:	32.1	31.3	31.0	1	1	1 1 1	27.6:	31.1	31.2	32.2	30.7	1	30.4	31.4	33.4	2 1 1	32.2	1	31,3	30.3	30.8	1 1 1	32.7 32.4
m-M ₀ (M)	8	1	30.9:	31.1	8 6 8	28.3:	1	30.8	31.8	24.6:	1	31.6:	1 3 1	30.8:	1	32.2	1	30.3		30.4	1	32.8:	F 1 1	32.2	31,0	29.5	1	30.6:	31.7:
mpg	12.9	12.0	11.23	12.19	12.2	10.77	12.8	11.61	12.2	9.21	13.0	12.1	9.67	11.84	13.1	13.1	12.0:	12.0	11.00	12.7	13.1	13.2	13.1	13.1	11.6	10.27	11.8	12.9	12.4
Diameter	2.1×0.8	2.0 x 1.8	5.0:x 4.0:	1.9×1.5	0.9 x 0.6	4.5:x 1.0	0.9×0.7	3.0×1.3	2.0×2.0	16.2:x11.2:	2.0×0.3	2.5 x 2.2	9.0:x 7.5:	3.3 x 2.3	0.9×0.9	2.1 x 0.9	2.1×1.1	5.1 x 0.9	2.6 x 2.3	2.1 x 0.7	1 1 1	1.9×0.8	0.9 x 0.6	1.4 x 1.1	3.9×1.9	10.0×2.3	2.3 x 0.6	1.0×1.0	0.9 x 0.8 1.5 x 0.8
co	1 1 1	1	0.46	0.27	1	0.41	1	0.39	1	8 8 8	8	1 1 1	0.41:	0.51	8 5 6	1	1	1	0.63	1	1	1 1 1	1	1	1	0.54	1	1	
Υ	аf	þ	gk	af	k	af	ŝ	ł	:	I	ł	1	af	÷.	(1	I	20	1	gk	1	1	ı	ı	I	af	gk	k?	ı	1 6
Sp	I I	63	G5	1	60	1	F8	GU	F0:	Em	1	1	Ъ5	1	1	60	60	1	G7	t t	F3	1 1	67	1	F8:	G8	63	1	62
Type and Class	Sbt	Sap or Snn:	Sb I:	Sc II	E3(p?)	Sb III:	SD:	Sc, I-II	Sb ^T I	Ir IV-V	E8	S(B)b I-II:	Sc I or (Sc II)	Sbp I-II:	SD:	Sb [†] II	Sb_ II or Sbn	Sb ⁺ II-III	Sb ⁻ II?	Sc III-IV	Et or Pec	Sb ^T I-II:	E3	Sc II	Sc(*) I-II	Sb I-II	E7	Sb III:	El or Sa Sb II:
6(1950)	+42°50"	+72 22	+07 06	+75 45	+23 05	+70 10	+1458	+74 33	-10 25	-14 53	-12 42	-24 58	+59 58	+6556	+21 56	-13 31	+17 29	-21 04	+31 07	-16 54	-24 56	-14 17	-14 23	-10 37	-26 18	+34 10	+23 32	-11 16	-22 35 -20 53
α(1950)	$16^{h}48^{m}4$	17 ^h 11.1	29.9	30.8	49.8	49.9	18 ^h 09.5	. 21.2	19 ⁿ 39.9	42.1	51.8	20 ^h 22.1	33.9	, 36.5	21 ⁿ 45.9	58.3	58.3	ر 59 . 9	22"05.6	07.5	18.0	28.3	29.7	31.6	33.0	34.8	35.0	43.4	45.1 49.2
NGC	6239	6340	6384	6412	6482	6503	6574	6643	6814	6822	6835	6907	6946	6951	7137	7171	7177	7184	7217	7218	7252	7300	7302	7309	7314	7331	7332	7371	7377

N	1.1	*	1	I	1	I	ľ	1	1	I	1	8	I	ł	ı	ł	1	1	ł	1	I	ł	1	I.	ł	I	ł	1	1
m-M ₀ (V)	32.1 29.5	33.5	32.1	32.3	32.7	32.7	32.0	33.0	31.5	32.8	29.2	32.8	33.6	32.2	1 1 1	31.6	31.5	29.9	31.4	31.5	33,3	1 1 1	33.0	30.5	1	1	1	1	1
m-M ₀ (M)	30.9: 	1 1 2	31.6	31.7:	-	1	31.7	1	J 1 1	1	30.0:	32.1	1 1	32.0:	31.5	1	1	30.6	1	1	8 3 3	1	 	4 1 5	31.2:	1	31.1:	28.3:	31.8:
mpg	11.9	12.7	11.6	12.6	12.7	13.0	11.6	12.4	13.2	12.7	11.31	12.5	13.2	12.9	12.4	11.8	11.6	11.63	12.2	12.3	12.5	13.1	13.0	11.7	13.2	13.0	12.5	12.8	12,8
Diameter	2.0×1.0 1.9 × 1.0	1.3×1.0	3.4 x 2.6	2.9 x 0.9	2.0 x 1.5	1.1×0.4	4.4 x 1.5	1.0×0.9	1.0×0.8	1.0×0.8	11.0:X 1.4	1.7×1.1	1.4×0.8	1.3 x 1.1	3.0×0.9	2.2 x 1.6	L L L	3.3×2.5	0.9×0.9	1.6 × 1.4	1.3×1.2	2.1×0.9	1.1×0.6	6.0:x 1.0	1.8 × 1.1	1.7×0.6	2.1 x 1.9	2.1 x 1.5	2.0 x 1.6
c _o		1	1 1 1	t 1	1 	1	1	1 1 1	 	1	0.13	1 1 1	1	1	1 1	 	1 1 1	0.30	1	1 1	1	 	1 1 1	1	3 1 1	1 1 1	1 1 1	1 1 1	1 1 1
Υ	f g gk	6	G,	ŋ	I	۱	fg	X	8.2	ı	ŝ	af	I	£	I	ı	ı	af	gk?	gk	ц.	1	ł	¥	ι	ł	i	ł	1
Sp	62 62	F5:	63	F2	GU	63	G2	G5	61	63	1	F5:	F5	68	5 1	1	G8	F2	60	60	1	1	GS	63	i I	1	1	1	Ţ
Type and Class	Sc*(t) II: ED	Snn;	SBb ^T I	Sc II:	Snn	E6	Sb ⁺ I	El	Ep	E2(p?)	$S(B)b^{+}II:$	Sc I	Snn	Sb II:	Se II	Sbn	Snn(t?)	SBC II	EUp	Sa?	Scnt	Sbn	E: 5	Sb ⁻	Sc(*) III:	Sb ⁿ :	Sc* II-III:	S- IV-V	Sb^{+} 11:
6(1950)	$+15^{\circ}43^{\circ}$ +29 53	+08 36	+12 03	+04 15	-04 56	-07 52	-08 46	+07 55	+16 57	+07 56	+4035	+22 09	+03 15	+00 01	-06 48	-13 14	-12 34	+25 48	+10 29	+03 39	+19 52	+07 42	+03 38	+15 51	+43 01	+43 00	-21 39	-27 19	-23 28
α(1950)	$22^{h}57.6$	23 ^h 00.7	02.4	12.2	15.4	16.3	16.5	17.8	18.0	18.2	19.7	26.1	26.2	33 .9	36.2	36.4	37.3	41.4	41.8	41.8	48.5	51.4	52.8	$0^{n}00.7$	11 ^h 56.0	, 56.3	$3^{h}_{131.4}$	1001.7	11"07.5
Name	NGC 7448 7457	7469	7479	7541	7585	7600	7606	7619	7625	7626	7640	7678	7679	7716	7721	7723	7727	7741	7742	7743	7769	7782	7785	7814	IC 749	750	1953	2537	2627

- 193 -

N	*	1	1	1	1	1	
m-M ₀ (V)	1 	1	30.28?	30.28?	30.28	1	
m-M ₀ (M)	28.7:	1	1	28.3:	1	I I L	
mpg	12.8	13.1	12.52	12.5	12.9	12.8	
Dlameter	$4^{1}_{*}5 \times 3^{1}_{*}4$	2.2 x 1.5	3.7×1.7	2.1×1.7	2.3 x 1.1	2.4 x 1.9	
сo	3 1 1	1	0.24	1	1	1	
Υ	ł	ī	ι	I	ł	ı	
Sp	8	1	1	1	1	l I	
Type and Class	S(B) IV-V	Ν	S V	S~ IV-V:	NP	S ⁻ IV-V or N	
6(1950)	-06°291	-14 50	+0038	-09 51	+00 23	-15 18	
α(1950)	$1_{h}^{h}02.6$	5.09.5	12 ⁿ 29.9	46.8	, 52.6	15 ⁿ 11.0	
Name	An I	HA 85	R 80	An 3	An 4	F 703	

Remarks

- NGC 178 Late type, has one resolved arm.
- NGC 275 Interacting with NGC 274.
- NGC 474 Fuzzy nucleus surrounded by segments of nebulous ring. Interacting with NGC 470.
- NGC 520 Colliding galaxies?
- NGC 1068 Seyfert galaxy. Halo.
- NGC 1415 Diameter does not include faint "tidal arms".
- NGC 2149 Probably galactic reflection nebula.
- NGC 2207 Interacting pair.
- NGC 2782 Seyfert galaxy.
- NGC 2835 Spiral arms of low surface brightness.
- NGC 2993 Interacting with NGC 2992.
- NGC 3077 Seyfert galaxy.
- NGC 3227 Seyfert galaxy.
- NGC 3368 This galaxy (M96) is a member of a small class of objects with a bright main body with tightly coiled spiral arms surrounded by a faint halo. Other members of this class are NGC 1068 (M77) and NGC 4736 (M94).
- NGC 3516 Seyfert galaxy.
- NGC 3690 Two colliding galaxies.
- NGC 4038 Colliding with NGC 4039.
- NGC 4051 Seyfert galaxy.
- NGC 4151 Seyfert galaxy.
- NGC 4258 Seyfert galaxy.
- NGC 4342 Identification uncertain.
- NGC 4568 Interacting with NGC 4567.
- NGC 4647 Interacting with NGC 4649.
- NGC 4736 M94, has halo similar to those of M77 and M96.
- NGC 4826 M64 is a very peculiar object. A blue plate taken with the 74-in, telescope shows tightly wound rather fuzzy spiral arms on which a large obscuring cloud is superimposed. The declination given in H.A. 88 should be increased by 10'.
- NGC 4889 In Coma cluster. Misidentified as NGC 4872 in H.A. 88.
- NGC 4902 Both radial velocity and luminosity classification place this galaxy beyond the Virgo Cluster.
- NGC 4941 The structural peculiarities of this galaxy are similar to, but less pronounced, than those in the Seyfert galaxy NGC 4151.
- NGC 5377 Appearance similar to that of NGC 4941 and the Seyfert galaxy NGC 4151.
- NGC 5548 Seyfert galaxy.
- NGC 6814 Seyfert galaxy.
- NGC 7469 Seyfert galaxy.
- Anon 1 Has S V companion at $\alpha(1855) = 0^{h}54^{m}$, $\delta(1855) = -8^{\circ} 25'$.

195

In this distance interval the Virgo cluster is the most prominent feature. Early type galaxies predominate in the nucleus of the cluster at $\alpha \simeq 12^{h}25^{m}$, $\delta \simeq + 13^{\circ}$. A secondary clustering of predominately late type galaxies is located at $\alpha \simeq 12^{h}20^{m}$, $\delta \simeq + 5^{\circ}$. The figure shows the southern extension of the Virgo cluster as a loose grouping of galaxies near $\alpha \simeq 12^{h}50^{m}$, $\delta \simeq -10^{\circ}$. The Ursa Major cluster $(\alpha \simeq 12^{h}00^{m}, \delta \simeq +50^{\circ})$ and the NGC 4274 group ($\alpha \simeq 12^{h}15^{m}$, $\delta \simeq + 30^{\circ}$) also show on the figure. The NGC 4274 group is probably somewhat closer to us than the Virgo Cluster. The NGC 3193 group. $(\alpha \simeq 10^{h}10^{m}, \delta \simeq + 23^{\circ})$ is possibly associated with the Virgo cluster complex.

 $30.5 \leq m - M_0 \leq 31.5$ (Figure 4)

The figure shows a concentration of galaxies near $\alpha \simeq 14^{\rm h}40^{\rm m}$, $\delta \simeq + 2^{\circ}$, which are apparently associated with the NGC 5850 group. The figure also shows a loose clustering of galaxies near $\alpha \simeq 3^{\rm h}25^{\rm m}$, $\delta \simeq -23^{\circ}$.

No conspicuous clustering is apparent in this distance interval.

THE LUMINOSITY FUNCTION OF GALAXIES

The frequency with which different DDO classification types occur among all Shapley-Ames galaxies north of $\delta = -27^{\circ}$ is given in Table II.

TABLE II

FREQUENCY OF CLASSIFICATION TYPES Determined from the classification of 935 Shapley-Ames Galaxies

Туре	Frequency
E (including S0)	22.9 per cent.
Sa	7.7
Sb	27.5
Sc (including S IV and S V)	27.3
Ir	2.1
Other	12.5

Luminosity classes could be assigned to about 80 per cent. of all galaxies of types Sb, Sc and Ir.

The number of Shapley-Ames galaxies of different types and luminosity classes is given in Table III.

Туре	Sb	Sc	Ir
Class			
I I-II II II-III III IV IV-V V	37.5 22 58 37 36 0.5	$30.5 \\ 14 \\ 68 \\ 22 \\ 31.5 \\ 9.5 \\ 21 \\ 8.5 \\ 1$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 3.5 \\ 2 \\ 6 \\ 4.5 \\ 0 \end{array}$

TABLE III

OBSERVED FREQUENCY OF SHAPLEY-AMES GALAXIES

Using the magnitude calibration of Table I the observed frequency distribution of galaxies over the luminosity classes may be converted to relative space densities, if one makes the following assumptions: 1. The distribution of galaxies throughout space is uniform. 2. The degree of completeness of the Shapley-Ames catalogue depends on apparent magnitude only, i.e. the Shapley-Ames catalogue does not discriminate against galaxies of a particular type or luminosity class.

The assumption of a uniform space distribution of galaxies is probably valid for galaxies of luminosity classes I to IV. However, for fainter objects the Shapley-Ames catalogue contains only galaxies in the immediate vicinity of the local group. The space density of galaxies in the vicinity of the local group is probably higher than average. The assumption of a uniform distribution of galaxies will therefore lead to an overestimate of the space density of objects of luminosity classes IV–V and V. This effect is compensated for to some extent by the fact that the Shapley-Ames catalogue is more incomplete for large galaxies of low surface brightness than for small galaxies of high surface brightness. The faint end of the computed luminosity function must however be regarded as quite uncertain.

198

TABLE IV

Luminosity Classes	Approximate magnitude limits	Sb	Sc	Ir	Total
I, I–II	-20.5 to -19.5	0.9	1.0	0	1.9
II, II-III	-19.5 to -18.5	7.5	4.9	0.04	12.4
III, III–IV	-18.5 to -17.5	11	10	1.3	22.3
IV	-17.5 to -16.5	0	17	4.8	21.8
IV-V	-16.5 to -15.5	0	36:	19:	55:

RELATIVE SPACE DENSITY OF GALAXIES

Table IV gives the relative space densities for galaxies of different types and luminosity classes. The data have been normalized in such a way that they refer to a volume which contains one supergiant galaxy of type Sc. The table shows that the luminosity function of galaxies increases rapidly as one goes to fainter absolute magnitudes. The results for Sc and Ir galaxies are in fair agreement with those obtained by van den Bergh (1960a).

It is of some interest to note that the ratio of the number of spiral galaxies to the number of irregular galaxies increases rapidly as one goes to intrinsically brighter galaxies.

References

van den Bergh, S. 1960a, Ap. J., vol. 131, p. 215; 1960b, Ap. J. (in press).
Holmberg, E. 1958, Lund Medd. II, no. 136.
Humason, M. L., Mayall, N. U., and Sandage, A. R. 1956, A.J., vol. 61, p. 97.
Morgan, W. W. 1958, Publ. A. S. P., vol. 70. p. 364.
Pettit, E. 1954, Ap. J., vol. 120, p. 413.
Shapley, H. and Ames, A. 1932, Harv. Ann., vol. 88, no. 2.
Stebbins, J. and Whitford, A. E. 1952, Ap. J., vol. 115, p. 284.

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

Number 7

THE LUMINOSITY FUNCTIONS OF GALACTIC STAR CLUSTERS

SIDNEY VAN DEN BERGH AND DAVID SHER

> 1960 Toronto, canada

THE LUMINOSITY FUNCTIONS OF GALACTIC STAR CLUSTERS

Abstract

The luminosity functions of the following galactic clusters have been obtained down to $m_{pq} \simeq 20$

NGC	188	NGC 663	NGC	2158	NGC 2539
NGC	436	NGC 1907	NGC	2194	NGC 2682 (M67)
NGC	457	NGC 1960	(M36) NGC	2362 (r CMa)	NGC 7789
NGC	559	NGC 2099	(M37) NGC	2477	IC 361
NGC	581 (M103)	NGC 2141	NGC	2506	Trumpler 1

It is found that striking differences exist among the main sequence luminosity functions of individual clusters. Also it appears that the faint ends of the luminosity functions of galactic clusters differ systematically from the van Rhijn-Luyten luminosity function for field stars in the vicinity of the sun in the sense that (with one exception) all the clusters which were investigated to faint enough limits, had luminosity functions which either decreased or remained constant below $M_{p\sigma} = +5$. The differences between individual clusters and the differences between the luminosity functions of clusters on the one hand and field stars on the other show that the luminosity function of star creation is not unique. This result is taken to indicate that the luminosity function with which stars are created probably depends on the physical conditions prevailing in the region of star creation.

It is also shown that the observed surface density of cluster stars may be represented by an exponentially decreasing function of the distance from the cluster centre. In a number of clusters, which have ages larger than their relaxation times, the brightest cluster stars are found to be more strongly concentrated towards the cluster centre than are the faintest stars.

Observational Material

This investigation is based on a series of 170 plates of galactic clusters obtained with the 48-inch Schmidt telescope on Palomar Mountain during nine nights in January and February of 1958*. A series of exposures ranging from 4 seconds to 10 minutes on Kodak 103aO emulsion (no filter) was obtained of each cluster. Also one 5-minute exposure of each cluster was taken on Kodak 103aE emulsion behind a red plexiglass filter. The limiting magnitude of each blue plate was determined from a magnitude sequence which had previously been established within the cluster. On each plate stars were counted in rings centred on the cluster. From these counts the number of

*During the night of January 13/14, 1958, the seeing deteriorated rapidly. All plates taken after 19^h 15^m P.S.T. were subsequently rejected.

cluster stars in each ring down to a given limiting magnitude was determined. By means of this procedure it was possible to investigate the luminosity functions of 20 galactic clusters down to about 20th magnitude.

Counting Procedure

The centre of each cluster was found by inspection and the plate was placed, emulsion downwards, on a sheet of transparent polar graph paper, in such a way that the centre of the cluster coincided with the pole of the co-ordinate system.

The difference in the radii of two consecutive circles of the polar graph paper was 0.1 inches, corresponding to 171" on the plate. The annuli, henceforth called "rings", thus formed, were numbered 1, 2, 3, etc., from the pole outwards.

Counting stars on a plate is not free from a "personal equation" effect. Innumerable decisions have to be made, rejecting some marks on the plate while accepting others as stars. A comparison between independent counts by the two authors on four plates in M67 is shown in figure 1. The comparison shows that the counts by van den

FIG. 1—Comparison of independent counts by van den Bergh and Sher on four plates of M67.

Bergh are systematically higher than those by Sher; that is to say the latter author was more conservative in his judgment of faint markings on the plate. Most of the counts which are reported in this paper have been made by Sher. Multiple counts of the same plate by Sher indicate that the root mean square deviation of two independent series of counts is 3.7 per cent.
An individual's counting limit is likely to vary somewhat over a period of time. To reduce, as much as possible, the effects of such systematic variations of the counting limit while counting stars on a single plate each cluster was divided into four quadrants and the quarter-rings thus formed were then counted in what was effectively a random order.

The basic data on each cluster were obtained by counting stars down to the plate limit on plates with different limiting magnitudes. In a number of cases these data were supplemented by counting only those stars brighter than a certain star of known magnitude, which was well above the plate limit. The latter data are considered to be of somewhat lower accuracy than the counts down to the plate limit.

THE NUMBER OF CLUSTER STARS

To estimate the surface density of background stars, the area which was counted in each case extended well beyond the boundary of the cluster. A "rule of thumb" was to choose the background area roughly equal to the cluster area, but this precept was not followed rigidly.

Suppose that the adopted background area, A_b , contains N_b stars, then the density of background stars, σ_b , is

$$\sigma_b = \frac{N_b}{A_b} \tag{1}$$

Let there be $N(r_n)$ stars in the *n*th ring within the cluster, then the number of cluster stars within the ring is

$$N_c(r_n) = N(r_n) - A(n) \sigma_b \tag{2}$$

where A(n) is the area of the *n*th ring.

Mean errors were associated with each determination of the number of cluster stars. These errors were obtained in the following way: Let

 ϵ_e = mean error of the number of cluster stars

 ϵ_1 = mean error of the number of background stars within the area of the cluster, due to the uncertainty in the surface density of background stars, σ_b

 ϵ_2 = error due to the statistical fluctuations of the number of background stars, themselves, within the cluster then

$$\epsilon_c^2 = \epsilon_1^2 + \epsilon_2^2 \tag{3}$$

in which

$$\epsilon_1^2 = N_b \frac{A_c^2}{A_b^2}$$
 and $\epsilon_2^2 = N_b \frac{A_c}{A_b}$

where M_b is the background area and A_c is the cluster area.

It should be emphasized that these errors do not take into account the uncertainties in the adopted limiting magnitudes or the uncertainties which might be introduced by irregular absorption over the background or cluster areas. Most of the clusters which will subsequently be discussed were selected for observation because they appeared projected on a relatively smooth field of background stars.

DETERMINATION OF THE LIMITING MAGNITUDES

(a) Standard Sequences

Photoelectric sequences and (or) photographic transfers were used to establish a standard sequence in or near each cluster. The photographic magnitudes of the sequence stars were determined with the Eichner photometer of the California Institute of Technology. All magnitudes were transformed to the P system by means of the relation (Allen 1955).

$$P - V = 1.10 (B - V) - 0.18$$
⁽⁴⁾

Details on individual magnitude sequences are given below:

- NGC 188: A photoelectric magnitude sequence to magnitude 17.2 was kindly supplied by Dr. Sandage. As NGC 188 lies less than 5° from the pole two transfer plates were taken, with both the cluster and the North Polar Sequence appearing on the same 14×14 inch plate. These transfers were used to set up a sequence in the cluster that included fainter stars than those in the photoelectrically obtained sequence. No significant deviations were found in the magnitude range where the two sequences overlap.
- NGC 436, NGC 457, NGC 559, NGC 581, NGC 663, Trumpler 1: A photoelectric sequence by Pesch (1959) down to magnitude 14.6 was used. The sequence was extended by means of a photographic transfer to SA 51 in which Dr. Baum had established a photoelectric sequence which he kindly made available to us.
- NGC 1907, NGC 1960: A magnitude sequence was set up by means of two photographic transfers to SA 51. No systematic differences between this sequence and sequences set up by Johnson and Morgan (1953) to $m_{pg} = 12.7$ and Cuffey (1937a) to $m_{pg} = 16.6$ were found.
- NGC 2099: The magnitude sequence depends on one photographic transfer to SA 51.

NGC 2141, NGC 2194: The magnitude sequence depends on two photographic transfers to SA 51. Comparison of our sequence with one set up by Cuffey (1943) in NGC 2194 indicates a systematic difference in the sense m (Cuffey) -m (adopted) = 0.08. Cuffey's sequence extends to magnitude 16.6.

- NGC 2158: A photoelectric sequence in this cluster down to magnitude 20.0 was kindly made available to us by Dr. Arp.
- NGC 2362: A photoelectric sequence down to magnitude 15.1 has been obtained in this cluster by Johnson and Morgan (1953). The sequence was extended to fainter magnitudes by means of two transfers to SA 57 in which a photoelectric sequence had been set up by Baum. The photographic transfers to this cluster are rather unsatisfactory since they were affected by fogging due to the lights of San Diego.
- NGC 2477: A sequence by Miss Sawyer (1930), which is probably of rather low accuracy, was used.
- NGC 2506, NGC 2539: The adopted magnitude sequences depend on two photographic transfers to SA 57.
- NGC 2682: A photoelectric sequence down to magnitude 17.0 by Johnson and Sandage (1955) was extended to fainter magnitudes by means of two photographic transfers to SA 51. The transfer magnitudes were reduced by 0.2 magnitudes to bring them into agreement with the photoelectric sequence.
- NGC 7789: A photoelectric sequence (Burbidge and Sandage 1958) down to magnitude 17.3 was kindly supplied by Dr. Sandage. This sequence was extended by means of two transfers to SA 68. The transfer magnitudes were shifted by 0.78 magnitudes to bring them into agreement with the photoelectric data. This large zero point error is probably due to the fact that the cluster was rather far west at the time of observation so that the plates may have been affected by twilight.
- IC 361: The adopted magnitude sequence depends on two photographic transfers to SA 57.

In some cases the number of standard stars in a given magnitude interval was rather small. In such cases the magnitudes of additional stars were interpolated by measuring image diameters.

(b) Determination of the plate limits

The provisional limiting magnitude of each plate was determined from the standard sequence on that plate. Let m_i and m_j be the magnitudes of two adjacent stars of this sequence. If star *i* was visible but star *j* was not, then $\frac{1}{2}(m_i + m_j)$ was adopted as the provisional limiting magnitude of the plate. Sometimes the appearance of the images suggested that this limiting magnitude was too bright, or perhaps, too faint and the simple average, accordingly, was reduced or increased slightly. In the case of transfer plates it was assumed that the limiting magnitude in the selected area was equal to that in the cluster.

The limiting magnitudes obtained in this manner are unsatisfactory on two counts:

(1) The limiting magnitude is an interpolation between two limits m_i and m_j which in a representative sequence might differ by 0.3 magnitudes.

Publications of the David Dunlap Observatory

(2) No account is taken of possible fluctuations in the sensitivity of the photographic emulsion as a function of position on the plate. Clearly such variations might affect the visibility or invisibility of a certain sequence star.

The provisional limiting magnitudes were therefore adjusted by requiring them to fulfil the condition that the background count, $N_b(m)$ must be a smoothly increasing function of the limiting magnitude. Experience shows that the effective counting limit lies somewhat above the actual plate limit. From a comparison of the luminosity function of the inner region of M67 derived in this paper, with that obtained by Johnson and Sandage (1955) it was estimated that the effective counting limit is 0.5 magnitudes brighter than the actual plate limit. This correction was applied to the limiting magnitude of all counts down to the plate limit. The magnitudes in Tables I and II (see p. 220 to p. 235) therefore refer to the actual limiting magnitude of the counts and not to the plate limit itself.

_					
	Cluster	$m - M_{pg}$	$m - M_o$	Distance	Age
	NGC 188	10.5	10.5	1250 pc	old
	NGC 436	13.7:	11.7:	2200:	young
	NGC 457	14.3	12.3	2900	young
	NGC 559	14.5:	11.7:	2200:	young
	NGC 581 (M103)	13.9	11.9	2400	young
	NGC 663	15.3	12.1	2600	young
	NGC 1907	13.1::	11.1::	1650::	young
	NGC 1960 (M36)	11.5	10.5	1250	young
	NGC 2099 (M37)	11.1	10.7	1400	intermediate
	NGC 2141				intermediate?
	NGC 2158	14.8	13.4	4800	intermediate
	NGC 2194	12.9:	10.4:	1200:	intermediate
	NGC 2362 (7 CMa)	11.2	10.8	1450	young
	NGC 2477	10.5::			intermediate
	NGC 2506				intermediate?
	NGC 2539	10.5	9.4	750	intermediate
	NGC 2682 (M67)	9.8	9.5	800	old
	NGC 7789	12.5	11.4	1850	intermediate
	IC 361				intermediate?
	Trumpler 1	14.2:	11.7:	2200:	young

TABLE III Basic Data on Clusters

Notes on Table III

- NGC 188: Modulus obtained by fitting Sandage's provisional main sequence to the zero-age main sequence. Zero reddening was assumed.
- NGC 436: True distance modulus taken from Bodén (1951). Absorption assumed to be same as that measured in the nearby cluster NGC 457 by Pesch (1959).
- NGC 457: Data from Pesch (1959).
- NGC 559: Data derived from Hiltner's (1956) observations of H.D. 8768 and H.D. 9105 using Johnson's (1959) intrinsic colours.
- NGC 581: From Krušpán (1959). Hiltner's (1956) data on B.D. +59°273 confirm Krušpán's estimate of the reddening.
- NGC 663: Data derived from Hiltner's (1956) observations of B.D. +60°331, 333, 339, 343 using Johnson's (1959) intrinsic colours.
- NGC 1907: Distance and reddening were obtained under the assumption that the cluster is physically associated with nearby OB stars. The data for these OB stars were taken from Hiltner (1956).
- NGC 1960: Data from Johnson (1957).
- NGC 2099: Apparent modulus obtained by assuming the red giants in this cluster (Lindblad 1954) to have the same M_{pg} as those in the Hyades and Praesepe.
- NGC 2158: Modulus obtained by fitting the colour-magnitude diagram given by Cuffey (1937b) to that of NGC 7789. The cluster-reddening was estimated by comparing provisional photoelectric magnitudes and colours obtained by Arp for some stars on the red giant branch with those obtained by Burbidge and Sandage (1958) in NGC 7789.
- NGC 2194: Data from Cuffey (1943).
- NGC 2362: Data from Johnson (1957).
- NGC 2477: Measurements of the diameters of stellar images on red and blue plates indicate that the cluster colour-magnitude diagram is possibly intermediate between those of NGC 752 and M67. The cluster main sequence terminates at about $m_{pg} = 13.0$. Assuming this to correspond to $M_{pg} = +2.5$ one obtains $m - M_{pg} = 10.5$.
- NGC 2539: Modulus obtained by comparing the cluster red giants (Zug 1933) with those in the Hyades and Praesepe. Absorption estimated by assuming $A_{pg} = 0.24$ cosec b.
- NGC 2682: Data from Johnson and Sandage (1955).
- NGC 7789: Data from Burbidge and Sandage (1958).
- Trumpler 1: Modulus from Kruspán (1959). Hiltner's (1956) colour excess for B.D. +60°274 is consistent with the absorption used by Kruspán.

THE LUMINOSITY FUNCTIONS OF CLUSTERS

(1) Old Galactic Clusters: NGC 188, NGC 2682 (M67)

NGC 188 and M67 are the two oldest known galactic clusters. Both clusters are located at intermediate galactic latitudes and are therefore particularly well suited for a determination of their luminosity functions. M67 appears projected on a very smooth stellar background.

Some faint emission and reflection nebulosity is visible in the vicinity of NGC 188 and star counts indicate some irregularities in the stellar background. As a result the luminosity function of NGC 188 is probably less accurate than that of M67. The luminosity functions of NGC 188 and M67 are shown on pages 236 and 237 respectively. Comparison of these two figures shows that the luminosity functions of both clusters exhibit a number of points of similarity. The integral luminosity functions of NGC 188 and M67 show a sudden increase in slope at $m_{pq} \simeq 15.6 \ (M_{pq} \simeq + 5.1)$ and $m_{pq} \simeq 13.3 \ (M_{pq} \simeq + 3.5)$ respectively corresponding to the termination points of the cluster main sequences. In both clusters the integral luminosity function has the largest slope (maximum of the differential luminosity function) less than one magnitude below the termination point of the main sequence. Below this maximum the luminosity functions decrease continuously down to the limits of observation. Comparison of the luminosity functions for the entire cluster with those for the inner region of each cluster shows that the brightest and hence most massive stars are more strongly concentrated towards the cluster nuclei than are the faintest least massive stars. Such an effect would be expected on dynamical grounds since both clusters are considerably older than their respective times of relaxation.

Table IV gives for both clusters the distance from the galactic plane, Z, the radius containing half of the cluster mass in projection, $r_{\frac{1}{2}}$, the largest distance to which the cluster could be traced, r_m , the extrapolated total cluster mass, \mathfrak{M} , the extrapolated total number of cluster stars, N, and the cluster relaxation time, τ , computed by means of an equation recently given by King (1959).

	1	FABLI	ΞI	ſ	
Data	ON	NGC	188	AND	M67

Cluster	Ζ	$\gamma_{\frac{1}{2}}$	₹m.	M	N	τ
NGC 188	+ 500 pc.	6.5' = 2.4 pc.	20' = 7.2 pc.	900∭ _☉	1200:	1.2×10^{8} y.
M67	+ 450	9.4 = 2.2	28 = 6.5	800	1000:	1.0×10^{8}

The mass-luminosity law tabulated by Schmidt (1959) was adopted to determine the total cluster mass. Stars which have evolved from the main sequence were assigned masses of 1.0 and 1.2 \mathfrak{M}_{\odot} respectively in NGC 188 and M67. The mass in the form of white dwarfs was assumed to be $50\mathfrak{M}_{\odot}$ in NGC 188 and $40\mathfrak{M}_{\odot}$ in M67. The extrapolated total

number of cluster stars, N, is considerably less accurate than the extrapolated total cluster mass \mathfrak{M} .

(2) Galactic Clusters of Intermediate Age: NGC 2099 (M37), NGC 2141, NGC 2158, NGC 2194, NGC 2477, NGC 2506, NGC 2539, NGC 7789, IC 361.

The luminosity functions of clusters of intermediate age (pages 238 to 246) show a number of interesting differences. Some of these differences are due to evolutionary effects, i.e. differences in the shapes of the red giant branches of the cluster colour-magnitude diagrams. In other clusters the differences are due to genuine differences in the cluster main sequence luminosity functions.

In the clusters NGC 2158 (p. 240) and NGC 7789 (p. 245) the slope of the integrated luminosity functions changes abruptly at $m_{pq} \simeq$ 17.0 ($M_{pq} \simeq + 2.2$) and $m_{pq} \simeq 14.0$ ($M_{pq} \simeq + 1.5$) respectively. This change in slope corresponds to the termination point of the cluster main sequence and to a concentration of red giants at the beginning of the cluster giant branch. The same explanation may also account for the sudden change in slope near $m_{pq} \simeq 17.7$ in the rich cluster NGC 2141 (p. 239), for which the distance modulus is unfortunately unknown. A similar explanation may account for the change in slope of the integral luminosity function of NGC 2506 (p. 243) near $m_{pq} \simeq$ 15.5 for which the distance modulus is also unknown.

The figure on p. 238 shows that the main sequence luminosity function of NGC 2099 (M37) has a flat maximum between the termination point of the cluster main sequence near $M_{pq} = 0$ and $M_{pq} = +4$. For fainter stars the luminosity function appears to decrease gradually. The main sequence luminosity functions of NGC 2477 (p. 242), NGC 2506 (p. 243) and NGC 2539 (p. 244), also seem to decrease slightly towards fainter magnitudes. The main sequence luminosity function of NGC 7789 (p. 245) appears to remain approximately constant over the range $+2.5 < M_{pq} < +5.5$. On the other hand the luminosity function of NGC 2194 (p. 241) seems to increase down to the limit of observation at $M_{pq} = +6$.

The data gave some indication that the brightest stars in NGC 2099 (M37), NGC 2194 and IC 361 are more concentrated towards the cluster nucleus than are the fainter stars.

(3) Young Galactic Clusters: NGC 436, NGC 457, NGC 559, NGC 581 (M103), NGC 663, NGC 1907, NGC 1960 (M36), NGC 2362 (τ CMa), Trumpler 1.

Publications of the David Dunlap Observatory

Young galactic clusters, which have only recently been formed from the interstellar gas, are usually located at low galactic latitudes. They, therefore, appear projected on a rich stellar background, which, due to the effects of absorbing interstellar clouds, is often quite irregular. As a result the luminosity functions of young galactic clusters are less reliable than those for the clusters of intermediate age, which have been discussed previously. Only in the case of the clusters NGC 436, NGC 457 and NGC 2362 was the background sufficiently homogeneous to determine the luminosity function in the usual manner.

For the other clusters it could, however, be assumed that the background was reasonably uniform over the two innermost rings. For these clusters only $f\phi(M)$ could be determined, in which f is an unknown constant which is smaller than one and $\phi(M)$ is the luminosity function of the entire cluster.

Let $N(r_n,m)$ be the total number of stars brighter than m in ring n and let $N_c(r_n,m)$ be the number of cluster stars brighter than m in ring n, then

$$N_c(r_n,m) = N(r_n,m) - \sigma_b(m) A(n)$$
(5)

in which $\sigma_b(m)$ is the surface density of background stars brighter than m and A(n) is the area of ring n. Since we are dealing with very young clusters, which have ages smaller than their times of relaxation, it will be assumed that the radial density distribution of cluster stars is identical for *all* magnitudes. Equation (5) may then be written

$$K(n) N_c(m) = N(r_n, m) - \sigma_b(m) A(n)$$
(6)

in which K(n) is the fraction of all cluster stars $N_c(m)$ in ring *n*. From equation (5) for rings 1 and 2 one obtains

$$f N_{e}(m) = \left[K(1) - \frac{K(2)}{3} \right] N_{e}(m) = N(1,m) - \frac{N(2,m)}{3}$$
(7)

This equation was used to determine the function $f\phi(M)$ for those clusters in which the absorption was judged to be relatively homogeneous over the nuclear region of the cluster.

The luminosity functions of the nine young clusters which were studied in the present investigation are shown on pages 247 to 250. The data indicate that the luminosity functions of young clusters differ from cluster to cluster. In the majority of the clusters the luminosity function appears to increase rapidly and then remains constant down to the limit of the observations. On the other hand the figures on p. 250 indicate that the clusters NGC 1907, NGC 1960 (M36) and NGC 2362 (τ CMa) appear to contain few if any intrinsically faint stars.

Star counts were made on the red prints of the Palomar Sky Survey in NGC 1907 and NGC 1960 to check the possibility that the apparent absence of faint cluster stars might be due to some peculiarity of the absorption in or near the nuclei of these clusters. Such absorption would of course be less effective in the red than in the blue. The results of the counts on the Sky Survey red prints are shown as open circles on p. 250 and seem to agree with the results obtained from the blue plates. Due to the fact that interstellar absorption is smaller in the red than in the blue, and because the faintest cluster stars are intrinsically red, the counts on the red prints should reach even fainter cluster stars than those recorded on the blue plates. It is therefore concluded that the absence of intrinsically faint stars in NGC 1907 and NGC 1960 (M36) is probably real. The possibility that the least massive stars in such very young clusters are still non-luminous, should of course, be kept in mind.

It is of some interest to note that if ϕ Cas is a member of NGC 457 (Pesch 1959), then the cluster contains stars with a brightness range of at least 15 magnitudes. On the other hand the main sequences of NGC 1907 and NGC 1960 (M36) only appear to be populated over a range of about 7 magnitudes.

THE RADIAL DENSITY DISTRIBUTION OF CLUSTER STARS

From the counts of stars in rings centred on the cluster nucleus the radial density distribution of cluster stars could be determined for the majority of the clusters contained in the present programme. The results are shown in figure 2, in which the fraction of all cluster stars $F(r/r_2^*)$ within radius r is plotted as a function of r/r_2^* in which r_2^* is the radius containing half of the cluster stars in projection. A cluster in which cluster stars could be traced out to a distance of n rings is represented in the figure by n points. The figure shows that the radial density distributions of all clusters which have been investigated are essentially similar. The scatter of the points for the outer regions of clusters may be largely due to the uncertainties inherent in the observations. The data for the high latitude clusters NGC 188 and M67 and the very rich cluster NGC 7789, which are

believed to be more accurate than those for the other clusters, are given in Table V (the points for these clusters are shown as large dots in figure 2).

TABLE V

	Fra	CTION C)F ALL	Cluste	er Stai	Rs F(r∕	r;*) W	ITHIN H	RADIUS	r/r <u>1</u> *	
					NGC	C 188					
$r/r_{\frac{1}{2}}*$	0.00	0.44	0.87	1.30	1.74	2.17	2.61	3.04			
F	0.00	0.17	0.43	0.65	0.77	0.86	0.95	1.00			
				N	GC 26	82 (Me	i7)				
$r/r_{\frac{1}{2}}^{*}$	0.00	0.29	0.59	0.88	1.18	1.47	1.76	2.06	2.35	2.65	2.94
F	0.00	0 10	0.28	0 43	0.58	0.71	0.80	0.86	0.93	0.96	1.00
					NGC	7789					
$r/r_{\frac{1}{2}}^*$	0.00	0 34	0.69	1.03	1 38	1.72	2.07	2.41	2.76	3.10	
F	0.00	0 11	0.34	0.01	0.08	0.81	0.90	0.94	0.98	1.00	
100 F		1		1	. 1			• •	••		
											•
							:				
							•	• •			
-					,						1
					- / •	•					
					•						
60 -					•						-
				2/2							
F			/								-
			•								
		•	•/								
10		/									
40											
	, i										
يما م				.1	I.,		2			3	l

FIG. 2—Fraction of the total number of cluster stars $F(r/r_{\frac{1}{2}}^*)$ within a distance $r/r_{\frac{1}{2}}^*$ of the cluster centre. $(r_{\frac{1}{2}}^*$ is the radius containing half of the cluster stars in projection.) The curve shows $F(r/r_{\frac{1}{2}}^*)$ for an isothermal cluster.

In figure 2 a smooth curve shows $F(r/r_{\frac{1}{2}}^*)$ for an isothermal cluster with a cutoff at $\xi = 10$, which has been tabulated by Chandrasekhar (1942). The scale factor for the isothermal distribution was chosen such that F = 0.5 for $r = r_{\frac{1}{2}}^*$. Comparison of the observed points, with the curve representing an isothermal cluster, shows systematic deviations which are probably significant. For $r/r_{\frac{1}{2}}^* < 0.5$ the observed points lie above the isothermal curve and for $r/r_{\frac{1}{2}}^* > 0.5$ the observed points fall predominantly below it. The observations may be represented remarkably well by a stellar surface density, σ , of the following form

$$\frac{\sigma(r)}{\sigma(o)} = e^{-1.68r/r} t^* \tag{8}$$

The data on the radii of the clusters contained in the present programme are given in Table VI.

 TABLE VI

 Cluster Radii Containing Half of the Cluster Stars in Projection

	$r_{\frac{1}{2}}^{*}$	D	- interfe	r1 *	D
NGC 188	8.5 = 2.4 pc.	1250 pc.	NGC 2362	1.6: = 0.7:pc.	1450 pc.
NGC 436	$1'_{.8:} = 1.2$:pc.	2200:pc.	NGC 2477	6:0	
NGC 457	$3'_{.8} = 3.2 \text{ pc.}$	2900 рс.	NGC 2506	4.'8	
NGC 2099	$8'_{.8} = 3.6 \text{ pc.}$	1400 pc.	NGC 2539	6.7 = 1.5 pc.	750 pc.
NGC 2141	4.'1		NGC 2682	$9'_{$	800 pc.
NGC 2158	3.'6 = 5.0 pc.	4800 pc.	NGC 7789	$8'_{.2} = 4.4 \text{ pc.}$	1850 pc.
NGC 2194	3.7 = 1.3:pc.	1200:pc.	IC 361	3:8 —	

The data in the table may indicate a loose correlation between the radius containing half the total number of cluster stars and the stellar content of the clusters. NGC 2158 and NGC 7789, which are extremely rich, are seen to have larger than average radii.

DISCUSSION OF RESULTS

Probably the most striking feature revealed by the luminosity functions shown on pages 236 to 250 is that significant differences exist between the luminosity functions of individual galactic clusters. Some of these differences may be explained in terms of the effects of stellar evolution on the positions of cluster stars in the Hertzsprung-Russell diagram. However, evolution of individual stars cannot account for

the differences which are observed among the luminosity functions of unevolved main sequence cluster stars. The data on the luminosity functions of those clusters for which the observations extend below $M_{pg} = +5$ are summarized in Table VII. The data for the Hyades, Pleiades and Praesepe were taken from Sandage (1957).

Cluster	Limiting M_{pg}	$\phi(M_{pg})$
NGC 188	+10	Decreasing
NGC 436	+ 6	Constant?
NGC 457	+ 6	Constant?
NGC 559	+ 6	Constant?
NGC 581 (M103)	+ 6	Decreasing slightly?
NGC 663	+ 5	Decreasing slightly?
NGC 1907	+7	Decreasing
NGC 1960 (M36)	+ 9	Decreasing
NGC 2099 (M37)	+ 8	Decreasing slightly
NGC 2194	+ 6	Increasing
NGC 2362 (7 CMa)	+ 9	Decreasing
NGC 2539	+ 8	Decreasing slightly
NGC 2682 (M67)	+11	Decreasing
NGC 7789	+ 6	Constant
Trumpler 1	+ 6	Constant?
Hyades	+ 7	Constant
Pleiades	+10	Decreasing slightly
Praesepe	+7	Constant

			TABLE	VII	
Тне	FAINT	ENDS OF	CLUSTER	LUMINOSITY	FUNCTIONS

Table VII shows that, with only one exception, the faint ends of the luminosity functions of galactic clusters either decrease or remain constant. This behaviour is in sharp contrast to that of the van Rhijn-Luyten luminosity function for field stars in the vicinity of the sun. Recent computations by Schmidt (1959) show that $\phi(M_{pq})$ for field stars begins to increase sharply at $M_{pq} = +5$. The present observations show that such an increase does not, in general, occur in the luminosity functions of galactic clusters.

In the case of very old clusters like NGC 188 and M67 it might be assumed that the difference between the cluster luminosity functions and the van Rhijn-Luyten luminosity function is due to the escape of faint cluster stars (van den Bergh 1957). However, the relaxation times of these clusters (see Table IV) are so long that it now appears unlikely that the entire discrepancy could be accounted for in this way. The fact that faint stars appear to be almost absent in such young objects as NGC 1907, M36 and the τ Canis Majoris cluster could conceivably be accounted for by assuming that such faint stars have not yet contracted to a position near the main sequence. However, this appears unlikely in the light of Walker's (1956) observations of the extremely young cluster NGC 2264, which show that stars as faint as $M_{pg} = +8$ occur in that cluster. In any case neither of the two special hypotheses outlined above could account for the differences between the van Rhijn-Luyten luminosity function and the luminosity functions of galactic clusters of intermediate age.

The differences between the luminosity functions of galactic clusters on the one hand and the luminosity function of field stars on the other may be accounted for in a number of ways. It may be assumed that:

(1) There now exists a universal cluster luminosity function which is identical to the luminosity function of star creation during the last few million years and this luminosity function differs from the initial luminosity function of star creation in the galaxy.

(2) The luminosity function of galactic star clusters is not representative of the luminosity function of star creation. This presumably implies that the conditions under which star clusters are created are not representative of the conditions under which "average" stars in the galaxy were formed.

For a number of reasons, the second hypothesis appears more attractive than the first. If the first hypothesis were correct then, to account for the present luminosity function of field stars, one would have to assume that the luminosity function of star creation in the galaxy initially contained a much larger fraction of faint stars than it does now. This is equivalent to saying that the initial luminosity function of star creation must have been deficient in bright stars. According to current views on stellar evolution, the ejection of heavy elements, formed by nucleogenesis in bright stars, enriches the heavy element concentration in the interstellar gas. It is, therefore, difficult to see how the presumably rapid increase in the heavy element abundance during the first phase of the evolution of the galaxy could be understood if the luminosity function of star creation were initially deficient in massive stars.

The striking differences between the luminosity functions of individual galactic clusters makes it difficult to believe in the universality Publications of the David Dunlap Observatory

of the luminosity function of star creation. It would appear to be more reasonable to assume that the differences between individual star clusters and also between star clusters on the one hand and field stars on the other are due to different physical conditions in the regions of star creation. Although our understanding of the processes by which stars are created from the interstellar gas is still very fragmentary, it appears likely that the resulting spectrum of stellar masses will depend to some extent on the prevailing gas density, temperature and turbulent velocity and perhaps also on the prevailing strength and configuration of the magnetic field.

The conclusion that the luminosity function with which stars are created depends on the physical conditions prevailing in the region of star formation implies that it is not possible to obtain a significant determination of the change in the rate of star formation with time by comparing the present main sequence luminosity function of bright field stars with the bright ends of cluster luminosity functions. Assuming the dependence of the rate of star formation, f(t), on the gas density ρ , to be given by

$$f(t) \sim \rho^n \tag{9}$$

Schmidt (1959) obtains n = 1 to 2 from a comparison of the main sequence luminosity function of bright field stars with a "mean" luminosity function of bright stars in young clusters. On the other hand he finds that a comparison of the distribution of young stars and interstellar gas perpendicular to the galactic plane yields n = 2 to 3. The present investigation suggests that this discrepancy may be due to the fact that it is not legitimate to assume that the luminosity functions of galactic clusters are identical to the general luminosity function of star formation.

(Concluded on page 251)

TABLES AND FIGURES

Information concerning the arrangement of the tabular material and figures is given below.

Table I - Star Counts

The table contains the actual number of stars counted per ring down to each limiting magnitude. Limiting magnitudes marked by an asterisk refer to counts of stars brighter than a star of that magnitude. Limiting magnitudes not so marked refer to counts to the plate limit. Uncertain limiting magnitudes are followed by a colon. Limiting magnitudes followed by the letters B or R refer to counts on the blue or red prints of the Palomar Sky Survey. A vertical line in the tables indicates the adopted boundary between the cluster and background areas. In NGC 2158 and NGC 7789 numbers in parenthesis are counts corrected for overlapping images in the crowded cluster nuclei. In NGC 2158 numbers preceded by a minus sign give the number of background stars in the quadrant containing the nearby cluster M35. These were subtracted from the total number of stars in each ring to give the adopted background.

Table II - Integral Luminosity Functions

The table gives the total number of cluster stars N(m)down to each limiting magnitude as determined from the star counts in Table I. For most clusters the data are given separately for the inner region of the cluster, in which the cluster luminosity function is less affected by uncertainties in the adopted background level, than is the luminosity function of the entire cluster. For a number of young clusters only f N(m) is given in which f is an unknown constant which is smaller than one. In the case of NGC 2362 the inner half ring was excluded because the data are affected by the bright star T CMa which is in the centre of the cluster.

Figures

The following figures give the integral luminosity functions (below) and differential luminosity functions (above) for the clusters contained in the present programme. The data for the inner cluster region are represented by the lower curve (scale on right) and solid histogram. The data for the entire cluster are given by the upper curve (scale on left) and the open histogram. Data obtained from the red prints of the Palomar Sky Survey are shown as open circles.

																					Q		00	>
10		0	Ó	15	16	31	47	59	71	148	180	199	252	269	315	333	376	616	668		Q		00	2
6		-	2	2	6	24	43	47	59	116	160	179	226	228	268	284	316	582	663	457	4		00	>
8		0	4	Ø	12	20	45	48	64	135	161	176	219	218	236	250	283	506	577	NGC	2		н с 0 0	2
7		0	e	4	2	20	32	42	50	93	131	148	200	186	226	236	256	465	545		Ļ		00	0
9		1	9	6	11	20	39	46	53	111	135	150	198	189	227	225	255	444	479		Ring	mpg	5.77* 7.53*	
ទ		7	e	2	5	10	19	22	27	81	104	124	156	155	187	196	206	370	416					
4		Ţ	4	12	80	19	24	29	41	110	129	140	176	179	185	190	219	341	365		22		00	1
က		1	1	Ð	9	12	19	30	40	124	138	145	180	183	202	213	221	336	390		3 4		0	
2		0	r=	7	4	22	26	46	63	171	159	193	212	206	234	226	238	314	330	C 436	2		0 -	-
7		0	0	61	3 C	7	13	21	28	75	86	98	106	109	120	114	122	174	179	NG	r-i		00	>
Ring	mpg	*06°6	12.02*	13.15*	13.40	14.17*	14.71*	15.21*	15.59*	16.52*	17.00	17.23*	17.60	17.65	17.80*:	18,15:	18.40:	20.00:B	R		Ring	mpg	9.68* 10.25*	
								-	- :	22	0	-												

TABLE I - STAR COUNTS NGC 188 5

	- 23	21 -														
11.82* 13.14* 14.50 14.50 15.45 16.25 16.25 20.30:B R		ц рс	9.68*	10.35*	11.82*	13.14*	14.50	15 15	16.00:	16.25	16.45	16.85*:	18.60:	19.30:	20.30 B	В
13 19 19 19 19 19 19 218 218 277		Ring														
4 4 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	NGC	-	0	0	0	en 1	11	6 T	3 8 6	51	26	85	1	1	259	318
739 739 739 739 739 739 739 739 739 739	559	2	0	0	2	(T) (00	21	28	40	53	115	I	L	426	651
11 22 54 54 933 933 932 932				-	0.1	~	~				~	10			.0	
2 20 20 32 116 116 1151																
	NGC	1	Ч	2	13	23	40 70	22	58	69	66	83	125	195	280	282
9.68* 10.35* 11.82* 14.50 14.50 15.45 16.25 16.45 20.30:B	581	5	4	1	с (20 L	286	54	74	89	100	166	277	432	675	697
1 2 2 2 1 2 2 2 1 2 2 2 2 0 2 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0																
5 18 53 65 112 112 117 476	Ţ	-	0	0	<u>ີ</u>	070	45	55	61	69	75	82	133	154	227	250
1 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	NGC 66								1	1	1	1	2	n	4	9
1 3 3 5 5 1 0 4 1 0 4 8 3 1 8 3 1	e	52	1	ຄ	14	07.0	22 T T	97	06	28	35	59	64	49	56	10
0 0 0 0 0 0 0 0 0 0 0 0 0 0																
0 0 1 29 109 1231 1231	T1	r4	0	0	9 0	30	34	45	48	61	63	78	116	156	$242 \\ 242$	297
1 22 555 128 1439 1437	, 1	2	0	0	0 0	717	26	36	40	47	58	109	171	326	451	T70

																									10		80	TR
960	2		0	2	e	9	9	13	31	44	53	63	67	76	107	135	1	1	149	169	377	1	477		6		en e	80
NGC 1	Ч		0	6	7	9	13	17	28	39	43	45	48	50	61	67	1	ı	66	78	147	ŧ	183		8			14
																									7			9
907	2		0	0	0	0	2	3	13	27	47	54	72	92	140	159	183	171	194	232	ŧ	368	413	9 (M37)	6		1	2
NGC 1	Fi		0	0	0	2	4	2	16	35	50	49	66	75	95	105	96	94	108	116	t	182	189	NGC 209	ប		0	
																			. 1			. 1			4		0	2
	Ring		3*	8*	8*	1*	5	5	0	5	0	5	0	0	0	0	0	0	0	0	0:B	0:B			e		1	32 T
	oum	20 1	7.5	0.6	9°2	10.5	11.5	12.2	13.7	14.3	15.0	15.2	15.6	16.2	17.5	18.2	18.4	18.4	18.7	19.1	20.5	20.6	R		2		0	29
																									7		e i	37
																									Ring	mpg	10.68*	×21.•TT

11

HP

TABLE I (continued)

- 222 -

19	64	104	116	176	191	344	886	1148	1186	1428	1677																	
31	82	118	133	160	181	326	849	1040	1180	1353	1604																	
23 58	65	90	120	168	186	297	753	606	1072	1172	1536																	
27	75	105	106	149	167	279	666	875	958	1074	1379																	
17	45	71	90	125	144	266	624	762	877	959	1173		7		9	27	44	121	172	202	301	321	434	474	500	705	882	1059
19 58	59	87	96	125	146	231	537	711	771	847	1117	GC 2141	6		7	23	32	89	121	156	229	282	351	416	439	630	762	854
34 63	68	108	112	139	158	231	485	585	675	749	890	N	5		5	27	44	87	135	160	222	249	289	340	342	524	653	719
41 59	63	88	97	130	138	199	418	507	582	615	792		4		4	19	24	68	96	123	173	203	278	322	323	463	586	655
66 87	95	123	119	146	158	229	374	432	455	529	605		3		7	18	24	55	83	95	128	160	216	252	268	360	453	568
73 118	107	132	137	153	161	216	331	374	368	393	487		2		4	13	16	33	56	70	121	143	209	240	246	345	417	517
79 97	92	118	108	124	127	145	182	192	202	210	222		7		0	с С	9	36	45	59	75	100	138	153	174	206	240	380
12.78* 13.60	13.65	14.00	14.15	14.50	14.65	15.55	17.40	17.95	18,20	18.60	19.35		Ring	mpg	12.35*	13.76*	14.89*	16.15	16.75	17.10	17.65	17.85	18.20	18,35	18.40	18,95	19.30	19.55:B

- 223 -

T	3
0	2
12	5
2	1
-	i
÷	ŝ
ċ	1
2	5
č	ŝ
. 1	٦.
-	
1 1	-
E T C	
LE T (
RLF. T (
ARLE T (,	
TARLE T (

NGC 2158

5	9 1	- 6 C 6 C	99 190	1 00 1 00 1 00	000 1000	150	-55 216	-85	-123	342	-124	597	-193	6TL	-221	946	-278	1024	-324
Q	4	24	04	100	020 1	-19	$-30 \\ 180$	- 59	- 80	271	-89	453	-156	621	-219	773	-268	903	-286
Q	0	21	38	51	76	113	160	610	041	231		381		476		618		669	_
4	3	15	21	27	39	71	106	1 5.0	101	167		302	(303)	403	(405)	525	(223)	632	(640)
က	4	16	23	30	36	67	106	2 V L	740	158		270	(271)	346	(348)	442	(447)	520	(528)
0	г	8	10 17	20	26	33	76	100	204	125		262	(264)	343	(345)	493	(200)	563	(277)
Л	eri.	8	13	6	1.7	28	68	60	0	100		281	(286)	331	(338)	474	(495)	442	(469)
Ring m _{pg}	10.69*	12.85	13.65	14.00	14.35	15,35	16.00	16 70		16.90		18.00		18.50		19.00		19,25	

- 224 -

																								2362 (t CMa)			
5		6	10	16	19	16	35	47	79	120	150	206	235	243	290	293	313	323	372	404	443	561	628	NGC	Ċ	2	Η 2
4		[10	80	18	40	55	72	101	126	184	201	205	239	248	271	278	317	347	368	472	1 506		6	1	
3			0	10	16	14	31	40	73	102	114	163	190	187	238	238	240	257	292	313	345	442	494		- 0	N	00
5		0		7	6	9	20	35	69	97	115	148	185	168	214	208	218	234	277	290	342	406	412		[2 0
g 1		1	0	12	14	e	24	47	69	97	95	119	143	149	171	156	178	178	179	188	209	250	274		-[c	u u	11
Rin	mpg	10.72*	11.45*	11.75	11.80	12.35*	13.76*	14.89*	16.15	16.75	17.10	17.65	17.85	17.90	18.20	18.25	18.35	18.40	18.65	18.75	18.95	19.30	19.55:B		Rine	mpg	6.63* 7.61*

NGC 2194

		NGC 2477	5	1 1 3 6 10	10 20 51 64	164 184 232 294 555 656
ę	55221 556234554 55624345544 55624455 5562445 556245 55755 55755 55755 557555 557555 557555 557555 557555 5575555 5575555 5575555 55755555 5575555 55755555 55755555 557555555	L	c	04	85	198 260 567
5	0 0 110 110 183 183 183 183 183 183 183 183 183 183	~	₽.	0 ო	7 94	193 263 551
17	0 30 10 10 10 10 10 10 10 10 10 10 10 10 10	c	c	0 H	26 11 3	232 292 552
Ħ	106 106 117 117 117 106 106 106	c	1	4 0	26 121	214 282 466
- 1 04	333250255583203 703558482203	.	-	0 н	19 86	136 169 218
Ring ^m pg	8.83* 10.17* 11.21* 12.25* 12.25* 13.40 14.80 13.45 18.45 18.45 18.45 20.00	2 D	antra gq ^m	10.1^{+} 11.4^{+}	13.1* 14.5*	15.9* 16.8* 18.0::

TABLE I (continued)

(beu)

- 226 -

		æ	0	4 8	11_{90}	57	124	149
7	$\begin{array}{c} 1 \\ 1 \\ 3 \\ 3 \\ 5 \\ 5 \\ 1 \\ 1 \\ 2 \\ 5 \\ 5 \\ 5 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	7	1	10 2	15	00 68	111	185
Ó	$\begin{array}{c} 1 \\ 22 \\ 22 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ $	C 2539 6	0	0 0	6	54	91 L	149
ນ	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NG 5	0	01 10	16	58	90 110	135
4	6 5 5 2 3 3 9 2 8 4 4 1 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4	4	Ţ	5 13	25	4 <i>c</i> 6 8	93 112	130
e	558662200 578665220 578765220 578765220 578765220 57875520 577755520 5777555520 577755500 577755500 577755000 577755000 577755000 57775500000000	3	0	0	23	49 49	71	101
7	585 585 585 585 585 585 585 585 585 585	2	0	1 18	27	44 53	73 85	100
1	32022001 32022001 320220022003 3202200220001 320220001 320220001 320220001 320200001 320200001 320000000000	1	0	102	16	2 5	34 27	43
Ring	PK 12.15. 13.00* 15.005 15.85 16.15 16.65 16.65 17.20* 18.005 18.05 18.05 18.05 18.05	Ring	п _{рк} 9.15*	10.90*	13.00*	13.70× 15.05	15.50	16.15
	- 227 -							

NGC 2506

							ĩ		Ŭ				~		~	1	H	5	36	9	8	11(151
							17		5	2	ý	2	6	10	16	27	26	49	53	75	104	130	162
							16		2	ന	က	4	ý	ŝ	80	18	16	28	37	49	79	98	134
							15		2	က	က	ى ۵	2	6	11	24	30	37	45	64	94	114	156
							14		1	4	က	Ω	80	10	6	17	24	33	40	55	91	98	197
		6	318 415	705	1047		13		0	က	4	က	4	S	2	18	20	30	33	50	74	95	195
		8	64 33	4 6 0	64		12		2	e	4	2	00	80	11	21	28	34	40	52	74	87	114
			00	4 O U	ά		11		2	4	ر	4	2	9	6	12	24	30	30	47	66	81	118
ued)	ued)	7	244 325	547 547	811	~	10		0	1	က	e	2	4	7	23	24	31	34	45	71	83	108
ontin	ontin	6		0 0		(M67	6		0	e	0	0	က	4	4	14	21	33	41	46	67	81	107
I (c	39 (c		18 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	474	40 66	2682	80		٦	Ч	-	4	വ	80	80	16	18	27	35	45	67	85	66
TABLE	GC 25	ß	182 230	100	571	NGC	7		1	2	с С	က	4	4	2	10	1_{4}	26	32	52	61	76	96
	N						9		0	0	0	0	-	٦	е С	13	20	30	39	49	75	86	108
		4	178 211 241	340	454		5		0	Ч	٦	2	4	ß	2	18	25	36	42	59	75	96	111
		က	127 164	247	343		4		0	0	1	က	ന	4	4	7	15	37	57	73	100	108	122
		5	00 h- 0		N m		ന		1	4	0	വ	വ	9	œ	15	22	38	47	62	74	89	109
			13,		248		2		1	9	2	11	11	15	24	30	44	76	87	89	119	129	130
		1	50 58 60	102	103		1		0	0 Q	9	œ	œ	11	12	20	28	40	42	53	56	65	69
		Ring M _{pg}	16.65 17.05 17.20*	18.00 18.05*	18.65	22	Ring	mpg	9.78*	10.67*	11.10*	11.51*	11.83*	11.95	12.30*	13.25	13.60	14.30	14.60	15.45	16.30	16.90	17.70

18.55 19.25	19.30	19.85	20.65B		R1	mpg	11.07*	12.68*	13.14*	*88°ET 22	0 14.25	1 14.75	14.77*	15.09*	15.15	15.45	16.49*	17.26*	17.60:		18.00:		18.10:		18,20:		18.20:	
75 78	74	62	92		ng 1			2	10	17	45	75	46	66	91	115	159	197	225	(238)	253	(266)	261	(279)	272	(305)	290	(309)
$146 \\ 149$	158	169	172		64		674	22	24	40	86	122	92	241	186	221	346	444	508	(526	617	(637	606	(634	720	(762	680	(717)
130 143.	136	160	179							_		-			-			4		(2)	9	9) (9	9) (6	2	() (2	-	2) (.
$133 \\ 165$	160	173	199		co		1	12	16	25	60	.03	83	.82	.36	.83	341	40	149	58)	77	87)	71	86)	42	(63)	54	(02.
$130 \\ 151$	150	180	217		4		5	21	19	40	53	85	92	218	138	185	350	528	651	(099)	828	(837)	875	(890)	941	(961)	938	(953)
$124 \\ 151$	148 150	175	212												-	-1	00	20	0)	2	<u> </u>	æ)	TC	(10)	1(()()
$121 \\ 149$	147	172	209	N(5		က	27	26	41	62	92	91	214	44	195	391	535	578	685)	395	904)	397	010)	101	(610)26	(01)
127 157	157	193	236	3C 778	0		ſ	26	22	44	61	100	36	215	147	171	365	596	700	(706	943	(950	994	(1006	1105	(1121	1079	(1091)
$130 \\ 162$	166	195 1	236	39				.0	~1			.0	<u> </u>	10				.0	_) ()	~	E) (1)		 (1) (1) 		() ()	[(
137 177	172	214	261		7		9	35	39	36	88	126	114	256	1.64	204	463	639	795	(802)	1072	080)	068	.081)	183	(200)	176	189)
$\frac{148}{182}$	181	211	246					e	က	4	2	6	11	20	15	19	43	68	86		113		125		135		136	
$156 \\ 198$	196	194 231	280		8		7	7	0	5	1	6	4	0	6	1	3	3	0				4		5		3	
$145 \\ 183$	198	1.20 2.2.8	294		6		7	25	33	30	72	109	93	257	159	190	487	749	956		1274		1326		1473		1479	
$165 \\ 208$	211	254	362				_							C 4			4	<u></u>	10		E		14		10			
$204 \\ 261$	263	310	406		10		5	31	28	45	82	118	66	227	53	L95	150	321	32		372		143		583		586	
$172 \\ 241$	231	294	384		11		w	4.5	35	45	6	13^{2}	10^{-1}	28(19(24	513	86/	108(1513		1581		174		1762	
209 251	276	327	389		_,		~	~	~	~	~	-		~	.0	7		_									_	
208 282	260	337	424		12		14	49	68	81	123	165	155	323	226	272	608	1007	1250		690		805		.943		1961	

TABLE I (concluded)

IC 361

		Г		-	-	-	-	-	Ξ.	-	23			
Ring	mpg	4.60	5.50	5.80	6.15	7.10*	7.70	8.25	8.25	8.55	8.85	9.00	0.00:B	p
-1		co	11	23	40	65	180	153	136	162	180	215	255	317
5		6	14	19	28	86	128	158	155	182	204	229	377	554
co		8	17	25	26	82	120	167	152	180	237	241	412	741
4		11	25	43	59	84	154	201	200	235	287	304	485	845
2		18	38	43	55	112	169	252	226	274	331	359	625	074
9		28	52	60	83	135	223	274	287	339	397	427	713	1266
7		27	50	65	78	1.62	221	340	338	403	480	526	901	1478

TABLE II - LUMINOSITY FUNCTIONS

NGC 188

	Inner	Re	egion	Ent	tir	e
^m pg	Rings	1	,2,3	C11	151	er
9.90*	1	±	0	1	±	2
12.02*	0	\pm	1	6	±	5
13.15*	8	±	1	13	±	7
13.40	6	±	2	6	±	8
14.17*	29	±	2	40	±	12
14.71*	34	±	3	42	±	16
15.21*	70	±	3	89	±	17
15.59*	97	±	3	116	±	19
16.52*	300	±	5	381	±	27
17.00	295	±	6	401	±	31
17.23*	338	±	ó	466	±	31
17.60	375	±	7	559	±	36
17.65	372	±	7	521	±	37
17.80*:	412	±	7	597	±	39
18.15:	400	±	7	567	±	40
18.40:	409	±	8	581	±	42
20.00:B	524	+	10	807	±	57
R	563	+	11	873	±	60

NGC 436

NGC 457

mpg	Inner Region Ring 1	Entire Cluster	Inner Region Rings 1,2	Entire Cluster
5.77* 7.53* 9.68* 10.35* 11.82* 13.14* 14.50 14.90 15.45 16.00: 16.25 16.45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 \ \pm \ 0 \\ 0 \ \pm \ 0 \\ 0 \ \pm \ 0 \\ 1 \ \pm \ 1 \\ 5 \ \pm \ 1 \\ 11 \ \pm \ 2 \\ 16 \ \pm \ 4 \\ 22 \ \pm \ 5 \\ 37 \ \pm \ 6 \\ 43 \ \pm \ 6 \\ 47 \ \pm \ 7 \\ 67 \ \pm \ 8 \end{array}$	$ \begin{array}{c} 1 \pm 0 \\ 2 \pm 0 \\ 6 \pm 0 \\ 11 \pm 1 \\ 29 \pm 1 \\ 45 \pm 1 \\ 82 \pm 4 \\ 94 \pm 4 \\ 111 \pm 5 \\ - \\ 143 \pm 7 \\ 142 \pm 7 \\ \end{array} $	$ \begin{array}{c} 1 \pm 0 \\ 2 \pm 0 \\ 8 \pm 1 \\ 15 \pm 2 \\ 38 \pm 2 \\ 61 \pm 3 \\ 96 \pm 9 \\ 111 \pm 10 \\ 137 \pm 12 \\ - \\ 199 \pm 15 \\ 204 \pm 16 \\ \end{array} $
20.30:B R	144 ± 12 143 ± 12	153 ± 25 233 ± 25	281 ± 23	406 ± 52
mpg	NGC 559 fN(m)	NGC 581 fN(m)	NGC 663 fN(m)	Tr 1 fN(m)
9.68* 10.35 11.82* 13.14* 14.50 14.90 15.45 16.00: 16.25	$\begin{array}{c} 0 \ \pm \ 0 \\ 0 \ \pm \ 0 \\ -1 \ \pm \ 1 \\ 10 \ \pm \ 1 \\ 10 \ \pm \ 1 \\ 12 \ \pm \ 1 \\ 22 \ \pm \ 3 \\ 29 \ \pm \ 4 \\ 38 \ \pm \ 4 \end{array}$	$ \begin{array}{c} 1 \pm 0 \\ 2 \pm 1 \\ 12 \pm 1 \\ 20 \pm 2 \\ 37 \pm 3 \\ 39 \pm 4 \\ 34 \pm 5 \\ 33 \pm 6 \\ 39 \pm 6 \\ 39 \pm 6 \end{array} $	$\begin{array}{c} 0 \ \pm \ 1 \\ -2 \ \pm \ 1 \\ 0 \ \pm \ 2 \\ 11 \ \pm \ 3 \\ 24 \ \pm \ 4 \\ 26 \ \pm \ 5 \\ 23 \ \pm \ 7 \\ 26 \ \pm \ 7 \\ 26 \ \pm \ 8 \end{array}$	$\begin{array}{c} 0 \ \pm \ 0 \\ 0 \ \pm \ 0 \\ 6 \ \pm \ 0 \\ 7 \ \pm \ 1 \\ 24 \ \pm \ 3 \\ 25 \ \pm \ 3 \\ 3.3 \ \pm \ 4 \\ 3.5 \ \pm \ 4 \\ 45 \ \pm \ 5 \end{array}$

- 231 -

TABLE II (continued)

(cont [®] d) ^m pg	NGC 559 fN(m)	NGC 581 fN(m)	NGC 663 fN(m)	Tr 1 fN(m)
16.45 16.85*: 18.60: 19.30: 20.30:B R	41 ± 5 47 ± 8 - 117 ± 14 101 ± 17	33 ± 7 28 ± 9 32 ± 11 51 ± 14 55 ± 17 50 ± 17	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
^m pg	NGC 1907 fN(m)	NGC 1960 fN(m)		
7.53* 9.08* 9.58* 10.51* 11.55 12.25 13.70 14.35 15.00 15.25 15.60 16.20 17.50 18.20 18.40 18.40 18.40 18.70 19.10 20.50:B 20.60:B	$\begin{array}{c} 0 & \pm & 0 \\ 0 & \pm & 0 \\ 0 & 2 & \pm & 0 \\ 3 & \pm & \pm & 1 \\ 12 & \pm & \pm & 2 \\ 26 & \pm & \pm & 5 \\ 31 & \pm & \pm & 5 \\ 34 & \pm & \pm & 5 \\ 34 & \pm & \pm & 5 \\ 44 & \pm & \pm & 4 \\ 48 & \pm & \pm & 4 \\ 52 & \pm & \pm & 9 \\ 35 & \pm & \pm & 9 \\ 37 & \pm & \pm & 9 \\ 39 & \pm & \pm & 10 \\ 59 & \pm & \pm & 14 \\ \end{array}$	$\begin{array}{c} 0 \ \pm \ 0 \\ 5 \ \pm \ 1 \\ 6 \ \pm \ 1 \\ 7 \ \pm \ 2 \\ 10 \ \pm \ 2 \\ 13 \ \pm \ 4 \\ 24 \ \pm \ 4 \\ 25 \ \pm \ 5 \\ 26 \ \pm \ 5 \\ 25 \ \pm \ 5 \\ 22 \ \pm \ 2 \\ 13 \\ 16 \ \pm \ 4 \\ 22 \ \pm \ 13 \\ 24 \ \pm \ 14 \end{array}$		

NGC 2099 (M37)

^m pg	Inner Rings	Re 1,	egion 2,3	En: Clu	tin 151	re ter
10.68* 11.72* 12.78* 13.60 13.65 14.00 14.15 14.50 14.65	2 93 206 273 261 324 304 343 358	********	1 2 4 6 8 8 10 10	-6 114 274 383 367 482 443 524 572	********	5 9 13 21 22 27 30 35 36
15.55 17.40 17.95 18.20 18.60 19.35	437 494 509 482 508 552	*****	13 21 24 25 27 30	709 823 961 1028 938 1253	******	48 77 86 90 97 107

NGC 2141

NGC 2194

^m pg	Inner Region Rings 1,2	Entire Cluster	Inner Region Ring 1	Entire Cluster
10.72* 11.45* 11.75 11.80 12.35* 13.76* 14.89* 16.15 16.75 17.10 17.65 17.90 18.20 18.25 18.35 18.40 18.65 18.75 18.95 19.30 19.55:B	$ \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$\begin{array}{c} - \\ 0 \pm 4 \\ 16 \pm 7 \\ 12 \pm 9 \\ 48 \pm 15 \\ 72 \pm 18 \\ 95 \pm 19 \\ 132 \pm 23 \\ 193 \pm 25 \\ 319 \pm 23 \\ - \\ 319 \pm 28 \\ 370 \pm 30 \\ - \\ 390 \pm 30 \\ - \\ 473 \pm 31 \\ 582 \pm 41 \\ 844 \pm 44 \end{array}$	1 ± 0 -1 ± 1 10 ± 1 12 ± 1 19 ± 2 19 ± 2 41 ± 2 95 ± 3 60 ± 3 83 ± 4 95 ± 4 95 ± 5 121 ± 5 5 6 6 6 6 6 6 6 6 7 7 7 7 8 9 141 ± 2 8 3 8 3 ± 4 9 5 5 5 6 6 6 6 6 7 7 7 7 8 9 8 9 5 121 ± 2 8 8 8 3 ± 4 8 9 5 5 5 6 6 6 6 6 7 7 7 7 8 9 8 9 8 9 8 8 8 8 8 8 8 8 8 8	$\begin{array}{c} 0 & \pm & 2 \\ 0 & \pm & 5 \\ 14 & \pm & 5 \\ 4 & \pm & 5 \\ 65 & \pm & 9 \\ 127 & \pm & 12 \\ 172 & \pm & 12 \\ 172 & \pm & \pm & 12 \\ 172 & \pm & \pm & 12 \\ 211 & \pm & \pm & 20 \\ 326 & \pm & \pm & 23 \\ 3306 & \pm & \pm & \pm & 25 \\ 3361 & \pm & \pm & \pm & 26 \\ 439 & \pm & \pm & \pm & 331 \\ 368 & \pm & \pm & \pm & 331 \\ 311 & 516 & \pm & 331 \\ \end{array}$
	NGC 21	58	NGC 2362	(てCMa)
mpg	Inner Region Rings 1,2	Entire Cluster	mpg	fN(m)
10.69* 12.85 13.65 14.00 14.35 15.35 16.00 16.70 16.90 18.00 18.50 19.00 19.25	1 ± 1 9 ± 3 14 ± 4 12 ± 5 21 ± 5 21 ± 7 88 ± 8 121 ± 10 136 ± 10 394 ± 14 483 ± 16 736 ± 18 753 ± 19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.63* 7.61* 8.83* 10.17* 11.21* 12.25* 13.40 14.80 16.00 17.50 18.45 18.75 20.00	$\begin{array}{c} 0 & \pm & 1 \\ 1 & \pm & 1 \\ 3 & \pm & 1 \\ 10 & \pm & 2 \\ 266 & \pm & 2 \\ 337 & \pm & 4 \\ 40 & \pm & 5 \\ 488 & \pm & 8 \\ 40 & \pm & 5 \\ 488 & \pm & 8 \\ 40 & \pm & 11 \\ 577 & \pm & 15 \end{array}$

NGC 2477

	Inner Region	Entire
mpg	Rings 1,2	Cluster
10.1*	0 ± 1	-3 ± 3
11.4*	2 ± 2	0 ± 6
13.1*	40 ± 2	54 ± 8
14.5*	188 ± 5	379 ± 16
15.9*	293 ± 8	610 ± 27
16.8*:	363 ± 10	717 ± 33
18.0::	483 ± 15	1093 ± 51

TABLE II (continued)

NGC 2506

NGC 2539

mpg	Inner Region Rings 1,2	Entire Cluster	Inner Region Rings 1,2,3	Entire Cluster
9.15* 10.90* 12.12* 13.00* 15.05 15.50 15.50 15.85* 16.15 16.65 17.05 17.20* 18.00 18.05*: 18.40B	$\begin{array}{c} - \\ 3 \pm 2 \\ 7 \pm 2 \\ 21 \pm 3 \\ 116 \pm 6 \\ 128 \pm 7 \\ 108 \pm 7 \\ 268 \pm 9 \\ 355 \pm 10 \\ 413 \pm 11 \\ 511 \pm 14 \\ 546 \pm 16 \\ 589 \pm 16 \\ 559 \pm 17 \end{array}$	$\begin{array}{c} -2 \pm 6 \\ 1 \pm 8 \\ 18 \pm 11 \\ 129 \pm 21 \\ 162 \pm 22 \\ 183 \pm 22 \\ 387 \pm 28 \\ 518 \pm 33 \\ 688 \pm 33 \\ 688 \pm 45 \\ 925 \pm 51 \\ 952 \pm 51 \\ 952 \pm 54 \\ 1069 \pm 57 \end{array}$	$\begin{array}{c} 0 \ \pm \ 0 \\ 1 \ \pm \ 1 \\ 33 \ \pm \ 2 \\ 58 \ \pm \ 3 \\ 79 \ \pm \ 5 \\ 89 \ \pm \ 7 \\ 109 \ \pm \ 9 \\ 128 \ \pm \ 9 \\ 130 \ \pm \ 12 \\ 130 \ \pm \ 14 \\ 144 \ \pm \ 16 \\ 161 \ \pm \ 19 \\ 138 \ \pm \ 21 \\ 175 \ \pm \ 21 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
18.65	656 ± 18	1037 ± 60	150 ± 26	210 ± 63

NGC 2682 (M67)

Inner	Re	egion	En	tiı	ce	
Rings	1,	,2,3	C1	us1	ter	
1	±	1	-2	±	3	
14	±	1	11	±	4	
14	±	1	13	±	4	
23	±	1	25	±	5	
22	±	1	26	±	6	
30	±	2	36	±	6	
41	±	2	47	+	7	
59	±	2	98	±	10	
87	±	3	148	±	11	
143	±	3	255	±	13	
163	±	4	316	±	14	
186	±	4	369	±	17	
222	±	5	468	±	21	
250	±	6	535	\pm	23	
264	±	7	574	±	27	
294	±	8	625	±	30	
297	±	9	676	±	34	
295	±	9	649	±	35	
312	±	9	700	±	35	
320	±	9	731	±	38	
331	+	10	770	+	42	
	Inner Rings 1 14 14 23 22 30 41 59 87 143 163 186 222 250 264 294 297 295 312 331	Inner Re Rings 1 1 ± 1 14 ± 23 ± 22 ± 30 ± 4 22 ± 30 ± 4 143 ± 163 ± 163 ± 163 ± 163 ± 222 ± 2564 ± 294 ± 2975 ± 312 ± 331 ± 3	<pre>Inner Region Rings 1,2,3 1 ± 1 14 ± 1 14 ± 1 23 ± 1 22 ± 1 30 ± 2 41 ± 2 59 ± 2 87 ± 3 143 ± 3 163 ± 4 186 ± 4 222 ± 5 250 ± 6 264 ± 7 294 ± 8 297 ± 9 312 ± 9 331 ± 10</pre>	Inner Region Rings 1,2,3 1 ± 1 -2 14 ± 1 11 14 ± 1 13 23 ± 1 25 22 ± 1 26 30 ± 2 36 41 ± 2 47 59 ± 2 98 87 ± 3 148 143 ± 3 255 163 ± 4 316 186 ± 4 369 222 ± 5 468 250 ± 6 535 264 ± 7 574 294 ± 8 625 297 ± 9 676 295 ± 9 649 312 ± 9 700 320 ± 9 731 331 ± 10 770	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

NGC 7789

mpg	Inner	Re	gion	En 1	tir	re
	Rings	1,	2,3	Clu	1st	er
11.07*	0	±	2	-2	± ± ±	9
12.68*	24	±	5	55		19
13.14*	31	±	5	53		20

TABLE II (concluded)

NGC 7789 (concluded)

	Inner	R	egion	En	ti	re
"pg	KINGS	1	, 2, 0	011	15	ter.
13.88*	59	±	5	100	±	22
14.25	149	±	7	216	±	30
14.75	240	±	8	381	±	35
14.77*	170	±	8	364	±	32
15.09*	403	±	12	811	±	50
15.15	331	±	10	601	±	41
15.45	417	±	11	737	±	46
16.49*	621	±	.16	1313	±	68
17.26*	696	±	21	1350	±	89
17.60:	841	±	24	1661	±	99
18.00:	937	±	27	1886	±	116
18.10:	909	±	28	1857	±	119
18.20:	1063	±	30	1054	±	126
18.20:	1037	±	29	2083	±	125

IC 361

Inner R	egion	Entire
Ring	1	Cluster
1 ±	1	-5 ± 7
7 ±	2	-1 ± 10
18 ±	2	29 ± 11
33 ±	3	47 ± 12
53 ±	3	119 ± 16
111 ±	4	234 ± 20
127 ±	5	259 ± 24
110 ±	5	231 ± 24
131 ±	6	267 ± 26
146 ±	6	322 ± 28
$175 \pm$	6	352 ± 29
187 ±	8	445 ± 38
204 ±	11	654 ± 52
	Inner R Ring 1 ± 7 ± 18 ± 33 ± 53 ± 111 ± 127 ± 110 ± 131 ± 146 ± 185 ± 187 ± 204 ±	Inner Region Ring 1 1 ± 1 7 ± 2 18 ± 2 33 ± 3 53 ± 3 111 ± 4 127 ± 5 110 ± 5 131 ± 6 146 ± 6 175 ± 6 187 ± 8 204 ± 11

Acknowledgements

The observations on which this investigation is based were obtained while one of us (S. v. d. B.) was a guest investigator at the Mount Wilson and Palomar Observatories on temporary leave from the Ohio State University. The hospitality which he enjoyed at Mount Wilson and at the California Institute of Technology is gratefully acknowledged. In particular it is a pleasure to thank Dr. I. S. Bowen for his kind co-operation and Dr. A. R. Sandage for a number of helpful discussions. The competent assistance of Mr. C. Kearns with the 48-inch telescope is also gratefully recorded.

We are also indebted to Dr. H. C. Arp for providing us with an unpublished photoelectric sequence in NGC 2158 in addition to a set of plates of the same cluster taken with the 200-inch telescope. Dr. A. R. Sandage kindly provided photoelectric sequences in NGC 188 and NGC 7789 and Dr. W. A. Baum gave us unpublished photoelectric sequences in a number of selected areas. Dr. M. S. Roberts gave us some of his unpublished data on luminosity functions of a few clusters.

Part of this investigation was supported by a grant from the Ontario Research Foundation.

REFERENCES

Allen, C. W. 1955, "Astrophysical Quantities", (London: The Athlone Press) p. 180. van den Bergh, S. 1957. A. J., vol. 62, p. 100.

- Bodén, E. 1951, Uppsala Ann., vol. 2, no. 10.
- Burbidge, E. M. and Sandage, A. R. 1958, Ap. J., vol. 128, p. 174.
- Chandrasekhar, S. 1942, "Principles of Stellar Dynamics", (Chicago: Univ. of Chicago Press) p. 234.
- Cuffey, J. 1937a, Harv. Ann., vol. 105, p. 403.
- Cuffey, J. 1937b, Harv. Ann., vol. 106, p. 39.
- Cuffey, J. 1943, Ap. J., vol. 97, p. 93.
- Hiltner, W. A. 1956, Ap. J. Suppl., vol. 2, p. 389.
- Johnson, H. L. and Morgan, W. W. 1953, Ap. J., vol. 117, p. 313.
- Johnson, H. L. and Sandage, A. R. 1955, Ap. J., vol. 121, p. 616.

Johnson, H. L. 1957, Ap. J., vol. 126, p. 121.

- Johnson, H. L. 1959, Lowell Obs. Bull., vol. 4, p. 37.
- King, I. R. 1959, A. J., vol. 64, p. 351.
- Kruspan, E. 1959, Zs. f. Ap., vol. 48, p. 1.
- Lindblad, P. O. 1954, Stockholm Ann., vol. 18, no. 1.
- Pesch, P. 1959, Ap. J., vol. 130, p. 764.
- Sandage, A. R. 1957, Ap. J., vol. 125, p. 422.
- Sawyer, H. B. 1930, Harvard Obs. Bull., no. 875, p. 16.
- Schmidt, M. 1959, Ap. J., vol. 129, p. 243.
- Walker, M. F. 1956, Ap. J. Suppl., vol. 2, p. 365.

Zug, R. S. 1933, Lick Obs. Bull., vol. 16, p. 119.

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

NUMBER 8

SPECTROGRAPHIC ORBITS FOR THE ECLIPSING SYSTEMS V548 CYGNI, V805 AQUILAE AND V451 OPHIUCHI

JOHN F. HEARD AND DONALD C. MORTON

1962

TORONTO, CANADA

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

SPECTROGRAPHIC ORBITS FOR THE ECLIPSING SYSTEMS V548 CYGNI, V805 AQUILAE AND V451 OPHIUCHI

By John F. Heard and Donald C. Morton*

ABSTRACT

The orbital elements of these three eclipsing systems have already been published in an abstract by Heard and Morton (1956). These elements are unchanged in the present paper, but the observational data are here recorded in full, and the orbits are discussed in detail. Photometric elements are available for all three systems from the work of other authors. Thus, for the systems V805 Aql and V451 Oph, which are solved spectrographically for both stellar components, it has been possible to combine spectrographic and photometric results to obtain absolute values of diameters, masses and bolometric magnitudes.

V548 Cygni

This star, V548 Cygni, H.D. 189371, α (1900) 19^h 54^m6, δ (1900) + 54°32′, m_{pg} 8.90–9.72, sp. A0, was once listed as an RR Lyrae variable (see I.A.U., 1951). The late Professor A. Colacevich observed it photoelectrically at Naples and recognized it as an Algol-type system with a period of about 1.8 days. Fresa (1956) has analysed the light curve resulting from the Naples observations and has determined elements of the photometric orbit.

During 1954 and 1955 thirty-six spectrograms of V548 Cyg were obtained here with dispersion 33 A./mm. The velocities from these were used to obtain the spectrographic orbit. The spectral lines are broad; on most of the plates only the hydrogen lines and λ 3933 of Ca II and λ 4481 of Mg II were measurable. Lines of the secondary spectrum were not seen with sufficient certainty for velocity measures.

The period reported by Fresa (1956), namely 1.805257 days, fitted our observations well and was accepted for our solution. The other elements were obtained first by the precomputed curves of R. K. Young, and then were corrected by a computer method of least squares reported by Heard and MacRae (1957). Table I lists the preliminary and final elements along with the mean errors; Table II lists the observed and computed velocities; figure 1 shows the velocity curve.

There is a contradiction between the value of ω (94°) derived here from the spectrographic data and the value, 316°, derived by Fresa

*Now at Princeton University Observatory.

T	<u>۱</u>	D	r :	<u> </u>	- T
	~A	15	1	Η.	
		_			

Element		Preliminary	Final	m.e.
Period	Р	1.805257 days (Fresa)		
Eccentricity	е	0.10	0.11	± 0.03
Angle of periastron	ω	90°	94°	$\pm 17^{\circ}$
Periastron passage	T	J.D. 2435336.356	J.D.2435336.383	± 0.08
Velocity of the system	γ	-22.5 km./sec.	-22.4 km./sec.	± 2.9
Semi-amplitude	K	68.5 km./sec.	66.7 km./sec.	±1.9
$i \sin i$			1.65×10^{6} km.	

Orbital Elements for V548 Cyg

(1956) from the photometric data, although our value of e agrees with Fresa's value of 0.10. Regardless of the fact that neither Fresa's nor our value of ω is very precise, the contradiction is inherent in the forms of the light curve and the velocity curve; in the light curve the secondary eclipse follows the primary by appreciably more than half the period, which is consistent with a value of ω in the general neighbourhood of 360°, whereas the velocity curve is almost precisely the form given by an orbit of $\omega = 90^{\circ}$.

If we compute the time of the minima from our spectrographic elements and then use Fresa's period (over about 600 cycles) to compare these with his, we get:

> For primary minimum, Fresa: J.D. 2434298.393 ours: J.D. 2434298.342 For secondary minimum, Fresa: J.D. 2434299.373 ours: J.D. 2434299.240

TABLE	11
-------	----

	V_o	Phase from	Vc	$V_o - V_c$
J.D.	km./sec.	final T	km./sec.	km./sec.
2434932.789	-51.0	0.784	-40.3	-10.7
933.813	-44.4	0.003	-28.5	-15.9
934.730	-10.2	0.920	-15.1	+ 4.9
935.778	-78.4	0.162	-69.3	- 9 1
936.815	+24.7	1.199	+30.3	- 5.6
937.768	-84.5	0.347	-89.5	+ 5.0
938.780	+52.4	1.359	+43.1	+ 9.3
939.785	-75.9	0.559	-76.6	+ 0.7
946.779	-90.2	0.332	-89.1	- 1.1
947.683	+38.1	1.236	+34 5	+ 3.6
949.710	+40.9	1.457	+42 2	- 1.3
950.762	-49.2	0.704	-54.7	+ 5.5
956.746	+35.8	1 272	+38 0	- 2.2
957.755	-76.1	0.476	-85.2	+ 9.1
958.694	+39.2	1.415	+43.6	- 4.4
960.671	+25.3	1.587	+27.1	- 2.1
961 - 674	-47.8	0.785	-40.3	- 7.5
968.644	-92.3	0.534	-79.6	-12.7
2435083.461	+11 6	1-619	+21.3	- 9.7
262.819	-89.9	0.452	-86.9	- 3.0
280.831	-85.9	0111	-89.0	+ 3.1
291.788	-78 1	0.537	-79.2	+ 1.1
292.757	+33.4	1 506	+38.5	- 5 1
301.712	+46-5	1.434	+43 1	+ 3.4
302.735	-60.9	0 652	-63.3	+ 2.4
335.653	+14.7	1 075	± 12.3	+ 2.4
338.658	-89.9	0 470	-85.7	- 4.2
339.652	+49-6	1 464	+11/8	+7.8

RADIAL VELOCITY OBSERVATIONS OF V	548	Cyc
-----------------------------------	-----	-----

J.D. «	V. km./sec.	Phase from final T	V.c km./sec.	$V_o - V_c$ km./sec.
2435341.698	+ 9.6	1.705	+ 0.9	+ 8.7
343.711	-50.6	0.107	-56.9	+ 6.3
350.747	+11.3	1.727	- 5.0	+16.3
353.669	+11.5	1.039	+ 6.3	+ 5.2
355.767	+23.0	1.332	+42.1	-19.1
356.719	-77.8	0.478	85.0	+7.2
357.682	+44.4	1.441	+42.9	+ 1.5
373.724	+45.1	1 236	+34.5	+10.6

TABLE II-Continued

V805 Aquilae

This star, V805 Aquilae, H.D. 177708, α (1900) 19^h00^m7, δ (1900) $-11^{\circ}48'$, m_{pg} 7.81–8.48, sp. A2, was identified as an Algol-type eclipsing variable by Bakos (1950) who assigned to it a period of 1.20409 days.

From photoelectric observations made at Naples in 1952 Fresa (1954) has found that there are two unequal minima and that the period is twice that assigned by Bakos. Fresa analysed the light curve and determined the elements of the photometric orbit.

Between July 10, 1953 and August 16, 1955, twenty-nine spectrograms of V805 Aql were obtained here with dispersion 33 A./mm. It is these which have been used to obtain the spectrographic orbit reported here.

Both primary and secondary spectra are visible, the primary considerably the stronger. In the primary spectrum many lines are measurable, but in the secondary the lines are so weak that only the few strongest of them could be measured near the phases of extreme velocities.

Fresa's period of 2.408230 days fitted our observations well; no attempt was made to improve it. From the velocity curve for the primary, preliminary elements were obtained by the use of R. K. Young's precomputed curves, and then least-squares corrections to five elements were obtained by a computer method of Heard and MacRae (1957).

Spectrographic Orbits

As for the secondary component, the velocities were used only for the purpose of determining the value of K_2 by least squares, the other elements being regarded as fixed by the solution for the primary.

The preliminary and final elements are listed in Table III, the velocity curves are shown in figure 2, and the observed and calculated

	TABLE	III		
Orbital	ELEMENTS	FOR	V805	Aor

Element	Preliminary	Final	m.e.			
Period	P 2.408230 days (Fresa)					
Eccentricity	e 0	0.018	± 0.009			
Angle of periastron	ω	$37^{\circ} \pm 31^{\circ}$				
Periastron passage	Т	J.D.2434959.513	± 0.2			
Velocity of the system	$\gamma = -39$ km./sec.	-39.6	± 0.7			
Semi-amplitude, primary	$K_1 107 {\rm km./sec.}$	106.2	±0.9			
" " secondary	K ₂ 127 km./sec.	130.5	± 5.7			
$a_1 \sin i$, primary		3.5×10^6 km.				
$a_2 \sin i$, secondary		4.32×10^{6} km.	-			

velocities are listed in Table IV (in which the velocity of the primary component is always listed first).

When we compute the expected time of eclipses from the spectrographic orbit and compare them with Fresa's observed times (using his period), we find no significant discordance.

		Phase		
	V_o	from	L'c	$V_o - V_c$
J.D.	km./sec.	final T	km./sec.	km./sec.
2434567.661	-119.0	0.690	-122.5	+ 3.5
568.722	+ 11.3	1.751	+ 9.8	+ 1.5
	-148.7		-100.3	-48.4
934.692	- 15.0	1.670	- 11.0	- 4.0
935.720	-24.7	0.290	-23.8	- 0.9
937.716	+ 62.3	2.286	+ 62.6	- 0.3
	-165.1		-166.4	+ 1.3
938.656	-138.9	0.817	-138.6	- 0.3
	+ 76.5		+ 82.1	- 5.6
939.709	+ 34.3	1.870	+ 36.3	- 2.0
	-154.4		-133.1	-21.3
946.649	- 30.8	1.586	- 33.5	+ 2.7
949.657	+72.6	2.186	+ 67.9	+ 4.7
950.653	-135.4	0.773	-134.4	- 1.0
	+ 81.0		+ 76.6	+ 4.4
958.634	- 46.9	1.530	- 48.6	+ 1.7
960.625	-133.0	1.112	-135.1	+ 2.1
	+ 70.3		+77.6	- 7.3
961.622	+ 65.0	2.109	+ 66.7	-1.7
	-190.8		-170.4	-20.4
967.608	-138.2	0.871	-142.5	+ 4.3
	+ 99.2		+ 86.6	+12.6
971.619	+ 33.7	0.065	+ 33.8	-01
	-133.7		-129.8	- 3.9
981.598	-61.5	0.411	-57.9	- 3.6
982.594	-72.6	1.407	- 80.4	+7.8
2435006.531	-118.3	1.262	-112.4	- 5.9
	+ 57.1		+ 49.9	± 7.2
261.828	-108.2	1.287	-107.5	- 0.7
262.762	+ 70.8	2.221	+ 67.1	+ 3.7
	-131.7		-170.6	+38.9

TABLE IV

RADIAL VELOCITY OBSERVATIONS OF V805 AQL

		Phase		
	V_{o}	from	V_c	$V_o - V_c$
J.D.	km./sec.	tinal T	km./sec.	km./sec.
2435279.765	+ 52.0	2.366	+ 53.2	- 1.2
	-108.1		-153.6	+45.5
280.770	-146.6	0.963	-144.2	- 2.4
	+ 90.5		+ 88.8	+ 1.7
291.729	+ 62.3	2.289	+ 62.5	-0.2
	-162.2		-165.0	+ 2.8
292.692	-137.8	0.844	-140.3	+ 2.5
	+ 85.3		+ 84.1	+ 1.2
301.650	+ 7.1	0.169	+ 9.2	- 2.1
	-123 0		- 99.6	-23.4
302.675	-126.6	1 = 1.94	-124.1	-2.5
	+ 85.5		+ 64.3	+21.2
321.624	-146.6	0.877	-142 7	- 3.9
	+ 73.2		+ 87.1	-13.9
327.593	+ 59 2	2.029	+ 60.8	- 1.6
	-157.9		-162 9	+ 5.0
335.610	-52.6	0.414	-58.8	+ 6 2

TABLE IV-Continued

V451 Орнисни

The star V451 Ophiuchi, H.D. 170470, α (1900) 18^h24^m5, δ (1900) +10°49', m_{pg} 7.86–8.46, sp. A0, was identified as an Algol-type eclipsing variable by Hoffmeister (1935). Colacevich (1953) studied the light variations in detail and determined photometric elements. At that time, on the basis of five radial velocities for 1936, 1939 and 1940 which were supplied to him by one of us (J. F. H.), he determined the amplitudes of the velocity variations of both components, and combined these with his photometric data to determine the dimensions, mass and absolute magnitudes of the stars.

Between 1952 and 1955, thirty-nine additional radial-velocity observations of this star were made here. The original five observations had been made with a dispersion of 66 A./mm.; most of the additional ones were made with 33 A./mm. dispersion and were much superior in quality. Of these higher dispersion spectrograms, twenty-three were selected on which double lines were clearly seen. These form the basis of the spectrographic orbit here reported.

All lines in the spectrum of both components are much broadened. so that only the stronger lines (those of hydrogen, $\lambda 3933$ of Ca II and λ 4481 of MgII) could be measured, and only at phases near the maxima of velocity could the double lines be resolved. The result is that the velocity curves are not distinguishable from sine curves; therefore the orbital eccentricity was taken as zero. (Colacevich, 1953, obtained e = 0.025 from the photometric orbit.) Furthermore, the velocity observations over the whole 16 years of our observations were well satisfied by Colacevich's period of 2.1965962 days; therefore the period was not included in our solution. Likewise Colacevich's epoch of primary eclipse, J.D. 2434165.499, was consistent with our velocity observations, and we assumed the corresponding epoch of the ascending node of the brighter component, namely J.D. 2434164.950 (or J.D. 2434237.438 as brought forward to the time of our observations). Therefore our least-squares solution was made for three unknowns only, namely the velocity of the system and the two semiamplitudes of velocity. Table V gives preliminary and final elements so derived.

	and the second s		
Element	Preliminary	Final	m.e.
Period	P 2.1965962 days (Colacevich)		
Eccentricity	e 0		
Epoch of ascending node of primary component	J.D.2434237.438		
Velocity of the system	$\gamma = -15.0$ km./sec.	-14.7 km./sec.	± 2.0
Semi-amplitude, primary	K_1 120 km./sec.	121.1 km./sec.	± 3.3
" " secondary	K_2 145 km./sec.	145.7 km./sec.	± 3.3
$a_1 \sin i$, primary		3.66×10^{6} km.	
$a_2 \sin i$, secondary		4.40×10^{6} km.	

TABLE V

Orbital Elements for V451 Oph

In a later section we give the values for the dimensions, masses and absolute magnitudes of the component stars as derived from a combination of the photometric and spectrographic elements. These are more accurate than those given by Colacevich (1953) who used very rough values of K_1 and K_2 derived, as stated above, from only five of our early observations.

Figure 3 shows the velocity curves, and Table VI lists the observed and computed velocities, the primary component being listed first in each case.

Ľ,	Ι.	В	L	E	1	1

J.D.	V₀ km./sec.	Phase from final T	U. km./sec.	$V_{o} = V_{c}$ km./sec.
2434237 640	+ 65.9	1 850	+ 86.6	-20 7
	-124 0		-136.6	+12.6
238.678	-109.8	0.691	-126.0	+16.2
	+116.2		+119.2	- 3.0
$242_{\pm}647_{\pm}$	-128.1	0.267	-98.5	-29.6
	+77.4		+ 86 1	- 87
248.696	+ 68.4	1.923	+70.6	-2.2
	-124.1		-117.4	-6.7
249.640	-128.2	0.670	-128.6	+ 0 4
	+107.7		+122 -1	-14 7

RADIAL VELOCITY OBSERVATIONS OF V451 OF

		Phase		
	V_o	from	V_c	$V_o - V_c$
J.D.	km./sec.	final T	km./sec.	km./sec.
2434251.641	-124.7	0.475	-133.1	+ 8.4
	+120.1		+127.7	- 7.6
252.638	+ 88.3	1.472	+ 92.0	- 3.7
	-140.4		-143.0	+ 2.6
543.681	-134.6	0.367	-119.7	-14.9
	+131.8		+111.7	+20.1
622.599	- 81.1	0.208	- 84.0	+ 2.9
	+ 53.0		+ 68.6	-15.6
623.681	+ 57.1	1.290	+ 48.4	+ 87
	- 81.8		- 90.7	+ 8.9
639.593	+75.3	1.826	+ 90.9	-15.6
	-146.8		-141.8	- 5.0
663.514	+132.6	1.584	+104.4	+28.2
	-155.9		-158.0	+ 2.1
664.525	-118.0	0.399	-124.8	+ 6.8
	+102.5		+117.8	-15.3
666.500	- 95.9	0.177	- 73.6	-22.3
	+ 58.3		+ 56.1	+ 2.2
685.487	+111.7	1.591	+104.8	+ 6.9
	-139.7		-158.5	+18.8
2435245.824	+ 72.7	1.796	+ 95.6	-22.9
	-150.3		-147.4	-2.9
246.818	-134.1	0.594	-134.8	+ 0 7
	+157.0		+129.8	+27.2
269.748	+105.3	1.558	+102.5	+ 2.8
	-155.3		-155.7	+ 0.4
$279 \ 719$	-139.4	0.546	-135.8	- 3.6
	+133.5		+131.0	+ 2.5
280.710	+ 98.4	1.537	+100.4	- 2.4
	-134.2		-153.2	+19.0
292.632	-107.6	0.279	-101.4	- 6.2
	+103.4		+ 89.6	+13.8
301.748	-130.2	0.609	$-134_{-}3$	+ 1 1
	+152.5		+129.2	+23.3
302.776	+105.8	1.637	+106.4	- 0.6
	-174.7		-160 3	-14.4

TABLE VI-Continued

Masses and Luminosities of V805 Aql and V451 Oph

When a binary system has been solved both photometrically and as a double-line spectrographic binary a rich harvest of information about the separate components becomes available, i.e.,

(a) the inclination, *i*, being known from the photometric solution, the orbital semi-axes, a_1 and a_2 , may be determined from the spectrographic values of $a_1 \sin i$ and $a_2 \sin i$;

(b) thus, in turn, the sum of the masses may be computed, and, from the mass ratio, the individual masses;

(c) the stellar radii being known (in terms of the total orbital semi-axis, $a_1 + a_2$) from the photometric solution, and $a_1 + a_2$ being known from the spectrographic solutions, the stellar radii may be computed in absolute units;

(d) if the spectral type of the brighter component is known (and thus an effective temperature may be assigned) and if the ratio of the luminosities of the two components is known from the photometric solution, then it is possible, by an application of the Stefan-Boltzmann theorem, to compute values of the effective temperature (and thus spectral type) of the fainter component, and to assign the bolometric absolute magnitudes of both components.

For the two of these systems which show double lines, namely V805 Aql and V451 Oph, we have used our results along with those of the photometric solutions to obtain the data referred to above. These are given in Table VII in which the subscripts 1 and 2 refer to the brighter and fainter components respectively, and the symbols have the following meanings: m is the mass of the star; r is the radius;

	V805 Aql	V451 Oph
<i>m</i> ₁	1.85 ⊙	2.38 O
1112	1.50 💿	1.98 💿
ř1	$2.16 \odot$	2.51 \odot
12	1.84 ⊙	2.01 \odot
$sp_{.1}$ (obs.)	A2	A0
Te	9800°K	10700°K
$sp_{.2}$ (comp.)	Α7	A2
Teo	8000°K	9800°K
M bol 1	+0.6	-0.1
M bol 2	+1.8	+0.8
M_1	+1.2	+0.5
Mo	+2.2	+1.3

TABLE VII Physical Data for the Component Stars

sp. is the spectral type, observed for the brighter component, computed for the fainter; T_e is the effective temperature either appropriate to the observed type or computed from the Stefan-Boltzmann theorem in the manner described by Plaut (1953); M_{bol} is the bolometric absolute magnitude computed in the manner of Plaut (1953); M is the "reduced" bolometric magnitude given by $M = M_{bol} + 2 \log (T_e/5200)$ which has been used by Petrie (1950) and Plaut (1953) in their discussions of the mass-luminosity relation.

When plotted on either Petrie's (1950) or Plaut's (1953) massluminosity diagram, the four values of mass and reduced bolometric magnitude lie close to the median of the points.

Acknowledgements

We wish to thank Dr. A. Fresa of the Osservatorio di Capodimonte, Naples, Italy, for helpful correspondence and discussions relating to the photometric solutions of these stars. We had also been indebted to the late Professor A. Colacevich for similar kindness.

This investigation was supported in part by a grant from the National Research Council, Ottawa.

References

Bakos, G. 1950, Leiden Ann., vol. 20, p. 177.

- Colacevich, A. 1953, Mem. S. A. It., vol. 24, p. 123 = Contr. Oss. Astr. di Capodimonte, ser. 2, vol. 4, no. 12.
- Fresa, A. 1954, Mem. S. A. It., vol. 23, p. 231 = Contr. Oss. Astr. di Capodimonte, ser. 2, vol. 4, no. 13.
- Fresa, A. 1956, Mem. S. A. It., vol. 27, p. 187 = Contr. Oss. Astr. di Capodimonte, ser. 2, vol. 4, no. 17.
- Heard, J. F. and MacRae, D. A. 1957, J. R. A. S. Canada, vol. 51, p. 29.
- Heard, J. F. and Morton, D. C. 1956, A. J., vol. 61, p. 179.

Hoffmeister, C. 1935, A. N., vol. 255, p. 413.

I. A. U. 1951, "47th Name-List of Variable Stars".

Petrie, R. M. 1950, Pub. D. A. O., vol. 8, p. 319.

Plaut, L. 1953, Pub. Kapteyn Astr. Lab., no. 55.

Richmond Hill, Ontario May 1, 1962

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

NUMBER 9

THE SPECTROGRAPHIC ORBIT OF BIDELMAN'S PECULIAR STAR H.D. 30353

JOHN F. HEARD

1962 Toronto, Canada

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

THE SPECTROGRAPHIC ORBIT OF BIDELMAN'S PECULIAR STAR H.D. 30353

By John F. Heard

Abstract

Orbital elements of this single-lined, hydrogen-poor spectrographic binary were published in abstract form by Heard and Boshko (1955). Since then additional observations have been obtained, and a more rigorous solution of the orbit has been made by the present writer. Velocity observations from other observatories are discussed as possible evidence of variations of the orbital elements. Photometric observations are presented which indicate that the system is not eclipsing, although a high orbital inclination might have been expected from the very large mass function. Indirect evidence that the system is very massive is adduced from the elements.

INTRODUCTION

The star H.D. 30353, $\alpha(1900)$ 4^h 41^m.8, $\delta(1900) + 43^{\circ}06'$, m_{pg} 8.3, sp. Ape, has been studied by Bidelman (1950) who discussed its very peculiar spectrum and who discovered its binary character.

On the basis of the lines of ionized metals the star's spectrum resembles that of an A5 supergiant, but it shows extremely weak hydrogen lines and, at the same time, strong helium lines and numerous lines which do not appear in normal stellar spectra. Bidelman concluded that the star is truly deficient in hydrogen, and attributed the richness of the spectrum to the low opacity resulting from the hydrogen deficiency. He compared the star to several others which exhibit similar spectral peculiarities.

Bidelman's 18 published radial-velocity measures from spectrograms extending from October 1946 to April 1949 suggested a period of about one year. The range of velocities, namely about 100 km./sec., combined with the one-year period indicated a large mass function—at least 3 solar masses.

From an extensive analysis of the very rich spectrum Bidelman was able to select only eight lines which he believed were sufficiently free of blending to be trustworthy for velocity measures at moderate dispersions. These were $\lambda\lambda$ 3951.97 (V II), 4028.33 (Ti II), 4067.05 Ni II, 4101.74 (H δ), 4122.64 (Fe II), 4233.20 (Fe II + Cr II), 4246.83 (Sc II) and 4481.23 (Mg II). He found no evidence of lines which could be attributed to the companion star.

OBSERVATIONS AND ORBITAL ELEMENTS

The star was placed on the observing programme here in 1951 in the hope that the determination of definitive orbital elements would shed more light on the nature of the system and the component stars. Between 1951 and 1956 61 one-prism spectrograms of measurable quality were obtained—17 with a dispersion of 33 A./mm. at H γ , the rest with a dispersion of 66 A./mm. The measurements for velocity were made with the use only of the lines chosen by Bidelman as listed above. On most of the plates either seven or all eight of the lines were measured, and the internal probable error of the mean velocity from a spectrogram was about 3 km./sec. on the average. In weighting the velocities for the least-squares solution for the orbital elements, weight 4 was assigned to the 33 A./mm. observations compared with weight 1 for the 66 A./mm. observations.

It is these 61 Dunlap observations of 1951–56 which form the basis of the orbital solution reported here. The period turned out to be so close to a year that there was an interval of about eighty days in the velocity curve without observations. However, in 1962 two new observations were made which fall in the middle of this gap. These observations were not incorporated in the solution, but are shown in the velocity curve of figure 1 along with the earlier Dunlap observations.

H.D. 30353

A preliminary orbit was derived by the use of R. K. Young's precomputed curves, and then a least-squares solution was carried out by the digital computer method reported by Heard and MacRae (1956). The period was included in the solution, and there was no grouping of the observations. Table I gives the preliminary and final elements so derived, and Table II gives the Dunlap observations from which the solution was made plus the two 1962 observations not used in the solution.

	Orbital Elements for H.D. 30353					
Element		Preliminary	Final	m.e.		
Period	P	360.00 days	360.47 days	± 1.07		
Eccentricity	е	0.30	0.28	± 0.03		
Angle of periastron	ω	270°0	268°4	± 4.8		
Periastron passage	T	J.D.2435142.80	J.D.2435141.74	± 5.06		
Velocity of the syst	em γ	+6.0 km./sec.	+7.0 km./sec.	± 1.0		
Semi-amplitude	K	50.0 km./sec.	51.4 km./sec.	± 1.6		
a sin i			2.43×10^8 km.	$\pm 0.08 imes 10^{8}$		
Mass function	f(m)		4.41 🖸	± 0.44		

TABLE I rbital Elements for H.D. 30353

TINDER II	ΤA	BI	LE	II	
-----------	----	----	----	----	--

DUNLAP RADIAL VELOCITY OBSERVATIONS OF H.D. 30353

			Phase		
	Disp.	V_o	from	V_c	$V_o - V_c$
J.D.	A./mm.	km./sec.	final T	km./sec.	km./sec.
2433945.787	66	-40.1	245.922	-26.1	-14.0
955.825	, ,	-36.0	255.960	-30.7	- 5.3
960.754	3.9	-41.3	260.889	-33.2	- 8.1
2434086.541	2.2	+44.6	26.206	+42.7	+ 1.9
260.806	33	+ 0.8	200.471	- 2.6	+ 3.4
347.597	7.9	-44.5	287.262	-42.3	-2.2
375.557	2.2	-52.0	315.222	-43.2	- 8.8
398.538	3.9	-32.1	338.203	-27.3	- 4.8
412.610	66	-13.5	352.275	- 8.1	- 5.4
426.506	, ,	+15.9	5.701	+14.6	+ 1.3
432.596	3.7	+21.0	11.791	+23.3	- 2.3
443.591	,,	+45.2	22.786	+38.9	+ 6.3
454.522	ş ş	+55.1	33.716	+49.3	+ 5.8
467.567	3.9	+63.3	46.762	+56.0	+7.3
470.562	, ,	+55.2	49.757	+56.9	- 1.7
475.556	**	+63.1	54.751	+57.7	+ 5.4
482.565	,,	+60.4	61.760	+58.0	+ 2.4
489.566	, ,	+51.1	68.761	+57.3	-6.2
589.862	7.9	+11.0	169.057	+13.9	- 2.9
592.888	* *	+12.3	172.083	+12.3	0.0

		E.	Phase		
	Disp.	Va	from	V_{c}	$V_0 - V_c$
J.D.	A./mm.	km./sec.	final T	km./sec.	km./sec.
2131600 801	66	+ 6 3	180.080	L 8 1	- 1.8
606 899	,,	+ 8.1	186 004	+ 5.1	-1.0
613 893	, ,	+ 6.9	193 088	+ 1.3	+ 5.6
620 891	3 9	- 1 1	200.086	- 28	-1.6
626.899	33	- 8.9	206.000	- 5 5	- 3.1
642 913	66	- 4 1	222 108	-13.9	+ 9.8
666.907	33	-33.1	246 102	-26.0	- 7 1
699.709	66	~43.0	278.904	-41.6	- 1.4
713.688	, ,	-32.3	292.883	-43.8	+11.5
735.657	3 5	-37.1	314.852	-43.3	+ 6.2
742.590	, .	-52.3	321.785	-40.6	-11.7
750.579	, .	-44.6	329.774	-35.1	- 9.5
791.490	. ,	+17.0	10.215	+21.8	- 4.8
793.502		+36.2	12.227	+24.5	+11.7
800.506	• •	+25.0	19.231	+34.6	- 9.6
810.505	2.2	+34.7	29.230	+45.6	-10.9
819.566	* *	+48.9	38.291	+52.2	- 3.3
838.540	3 7	+44.4	57.265	+57.9	-13.5
856.565	, ,	+52.7	75.290	+56.1	- 3.4
942.852	· ·	+18.4	161.577	+17.8	+ 0.6
949.853	33	+17.5	168.578	+14.1	+ 3.4
957.875	, ,	+ 9.4	176.600	+ 9.8	- 0.4
970.868	3 5	+ 9.8	189.593	+ 3.1	+ 6.7
977.892	66	-11.9	196.617	- 0.6	-11.3
2435009.879	• •	-17.1	228.604	-17.2	+ 0.1
033.920	3 7	-31.0	252.645	-29.1	- 1.9
039.945	1 5	-28.1	258.670	-31.9	+ 3.8
050.822	, ,	-28.9	269.547	-36.6	+7.7
055.823	* *	-46.8	274.548	-38.4	- 8.4
083.785	33	-36.7	302.510	-44.8	+ 8.1
089.717	,,	-38.5	308.442	-44.6	+ 6.1
121.578	66	- 8.7	340.303	-24.9	+16.2
126.774		- 5.5	345.499	-18.2	+12.7
130.578	1,1	+ 1.9	354.303	- 4.9	+ 6.8
143.002		+ 5.2	1.917	+7.2	-2.0
101.000	ತನ ,,	+22.0	9.920	+21.4	+ 0.6
140 809	, ,	+40.2	20.910	+30.7	+ 3.3
157 686	2.2	- 41.1	299.000	-44.7	+ 0.0
463 565	,,	-38.5	321 820	-43.0	± 1.0
480.676	3.9	-33.4	338 031	-96.5	- 6.0
2437789.581	66	+32.7	124 551	+37.0	- 4 3
791.594	**	+29.6	126.564	+35.8	- 6.2

TABLE II (continued)

H.D. 30353

VELOCITY OBSERVATIONS FROM OTHER OBSERVATORIES

Bidelman's 18 published velocity observations of 1946–49 cannot be reconciled with the Dunlap observations as well as might be expected. The question is: can the discordances be construed as evidence of changes in the orbit?

The velocities published by Bidelman (1950) were obtained from McDonald spectrograms of the years 1946 to 1949; they include one prism spectrogram (f/2) with dispersion 76 A./mm., three prism spectrograms (CG) with dispersion 27 A./mm. and 14 prism spectrograms (CQ) with dispersion 55 A./mm. (all dispersions at H γ). The manner in which they disagree with the Dunlap velocity curve is seen in figure 2 where they are plotted, along with eleven unpublished velocities, kindly supplied by Bidelman, derived from McDonald CQ spectrograms taken in 1949 and 1950 in the season immediately following his published series. It will be observed that Bidelman's 1946-50 velocities, regardless of dispersion, have this pattern relative to the Dunlap velocity curve: they are systematically more negative by about 20 km./sec. over the greater part of the velocity curve, but agree with the Dunlap curve (in fact tend to be a little above it) in the middle of the steep rising branch.

It is apparent that no adjustment of the period will reconcile the two sets of observations; neither will a steady change of any of the orbital elements. Rather, it would appear that either there was a seasonal effect in the McDonald or the Dunlap velocity system (the period being so close to one year), or there was an abrupt change in the apparent orbital elements between the end of Bidelman's series in February 1950 and our series beginning in October 1951.

A single Mount Wilson Coudé spectrogram of December 22, 1950, taken by Greenstein and measured by Bidelman, falls close to the Dunlap velocity curve. So also do three velocities from McDonald Coudé spectrograms (dispersion 35 A./mm.) of December 1955, kindly taken and measured by A. Blaauw at the writer's request.

All 15 of the unpublished velocities are listed in Table III with the kind permission of the investigators involved. Along with the earlier 18 velocities published by Bidelman they are also shown plotted with reference to the Dunlap velocity curve in figure 2.

In correspondence with the writer, Bidelman has pointed out that, while he would expect his Oct. 31, 1946 velocity (from an f/2 spectrogram with dispersion 76 A./mm.) to be poor, a re-examination of his measures of the CG and CQ series and a survey of the velocities of

Observatory		5	
and		Date	Vel.
Spectrograph		(U.T.)	(km./sec.)
Mt. W. Coudé (4.5 A./mm.)	1950	Dec. 22.244	-48
McD. Coudé	1955	Dec. 4.423	-43.2
(35 A./mm.)		Dec. 7.468	-36.6
		Dec. 8.429	-40.8
McD. CQ	1949	Sept. 12.344	-13.8
(55 A./mm.)		Sept. 12.364	-13.1
		Sept. 12.386	-18.9
		Sept. 12.405	-17.4
		Dec. 4.275	-58.9
		Dec. 11.264	-52.6
		Dec. 19.324	-65.3
		Dec. 22.132	-64.7
	1950	Jan. 5.267	-54.8
		Feb. 2.094	-25.8
		Feb. 24.075	+ 3.5

TABLE III

UNPUBLISHED VELOCITIES OF H.D. 30353

FIGURE 2

H.D. 30353

standard velocity stars taken during the long "run" of McDonald CQ spectrograms of 1948–49 have convinced him that there are no large systematic or seasonal errors in his velocities. On the other hand, the present writer has a similar conviction regarding the Dunlap velocities, and draws attention again to the agreement of the 1955 McDonald Coudé velocities and the 1950 Mount Wilson Coudé velocity with the Dunlap velocities. Furthermore, each of us, using the same lines, fails to find systematic velocity differences which could be attributed to effects of blending with different dispersions, and, indeed, our dispersions are not dissimilar (McDonald 27 and 55 A./mm.).

If, as it would thus appear, we may rule out what might have seemed to be systematic errors of either or both of the McDonald and Dunlap velocity systems, we are left with the conclusion that there occurred between early 1950 and late 1951, if not a change in the elements, at least some effect which mimicked such a change.

Photometric Observations

The large mass function of 4.4 \odot for H.D. 30353 brought up the interesting possibility of this binary being an eclipsing system. In Moore's (1948) Fifth Catalogue of Spectroscopic Binaries there are seven binaries with listed mass functions greater than $3\odot$; all seven are eclipsing systems. Since there is no evidence whatever of a secondary component of H.D. 30353 in the spectrum, one might expect the eclipse of the primary star, if it occurs, to be deeper than that of the secondary. From the orbital elements the times of superior conjunction of the primary were calculated to be about August 4, 1955 and July 29, 1956, with mean error of about 5 days. Because of the long period the eclipse, if any, might be expected to last for some days. With the possibility of detecting an eclipse, G. A. Bakos, then at this Observatory, undertook to make photoelectric observations of H.D. 30353, using the 19-inch reflecting telescope. The observations at the time of superior conjunction of the primary were made difficult by reason of the large easterly hour angle of the star at dawn; it will be noticed that this difficulty has been aggravated from year to year. It will not be convenient to observe the star again at superior conjunction for some years to come. An inferior conjunction, corresponding to possible eclipse of the secondary, would have occurred about Jan. 31, 1956.

From the observations which Bakos was able to obtain in 1955 and 1956 there is no evidence of an eclipse. His observations near superior

conjunctions were on 1955 Aug. 8, 16, and 24, and on 1956 July 28, 29, 31, Aug. 8, 14, 22, and 25; and near inferior conjunction he had observations on 1956 Jan. 17 and Feb. 10. No minima were detected at these times. Also it should be remarked that a study of our spectrograms revealed no evidence of an atmospheric eclipse near the times of conjunctions of the primary.

Although Bakos' observations revealed no eclipses, they did indicate variability of the light. Altogether, between Aug. 8, 1955 and Nov. 8, 1956, he obtained photoelectric observations, mostly in two colours, on 57 nights. Variations amounting to about 0.1 magnitude were detected. There is an indication that the variations may consist of short-lived increases in brightness about every 30 days.

THE MASSES OF THE COMPONENTS

Bidelman (1950) has remarked on one consequence of the large mass function of H.D. 30353, namely that it indicates a fairly massive secondary. Table IV indicates a few possible combinations of the masses of primary and secondary which are consistent with our mass function of $4.4 \odot$ for inclinations of 90° and of 45°.

	For $i = 90$)°	For $i = 45^{\circ}$		
Mass of observed component	Mass of unobserved component	Mag. dev.	Mass of unobserved component	Mag. dev.	
$2\odot$	70	\overline{t}^{m}	15 ⊙	10 ^m	
10	13	3	25	6	
20	19	2	33	4	

TABLE IV

Possible Mass Combinations and Deviations from the Mass-Luminosity Law

If the mass-luminosity law is given by $\Delta M = 9.54 \log m_2/m_1$, and if the secondary is at least two magnitudes fainter than the primary (since the secondary's spectrum is not seen), then the figures designated by "Mag. dev." in Table IV are the least number of magnitudes by which the stars would fail to be related by the mass-luminosity law, in the sense of the observed component being over-luminous. It is seen that the departure would be rather spectacular if the primary
is a dwarf, and would amount to several magnitudes even if the primary has the mass of a supergiant.

The absolute magnitude of the primary is not known with certainty, but Bidelman (1950) has remarked on the fact that the spectrum resembles that of a supergiant, and he calculated that if the difference between the measured colour index of 0.54 and an assumed normal colour index of 0.10 can be attributed to interstellar reddening, then the primary would be a rather luminous supergiant (M = -6, say). If this is the case he would expect the mass of the primary to be of the order of $20\odot$, and we would then be dealing with a very massive pair. Bidelman noted that these are mere speculations, however, since, for all we know, a star with such a peculiar spectrum may be very over-luminous for its mass and it may be intrinsically reddened.

Since Bidelman (1950) wrote the foregoing discussion of the reddening, Hiltner (1956) has published three-colour and polarization observations of H.D. 30353. From Hiltner's data we may compute that the absorption in the visual is at least 0^{m} 83, and that $(B-V)_{0} \leq 0^{m}$ 18, and $(U-B)_{0} \leq -0^{m}$ 37, and we should note that the weakness of the hydrogen lines will be expected to make the star bright in the ultra-violet because of the smallness of the Balmer jump. To draw further conclusions, however, would require a precise spectral classification—which we do not have.

Acknowledgements

The writer gratefully acknowledges the help of Miss Olga Boshko, formerly an assistant at the Observatory, who did a great part of the plate measuring and made a preliminary orbital solution. He is also indebted to Dr. William P. Bidelman for valuable discussions and for providing unpublished velocity observations with permission to include them in this report. Dr. Adriaan Blaauw also made three velocity observations and permitted them to be included in the report. Dr. Gustav Bakos made the photometric observations which have been referred to.

The investigation was supported in part by a grant from the National Research Council, Ottawa.

References

Bidelman, W. P. 1950, Ap. J., vol. 111, p. 333.
Heard, J. F. and Boshko, O. 1955, A. J., vol. 60, p. 162.
Heard, J. F. and MacRae, D. A. 1957, J.R.A.S. Canada, vol. 51, p. 29.
Hiltner, W. A. 1956, Ap. J. Supp., vol. 2, no. 24, p. 389.
Moore, J. H. and Neubauer, F. J. 1948, L.O.B., no. 521.

Richmond Hill, Ontario May 31, 1962

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

NUMBER 10

PHOTOELECTRIC SPECTROPHOTOMETRY OF GLOBULAR CLUSTERS

SIDNEY VAN DEN BERGH AND R. C. HENRY

> 1962 TORONTO, CANADA

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

PHOTOELECTRIC SPECTROPHOTOMETRY OF GLOBULAR CLUSTERS

BY SIDNEY VAN DEN BERGH AND R. C. HENRY

Abstract

A spectrum scanner attached to the 74-inch telescope has been used to derive absolute energy distributions over the range $\lambda\lambda 3400$ to 5200 for the following globular clusters:

NGC 5024	(M53)	NGC 6273 (M19)	NGC 6838 (M71)
NGC 5272	(M3)	NGC 6341 (M92)	NGC 6864 (M75)
NGC 5904	(M5)	NGC 6356	NGC 6934
NGC 6093	(M80)	NGC 6402 (M14)	NGC 7006
NGC 6205	(M13)	NGC 6626 (M28)	NGC 7078 (M15)
NGC 6229		NGC 6656 (M22)	NGC 7089 (M2)
NGC 6254	(M10)	NGC 6779 (M56)	NGC 7099 (M30)

An effective resolution of about 35A, was used for all globular-cluster observations. For comparison purposes the nuclei of the galaxies M31 and M32 and a number of MK standard stars were also observed with the same resolution.

Certain combinations of monochromatic colour indices are found to yield reddeningfree parameters which correlate well with Morgan's metallic line strength classification of globular clusters. A discontinuity in the spectral energy distribution near λ 4000 is found to correlate with metallic line strength in globular clusters and with metal abundance in main sequence stars. Colour-colour diagrams may be constructed which permit a clear-cut segregation of the effects of interstellar reddening from those of intrinsic colour differences. Observations of M31 show that cyanogen giants provide a major contribution to the total luminosity of the nucleus in blue light.

INTRODUCTION

THE properties of the integrated light of globular clusters have been studied on low dispersion spectra by Mayall (1946), Morgan (1956, 1959) and Kinman (1959). These investigations have established that globular clusters exhibit a considerable range in spectroscopic characteristics, which may be partially interpreted in terms of differences between the metal abundances of stars in different clusters. Threecolour observations of globular clusters in the galaxy have recently been published by Johnson (1959) and by Kron and Mayall (1960).

It is the purpose of the present investigation to help fill the gap between the very-low-resolution, wide-band photometry and the higher-resolution spectroscopic work. In particular multi-colour narrow-band photometry should be able to separate the effects of interstellar reddening from intrinsic colour effects. This does not appear to be possible using the wide-band *UBV* and *PVI* systems. Spectral scanning with intermediate resolution also holds promise of being able to measure some of the qualitative differences between globular clusters which have previously been found by visual inspection of cluster spectra.

INSTRUMENTATION AND OBSERVING TECHNIQUE

The observations reported in this paper were made with a spectrum scanner designed by J. B. Oke, which is located at the Cassegrain focus of the 74-inch telescope. The light enters the instrument through an entrance diaphragm, which, in the present observing programme, was 4.6 mm. in diameter, corresponding to 28 seconds of arc on the sky. The collimator in the scanner matches the f/18 beam of the telescope and has a focal length of 36 inches. The dispersing element is a Bausch and Lomb replica reflection grating with 600 grooves per millimetre. The centre of its blaze is at λ 3750 in the second order, which was the order used. A Newtonian "camera" with a focal length of 9 inches forms an image on an adjustable Hilger spectrograph slit. During the globular cluster observations a slit width of 0.56 millimetres was used, which corresponds to 18.5 A.

Immediately behind the slit is a quartz Fabry lens which has a focal length of 1.4 inches. A selected RCA 1P21 photomultiplier, which was refrigerated by dry ice, was used as a light detector. The output of the photomultiplier was fed to a General Radio 1230 amplifier and recorded by a Brown recorder. During the observations a scanning speed of 4 A./sec. was used, giving a dispersion of 4.65 A./mm. on the tracing. A time constant of 2.5 seconds was employed for all the globular cluster observations. The effective resolution (spectral purity) resulting from the time constant, entrance diaphragm size and exit slit width was about 35A., the exact value depending slightly on the degree of central concentration of light in the globular cluster image.

A single observation consisted of a direct scan from $\lambda\lambda 5200$ to 3400 and a reverse scan from $\lambda\lambda 3400$ to 5200 followed, for bright clusters, by a single direct scan of the sky. For those faint clusters, for which the cluster plus sky deflection was less than two or three times larger than the sky reading, a direct and a reverse sky trace were obtained. Due to the proximity of the city of Toronto to the David Dunlap Observatory the sky background at low altitudes is primarily a function of azimuth. For clusters observed at low altitudes the sky tracings were therefore obtained at the same altitude and azimuth as the cluster tracings. The instrumental arrangement did not permit guiding during the 8 minutes required to make a single scan. For clusters observed near the meridian no serious difficulties due to driving errors, resulting in drifting of the cluster image, were encountered.

DETERMINATION OF THE ATMOSPHERIC ABSORPTION

The following early-type stars, for which Oke (1960) has determined the absolute energy distributions, were used to determine both the atmospheric extinction and the instrumental sensitivity function:

ξ^2	Cet	B9 III	α CrB A0 V
γ	Gem	A0 IV	α Lyr A0 V
α	Leo A	B7 V	

The wave-length dependence of the atmospheric extinction was determined by measurements of the same star at high and low altitudes at 12 wave-lengths in the range $3500 \le \lambda \le 5150$ A. (The star α CrB, which is an eclipsing variable, was not observed at or near times of eclipse.)

The O	BSERVED ATMO	SPHERIC EXTIN	NCTION
λ	$\lambda^{-4}(\mu)$	$K(\lambda) - A$	m.e.
5150	14.22	0 ^m 186 =	$\pm 0^{m}.024$
5000	16.00	0.204	0.020
4700	20.49	0.227	0.012
4500	24.39	0.256	0.020
4200	32.14	0.358	0.016
4040	37.54	0.412	0.020
3920	. 42.35	0.461	0.024
3860	45.05	0.474	0.027
3815	47.21	0.471	0.023
3700	53.36	0.593	0.025
3600	59.54	0.684	0.022
3500	66.64	0.743	0.028

TABLE I

It was found that, within the accuracy of the observations, the data for each night could be adequately represented by an equation of the form:

$$K(\lambda) = A + B \lambda^{-4},\tag{1}$$

in which K is the absorption (in magnitudes) for one air mass and A a grey term which varies from night to night. The mean values of $K(\lambda) - A$, from 14 extinction observations on 10 nights, are given in Table I and plotted in figure 1. With λ measured in microns a

FIG. 1—Wave-length dependence of the atmospheric absorption, with grey term subtracted. The figure shows that the observed absorption may be adequately represented by a λ^{-4} law.

least-squares solution yields the following mean value for the coefficient B in equation (1):

$$\bar{B} = 0.01085 \pm 0.00021;$$

this may be compared with the value

$$\bar{B} = 0.01077 \pm 0.00017,$$

which Greig (1962) has derived from observations on 12 nights by Bless (1958) at Michigan. (Both Observatories are located at about the same altitude above sea level.)

The value B = 0.01085 was subsequently used for all nights. Actually changes in the atmospheric pressure will result in slight variations of *B* from night to night. Use of the mean value of *B* will therefore result in random errors, which are, however, judged to be small compared to the observational uncertainty of the determination of *B* from observations obtained during a single night. Furthermore not all nights produced a measure of the extinction because on some nights clouds appeared before a second observation of an extinction star could be obtained.

Absorption in the blue and violet region of the spectrum was found to be larger than average on nights during which observations were made through hot moist tropical air. Such nights were characterized by a very red setting sun, a "light" night sky and often by unusually good seeing. Tracings obtained on such nights were not used to derive absolute energy distributions.

THE INSTRUMENTAL SENSITIVITY FUNCTION

The observing equipment does not give an identical response when illuminated with equal intensities of light of different wave-lengths. This is due to the wave-length dependence of the reflectivity of the mirrors in the light path and the wave-length dependence of the response of the 1P21 photomultiplier. The instrumental sensitivity function may be determined by comparing the observed spectral energy distribution of Oke's standard stars corrected to outside the atmosphere by means of equation (1), with the absolute energy distributions of these stars which have been published by Oke (1960).

On the average two standard star observations were obtained each night. Usually all individual sensitivity functions obtained during one dark-run were combined into a single mean sensitivity function, which was then used to reduce all the globular cluster observations obtained during that period.

In deriving the instrumental sensitivity function from observations of Oke's standard stars difficulties were encountered in the region between $\lambda\lambda 3700$ and 3900. Over this wave-length range the Balmer lines are crowded so close together that limited wave-length resolution, seeing and the amplifier and pen-recorded time constants all tend to lower the observed continuum. In this region Oke therefore recommends the use of a pseudo-continuum drawn through the peaks at a breadth of 12 A. In our experience this procedure did not yield reproducible results. Since the instrumental sensitivity function changes only slowly with wave-length over this region, a simple interpolation procedure was used. It is believed that the sensitivity function obtained in this way is correct to within 0^m02 at all wave-lengths in the range $3700 < \lambda < 3900$ A.

Extensive data are available on the changes in the instrumental sensitivity function during the period from May 1961 to May 1962 (the mirrors of the 74-inch telescope were re-aluminized in May 1962). Table II summarizes the available data for this period on $\delta \dot{S}(\lambda)$, defined as the rate of change of the sensitivity function in magnitudes per year, relative to the rate of change of the sensitivity function at $\lambda 4500$. The data in Table II, which are plotted in figure 2, show that the instrumental sensitivity function changes most rapidly in the ultraviolet. Over the range $\lambda \lambda 3500$ to 5200 the rate of change

λ	$\delta \dot{S}(\lambda)$
5150	$-0^{m}_{\cdot}123$
5000	-0.088
4700	-0.026
4500	-0.007
4200	+0.055
4040	+0.076
3700	+0.143
3600	+0.167
3500	+0.190

TA	BL	E	Π
	171	12.1	

Observed Relative Change of Instrumental Sensitivity Function in Magnitudes per Year

FIG. 2—Rate of change of the instrumental sensitivity function in magnitudes per year, normalized to zero at λ 4500. The rapid decrease of the instrumental sensitivity at short wave-lengths is due to the deterioration of the ultraviolet reflectivity of the mirrors in the light path.

of the sensitivity function in magnitudes per year, at any wave-length relative to that at $\lambda 4500$ is given by

$$\delta \dot{S}(\lambda) = 1.85 \times 10^{-4} (4500 - \lambda). \tag{2}$$

The fact that the instrumental sensitivity decreases fastest at short wave-lengths is no doubt due to the rapid deterioration of the ultraviolet reflectivity of aluminized reflecting surfaces.

Young (1962) has shown that the spectral response of 1P21 photomultipliers is slightly dependent on temperature. To reduce such temperature-dependent variations of the photomultiplier sensitivity

to a minimum, dry ice was introduced into the cold-box surrounding the 1P21 about one hour before the beginning of the actual observations.

Reduction of the Observations

Figure 3 shows a typical globular cluster tracing with a sky tracing superimposed. The irregular line represents the actually-observed spectral-energy distribution and the smooth curve shows the adopted pseudo-continuum. Except in the regions near H β , H δ , the *G*-band and the MgI triplet $\lambda\lambda$ 5167–84 the adopted pseudo-continuum represents the smoothed mean of the actually-observed spectral-energy distribution. Attention should be drawn to the apparent discontinuity in the pseudo-continuum near λ 4000; just to the red of the H+ H ϵ blend. The size of this discontinuity expressed in magnitudes, will be denoted by the symbol Δ .

On each tracing the height of the pseudo-continuum and of the sky background was measured at 100-A. intervals. The intensity difference between sky, and object plus sky, was then converted to a magnitude scale with arbitrary zero point. These magnitudes were then corrected for atmospheric extinction and for the instrumental sensitivity function to yield the absolute energy distribution $m(1/\lambda)$ at 100-A. intervals. The absolute energy distributions of the same cluster obtained on different nights, each of which contains an arbitrary zero point, were plotted on transparent graph paper and fitted together by visual inspection. The resulting mean absolute energy distributions, normalized to $m(1/\lambda) = 0.0$ at $\lambda 4500$, are given in Table III. A minimum of three tracings on good photometric nights were averaged to obtain the adopted mean absolute energy distribution of a single cluster. (The average number of tracings per cluster was 5.) Also given in Table III are the spectral energy distributions of the galaxies M31 and M32 and of the MK standard stars o Gem (F0 V), β CVn (G0 V) and 61 UMa (G8 V).

The fact that so many globular clusters occur in the general direction of the galactic nucleus necessitated observations down to rather large negative declinations. Many of the clusters contained in the present programme had to be observed through more than two air masses. However, no observations were made at sec $z \ge 3.0$. The fact that so many clusters had to be observed at large values of sec z placed very severe demands on the photometric quality of the nights on which

TABLE III

Absolute Energy Distributions of Globular Clusters, Galaxies, and Standard Stars

	NGC 221 (M32)	NGC 224 (M31)	NGC 5024 (M53)
	n = 6	n = 7	n = 8
λ	$m(1/\lambda)$ m.e.	$m(1/\lambda)$ m.e.	$m(1/\lambda)$ m.e.
$\begin{array}{c} 5200\\ 5100\\ 5000\\ 4900\\ 4800\\ 4500\\ 4600\\ 4500\\ 4400\\ 4300\\ 4200\\ 4100\\ 4000\\ 3900\\ 3800\\ 3700\\ 3600\\ 3500\\ 3400 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	NGC 5272 (M3)	NGC 5904 (M5)	NGC 6093 (M80)
	n = 6	n = 5	n = 3
λ	$m(1/\lambda)$ m.e.	$m(1/\lambda)$ m.e.	$m(1/\lambda)$ m.e.
$\begin{array}{c} 5200\\ 5100\\ 5000\\ 4900\\ 4800\\ 4500\\ 4400\\ 4400\\ 4300\\ 4200\\ 4100\\ 4200\\ 4100\\ 3900\\ 3900\\ 3800\\ 3700\\ 3600\\ 3500\\ 3400 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	NGC 6205 (M13)		NGC 6229 —		NGC 6	6254 (M10)
	n	n = 7		n = 5		= 4
λ	$m(1/\lambda)$	m.e.	$m(1/\lambda)$	m.e.	$m(1/\lambda)$	m.e.
$\begin{array}{c} 5200\\ 5100\\ 5000\\ 4900\\ 4800\\ 4600\\ 4600\\ 4400\\ 4400\\ 4200\\ 4400\\ 4200\\ 4100\\ 3900\\ 3800\\ 3700\\ 3600\\ 3500\\ 3500\\ 3500\\ 3400 \end{array}$	$\begin{array}{c} -0.29\\ -0.30\\ -0.26\\ -0.21\\ -0.17\\ -0.13\\ -0.07\\ 0.00\\ 0.10\\ 0.20\\ 0.29\\ 0.36\\ 0.43\\ 0.72\\ 0.78\\ 0.98\\ 1.10\\ 1.25\\ 1.42 \end{array}$	$\begin{array}{cccc} \pm & 0.02 \\ & 0.02 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.04 \\ & 0.04 \\ & 0.05 \end{array}$	$\begin{array}{c} -0.33 \\ -0.33 \\ -0.28 \\ -0.23 \\ -0.18 \\ -0.14 \\ -0.08 \\ 0.00 \\ 0.10 \\ 0.23 \\ 0.33 \\ 0.43 \\ 0.52 \\ 0.82 \\ 0.89 \\ 0.99 \\ 1.20 \\ 1.31 \\ 1.48 \end{array}$	$= 0.02 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03$	$\begin{array}{c} -0.44 \\ -0.38 \\ -0.31 \\ -0.21 \\ -0.17 \\ -0.14 \\ -0.08 \\ 0.00 \\ 0.17 \\ 0.29 \\ 0.38 \\ 0.44 \\ 0.50 \\ 0.86 \\ 0.98 \\ 1.22 \\ 1.27 \\ -\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	NGC 6	273 (M19)	NGC 634	1 (M92)	NGC 6	356 —
	n	= 4	n = 6		n = 4	
λ	$m(1/\lambda)$	m.e.	$m(1/\lambda)$	m.e.	$m(1/\lambda)$	m.e.
$\begin{array}{c} 5200\\ 5100\\ 5000\\ 4900\\ 4800\\ 4700\\ 4600\\ 4400\\ 4300\\ 4100\\ 4200\\ 4100\\ 4000\\ 3900\\ 3900\\ 3800\\ 3700\\ 3600\\ 3500\\ 3400 \end{array}$	$\begin{array}{c} -0.50 \\ -0.42 \\ -0.32 \\ -0.23 \\ -0.16 \\ -0.13 \\ -0.07 \\ 0.00 \\ 0.11 \\ 0.26 \\ 0.41 \\ 0.50 \\ 0.55 \\ 0.98 \\ 1.07 \\ 1.20 \\ - \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.30 \\ \pm 0.29 \\ -0.24 \\ -0.18 \\ -0.11 \\ -0.11 \\ -0.05 \\ 0.00 \\ 0.08 \\ 0.16 \\ 0.23 \\ 0.32 \\ 0.40 \\ 0.58 \\ 0.72 \\ 0.88 \\ 1.05 \\ 1.20 \\ 1.39 \end{array}$	$= 0.02 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.02 \\ 0.07 \\ 0.07 \\ 0.02 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.07 \\ 0.07 \\ 0.02 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.02 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.02 \\ 0.07 $	$\begin{array}{c} -0.52\\ -0.46\\ -0.40\\ -0.33\\ -0.26\\ -0.21\\ -0.10\\ 0.00\\ 0.17\\ 0.36\\ 0.53\\ 0.68\\ 0.76\\ 1.34\\ 1.42\\ 1.58\\\\\\\\\\\\\\\\\\\\ -$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE III (Continued)

	NGC 6402	(M14)	NGC 6626	(M28)	NGC 6656	(M22)
	n =	5	n =	5	n =	4
λ	$m(1/\lambda)$	m.e.	$m(1/\lambda)$	m.e.	$m(1/\lambda)$	m.e.
$\begin{array}{c} 5200\\ 5100\\ 5100\\ 4900\\ 4800\\ 4800\\ 4600\\ 4500\\ 4100\\ 4300\\ 4100\\ 4200\\ 4100\\ 3300\\ 3900\\ 3800\\ 3700\\ 3600\\ 3500\\ 3400 \end{array}$	$\begin{array}{c} -0.67 \pm \\ -0.56 \\ -0.44 \\ -0.33 \\ -0.25 \\ -0.18 \\ -0.10 \\ 0.00 \\ 0.12 \\ 0.31 \\ 0.44 \\ 0.56 \\ 0.67 \\ 1.08 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.04 	$\begin{array}{c} -0.51 \pm \\ -0.44 \\ -0.36 \\ -0.28 \\ -0.22 \\ -0.18 \\ -0.11 \\ 0.00 \\ 0.16 \\ 0.36 \\ 0.50 \\ 0.61 \\ 0.75 \\ 1.16 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c} 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.06 \\$	$\begin{array}{c} -0.49 \pm \\ -0.45 \pm \\ -0.37 \pm \\ -0.27 \pm \\ -0.22 \pm \\ -0.19 \pm \\ -0.10 \pm \\ 0.00 \pm \\ 0.08 \pm \\ 0.21 \pm \\ 0.33 \pm \\ 0.38 \pm \\ 0.90 \pm \\ 1.00 \pm \\ N.B Brig \pm \\ ter stars \pm \\ 0.51	$\begin{array}{c} 0.03\\ 0.03\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.04\\ 0.05\\ 0.06\\ 0.09\\ \text{htest clus-avoided.} \end{array}$
	NGC 6779	(M56)	NGC 6838	(M71)	NGC 6865	(M75)
	n =	5	n = 6		n = 5	
λ	$\mathrm{m}(1/\lambda)$	m.e.	$m(1/\lambda)$	m.e.	$m(1/\lambda)$	m.e.
$\begin{array}{c} 5200\\ 5100\\ 5000\\ 4900\\ 4800\\ 4700\\ 4500\\ 4400\\ 4300\\ 4100\\ 4300\\ 4100\\ 4000\\ 3900\\ 3800\\ 3700\\ 3600\\ 3500\\ 3400 \end{array}$	$\begin{array}{c} -0.46 \\ \pm \\ -0.41 \\ -0.32 \\ -0.25 \\ -0.19 \\ -0.15 \\ -0.08 \\ 0.00 \\ 0.10 \\ 0.21 \\ 0.30 \\ 0.41 \\ 0.49 \\ 0.74 \\ 0.88 \\ 1.10 \\ 1.33 \\ 1.48 \\ -\end{array}$	0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.06 0.07 0.10	$\begin{array}{c} -0.48 \\ \pm \\ -0.46 \\ -0.39 \\ -0.25 \\ -0.20 \\ -0.15 \\ 0.00 \\ 0.19 \\ 0.40 \\ 0.53 \\ 0.63 \\ 0.63 \\ 0.69 \\ 1.34 \\ 1.30 \\ 1.36 \\ - \\ - \end{array}$	$\begin{array}{c} 0.02\\ 0.02\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.03\\ 0.04\\ 0.05\\ 0.08\\ 0.13\\ \hline \end{array}$	$\begin{array}{c} -0.38 \pm \\ -0.35 \\ -0.32 \\ -0.26 \\ -0.22 \\ -0.15 \\ -0.07 \\ 0.00 \\ 0.14 \\ 0.26 \\ 0.35 \\ 0.44 \\ 0.47 \\ 0.96 \\ 1.10 \\ 1.16 \\ - \\ - \\ - \end{array}$	$\begin{array}{c} 0.03\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.04\\ 0.05\\ 0.06\\ 0.10\\\\\\\\\\\\\\\\\\\\ -$

TABLE III (Continued)

					1	
	NGC 6934		NGC 7006		NGC 7078	(M15)
	n =	4	n =	4	n =	5
λ	$m(1/\lambda)$	m.e.	$m(1/\lambda)$	m.e.	$m(1/\lambda)$	m.e.
$\begin{array}{c} 5200\\ 5100\\ 5000\\ 4900\\ 4800\\ 4600\\ 4500\\ 4400\\ 4300\\ 4200\\ 4100\\ 4000\\ 3900\\ 3800\\ 3700\\ 3600\\ 3500\\ 3400 \end{array}$	$\begin{array}{c} -0.38 \\ -0.33 \\ -0.27 \\ -0.27 \\ -0.22 \\ -0.17 \\ -0.12 \\ -0.07 \\ 0.00 \\ 0.10 \\ 0.22 \\ 0.32 \\ 0.41 \\ 0.50 \\ 0.82 \\ 0.91 \\ 1.05 \\ 1.34 \\ \\ \end{array}$	$\begin{array}{c} 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.03\\ 0.03\\ 0.03\\ 0.05\\$	$\begin{array}{r} -0.34 \\ -0.28 \\ -0.23 \\ -0.17 \\ -0.17 \\ -0.09 \\ -0.05 \\ 0.00 \\ 0.08 \\ 0.19 \\ 0.26 \\ 0.34 \\ 0.41 \\ 0.75 \\ 0.80 \\ 0.91 \\ 1.08 \\ 1.20 \\ 1.29 \end{array}$	$\begin{array}{c} 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.04\\ 0.05\\ 0.08\\ 0.16 \end{array}$	$\begin{array}{r} -0.29 \\ -0.29 \\ -0.24 \\ -0.17 \\ -0.14 \\ -0.11 \\ -0.06 \\ 0.00 \\ 0.07 \\ 0.16 \\ 0.25 \\ 0.32 \\ 0.38 \\ 0.61 \\ 0.72 \\ 0.90 \\ 1.09 \\ 1.18 \\ 1.30 \end{array}$	$\begin{array}{c} 0.02\\ 0.02\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.02\\ 0.02\\ 0.02\\ 0.03\\ 0.05 \end{array}$
	NGC 7089	(M2)	NGC 7099	(M30)		
	n =	5	n =	6		
λ	$m(1/\lambda)$	m.e.	$m(1/\lambda)$	m.e.		
$\begin{array}{c} 5200\\ 5100\\ 5000\\ 4900\\ 4800\\ 4700\\ 4500\\ 4400\\ 4300\\ 4300\\ 4100\\ 4200\\ 4100\\ 4000\\ 3900\\ 3800\\ 3700\\ 3600\\ 3500\\ 3400 \end{array}$	$\begin{array}{c} -0.29 \\ -0.26 \\ -0.21 \\ -0.17 \\ -0.14 \\ -0.11 \\ -0.07 \\ 0.00 \\ 0.10 \\ 0.19 \\ 0.26 \\ 0.33 \\ 0.39 \\ 0.70 \\ 0.78 \\ 0.95 \\ 1.13 \\ 1.19 \\ 1.28 \end{array}$	$\begin{array}{c} 0.04\\ 0.02\\ 0.02\\ 0.02\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.02\\ 0.02\\ 0.02\\ 0.03\\ 0.05\\ \end{array}$	$\begin{array}{c} -0.28 \\ -0.23 \\ -0.17 \\ -0.13 \\ -0.08 \\ -0.04 \\ 0.00 \\ 0.08 \\ 0.18 \\ 0.25 \\ 0.33 \\ 0.40 \\ 0.62 \\ 0.78 \\ 0.96 \\ - \\ - \end{array}$	0.03 0.02 0.04 		

TABLE III (Continued)

	ρ Gem	F0 V	β CVn	G0 V	61 UMa	G8 V
	n	= 4	n =	= 4	n =	= 4
λ	$m(1/\lambda)$	m.e.	$m(1/\lambda)$	m.e.	$m(1/\lambda)$	m.e.
5200 5100	-0.03	± 0.01	-0.20 =	± 0.01	-0.24 = -0.24	± 0.01
5000	-0.01 -0.04 0.02	0.01	-0.16 -0.13	0.01	-0.20 -0.18	0.01
4800	-0.02 -0.04	$0.01 \\ 0.01$	-0.12 -0.08	0.01	-0.15 -0.12	0.01
4600 4500	-0.02 0.00	$0.01 \\ 0.01 \\ 0.01$	-0.06 0.00	$0.01 \\ 0.01$	-0.08 0.00	0.01
$4400 \\ 4300$	$0.04 \\ 0.07$	$0.01 \\ 0.01$	$0.11 \\ 0.20$	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$	$ \begin{array}{c} 0.15 \\ 0.28 \end{array} $	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$
$\frac{4200}{4100}$	$0.12 \\ 0.17$	$\begin{array}{c} 0.01\\ 0.01 \end{array}$	$\begin{array}{c} 0.29 \\ 0.37 \end{array}$	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$	$ \begin{array}{r} 0.39 \\ 0.49 \end{array} $	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$
$\frac{4000}{3900}$	$0.22 \\ 0.48$	$\begin{array}{c} 0.01\\ 0.01 \end{array}$	$\begin{array}{c} 0.44 \\ 0.84 \end{array}$	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$	$ \begin{array}{r} 0.58 \\ 1.10 \end{array} $	$\begin{array}{c} 0.01\\ 0.01 \end{array}$
$\frac{3800}{3700}$	$0.63 \\ 0.93$	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$	$ \begin{array}{c} 0.88 \\ 0.92 \end{array} $	$\begin{array}{c} 0.01\\ 0.01 \end{array}$	$\begin{array}{c}1.15\\1.19\end{array}$	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$
$\frac{3600}{3500}$	$1.05 \\ 1.15$	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$	$1.03 \\ 1.14$	$\begin{array}{c} 0.01 \\ 0.02 \end{array}$	$1.28 \\ 1.40$	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$
3400	1.24	0.02	1.27	0.02	1.49	0.02

TABLE III (Continued)

observations were made. In fact many tracings had to be rejected because observations of standard stars showed that some nights were not of the highest photometric quality. Other reasons for rejecting tracings were moderate or strong auroral activity, cloud danger to individual tracings and occasional instrumental difficulties. In the final analysis about one third of all tracings obtained had to be rejected for one of the reasons listed above.

Inspection of Table III shows that absolute energy distributions could not be obtained for all clusters to the extreme short wave-length limit of λ 3400. This was due to the fact that, for globular cluster observations, the difference between total brightness and sky brightness is much smaller in the ultraviolet than it is in the blue-green region of the spectrum. In no cases were differences of less than 0.5 inches between total signal and sky background measured on the tracings.

Inspection of the sample tracing illustrated in figure 3 shows that three wave-length regions, with a width of about 50 A. each, are completely obscured by mercury emission lines of terrestrial origin. Our experience indicates that these lines introduce very little uncertainty in the interpolated position of the pseudo-continuum. In fact these lines were found to furnish convenient wave-length standards for the measurement of the tracings of faint globular clusters. The N_2^+ emission band near $\lambda 3900$, which occurs with variable strength during weak aurorae, proved much more bothersome and frequently introduced considerable uncertainty in the measurements of the discontinuity Δ near $\lambda 4000$.

OBSERVATIONAL ERRORS

The mean errors of the absolute energy distribution of globular clusters at each wave-length were estimated from the scatter of the individual observations about the mean. Figure 4 shows a plot of the

FIG. 4—Wave-length dependence of the observational errors of the absolute energy distribution of M92. The smooth curve shows the adopted wave-length dependence of the errors, the dots the observed errors at each wave-length.

observed mean error of $m(1/\lambda)$ at each wave-length obtained for M92. The smooth curve in the figure represents the adopted mean error at each wave-length. Comparison of figures 3 and 4 shows that the observational errors are smallest at those wave-lengths at which the observed brightness of globular clusters is greatest. The fact that the extinction corrections are largest in the far ultraviolet probably contributes to the relatively large errors at short wave-lengths. (For sec z = 2.5 the extinction correction is 1.66 magnitudes larger at λ 3400 than it is at λ 5200.) The temperature sensitivity of photomultipliers in the yellow (Young 1962) and the uncertainty of the adopted pseudocontinuum level due to the Mg I triplet $\lambda\lambda$ 5167-84 may contribute to the increase of the observational uncertainties longward of λ 5000.

To ensure adequate wave-length resolution the size of the entrance diaphragm of the spectrophotometer had to be rather small. The 28'' diaphragm which was used during all globular cluster observations admitted only a small fraction of the total cluster light. The *P* magni-

						·		
NGC	М	P_{28}	P–V	A.D.	n	C(41-51)	m.e.	n
5024	53	11.2	0.50	0.00	2	0.63	0.03	8
5272	3	10.1	0.56	0.04	3	0.63	0.02	6
5904	5	10.2	0.63	0.01	4	0.64	0.01	5
6093	80	10.1	0.76	0.02	-1	0.76	0.02	3
6205	13	10.7	0.57	0.02	6	0.66	0.02	7
6229	_	11.6	0.64	0.01	2	0.76	0.02	5
6254	10	12.0	0.79	0.01	3	0.82	0.04	4
6273	19	11.2	0.90	0.03	4	0.91	0.05	4
6341	92	9.7	0.53	0.00	2	0.61	0.02	6
6356		12.0	1.06	0.02	3	1.13	0.04	-4
6402	14	12.9	1.12	0.04	5	1.12	0.02	5
6626	28		0.97	0.02	3	1.05	0.03	5
6656	22	11.4	0.86	0.01	2	(0.83)	0.04	-1
6779	56	12.8	0.74	0.04	3	0.82	0.03	5
6838	71	13.1	0.95	0.01	2	1.10	0.04	6
6864	75	10.6	0.71	0.00	2	0.79	0.04	5
6934	-	11.4	0.62	0.01	3	0.75	0.02	4
7006		12.6	0.61	0.01	2	0.62	0.03	4
7078	15	9.2	0.59	0.01	2	0.61	0.02	5
7089	2	10.1	0.57	0.01	2	0.59	0.03	5
7099	30	10.6	0.48	0.00	2	0.56	0.03	6

TABLE IV

Comparison of P–V and C(41–51)

tudes of a region with a diameter of 28" centred on the cluster were extrapolated from data given by Kron and Mayall and are given under the column heading P_{28} in Table IV. The table shows that P_{28} ranges from 9^m2 for the brightest observed cluster to 13^m1 for the faintest cluster. The 18.5 A. width of the exit slit reduces the effective brightness of the cluster, which is seen by the photomultiplier, by an additional factor of about 4 magnitudes compared to that which would be observed in wide-band photometry. The resulting weakness of the observed signal undoubtedly contributes significantly to the observational errors for the faintest globular clusters.

The determination of the absolute energy distribution of each globular cluster was based on observations during at least two dark runs. Errors in the determination of the sensitivity function for any one dark run will therefore manifest themselves by an increase in the scatter of the individual absolute energy distributions about the mean. Since only one observation of a given globular cluster was obtained on any one night, deviations of the nightly absorption coefficients from the adopted mean absorption coefficient will also show up as scatter of the individual spectral energy distributions about the mean. It is therefore believed that the mean errors of the absolute energy distribution derived from the scatter of the individual observations which are quoted in Table III, represents a realistic appraisal of the actual accuracy of the results. Any errors in the adopted absolute energy distribution of the primary standard star α Lyrae will of course be reflected in the results.

An additional check on the accuracy of the data may be obtained from intercomparison of the spectral energy distributions of high latitude, and hence presumably little reddened, clusters which according to Kron and Mayall have the same spectral type and which have been assigned to the same metallic line class by Morgan. Such clusters would be expected to have closely similar spectral energy distributions. Figure 5 shows such a comparison for the high latitude clusters M2 and M53. The figure shows that within the accuracy of the data, the absolute spectral energy distributions of these two clusters are identical.

COMPARISON WITH WIDE-BAND PHOTOMETRY

Observations of a number of globular clusters on the UBV system have been published by Johnson (1959). A more extensive series of

FIG. 5—Observed difference between the absolute energy distributions of the high latitude clusters M2 and M53. Both clusters have the same integrated spectral type and are assigned to the same metallic line strength group by Morgan. The length of the error bars indicates the mean error of each point. Within the accuracy of the data both clusters are seen to have the same absolute energy distribution.

observations on the PVI system has been reported by Kron and Mayall (1960). The latter series contains P-V colour indices for all of the globular clusters for which absolute energy distributions are given in Table III.

To compare the present results with those of Kron and Mayall it is convenient to introduce monochromatic colour indices. For example, the colour index C(41-51), which will be defined as the difference between $m(1/\lambda)$ at $\lambda 4100$ and $m(1/\lambda)$ at $\lambda 5100$, may be compared with P-V. The observational data on P-V and C(41-51) are listed in Table IV and plotted in figure 6. The figure shows that the data may be adequately represented by the linear relation:

$$C(41-51) = P - V + 0.07.$$
(3)

The observations of the very scattered large diameter cluster M22 are not plotted in figure 6. The P-V observations of this cluster presumably refer to the integrated light of the entire cluster, whereas individual bright cluster stars had to be avoided during the spectrophotometric observations.

FIG. 6—Comparison of the P-V colours of globular clusters with the observed monochromatic colour indices C(41-51).

Within the accuracy of the data, no systematic differences exist between the C(41-51) versus P-V relations for clusters at high and low declinations. Since the low declination clusters were observed through a much larger air mass than the high declination clusters, this provides an additional check on the accuracy of the adopted wave-length dependence of the atmospheric extinction.

DISCUSSION OF RESULTS

Intrinsic Differences Between Clusters

The absolute energy distributions given in Table III for the relatively metal-rich cluster NGC 6356 and for the very metal-poor cluster M92 are compared in figure 7. The figure shows a number of striking differences which cannot be accounted for in terms of differences in the amount of interstellar absorption suffered by these two clusters.

FIG. 7—Comparison of the observed absolute energy distributions of the very metal-poor cluster M92 and the relatively metal-rich cluster NGC 6356.

In the first place figure 7 shows that the discontinuity Δ of the adopted pseudo-continuum near λ 4000 is very much larger in the metal-rich cluster NGC 6356 than it is in the metal-poor cluster M92. This indicates that the index Δ may be correlated with metal abundance. Inspection of the figure also shows that the slope of the pseudo-continuum of the two clusters differs much more strongly over the range $\lambda\lambda$ 4100 to 4500 than it does over the range $\lambda\lambda$ 4600 to 5100. This suggests that a combination of the monochromatic colour indices C(41-45) and C(46-51) might permit a separation of intrinsic colour effects from the effects of interstellar reddening.

Interstellar Reddening

In a colour-colour plot using either the UBV system (Johnson 1959) or the PVI system (Kron and Mayall 1960) the points corresponding to the intrinsic colours of globular clusters lie almost exactly along a reddening line. As a result UBV and PVI colour observations cannot be used to segregate intrinsic colour effects from the effects of interstellar reddening. Inspection of figure 7 suggests that a two-colour diagram, using the colour indices C(41-45) versus C(46-51), might be useful in separating intrinsic colour effects from interstellar

Т	A	B	ŧ.	E	V
		~	***		

٦	IONOCHROM	TATIC COLOUR I	NDICES AND PARAMETERS & AND W
7.2	10. vocintom	IATIC COLOUR I	INDICES AND I ARAMETERS T AND T

NGC	М	C(41-45) m.e.	C(46-51) m.e.	Φ m.e.	Ψ m.e.
221	32	0.65 ± 0.02	0.23 ± 0.01	0.47 ± 0.02	1.02 ± 0.03
224	31	$0.75 \ 0.02$	0.19 0.01	0.60 0.02	1.29 0.02
5024	53	0.34 0.03	0.23 0.02	0.16 0.03	0.37 0.04
5272	3	0.36 0.02	0.20 0.02	0.20 - 0.02	0.39 0.03
5904	5	0.35 0.01	0.22 0.01	0.18 0.02	$0.44 \ 0.02$
6093	80	0.43 0.03	0.27 0.02	0.22 - 0.03	0.49 0.04
6205	13	0.36 - 0.02	0.23 0.02	0.18 0.02	0.43 0.03
6229		$0.43 \ 0.02$	0.24 0.02	0.24 - 0.02	0.49 0.03
6254	10	0.44 0.03	0.30 0.04	0.20 - 0.04	0.47 0.06
6273	19	0.50 - 0.05	0.35 0.03	0.22 - 0.05	0.57 0.07
6341	92	0.32 0.01	$0.24 \ 0.02$	0.13 0.02	0.29 - 0.03
6356	P	0.68 0.04	0.36 0.02	0.39 - 0.05	0.88 0.07
6402	14	0.56 - 0.02	0.46 0.01	0.20 0.03	0.52 - 0.04
6626	28	0.61 0.03	0.33 0.02	0.35 - 0.03	0.72 - 0.07
6656	22	(0.38) 0.04	(0.35) 0.03	(0.10) 0.04	(0.35) 0.06
6779	56	0.41 0.02	0.33 0.02	0.14 0.03	0.33 0.04
6838	71	0.63 0.04	$0.32 \ 0.02$	0.38 0.04	0.87 0.06
6864	75	0.44 0.04	0.28 0.03	0.22 - 0.04	0.61 0.06
6934		0.41 0.02	0.27 - 0.02	0.20 - 0.03	0.48 0.03
7006		0.34 0.03	0.23 - 0.02	0.15 0.04	0.46 0.04
7078	15	0.32 0.01	0.23 0.02	0.14 0.02	0.31 0.02
7089	2	0.33 0.01	0.19 0.03	0.18 0.03	0.44 0.03
7099	30	0.33 0.02	0.19 0.03	0.18 0.03	0.39 0.04
ρ Gem	F0 V	0.17 0.01	0.05 0.01	0.13 0.01	0.41 0.02
βCVn	G0 V	0.37 0.01	0.13 0.02	0.26 - 0.02	0.65 0.02
61 UMa	G8 V	0.49 0.01	0.16 0.01	0.36 0.01	0.86 0.02
			1	·	1

reddening. These colour indices as derived from the data in Table III, are given in Table V. Figure 8 shows a plot of C(41-45) versus C(46-51) for those clusters for which Morgan has given metallic line strength classifications. Also shown is the reddening line derived from Whitford's (1958) reddening law. The figure shows that metal-rich clusters lie well to the right of the reddening line for metal-poor clusters. The position of a globular cluster in figure 8 may be used to estimate both the metallic line strength classification of that cluster and the reddening of that cluster relative to other clusters of the same metallic line strength. However, the total reddening of the cluster can be

FIG. 8—Two-colour index diagram of globular clusters which have Morgan metallic line strength classifications. The reddening line for metal-poor clusters is indicated by an arrow. The figure shows a clear-cut segregation of intrinsic colour effects from the effects of interstellar reddening. The nuclei of M31 and M32 are indicated by crosses.

determined only after some *a priori* assumption is made about the intrinsic colours of clusters in a certain metallic line strength group.

The Metal Abundance Parameter Δ

The size of the discontinuity in the pseudo-continuum near $\lambda 4000$ was measured directly on each globular cluster tracing (see figure 3). It should be emphasized that such measurements are quite difficult, especially for faint clusters in which the signal-to-noise ratio is small. The strong terrestrial mercury emission lines near $\lambda 4050$ and the N₂+ night sky band near $\lambda 3900$ also contribute to the uncertainty of the measurements. Table VI lists the mean observed values of Δ , expressed

6					
NGC	М	Δ	A.D.	n	Morgan metal class
221	32	0.50	0.04	6	_
224	31	0.59	0.03	$5\frac{1}{2}$	VIII
5024	53	0.21	0.04	7	II
5272	3	0.20	0.04	9	II
5904	5	0.23	0.03	5	II
6093	80	0.25:	0.11	$3\frac{1}{2}$	
6205	13	0.28	0.06	9	III
6229		0.20	0.04	6	III
6254	10	0.25:	0.09	$2\frac{1}{2}$	IV
6273	19	0.40	0.04	$4\frac{1}{2}$	IV
6341	92	0.09	0.03	9	I
6356	_	0.48	0.05	4	VI
6402	14	0.30	0.03	$2\frac{1}{2}$	IV
6626	28	0.26:	0.11	$4\frac{1}{2}$	
6656	22	(0.31:)	0.08	3	II
6779	56	0.21	0.06	5	
6838	71	0.52	0.08	8	VI
6864	75	0.26:	0.06	$3\frac{1}{2}$	
6934		0.23	0.02	$4\frac{1}{2}$	
7006		0.33	0.02	$4\frac{1}{2}$	II
7078	15	0.14	0.03	10	I
7089	2	0.23	0.04	5	II
7099	30	0.12	0.04	6	

TABLE VI

Observations of the Discontinuity Δ

in magnitudes, for all the programme clusters. Also given are the average deviation, A.D., of the individual Δ observations from the mean and the number of observations, n, on which this mean is based. In forming the mean, half weight was given to those Δ determinations which were considered to be of lesser accuracy; either because of small deflections on the tracings or on account of the strength of N₂⁺ night sky emission. It will be seen that for some clusters the number of observations used to determine Δ was larger than the number employed to derive the absolute energy distribution of that same cluster. This is due to the fact that the index Δ could be measured on a number of tracings obtained on nights which were not of the highest photometric quality.

FIG. 9—Correlation between Morgan's metallic line strength classification and the discontinuity Δ near λ 4000. The cross represents the nucleus of M31.

For those clusters for which this information is available the metallic line-strength classification (Morgan 1959) is also given in Table VI. Figure 9 shows that the discontinuity index Δ correlates well with Morgan's metallic line-strength classification. That such a correlation between metallic line-strength and discontinuity of the observed pseudo-continuum near $\lambda 4000$ is to be expected may be seen from figure 1 of Wildey *et al.* (1962). Their figure shows that, for F- and G-type stars, the fraction of the radiant flux which is blocked by Fraunhofer lines is much larger to the blue of $\lambda 4000$ than it is redward of this wave-length.

Additional confirmation of the relation between the size of the Δ index and metal abundance is provided by observations (van den Bergh, unpublished) of the Δ index in main-sequence stars of differ-

FIG. 10—The figure shows the relation between Δ and B-V for main sequence stars of normal metal abundance (dots) and metal-poor stars (crosses). At a given colour the discontinuity Δ is seen to be smaller for metal-deficient stars than for stars of normal metal abundance. The mean relation for stars with normal metal abundances is indicated by a straight line.

ing metal abundances. For these measurements the effective spectral resolution was comparable to that employed during the globular cluster observations. The results of these measurements are plotted in figure 10. The figure shows that, for any B-V value, stars of normal metal abundance $[\delta(U-B) < 0.06]$ have a larger Δ value than do metal-poor stars $[\delta(U-B) > 0.12]$. The smallest observed Δ value occurs for the subdwarf H.D. 140283, which is the most metal-deficient dwarf star known.

Some caution should be exercised in the interpretation of the relation between metal abundance and the quantity Δ in the nuclei of M31 and M32. For composite stellar systems the observed value of Δ will depend on both the metal abundance and the frequency

FIG. 11—Relation between the parameter Φ and Morgan's metallic line strength classification. The cross represents the nucleus of M31.

distribution of stars in different regions of the colour-magnitude diagram. For example the large value of Δ observed for the nucleus of M31 might be due either to a metal-rich stellar population or to a strong contribution of late-type stars to the total light. Also K-type giant stars have larger Δ values than do main sequence stars of the same spectral type.

Other Intrinsic Parameters of Globular Clusters

Using the wave-length dependence of interstellar reddening, which has been determined by Whitford (1958), it is possible to form combinations of monochromatic colour indices which are independent of interstellar reddening. Such reddening-free indices may be regarded as intrinsic parameters of composite stellar systems. For example one may define a quantity

$$\Phi = C(41-45) - 0.8C(46-51), \tag{4}$$

which is a function of the gradient of the absolute energy distribution to the red of the discontinuity Δ near λ 4000. The Φ indices for all clusters observed during the present programme are listed in Table V. Figure 11 shows that the index Φ correlates well with Morgan's (1959) metallic line strength classification. From an observational point of view the index Φ has the advantage that it is determined in the blue-green region of the spectrum where the signal-to-sky ratio is large and where atmospheric extinction corrections are not as great as they are in the ultraviolet. Spectrophotometric observations of high- and low-velocity main sequence stars by Greig (1962) also show that combinations of monochromatic colour indices determined in the range 4100 $\leq \lambda \leq 5100$ A. yield parameters which correlate with the ultraviolet excess and metal abundance of those stars.

Another reddening-free parameter, which includes the discontinuity Δ near λ 4000, may be defined by

$$\Psi = C(39-45) - C(45-51). \tag{5}$$

Due to the inclusion of a measurement in the violet region of the spectrum, the errors associated with the determination of Ψ are larger than those associated with the measurement of Φ . These larger errors are, however, compensated for by the fact that among globular clusters Ψ , which includes the discontinuity Δ , exhibits a wider range of variation than does Φ . The values of Ψ derived from the observations are given in Table V. Figure 12 shows that the parameter Ψ correlates well with Morgan's metallic line strength classification.

The correlations of Δ , Φ , and Ψ with the integrated spectral types of globular clusters (Kron and Mayall 1960) show considerably more scatter than do the correlations with Morgan's metallic line strength classification. Presumably this indicates that metallic line strength is a more accurate classification parameter than is "integrated spectral type".

The fact that Δ , Φ , Ψ and metallic line strength classification all correlate well together suggests that they all measure essentially the same parameter i.e. metal abundance. This view receives support from a comparison of the spectral energy distributions of the very metal-poor cluster M92 and the relatively metal-rich cluster NGC 6356. The difference in the visual absorption suffered by these two clusters is 0^m.7 for Kron and Mayall's "Solution I" and 1^m.3 for their "Solution II". Adopting a visual absorption of 1^m.0 and Whitford's reddening law the difference between the true absolute energy distributions of

FIG. 12—Relation between the parameter Ψ and Morgan's metallic line strength classification. The cross represents the nucleus of M31.

these two clusters may be determined. The resulting differences between the absolute energy distributions of M92 and NGC 6356, normalized to zero at λ 4500, are plotted in figure 13. Also shown in the figure 13 is the quantity ϵ_{λ} ; the fraction of the total energy in the solar continuum (Michard 1950) which is blocked by Fraunhofer lines. The similarity of these two curves strongly suggests that differences between the metal abundances of the stars in M92 and NGC 6356 are largely responsible for the observed differences of the absolute energy distributions of these two clusters.

Comparison of M31 and M32 with Globular Clusters

In Table VII the indices Δ , Φ , and Ψ for the nuclei of the galaxies M31 and M32 are compared with those of the relatively metal-rich

FIG. 13—Difference between the true absolute energy distributions of the relatively metal-rich cluster NGC 6356 and the very metal-poor cluster M92 under the assumption that the interstellar absorption A_{τ} suffered by NGC 6356 is 1.0 magnitudes larger than that suffered by M92. Error bars indicate means errors of each difference. The histogram shows the fractional blocking of radiant energy by Fraunhofer lines in the sun. The similarity of the two curves suggests that the observed differences between the spectral energy distributions of the two clusters may be largely accounted for by the difference in their metal abundances.

TABLE	VII	Ĺ
-------	-----	---

	Ā	Φ	Ψ	Morgan metal class
M31	0.59	0.60 ± 0.02	1.29 ± 0.02	VIII
NGC 6356	0.50	0.47 ± 0.02 0.39 ± 0.05	1.02 ± 0.03 0.88 ± 0.07	VI
M71	0.52	0.38 ± 0.04	0.87 ± 0.06	VI

Comparison of M31, M32 and Globular Clusters

globular clusters NGC 6356 and M71. The data in the table show that, for the nucleus of M31, the indices Δ , Φ , and Ψ are larger than those observed for the two least metal-deficient clusters observed during the present programme. The parameters Δ , Φ , and Ψ for the

Fig. 14—Comparison of tracings of the nuclei of M31 and M32 with sky tracing superimposed. The figure shows that M32 is bluer than M31.

61 UMa (G8 V). The strength of the cyanogen absorption in the tracing of M31 shows that giant stars contribute significantly to the total luminosity of the nucleus of M31 in blue light. FIG. 15-Comparison of a tracing of M31 (with sky subtracted) with tracings of the stars n Psc (G8 III) and

nucleus of M32 appear to be intermediate between those of M31 and those of the least metal-deficient globular clusters observed. Morgan (1959) lists four globular clusters which he considers to be metal-richer than M71 and NGC 6356. Unfortunately these clusters were either too far south or too faint to be observed during the present programme.

Figure 14 shows tracings of M31 and M32 obtained on the same night and at the same value of sec z. Comparison of these two tracings shows that M32 is considerably bluer than is M31.

Figure 15 shows a comparison of a tracing of M31 with tracings of a G8 III giant and a G8 V dwarf. For the scans of the two stars the width of the exit slot was increased to make the effective resolution similar to that on the tracing of M31. Comparison of the three tracings in the region between $\lambda\lambda$ 4100 and 4200 shows that "cyanogen giants" must provide a major contribution to the total radiation of the nucleus of M31 in the blue region of the spectrum. Morgan and Mayall (1957) have arrived at the same conclusion from an examination of low dispersion spectra of M31.

Acknowledgments

We are deeply indebted to Dr. John F. Heard for making large blocks of 74-inch telescope observing time available to us during the summers of 1961 and 1962.

Thanks are also due to Mr. W. E. Greig for occasional assistance at the telescope and to Mr. W. H. Clarke for advice on the computer reduction of the observations.

One of us (R.C.H.) wishes to acknowledge the receipt of the 1961– 1962 Chant Fellowship in Astronomy.

Part of this work was supported by grants from the Advisory Committee on Scientific Research, Toronto, and the National Research Council, Ottawa.

References

Bless, R. C. 1958, Univ. of Michigan Ph.D. Dissertation.

Greig, W. E. 1962, Univ. of Toronto, M.A. Thesis.

Johnson, H. L. 1959, Lowell Obs. Bull., vol. 4, p. 117.

Kinman, T. D. 1959, R.A.S., M.N., vol. 119, p. 538.

Kron, G. E. and Mayall, N. U. 1960, A. J., vol. 65, p. 581.

Mayall, N. U. 1946, Ap. J., vol. 104, p. 290.
Michard, R. 1950, B.A.N., vol. 11, p. 227 (no. 416).

- Morgan, W. W. 1956, P.A.S.P., vol. 68, p. 509; 1959, A.J., vol. 64, p. 432.
- Morgan, W. W. and Mayall, N. U. 1957, P.A.S.P., vol. 69, p. 291.
- Oke, J. B. 1960, Ap. J., vol. 131, p. 358.
- Whitford, A. E. 1958, A.J., vol. 63, p. 201.
- Wildey, R. L., Burbidge, E. M., Sandage, A. R. and Burbidge, G. R. 1962, *Ap.J.*, vol. 135, p. 94.

Young, A. T. 1962, A.J., vol. 67, p. 286.

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

Number 11

SPECTROSCOPIC STUDIES OF 60 Be STARS OVER A PERIOD OF 24 YEARS

JUDITH A. COPELAND AND JOHN F. HEARD

1963

TORONTO, CANADA

3 -

THE UNIVERSITY OF TORONTO PRESS

PRINTED AT

SPECTROSCOPIC STUDIES OF 60 Be STARS OVER A PERIOD OF 24 YEARS

BY JUDITH A. COPELAND AND JOHN F. HEARD

ABSTRACT

The spectra of 60 Be stars have been observed with a fair degree of regularity, about once a year, over the past 24 years for the principal purpose of surveying the spectral variations. A brief summary of the spectral characteristics and changes of each of these stars is here presented. For those stars showing double emission, studies of the fluctuations of the relative intensities of the violet and red components (V/R) have been made. For 15 of the stars it was possible to assign periods for these fluctuations; the mean period is about 6.8 years. About half of the stars show shell characteristics at times; the strength of the hydrogen absorption core intensities for about half of these shell stars show a degree of correlation with the V/R variations.

INTRODUCTION

Bright-line stars of class B are not uncommon. Merrill and Burwell (1933) in their "Catalogue of Be Stars" and in their two supplements (1943 and 1949) have listed 1088 such stars.

The emission lines in most Be stars are confined to the hydrogen lines, and invariably the emission is weaker as we proceed to the higher members of the Balmer series; indeed many such stars show emission only at H α . Emission lines other than hydrogen are sometimes observed, e.g. Fe II, Mg II, Si II, Ni II, Cr II, He I. Main sequence B stars more commonly show emission lines than do the more luminous stars, and stars of spectral class B3 include a higher proportion of emission-line stars than do earlier or later classes.

It was shown by early investigations that the emission lines are almost invariably centred, or nearly so, within broad, dish-shaped absorption lines. This led Struve (1931) to the conclusion that the emission lines arise in a disk or ring cast off from rapidly rotating stars. The relatively few stars showing narrow single emission have also relatively narrow underlying absorption; they are explained as rotating stars which are presented "pole-on". The more common broad emissions (super-imposed on very broad absorption) are always double. The two components of the emission, violet (V) and red (R), frequently show variations in relative intensity (V/R) and also in position relative to the underlying absorption. The interpretation of these V/R variations and the concomitant velocity shifts has been difficult. McLaughlin (1961), who has observed a number of Be stars over a long period of time, put forward a model of an extensive envelope which both rotates and pulsates in such a way as to give rise to the V/R variation. Another model, first suggested by Struve (1931) and re-discussed by McLaughlin (1961), involves gaseous rings which are elliptical in shape. The choice between these two models hinges, in part, upon the observed Doppler shifts of the absorption core and the emission lines. Concerning these Doppler shifts there has been a difference of opinion between McLaughlin and Miss Underhill (1959).

The dark reversal (if it may be so termed) which separates the V and R components of double emission is sometimes so strong as to resemble the sharp cores in the so-called shell stars. Indeed when these shell-like reversals are marked, other lines, mostly of ionized metals, appear strong and sharp in absorption. The fact that shell characteristics appear in stars with rapid rotation lends support to the idea that the outer regions of the star's envelope, where the absorption cores are produced, are not rotating rapidly. In a number of Be stars the shell characteristic appears to come and go.

It appears that many more data will be required before satisfactory explanations can be found for all the curious features that are observed in the spectra of Be stars.

The Observations

One of us (J.F.H.) in 1938 selected from Merrill and Burwell's (1933) Mount Wilson Catalogue (M.W.C.) a list of 60 Be stars, most of which, at that time, were not being observed at Michigan where most of the detailed long-term observations of Be stars had been made. The writer's intention was to observe these stars once or twice per season over a long period of time in order to add to the store of knowledge of the spectral variations of Be stars. The intention was not fully realized for one reason and another (in particular there was a lacuna during the war years), but nevertheless a considerable collection of spectrograms was built up. For the benefit of other investigators who may be interested in these stars we give in Table I the number of spectrograms in our collection year by year. These spectrograms were taken with the Hilger one-prism spectrograph—

TABLE I

NUMBER OF BE-STAR SPECTROGRAMS YEAR BY YEAR (1900+) IN THE D.D.O. Collection

																		-				
M.W.C	. 38	8 3 9	40	4	4 45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62
7	3	19		1	1	2																
8	3	1	1			3						1	1	1	1	1	1	1		1	1	
10	5	1	1			1						1	1	1	1	1	2	1	1	3	1	
13	4	1	1			2					4	2	1		1	1	2^{-}	3		2	2	
23	3	2	2			3	1	3		1	6	4	1	1	1	1	1	1	2	1	1	
29		3	1			1	1				2	1	1		2	1	1	1	2^{-}	1		1
49	2	1	1			2		1		1	9	1	1		2	1	1	1	1	1	1	
61	4					2	1			1	2	1	2	1	1		1				1	
63	3		1			1		1		1		1	1		1	2^{-1}	1		1	1	1	
68	4						1	1		1	1	1	1	1	1	1	1	1	1	2	1	1
76		3	2			2		1		1	1	1	1	1		2	1	1	1	1		1
79	1	1	1			4	1		1			1	1		1	1	1	1	1	1	1	
82	1	1	2			2		1		1	1	1	1							2	1	
83		2				1			2	1	1		1			2	1		1	1		
86							2					1				1					2	
88	1	1										1			1	2	1			2	1	
93								1		2	1	2			1	1	1		1	1	1	
107	1											1		1		1			1	3	1	
114		1	1						3						1	2	1			1		
115	2								1	1					1					2	1	1
139		2	1			1			1	3	2	9		1		1	1		1			1
140		1												1		2	1		1	1	1	1
146		1												1		1	1			1	1	
156		1												2	2		1			2	1	
159		2							3							2						
164		1							3	2					1	1					1	
174			1						1	1			1			1						1
188		1	1						2	3				1	1					2	1	1
189			1						2	3	1	4		1						1		1
190		1													1	1				1		2
278	2	1				2	1			1	1	1	1	1	1	1	1	1	1	1		
292	1	1				2	1	2	1	1	1	1	1	1	1	1	1	1	1	2	2	
307		1	1			3	$\frac{2}{2}$			1	1	1	1	1	2	1		1	1	1	1	
308		$\frac{2}{2}$				1	2	1		1	1	1	1	1	1	1	1	1	1	2	1	
310		2				3	1	1		1	2	2	1	2	1	2	1	1	1	$\frac{2}{2}$	2	
312		2	$\frac{2}{2}$			2	1	1		1	24	1	1	3	1	1	1	1	1	3	1	
317	1	1				6	5	2		3	2	1	2	1	2	2	1	1	2	3	1	
320			3			1	$\overline{2}$	2		1	1	1	1	2	1	1		1	1	2	1	
331	1	1				3					1	1	1	1	1	1	1	1	1	2	1	
332		1				2						1	1	1	1	1	2	1	1	3		

M.W.C.	38	39	10	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62
336						2	1					1	1	1	2	1	1	1	1	2	1	
343		1				$\overline{2}$						1	2	1	1	1	1	1		2	1	
346		2				2	3			1	3	1	2	1	1	1	1	1	1	3	1	
347	1					3	1			1	1	1	1	1	2	1	1	2		2	1	
350		1				1	1			1	1	1	1	1	1	1		1		2	1	
352	1					2						1	1	1	1	1		1		1	1	
353						1	1			1	1	1	1	1	1	1		1		1		
360	1	1				2						1	1	1	1	1		1		2		
361												2		1	1		1	1	1	2	1	
366	1					2						1	1	1	1	1	1	1	1	2	1	
371	2					2						1	1	1	1	1	1	1	1	2	1	
376	2		1			4	$\overline{4}$			3	4	1	2	1	1	1	1	1	1	2	1	
381	3	1				3	3			4	3	1	1	1	1	1		1	1	1	2	
383	1	2	2			2						1	1	1	1	2	1	1	1	3	1	
394	2	1				5	3	1		1	2	1	1	1	1	1	1	1	2	1	1	
395	3					2	2	2		2	2	1	2	2	1	1	2	2	1	3	2	
397						11	43	8	33	2	2		1	1	$\underline{2}$	1	1	1		3	1	
402	2	2	3			1	1	2	1	1	1	1	1	2	1	1	1	1	1	1		
407	5					3	1	1		1	1	2	1	1	2	2	1	1		3	2	
409	2	1	1			1	2	2		2	2	1	1	1	1	1	1	1	1	2	1	

TABLE I-Continued

most of them at dispersion 33 A./mm., some, especially of the stars fainter than magnitude 8, at dispersion 66 A./mm. H α does not show on the spectrograms, and little is seen to the violet of λ 3900.

As the spectrograms were being accumulated a card catalogue was maintained listing the main spectral variations. In 1961 the other writer (J.A.C.) undertook a detailed re-examination of all the spectrograms and a tabulation and correlation of the results.

In Table II we list the stars according to both M.W.C. and H.D. numbers, giving R.A. and Dec. for 1900, the visual magnitude, and

LT	R	IF	11	í
7 7 7	\mathcal{L}			

SUMMARY OF SPECTRAL FEATURES AND VARIATIONS

M.W.C. 7, H.D. 2905; 0^h27^m3, +62[°]23'; 4^m24, cB0eα; κ Cas

No emission has been observed, though $H\beta$ absorption is weak; no spectral variations were noted.

M.W.C. 8, H.D. 4180; 0h39m2, +47°44'; 4m7, B4neß; o Cas

In 1938, 1939, 1946 double emission at H β appeared faintly with V = R, and there was a deep core at H γ . These features were not visible from 1952 on.

TABLE II—Continued

M.W.C. 10, H.D. 6343; 0^h59^m4, +65°26'; 7^m10, B5eß

H β has single emission varying in intensity, particularly strong in 1946, 1958, 1959, Sept. 1960. H γ shows weak emission when H β emission is strongest, but in Nov. 1960 H γ showed a distinct absorption core and H β no emission.

M.W.C. 13, H.D. 9105; 1^h24^m6, +62°51'; 7^m46, cB5(e)

Absorption lines are very sharp; no emission was seen on any of the plates.

M.W.C. 23, H.D. 12302; 1b55m6, +59°12'; 8m2, B3e

There are marked and rapid variations in the intensity and the V/R ratio of the double emission lines. Emission lines other than hydrogen appear. Shell characteristics come and go.

M.W.C. 29, H.D. 13661; 2h08m1, +54°04'; 8m6, B(3)ne

The width and V/R ratios of H β and H γ vary markedly. He I 4471 absorption is usually sharp but was broad in 1946 and exceptionally so in 1959.

M.W.C. 49, H.D. 15472; 2h24m4, +70°30'; 8m0, B4ne

There are marked intensity and V/R changes in the double emission at H β and H γ , and hydrogen absorption cores and other shell characteristics come and go. The relative intensity and sharpness of He I 4471 and Mg II 4481 vary.

M.W.C. 61, H.D. 19243; 3^h00^m7, +62^o00'; 6^m5, B2e

There are marked intensity and V/R changes in the double emission at H β and H γ . Though the hydrogen emission is broad, the He I absorption is narrow. Weak absorption cores of H γ and H δ appeared in 1953.

M.W.C. 63, H.D. 20017; 3^h07^m9, +48°19'; 7^m9, Bne

Hydrogen and He I have very broad absorption, and He I is very weak. The emission at H β and H γ is weak and varies in width. V/R changes are noted, but frequently the double emission is difficult to resolve. An absorption core was seen at H γ in 1938, 1946, 1953, 1955, 1956, 1957.

M.W.C. 68, H.D. 21650; 3^h24^m6, +41°25'; 7^m2, B5ne

There are marked variations of intensity and V/R ratios of double emission at H β and H γ . Absorption cores at H β and H γ come and go.

M.W.C. 76, H.D. 23982; 3h44m3, +63°11'; 8m1, B3e

All absorption lines are broad. Weak, narrow, double emission is sometimes seen at H β and H γ with V = R. In 1960 and 1962 an absorption core was seen at H γ .

M.W.C. 79, H.D. 24560; 3h49m3, +44°38'; 7m8, B(3)ne

Absorption lines are broad. Emission is usually absent, though suggested by the weakness of H β absorption, but in 1945 and in 1960 and 1961 there was fairly distinct narrow double emission at H β with $V \doteq R$.

M.W.C. 82, H.D. 26420; 4h05m7, +41°52'; 7m6, B3nea

No emission was seen until 1960 when at H β double emission appeared with V = R; by 1961 both H β and H γ showed R > V and sharp absorption cores.

M.W.C. 83, H.D. 26906; 4^h10^m1, +45°58'; 8^m6, B(3)ne

From 1939 to 1951 H β showed strong double emission with V = R and an absorption core at H γ . On the plate of 1953 the H β emission was absent, but seems gradually to have re-appeared between 1956 and 1960 when it occurs as narrow emission to the red of the centre of both H β and H γ , i.e. $R \gg V$.

TABLE II—Continued

M.W.C. 86, H.D. 28497; 4h24m5, -13°17'; 5m5, B3ne

There is double emission at H β and H γ with variations in the intensity, V/R ratio, and in the strength of the absorption cores.

M.W.C. 88, H.D. 29866; 4h37m3, +40°36'; 6m1, B4ne

Emission at H β and H γ is weak and sometimes resolved into double, sometimes not. There are V/R variations, and H γ at times has an absorption core.

M.W.C. 93, H.D. 31293; 4b49m4, +30°24'; 7m5 var., A0ep; AB Aur

Most plates show fairly wide emission to the red of centre at H β , H γ and H δ with a strong absorption core to the violet. The cores faded in 1950, returned in 1956, disappeared in 1957 and returned in 1959. The emission strengthened and became more nearly central when the cores disappeared. On the 1961 plate H β emission was double with R > V, H γ double with R = V.

M.W.C. 107, H.D. 34921; 5h15m8, +37°55'; 7m4, B0ne

Emission at H β and H γ is double and there are well marked variations of V/R.

M.W.C. 114, H.D. 37115; 5^b31^m0, -5°41'; 8^m2, B5ne

All plates show moderately wide double emission at H β with V = R. Since 1940 there has been a sharp absorption core at H γ , and since 1956 there has been double emission at H γ with V = R.

M.W.C. 115, H.D. 37202; 5^h31^m7, +21°05'; 3^m0, B3e; ζ Tau

This well-known shell star exhibits many changes in the absorption and emission lines. The double emission lines at H β show marked variations of V/R, and the H γ core shows variations in intensity along with the other shell lines. Double emission was seen at H γ in 1955 and 1960 with V = R, but in 1961 only the violet component was seen.

M.W.C. 139, H.D. 44637; 6^h17^m7, +15°09'; 7^m7, B3e

Hydrogen absorption is very broad; He l absorption is moderately strong and sharp. Emission was seen only at H β , double with V/R varying, but usually with $V \doteqdot R$. Emission was weakest in 1950.

M.W.C. 140, H.D. 45314; 6^h21^m6, +14°57'; 7^m1, B2ne

All absorption lines are extremely broad and weak. Double emission with varying V/R was seen at H β and H γ except on the last plate (1962) when no emission at all was seen.

M.W.C. 146, H.D. 45995; 6^h25^m6, +11°19'; 5^m8, B2ne

Absorption lines are broad and diffuse. Double emissions at H β and H γ vary as to V/R.

M.W.C. 156, H.D. 50083; 6h46m5, +5°13'; 6m8, B2e

Both H β and H γ show double emission with V/R variations.

M.W.C. 159, H.D. 50209; $6^{h}47^{m}1$, $-0^{\circ}10'$; $8^{m}3$, B(5)ne

Hydrogen absorption is very strong and broad; the relative strength of He I 4471 to Mg II 4481 varies considerably. Double emissions at H β , H γ and (since 1949) at H δ vary in width, strength and V/R.

M.W.C. 164, H.D. 52721; 6h57m2, -11°09'; 6m6, B3e

Hydrogen absorption is wide but He I fairly narrow and variable in strength. In 1939 H β emission was narrow and fairly strong, and in 1950 H β emission was weaker

TABLE II-Continued

and $H\gamma$ had weak double emission with R > V; thereafter emission was apparently absent.

M.W.C. 174, H.D. 57386; 7h15m9, -8°15'; 8m1, B5ne

Absorption lines are fairly wide and moderately weak. $H\beta$ emission is fairly strong, wide and double with variable V/R. $H\gamma$ emission is weak and probably double.

M.W.C. 188, H.D. 65079; 7^h51^m9, +3°14'; 7^m7, B3ne

Hydrogen and He I absorptions are very broad. H β emission was moderately strong and double in 1939; it faded with time and changed slightly as to V/R; it was extremely weak in 1962. H γ emission is weak, probably double but not always resolved.

M.W.C. 189, H.D. 65176; 7h52m4, -1°20'; 8m1, B(5)ne

All absorption lines are extremely weak and broad. Weak H β emission was seen in 1949 and 1952, it was stronger in 1954 and double, with $V \doteqdot R$; it was weaker in 1960, stronger again in 1962. In 1954 H γ emission was double, with R = V; it was weaker in 1960.

M.W.C. 190, H.D. 65875; 7^h55^m8, -2°36'; 6^m4, B2e

Hydrogen absorption lines are fairly wide, He l strong and fairly narrow. H β and H γ emissions are narrow but probably double with V/R changes.

M.W.C. 278, H.D. 164284; 17^h55^m3, +4°22'; 4^m8, B5ne

Hydrogen and He I absorption lines are fairly wide. Weak double H β emission appeared at H β in 1946, was absent in 1951 and 1955, was very strong in 1959 and 1960. H γ double emission also appeared in 1953, was absent in 1955 and 1956, was strong in 1959 and 1960. In all cases V = R.

M.W.C. 292, H.D. 168957; 18h17m3, +25°01'; 6m9, B5e

All absorption lines are narrow. In 1938 emissions at H β , H γ , H δ , H ϵ were strong and narrow; emission was replaced in 1946 by absorption cores which faded and in 1951 were replaced by emission again. Emission was gone again in 1952, re-appearing in 1954, missing in 1958, replaced by absorption cores in 1959 which then faded in 1961. The alternation of hydrogen emission lines and absorption cores was accompanied by numerous changes in the many other absorption lines, e.g. He II 4686 was quite strong in 1954.

M.W.C. 307, H.D. 174886; 18h47^m7, -10°21'; 8^m1, B3e

The hydrogen absorption is moderately wide, He l fairly sharp. Double H β and H γ emissions vary in V/R, width and intensity—weakening in 1951, strengthening then weakening again from 1955 onward. Absorption lines vary considerably in strength and sharpness.

M.W.C. 308, H.D. 175863; 18^h52^m3, +59°53'; 6^m9, B4e

Hydrogen and He I absorption lines are fairly broad. A narrow single H β emission appeared in 1947, faded, and was gone by 1950. It returned in 1951 but was weak or absent later. The 1959 plate seems to show absorption cores at H γ and H δ .

M.W.C. 310, H.D. 177648; 19h00m5, +23°11'; 6m9, B3e

Hydrogen and He I absorptions are fairly broad. Double H β emission comes and goes with variable V/R. When H β emission is strongest H γ has an absorption core.

TABLE II—Continued

M.W.C. 312, H.D. 180398; 19h11m3, +12°56'; 7m7, B(3)ne

Hydrogen and He I absorptions are broad. Double H β emission is always weak and varies as to intensity and V/R ratio. Absorption core and signs of emission borders are seen at H γ when H β emission is most distinct.

M.W.C. 317, H.D. 183143; 19b23m0, +18°05'; 6m9, cB9ea

This is a well-known, strongly reddened supergiant which shows the interstellar band at λ 4430 very strongly. On our plates H β absorption is sometimes strong, sometimes practically filled in, as though variable emission is present. He I 4387 fluctuates in character between nebulous and sharp. On a plate of 1953 Sept. 8 a strong "absorption" feature appeared at λ 4447.5; it was gone on 1953 Oct. 16, and was seen on no other plate before or since. The feature may be a flaw in the emulsion, but it gives every appearance of being a strong absorption line. If the line is real the writers can suggest only N II 4447.03 by way of identification.

M.W.C. 320, B.D. +5°4285; 19^h41^m3, +5°44'; 8^m5, B5ne

The absorption lines are extremely wide. H β and H γ show double emission with strong cyclical variations in V/R.

M.W.C. 331, H.D. 192044; 20h07m8, +26°11'; 5m9, B8ne

Hydrogen and He II absorption lines are wide, nebulous. The H β and H γ emission lines are double, with variations in intensity and V/R. Cores show with varying sharpness at H γ , H δ , H ϵ .

M.W.C. 332, H.D. 192445; 20h09m8, +36°02'; 7m1, B2ne

Hydrogen and He I absorptions are very wide and weak. Generally the double hydrogen emissions are strong, showing as far as H_{ϵ} ; there are cyclical variations in the strength, width and V/R ratios. Other emission lines (e.g. Fe II 4383, He I 4471) are seen at times.

M.W.C. 336, H.D. 193009; 20h12m9, +32°04'; 7m0, B0ne

Absorption lines are very wide. Double emission at H β and H γ show cyclical variations in V/R ratios. Fe II 4383 is often seen in emission.

M.W.C. 343, H.D. 194335; 20^h20^m0, +37°10'; 5^m7, B3ne

No emission was seen in 1939, but since 1946 double emission at H β has displayed V/R variations.

M.W.C. 346, H.D. 195407; 20^h26^m0, +36°39'; 7^m7, B3e

Hydrogen and He I absorption lines are broad and weak except at times when shell characteristics appear, producing many sharp absorption cores. Double emissions at H β and H γ vary markedly as to V/R. Other double emissions appeared strongly at times (e.g. Fe II 4549 and 4583 in 1954). On several plates since 1952 a wide absorption appeared at about λ 4650 (O II?).

M.W.C. 347, H.D. 195592; 20^h27^m2, +43°59'; 7^m2, cB1e

The hydrogen and He absorptions are sharp and strong, and many lines of Si III, N III, Si IV, O II appear. No emission was observed except insofar as H β absorption varies somewhat in strength.

M.W.C. 350, H.D. 196712; 20h34m0, -2°46'; 6m3, B9e

The hydrogen absorptions are broad. At times we would classify as BS or earlier, at other times as B9, as the ratio of He I 4471: Mg II 4481 varies. H β shows emission,

TABLE 11-Continued

broad and probably double, but never well resolved. Faint $H\gamma$ emission was present in 1960.

M.W.C. 352, H.D. 198183; 20h43m5, +36°07'; 4m5, B6e; 2 Cyg

The absorption lines are narrow and strong. No emission was observed and no changes.

M.W.C. 353, H.D. 198478; 20^h45^m5, +45^o45'; 4^m9, cB2eα

This is the supergiant 55 Cyg. No emission was observed and no changes. M.W.C. 360, H.D. 200310; $20^{h}57_{m}6$, $+45^{\circ}46'$; $5^{m}2$, B3ne

The hydrogen absorptions are rather narrow, the He I absorptions broad. The 1946 plates showed double H β and H γ emission with V = R. No emission was seen in 1952 and later. The 1962 plate showed a sharp core at H γ .

M.W.C. 361, H.D. 200775; 21^h00^m4, +67°47'; 7^m2, B5e

Hydrogen absorptions are very broad, but He I and Mg II 4481 are fairly sharp. Strong double emissions at H β and H γ show variations of V/R; "shell" absorption cores at H γ and H δ vary in intensity. An unidentified emission feature at λ 4286 appeared on the 1955 plate.

M.W.C. 366, H.D. 203374; 21^h16^m7, +61°25'; 6^m6, B0ne

Hydrogen and He I absorptions are broad. Double emissions at H β and H γ vary slightly as to V/R.

M.W.C. 371, H.D. 205060; 21^h27^m7, +42°16'; 7^m1, B5(n)e

In 1938 and 1946 hydrogen and He I absorptions were broad with "shell" cores, but no emission was seen. Since 1952 double emissions at H β and H γ have appeared, varying in intensity and V/R ratio.

M.W.C. 376, H.D. 206773; 21h39m3, +57°17'; 7m0, B0ne

The spectrum of this star is about the most interesting of our list, showing remarkable variations. In 1938 there were strong narrow central emissions at $H\beta$, $H\gamma$, $H\delta$ within broad weak absorptions. By 1940 $H\beta$ and $H\gamma$ showed wide double emission (V < R), and $H\delta$ was practically continuous. Thereafter the hydrogen emission doubles varied markedly in intensity, width and V/R. In 1951 the emission doubles were more like borders to strong absorption cores; He l lines shared this appearance with the hydrogen lines as far as they could be seen (to $H\zeta$). In 1953 the doublets were narrow, and V was barely visible at $H\gamma$ and $H\delta$; in 1957 the V/R ratios were reversed; by 1958 the emission doublets were wider again and equal. Similar variations continued.

M.W.C. 381, H.D. 208682; 21^h52^m9, +64°52'; 5^m8, B3ne

Hydrogen and He I absorptions are broad and weak. Double hydrogen emissions vary in intensity and V/R. Other emissions, e.g. He I 4471, Fe II 4383 are present at times. Hydrogen absorption cores vary in strength.

M.W.C. 383, H.D. 209296; 21h57m2, +56°14'; 8m1, B(5)e

On early plates hydrogen absorptions were broad and deep, He I weak, Mg II 4481 stronger than He I 4471; type was then more like B9 than B5. No emission was seen until 1952 when (and thereafter) double emissions with V = R were present at H β and H γ . By 1961 He I 4471 was much stronger than Mg II 4481. H β had an absorption core in 1946 which remained until 1956.

TABLE II—Continued

M.W.C. 394, H.D. 217050; 22h52m7, +48°09'; 5m2, B3ne

The spectrum is that of a typical shell star with very sharp, strong hydrogen cores and many faint metal lines. H β and H γ show double emissions with slight variations of V/R. Some other emissions show at times.

M.W.C. 395, H.D. 217543; 22^b56^m3, +38°10'; 6^m4, B3ne

The spectrum shows marked variations. On the 1938 plates strong hydrogen absorption cores appeared as far as H ζ on broad underlying absorptions; He I absorptions were broad and strong; the only emission was a suggestion of borders at H β . By 1946 the emission borders at H β were stronger, Mg II 4481 was nearly as strong as He I 4471, and numerous metal lines were appearing in absorption. In 1947 emission at H β was strong (V = R) and shell characteristics were more marked. By 1953 the emission at H β was weak or absent and the metal absorptions were very weak. In 1954 H β emission was stronger with V > R. Thereafter there were variations in the hydrogen emissions (intensity and V/R) and in the hydrogen core intensities, but the metal lines did not return in strength.

M.W.C. 397, H.D. 218393; 23^h02^m6, +49°40'; 6^m8, Ave

This well-known star, although classified as A-type, sometimes resembles a late B-type. It has a most peculiar spectrum, showing marked variations in both the absorption and emission lines. Our plates from 1938 to 1949 were studied in some detail by Halliday (1950) who discussed the coming and going of the α Cygni metal lines and the rhythmic variations in the radial velocities. The hydrogen absorptions are usually sharp, and there are usually double emissions at H β and H γ at least. The V/R ratios do not show the common pattern of variations; instead, the variations are rapid and seemingly erratic, and more often than not the red component is much the stronger. It is when the emission doublets are nearly equal in intensity that the metal absorptions are the strongest and sharpest; they practically disappear when $R \gg V$.

M.W.C. 402, H.D. 223501; 23h45m0, +61°39'; 8m2, B3e

Hydrogen absorptions are very broad, He I somewhat narrower. H β and H γ were seen as double emissions on most plates with V/R variations. A weak H γ absorption core was seen in 1938.

M.W.C. 407, H.D. 224559; 23h53m8, +45°52'; 6m5, B3ne

Hydrogen and He I absorptions are very broad. Emission doublets at H β and H γ are generally narrow, but vary in width and V/R. Hydrogen absorption cores vary in strength.

M.W.C. 409, H.D. 225095; 23^h58^m3, +55°00'; 7^m6, B1e

Hydrogen absorptions are wide, He I narrow. H β emission appears single, but H γ and H δ show emission doublets with V/R and intensity variations. He I 4471 varies in width and strength and an absorption core was seen at H γ in 1960.

Mount Wilson spectral type. For each star there is a brief summary of the more detailed descriptions of the spectrum and spectral variations which are on our cards.

The V/R Variations

Approximately 60 per cent of the Be stars in our list showed V/R variations. An attempt was made to study these for periodicity as follows: For both H β and H γ , if possible, the V/R was estimated and classified according to the following scheme:

$$V/R \text{ Class } 1 \qquad V \ll R$$

$$2 \qquad V < R$$

$$3 \qquad V = R$$

$$4 \qquad V > R$$

$$5 \qquad V \gg R$$

For each suitable line on each spectrogram the V/R classification was estimated three times and the mean taken. These classification numbers were then plotted as ordinates against time as abscissae, and the points were simply joined by straight lines.

Those plots which demonstrated clear evidence of periodicity for $H\beta$ and/or $H\gamma$ V/R ratios are shown in figures 1 to 4 which include 15 of the 60 stars. (The ordinates of the plots are V/R classes as defined above.) It is apparent that the variations are not strictly periodic, and not every plot lends itself to an estimate of period; but an effort was made to assign a period to each star in the following manner: First we averaged the intervals between successive crossings of V/R class 3 (V = R); we noted that the H β periods tend to be longer than the H γ periods for those stars for which both are available. Using a method of linear regressions, we then assigned to each star a period (the "adopted" period) which we believe to be a mean period for H β and H γ suitably adjusted for the observed tendency of the H β period to be longer than the H γ period. The H β , H γ , mean, and "adopted" periods are given in Table III.

The "adopted" periods range from 875 to 3955 days (2.4 to 10.8 years). A histogram of these periods, shown in figure 4, demonstrates that the most frequent period is of the same order as the average period, namely 6.8 years. In assessing the significance of these results, however, one must remember that the stars selected are those which are in a stage of active V/R variability; by our method we may have automatically rejected stars which have slower fluctuations and which, over the past 24 years, have shown little variation of V/R.

A search for a correlation between period and spectral type yielded no positive result.

FIGURE 4

MWC	$H\beta$	H_{γ}	Mean	Adopted
23	2461	2296	2379	2360
29	2850	2720	2785	2798
49	3097	2291	2694	2702
146	2160			1980
310	1052			875
312	2425			2250
320	3890			3720
332	2580	1790	2185	2145
336	3805	3830	3818	3955
346	2813	1950	2382	2360
361		2090		2340
376	2440	2540	2490	2472
381		2155		2390
395	1500			1325
407		3660		3610

TABLE III V/R Periods Obtained for 15 Stars

There does appear to be a tendency for the H γ V/R amplitudes to be greater than the H β amplitudes: of the 11 stars for which the data are sufficient, seven show H γ amplitudes to be the greater, one shows H β amplitude the greater, and three show equal amplitudes. In a qualitative way this tendency might find an explanation on the rotating-pulsating model: the H γ central absorption, being formed at a lower level in the envelope might be expected to be subjected to wider velocity oscillations and so give rise to more notable V/R variations in the emission doublets.

For four out of the 15 stars, the phase wherein $V \gg R$ is definitely longer than that for $R \gg V$, whereas for the other 11 stars there is no noticeable asymmetry of this sort. On the rotating-pulsating model $V \gg R$ corresponds to the contracting phase of the shell; it would thus appear that in some stars this phase lasts longer than the expanding phase.

STARS WITH SHELL CHARACTERISTICS

For practically all the stars which show definite V/R variations we have noted variations in the intensities of the hydrogen absorption cores (shell characteristics). Eye estimates of these core intensities were made and plotted alongside the V/R curves. No exact correlation was apparent, but, generally speaking, the strongest core intensity very frequently coincided with the $V \gg R$ phase or followed it by an interval of less than one quarter of the V/R period.

Taking account of all 60 of the stars investigated, 29 were noted as showing shell characteristics (in the hydrogen lines at least) at some time during the period of observation. These stars are M.W.C. 8, 10, 23, 49, 63, 68, 76, 82, 88, 93, 114, 115, 159, 292, 310, 312, 331, 346, 352, 360, 361, 371, 376, 381, 383, 394, 395, 397, 407. All but four of these stars are of Mount Wilson spectral types B3, B4 or B5; the exceptions are: M.W.C. 93 (A0), M.W.C. 331 (B8), M.W.C. 352 (B6), M.W.C. 397 (A). This clustering of shell spectra about B3–B5 types confirms an observation by Struve (1942). We further noted, by simple averaging of spectral types, that the shell Be stars in our sample are very close to B4, whereas the non-shell Be stars are close to B3. The difference, we believe, is significant, indicating therefore a tendency for the shell characteristic to be somewhat rarer in the earlier-type Be stars.

Conclusions

Our conclusions from a sample of 60 Be stars chosen without reference to known spectral characteristics and observed over a period of 24 years may be summarized as follows:

Fifty-four of the stars have shown emission at $H\beta$. Of the remaining six, five are supergiants.

Of the 54 stars showing emission at H β , 36, that is, 67 per cent, have been classed as V/R variables.

Periods have been determined for 15 of the V/R variables. The mean period is 6.8 years.

Twenty-nine of the stars showed, at some time or other, shell characteristics. These were nearly all of spectral types B3 to B5, and on the average were a little later than the Be stars which did not show shell characteristics. Fifteen of the shell stars are V/R periodic variables; among most of these stars maximum absorption core intensity tends to coincide with the phase $V \gg R$, or follow it by a small fraction of the period.

ACKNOWLEDGMENTS

This investigation was supported by the National Research Council of Canada by research grants for obtaining the spectrograms and for financial aid to one of us (J.A.C.) as a graduate student in a Master's programme at the University of Toronto.

We thank Mr. Michael Copeland for his help in preparing the diagrams.

References

Halliday, I. 1950, Jour. R.A.S.C., vol. 44, p. 149.

McLaughlin, D. B. 1961, Jour. R.A.S.C., vol. 55, p. 73.

Merrill, P. W. and Burwell, C. G. 1933, Ap. J., vol. 78, p. 87; 1943, Ap. J., vol. 98, p. 153; 1949, Ap. J., vol. 110, p. 387.

Struve, O. 1931, Ap. J., vol. 73, p. 94; 1942, Ap. J., vol. 95, p. 134.

Underhill, A. 1959, Jour. R.A.S.C., vol. 53, p. 176.

Richmond Hill, Ontario January 15, 1963

334

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME H

Number 12

A BIBLIOGRAPHY OF INDIVIDUAL GLOBULAR CLUSTERS

FIRST SUPPLEMENT

HELEN B. SAWYER HOGG

UNIVERSITY OF TORONTO PRESS, 1963

Copyright Canada, 1963, by UNIVERSITY OF TORONTO PRESS Printed in Canada

A BIBLIOGRAPHY OF INDIVIDUAL GLOBULAR CLUSTERS

FIRST SUPPLEMENT

BY HELEN B. SAWYER HOGG

I. PURPOSE

The first bibliography of individual globular clusters was published by the writer in 1947 as volume 1, no. 20, of the Publications of the David Dunlap Observatory. Until that time, the extensive bibliographical material on globular clusters had been in an unwieldy state, so that a worker who wished to determine what had been done on any given cluster could do so only by a vast amount of searching of irrelevant material. That such a compilation was needed has been proved by the number of requests the Observatory has had for it.

Since that time, the card catalogue which formed the basis of that publication has been maintained continuously by the writer, who looks over all the astronomical literature of the world as it is received at the David Dunlap Observatory. From this catalogue this first supplement has been compiled, to include the literature from 1948 through 1962, as well as earlier references brought to the writer's attention since the publication of the first bibliography. Of course, the Astronomischer Jahresbericht and the Bulletin Signalétique of the Centre National de la Recherche Scientifique are a great help in providing information. In the future it is definitely planned to issue supplements at shorter intervals of time.

The literature on all clusters, both globular and galactic, is in a much better state of co-ordination than it was at the time of the original bibliography. This has been achieved through the efforts of G. Alter, J. Ruprecht and V. Vanýsek of Prague in their publication of the "Catalogue of Star Clusters and Associations," 1957. In this monumental work, all references are indexed on cards 148 by 208 millimetres under the individual clusters. Five annual supplements have already appeared, each as an Appendix to the Bulletin of the Astronomical Institutes of Czechoslovakia, and a sixth is in preparation. The writer is a co-author in these supplements. References to the original work in 1957 are indexed under individual clusters in this David Dunlap bibliography, but the supplements are only listed by title in Section B because the references they contain are included in this present work.

Despite this other bibliography, the writer considers that there is still a need for the present publication. The formats of the Czech and Canadian bibliographies are quite different, and each has its own area of usefulness. The Czech bibliography, for lack of space on the cards, does not give the title of the paper or the initials of the author, or the name of more than one author. The abbreviation of references has to be truncated, and the arrangement is not fully chronological or alphabetical. The David Dunlap Observatory bibliography attempts to avoid all of these difficulties.

II. USE OF THE BIBLIOGRAPHY

The form of this supplement is essentially the same as that of the original bibliography. The plan for listing is as follows. A paper which deals principally with one, or a few, clusters is listed by author and title under each cluster in Section A. If a paper whose title is listed under one cluster (with which it is chiefly concerned) refers briefly to other clusters, this is noted under each of them by a "See also" direction. On the other hand, a paper which is concerned with lists of many clusters, or one on a general subject which makes brief reference to a specific cluster, is listed under the cluster by date and author only. The title and complete reference will be found in Section B, which is arranged chronologically by year, and alphabetically by author within each year. When an author in this section has more than one paper in a year, a Roman numeral following the date distinguishes the paper. As a guide for the reader, many of these longer and more important references have been broken down into sub-sections, so that a perusal of Section B will show the sort of information the longer papers contain. We wish to interject a note of caution here, that some important papers on globular clusters are not included in this supplement because there is no mention of a specific cluster.

The actual abbreviations for references have been carried on as in the first bibliography. In general the name of the place appears first, and the type of publication second. The word observatory is frequently taken for granted. Because of the fact that the bibliography is built up piece by piece over a long period of time, it is hard to achieve a complete uniformity in it. When useful plates or photographs accompany an article, this is usually, but not always, noted. Symposia are usually indexed under the year of publication which is frequently later than the year of presentation. An attempt has been made to include, as well as periodicals, astronomical books which contribute pertinent information. In general, material mentioned by directors in their observatory reports is not indexed because its usefulness is ultimately supplanted by the full publication of the research. In special instances, however, an observatory report has been included.

It is inevitable that in a work of this magnitude errors and omissions will occur, though every effort is made to keep these to a minimum. It has not been possible to include references from a few semi-popular periodicals in some foreign languages which are little understood in the English-speaking world, and hard to obtain in North America. Most of these accounts are popular interpretations of scientific papers published in regular journals and their omission is probably not serious.

Because the study of variable stars in globular clusters constitutes an active branch of this field, we wish to note that references which give information on specific variables in globular clusters have been published by the writer in the two catalogues of variables in globular clusters, Publications of the David Dunlap Observatory, volume 1, no. 4, 1939, and volume 2, no. 2, 1955. Recently an article by Richard Stothers, A. J., v. 68, p. 242, 1963 (which is beyond the chronological scope of this bibliography) gives an extensive reference list for slow variables in globular clusters.

III. CLUSTERS INCLUDED IN THIS BIBLIOGRAPHY

In this supplement are included all clusters belonging to our galaxy which are currently classified as globular. Also included are several of the more recently discovered globular clusters, such as those from the Palomar list of Abell, which are well beyond the recognized limits of our own galaxy, but bear no obvious relation to any other. Not included in this bibliography are clusters which are considered members of the Magellanic Clouds or of any other external galaxies.

With the above restrictions, 119 globular clusters are included. Figure 1 shows the distribution of these clusters in the new galactic co-ordinates, 1¹¹ and b¹¹.

Table I is a catalogue of 119 globular clusters with some of the current data about them. The table is arranged in order of NGC number, and therefore not always in order of current right ascension. If there is no NGC number, the arrangement is by right ascension. New clusters are named for the observatory at which they were announced.

FIG. 1-Distribution of 119 globular clusters in galactic co-ordinates, on the new standard system.

	CLUSTERS
LE I	GLOBULAR
TAB	119
	OF
	CATALOGUE

D kpc.	$\begin{smallmatrix} 12\\12\\29\\29\end{smallmatrix}$	$\begin{array}{c} 17\\15\\30\end{array}$	$\begin{smallmatrix} 62\\8\\4\\125\end{smallmatrix}$	$\begin{smallmatrix}26\\2\\2\\20\\20$	17 55 113 113 113 112 112 112 112 112 112 112
App. mod.	14.5 15.7 15.7	16.3	$ \begin{array}{r} 18.8 \\ 16.2 \\ 15.08 \\ 20.5 \\ \end{array} $	$17.06 \\ 16.1 \\ 15.65 \\ 16.7 \\ 16.7 \\$	$16.4 \\ 14.65 \\ 15.7 \\ 16.4 $
Mag. 25 br. st.	$13.44 \\ 14.80 \\ 14.12 \\ 19$	15.29	17.84 14.9 19.90	16.58 14.80 15.07	15.6 14.23 15.72
No. vars.	$\begin{array}{c}11\\1\\1\\0\end{array}$	0 2 5	$\begin{array}{c} 36\\ 4\\ 77\\ 2\\ 2\end{array}$	$\begin{array}{c} 16 \\ 0 \\ 10 \\ 43 \\ 43 \end{array}$	$\begin{smallmatrix}10\\165\\22\\22\\22\end{smallmatrix}$
Rad. vel. km./sec.	-24 -47 +221 +46	+309 + 196 + 64	+ 14 + 101 + 493	+191 + 66 + 166 + 204 + 204 - 112	+230 + 153 + 45
Colour P-V			0.64	0.48 0.59 0.50	0.55 0.56 0.64
Sp. type	G3 F8 F8	dF5 dF3 F8	F5 F8	A5 A6 F4	F7 F7 F8
Int. mag.	$\begin{array}{c} 4.68\\ 8.96\\ 9.5\\ 9.5\end{array}$	$12.2 \\ 7.72 \\ 8.39 \\ 10.48$	$11.51 \\ 7.8 \\ 8.8 \\ 14.4 $	$\begin{array}{c} 11.01 \\ 9.1 \\ 9.12 \\ 8.5 \\ 8.68 \end{array}$	$10.9 \\ 4.25 \\ 7.21 \\ 9.5 \\ 10.39$
Ang. diam.	$^{+44}_{-12.4}$	$ \begin{array}{c} 1.7 \\ 2.4 \\ 11.5 \\ 7.8 \\ 4.2 \\ 4.2 \end{array} $	$\begin{array}{c} 6.2 \\ 18.8 \\ 2.2 \\ 2.5 \\ 2.5 \end{array}$	$\begin{array}{c} 4.1\\ 19.8\\ 9.8\\ 12.7\\ 14.4\end{array}$	$\begin{array}{c} 8.9\\ 65.4\\ 18.6\\ 13.6\\ 9.2\end{array}$
Conc.	III X X IIIX X IIIX	11 11 11	IIX NIIX NIIX	VI: XIII VIII	HIX A IIIA IX IX
Ъ ¹¹	$^{\circ}$ - 44.90 - 89.40 - 46.25 - 52.12 + 19.06	$\begin{array}{c} -08.98\\ -30.15\\ -35.05\\ -29.33\\ -16.01 \end{array}$	+25.25 -11.26 +41.86 +08.64 +71.80	+77.19 -09.90 +36.04 +79.76	+78.95 +14.97 +78.70 +10.58 +73.59
111	$^{\circ}$ 305.89 149.66 301.64 270.56 130.02	$\begin{array}{c} 170.49\\ 297.02\\ 244.49\\ 227.23\\ 245.63\end{array}$	$\begin{array}{c} 180.37\\ 282.18\\ 240.16\\ 277.21\\ 202.31\end{array}$	$\begin{array}{c} 252.89\\ 301.01\\ 299.62\\ 303.59\\ 333.00\\ \end{array}$	$\begin{array}{c} 335.55\\ 309.10\\ 42.24\\ 311.57\\ 42.13\end{array}$
0 Dec.	$^{\circ}$, $^{-72}$ 18 $^{-26}$ 49 $^{-71}$ 04 $^{+79}$ 30	$\begin{array}{c} +31 & 24 \\ -84 & 04 \\ -40 & 04 \\ -24 & 33 \\ -35 & 58 \end{array}$	$\begin{array}{c} +38 59 \\ -64 41 \\ +00 15 \\ -46 12 \\ +29 12 \end{array}$	$\begin{array}{c} +18 & 46 \\ -72 & 27 \\ -26 & 32 \\ -70 & 39 \\ +18 & 23 \end{array}$	$\begin{array}{c} +17 & 54 \\ -47 & 06 \\ +28 & 35 \\ -51 & 10 \\ +28 & 43 \end{array}$
R.A. 196	$\begin{smallmatrix} h & m \\ 00 & 22.3 \\ 00 & 50.7 \\ 01 & 00.9 \\ 03 & 11.2 \\ 03 & 27.2 \end{smallmatrix}$	$\begin{array}{c} 04 & 43.7 \\ 04 & 51.0 \\ 05 & 12.7 \\ 05 & 22.6 \\ 06 & 47.6 \end{array}$	$\begin{array}{c} 07 & 35.5 \\ 09 & 11.1 \\ 10 & 03.5 \\ 10 & 15.9 \\ 11 & 27.1 \end{array}$	$\begin{array}{c} 12 & 08.1 \\ 12 & 23.6 \\ 12 & 37.3 \\ 12 & 56.7 \\ 13 & 11.0 \\ 13 & 11.0 \end{array}$	$\begin{array}{c} 13 & 14.4 \\ 13 & 24.4 \\ 13 & 40.4 \\ 13 & 43.6 \\ 14 & 03.6 \end{array}$
No.	104 288 362 1261 Pal 1	$\begin{array}{c} {\rm Pal} \ 2 \\ 1841^* \\ 1851 \\ 1904 \\ 2298 \end{array}$	$\begin{array}{c} 2419\\ 2808\\ Pal \ 3201\\ Pal \ 4\end{array}$	$\begin{array}{c} 4147 \\ 4372 \\ 4590 \\ 4833 \\ 5024 \end{array}$	5053 5139 5272 5286 5466

*A. D. Thackeray wonders if this cluster is really a member of the Magellanic Clouds.

TABLE 1—continued CATALOGUE OF 119 GLOBULAR CLUSTERS

	CLUSTERS
I-continued	GLOBULAR
ABLE	OF 119
T	CATALOGUE

R.A. 1960 Dec. 11 but Conc. dng. lnt. Sp. C 7 17 02.1 -24 25 35 37 40.93 IX: 2.7 10.61 F8 0 7 17 02.7 -23 $30.0.13$ $+11.04$ VII 2.7 10.61 F8 0 5 17 17 02.7 -29 357.17 $+05.33$ VII 2.7 10.61 F8 0 5 17 16.0 -28 $06.357.17$ $+05.33$ VII 2.7 10.10 11.24 12.61 12.61 12.61 12.61 12.61 12.61 12.66 12.66 12.66 12.66 12.66 12.66 12.66 12.66 12.66 12.66 12.66 12.66 12.66 12.66 $17.25.6$ 12.66 12.66 12.66 12.66 12.66 12.66 12.725 12.725 12.66 12.66 12.65 12.65 12.6														
$ \begin{array}{c} h & m \\ 17 & 02.1 & -24 & 42 \\ 17 & 02.7 & -22 & 39 \\ 17 & 02.7 & -22 & 39 \\ 17 & 07.7 & -22 & 39 \\ 17 & 07.7 & -22 & 39 \\ 17 & 10.7 & -28 & 55 & 558.37 \\ 17 & 10.7 & -28 & 55 & 558.44 \\ 17 & 10.7 & -28 & 55 & 558.44 \\ 17 & 10.7 & -28 & 55 & 557.17 \\ 17 & 15.0 & -28 & 05 & 557.17 \\ 17 & 15.0 & -28 & 05 & 557.17 \\ 17 & 15.0 & -28 & 05 & 557.17 \\ 17 & 15.0 & -28 & 05 & 557.17 \\ 17 & 15.0 & +43 & 11 \\ 17 & 15.0 & -28 & 05 & 553 & +07.99 \\ 17 & 15.0 & +43 & 11 \\ 17 & 15.0 & -23 & 43 & 00.98 & +07.99 \\ 17 & 15.0 & +43 & 11 \\ 17 & 15.0 & -23 & 43 & 00.98 & +07.99 \\ 17 & 15.0 & +19 & 33 & 04.90 & +07.19 \\ 17 & 15.0 & +43 & 11 \\ 17 & 22.4 & -48 & 27 & 341.37 & -07.119 \\ 17 & 21.5 & -20 & 359.58 & +05.42 \\ 17 & 21.5 & -29 & 58 & 357.06 & +02.65 & 1X \\ 17 & 21.5 & -29 & 58 & 357.06 & +02.65 & 1X \\ 17 & 21.5 & -29 & 58 & 357.06 & +02.65 & 1X \\ 17 & 21.5 & -20 & 359.58 & +05.42 & 11 \\ 17 & 21.5 & -29 & 58 & 357.06 & +02.65 & 1X \\ 17 & 22.6 & -05 & 01 & 325.54 & -107.20 & X1 \\ 17 & 21.5 & -29 & 58 & 357.06 & +02.65 & 1X \\ 17 & 22.6 & -03 & 03 & 38.18 & -110.03 & X1 \\ 17 & 25.6 & -29 & 58 & 357.06 & -03.96 & X1 \\ 17 & 25.6 & -29 & 338.18 & -110.98 & X1 \\ 17 & 25.6 & -23 & 39 & 338.18 & -110.28 & 1X \\ 17 & 35.6 & -53 & 39 & 338.18 & -110.98 & X1 \\ 17 & 35.6 & -53 & 39 & 338.18 & -110.98 & X1 \\ 17 & 35.6 & -53 & 39 & 338.18 & -110.98 & X1 \\ 17 & 35.5 & -03 & 15 & 21.30 & +14.78 & V111 & 6.7 & 9.44 & G0 & 1 \\ 17 & 41.5 & -20 & 12 & 02.09 & +01.78 & X1 \\ 17 & 41.5 & -20 & 12 & 02.09 & +01.78 & X1 \\ 17 & 41.5 & -20 & 12 & 03.45 & +03.80 & V \\ 17 & 41.5 & -20 & 12 & 03.45 & +03.80 & V \\ 17 & 41.5 & -20 & 12 & 03.45 & +03.80 & V \\ 17 & 41.5 & -20 & 12 & 03.45 & +03.80 & V \\ 17 & 41.5 & -20 & 12 & 03.45 & +03.80 & V \\ 17 & 41.5 & -20 & 12 & 03.45 & +03.80 & V \\ 17 & 41.5 & -20 & 12 & 03.45 & +03.80 & V \\ 10 & 10 & 0 & 10 & 0 & 10 \\ 10 & 10 &$	R.A. 19)60 Dec.	1'''	$\mathbf{b}^{\mathbf{II}}$	Conc.	Ang. diam.	Int. mag.	Sp. type	Colour P-V	Rad. vel. km./sec.	No. vars.	Mag. 25 br. st.	App. mod.	D kpc.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	h	1 0	0	0		-								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 02.1	-24 42	358.37	+09.93	IX:	2.7	10.61	FS	0 01	+ 22	y	16 06	17 96	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 02.7	-2239	00.13	+11.04	VII	2.7	11.24)	1.13	-) cr	16.08	17 98	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 07.7	-26 31	357.64	+07.84	IV	3.5	9.38	F.5	0.86	- 73) 1.C	15.30	16.60	61
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 12.0	-29 25	355.84	+05.37	VI	3.8	9.82	65	1.22	1 98) =	00107	16.38	1 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 14.0	-28 06	357.17	+05.78	III	2.4	10.10		1.17	2	4		00.04	>
$ \begin{array}{c} 17\ 16.6\ -18\ 29\ 29\ 29\ 29\ 17\ 16.6\ -18\ 29\ 29\ 29\ 29\ 17\ 15.6\ -18\ 29\ 29\ 29\ 11\ 35\ 59\ 29\ 29\ 11\ 35\ 59\ 11\ 35\ 11\ 35\ 59\ 11\ 35\ 1$	17 15 6	-02 42	00 00	1.07.00	TV7.	U I	10 60		. 7.0					
$ \begin{array}{c} 17 \ 15.9 \ +43 \ 11 \ 63.5 \ +34.86 \ 101 \ 17 \ 21.5 \ -48 \ 27 \ 341.37 \ -07.19 \ XI: \ 8.9 \ 9.1 \ 3.5 \ -48 \ 27 \ 341.37 \ -07.19 \ XI: \ 8.9 \ 9.1 \ 3.5 \ -48 \ 27 \ 341.37 \ -07.19 \ XI: \ 8.9 \ 9.1 \ 3.5 \ -48 \ 27 \ 341.37 \ -07.19 \ XI: \ 8.9 \ 9.1 \ 3.5 \ -48 \ 27 \ 341.37 \ -07.19 \ XI: \ 8.9 \ 9.1 \ 3.5 \ -48 \ 27 \ 341.37 \ -07.19 \ XI: \ 8.9 \ 9.1 \ 3.5 \ -48 \ 27 \ 341.37 \ -07.19 \ XI: \ 8.9 \ 9.1 \ 3.5 \ -48 \ 3.5 \ -67 \ 01 \ 325.5 \ +105.5 \ XI \ 1.3 \ 1.3 \ 5.8 \ 11.3 \ 5.8 \ 11.35 \ 5.8 \ 11.3 \ 5.8 \ 11.3 \ 5.8 \ 11.3 \ 5.8 \ 11.3 \ 5.8 \ 12.1 \ 1.3 \ 11.3 \ 5.8 \ 12.1 \ 1.3 \ 11.3 \ 5.8 \ 12.1 \ 1.3 \ 11.3 \ 5.8 \ 12.1 \ 1.3 \ 11.3 \ 5.8 \ 12.1 \ 1.3 \ 11.3 \ 5.8 \ 12.1 \ 1.3 \ 11.3 \ 5.8 \ 12.1 \ 1.3 \ 11.3 \ 5.8 \ 12.1 \ 1.3 \ 12.3 \ 12.3 \ 12.3 \ 12.3 \ 12.3 \ 12.3 \ 12.3 \ 12.3 \ 12.3 \ 12.3 \ 12.3 \ 12.3 \ 12.3 \ 12.3 \ 13.4 \ 10.0 \ 3.5 \ 17.4 \ 11.4 \ 5.8 \ 12.1 \ 5.8 \ 12.1 \ 1.3 \ 5.8 \ 12.1 \ 1.3 \ 5.8 \ 12.1 \ 1.3 \ 5.8 \ 12.1 \ 1.3 \ 5.8 \ 12.1 \ 1.3 \ 5.8 \ 12.1 \ 1.3 \ 5.8 \ 12.1 \ 1.3 \ 12.3 \ 1$	17 16 8	18 90	00.90	+01.99 10 70		о и - и	00.21	D0	1.52	1 00 1	G F	() 1	10.00	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 15 0	1 42 15	00.00	71.011	1117	0.01	76.0	70	10.0	+77+	13	10.50	16.39	×
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 19 9	$\pm 10 22$	00.00	100 72	111	2.7	1.30	12	0.03	- 118	16	13.86	15.2	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 10.0	110 00	04.40	102.10	>;	1.0 0	11.30		1.20					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 22.4	-48 2/	341.37	-07.19	NI:	8.9	9.1							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 21.5	-26 20	359.58	+05.42		1:	9.6		1.41					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 21.3	-17 47	06.73	+10.21	II	3.5	9.68	G5	1.06	+ 31	LC;	16 38	17-9	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 25.5	-2958	357.06	+02.65	IX	1.3		,		-	\$	00.01	-	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 27.6	-67 01	325.54	-17.56	X	8.5	8.3			- 18	31			5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$17 \ 25.6$	-05 03	18.42	+16.03	IX	5.8	12.1				50	15.78	16, 25	- 01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 32 6	-39 02	350-28	-03 56										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 33 3	-44 43	345 54	-06.74	111	89	5 7	6.3		101				6,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 17 33.4	-39 02	350.79	-03.42		0.0		3		10 +				61
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 37.6	-53 39	338.18	-11.98	IX	19:	7.3	F5		 +	3	12, 61	13.0	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 36.2	-23 53	03.45	+03.97		1		5	1.17:	-	>		0.04	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 35.5	-03 15	21.30	+14.78	VIII	6.7	9 44	GO	1 12	-120	62	15 44	16 79	г
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 41.2	-26 12	02.09	+01.78	IX	1.8)) 	1	20.11		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 42.9	+03 12	28.07	+16.28	IX	2.2	12.33		0.85		12	2		21
$17\ 47\ 5\ -37\ 02\ 353\ 53\ -05\ 00\ 111\ 3\ 0\ 8\ 03\ C_{2}$	17 46.5	-20 21	07.72	+03.80	>	1.7	12.05	G5	1.81	-133				4
	17 47.5	-37 02	353.53	-05.00	III	3.0	8.93	G2		- 70				6

	D kpc,	12	14 5	13 13	5 7 15 16	3 20 17
	App. mod.	17.77	16.88 14.67	$\frac{18.7}{17.35}$	15.62	$14.15 \\ 16.48 \\ 17.4 \\$
	Mag. 25 br. st.		15.97 13.35	18	14.73 16.22	12.93 15.35
	No. vars.	6.0	$1 \\ 1 \\ 6 \\ 1$	0 ii ii 0	16	$\begin{smallmatrix}&24\\&2\\12\\80\\80\end{smallmatrix}$
	Rad. vel. km./sec.		-148 -12	+160 + 69	+ $+$ $95 14 124$	-144 +198 -131 +122
CVI-1	Colour P-V	$1.04: \\ 1.67 \\ 1.02 \\ 1.27 \\ 1.27$	$\frac{1.67}{1.39}$	1.11	$\begin{array}{c} 0.97\\ 0.87\\ 0.96\\ 0.78\\ 0.78\end{array}$	$\begin{array}{c} 0.86 \\ 0.59 \\ 1.04 \\ 0.70 \end{array}$
	Sp. type	F8	F6 G1	F7 G2	F9 G5 G2 G2	F6 G2 F7
	Int. mag.	$11.4 \\ 10.3 \\ 12.90 \\ 10.40 \\ 11.04 $	$11.9 \\ 7.9 \\ 7.0 \\ 10.20$	$ \begin{array}{c} 10.63 \\ 9.4 \\ 9.53 \end{array} $	8.48 8.94 10.24 10.3 9.86	$\begin{array}{c} 6.48 \\ 8.95 \\ 9.98 \\ 8.74 \end{array}$
	Ang. diam.	$^{,}_{12.7}$	$\begin{array}{c} 1.3\\ 3.5\\ 23.2\\ 1:\\ 3.2\\ 3.2\end{array}$	$6.0 \\ 9.7 \\ 2.2 \\ 2.7 $	15.0 3.8 2.2 0.8 2.3	$17.0 \\ 1.6 \\ 4.1 \\ 5.5 \\ 5.5 $
	Conc.		NII NII NII NI	NII VIII VIII VI	1V VI VI:	N N N N N N N N N N N N N N N N N N N
	b ¹¹	$^{\circ}$ -03.97 -10.01 +06.77 -03.93 -04.17	+10.43 +06.78 -11.19 -02.22 -03.06	-06.02 + 05.67 - 06.68 - 16.41 - 07.92	-05.59 -10.26 -07.16 -06.34 -11.38	$\begin{array}{c} -07.55 \\ -06.79 \\ -12.52 \\ -04.32 \\ -14.11 \end{array}$
	111	$\overset{\circ}{\overset{355.74}{_{19.23}}}_{01.03}$	$\begin{array}{c} 27.18\\ 20.80\\ 349.28\\ 05.83\\ 05.25\\ 05.25\end{array}$	$\begin{array}{c} 00.19\\ 21.82\\ 00.49\\ 342.14\\ 02.80\end{array}$	$\begin{array}{c} 07.80\\ 01.72\\ 07.90\\ 09.78\\ 01.53\\ 01.53\end{array}$	$\begin{array}{c} 09.87\\ 14.11\\ 02.85\\ 25.34\\ 05.63 \end{array}$
	60 Dec.	\circ , -34 37 -44 15 -08 57 -30 02 -30 04	$\begin{array}{c} -00 & 18 \\ -07 & 35 \\ -43 & 44 \\ -25 & 01 \\ -25 & 56 \end{array}$	$\begin{array}{cccc} -31 & 47 \\ -07 & 14 \\ -31 & 50 \\ -52 & 14 \\ -30 & 23 \end{array}$	$\begin{array}{c} -24 \ 54 \\ -32 \ 23 \\ -25 \ 32 \\ -23 \ 30 \\ -33 \ 02 \end{array}$	$\begin{array}{c} -23 \ 58 \\ -19 \ 51 \\ -32 \ 20 \\ -30 \ 31 \end{array}$
	R.A. 19	$\begin{smallmatrix} h & m \\ 117 & 48.7 \\ 117 & 56.2 \\ 17 & 59.6 \\ 18 & 01.0 \\ 18 & 02.2 \\ 18 & 02.2 \\ \end{smallmatrix}$	$\begin{array}{c} 18 & 01.8 \\ 18 & 02.6 \\ 18 & 05.0 \\ 18 & 04.9 \\ 18 & 06.9 \\ 18 & 06.9 \end{array}$	$\begin{array}{c} 18 & 07.7 \\ 18 & 08.5 \\ 18 & 11.1 \\ 18 & 15.4 \\ 18 & 21.1 \\ 18 & 21.1 \end{array}$	$\begin{array}{c} 18 & 22.1 \\ 18 & 28.8 \\ 18 & 28.5 \\ 18 & 29.0 \\ 18 & 33.2 \\ 18 & 33.2 \end{array}$	$\begin{array}{c} 18 & 33.9 \\ 18 & 39.1 \\ 18 & 40.7 \\ 18 & 50.8 \\ 18 & 52.6 \\ 18 & 52.6 \end{array}$
	No.	$\begin{array}{c} 6453 \\ 6496 \\ 6517 \\ 6522 \\ 6528 \end{array}$	$\begin{array}{c} 6535 \\ 6539 \\ 6541 \\ 6541 \\ 6544 \\ 6553 \end{array}$	$\begin{array}{c} 6558 \\ 1 & 1276 \\ 6569 \\ 6584 \\ 6624 \\ 6624 \end{array}$	6626 6637 6638 6638 6642 6652	6656 Pal 8 6681 6712 6715

TABLE I-continued CATALOGUE OF 119 GLOBULAR CLUSTERS TABLE I-continued CATALOGUE OF 119 GLOBULAR CLUSTERS

13 4 G 9 20 kpc. $19 \\ 121 \\ 131 \\$ 12 33.33 App. mod. $\begin{array}{c} 15.34 \\ 14.2 \\ 17.45 \\ 16.3 \end{array}$ 15.54ŝ 9.1 16.917.018.815.916.26 418. 4. Mag. 25 br. st. $\begin{array}{c} 16\\ 14.20\\ 13.26\\ 16.77\\ 15.31\\ 15.31 \end{array}$ $20\\13.58\\17\\14.82\\17.06$ $\begin{array}{c} 15.78 \\ 15.86 \\ 17.1 \\ 14.31 \\ 14.61 \\ 14.61 \end{array}$ $14.63 \\ 17 \\ 19 \\ 16.82$ No. vars. 0 11 11 434-Rad. vel. km./sec. 39 -145+170-80-198-360-255-348-107-5-17411 Colour P-V 0.61 $1.55 \\ 0.74$ $0.95 \\ 0.71$ 0.48 55 0 00000 Sp. type 33 35 ESEEE F5 F3 $\begin{array}{c} 7.75\\ 7.2\\ 9.55\\ 9.55\end{array}$ 7.08 $8.3 \\ 9.50$ $\begin{array}{c} 10.01 \\ 10.24 \\ 111.45 \\ 7.33 \\ 7.30 \end{array}$ 58 33 Int. mag. 12. ς. 2.67.52.45.0Ang. diam. $\begin{array}{c} 3.1\\ 14.8\\ 6.1\\ 6.1\\ 4.6\end{array}$ $\begin{array}{c}
6.2 \\
5.1 \\
12.3 \\
11.7 \\
11.7 \\
\end{array}$ 8.9 4.0 4.3 IIIA IXI XI IXX Conc. -10.91-17.30-25.62-03.91+08.34 $\begin{array}{c}
 88 \\
 68 \\
 33 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\
 32 \\$ ЪЦ 0 +02.-15.-23.-24.-18.-32.-19.-35.-46. -47. -63. $\begin{array}{c} 12.86\\ 00.07\\ 336.49\\ 36.10\\ 62.65\end{array}$ $\begin{array}{c} 10\\15\\02\\37\\37\end{array}$ $\begin{array}{c}
 44 \\
 83 \\
 79 \\
 71 \\
 71 \\
 31 \\
 31 \\
 \end{array}$ $\begin{array}{c}
 16 \\
 52 \\
 07 \\
 32 \\
 32
 \end{array}$ 111 0 550. 208. 208. 52. 53. 53. 27.27.53. $^{+}_{-}$ $230 \\ 230$ ²2800 22231R.A. 1960 Dec. $^{+22}_{+30}$ $^{-22}_{+30}$ +121+121-151-151-151-152 $\begin{smallmatrix} m \\ 52.7 \\ 56.9 \\ 07.3 \\ 09.1 \\ 15.0 \end{smallmatrix}$ $\begin{array}{c} 16.4 \\ 37.5 \\ 43.1 \\ 51.9 \\ 03.8 \end{array}$ 41050 10 1 00 H 38 44 00 4816161 816161 20119 22020 22222 7099 Pal 12 Pal 13 7492 Pal 10 6809 Pal 11 6838 6864 6717 6723 6752 6752 6760 6779 6934 6981 7006 7078 7089 No.

	R.A. 1950	Dec.	Reference
	h m	• •	
NGC 2158	06 04.4	+24 06	van den Bergh, S., and Sher, D. Dunlap Pub., v. 2, no. 7, p. 203, 1960.
Melotte 66	07 24.8	-4738	Eggen, O. I., and Stov, R. H. Roy. Obs. Bull., no. 53, 1962.
Bjurakan Object	1052.0	+4044	Kimman, T. D., and Rosino, L. A. S. P. Pub., v. 74, p. 499. (See Section A.)
Anon. Object	17 45.7	-6045	Sawyer, H. B. Dunlab Pub., v. 2, no. 2, p. 36, 1955.
NGC 6684	18 44.1	-65 14	Ibid.
NGC 6749	19 02.6	+01 48	Setteducati, A. F., and Weaver, H. F. Newly Found Star Clusters, I. Radio Ast.
			Lab., Univ. of Cal. 1960.

OBJECTS NOT INCLUDED IN TABLE I

REFERENCE SOURCES

The main sources of information for the respective columns in the catalogue are as follows: concentration class, Shapley and Savyer, *Harv. Bull.*, no. 849, 1927; apparent diameter, Mowbray, *Ap. J.*, v. 104, p. 47, 1947, and Shapley and Sayer, *Harv. Repr.*, no. 116, 1935; integrated photographic magnitudes, Christie, *Ap. J.*, v. 91, p. 8, 1940, and Sawyer and Shapley, *Harv. Bull.*, no. 848, 1927; spectral type, Mayall, *Ap. J.*, v. 104, p. 290, 1946, Morgan, *A. S. P. Pub.*, v. 68, p. 509, 1956, Kinman, *M. N.*, v. 119, p. 553, 1959; colours, Kron and Mayall, *A. J.*, v. 65, p. 590, 1960; radial velocities, Mayall, *op. cit.*, and Kinman, *M. N.*, v. 119, p. 553, 1959; variables, Sawyer Hog, *Bamberg KI, Verölf.*, no. 34, 1962; magnitude of 25 brightest stars from miscellaneous sources; distance in kiloparsecs is an average of three nearly simultaneous determinations, (when available) Kinman, M. N., v. 119, p. 171, 1959, Sawyer Hogg, Hd. der Ap., v. 53, p. 205, 1959, Kron and Mayall, A. J., v. 65, p. 605, 1960. More accurate values for the above quantities are available for short lists of clusters, but the aim has been to keep this catalogue as homogeneous as possible throughout. Columns 2 and 3 give the right ascension and declination for the epoch of 1960. (This is to provide a usable position for telescopes at present. Positions for the epoch of 1950 can be found in Section A.) Columns 4 and 5 are the galactic longitude and latitude on the new standards. Successive columns then give concentration class, apparent diameter, integrated magnitude, spectral type, colour, radial velocity, number of variable stars, magnitude of the 25 brightest stars, apparent modulus, and the distance in kiloparsecs.

The footnotes to the table list certain clusters which have been dropped from the list of globular clusters, with references which give the reason for this. They also list references from which most of the material in the catalogue is derived. In the case of some clusters, however, the reader can obtain values from the material indexed in Section A.

IV. ACKNOWLEDGMENTS

The reference sources for this publication were practically all available in the libraries of the David Dunlap Observatory and the University of Toronto. A few items, however, were obtained from the libraries of the Dominion Observatory, the Dominion Astrophysical Observatory and the National Research Council at Ottawa. It is a pleasure to acknowledge my debt to the librarians of these institutions for their help in locating references, especially to Mrs. Nancy McKenzie and Mrs. Jean Lehmann of the David Dunlap Observatory, and to Mrs. Joan Topley for preparing the final copy for the printer.

I wish also to thank W. H. Clarke, Jr., and W. Greig for computations of the new galactic co-ordinates; Dr. Herbert Wilkens of La Plata for supplying some corrections; Dr. Owen Gingerich of Harvard for early references; and Richard Stothers of NASA for previously overlooked references. And I thank especially Dr. George Alter of Prague for his information and encouragement.

Richmond Hill, Ontario August 15, 1963

SECTION A

References for Individual Clusters

α and δ for 1950

NGC 104 (47 Tucanae) $\alpha 00^{h} 21^{m} 9, \delta - 72^{\circ} 21'$ $l^{11} 305^{\circ} .89, b^{11} - 44^{\circ} .90$

- 1908 Leavitt, H. S. 1777 variables in the Magellanic Clouds. Harv. Ann., v. 60, no. 4. (Announcement of HV 810, 811, 812, 813, 814).
- 1951 McKibben-Nail, V. Variables in the globular cluster 47 Tucanae. *Harv. Bull.*, no. 920.
- 1957 Gascoigne, S. C. B., and Burr, E. J. Surface photometry of the globular clusters 47 Tucanae and Omega Centauri. M. N., v. 116, pp. 570-582.
- 1958 Thackeray, A. D. 47 Tucanae—an interim report. Radcliffe Repr., no. 11, from "Semaine d'Etude sur le Problème des Populations Stellaires," L'Acad. Pontif. Sci., no. 16; Ric. Astr. Vaticano, v. 5, pp. 69-73.
- 1959 Gaposchkin, S. I. On two brightest globular clusters. A. J., v. 64, p. 331.
- 1960 Feast, M. W., Thackeray, A. D., and Wesselink, A. J. 47 Tucanae: the membership of two RR Lyrae variables. M. N., v. 120, p. 64. First reference, T. D. Kinman, M. N., v. 119, p. 575, 1959.
- 1960 Feast, M. W., and Thackeray, A. D. 47 Tucanae: radial velocities and spectral types of individual stars. *M. N.*, v. 120, no. 5, pp. 463-482, with plates.
- 1961 Crampin, J., and Hoyle, F. On the change with time of the integrated colour and luminosity of an M 67-type star group. M. N., v. 122, pp. 27-33; Summ., Quarterly Jour., v. 2, no. 3, p. 213.
- 1961 Eggen, O. J. Three colour photometry of red variables. *Roy. Obs. Bull.*, no. 29.
- 1961 Hogg, A. R. Galactic clusters. Australian Scientist, v. 1, no. 4, pp. 217-224, with photo.
- 1961 Kron, G. E. The unusual colors of two globular clusters of the Magellanic Clouds. A. S. P. Pub., v. 73, pp. 202-205.
- 1961 Wildey, R. L. The color-magnitude diagram of 47 Tuc. Ap. J., v. 133, pp. 430-437, with plate.

1928a Ludendorff, 1928 Shapley, 1935 Walters, 1947abd Sawyer, 1947abde Parenago, Kukarkin, Florja, 1949cefh Shapley, 1950b Becker, 1951ae Payne-Gaposchkin, 1952Iabcd Lohmann, 1953 Dreyer, 1953 Kholopov, 1953di Rosino, 1954 Cimino, 1954a Payne-Gaposchkin, 1954b Rosino, 1954I Zagar, 1955IIbcd Sawyer, 1955Ia, IId Struve, 1956c Baum, 1956a Schmidt, 1956 Woolley, 1957 Stohl, 1957 Woolley and Robertson, 1958 Alter, Ruprecht, Vanýsek, 1958 Heckmann, 1958I, II Kinman, 1958b Ledoux and Walraven, 1958Ic, II Sawyer Hogg, 1959Iad, IIabei, III Kinman, 1959b Larsson-Leander, 1959 Matsunami et al., 1959Ibeikmop, IIcd, III Sawyer Hogg, 1959ab Thackeray, 1960 Feast, Thackeray, Wesselink, 1960 Gingerich, 1960 Sandage and Wallerstein, 1960bceg Wilkens, 1961a Haffner, 1961 Hénon, 1961 Lohmann, 1961 Kurochkin, 1961 Michie, 1961 Poveda, 1961I, IIb, III Sawyer Hogg, 1961 Woolley, 1961I, II Woolley and Dickens, 1962 Aller, 1962IIb Arp, 1962 van den Bergh, 1962 Fernie, 1962 King, 1962 Kinman, 1962 Michie, 1962 Sawyer Hogg. See also: 7078 1961 King, 6838 1961 Stephenson, 104 1961 Wildey, 5139 1962 Fehrenbach and Duflot, 6712 1962 Smith and Sandage.
$\alpha 00^{h} 50^{m}2, \delta - 26^{\circ} 52'$

 $l^{11}149^{\circ}.66, b^{11} - 89^{\circ}.40$

1921II Gregory, 1947abd Sawyer, 1948I Sawyer, 1949abcde Parenago, Kukarkin, Florja, 1949ce Shapley, 1952Iabd Lohmann, 1953 Dreyer, 1953d Rosino, 1954 Cuffey, 1954I Zagar, 1955IIbcd Sawyer, 1955IIc Struve, 1956c Baum, 1956a Schmidt, 1957 Shapley, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1959 Johnson, 1959Iad, IIa Kinman, 1959 Matsunami et al., 1959Iip Sawyer Hogg, 1960bcg Wilkens, 1961 Hénon, 1961I Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

NGC 362

 $\alpha 01^{h}00^{m}6, \delta - 71^{\circ}07'$

 $l^{11}301^{\circ}.64, b^{11} - 46^{\circ}.25$

1935 Walters, 1947abd Sawyer, 1949abde Parenago, Kukarkin, Florja, 1949ce Shapley, 1952Iabcd Lohmann, 1953 Dreyer, 1953 Kholopov, 1953d Rosino, 1954 Cimino, 1954I Zagar, 1955IIbcd Sawyer, 1956c Baum, 1956 van den Bergh, 1956a Schmidt, 1957 van den Bergh, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1958I Sandage, 1959 van Agt and Oosterhoff, 1959Iad, IIbi Kinman, 1959 Matsunami et al., 1959Iip Sawyer Hogg, 1960bcg Wilkens, 1961 Kurochkin, 1961 Payne-Gaposchkin, 1961I Sawyer Hogg, 1962 Aller, 1962 Fernie, 1962 Sawyer Hogg.

NGC 1261 $\alpha \ 03^{h}10^{m}9, \ \delta - 55^{\circ} \ 25'$ $l^{11}270^{\circ}.56, \ b^{11} - 52^{\circ}.12$

1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1949ce Shapley, 1952Iabc Lohmann, 1953 Dreyer, 1953d Rosino, 1954 Cuffey, 1954I Zagar, 1955IIa Sawyer, 1956c Baum, 1957 Shapley, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1959Iacd, IIci Kinman, 1959 Matsunami et al., 1959Ip Sawyer Hogg, 1960bd Wilkens, 1962 Fernie.

Palomar 1

 $\alpha 03^{h}25^{m}7, \ \delta + 79^{\circ}28'$

 $l^{11}130^{\circ}.02, b^{11} + 19^{\circ}.06$

- 1955 Abell, G. O. Globular clusters and planetary nebulae discovered on the National Geographic Society-Palomar Observatory Sky Survey. A.S. P. Pub., v. 67, pp. 258-261. (Discovery by Abell).
- 1962 Kinman, T. D., and Rosino, L. Notes on faint star clusters. A. S. P. Pub., v. 74, pp. 499–506.

1958 Alter, Ruprecht, Vanýsek, 1958 van den Bergh, 1958 Burbidge and Sandage, 1958 Heckmann, 1959*Ip* Sawyer Hogg, 1961*III* Sawyer Hogg, 1962*I* Rosino.

Palomar 2 $\alpha 04^{h} 43^{m}$, $\delta + 31^{\circ} 23'$

1955 Abell, G. O. Globular clusters and planetary nebulae discovered on the National Geographic Society-Palomar Observatory Sky Survey. A. S. P. Pub., v. 67, pp. 258-261. (Discovery by A. G. Wilson).

1958 Alter, Ruprecht, Vanýsek, 1958 Heckmann, 1959 *Ip* Sawyer Hogg, 1962*I* Rosino.

NGC 1841

1841 $\alpha \ 04^{h} \ 52^{m}_{...5}, \ \delta \ - \ 84^{\circ} \ 05'$

 $l^{11}297^{\circ}.02, b^{11} - 30^{\circ}.15$

 $l^{11}170^{\circ}.49, b^{11}-08^{\circ}.98$

1947*abd* Sawyer, 1949*b* Shapley, 1953 Dreyer, 1954*I* Zagar, 1955*IIa* Sawyer, 1956*c* Baum, 1958 Alter, Ruprecht, Vanýsek, 1959*Ip* Sawyer Hogg, 1960*bd* Wilkens.

NGC 1851

 $\alpha 05^{h} 12^{m}_{}4, \delta - 40^{\circ} 05'$

 $l^{11}244^{\circ}.49, b^{11} - 35^{\circ}.05$

1912 Knox Shaw, 1928a Ludendorff, 1947 Parenago, 1947abd Sawyer, 1948b Perek, 1949ade Parenago, Kukarkin, Florja, 1949ce Shapley, 1952Iabd Lohmann, 1953 Dreyer, 1953d Rosino, 1954I Zagar, 1955 von Hoerner, 1955IIbd Sawyer, 1956c Baum, 1956ab Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1959 Dzigvashvili, 1959Iabd, IIbi Kinman, 1959 Matsunami et al., 1959Iib, III Sawyer Hogg, 1960 Kurth, 1960bd Wilkens, 1962 Fernie, 1962 Sawyer Hogg.

NGC 1904 (Messier 79) $\alpha 05^{h} 22^{m}2, \ \delta - 24^{\circ} 34' \qquad l^{11}227^{\circ}.23, \ b^{11} - 29^{\circ}.33$

1952 Rosino, L. Ricerche sugli ammassi globulari VIII. Stelle variabili e distanza dell' ammasso globulare NGC 1904 = M 79. Univ. Bologna Oss. Pub., v. V, no. 20; Soc. Astr. Ital. Mem., v. 23, pp. 101-107.

1947 Parenago, 1947*abcd* Sawyer, 1948*b* Perek, 1949*abde* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1953 Lohmann, 1953*i* Rosino, 1954 Gingerich, 1954*I* Zagar, 1955 von Hoerner, 1955*IIbcd* Sawyer, 1956*c* Baum, 1956 van den Bergh, 1956b Schmidt, 1957 van den Bergh, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1958 Maffei (photo), 1959 van Agt and Oosterhoff, 1959 Dzigvashvili, 1959*Iabd*, *IIbi* Kinman, 1959 Matsunami *et al.*, 1959*Iip* Sawyer Hogg, 1960 Kurth, 1960b Roberts, 1960*bcg* Wilkens, 1961 Hénon, 1961*I* Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

NGC 2298 $\alpha \ 06^{h} \ 47^{m}2, \ \delta - 35^{\circ} \ 57'$ $l^{11}245^{\circ}.63, \ b^{11} - 16^{\circ}.01$

1947 Parenago, 1947abd Sawyer, 1948b Perek, 1949ade Parenago, Kukarkin, Florja, 1952Iabd, II Lohmann, 1953 Dreyer, 1954I Zagar, 1955 von Hoerner, 1955IIbd Sawyer, 1956b Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1959 Dzigvashvili, 1959Id, IIi Kinman, 1959 Matsunami et al., 1959Iip Sawyer Hogg, 1960 Kurth, 1960bd Wilkens, 1962 Fernie, 1962 Sawyer Hogg.

NGC 2419 $\alpha 07^{1}$	34 ^m 8, δ	+ 39° 00′	$l^{11}180^{\circ}.37, b^{11}$	$+25^{\circ}.25$
--------------------------	----------------------	-----------	--------------------------------	------------------

1959 de Vaucouleurs, G. Magnitudes and colors of galaxies in the UBV system. Lowell Bull., v. 4, no. 97, p. 105.

1947 Parenago, 1947abd Sawyer, 1948 Becker, 1948b Perek, 1949abde Parenago, Kukarkin, Florja, 1949bcde Shapley, 1952Iabd, IIIc Lohmann, 1953 Dreyer, 1953 Lohmann, 1953cd Rosino, 1954I Zagar, 1955 von Hoerner, 1955IIbcd Sawyer, 1956c Baum, 1956 van den Bergh, 1956b Schmidt, 1957 van den Bergh, 1957 Stohl, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1958 Náprstková, 1958Ib Sawyer Hogg, 1959 Dzigvashvili, 1959 Johnson, 1959Id, IIi, III Kinman, 1959 Matsunami et al., 1959Ibdip, IIe Sawyer Hogg, 1960acfhikl Kron and Mayall, 1960 Kurth, 1960b Roberts, 1960acef Wilkens, 1961 Hénon, 1961 Kurochkin, 1961I, IIb Sawyer Hogg, 1961 Sharov and Pavlovskaya, 1962 Fernie, 1962 Kinman, 1962 Rosino and Sawyer Hogg, 1962 Sawyer Hogg.

See also: 7006 1954 Sandage.

NGC 2808 $\alpha 09^{h} 10^{m}9, \ \delta - 64^{\circ} 39'$ $l^{11}282^{\circ}.18, \ b^{11} - 11^{\circ}.26$

1947*abd* Sawyer, 1949*abde* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIbd* Sawyer, 1956*a* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1959*Iad*, *IIbei* Kinman, 1959 Matsunami *et al.*, 1959*Iip* Sawyer Hogg, 1960*bcg* Wilkens, 1962 Aller, 1962 Fernie, 1962 Sawyer Hogg.

Palomar 3 $\alpha \ 10^{h} \ 03^{m} \ 0, \ \delta + 00^{\circ} \ 18'$

1955 Wilson, A. G. Sculptor-type systems in the local group of galaxies. A. S. P. Pub., v. 67, pp. 27-29. (Discovery by Baade and Wilson independently).

 $l^{11}240^{\circ}.16, b^{11} + 41^{\circ}.86$

1958 Burbidge, E. M., and Sandage, A. Properties of two intergalactic globular clusters. Ap. J., v. 127, pp. 527-538, with plate. Ref., E. Opik, Irish A. J., v. 5, p. 118, 1958.

1955 Abell, 1958 Alter, Ruprecht, Vanýsek, 1958c Burbidge and Burbidge, 1958 Heckmann, 1958*Ib* Sawyer Hogg, 1959*Idp*, *III* Sawyer Hogg, 1961*III* Sawyer Hogg, 1962 Kinman, 1962 Sawyer Hogg.

See also: Pal 1 1962 Kinman and Rosino.

 $\alpha 10^{h} 15^{m}_{...5}, \delta - 46^{\circ} 09'$

- 1953 Kholopov, P. N. Space distribution of RR Lyrae variables in the globular clusters M 5 and NGC 3201. Var. Stars. (Russ.), v. 9, pp. 371-378. Ref. Ast. News Letter no. 82, 1956.
- 1956 Kreiken, E. A. A statistical study of pulsating stars. V. The variable stars in M 53 and NGC 3201. Fac. Sci. Univ. Ankara Comm., v. 8, p. 67; Dept. Astron. Ankara Comm., no. 12.

1928a Ludendorff, 1947abd Sawyer, 1948I Sawyer, 1949abde Parenago, Kukarkin, Florja, 1952Iabd Lohmann, 1953 Dreyer, 1954I Zagar, 1955IIbcd Sawyer, 1955IIa Struve, 1956 van den Bergh, 1956 Kourganoff, 1956a Schmidt, 1957 van den Bergh, 1957 Kholopov, 1958 Alter, Ruprecht, Vanýsek, 1958 Kholopov, 1958I, II Kinman, 1958I Sandage, 1958II Sawyer Hogg, 1959 van Agt and Oosterhoff, 1959Iad, IIad, III Kinman, 1959 Kurochkin, 1959 Matsunami et al., 1959 Preston, 1959Iib Sawyer Hogg, 1960 Pavlovskaya, 1960acf Wilkens, 1961 Payne-Gaposchkin, 1961I, III Sawyer Hogg, 1061 Sharov and Pavlovskaya, 1962 Fernie, 1962 Sawyer Hogg.

See also: 5272 1955 Kholopov.

- Bjurakan Object
 $10^{h} 52^{m}0, +44^{\circ} 44'$ $l^{II} 176^{\circ}.39, b^{II} + 62^{\circ}.53$

 1957 Shakhbazian, R. K.
 On a star cluster in the Big Dipper. Ast. Circ., (Russ.), no. 177, pp. 11–12.
- 1961 Rosino, L. Notizie su un debole ammasso stellare e su un remotissimo ammasso di galassie. Padova Comm., no. 22; Accad. Patavina SS LL AA Cl. Sci. Mat. Nat. Mem., v. 73, 1960-61.
- 1962 Kinman, T. D., and Rosino, L. Notes on faint star clusters. A.S.P. Pub., v. 74, pp. 499–506. Not a globular cluster.

1958 Heckmann, 1958*Ib* Sawyer Hogg, 1959*Idp* Sawyer Hogg, 1961*III* Sawyer Hogg, 1962*I* Rosino.

- 1955 Wilson, A. G. Sculptor-type systems in the local group of galaxies. A. S. P. Pub., v. 67, pp. 27–29. (Discovery by Hubble and Wilson independently).
- 1956 van den Bergh, S. Note on the globular cluster Abell No. 4. A. S. P. Pub., v. 68, pp. 449-450. Summ., Sky and Tel., v. 16, p. 176, 1957.
- 1957 Rosino, L. Sopra due ammassi globulari del catalogo di Abell. (No. 4 e No. 13). Asiago Cont., no. 85, with plate.
- 1958 Burbidge, E. M., and Sandage, A. Properties of two intergalactic globular clusters. Ap. J., v. 127, pp. 527–538, with plate. Ref., E. Opik, Irish A. J., v. 5, p. 118, 1958.

1955 Abell, 1957 Rosino, 1958 Alter, Ruprecht, Vanýsek, 1958 van den Bergh, 1958c Burbidge and Burbidge, 1958 Heckmann, 1958*Ib*, *II* Sawyer Hogg, 1959*Idp*, *IIe*, *III* Sawyer Hogg, 1961*I*, *III* Sawyer Hogg, 1962 Kinman, 1962*I* Rosino, 1962 Sawyer Hogg.

See also: Bjurakan 1957 Shakhbazian.

NGC 4147 $\alpha 12^{h} 07^{m}_{...,6}, \delta + 18^{\circ} 49'$ $l^{11}_{252^{\circ}_{...,89}, b^{11}_{...,1}} + 77^{\circ}_{...,19}$

- 1955 Sandage, A. R., and Walker, M. F. The globular cluster NGC 4147. *A. J.*, v. 60, pp. 230–236.
- 1957 Newburn, R. L. Jr. The RR Lyrae stars in NGC 4147. A. J., v. 62, pp. 197–203.

NGC 4147 (cont'd)

1958 Mannino, G. Periodi e curve di luce di sei variabili dell' ammasso globulare NGC 4147. Nota I and Nota II. Soc. Astr. Ital. Mem., v. 29, no. 1, pp. 139-143; Asiago Cont., no. 87.

1928a Ludendorff, 1947 Parenago, 1947abd Sawyer, 1948 Becker, 1948 Fehrenbach, 1948 Gamalej, 1948b Perek, 1949abede Parenago, Kukarkin, Florja, 1949ce Shapley, 1952*Iabcd* Lohmann, 1953 Dreyer, 1953*d* Rosino, 1954 Blamont, 1954 Cuffey, 1954*I* Zagar, 1955 von Hoerner, 1955*IIbd* Sawyer, 1956*ac* Baum, 1956 van den Bergh, 1956*b* Schmidt, 1957 van den Bergh, 1957 Shapley, 1958 Alter, Ruprecht, Vanýsek, 1958*bh* Arp, 1958*bc* Burbidge and Burbidge, 1958*I*, *II* Kinman, 1958 Maffei (photo), 1958I Sandage, 1958Ie, II Sawyer Hogg, 1959 van Agt and Oosterhoff, 1959c Arp, 1959 Dzigvashvili, 1959Id, IIaji Kinman, 1959 Matsunami et al., 1959Ibdfip, IIc, *III* Sawyer Hogg, 1960 Eggen, 1960*III* Hodge, 1960*acfgijk* Kron and Mayall, 1960 Kurth, 1960*k* Roberts, 1960 Sandage and Wallerstein, 1960*acf* Wilkens, 1961*b* Haffner, 1961 Hénon, 1961*I*, *III* Sawyer Hogg, 1962*I* Arp, 1962 Fernie, 1962 Kinman, 1962 Sawyer Hogg.

See also: 5272 1956 Baker and Baker; 5272 1956 Johnson and Sandage.

NGC 4372 $\alpha 12^{h} 23^{m}_{..}0, \ \delta - 72^{\circ} 24'_{..}$ $l^{II}301^{\circ}.01, b^{II} - 09^{\circ}.90$ 1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1951b Bok (photo), 1951 Thackeray, 1952 Iabd Lohmann, 1953 Dreyer, 1954 I Zagar, 1955 IIbd Sawyer, 1956a Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958 Kinman, 1958/I Sawyer Hogg, 1959/ad, IIa Kinman, 1959 Matsunami et al., 1959/ip Sawyer Hogg, 1960bd Wilkens, 1961a Haffner, 1961I, III Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

 $\alpha 12^{h} 36^{m} 8, \ \delta - 26^{\circ} 29'$ $l^{11}299^{\circ}.62, b^{11} + 36^{\circ}.04$ NGC 4590 (Messier 68)

- 1938 Luyten, W. J. Bruce proper motion survey. II. A catalogue of 2350 variable stars found with the blink microscope. Obs. Univ. Minnesota Pub., v. II, no. 6. (HV 8460 = FI Hya).
- 1948 Long period variable and M 68. B. A. A. Jour., v. 58, p. 196.
- 1953 Rosino, L., Pietra, S. Periodi e curve di luce di stelle variabili nell'ammasso globulare NGC 4590 = M 68. Nota 1. Soc. Astr. Ital. Mem., v. XXIV, no. 4.
- 1954 Rosino, L., Pietra, S. Ricerche sugli ammassi globulari X. Periodi e curve di luce di 24 stelle variabili nell' ammasso globulare NGC 4590 = M 68. Univ. Bologna Oss. Pub., v. VI, no. 5.
- 1959 van Agt, S. L. Th., and Oosterhoff, P. Th. Observations of variable stars in the globular clusters NGC 4590 (M 68) and NGC 6266 (M 62). Leiden Ann. v. XXI, 4th pt., pp. 253-290, with plates.

1912 Knox Shaw, 1928a Ludendorff, 1947 Parenago, 1947abcd Sawyer, 1948b 1912 Knox Shaw, 1928a Ludendorti, 1947 Farenago, 1947aoca Sawyer, 19480 Perek, 1948I Sawyer, 1949ade Parenago, Kukarkin, Florja, 1949cde Shapley, 1951 Thackeray, 1952Iabd, II Lohmann, 1953 Dreyer, 1954 Blamont, 1954 Gingerich, 1954 Perek, 1954I Zagar, 1955 von Hoerner, 1955IIbcd Sawyer, 1956c Baum, 1956 van den Bergh, 1956ab Schmidt, 1957 van den Bergh, 1958 Alter, Ruprecht, Vanýsek, 1958I, IIi Kinman, 1958 Maffei (photo), 1958II Sawyer Hogg, 1959 Dzigvashvili, 1959Id, IIi Kinman, 1959 Matsunami et al., 1959Ifip Sawyer Hogg, 1960acfik Kron and Mayall, 1960 Kurth, 1960acf Wilkens, 1961 Kurochkin, 1961I Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg. See alex: 6838 1956 Artinchina

See also: 6838 1956 Artjuchina.

$\alpha 12^{h} 56^{m}.0, \delta - 70^{\circ} 36'$ $l^{11}303^{\circ}.59, b^{11} - 08^{\circ}.01$ NGC 4833 1928b Ludendorff, 1947abd Sawyer, 1948I Sawyer, 1949ade Parenago, Kukarkin, Florja, 1952 Iabcd Lohmann, 1953 Dreyer, 1954 I Zagar, 1955 IIbcd Sawyer, 1956

NGC 4833 (cont'd)

van den Bergh, 1956 Kreiken, 1956a Schmidt, 1957 van den Bergh, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1959 van Agt and Oosterhoff, 1959*Iad, IIa* Kinman, 1959 Matsunami *et al.*, 1959*Iip* Sawyer Hogg, 1960*bcg* Wilkens, 1961*I* Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

NGC 5024 (Messier 53) α 13^h 10^m, δ + 18° 26′ $l^{11}333^{\circ}.00, b^{11}$ + 79°.76

- 1956 Kreiken, E. A. A statistical study of pulsating stars. V. The variable stars in M 53 and NGC 3201. Fac. Sci. Univ. Ankara Comm., v. 8, p. 67; Dept. Astron. Ankara Comm., no. 12.
- 1957 Cuffey, J. Color-magnitude relations in Messier 53 and NGC 7492. A. J., v. 62, p. 91.
- 1958 Cuffey, J. Color indices in M 53. Ap. J., v. 128, pp. 219-227; Goethe Link Pub., no. 24.

1962 Cuffey, J. Variable star search in M 53. A. J., v. 67, p. 574.

1928ab Ludendorff, 1938a Payne-Gaposchkin and Gaposchkin, 1946 Miczaika, 1947 Parenago, 1947abcd Sawyer, 1948 Becker, 1948 Fehrenbach, 1948 Gamalej, 1948b Perek, 1948I Sawyer, 1949abcde Parenago, Kukarkin, Florja, 1949cef Shapley, 1950dg Becker, 1952Iabd Lohmann, 1953 Dreyer, 1953 Gingerich, 1953 Kholopov, 1953 Lohmann, 1953acdei Rosino, 1954 Blamont, 1954 Cuffey, 1954 Gingerich, 1954b Rosino, 1954I Zagar, 1955 von Hoerner, 1955IIbcd Sawyer, 1956c Baum, 1956 van den Bergh, 1956c Morgan, 1956b Schmidt, 1957 van den Bergh, 1957 Shapley, 1958 Alter, Ruprecht, Vanýsek, 1958be Arp, 1958 Heckmann, 1958I, II Kinman, 1958I Sandage, 1958II Sawyer Hogg, 1959 van Agt and Oosterhoff, 1959 Dzigvashvili, 1959Id, IIai Kinman, 1959 Kurochkin, 1959 Matsunami et al., 1959b Morgan, 1959 Preston, 1959Iikp, III Sawyer Hogg, 1960abcdfik Kron and Mayall, 1960 Kurth, 1960bh Roberts, 1960 Sandage and Wallerstein, 1960acf Wilkeus, 1961ab Haffner, 1961 Hénon, 1961 Lohmann, 1961 Payne-Gaposchkin, 1961I, III Sawyer Hogg, 1962I Arp, 1962 van den Bergh and Henry, 1962 Fernie, 1962II Rosino, 1962 Sawyer Hogg.

NGC 5053

$\alpha 13^{h} 13^{m} 9, \ \delta + 17^{\circ} 57'$

 $l^{11}335^{\circ}.55, b^{11} + 78^{\circ}.95$

1949 Rosino, L. Ricerche sugli ammassi globulari. II. Sui periodi e curve di luce di 10 stelle variabili appartenenti all'ammasso globulare NGC 5053. Univ. Bologna Oss. Pub., v. V, no. 10 (photo).

1947abd Sawyer, 1948*I*, *II* Sawyer, 1949abde Parenago, Kukarkin, Florja, 1949ce Shapley, 1952*Iabd* Lohmann, 1953 Dreyer, 1953de Rosino, 1954 Cuffey, 1954 Markarian, 1954a Payne-Gaposchkin, 1954*I* Zagar, 1955*IIbd* Sawyer, 1956c Baum, 1956 van den Bergh, 1956 Kreiken, 1956a Schmidt, 1957 van den Bergh, 1957 Shapley, 1958 Alter, Ruprecht, Vanýsek, 1958 Burbidge and Sandage, 1958*I* Kinman, 1958 Maffei (photo), 1959 van Agt and Oosterhoff, 1959*IIa* Kinman, 1959 Matsunami *et al.*, 1959*Iip* Sawyer Hogg, 1960 Bowen, 1960 Ikhsanov, 1960*acfik* Kron and Mayall, 1960 Sandage and Wallerstein, 1960*acf* Wilkens, 1961*a* Haffner, 1961*I* Sawyer Hogg, 1962 Fernie, 1962 King, 1962 Sawyer Hogg.

See also: Pal 5 1951 Rosino, 6779 1951 Rosino, 5024 1958 Cuffey, 7492 1961 Cuffey.

NGC 5139 (Omega Centauri) $\alpha 13^{h} 23^{m}$ 8, $\delta - 47^{\circ} 13'$ $l^{11}309^{\circ}.10, b^{11} + 14^{\circ}.97$

- 1948 van Gent, H., Oosterhoff, P. Th. Provisional elements and light-curves of the variables 133 and 159 in ω Cen. B. A. N., v. 10, pp. 377–382.
- 1952 Kholopov, P. N. The ellipticity of globular clusters. A. J. UdSSR, v. 29, no. 6, pp. 671-681.

NGC 5139 (cont'd)

- 1953 Kholopov, P. N. Die räumliche Verteilung der RR Lyrae-Sterne im kugelförmigen Sternhaufen ω Centauri. A. J. UdSSR, v. 30, no. 4, pp. 426-441.
- 1955 FitzGerald, A. P. Note on globular cluster Omega Centauri. Irish A. J., v. 3, p. 204; Armagh Leaflet, no. 38. (Plate 17, photo of cluster showing nebulosity).
- 1956 Ege, D. A statistical study of pulsating stars. 14th paper. Irregular variables in ω Centauri. Fac. Sci. Ankara Comm., v. 8, no. 1; Dept. Astron. Ankara Univ. Comm., no. 21.
- 1956 Kreiken, E. A. A statistical study of pulsating stars. 1st paper. The variable stars in ω Centauri. Fac. Sci. Ankara Comm., v. 8, p. 40; Dept. Astron. Ankara Comm., no. 8.
- 1956 Lindsay, E. M. The dimensions of Omega Centauri. Armagh Cont. no. 20; repr. from Vistas in Astronomy, A. Beer, ed., vol. 2 (two photos).
- 1957 Gascoigne, S. C. B., and Burr, E. J. Surface photometry of the globular clusters 47 Tucanae and Omega Centauri. M. N., v. 116, pp. 570-582.
- 1958 Arp, H. C. Southern hemisphere photometry. II. Photoelectric measures of bright stars. A. J., v. 63, p. 118, with plate.
- 1959 Belserene, E. P. Magnitudes and colors in ω Centauri. A. J., v. 64, pp. 58-64.
- 1959 Gaposchkin, S. I. On two brightest globular clusters. A. J., v. 64, p. 331.
- 1959 Kinman, T. D. A note on the RR Lyrae variables. M. N., v. 119, p. 134.
- 1960 Thackeray, A. D. A W Vir variable in Omega Centauri. Obs., v. 80, pp. 226-227.
- 1961 Belserene, E. Pisani. Changes in the periods of RR Lyrae stars in Omega Centauri. A. J., v. 66, p. 38; Ref., Urania, Krakow, v. 32, pp. 310-311.
- 1961 Eggen, O. J. Three colour photometry of red variables. *Roy. Obs. Bull.*, no. 29.
- 1961 Harding, G. A. A CH star in ω Centauri. Obs., v. 82, no. 930, pp. 205-207, with plate.
- 1961 King, I. The shape of a rotating star cluster. A. J., v. 66, pp. 68-70.
- 1961 Ponsen, J. On the absence of δ Scuti-type variables in ω Centauri. B. A. N., v. 15, p. 326.
- 1962 Fehrenbach, C., and Duflot, M. Deux étoiles à grande vitesse découvertes dans le ciel austral. *European Southern Obs. Comm.*, no. 2.

1928a Ludendorff, 1935 Walters, 1938abd Payne-Gaposchkin and Gaposchkin, 1940 Shapley and Paraskevopoulos, 1943 Payne-Gaposchkin, Brenton, Gaposchkin, 1946 Miczaika, 1947ab (error in Dec.) d Sawyer, 1948I Sawyer, 1949 Gialanella, 1949 Joy, 1949 Kholopov, 1949abde Parenago, Kukarkin, Florja, 1949cefgh Shapley, 1950beeg Becker, 1950 Shapley, 1951a Bok (photo), 1951abd Payne-Gaposchkin, 1952 Kholopov, 1952Iabd Lohmann, 1953 Dreyer, 1953 Kholopov, 1953adegi Rosino, 1953 Shapley and McKibben, 1954 Belserene, 1954ab Payne-Gaposchkin, 1954b Rosino, 1956 Woolley, 1954I Zagar, 1955I Arp, 1955I, IIbcd Sawyer, 1955Ia, IId Struve, 1956 Baum, 1956 van den Bergh, 1956 Kourganoff, 1956c Morgan, 1956a Schmidt, 1956 Woolley and Robertson, 1957 van den Bergh, 1957II von Hoerner, 1957 Kholopov, 1957 Poveda, 1957 Rosino, 1957 Stohl, 1958 Alter, Ruprecht, Vanýsek, 1958ek Arp, 1958 Heckmann, 1958 Kholopov, 1958I, II Kinman, 1958a Ledoux and Walraven, 1958 Náprstková, 1958I Sandage, 1958Ih, II Sawyer Hogg, 1959 van Agt and Oosterhoff, 1959Iabd, IIaci Kinman, 1959 Kurochkin, 1959 Matsunami et al., 1959b Morgan, 1959 Payne-Gaposchkin, 1959 Preston, 1960 Gingerich, 1960 Pavlov-(error in Dec.) IIacd, III Sawyer Hogg, 1960 Eggen, 1960 Gingerich, 1960 Pavlov-

NGC 5139 (cont'd)

skaya, 1960a Roberts, 1960acf Wilkens, 1961 van den Bergh. 1961a Haffner, 1961 Hénon, 1961 Kurochkin, 1961 Lohmann, 1961 Michie, 1961 Payne-Gaposchkin, 1961 I, III Sawyer Hogg, 1961 Woolley, 1961 II Woolley and Dickens, 1962 Aller, 1962 II bc Arp, 1962 Fernie, 1962 King, 1962 Kinman, 1962 II Rosino, 1962 Sandage, 1962 Sawyer Hogg.

See also: 5053 1949 Rosino, 7078 1955 Kholopov, 3201 1956 Kreiken, 5272 1956 Kreiken, 5904 1956 Kreiken, 7078 1959 Bronkalla, 5272 1959 Oort and van Kerk, 7078 1961 King.

NGC 5272 (Messier 3) $\alpha 13^{h} 39^{m} 9, \ \delta + 28^{\circ} 38'$ $l^{11} 42^{\circ} .24, \ b^{11} + 78^{\circ} .70$

- 1922 Graff, K. Ueber sekundäre Wellen in den Lichtkurven der Sterne vom δ Cephei-typus. A. N., v. 217, p. 310.
- 1922 Lindblad, B. Spectrophotometric methods for determining stellar luminosity. Ap. J., v. 55, pp. 85-118; Mt. W. Cont., no. 228.
- 1927 Schilt, J. The short-period variable star RV Canum Venaticorum. Ap. J., v. 65, p. 124; Mt. W. Cont., no. 330.
- 1947 Kholopov, P. N. The relative masses of the stars in the globular cluster M3. A. J. UdSSR, v. 24, p. 45.
- 1947 Lohmann, W. Die Masse der kugelförmigen Sternhaufen M 3 und M 13. Z. f. Naturforschung, v. 2a, p. 477; Stern. Königstuhl-Heidelberg Mitt., no. 49.
- 1950 Vandekerkhove, E. Etude d'amas résultants. Obs. Roy. Belgique Comm., no. 18, pp. 23-26.
- 1952 Arp, H. C., Baum, W. A., and Sandage, A. R. The H-R diagrams for the globular clusters M 92 and M 3. A. J., v. 57, pp. 4–5.
- 1952 Belserene, E. Pisani. Period changes of variable stars in Messier 3. A. J., v. 57, pp. 237-247.
- 1952 Kholopov, P. N. The ellipticity of globular clusters. A. J. UdSSR, v. 29, no. 6, pp. 671-681.
- 1952 Schopp, J., and Schwarzschild, M. Note on the color-magnitude diagram of Messier 3. *A. J.*, v. 57, pp. 61–63.
- 1953 Kholopov, P. N. La répartition spatiale des étoiles de types divers dans l'amas globulaire M3. A. J. UdSSR, v. 30, pp. 517–531.
- 1953 Rabe, W. Astronomisches Tagebuch. *Sternenwelt*, v. 5, p. 65. (200-inch photo of outer region).
- 1953 Sandage, A. R. Interpretation of color-magnitude arrays in globular clusters. Symposium on Astrophysics, University of Michigan.
- 1953 Sandage, A. The color-magnitude diagram for the globular cluster M 3. A. J., v. 58, pp. 61–75. Ref., Sky and Tel., v. 13, p. 53, 1953.
- 1954 Roberts, M., and Sandage, A. Group characteristics of the RR Lyrae stars in M 3. A. J., v. 59, p. 190. Summ., Sky and Tel., v. 13, p. 220, 1954.
- 1954 Sandage, A. R. The luminosity function for the globular cluster M 3. A. J., v. 59, pp. 162–168.
- 1954 Undersökningar av de klotformiga stjarnhoparna M 3 och M 92. Pop. A. Tids., v. 35, pp. 76-78.
- 1955 Arp, H. C. Cepheids of periods greater than one day in globular clusters. A. J., v. 60, pp. 1–17.

NGC 5272 (cont'd)

- 1955 Kholopov, P. N. The structure of the system of bright stars contained in the globular cluster M 3. A. J. UdSSR, v. 32, pp. 309-313.
- 1955 Pismis, P. On the period-luminosity relation in cluster-type Cepheids. A.S. P. Pub., v. 67, p. 253.
- 1955 Roberts, M., and Sandage, A. The region of instability for RR Lyrae stars in the color-magnitude diagram for M 3. A. J., v. 60, p. 185.
- 1955 Walker, M. F. A search for variable stars of small amplitude in M 3 and M 92. A. J., v. 60, pp. 197–202.
- 1955 Zbijenojato. M 3 u Lovačkim Psima. Vasiona, v. 3, p. 68 (Serbian). (Report on Sandage's work.)
- 1956 Baker, R. H., and Baker, H. V. Ultraviolet light-curves of selected variable stars in M 3. A. J., v. 61, pp. 283–289.
- 1956 Burbidge, G. R. On cluster-type variables and magnetic fields. *Ap. J.*, v. 124, pp. 412–415.
- 1956 Johnson, H. L., and Sandage, A. R. Three-color photometry in the globular cluster M 3. Ap. J., v. 124, pp. 379–389.
- 1956 Kreiken, E. A. A statistical study of pulsating stars. 4th paper. The variables in Messier 3. Fac. Sci. Univ. Ankara Comm., v. VIII, no. 1; Dept. Astron. Ankara Univ. Comm., no. 11.
- 1956 Vandekerkhove, E. L'effet d'une population de type II sur le rougissement d'une nébuleuse extragalactique. Acad. Roy. Belgique. Cl. Sci. Bull., (5) v. 42, pp. 185-200; Obs. Roy. Belgique Comm., no. 94.
- 1957 Johnson, H. L. The relation between U-B and absolute magnitude of F-type stars. A. S. P. Pub., v. 69, pp. 404-408.
- 1957 Osvath, I. Ueber die Periodänderungen der Veränderlichen im Kugelsternhaufen M 3. Konferenz über Veränderliche Sterne, Budapest, 1956; Stern. Ungar. Akad. Wiss. Mitt., no. 42.
- 1957 Sandage, A. Observational approach to evolution. III. Semi-empirical evolution tracks for M 67 and M 3. Ap. J., v. 126, pp. 326–340.
- 1958 Reddish, V. C. Correlations in the deviations of magnitudes of stars in clusters. Obs., v. 78, pp. 247–249.
- 1959 Eggen, O. J., and Sandage, A. R. Stellar groups. IV. The Groombridge 1830 group of high velocity stars and its relation to the globular clusters. *M. N.*, v. 119, pp. 255–277.
- 1959 Kinman, T. D. A note on the RR Lyrae variables. M. N., v. 119, p. 134.
- 1959 Kukarkin, B. V., and Kukarkina, N. P. An investigation of variable stars in the globular cluster M 3 = NGC 5272. I, A catalogue of photographic magnitudes of 81 stars in the outer regions of the cluster. Var. Stars (Russ.), v. 12, no. 4, pp. 291-292.
- 1959 Kurochkin, N. Variable stars in large vicinities of the M 3 cluster. Ast. Circ. (Russ.), no. 205, pp. 14–16.
- 1959 Lamla, E. Ueber die spektrale Intensitätsverteilung und die Leuchtkraftverteilung von Sternsystemen. Astrophys. Obs. Potsdam Mitt., no. 74; A. N. v. 285, no. 1, pp. 33-48.
- 1959 Oort, J. H., and van Kerk, G. Structure and dynamics of Messier 3. B. A. N., v. 14, no. 491, pp. 299-321.

NGC 5272 (cont'd)

- 1959 Roberts, M. S. A search for neutral atomic hydrogen in globular clusters. Nature, v. 184, Supp. 20, pp. 1555-1556.
- 1959 Sandage, A. On the intrinsic colors of RR Lyrae stars in M 3. Ap. J., v. 129, pp. 596-599.
- 1960 Kurochkin, N. E. New variable stars in the remote neighborhood of M 3. Var. Stars (Russ.), v. 13, no. 2, pp. 84-100.
- 1960 Kukarkin, B. V. Identification of two variables in globular cluster M 3. Ast. Circ. (Russ.), no. 216, p. 29.
- 1960 Oort, J. H., and van Kerk, G. Internal motions and density distribution in a globular cluster. Ann. d'Ap., v. 23, no. 3, pp. 375-378.
- 1960 Whitford, A. E. Lick Observatory report. Globular clusters. A. J., v. 65, p. 534. Star von Zeipel 1128, spectrum and radial velocity.
- 1961 Hoag, A. A. Cooled-emulsion experiments. A. S. P. Pub., v. 73, pp. 301–308, photos.
- 1961 Kron, G. E. The unusual colors of two globular clusters of the Magellanic Clouds. A. S. P. Pub., v. 73, pp. 202–205.
- 1961 Kukarkin, B. V., Kukarkina, N. P. A study of variable stars in the globular cluster M 3 = NGC 5272. Var. Stars (Russ.), v. 13, no. 4, pp. 239-247.
- 1961 Kukarkina, N. P., and Kukarkin, B. V. Variable stars with a Blazhko effect in the globular cluster M 3. Var. Stars (Russ.), v. 13, no. 5, pp. 309-316.
- 1961 Kurochkin, N. E. Investigation of stars in the neighbourhood of the globular cluster M 3. Astr. Circ. (Russ.), no. 219, pp. 26–29.
- 1961 Meinel, A. B. New frontiers of astronomical technology. Science, v. 134, p. 1165. (Cover, image orthicon of M 3).
- 1961 Preston, G. W. The calculation of pulsation constants for the RR Lyrae stars in M 3. *Ap. J.*, v. 133, pp. 29–38.
- 1961 Sandage, A. R. The ages of the open cluster NGC 188 and the globular clusters M 3, M 5, and M 13 compared with the Hubble time. A. J., v. 66, p. 53.
- 1961 Smak, J. On the P-(B-V) relation for RR Lyrae stars in M 3. Acta Astr., v. 11, no. 2, p. 123; Warsaw Univ. Obs. Repr., no. 111.
- 1961 Woolf, N. J. The distribution of horizontal branch stars in the globular cluster M 3. A. S. P. Pub., v. 73, p. 339.
- 1962 Sandage, A. The ages of M 67, NGC 188, M 3, M 5, and M 13 according to Hoyle's 1959 models. *Ap. J.*, v. 135, pp. 349–365.
- 1962 Woolf, N. J. A fuel supply limit to the age of the globular cluster M 3. Ap. J., v. 135, pp. 644–646; Lick Cont., no. 126.

1962 Woolf, N. J. Age of Messier 3. A. J., v. 67, no. 5, p. 286.

1928a Ludendorff, 1935 Walters, 1936 Kuiper, 1938ac Payne-Gaposchkin and Gaposchkin, 1940 Oort, 1946 Miczaika, 1946 Vogt, 1947 Parenago, 1947abcd Sawyer, 1948 Becker, 1948 Fehrenbach, 1948 Gamalej, 1948 Maitre, 1948b Perek, 1948J, II Sawyer, 1949 Gialanella, 1949 Joy, 1949abcde Parenago, Kukarkin, Florja, 1949acdef Shapley, 1950cdfg Becker, 1950 Kurth, 1951I, II Kurth, 1951acd Payne-Gaposchkin, 1952 Baade, 1952 Camm, 1952 Kholopov, 1952Iabd, IIIa Lohmann, 1953a Deutsch, 1954 Belserene, 1954 Bidelman, 1954 Blamont, 1954 Cimino, 1954 Cuffey, 1954 Gingerich, 1954ab Payne-Gaposchkin, 1954 Bolserene, 1954 Bidelman, 1954 Blamont, 1954 Comino, 1954ab Candage, 1954 Schwarzschild, 1954I Zagar, 1955I, II Arp, 1955 Baum, 1955 von Hoerner, 1955 Hoyle and Schwarzschild, 1955I, II Reddish, 1955I, IIbcd Sawyer, 1956acd Baum,

NGC 5272 (cont'd)

1956 van den Bergh, 1956 Haselgrove and Hoyle, 1956 Kourganoff, 1956cd Morgan, 1956ab Schmidt, 1957 van den Bergh, 1957 Ferrari d'Occhieppo, 1957*I, II* von Hoerner, 1957 Kholopov, 1957 Rosino, 1957*I, II* Sandage, 1957 Seljach, 1957 Stohl, 1958 Alter, Ruprecht, Vanýsek, 1958abcdefghijkl Arp, 1958abc Burbidge and Burbidge, 1958 Burbidge and Sandage, 1958 Heckmann, 1958 Kholopov, 1958*I, II* Kinman, 1958 Ledoux and Walraven, 1958 Maffei (photo), 1958*I, II* Sandage, 1958 Saurer, 1958 Idefh, *II* Sawyer Hogg, 1958 Vandekerkhove, 1958 Wallerstein, 1959 van Agt and Oosterhoff, 1959abcd Arp, 1959 Baum, 1959 Dzigvashvili, 1959*Id, IIaghij* Kinman, 1959 Kraft, Camp, Hughes, 1959 Kurochkin, 1959 Matsunami et al., 1959bd Morgan, 1959 Payne-Gaposchkin, 1959 Preston, 1959 Spinrad, 1959 Struve, 1959 Sandage, 1959*Iefghiklmnp, IIac, III* Sawyer Hogg, 1959 Spinrad, 1959 Struve, 1959 Wallerstein, 1959 Wilson, 1960abcd Burbidge, 1960 Eggen, 1960*II, III* Hodge, 1960 Johnson, 1960abcdfgijk Kron and Mayall, 1960 Kurth, 1960 Pavlovskaya, 1960bfgh Roberts, 1960 Sandage and Eggen, 1960 Sandage and Wallerstein, 1961 Lohmann, 1961 Michie, 1961 Payne-Gaposchkin, 1961 Poveda, 1961 Preston, 1961*I, IIb*, *III* Sawyer Hogg, 1961 Stothers and Schwarzschild, 1961 Woolley, 1961*I* Woolley and Dickens, 1962*I, IIac* Arp, 1962 van den Bergh and Henry, 1962 Eggen and Sandage, 1962 Fernie, 1962 King, 1962 Xumar, 1962*II* Rosino, 1962*I, II* Sandage, 1962 Sawyer Hogg, 1962 Struve.

See also: 5053 1949 Rosino, 6341 1953 Arp, Baum, Sandage, 6205 1954 Baum, 6838 1954 Becker, 6205 1954 Savedoff, 6341 1954 Tayler, 6205 1955 Brown, 7078 1955 Kholopov, 4147 1955 Sandage and Walker, 6838 1956 Artjuchina, Pal 4 1956 van den Bergh, 6121 1956 Kholopov, 3201 1956 Kreiken, 6205 1956 Savedoff, 5024 1957 Cuffey, 7078 1957 Izsak, 5024 1958 Cuffey, 104 1958 Thackeray, 5904 1958 Wallerstein, 6656 1959 Arp and Melbourne, 7078 1959 Bronkalla, 5139 1959 Belserene, 5904 1959 Wallerstein, 5904 1960 Epstein, 104 1960 Feast and Thackeray, 7492 1961 Cuffey, 6121 1961 Idlis, 6838 1961 Stephenson, 104 1961 Wildey, 6205 1962 King, 6356 1962 Wallerstein.

NGC 5286

 $\alpha 13^{h} 43^{m}_{...0}0, \ \delta - 51^{\circ} 07'_{...0}$

 $l^{11}311^{\circ}.57, b^{11} + 10^{\circ}.58$

1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1952Iabd Lohmann, 1953 Dreyer, 1954I Zagar, 1955I, IIbd Sawyer, 1956a Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1959Iad, IIbi Kinman, 1959 Matsunami et al., 1959Iip Sawyer Hogg, 1960ad Wilkens, 1961I Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

NGC 5466

$\alpha 14^{h}03^{m}2, \ \delta + 28^{\circ} 46'$

 $l^{11}42^{\circ}.13, b^{11} + 73^{\circ}.59$

1959 Kukarkin, B. V. On five variable stars near globular cluster NGC 5466. Var. Stars (Russ.), v. 12, no. 1, pp. 50-52.

1961 Cuffey, J. NGC 5466. A. J., v. 66, 71-82; Goethe Link Pub. no. 43, with charts. 1961 Kurochkin, N. E. New variable stars at high galactic latitudes. Var. Stars

(Russ.), v. 13, no. 5, pp. 331-339.

1928ab Ludendorff, 1947abd Sawyer, 1948I Sawyer, 1949abcde Parenago, Kukarkin, Florja, 1949ce Shapley, 1952Iabd Lohmann, 1953 Dreyer, 1953 Kholopov, 1953 Lohmann, 1953d Rosino, 1954 Cuffey, 1954 Huang, 1954I Zagar, 1955IIbd Sawyer, 1956c Baum, 1956 van den Bergh, 1956 Kreiken, 1956a Schmidt, 1957 van den Bergh, 1958 Alter, Ruprecht, Vanýsek, 1958 Heckmann, 1958I, II Kinman, 1959 van Agt and Oosterhoff, 1959IIa Kinman, 1959 Matsunami et al., 1959Icip (photo) Sawyer Hogg, 1960acfik Kron and Mayall, 1960 Sandage and Wallerstein, 1960acef Wilkens, 1961a Haffner, 1961 Kurochkin, 1961I, IIa, III Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

See also: Pal 5 1951 Rosino, 5024 1958 Cuffey, 7492 1961 Cuffey.

$\alpha 14^{h} 27^{m}_{..}0, \ \delta = 05^{\circ} 45'_{..}$

 $l^{11}342^{\circ}.22, b^{11} + 49^{\circ}.26$

1915 Knox Shaw, 1915 Stone, 1921*I* Gregory, 1947 Parenago, 1947*abd* Sawyer, 1948 Becker, 1948 Fehrenbach, 1948 Perek, 1948*I* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1949*ce* Shapley, 1952*Iabcd* Lohmann, 1953 Dreyer, 1953 Lohmann, 1953*d* Rosino, 1954 Blamont, 1954*I* Zagar, 1955 von Hoerner, 1955*IIbd* Sawyer, 1956*c* Baum, 1956 van den Bergh, 1956*b* Schmidt, 1957 Shapley, 1958 Alter, Ruprecht, Vanýsek, 195S*I*, *II* Kinman, 1959 van Agt and Oosterhoff, 1959 Dzigvashvili, 1959*Id*, *IIi* Kinman, 1959 Matsunami *et al.*, 1959*Iip* Sawyer Hogg, 1960*acfhik* Kron and Mayall, 1960 Kurth, 1960*acf* Wilkens, 1961*I* Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

NGC 5694 $\alpha 14^{h}36^{m}7, \ \delta - 26^{\circ}19'$

1915 Stone, 1947 Parenago, 1947*abd* Sawyer, 1948 Becker, 1948*a* Perek, 1949*acde* Parenago, Kukarkin, Florja, 1949*ce* Shapley, 1952*Iabd* Lohmann, 1953 Dreyer, 1953*d* Rosino, 1954 Perek, 1954*I* Zagar, 1955 von Hoerner, 1955*I*, *IIbd* Sawyer, 1956*c* Baum, 1956*b* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1959 Dzigvashvili, 1959*Id*, *IIi*, *III* Kinman, 1959 Matsunami *et al.*, 1959*Iip* Sawyer Hogg, 1960*acfik* Kron and Mayall, 1960*acf* Wilkens, 1961*I* Sawyer Hogg, 1962 Sawyer Hogg.

IC 4499 $\alpha 14^{h} 52^{m}$ 7, $\delta - 82^{\circ} 02'$ $l^{11}307^{\circ}.36, b^{11} - 20^{\circ}.50$ 1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1949b Shapley, 1952IabdLohmann, 1953 Dreyer, 1954I Zagar, 1955IIa Sawyer, 1956c Baum, 1958 Alter,
Ruprecht, Vanýsek, 1959 Matsunami et al., 1959Ip Sawyer Hogg, 1960bd Wilkens.

NGC 5824 $\alpha 15^{h} 00^{m}9, \ \delta - 32^{\circ} 53'$

1961 Rosino, L. New variable stars in the globular cluster NGC 5824. A. S. P.

Pub., v. 73, pp. 309-313, with plates; Asiago Cont., no. 129.

1947 Parenago, 1947abd Sawyer, 1948 Becker, 1948b Perek, 1949ade Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955 von Hoerner, 1955*IIa* Sawyer, 1956c Baum, 1956b Schmidt, 1957 Rosino, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1958*II* Sawyer Hogg, 1959*Id*, *IIi* Kinman, 1959 Matsunami et al., 1959*Ip* Sawyer Hogg, 1960*acfik* Kron and Mayall, 1960 Kurth, 1960ad Wilkens, 1961*I*, *III* Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

Palomar 5

$\alpha 15^{h} 13^{m} 5, \ \delta + 00^{\circ} 05'$

 $l^{11}00^{\circ}.86, b^{11} + 45^{\circ}.87$

- 1951 Rosino, L. Ricerche sugli ammassi globulari. VI. L'ammasso globulare di Baade in A.R. 15^h 13^m 30^s, E.D. +0° 4' (1950.0). Univ. Bologna Oss. Pub., v. V, no. 15.
- 1955 Wilson, A. G. Sculptor-type systems in the local group of galaxies. A. S. P. Pub., v. 67, pp. 27-29. (Discovery).
- 1956 Pietra, S. Ricerche sugli ammassi globulari. XIII. Periodi e curve di luce di stelle variabili nell'ammasso globulari di Baade in AR 15^h 13^m 30^s; D +0° 4' (1950.0). Univ. Bologna Oss. Pub., v. VI, no. 16.
- 1956 Mannino, G. Sul periodo di due stelle variabili nell'ammasso globulare di Baade in AR 15^h 13^m 30^s, D + 0° 4′ (1950.0). Soc. Astr. Ital. Mem. (NS), v. 27, pp. 415-416; Univ. Bologna Oss. Pub., v. 6, no. 17.
- 1962 Kinman, T. D., and Rosino, L. Notes on faint star clusters. A. S. P. Pub., v. 74, pp. 499–506.

1953ef Rosino, 1954I Zagar, 1955 Abell (No. 5), 1956 van den Bergh, 1957 Rosino, 1958 Alter, Ruprecht, Vanýsek, 1959*Iip* Sawyer Hogg, 1960ad Wilkens, 1961I Sawyer Hogg, 1962 Kinman, 1962I Rosino, 1962 Sawyer Hogg.

$l^{11}331^{\circ}.06, b^{11} + 30^{\circ}.37$

 $l^{11}332^{\circ}.55, b^{11} + 22^{\circ}.06$

NGC 5897 $\alpha 15^{h} 14^{m}_{...5}, \delta - 20^{\circ} 50'$ $l^{11}34$

 $l^{11}342^{\circ}.94 \ b^{11} + 30^{\circ}.29$

1915 Knox Shaw, 1947abd Sawyer, 1949abde Parenago, Kukarkin, Florja, 1949ce Shapley, 1952Iabd Lohmann, 1953 Dreyer, 1953d Rosino, 1953 Sawyer, 1954 Blamont, 1954I Zagar, 1955IIbd Sawyer, 1956c Baum, 1956 van den Bergh, 1956a Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958 Burbidge and Sandage, 1958 Heckmann, 1958I, II Kinman, 1959IIa Kinman, 1959 Matsunami et al., 1959Iip Sawyer Hogg, 1960acfhik Kron and Mayall, 1960 Sandage and Wallerstein, 1960acf Wilkens, 1961 Hénon, 1962 Fernie, 1962 Sawyer Hogg.

NGC 5904 (Messier 5) $\alpha 15^{h} 16^{m}0, \ \delta + 02^{\circ} 16' \qquad l^{11}03^{\circ}.86, \ b^{11} + 46^{\circ}.80$

- 1949 Sawyer, H. B. The early discovery of four globular clusters. *R. A. S. C. Jour.*, v. 43, p. 45.
- 1953 Kholopov, P. N. Space distribution of RR Lyrae variables in the globular clusters M 5 and NGC 3201. Var. Stars (Russ.), v. 9, pp. 371-378; Ast. News Letter, no. 82, 1956.
- 1955 Arp, H. C. Cepheids of period greater than one day in globular clusters. A. J., v. 60, pp. 1-17.
- 1956 Kreiken, E. A. A statistical study of pulsating stars. 3rd paper. The variable stars in Messier 5. Fac. Sci. Univ. Ankara Comm., v. 8, no. 1; Dept. Astr. Ankara Comm., no. 10.
- 1957 Arp, H. C. Three color photometry of Cepheids W Virginis, M 5 Nos. 42 and 84, and M 10 Nos. 2 and 3. A. J., v. 62, pp. 129–136.
- 1958 Reddish, V. C. Correlations in the deviations of magnitudes of stars in clusters. Obs., v. 78, pp. 247-249.
- 1958 Wallerstein, G. Radial velocities and spectral characteristics of the population II Cepheids M 5 no. 42, M 5 no. 84 and TW Capricorni. Ap. J., v. 127, pp. 583-590. (Plates of spectra).
- 1959 Wallerstein, G. Effective temperatures, radii, masses and pulsation properties of the population II Cepheids M 5 no. 42 and W Virginis. *Ap. J.*, v. 129, pp. 356-361.
- 1959 Wallerstein, G. The shock-wave model for the population II Cepheids. Ap. J., v. 130, pp. 560–569. (No. 42 in M 5, with print of spectra).
- 1960 Epstein, E. E. Test for variability of stars near the RR Lyrae gap in M 5. Ap. J., v. 131, pp. 517-518; Harv. Repr., no. 550.
- 1961 Preston, G. W. Low-dispersion spectra of RR Lyrae stars in globular clusters. Ap. J., v. 134, no. 2, pp. 651-652; Lick Cont., no. 119.
- 1961 Sandage, A. R. The ages of the open cluster NGC 188 and the globular clusters M 3, M 5, and M 13 compared with the Hubble time. A. J., v. 66, p. 53.
- 1962 Arp, H. The globular cluster M 5. Ap. J., v. 135, pp. 311-332, with plates.
- 1962 Sandage, A. The ages of M 67, NGC 188, M 3, M 5, and M 13 according to Hoyle's 1959 models. Ap. J., v. 135, pp. 349–365.

1928a Ludendorff, 1935 Walters, 1938abc Payne-Gaposchkin and Gaposchkin, 1946 Miczaika, 1947 Parenago, 1947abcd Sawyer, 1948 BAAJ, 1948 Becker, 1948 Fehrenbach (error in no.), 1948 Gamalej, 1948b Perek, 1948I, II Sawyer, 1949 Joy, 1949abcde Parenago, Kukarkin, Florja, 1949acdef Shapley, 1950cdefg Becker, 1950 Kurth, 1951I, II Kurth, 1952 Camm, 1952Iabd Lohmann, 1953 Dreyer, 1953 Kholopov, 1953 Lohmann, 1953di Rosino, 1953 Shapley and McKibben, 1954 Belserene, 1954 Bidelman, 1954 Blamont, 1954 Gingerich, 1954a Payne-Gaposchkin, 1954b Rosino,

NGC 5904 (cont'd)

1954a Sandage, 1954I Zagar, 1955I, II Arp, 1955 von Hoerner, 1955II Reddish, 1955I, IIbcd Sawyer, 1956ac Baum, 1956 van den Bergh, 1956 Kourganoff, 1956c Morgan, 1956ab Schmidt, 1957 van den Bergh, 1957 Ferrari d'Occhieppo, 1957 Kholopov, 1957 Roman, 1957 Rosino, 1957 Stohl, 1958 Alter, Ruprecht, Vanýsek, 1958abdej Arp, 1958 Burbidge and Sandage, 1958 Kholopov, 1958I, II Kinman, 1958 Maffei (photo), 1958I Sandage, 1958Ich, II Sawyer Hogg, 1959 van Agt and Ooster-hoff, 1959abcd Arp, 1959 Dzigvashvili, 1959 Johnson, 1959Iabd, IIafhij Kinman, 1959 Kraft, Camp and Hughes, 1959 Kurochkin, 1959 Matsunami et al., 1959 Morgan, 1959 Preston, 1959 Sandage, 1959 Larotheb, U. Sawyer, Hogg, 1969 Morgan, 1959 Preston, 1959 Sandage, 1959 Iafikop, IIa, III Sawyer Hogg, 1960 abcdfgijkl Kron and Mayall, 1960 Kurth, 1960 Pavlovskaya, 1960bh Roberts, 1960 abcdggigiki Kron and Mayali, 1960 Kurth, 1960 Pavlovskaya, 1960bh Roberts, 1960
Sandage and Wallerstein, 1960acf Wilkens, 1960 Wallerstein and Carlson, 1961 van den Bergh, 1961ab Haffner, 1961 Hénon, 1961 Lohmann, 1961I, IIb. III Sawyer Hogg, 1961 Payne-Gaposchkin, 1961 Stothers and Schwarzschild, 1962I, Habed Arp, 1962 Bahner, Hiltner and Kraft, 1962 van den Bergh, 1962 Fernie, 1962 Kumar, 1962II Rosino, 1962I, II Sandage, 1962 Sawyer Hogg, 1962 Struve.
See also: 5053 1949 Rosino, 7099 1949 Rosino, 6205 1954 Baum, 5272 1955 Kholopov, 7078 1955 Kholopov, 5272 1955 Roberts and Sandage, 3201 1956 Kreiken, 5272 1956 Kreiken, 104 1957 Gascoigne and Burr, 7078 1957 Izsak, 6656 1959 Arp and Melboure, 7078 1957 1959 Nort and van Kerk, 5272 1961 Smakel.

Melbourne, 7078 1959 Bronkalla, 5272 1959 Oort and van Kerk, 5272 1961 Smak, 6397 1961 Woolley et al.

NGC 5927 $\alpha 15^{h} 24^{m}_{...4}, \delta - 50^{\circ} 29'_{...6}$

 $l^{11}326^{\circ}.63, b^{11} + 04^{\circ}.86$

1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIa* Sawyer, 1956a Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1959*Icd*, *IIci* Kinman, 1959 Matsunami et al., 1959*Ip* Sawyer Hogg, 1960ad Wilkens, 1962 Fernie.

NGC 5946

$\alpha 15^{h} 31^{m}_{...}8, \delta - 50^{\circ} 30'_{...}$

 $l^{11}327^{\circ}.58, b^{11} + 04^{\circ}.19$

1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIa* Sawyer, 1958 Alter, Ruprecht, Vanýsek, 1959 Mat-sunami et al., 1959*Idp* Sawyer Hogg, 1960ad Wilkens.

NGC 5986

 $\alpha 15^{h} 42^{m}_{...8}$, $\delta - 37^{\circ} 37'_{...8}$

 $l^{11}337^{\circ}.04, b^{11} + 13^{\circ}.28$

1962 Rosino, L. Ricerche nell'emisfero australe. III. Stelle variabili negli ammassi globulari NGC 5986, 6304, 6558, 6569, 6637 (M 69), 6681 (M 70) e zone attigue. Soc. Astr. Ital. Mem., v. XXXIII, no. 4; Asiago Cont., no. 132.

1935 Walters, 1947 Parenago, 1947abd Sawyer, 1948 Becker, 1948b Perek, 1949ade Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1953 Helek, 1958 Cimino, 1954*I* Zagar, 1955 von Hoerner, 1955*IIbd* Sawyer, 1956 Schmidt, 1957 Rosino, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1958*II* Sawyer Hogg, 1959 Dzigvashvili, 1959*Id*, *IIi* Kinman, 1959 Matsunami et al., 1959*Iip* Sawyer Hogg, 1960*acfik* Kron and Mayall, 1960 Kurth, 1960*ad* Wilkens, 1961 *III* Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

$l^{11}28^{\circ}.77, b^{11} + 42^{\circ}.15$ Palomar 14 $\alpha 16^{h} 08^{m}_{..}8, \delta + 15^{\circ} 05'$

- 1959 Arp, H. C. The absolute magnitudes, colors, and metal abundances of stars in globular clusters. A. J., v. 64, pp. 441-447. (Page 446, position of new globular cluster discovered by van den Bergh.)
- 1960 Arp, H., and van den Bergh, S. A new faint globular cluster. A. S. P. Pub., v. 72, p. 48, with print.

1961b Haffner.

NGC 6093 (Messier 80) $\alpha 16^{h} 14^{m}$, $\delta - 22^{\circ} 52'$ $l^{11}352^{\circ}.67, b^{11} + 19^{\circ}.45$

1961 Eggen, O. J. Three colour photometry of red variables. Roy. Obs. Bull., no. 29.

1928b Ludendorff, 1941 Merrill, 1947 Parenago, 1947*abcd* Sawyer, 1948 Becker, 1948b Perek, 1948*I*, *II* Sawyer, 1949 Joy, 1949*abde* Parenago, Kukarkin, Florja, 1950*eg* Becker, 1951*b* Payne-Gaposchkin, 1952*Iabcd* Lohmann, 1953 Dreyer, 1953 Lohmann, 1953*i* Rosino, 1953 Shapley and McKibben, 1954 Bidelman, 1954 Blamont, 1954 Gingerich, 1954*b* Payne-Gaposchkin, 1954*b* Rosino, 1954*I* Zagar, 1955 von Hoerner, 1955*IIbcd* Sawyer, 1956 van den Bergh, 1956 Kreiken, 1956*ab* Schmidt, 1957 Rosino, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1958 Maffei (photo), 1958*II* Sawyer Hogg, 1959 Dzigvashvili, 1959*Id*, *IIai* Kinman, 1959 Matsunami *et al.*, 1959*Iip*, *IId* Sawyer Hogg, 1960*acfik* Kron and Mayall, 1960*acf* Wilkens, 1961 Hénon, 1961*I*, *III* Sawyer Hogg, 1962 van den Bergh and Henry, 1962 Fernie, 1962 Sawyer Hogg.

NGC 6101 α 16^h 20^m0, δ – 72° 06' l^{11} 317°.73, b^{11} – 15°.83 1947*abd* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIa* Sawyer, 1956*a* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1959 Matsunami *et al.*, 1959*Ip* Sawyer Hogg, 1960*bd* Wilkens, 1962 Fernie.

NGC 6121 (Messier 4) α 16^h 20^m6, δ – 26° 24′ $l^{11}350^{\circ}.99, b^{11}$ + 15°.97 1949 Sawyer, H. B. The early discovery of four globular clusters. *R. A. S. C. Jour.*,

- v. 43, p. 45.
 1956 Kholopov, P. N. Spatial distribution of stars of various types in the globular cluster M 4. A. J. UdSSR, v. 33, p. 46.
- 1959 Idlis, G. M., and Nikol'skii, G. M. The diffuse medium in globular clusters. A. J. UdSSR, v. 36, no. 4, p. 668; Soviet Astronomy, AJ, v. 3, no. 4, p. 652, 1960.
- 1961 Idlis, G. M. A confirmation of the presence of a diffuse medium in globular stellar clusters. A. J. UdSSR, v. 38, p. 184; Soviet Astronomy AJ, v. 5, no. 1, pp. 135-136.
- 1963 Hoffmeister, C. Veränderliche Sterne am Südhimmel. *Sonneberg Veröff.*,v. 6, no. 1, p. 7.

1943 Payne-Gaposchkin, Brenton, Gaposchkin, 1946 Miczaika, 1947*abcd* Sawyer, 1948 King, 1948 Maitre, 1948*I* Sawyer, 1949 Gialanella, 1949 Joy, 1949*abde* Parenago, Kukarkin, Florja, 1949*dfg* Shapley, 1950*dfg* Becker, 1950 Kurth, 1951*I*, *II* Kurth, 1952*Iabcd*, *IIIc* Lohmann, 1953 Dreyer, 1953 Kholopov, 1953 Lohmann, 1953*ij* Rosino, 1953 Shapley and McKibben, 1954 Blamont, 1954 Gingerich, 1954*a* Payne-Gaposchkin, 1954*a* Rosino, 1954*I* Zagar, 1955*IIbcd* Sawyer, 1956*b* Baum, 1956 van den Bergh, 1956a Schmidt, 1957 van den Bergh, 1957*II* von Hoerner, 1957 Kholopov, 1957 Rosino, 1958 Alter, Ruprecht, Vanýsek, 1958*e* Arp, 1958 Heckmann, 1958 Kholopov, 1958*I*, *II* Kinman, 1958 Maffei (photo), 1958*I* Sandage, 1958*II* Sawyer Hogg, 1959 van Agt and Oosterhoff, 1959*Iabd*, *IIad* Kinman, 1959 Kurochkin, 1959 Matsunami *et al.*, 1959 Preston, 1959*Idkip* Sawyer Hogg, 1960 Gingerich, 1960*acfik* Kron and Mayall, 1960*a* Roberts, 1960*acf* Wilkens, 1961 van den Bergh, 1961 Parne-Gaposchkin, 1961 Payne-Gaposchkin, 1961 *I, III* Sawyer Hogg, 1962

See also: 5272 1953 Sandage, 5272 1955 Kholopov, 7078 1955 Kholopov.

NGC 6139 $\alpha \ 16^{h} 24^{m}3, \ \delta - 38^{\circ} 44'$ $l^{11}342^{\circ}.37, \ b^{11} + 06^{\circ}.94$ 1921*II* Gregory, 1947*abd* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIa* Sawyer, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1959*Iacd*, *IIci* Kinman, 1959 Matsunami *et al.*, 1959*Ip* Sawyer Hogg, 1960*ad* Wilkens, 1962 Fernie,

 $\alpha \ 16^{h} \ 24^{m}_{\cdot}2, \ \delta \ - \ 25^{\circ} \ 56'_{\cdot}$

 $l^{11}351^{\circ}.92, b^{11} + 15^{\circ}.68$

1947abd Sawyer, 1949abde Parenago, Kukarkin, Florja, 1952Iabd Lohmann, 1953 Dreyer, 1953f Rosino, 1953 Sawyer, 1954I Zagar, 1955IIbd Sawyer, 1956a Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958 Maffei (photo), 1959 Matsunami et al., 1959Iip Sawyer Hogg, 1960acfik Kron and Mayall, 1960ad Wilkens, 1962 Sawyer Hogg.

NGC 6171 (Messier 107) $\alpha 16^{h} 29^{m}7, \ \delta - 12^{\circ} 57'$ $l^{11}03^{\circ}.37, \ b^{11} + 23^{\circ}.02$

- 1948 Sawyer, H. B. Méchain's additions to Messier's catalogue. A. J., v. 53, p. 117.
- 1960 Kukarkin, B. V. Preliminary results of investigation of variables in the globular cluster NGC 6171. *Astr. Circ.* (Russ.), no. 216, p. 17.
- 1961 van Agt, S. L. Th. Pseudo-colour-magnitude diagram of the globular cluster NGC 6171. B. A. N., v. 15, no. 508, pp. 327–329, with plate.
- 1961 Kukarkin, B. V. A study of variable stars in the globular cluster NGC 6171. Var. Stars (Russ.), v. 13, no. 6, pp. 384–389.
- 1961 Mannino, G. Periodi e curve di luce di 10 stelle variabili dell'ammasso globulare NGC 6171. Univ. Bologna Oss. Pub., v. 7, no. 18.

1947 Parenago, 1947*abcd* Sawyer, 1948 BAAJ, 1948 Becker, 1948 Fehrenbach, 1948b Perek. 1948I Sawyer, 1949*abde* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1953 Lohmann, 1954 Gingerich, 1954I Zagar, 1955 von Hoerner, 1955*IIbcd* Sawyer, 1956c Baum, 1956*ab* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1959*Id*, *IIi* Kinman, 1959 Matsunami *et al.*, 1959*Idip*, *III* Sawyer Hogg, 1960*acdefik* Kron and Mayall, 1960 Kurth, 1960*bd* Roberts, 1960*acef* Wilkens, 1961 Hénon, 1961 Lohmann, 1961*I*, *III* Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

NGC 6205 (Messier 13) $\alpha 16^{h} 39^{m}9, \ \delta + 36^{\circ} 33'$ $l^{11}59^{\circ}.00, \ b^{11} + 40^{\circ}.91$

- 1922 Lindblad, B. Spectrophotometric methods for determining stellar luminosity. *Ap. J.*, v. 55, pp. 85–118; *Mt. W. Cont.*, no. 228.
- 1947 Lohmann, W. Die Masse der kugelförmigen Sternhaufen M 3 und M 13. Z. f. Naturforschung, v. 2a, p. 477; Königstuhl-Heidelberg Mitt., no. 49.
- 1950 Vandekerkhove, E. Etude d'amas résultants. *Obs. Roy. Belgique Comm.*, no. 18, pp. 23-26.
- 1952 Fatchikin, N. V. Determination of the proper motion of the globular cluster M 13. Pulkova Bull., v. 19, pp. 150-154.
- 1952 Hoag, A. A. Photoelectric photometry of M 13. A. J., v. 57, p. 13.
- 1954 Baum, W. A. Globular clusters. II. The tentative identification of the main sequence of population II from photoelectric observations in M 13. A. J., v. 59, pp. 422-432.
- 1954 Savedoff, M. P. Color magnitude array of M 13. A. J., v. 59, p. 192.
- 1955 Arp, H. C. Cepheids of period greater than one day in globular clusters. A. J., v. 60, pp. 1-17.
- 1955 Arp, H. C., and Johnson, H. L. The globular cluster M 13. Ap. J., v. 122, pp. 171–176.
- 1955 Baum, W. A. Counting photons one by one. *Sky and Tel.*, v. 14, p. 334. (Photo and key to sequence for M 13).
- 1955 Brown, A. Color-magnitude array for stars in the globular cluster M 13. Ap. J., v. 122, pp. 146-170; McDonald Cont., no. 256.

NGC 6205 (cont'd)

- 1957 Kron, G. E. Star clusters, in and out of the galaxy. A. S. P. Leaflet, no. 339, with photo.
- 1959 Baum, W. A., Hiltner, W. A., Johnson, H. L., and Sandage, A. The main sequence of the globular cluster M 13. *Ap. J.*, v. 130, pp. 749-763 with plate.
- 1959 Eggen, O. J., and Sandage, A. R. Stellar groups. IV. The Groombridge 1830 group of high velocity stars and its relation to the globular clusters. M. N., v. 119, pp. 255–277.
- 1959 Hénon, M. L'amas isochrone. II. Calcul des orbites. Ann. d'Ap., v. 22, no. 5, pp. 492–498.
- 1959 Iriarte, B. Photoelectric photometry of faint blue stars. Lowell Bull., no. 101, v. 4, pp. 130–135.
- 1959 Roberts, M. S. A search for neutral atomic hydrogen in globular clusters. *Nature*, v. 184, Supp. 20, pp. 1555-1556.
- 1961 Sandage, A. R. The ages of the open cluster NGC 188 and the globular clusters M 3, M 5, and M 13 compared with the Hubble time. A. J., v. 66, p. 53.
- 1962 King, I. The distribution of blue stars in M 13. Ap. J., v. 136, pp. 784-787.
- 1962 Sandage, A. The ages of M 67, NGC 188, M 3, M 5, and M 13 according to Hoyle's 1959 models. *Ap. J.*, v. 135, pp. 349–365.

1789 Wollaston, 1928a Ludendorff, 1935 Walters, 1936 Kuiper, 1947 Fricke, 1947 Parenago, 1947abcd Sawyer, 1948 BAAJ, 1948 Becker, 1948 Fehrenbach, 1948 Gamalej, 1948 King, 1948 Maitre, 1948b Perek, 1948I, II Sawyer, 1949 Joy, 1949 *abcde* Parenago, Kukarkin, Florja, 1949*acdeg* Shapley, 1950*a* (photo) *cdef* Becker, 1950 Kurth, 1950 Stebbins, 1951*I, II* Kurth, 1951*b* Payne-Gaposchkin, 1952 Baade, 1952 Camm, 1952*Iabcd, IIIab* Lohmann, 1953*a* Deutsch, 1953 Dreyer, 1953 Gingerich (plate), 1953 Kholopov, 1953 Lohmann, 1953*adefhi* Rosino, 1953 Shapley and McKibben, 1954 Blamont, 1954 Cimino, 1954 Gingerich, 1954*b* Payne-Gaposchkin, 1954*b* Rosino, 1954*a* Sandage, 1954*I, II* Zagar, 1955*I, II* Arp, 1955 Baum, 1955 von Hoerner, 1955*I, II* Reddish, 1955*IIbcd* Sawyer, 1955*Ib* Struve, 1956*acd* Baum, 1956 van den Bergh, 1956 Kourganoff, 1956 Kreiken, 1956*c* Morgan, 1956 Roberts, 1956*ab* Schmidt, 1957 Ferrari d'Occhieppo, 1957 Roman, 1957 Rosino, 1957 Seljach, 1957 Stohl, 1958 Alter, Ruprecht, Vanýsek, 1958*Bacfejhijk* Arp, 1958 Narhesková, 1958*I, II* Sandage, 1958 Saurer (photo), 1958*Iei, II* Sawyer Hogg, 1958 Vandekerkhove, 1958 Wallerstein, 1959 van Agt and Oosterhoff, 1959*babcd* Arp, 1959 Baum, 1959 Dzigvashvili, 1959 Johnson, 1960*A* Morgan, 1959 Sandage, 1959*Iabefhijklp, III* Sawyer Hogg, 1959 Struve, 1959 Wallerstein, 1960*c* Burbidge, 1960 Chalonge, 1960 Markarian, 1960*abcdefh* Roberts, 1961 van den Bergh, 1961ab Haffner, 1961 Henon, 1961 Kurochkin, 1961 Lohmann, 1961*I, IIb*, *III* Sawyer Hogg, 1961 Slettebak, Bahner and Stock, 1961 Stothers and Schwarzschild, 1962*I, IIabcd* Arp, 1962 van den Bergh and Henry, 1962 Eggen and Sandage, 1962 Fernie, 1962 King, 1962 Pava den Bergh and Henry, 1962 Eggen and Sandage, 1962 Fernie, 1962 King, 1962*I* van den Bergh and Henry, 1962 Eggen and Sandage, 1962 Fernie, 1962 King, 1962*I* van den Bergh and Henry, 1962 Eggen and Sandage, 1965 Perene, 1962 King, 1962*I* van den Bergh and Henry, 1962 Eggen and Sandage, 5272 1956 Baker See also: 5273 1953 Sandage

See also: 5273 1953 Sandage and Wallerstein, 5272 1954 Sandage, 5272 1956 Baker and Baker, 5272 1957 Johnson, 5904 1958 Wallerstein, 6656 1959 Arp and Melbourne, 5139 1959 Belserene, 6356 1959 Sandage and Wallerstein, 104 1960 Feast and Thackeray, 6121 1961 Idlis, 7078 1961 King, 5272 1961 Smak, 6522 1961 Whitford, 6397 1961 Woolley *et al.*, 6356 1962 Wallerstein.

 $\alpha 16^{h} 44^{m} 6, \delta - 01^{\circ} 52'$ $l^{11}15^{\circ}.70, b^{11} + 26^{\circ}.32$ NGC 6218 (Messier 12)

1947 Parenago, 1947*abcd* Sawyer, 1948 Becker, 1948 Fehrenbach, 1948*b* Perek, 1948*I* Sawyer, 1949 Joy, 1949*abde* Parenago, Kukarkin, Florja, 1949*ace* Shapley, 1950*dg* Becker, 1951*b* Payne-Gaposchkin, 1952 *Iabcd* Lohmann, 1953 Dreyer, 1953 Kholopov, 1953*d* Rosino, 1953 Shapley and McKibben, 1954 Bidelman, 1954 Blamont, 1954 Gingerich, 1954*b* Payne-Gaposchkin, 1954 Perek, 1954*J* Zagar, 1955 von Hoerner, 1955*IIbcd* Sawyer, 1956*c* Baum, 1956 Kreiken, 1956*ab* Schmidt, 1958 Alter, Rupreck Vanjesk, 1958*J U* Kinman, 1959 *D*20*y* Ruprecht, Vanýsek, 1958*I, II* Kinman, 1959 Dzigvashvili, 1959 Johnson, 1959*Id*, *IIai* Kinman, 1959 Matsunami *et al.*, 1959*Iip*, *III* Sawyer Hogg, 1960*acdfikl* Kron and Mayall, 1960*acf* Wilkens, 1961b Haffner, 1961 Hénon, 1961 Lohmann, 1961*I* Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

NGC 6229

 $\alpha 16^{h} 45^{m} 6, \ \delta + 47^{\circ} 37'$

 $l^{11}73^{\circ}.64, b^{11} + 40^{\circ}.30$

1960 Mannino, G. Periodi e curve di luce di 12 stelle variabili dell' ammasso globulare NGC 6229. Soc. Astr. Ital. Mem., v. XXXI, nos. 2-3; Univ. Bologna Oss. Pub., v. VII, no. 13.

1961 Mayer, P. Periods of variable stars in globular cluster NGC 6229. Astr. Inst. Czechoslovakia Bull., v. 12, no. 4, pp. 167-168.

1928a Ludendorff, 1947 Parenago, 1947abd Sawyer, 1948 Becker, 1948 Fehrenbach, 1948b Perek, 1948I Sawyer, 1949abde Parenago, Kukarkin, Florja, 1949ce Shapley, 1952Iabd Lohmann, 1953 Dreyer, 1953 Lohmann, 1953d Rosino, 1953 Sawyer 1954 Blamont, 1954I Zagar, 1955 von Hoerner, 1955IIbcd Sawyer, 1956c Baum, 1956 van den Bergh, 1956c Morgan, 1956b Schmidt, 1957 Shapley, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1958*II* Sawyer Hogg, 1959 Dzigvashvili, 1959*Id*, *IIi* Kinman, 1959 Matsunami *et al.*, 1959b Morgan, 1959*Iip* Sawyer Hogg, 1960*acdfik* Kron and Mayall, 1960 Kurth, 1960*acf* Wilkens, 1961*a* Haffner, 1961 Hénon, 1961*I* Sawyer Hogg, 1962 van den Bergh and Henry, 1962 Fernie, 1962*II* Rosino, 1962 Sawyer Hogg.

NGC 6235

$\alpha 16^{h} 50^{m}_{}4, \ \delta - 22^{\circ} 06'_{}$

 $l^{11}358^{\circ}.91, b^{11} + 13^{\circ}.52$

1921I Gregory, 1944 Wallenquist and Lundby, 1947d Sawyer, 1949ade Parenago, Kukarkin, Florja, 1952 Johnson, 1952 Iabd Lohmann, 1953 Dreyer, 1953 Sawyer, 1954/ Zagar, 1955/Ibb Sawyer, 1958 Alter, Ruprecht, Vanýsek, 1959 Matsunami et al., 1959Iip Sawyer Hogg, 1960ad Wilkens, 1962 Sawyer Hogg.

 $\alpha 16^{h} 54^{m}_{\cdot}5, \ \delta - 04^{\circ} 02'$ NGC 6254 (Messier 10) $l^{11}15^{\circ}.13, b^{11} + 23^{\circ}.07$

1955 Arp, H. C. Cepheids of period greater than one day in globular clusters. A. J., v. 60, pp. 1-17.

1957 Arp, H. C. Three color photometry of Cepheids W Virginis, M 5 Nos. 42 and 84, and M 10 Nos. 2 and 3. A. J., v. 62, pp. 129-136.

1947 Parenago, 1947abcd Sawyer, 1948 Becker, 1948b Perek, 1948I Sawyer, 1949 Joy, 1949abde Parenago, Kukarkin, Florja, 1949ace Shapley, 1950 Becker, 1950 Kurth, 1951I, II Kurth, 1952Iabd Lohmann, 1953b Deutsch, 1953 Dreyer, 1953 Kholopov, 1953di Rosino, 1953 Shapley and McKibben, 1954 Bidelman, 1954 Blamont, 1954 Gingerich, 1954b Payne-Gaposchkin, 1954 Perek, 1954a Sandage, 1954I Zagar, 1955I, II Arp, 1955 von Hoerner, 1955II Reddish, 1955IIbcd Sawyer, 1954/ Zagar, 1953/, 17 Arp, 1955 von Hoerner, 1953/17 Reduish, 1955/1762a Sawyer, 1956ac Baum, 1956 Kreiken, 1956ab Schmidt, 1957 Ferrari d'Occhieppo, 1958 Alter, Ruprecht, Vanýsek, 1958abej Arp, 1958 Burbidge and Sandage, 1958/, *II* Kinman, 1958*Ie* Sawyer Hogg, 1958 Wallerstein, 1959 Dzigvashvili, 1959 Johnson, 1959*Id*, *IIafij* Kinman, 1959 Matsunami et al., 1959b Morgan, 1959*Ifip*, *III* Sawyer Hogg, 1959 Struve, 1959 Wallerstein, 1960c Burbidge, 1960abcdefgijkl Kron and Mayall, 1960bdk Roberts, 1960 Sandage and Wallerstein, 1960acf Wilkens, 1961 van den

NGC 6254 (cont'd)

Bergh, 1961*b* Haffner, 1961 Hénon, 1961 Lohmann, 1961*I* Sawyer Hogg, 1961 Slettebak, Bahner and Stock, 1962 van den Bergh and Henry, 1962 Fernie, 1962*II* Rosino, 1962 Sawyer Hogg.

See also: 6205 1954 Baum, 5904 1958 Wallerstein, 6656 1959 Arp and Melbourne.

Palomar 15 $\alpha \ 16^{h} \ 57^{m}_{...6}, \ \delta \ -00^{\circ} \ 28'$ $l^{11} \ 18^{\circ}_{...89}, \ b^{11} \ +24^{\circ}_{...27}$

- 1959 Bowen, I. S. Report of Mount Wilson and Palomar Observatories. *Carnegie Inst. Wash., Year Book* no. 58, p. 60. (Discovery by Zwicky).
- 1962 Kinman, T. D., and Rosino, L. Notes on faint star clusters. A. S. P. Pub., v. 74, pp. 499-506.

1962*I* Rosino.

NGC 6266 (Messier 62) $\alpha \ 16^{h} 58^{m}1, \ \delta - 30^{\circ} 03' \qquad l^{11}353^{\circ}.58, \ b^{11} + 07^{\circ}.30$

- 1952 Kholopov, P. N. The ellipticity of globular clusters. A. J. UdSSR, v. 29, no. 6, pp. 671-681.
- 1959 van Agt, S. L. Th., and Oosterhoff, P. Th. Observations of variable stars in the globular clusters NGC 4590 (M 68) and NGC 6266 (M 62). *Leiden Ann.*, v. XXI, 4th pt., pp. 253–290, with plates.

1935 Walters, 1944 Wallenquist and Lundby, 1947 Parenago, 1947abcd Sawyer, 1948 Becker, 1948b Perek, 1949abde Parenago, Kukarkin, Florja, 1949g Shapley, 1950cd Becker, 1951 Thackeray, 1952 Kholopov, 1952Iabd Lohmann, 1953 Dreyer, 1953 Kholopov, 1953 Lohmann, 1954 Blamont, 1954 Cimino, 1954 Gingerich, 1954I Zagar, 1955 von Hoerner, 1955IIbd Sawyer, 1955IIb Struve, 1956 van den Bergh, 1956b Morgan, 1956ab Schnidt, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1958II Sawyer Hogg, 1959 Dzigvashvili, 1959Iabd, IIbi Kinman, 1959 Matsunami et al., 1959Iip Sawyer Hogg, 1960acdefik Kron and Mayall, 1960acef Wilkens, 1961 Hénon, 1961I, III Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

NGC 6273 (Messier 19) $\alpha \ 16^{\text{h}} \ 59\%5$	5. $\delta - 26^{\circ} 11^{\prime}$	l ¹¹ 356°.88,	$b^{11} + 09^{\circ}.40$
---	--------------------------------------	--------------------------	--------------------------

1944 Wallenquist and Lundby, 1947 Parenago, 1947*abcd* Sawyer, 1948 Becker, 1948b Perek, 1948I Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1950*cd* Becker, 1952*Iabd* Lohmann, 1953 Dreyer, 1953g Rosino, 1954 Blamont, 1954 Gingerich, 1954I Zagar, 1955 von Hoerner, 1955*IIbcd* Sawyer, 1955*IIb* Struve, 1956 Kourganoff, 1956b Morgan, 1956*ab* Schmidt, 1957 Stohl, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1958*II* Sawyer Hogg, 1959 Dzigvashvili, 1959 Johnson, 1959*Id*, *IIi* Kinman, 1959 Matsunami *et al.*, 1959b Morgan, 1959*Icip*, *III* Sawyer Hogg, 1960*acdfikl* Kron and Mayall, 1960*acf* Wilkens, 1961 Hénon, 1961 Lohmann, 1961 Sawyer Hogg, 1962 van den Bergh and Henry, 1962 Fernie, 1962*II* Rosino, 1962 Sawyer Hogg.

NGC 6284

 $\alpha 17^{h} 01^{m}_{...5}, \delta - 24^{\circ} 41'$

 $l^{11}358^{\circ}.37, b^{11} + 09^{\circ}.93$

1944 Wallenquist and Lundby, 1947 Parenago, 1947*abd* Sawyer, 1948 Becker, 1948 Perek, 1948*I* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954 Blamont, 1954*I* Zagar, 1955 von Hoerner, 1955*IIbd* Sawyer, 1955*IIb* Struve, 1956*b* Morgan, 1956*b* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958*I, II* Kinman, 1959 Dufay and Bigay, 1959 Dzigvashvili, 1959*Id, IIi, III* Kinman, 1959 Matsunami *et al.*, 1959*Iip* Sawyer Hogg, 1960*acdfik* Kron and Mayall, 1960 Kurth, 1960*acf* Wilkens, 1961 Hénon, 1962 Fernie, 1962 Sawyer Hogg.

$\alpha 17^{h} 02^{m}_{::}1, \ \delta - 22^{\circ} 38'_{:}$

 $l^{11}00^{\circ}.13, b^{11} + 11^{\circ}.04$

1944 Walienquist and Lundby, 1947*abd* Sawyer, 1948*I* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIbd* Sawyer, 1956*a* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1959 Matsunami *et al.*, 1959*Iip* Sawyer Hogg, 1960*acfik* Kron and Mayall, 1960*acf* Wilkens, 1962 Sawyer Hogg.

NGC 6293 $\alpha 17^{h} 07^{m} 1, \ \delta - 26^{\circ} 30' \qquad l^{11} 357^{\circ} .64, \ b^{11} + 07^{\circ} .84$

1915 Knox Shaw, 1921*I* Gregory, 1928*a* Ludendorff, 1944 Wallenquist and Lundby, 1947 Parenago, 1947*abd* Sawyer, 1948 Becker, 1948*b* Perek, 1948*I* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954 Blamont, 1954*I* Zagar, 1955 von Hoerner, 1955*IIbd* Sawyer, 1955*IIb* Struve, 1956*b* Morgan, 1956 Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1959 Dzigvashvili, 1959 Johnson, 1959*Id*, *IIi*, *III* Kinman, 1959 Matsunami *et al.*, 1959*Iip* Sawyer Hogg, 1960*acdfikl* Kron and Mayall, 1960*acf* Wilkens, 1961 Hénon, 1962 Fernie, 1962 Sawyer Hogg.

NGC 6304 $\alpha 17^{h} 11^{m}4, \ \delta - 29^{\circ} 24'$ $l^{11}355^{\circ}.84, \ b^{11} + 05^{\circ}.37$

1962 Rosino, L. Ricerche astronomiche nell' emisfero australe III. Stelle variabili negli ammassi globulari NGC 5986, 6304, 6558, 6569, 6637 (M 69), 6681 (M 70) e zone attigue. Soc. Astr. Ital. Mem., v. XXXIII, no. 4; Asiago Cont., no. 132.

1921*II* Gregory, 1944 Wallenquist and Lundby, 1947 Parenago, 1947 *abd* Sawyer, 1948 Becker, 1948b Perek, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954 Blamont, 1954*I* Zagar, 1955 von Hoerner, 1955*IIa* Sawyer, 1955*IIb* Struve, 1956b Baum, 1956a Morgan, 1956b Schmidt, 1957 Rosino, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1958*II* Sawyer Hogg, 1959 Dufay and Bigay, 1959 Dzigvashvili, 1959 Johnson, 1959*Id*, *IIi* Kinman, 1959 Matsunami *et al.*, 1956*III* Sawyer Hogg, 1960*acdfikl* Kron and Mayall, 1960*ad* Wilkens, 1959*III* Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

NGC 6316

$\alpha 17^{h} 13^{m}_{...}4, \ \delta - 28^{\circ} 05'_{...}$

 $l^{11}357^{\circ}.17, b^{11} + 05^{\circ}.78$

1944 Wallenquist and Lundby, 1947*abd* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIa* Sawyer, 1955*IIb* Struve, 1956*b* Baum, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1959 Dufay and Bigay, 1959 Johnson, 1959 Matsunami *et al.*, 1959*Ip* Sawyer Hogg, 1960*acfikl* Kron and Mayall, 1960*ad* Wilkens, 1962 Fernie.

See also: HP 1954 Dufay, Berthier, Morignet.

NGC 6325 $\alpha 17^{h} 13$

 $\alpha 17^{h} 15^{m}_{..}0, \ \delta - 23^{\circ} 42'_{..}$

 $l^{11}00^{\circ}.98, b^{11} + 07^{\circ}.99$

1921*II* Gregory, 1944 Wallenquist and Lundby, 1947*abd* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIa* Sawyer, 1958 Alter, Ruprecht, Vanýsek, 1959 Matsunami *et al.*, 1959*Ip* Sawyer, 1960*acfik* Kron and Mayall, 1960*ad* Wilkens.

NGC 6333 (Messier 9) $\alpha 17^{h} 16^{m} 2, \ \delta - 18^{\circ} 28' \qquad l^{11} 05^{\circ} .53, \ b^{11} + 10^{\circ} .72$

- 1948 Sawyer, H. B. Variable stars in the globular cluster Messier 9. A. J., v. 53, p. 203; Summ., Sky and Tel., v. 7, p. 149, 1948; B. A. A. Jour., v. 58, p. 196, 1948; Pop. A. Tids., v. 29, pp. 169–170, 1948.
- 1951 Sawyer, H. B. Periods of variable stars in the globular cluster Messier 9. Dunlap Pub., v. 1, no. 24.

1944 Wallenquist and Lundby, 1947 Parenago, 1947abcd Sawyer, 1948 Becker, 1948 Fehrenbach, 1948b Perek, 1948I Sawyer, 1949abde Parenago, Kukarkin, Florja,

NGC 6333 (cont'd)

1949d Shapley, 1952*Iabd* Lohmann, 1953 Dreyer, 1953 Lohmann, 1954 Blamont, 1954 Gingerich, 1954 Perek, 1954*I* Zagar, 1955 von Hoerner, 1955*IIbd* Sawyer, 1956 van den Bergh, 1956 Kreiken, 1956b Morgan, 1956ab Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1959 van Agt and Oosterhoff, 1959 Dzigvashvili, 1959*Id*, *IIi* Kinman, 1959 Matsunami et al., 1959*Iip* Sawyer Hogg, 1960acdfik Kron and Mayall, 1960acf Wilkens, 1961 Hénon, 1961 Lohmann, 1961*I* Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

NGC 6341 (Messier 92) $\alpha 17^{h} 15^{m}6, \ \delta + 43^{\circ} 12'$ $l^{11}68^{\circ}.35, \ b^{11} + 34^{\circ}.86$

- 1947 von der Pahlen, E. Ueber die Entstehung der sphärischen Sternhaufen. Z. f. Ap., v. 24, pp. 68-120; Astrophys. Obs. Potsdam Mitt., no. 18.
- 1952 Arp, H. C., Baum, W. A., and Sandage, A. R. The H-R diagrams for the globular clusters M 92 and M 3. A. J., v. 57, pp. 4–5.
- 1953 Arp, H. C., Baum, W. A., Sandage, A. R. The color-magnitude diagram of the globular cluster M 92. A. J., v. 58, pp. 4–10, with plate.
- 1953 Sandage, A. R. Interpretation of color-magnitude arrays in globular clusters. Symposium on Astrophysics, University of Michigan.
- 1953 Sandage, A. The color magnitude diagram for the globular cluster M 3. A. J., v. 58, pp. 61–75.
- 1954 Tayler, R. J. The luminosity function for the globular cluster M 92. A. J., v. 59, pp. 413-422.
- 1954 Undersökningar av de klotformiga stjarnoparna M 3 och M 92. Pop A. Tids., v. 35, pp. 76-78.
- 1954 Wilson, O. C., and Coffeen, M. The mass of the globular cluster M 92. Ap. J., v. 119, pp. 197–199.
- 1955 Schwarzschild, M., and Bernstein, S. Note on the mass of M 92. *Ap. J.*, v. 122, pp. 200–202.
- 1955 Walker, M. F. A search for variable stars of small amplitude in M 3 and M 92. A. J., v. 60, pp. 197–202.
- 1961 Kurth, R. Kritik der dynamischen Massenschätzung kugelförmiger Sternhaufen. Z. f. Ap., v. 53, pp. 240–246.
- 1961 Preston, G. W. Low-dispersion spectra of RR Lyrae stars in globular clusters. Ap. J., v. 134, no. 2, pp. 651–652; Lick Cont., no. 119.

1928a Ludendorff, 1946 Vogt, 1947 Parenago, 1947abcd Sawyer, 1948 Becker, 1948 Gamalej, 1948 King, 1948b Perek, 1948I Sawyer, 1949bade Parenago, Kukarkin, Florja, 1949ce Shapley, 1950dfg Becker, 1950 Stebbins, 1952 Baade, 1952 Camm, 1952*labd, IIIa* Lohmann, 1953a Deutsch, 1953 Dreyer, 1953 Kholopov, 1953 Lohmann, 1953dj Rosino, 1954 Becker, 1954 Blamont, 1954 Gingerich, 1954a Payne-Gaposchkin, 1954b Rosino, 1954acd Sandage, 1954 Schwarzschild, 1954I Zagar, 1955*II* Arp, 1955 von Hoerner, 1955 Hoyle and Schwarzschild, 1955I Reddish, 1955*IIbcd* Sawyer, 1956acd Baum, 1956 van den Bergh, 1956 Kourganoff, 1956c Morgan, 1956 Roberts, 1956ab Schmidt, 1957 van den Bergh, 1957*I, II* von Hoerner, 1957 Roman, 1958 Alter, Ruprecht, Vanýsek, 1958abdefgil Arp, 1958ab Burbidge and Burbidge, 1958 Burbidge and Sandage, 1958*I, II* Kinman, 1958 Náprstková, 1958*I, II* Sandage, 1958 Baurn, 1958*Ief, II* Sawyer Hogg, 1959 van Agt and Oosterhoff, 1959ac Arp, 1959 Baum, 1959 Dzigvashvili, 1959 Johnson, 1959*Id, IIafgij* Kinman, 1960 Bowen, 1960abc Burbidge, 1960 Ebert, von Hoerner, Temesváry, 1960 Kron, 1960abcdfgijkl Kron and Mayall, 1960 Kurth, 1960 Markarian, 1960

NGC 6341 (cont'd)

Roberts, 1960 Sandage and Eggen, 1960 Sandage and Wallerstein, 1960acf Wilkens, 1961 van den Bergh, 1961ab Haffner, 1961 Sandage and Wallerstein, 1960ab Wilkens, 1961
1961 van den Bergh, 1961ab Haffner, 1961 Lohmann, 1961 Payne-Gaposchkin, 1961
Poveda, 1961*I*, *III* Sawyer Hogg, 1961 Slettebak, Bahner and Stock, 1961 Woolley, 1961*I* Woolley and Dickens, 1962*I* Arp, 1962 van den Bergh and Henry, 1962 Eggen and Sandage, 1962 Fernie, 1962 King, 1962*II* Rosino, 1962 Sawyer Hogg. *See also*: 5272 1947 Lohmann, 6205 1954 Baum, 6838 1954 Becker, 5272 1954
Sandage, 6205 1954 Savedoff, 6205 1955 Brown, 4147 1955 Sandage and Walker, 5272 1956 Lohmann, 6205 1955 Surodage and Walker, 1972 1056 Lohmann, 6205 1956 Surodage and Walker, 1972 1057 Constrant and Surdage 1050 1057

5272 1956 Johnson and Sandage, 6205 1956 Savedoff, 104 1957 Gascoigne and Burr, 7078 1957 Izsak, 104 1958 Thackeray, 6356 1959 Sandage and Wallerstein, 104 1960 Feast and Thackeray, 6522 1961 Whitford, 104 1961 Wildey, 6712 1962 Smith and Sandage, 6356 1962 Wallerstein.

NGC 0342 $\alpha 17^{-1} 15^{-2}, \ o = 19 52$ $r^{-1} 04 .90, \ o^{-1} + 08$	NGC 0342	$\alpha 17^{\mu} 18^{\mu}2, \ \delta = 19^{\mu} 32^{\mu}$	$1^{11}04^{\circ}.90, b^{11} + 09^{\circ}.73$
--	----------	---	---

1921*II* Gregory, 1944 Wallenquist and Lundby, 1947*abd* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIa* Sawyer, 1958 Alter, Ruprecht, Vanýsek, 1959 Matsunami *et al.*, 1959*Ip* Sawyer Hogg, 1960 *acfik* Kron and Mayall, 1960*ad* Wilkens.

 $\alpha 17^{h} 21^{m} 6, \delta - 48^{\circ} 26'$ $l^{11}341^{\circ}.37, b^{11} - 07^{\circ}.19$ NGC 6352

1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1952Iabd Lohmann, 1953 Dreyer, 1954I Zagar, 1955IIa Sawyer, 1956a Schmidt, 1958 Alter, Ruprecht, Vanýsek, 19581, II Kinman, 1959 Matsunami et al., 19591p Sawyer Hogg, 1960bd Wilkens, 1962 Fernie.

$\alpha 17^{h} 20^{m}_{...9}, \delta - 26^{\circ} 19'_{...19}$ NGC 6355 $l^{11}359^{\circ}.58, b^{11} + 05^{\circ}.42$

1915 Knox Shaw, 1921I Gregory, 1947abd Sawyer, 1953 Dreyer, 1954I Zagar, 1955IIa Sawyer, 1956b Baum, 1958 Alter, Ruprecht, Vanýsek, 1959Ip Sawyer Hogg, 1960acfik Kron and Mayall, 1960ad Wilkens.

 $\alpha 17^{\rm h} 20^{\rm m} 7, \ \delta - 17^{\circ} 46'$ $l^{11}06^{\circ}.73, b^{11} + 10^{\circ}.21$ NGC 6356

- 1959 Sandage, A., and Wallerstein, G. The color-magnitude diagram of the nuclear globular cluster NGC 6356 compared with halo clusters. A. J., v. 64, p. 345.
- 1960 Sandage, A., and Wallerstein, G. Color-magnitude diagram for the disk globular cluster NGC 6356 compared with halo clusters. Ap. J., v. 131, pp. 598-609, with plates.
- 1962 Wallerstein, G. Stellar content of the galaxy's nuclear bulge. A. J., v. 67, no. 6, pp. 329-333; Berkeley Repr. no. 207.

1944 Wallenquist and Lundby, 1947 Parenago, 1947*abd* Sawyer, 1948 Becker, 1948 Fehrenbach, 1948*b* Perek, 1949*abde* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1953 Sawyer, 1954*I* Zagar, 1955 von Hoerner, 1955*IIbd* Sawyer, 1956*acd* Morgan, 1956*ab* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958 Burbidge and Sandage, 1958 Heckmann, 1958*I*, *II* Kinman, 1958*Ifg* Sawyer Hogg, 1959 Dufay and Bigay, 1959 Dzigvashvili, 1959*Id*, *IIIki*, *III* Kinman, 1959*a* Larsson-Leander, 1950 Matemani et al. 1959*b* Morgan, 1959 Preston, 1959*I*, (photo) *et al.* and Bigay, 1959 D2gvashvin, 19591a, 11th, 111 Kniman, 1959a Larsson-Deander,
1959 Matsunami et al., 1959abc Morgan, 1959 Preston, 19591c (photo) gip, 11I
Sawyer Hogg, 1959b Thackeray, 1960 Bowen, 1960I Hodge, 1960acdfikn Kron and
Mayall, 1960 Sandage and Eggen, 1960acf Wilkens, 1961 vau den Bergh, 1961a
Haffner, 1961 Hénon, 1961 Preston, 1961I, IIab Sawyer Hogg, 1962 van den Bergh
and Henry, 1962 Fernie, 1962II Rosino, 1962 Sawyer Hogg.
See also: 104 1961 Wildey, 6712 1962 Smith and Sandage.

Haute Provence 1 $\alpha 17^{h} 24^{m}9, \ \delta - 29^{\circ} 57'$ $l^{11}357^{\circ}.06, \ b^{11} + 02^{\circ}.65$

- 1954 Dufay, J., Berthier, P., and Morignet, B. Un nouvel amas globulaire dans la région du centre de la Voie Lactée. C. R. Acad. Sci. Fr., v. 239, pp. 478-480; Haute-Provence Pub., v. 3, no. 17.
- 1956 Bakos, G. A. A new globular cluster near the galactic centre. R. A. S. C. Jour., v. 50, p. 224.

1957 Ursa Ny Kuglehob. Urania, København, v. 14, p. 8.

1958 Alter, Ruprecht, Vanýsek, 1958 Heckmann, 1959 Dufay and Bigay, 1959*Ip* Sawyer Hogg.

NGC 6362
$$\alpha \ 17^{h} \ 26^{m}6, \ \delta - 67^{\circ} \ 01' \qquad l^{11} \ 325^{\circ}.54, \ b^{11} - 17^{\circ}.56$$

1961 van Agt, S. L. Th. New variable stars in the southern globular cluster NGC 6362. B. A. N., v. 15, no. 508, pp. 329-330.

1961 Van Hoof, A. Elements for fifteen variables in the globular cluster NGC 6362. Lab. d'Astr. et Géod. Univ. Louvain Pub., no. 126, pp. 1-5.

1928a Ludendorff, 1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1951 Thackeray, 1952Iabd Lohmann, 1953 Dreyer, 1954I Zagar, 1955IIbd Sawyer, 1956 van den Bergh, 1956a Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1959Iad, IIa Kinman, 1959 Matsunami et al., 1959Iib Sawyer Hogg, 1960beg Wilkens, 1961I Sawyer Hogg, 1962 Fernie, 1962 Rosino and Sawyer Hogg, 1962 Sawyer Hogg.

NGC 6366 $\alpha 17^{h} 25^{m} 1, \ \delta - 05^{\circ} 02'$ $l^{11} 18^{\circ} .42, \ b^{11} + 16^{\circ} .03$

- 1959 Dufay, J. Sur la région centrale de la galaxie. C. R., Acad Sci. Fr., v. 248, p. 647; Haute-Provence Pub., v. 4, no. 35.
- 1960 Dufay, J. La condensation centrale de la galaxie. Ann. d'Ap., v. 23, pp. 451-464; Haute-Provence Pub., v. 5, no. 5.

1921*I* Gregory, 1947*abd* Sawyer, 1948*I* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIbd* Sawyer, 1956*a* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1959 Matsunami *et al.*, 1959*Iip*, *III* Sawyer Hogg, 1960*acf* Wilkens, 1962 Sawyer Hogg.

NGC 6380 $\alpha 17^{h} 31^{m} 9, \ \delta - 39^{\circ} 02'$ $l^{11} 350^{\circ} .28, \ b^{11} - 03^{\circ} .56$

- 1847 Herschel, J. F. W. Results of astronomical observations at the Cape of Good Hope. 4°. Chap. 1. Of the nebulae of the southern hemisphere. (JH 3688; drawing, Plate VI, fig. 18.)
- 1864 Herschel, J. F. W., 1888 Dreyer, J. L. E. See Section B, *Dunlap Pub.*, v. 1, no. 20.
- 1954 Thackeray, A. D. *Private communication*. Definite classification as globular cluster.
- 1959 Pismis, P. New southern star clusters. *Tonantzintla and Tacubaya Bull.*, no. 18, pp. 37-38.

1962 Pismis, P. Private communication. No. 1 (above) identified as NGC 6380.

1912 Knox Shaw, 1953 Dreyer, 1955*IIa* Sawyer, 1958 Heckmann, 1959*Ip* Sawyer Hogg, 1960bd Wilkens.

$\alpha 17^{\rm h} 32^{\rm m} 6, \ \delta - 44^{\circ} 43'$

 $l^{11}345^{\circ}.54, b^{11} - 06^{\circ}.74$

1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIa* Sawyer, 1956*a* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958*I, II* Kinman, 1959*Iad, IIbi* Kinman, 1959 Matsunami et al., 1959*Ip* Sawyer Hogg, 1960bd Wilkens, 1962 Fernie.

Tonantzintla 2 $\alpha 17^{h} 32^{m}7, \ \delta - 38^{\circ} 32'$ $l^{11}350^{\circ}.79, \ b^{11} - 03^{\circ}.42$

- 1959 Pismis, P. New southern star clusters. Tonantzintla and Tacubaya Bull., no. 18, pp. 37–38.
- 1962 Perek, L. *Private communication*. Correction +20' to declination first published.

NGC 6397 $\alpha 17^{h} 36^{m} 8, \ \delta - 53^{\circ} 39'$ $l^{11} 338^{\circ} .18, \ b^{11} - 11^{\circ} .98$

1952 Swope, H., and Greenbaum, I. A study of the magnitudes and colors of the globular cluster NGC 6397. A. J., v. 57, pp. 83–91.

1960 Eggen, O. J. The two-colour relation for horizontal branch stars in globular clusters. *M. N. A. S. S. A.*, v. 19, no. 9, pp. 115–117.

1961 Woolley, R. v.d. R., Alexander, J. B., Mather, L., and Epps, E. Photographic photometry of the globular cluster NGC 6397. *Roy. Obs. Bull.*, no. 43.

1961 Woolley, R. v.d. R. Globular clusters. Obs., v. 81, no. 924, pp. 161-182.

1928b Ludendorff, 1947abd Sawyer, 1949abde Parenago, Kukarkin, Florja, 1949a Shapley, 1951d Payne-Gaposchkin, 1952 Baade, 1952Iabcd Lohmann, 1953 Dreyer, 1953j Rosino, 1954a Payne-Gaposchkin, 1954a Rosino, 1954I Zagar, 1955IIbcd Sawyer, 1956b Baum, 1956a Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958 Heckmann, 1958I, II Kinman, 1958II Sawyer Hogg, 1959 van Agt and Oosterhoff, 1959Iad, IIabdi Kinman, 1959 Matsunami et al., 1959Ifip Sawyer, 1960bcg Wilkens, 1961a Haffner, 1961I Sawyer Hogg, 1962I Earl, 1962I Sandage, 1962 Sawyer Hogg. See also: 5272 1953 Sandage, 6205 1962 King.

NGC 6401 α 17^h 35^m6, δ – 23° 53′ l^{11} 03°.45, b^{11} + 03°.97 1912 Knox Shaw, 1947*abd* Sawyer, 1948*I* Sawyer, 1953 Dreyer, 1954*I* Zagar, 1955 *IIa* Sawyer, 1958 Alter, Ruprecht, Vanýsek, 1959*Ip* Sawyer Hogg, 1960*acefhikm* Kron and Mayall, 1960*ad* Wilkens,

NGC 6402 (Messier 14) $\alpha 17^{\text{h}} 35^{\text{m}}0, \ \delta - 03^{\circ} 15'$ $l^{11}21^{\circ}.30, \ b^{11} + 14^{\circ}.78$

1947 Parenago, 1947abcd Sawyer, 1948 Becker, 1948 Fehrenbach, 1948b Perek, 1948I Sawyer, 1949 Joy, 1949abde Parenago, Kukarkin, Florja, 1949d Shapley, 1950 Kurth, 1951II Kurth, 1952Iabd Lohmann, 1953 Dreyer, 1953 Lohmann, 1953 Shapley and McKibben, 1954 Bidelman, 1954 Gingerich, 1954 Perek, 1954I Zagar, 1955 von Hoerner, 1955IIbcd Sawyer, 1956 van den Bergh, 1956ab Schmidt, 1957 van den Bergh, 1957 Kholopov, 1958 Alter, Ruprecht, Vanýsek, 1958 Kholopov, 1958I, II Kinman, 1958II Sawyer Hogg, 1959 Dzigvashvili, 1959 Johnson, 1959Id, IIi Kinman, 1959 Matsunami et al., 1959b Morgan, 1959Iip Sawyer Hogg, 1960abcfikl Kron and Mayall, 1960bd Roberts, 1960acf Wilkens, 1961 Hénon, 1961 Lohmann, 1961I, III Sawyer Hogg, 1962 van den Bergh and Henry, 1962 Fernie, 1962II Rosino, 1962 Sawyer Hogg.

Palomar 6 $\alpha 17^{h} 40^{m}6, \ \delta - 26^{\circ} 12'$ $l^{11}02^{\circ}.09, \ b^{11} + 01^{\circ}.78$

1955 Abell, G. O. Globular clusters and planetary nebulae discovered on the National Geographic Society-Palomar Observatory sky survey. A. S. P. Pub., v. 67, pp. 258-261. (Discovery by Abell).

1958 Alter, Ruprecht, Vanýsek, 1958 Heckmann, 1959 Ip Sawyer Hogg.

$\alpha 17^{h} 42^{m}_{...}4, \ \delta + 03^{\circ} 12'_{...}$

 $l^{11}28^{\circ}.07, b^{11} + 16^{\circ}.28$

1958 Grubissich, C. L'ammasso globulare NGC 6426 e i suoi dintorni. Asiago Cont., no. 94.

1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIbd* Sawyer, 1956 van den Bergh, 1958 Alter, Ruprecht, Vanýsek, 1958*II* Sawyer Hogg, 1959 Matsunami et al., 1959*Iip* Sawyer Hogg, 1960acfhik Kron and Mayall, 1960acf Wilkens, 1961*I*, *III* Sawyer Hogg, 1962 Sawyer Hogg.

NGC 6440 $\alpha 17^{h} 45^{m}9, \ \delta - 20^{\circ} 21'$ $l^{11}07^{\circ}.72, \ b^{11} + 03^{\circ}.80$

1915 Stone, 1921*II* Gregory, 1944 Wallenquist and Lundby, 1947 Parenago, 1947*abd* Sawyer, 1948 Becker, 1948*b* Perek, 1949*ade* Parenago, Kukarkin, Florja, 1950 Stebbins, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955 von Hoerner, 1955*IIa* Sawyer, 1956*ac* Morgan, 1956*b* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958 Burbidge and Sandage, 1958*I*, *II* Kinman, 1958*I* Sawyer Hogg, 1959 Dufay and Bigay, 1959 Dzigvashvili, 1959*Id*, *IIi* Kinman, 1959 Matsunami *et al.*, 1959*bc* Morgan, 1959*Igp* Sawyer Hogg, 1960 Kron, 1960*acdefik* Kron and Mayall, 1960 Kurth, 1960*ad* Wilkens, 1962 Fernie, 1962*II* Rosino.

NGC 6441
$$\alpha \ 17^{h} \ 46^{n} \ 8, \ \delta - 37^{\circ} \ 02'$$
 $l^{11} \ 353^{\circ} \ .53, \ b^{11} - 05^{\circ} \ .00$

1944 Wallenquist and Lundby, 1947 Parenago, 1947*abd* Sawyer, 1948 Becker, 1948*b* Perek, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955 von Hoerner, 1955*IIa* Sawyer, 1956*a* Morgan, 1956*b* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1959 Dzigvashvili, 1959*Id*, *IIi* Kinman, 1959 Matsunami *et al.*, 1959*c* Morgan, 1959*Igp* Sawyer Hogg, 1960*d* Kron and Mayall, 1960*bd* Wilkens, 1962 Fernie.

NGC 6453
$$\alpha 17^{h} 48^{m}0, \ \delta - 34^{\circ} 37'$$
 $l^{11}355^{\circ}.74, \ b^{11} - 03^{\circ}.97$

1944 Wallenquist and Lundby, 1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1952Iabd Lohmann, 1953 Dreyer, 1954I Zagar, 1955IIa Sawyer, 1956b Baum, 1958 Alter, Ruprecht, Vanýsek, 1959 Matsunami et al., 1959Ip Sawyer Hogg, 1960acefhikm Kron and Mayall, 1960bd Wilkens.

NGC 6496
$$\alpha 17^{h} 55^{m}5, \delta - 44^{\circ} 15'$$
 $l^{11}348^{\circ}.08, b^{II} - 10^{\circ}.01$

1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIa* Sawyer, 1956a Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1959 Matsunami et al., 1959*Ip* Sawyer Hogg, 1960bd Wilkens.

NGC 6517 $\alpha 17^{\text{h}} 59^{\text{m}}1, \ \delta - 08^{\circ} 57'$ $l^{11}19^{\circ}.23, \ b^{11} + 06^{\circ}.77$

1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1950b Becker, 1952Iabd Lohmann, 1953 Dreyer, 1954I Zagar, 1955IIa Sawyer, 1958 Alter, Ruprecht, Vanýsek, 1959 Dufay and Bigay, 1959 Johnson, 1959 Matsunami et al., 1959Idp, III Sawyer Hogg, 1960acfikl Kron and Mayall, 1960ad Wilkens.

NGC 6522 $\alpha 18^{h} 00^{m}4, \ \delta - 30^{\circ} 02'$ $l^{11}01^{\circ}.03, \ b^{11} - 03^{\circ}.93$

1949 Gaposchkin, S. New variables in NGC 6522. A. J., v. 54, no. 7, p. 185.

- 1951 Baade, W. Galaxies—present day problems. Univ. Mich. Obs. Pub., v. X, pp. 7–17. (Four cluster type variables in 6522).
- 1954 Nassau, J. J., Blanco, V. M., McCuskey, S. W. M stars in the vicinity of NGC 6522. A. J., v. 59, p. 334 (title only).
- 1955 Gaposchkin, S. 285 variable stars in the region of the galactic nucleus. Ast. Circ. (Russ.), v. 10, pp. 337-381, with print.

NGC 6522 (cont'd)

- 1958 Nassau, J. J., and Blanco, V. M. M-type stars and red variables in the galactic center. (Plates.) *Ap. J.*, v. 128, pp. 46–56; Summ., *A. J.*, v. 63, p. 383.
- 1959 Dufay, J. Sur la région centrale de la galaxie. C. R., Acad. Sci. Fr., v. 248, p. 647; Haute-Provence Pub., v. 4, no. 35.
- 1960 Dufay, J. La condensation centrale de la galaxie. Ann. d'Ap., v. 23, pp. 451-464; Haute-Provence Pub., v. V, no. 5.
- 1960 Pavlovskaya, E. D. The periods of short-period Cepheids in the direction to the galactic nucleus. *Var. Stars* (Russ.), v. 13, no. 1, pp. 8-25.
- 1961 Pavlovskaya, E. D. RR Lyrae variables in the direction of the galactic centre. *Obs.*, v. 81, no. 922, p. 107.
- 1961 Weaver, H. The scale of the galaxy: a symposium. I. Introduction. A. S. P. Pub., v. 73, pp. 88-94.
- 1961 Whitford, A. E. The distance to the galactic center from the photometry of objects in the nuclear region. A. S. P. Pub., v. 73, pp. 94-98.

1921*I* Gregory, 1944 Wallenquist and Lundby, 1947*abd* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabcd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIbcd* Sawyer, 1956*b* Baum, 1956*bc* Morgan, 1958 Alter, Ruprecht, Vanýsek, 1958 Burbidge and Sandage, 1958*I*, *II* Kinman, 1959 van Agt and Oosterhoff, 1959 Dufay and Bigay, 1959 Johnson, 1959 Kron and Mayall, 1959*a* Larsson-Leander, 1959 Matsunami *et al.*, 1959*b* Morgan, 1959 Preston, 1959*Iip* Sawyer Hogg, 1960*acefiklmn* Kron and Mayall, 1960 Morgan, 1960*bcg* Wilkens, 1961*a* Haffner, 1961 *I*, *III* Sawyer Hogg, 1962 Fernie, 1962*II* Rosino, 1962 Sawyer Hogg.

See also: 6656 1959 Arp.

NGC 6528

$\alpha 18^{h} 01^{m}_{...}6, \delta - 30^{\circ} 04'$

 $l^{11}01^{\circ}.13, b^{11} - 04^{\circ}.17$

1955 Gaposchkin, S. 285 variable stars in the region of the galactic nucleus. Ast. Circ. (Russ.), v. 10, pp. 337–381, with print.

1921*I* Gregory, 1944 Wallenquist and Lundby, 1947*abd* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*I*, *IIbd* Sawyer, 1958 Alter, Ruprecht, Vanýsek, 1959 Dufay and Bigay, 1959 Matsunami *et al.*, 1959*abc* Morgan, 1959*Iip* Sawyer Hogg, 1960*acfik* Kron and Mayall, 1960 Morgan, 1960*bcg* Wilkens, 1961*b* Haffner, 1961*I*, *IIb*, *III* Sawyer Hogg, 1962*II* Rosino, 1962 Sawyer Hogg.

NGC 6535

 $\alpha \ 18^{h} \ 01^{m}3, \ \delta \ - \ 00^{\circ} \ 18'$

 $l^{11}27^{\circ}.18, b^{11} + 10^{\circ}.43$

1921*I* Gregory, 1947*d* Sawyer, 1949*abde* Parenago, Kukarkin, Florja, 1952 Johnson, 1952*Iabd* Lohmann, 1953 Dreyer, 1953 Sawyer, 1954*I* Zagar, 1955*IIbd* Sawyer, 1958 Alter, Ruprecht, Vanýsek, 1959 Dufay and Bigay, 1959 Johnson, 1959 Matsunami *et al.*, 1959*Iip* Sawyer Hogg, 1960*ad* Wilkens, 1962 Sawyer Hogg.

NGC 6539 $\alpha 18^{h} 02^{m}1, \ \delta - 07^{\circ} 35'$ $l^{11}20^{\circ}.80, \ b^{11} + 06^{\circ}.78$

1921*I* Gregory, 1947*abd* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabcd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIbd* Sawyer, 1956*a* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1959 Matsunami *et al.*, 1959*Iip* Sawyer Hogg, 1960*acfik* Kron and Mayall, 1960*ad* Wilkens, 1962 Sawyer Hogg.

NGC 6541 $\alpha 18^{h} 04^{m}4, \delta - 43^{\circ} 44'$ $l^{11}349^{\circ}.28, b^{11} - 11^{\circ}.19$

1928ab Ludendorff, 1947abd Sawyer, 1949abde Parenago, Kukarkin, Florja, 1952Iabcd Lohmann, 1953 Dreyer, 1953f Rosino, 1954I Zagar, 1955IIbcd Sawyer,

NGC 6541 (cont'd)

1956a Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1958*II* Sawyer Hogg, 1959*Iad*, *IIbei* Kinman, 1959 Matsunami *et al.*, 1959*Iip* Sawyer Hogg, 1960*bcg* Wilkens, 1962 Fernie, 1962 Sawyer Hogg.

NGC 6544
$$\alpha 18^{h} 04^{m}3, \ \delta - 25^{\circ} 01'$$
 $l^{11}05^{\circ}.83, \ b^{11} - 02^{\circ}.22$

1953 Svolopoulos, S. N. A photographic survey of galactic clusters. NGC 6531, 6646, 6469, 6544, 7127, 7128. *M. N.*, v. 113, pp. 758-768.

1921*I* Gregory, 1947 Parenago, 1947*abd* Sawyer, 1948*a* Perek, 1953 Dreyer, 1954 Perek, 1954*I* Zagar, 1955*IIa* Sawyer (omitted in error), 1956*b* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958 Maffei (photo), 1958*II* Sawyer Hogg, 1959*Id*, *IIi* Kinman, 1959*Ip* Sawyer Hogg, 1960*acfhik* Kron and Mayall, 1960*bd* Wilkens.

NGC 6553
$$\alpha 18^{h} 06^{m}3, \ \delta - 25^{\circ} 56' \qquad l^{11}05^{\circ}.25, \ b^{11} - 03^{\circ}.06$$

1949 Mayall, M. W. Six novae, one with a late-type spectrum. A. J., v. 54, p. 191 (misprint in cluster number).

1956 Thackeray, A. D. Private communication. Shapley's variables 1 and 2 doubtful.

1921*I* Gregory, 1928*a* Ludendorff, 1944 Wallenquist and Lundby, 1947*abd* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1950 Stebbins, 1951 Thackeray, 1952*Iabcd*, *IIIc* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIbcd* Sawyer, 1956*a* Schmidt, 1957 Rosino, 1958 Alter, Ruprecht, Vanýsek, 1959 van Agt and Oosterhoff, 1959 Dufay and Bigay, 1959 Johnson, 1959 Matsunami *et al.*, 1959*abcd* Morgan, 1959*Idip*, *IId* Sawyer Hogg, 1959*b* Thackeray, 1960 Kron, 1960*acefikl* Kron and Mayall, 1960 Morgan, 1960*bcg* Wilkens, 1961*b* Haffner, 1961*I*, *IIb* Sawyer Hogg, 1962*II* Rosino, 1962 Sawyer Hogg.

NGC 6558
$$\alpha \ 18^{h} \ 07^{m} 0, \ \delta - 31^{\circ} \ 47'$$
 $l^{11} 00^{\circ} .19, \ b^{11} - 06^{\circ} .02$

- 1847 Herschel, J. F. W. Results of astronomical observations at the Cape of Good Hope, 4°. (Discovery).
- 1864 Herschel, J. F. W., 1888 Dreyer, J. L. E. See Section B, *Dunlap Pub.*, v. 1, no. 20.
- 1954 Rosino, L. XI. Su alcuni ammassi stellari di dubbia classificazione. Asiago Cont., no. 52, La Ricerca Scientifica, Aug. 1954 (photo).
- 1954 Thackeray, A. D. *Private communication*. Radcliffe photos confirm globular cluster classification by Gregory in *Helwan Bull.*, nos. 21, 22, 1921.
- 1962 Rosino, L. Ricerche astronomiche nell' emisfero australe. III. Stelle variabili negli ammassi globulari NGC 5986, 6304, 6558, 6569, 6637 (M 69), 6681 (M 70) e zone attigue. Soc. Astr. Ital. Mem., v. 33, no. 4; Asiago Cont., no. 132, pp. 1–12, with plates.

1921*I, II* Gregory, 1953 Dreyer, 1955*IIa* Sawyer, 1957 Rosino, 1958 Alter, Ruprecht, Vanýsek, 1958 Maffei (photo), 1958*II* Sawyer Hogg, 1959*Iip* Sawyer Hogg, 1960*bcg* Wilkens, 1961*III* Sawyer Hogg, 1962 Sawyer Hogg.

IC 1276 $\alpha 18^{h} 08^{m}0, \ \delta = 07^{\circ} 14'$ $l^{11}21^{\circ}.82, \ b^{11} = 05^{\circ}.67$

- 1889 Swift, L. Catalogue No. 8 of nebulae discovered at the Warner Observatory. A. N., v. 122, no. 2918, pp. 240-246. (Discovery, no. 95).
- 1895 Dreyer, J. L. E. Index catalogue of nebulae found in the years 1888-1894. Roy. Astr. Soc. Mem., v. 51.

IC 1276 (cont'd)

- 1948 Baade, W. *Private correspondence*. Considered globular by Baade and N. U. Mayall.
- 1955 Abell, G. O. Globular clusters and planetary nebulae discovered on the National Geographic Society-Palomar Observatory sky survey. A. S. P. Pub., v. 67, pp. 258-261. (No. 7 in Abell's catalogue).
- 1962 Kinman, T. D., and Rosino, L. Notes on faint star clusters. A. S. P. Pub., v. 74, pp. 499–506, with print.

1953 Dreyer, 1955*IIa* Sawyer, 1958*Ia* Sawyer Hogg, 1959*Ip*, *IIb* Sawyer Hogg (photo), 1960*ad* Wilkens, 1962 Rosino, 1962*I* Rosino and Sawyer Hogg, 1962 Sawyer Hogg.

NGC 6569 $\alpha 18^{h} 10^{m}4, \ \delta - 31^{\circ} 50'$ $l^{11}00^{\circ}.49, \ b^{11} - 06^{\circ}.68$

1962 Rosino, L. Ricerche astronomiche nell' emisfero australe. III. Stelle variabili negli ammassi globulari NGC 5986, 6304, 6558, 6569, 6637 (M 69), 6681 (M 70) e zone attigue. Soc. Astr. Ital. Mem., v. 33, no. 4; Asiago Cont., no. 132, pp. 1-12, with plates.

1921*I*, *II* Gregory, 1944 Wallenquist and Lundby, 1947*abd* Sawyer, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954*I* Zagar, 1955*IIa* Sawyer, 1956*a* Schmidt, 1957 Rosino, 1958 Alter, Ruprecht, Vanýsek, 1958*II* Sawyer Hogg, 1959 Johnson, 1959 Matsunami *et al.*, 1959*Ip* Sawyer Hogg, 1960*acfikl* Kron and Mayall, 1960*bd* Wilkens, 1961*III* Sawyer Hogg.

NGC 6584

$\alpha 18^{h} 14^{m}_{...}6, \ \delta - 52^{\circ} 14'_{...}$

 $l^{11}342^{\circ}.14, b^{11} - 16^{\circ}.41$

1928b Ludendorff, 1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1952Iabd Lohmann, 1953 Dreyer, 1954I Zagar, 1955I, IIbd Sawyer, 1956a Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1959Icd, IIci Kinman, 1959 Matsunami et al., 1959Iip Sawyer Hogg, 1960bcg Wilkens, 1961I Sawyer Hogg, 1962 Sawyer Hogg.

NGC 6624

$\alpha 18^{h} 20^{m} 5, \delta - 30^{\circ} 23'$

 $l^{11}02^{\circ}.80, b^{11} - 07^{\circ}.92$

1944 Wallenquist and Lundby, 1947 Parenago, 1947abd Sawyer, 1948 Becker, 1948b Perek, 1949ade Parenago, Kukarkin, Florja, 1952Iabd Lohmann, 1953 Dreyer, 1954I Zagar, 1955 von Hoerner, 1955IIa Sawyer, 1956a Morgan, 1956b Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1959 Dufay and Bigay, 1959 Dzigvashvili, 1959 Johnson, 1959Id, IIi Kinman, 1959 Matsunami et al., 1959c Morgan, 1959Igp Sawyer Hogg, 1960acdfikl Kron and Mayall, 1960bd Wilkens, 1962 Fernie.

NGC 6626 (Messier 28) $\alpha 18^{h} 21^{m}_{...5}, \ \delta - 24^{\circ} 54'$ $l^{11}07^{\circ}_{..80}, \ b^{11} - 05^{\circ}_{..59}$

1949 Sawyer, H. B. The variable stars in the globular cluster Messier 28. A. J., v. 54, p. 193.

1944 Wallenquist and Lundby, 1947 Parenago, 1947*abcd* Sawyer, 1948 Becker, 1948b Perek, 1949 Joy, 1949*abde* Parenago, Kukarkin, Florja, 1949*a* Shapley, 1950*d* Becker, 1952*Iabd* Lohmann, 1953 Dreyer, 1953 Lohmann, 1954 Gingerich, 1954*I* Zagar, 1955 von Hoerner, 1955*IIbd* Sawyer, 1956b Morgan, 1956*ab* Schmidt, 1957 van den Bergh, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1959 Dzigvashvili, 1959 Johnson, 1959*Id*, *IIi* Kinman, 1959 Matsunami *et al.*, 1959*Iip* Sawyer Hogg, 1960*acdfikl* Kron and Mayall, 1960*bcg* Wilkens, 1961 Hénon, 1961*I* Sawyer Hogg, 1962 van den Bergh and Henry, 1962 Fernie, 1962 Sawyer Hogg. NGC 6637 (Messier 69) $\alpha 18^{h} 28^{m}1, \ \delta - 32^{\circ} 23'$ $l^{11}01^{\circ}.72, \ b^{11} - 10^{\circ}.26$

1962 Rosino, L. Ricerche astronomiche nell' emisfero australe. 111. Stelle variabili negli ammassi globulari NGC 5986, 6304, 6558, 6569, 6637 (M 69), 6681 (M 70) e zone attigue. Soc. Astr. Ital. Mem., v. 33, no. 4; Asiago Cont., no. 132, pp. 1-12, with plates.

1944 Wallenquist and Lundby, 1947 Parenago, 1947*abcd* Sawyer, 1948 Becker, 1948b Perek, 1949*ade* Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1954 Gingerich, 1954*I* Zagar, 1955 von Hoerner, 1955*IIa* Sawyer, 1956*ac* Morgan, 1956*ab* Schmidt, 1957 Rosino, 1958 Alter, Ruprecht, Vanýsek, 1958 Burbidge and Sandage, 1958*I*, *II* Kinman, 1958 Maffei (photo), 1958*If* Sawyer Hogg, 1959 Dzigvashvili, 1959*Id*, *IIi* Kinman, 1959 Matsunami *et al.*, 1959*bc* Morgan, 1959*Igp* Sawyer Hogg, 1960 Gingerich, 1960*acdfik* Kron and Mayall, 1960*bd* Wilkens, 1961a Haffner, 1961*III* Sawyer Hogg, 1962 Fernie, 1962*II* Rosino.

NGC 6638 $\alpha 18^{h} 27^{m}9, \ \delta - 25^{\circ} 32'$ $l^{11}07^{\circ}.90, \ b^{11} - 07^{\circ}.16$

1944 Wallenquist and Lundby, 1947 Parenago, 1947abd Sawyer, 1948 Becker 1948b Perek, 1949abde Parenago, Kukarkin, Florja, 1952Iabd Lohmann, 1953 Dreyer, 1953c Rosino, 1954I Zagar, 1955 von Hoerner, 1955IIa Sawyer, 1956a Morgan, 1956b Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1959 Dufay and Bigay, 1959 Dzigvashvili, 1959 Johnson, 1959Id, IIi Kinman, 1959 Matsunami et al., 1959c Morgan, 1959Igp Sawyer Hogg, 1960acdfhikl Kron and Mayall, 1960 Kurth, 1960bd Wilkens, 1961 Hénon, 1962 Fernie.

NGC 6642 $\alpha 18^{h} 28^{m} 4, \ \delta - 23^{\circ} 30'$ $l^{11} 09^{\circ} .78, \ b^{11} - 06^{\circ} .34$

1789 Herschel, W. Catalogue of a second thousand of new nebulae and clusters of stars. *Roy. Soc. Phil. Trans.*, v. 79, pp. 212–255. (Discovery).

1833 Herschel, J. F. W., 1847 Herschel, J. F. W., 1864 Herschel, J. F. W. See Section B, *Dunlap Pub.*, v. 1, no. 20.

1948 Baade, W. Private communication. Identified as globular.

1953 Dreyer, 1955*Ha* Sawyer, 1958 Alter, Ruprecht, Vanýsek, 1959b Morgan, 1959*Ip* Sawyer Hogg, 1960bd Wilkens.

NGC 6652 $\alpha 18^{h} 32^{m} 5, \ \delta - 33^{\circ} 02'$ $l^{11} 01^{\circ} .53, \ b^{11} - 11^{\circ} .38$

1944 Wallenquist and Lundby, 1947 Parenago, 1947abd Sawyer, 1948 Becker, 1948b Perek, 1949ade Parenago, Kukarkin, Florja, 1952Iabd Lohmann, 1953 Dreyer, 1954I Zagar, 1955 von Hoerner, 1955IIa Sawyer, 1956a Morgan, 1956b Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1959 Dzigvashvili, 1959Id, IIi Kinman, 1959 Matsunami et al., 1959c Morgan, 1959Igp Sawyer Hogg, 1960acdefik Kron and Mayall, 1960 Kurth, 1960bd Wilkens, 1962 Fernie.

NGC 6656 (Messier 22) $\alpha 18^{h} 33^{m} 3, \ \delta - 23^{\circ} 58' \qquad l^{11} 09^{\circ} .87, \ b^{11} - 07^{\circ} .55$

1959 Arp, H. C. Stars in the direction of the galactic center. A. J., v. 64, pp. 33-34.
1959 Arp, H. C., and Melbourne, W. G. Color-magnitude diagram for the globular cluster M 22. A. J., v. 64, pp. 28-32, with plate.

1928a Ludendorff, 1936 Kuiper, 1947 Parenago, 1947abcd Sawyer, 1948 BAAJ, 1948 Becker, 1948 Joy, 1948b Perek, 1948I Sawyer, 1949 Joy, 1949abde Parenago, Kukarkin, Florja, 1949g Shapley, 1950cde Becker, 1950 Kurth, 1951I, II Kurth, 1951b Payne-Gaposchkin, 1952Iabd Lohmann, 1953 Dreyer, 1953 Kholopov, 1953 Lohmann, 1953gh Rosino, 1953 Shapley and McKibben, 1954 Bidelman, 1954 Blamont, 1954 Gingerich, 1954Iab Payne-Gaposchkin, 1954I Zagar, 1955 von

NGC 6656 (cont'd)

Hoerner, 1955*IIbcd* Sawyer, 1955*IIa* Struve, 1956*b* Baum, 1956 van den Bergh, 1956 Kourganoff, 1956 Kreiken, 1956*ab* Schmidt, 1957 van den Bergh, 1957 Stohl, 1958 Alter, Ruprecht, Vanýsek, 1958*abe* Arp, 1958*I*, *II* Kinman, 1958 Maffei (photo), 1958*I* Sandage, 1958*II* Sawyer Hogg, 1959 van Agt and Oosterhoff, 1959 Dzigvashvili, 1959 Johnson, 1959*Iabd*, *IIai* Kinman, 1959 Matsunami *et al.*, 1959*b* Morgan, 1959 Preston, 1959*Iakp*, *III* Sawyer Hogg, 1960 Gingerich, 1960*acfgijkl* Kron and Mayall, 1960 Kurth, 1960*k* Roberts, 1960 Sandage and Wallerstein, 1960*bcg* Wilkens, 1961 van den Bergh, 1961 Hénon, 1961*a* Haffner, 1961 Lohmann, 1961 Payne-Gaposchkin, 1961*I* Sawyer Hogg, 1961*I* Woolley and Dickens, 1962 van den Bergh and Henry, 1962 Fernie, 1962*II* Rosino, 1962 Sawyer Hogg. Sze alex, 5053 1040 Rozino.

See also: 5053 1949 Rosino.

Palomar 8	$\alpha 18^{h} 38^{m} 5, \ \delta - 19^{\circ} 52'$	$l^{11}14^{\circ}.11, b^{11} - 06^{\circ}.79$
-----------	---	---

1955 Abell, G. O. Globular clusters and planetary nebulae discovered on the National Geographic Society-Palomar Observatory sky survey. A.S. P. Pub., v. 67, pp. 258–261. (Discovery by Abell).

1958 Alter, Ruprecht, Vanýsek, 1958 Heckmann, 1959 Ip Sawyer Hogg.

- **NGC 6681** (Messier 70) $\alpha 18^{h} 40^{m}, \delta 32^{\circ} 21' \qquad l^{11}02^{\circ}.85, b^{11} 12^{\circ}.52$
- 1962 Rosino, L. Ricerche astronomiche nell' emisfero australe. III. Stelle variabili negli ammassi globulari NGC 5986, 6304, 6558, 6569, 6637 (M 69), 6681 (M 70) e zone attigue. *Soc. Astr. Ital. Mem.*, v. 33, no. 4; *Asiago Cont.*, no. 132, pp. 1–12, with plates.

1947 Parenago, 1947abcd Sawyer, 1948 Becker, 1948b Perek, 1949ade Parenago, Kukarkin, Florja, 1952*Iabd, II* Lohmann, 1953 Dreyer, 1954 Gingerich, 1954*I* Zagar, 1955 von Hoerner, 1955*IIa* Sawyer, 1956b Chmidt, 1958*I, II* Kinman, 1958 Alter, Ruprecht, Vanýsek, 1959 Dzigvashvili, 1959*Id, IIi* Kinman, 1959 Matsunami et al., 1959*I p* Sawyer Hogg, 1960acdefik Kron and Mayall, 1960 Kurth, 1960bd Wilkens, 1961*III* Sawyer Hogg, 1962 Fernie.

NGC 6712 $\alpha \ 18^{h} \ 50^{m}3, \ \delta - 08^{\circ} \ 47'$ $l^{11}25^{\circ}.34, \ b^{11} - 04^{\circ}.32$

- 1924 Cannon, A. J. Fifty-nine new variable stars. Harv. Circ., no. 265.
- 1928 Harwood, M. A survey of the variable stars in the Scutum Cloud; preliminary results. *Harv. Bull.*, no. 880, pp. 10–16.
- 1962 Harwood, M. The variable stars in the Scutum Cloud. Leiden Ann., v. 21, pt. 8, pp. 387-464.
- 1962 Smith, L., and Sandage, A. The color-magnitude diagram of the strong-line globular cluster NGC 6712. A. J., v. 67, p. 121.

1928a Ludendorff, 1947 Parenago, 1947abd Sawyer, 1948 Becker, 1948b Perek, 1948I Sawyer, 1949abde Parenago, Kukarkin, Florja, 1952Iabd Lohmann, 1953 Dreyer, 1953 Sawyer, 1954 Blamont, 1954I Zagar, 1955 von Hoerner, 1955IIbcd Sawyer, 1956a Morgan, 1956b Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1958 Maffei (photo), 1958II Sawyer Hogg, 1959 Dufay and Bigay, 1959 Dzigvashvili, 1959Id, IIi, III Kinman, 1959a Larsson-Leander, 1959 Matsunami et al., 1959bc Morgan, 1959 Preston, 1959Igip Sawyer Hogg, 1960acdfik Kron and Mayall, 1960bcg Wilkens, 1961 Lohmann, 1961I, III Sawyer Hogg, 1962 Fernie, 1962II Rosino, 1962 Sawyer Hogg.

l1105°.63, b11 - 14°.11 NGC 6715 (Messier 54) $\alpha 18^{h} 52^{m} 0, \ \delta - 30^{\circ} 32'$

- 1952 Rosino, L. Ricerche sugli ammassi globulari VII. Ventotto nuove variabili nell'ammasso globulare M 54 = NGC 6715. Univ. Bologna Oss. Pub., v. V. no. 18.
- 1959 Rosino, L., and Nobili, F. Ricerche astronomiche nell' emisfero australe 1. Scoperta e studio preliminare di ettantadue stelle variabili nell'ammasso globulare Messier 54 = NGC 6715. Asiago Cont., no. 97. with plates.

1947 Parenago, 1947abcd Sawyer, 1948 Becker, 1948b Perek, 1949ade Parenago, Kukarkin, Florja, 1952*Iabd* Lohmann, 1953 Dreyer, 1953*f* Rosino, 1954 Gingerich, 1954*I* Zagar, 1955 von Hoerner, 1955*IIbcd* Sawyer, 1956ab Schmidt, 1957 Rosino, 1958 Alter, Ruprecht, Vanýsek, 1958*I, II* Kinman, 1958 Maffei (photo), 1958*II* Sawyer Hogg, 1959 Dufay and Bigay, 1959 Dzigvashvili, 1959*Iabd, IIbi* Kinman, 1959 Matsunami et al., 1959b Morgan, 1959*Iip, IIa* Sawyer Hogg, 1960acfik Kron and Mayall, 1960bcg Wilkens, 1961 Hénon, 1961*I, III* Sawyer Hogg, 1962 Fernie, 1962*II* Rosino, 1962 Sawyer Hogg. 1947 Parenago, 1947abcd Sawyer, 1948 Becker, 1948b Perek, 1949ade Parenago,

 $\alpha 18^{h} 52^{m}_{..}1, \ \delta = 22^{\circ} 47'_{..}$ l¹¹12°.86, b¹¹ - 10°.91 NGC 6717

- 1802 Herschel, W. Catalogue of 500 new nebulae and clusters, with remarks on the construction of the heavens. Roy. Soc. Phil. Trans., v. 92, pp. 477-528. (Discovery by Herschel).
- 1833 Herschel, J. F. W., 1847 Herschel, J. F. W., 1864 Herschel, J. F. W., 1888 Dreyer, J. L. E. See Section B, Dunlap Pub., v. 1, no. 20.
- 1948 Baade, W. Private correspondence. Considered globular cluster by Baade and N. U. Mayall.
- 1955 Abell, G. O. Globular clusters and planetary nebulae discovered on the National Geographic Society-Palomar Observatory sky survey. A.S. P. Pub., v. 74, pp. 499-506. (No. 9 in catalogue).

1953 Drever, 1955IIa Sawyer, 1958 Alter, Ruprecht, Vanýsek, 1958II Sawyer Hogg, 1959Ip Sawyer Hogg, 1960bd Wilkens, 1961III Sawyer Hogg.

NGC 6723
$$\alpha 18^{h} 56^{m}2, \ \delta - 36^{\circ} 42'$$
 $l^{11}00^{\circ}.07, \ b^{11} - 17^{\circ}.30$

1912 Knox Shaw, 1928a Ludendorff, 1938b Payne-Gaposchkin and Gaposchkin, 1946 Miczaika, 1947 Parenago, 1947abd Sawyer, 1948 Becker, 1948b Perek, 1949abde Parenago, Kukarkin, Florja, 1952Iabd Lohmann, 1953 Dreyer, 1953 Lohmann, 1954I Zagar, 1955 von Hoerner, 1955IIbd Sawyer, 1956 van den Bergh, 1956ab Schmidt, 1957 van den Bergh, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1958I Sandage, 1959 van Agt and Oosterhoff, 1959 Dzigvashvili, 1959Id, IIi Kinman, 1959 Matsunami et al., 1959Iip Sawyer Hogg, 1960acdefik Kron and Mayall, 1960bcg Wilkens, 1961 Hénon, 1961 Lohmann, 1961 Payne-Gaposchkin, 1961I Sawyer Hogg, 1962 Fernie, 1962 Sawyer Hogg.

NGC 6752

 $\alpha 19^{h} 06^{m} 4, \delta - 60^{\circ} 04'$

l¹¹336°.49, b¹¹ - 25°.62

1947abd Sawyer, 1949abde Parenago, Kukarkin, Florja, 1949ace Shapley, 1952Iabd Lohmann, 1953 Dreyer, 1953d Rosino, 1954I Zagar, 1955 IIbd Sawyer, 1956c Baum, 1956a Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *III* Kinman, 1958*II* Sawyer Hogg, 1959*Iad*, *IIabi* Kinman, 1959 Matsunami et al., 1959*Iip* Sawyer Hogg, 1959a Thackeray, 1960bcg Wilkens, 1962 Aller, 1962 Fernie, 1962 Sawyer Hogg. See also: 5139 1962 Fehrenbach and Duflot.

 $\alpha 19^{\rm h} 08^{\rm m}_{\rm c}6, \ \delta + 00^{\circ} 57'$

 $l^{11}36^{\circ}.10, b^{11} - 03^{\circ}.91$

1947abd Sawyer, 1949ade Parenago, Kukarkin, Florja, 1950 Stebbins, 1952Iabcd Lohmann, 1953 Dreyer, 1953 Sawyer, 1954 Blamont, 1954I Zagar, 1955IIbd Sawyer, 1956a Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1959 Diday and Bigay, 1959 Matsunami et al., 1959bc Morgan, 1959Iip Sawyer Hogg, 1960 Kron, 1960acfik Kron and Mayall, 1960bd Wilkens, 1962II Rosino, 1962 Sawyer Hogg.

NGC 6779 (Messier 56) α 19^h 14^m6, δ + 30° 05′ $l^{11}62^{\circ}.65, b^{11} + 08^{\circ}.34$

- 1949 Sawyer, H. B. Two RV Tauri-type variables in globular clusters. R. A. S. C. Jour., v. 43, pp. 38-44; Dunlap Comm., no. 18.
- 1950 Rosino, L. Ricerche sugli ammassi globulari III. Su alcune interessanti stelle variabili appartenenti o vicine all'ammasso globulare M 56 della Lira. Univ. Bologna Oss. Pub., v. V, no. 12; Soc. Astr. Ital. Mem., v. XXI, no. 1.
- 1951 Rosino, L. Diagramma colore-grandezza e distanza dell'ammasso globulare M 56. Asiago Cont., no. 21, with plate.
- 1952 Balazs, J. Notes on BT Lyrae and on two new variables near M 56. Sternw. Ungar. Akad. Wiss. Budapest Mitt., no. 30.
- 1953 Sawyer, H. B. Thirty-eight new variable stars in eleven globular clusters. R. A. S. C. Jour., v. 47, pp. 229-236; Dunlap Comm., no. 34.
- 1961 Rosino, L. Osservazioni di due variabili peculiari e d'una variabile tipo RR
 Lyrae en ammassi stellare. Accad. Patavina SS LL AA Mem., v. 74, 1960-61;
 Asiago Cont. no. 117.

1928a Ludendorff, 1943 Payne-Gaposchkin, Brenton, Gaposchkin, 1947 Fricke, 1947 Parenago, 1947*abcd* Sawyer, 1948 Becker, 1948b Perek, 1948*I* Sawyer, 1949 Joy, 1949*abde* Parenago, Kukarkin, Florja, 1950 Kurth, 1951*II* Kurth, 1952*Iabcd* Lohmann, 1953 Dreyer, 1953 Kholopov, 1953 *ei* Rosino, 1953 Sawyer, 1953 Shapley and McKibben, 1954 Bidelman, 1954 Blamont, 1954 Gingerich, 1954 Perek, 1954*I* Zagar, 1955 von Hoerner, 1955*IIbcd* Sawyer, 1956*b* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1958 Maffei (photo), 1958*II* Sawyer Hogg, 1959 van Agt and Oosterhoff, 1959 Dufay and Bigay, 1959 Dzigvashvili, 1959*Id*, *IIai* Kinman, 1959 Matsunami *et al.*, 1959*Ii p* Sawyer Hogg, 1960*acfik* Kron and Mayall, 1960 Kurth, 1960*acf* Wilkens, 1961b Haffner, 1961 Hénon, 1961*I*, *IIa* Sawyer Hogg, 1962 van den Bergh and Henry, 1962 Fernie, 1962 Sawyer Hogg.

See also: 7078 1957 Izsak.

Palomar 10 $\alpha 19^{\text{b}} 16^{\text{m}}0, \ \delta + 18^{\circ} 28'$ $l^{11}52^{\circ}.44, \ b^{11} + 02^{\circ}.68$

1955 Abell, G. O. Globular clusters and planetary nebulae discovered on the National Geographic Society-Palomar Observatory sky survey. A. S. P. Pub., v. 67, pp. 258-261. (Discovery by A. G. Wilson).

1958 Alter, Ruprecht, Vanýsek, 1958 Heckmann, 1958 Rosino, 1959*Ip* Sawyer Hogg, 1961*III* Sawyer Hogg, 1962*I* Rosino.

NGC 6809 (Messier 55) $\alpha 19^{h} 36^{m}9, \ \delta - 31^{\circ} 03'$ $l^{11}08^{\circ}.83, \ b^{11} - 23^{\circ}.28$

1951 King, I. New variables and periods in the globular cluster Messier 55. *Harv. Bull.*, no. 920.

1928b Ludendorff, 1935 Walters, 1947*abcd* Sawyer, 1949*abde* Parenago, Kukarkin, Florja, 1949*ce* Shapley, 1950*d* Becker, 1952*Iabd* Lohmann, 1953 Dreyer, 1953 Gingerich, 1953 Kholopov, 1953*d* Rosino, 1954 Cimino, 1954 Gingerich, 1954 Markarian, 1954*I* Zagar, 1955*IIbd* Sawyer, 1955*IIa* Struve, 1956*c* Baum, 1956 van NGC 6809 (cont'd)

den Bergh, 1956a Schmidt, 1957 van den Bergh, 1957 Stohl, 1958 Alter, Ruprecht, Vanýsek, 1958*I*, *II* Kinman, 1958 Náprstková, 1959 van Agt and Oosterhoff, 1959 Johnson, 1959*Iad*, *IIad* Kinman, 1959 Matsunami et al., 1959b Morgan, 1959*Iip* Sawyer Hogg, 1960 Gingerich, 1960*acfikl* Kron and Mayall, 1960*bcg* Wilkens, 1961 Hénon, 1961*I*, *III* Sawyer Hogg, 1962 Fernie, 1962*II* Rosino, 1962 Sawyer Hogg.

Palomar 11	$\alpha 19^{h} 42^{m} 6, \ \delta - 08^{\circ} 09'$	$l^{11}31^{\circ}.79, b^{11} - 15^{\circ}.60$
------------	---	---

- 1955 Abell, G. O. Globular clusters and planetary nebulae discovered on the National Geographic Society-Palomar Observatory sky survey. A. S. P. Pub., v. 67, pp. 258-261. (Discovery by A. G. Wilson).
- 1962 Kinman, T. D., and Rosino, L. Notes on faint star clusters. A. S. P. Pub., v. 74, pp. 499-506. (May be rich galactic cluster).

1958 Alter, Ruprecht, Vanýsek, 1958 Heckmann, 1959*Ip* Sawyer Hogg, 1961*III* Sawyer Hogg, 1962*I* Rosino.

NGC 6838 (Messier 71) $\alpha 19^{h} 51^{m}_{...5}, \delta + 18^{\circ} 39'$ $l^{11}_{...56} 5.74, b^{11}_{....55} - 04^{\circ}_{...55}$

- 1928 Baade, W. Untersuchung von zwei Milchstrassenfeldern auf Veränderliche (124 neue Veränderliche). A. N., v. 232, pp. 65-70.
- 1941 Cuffey, J. The galactic cluster NGC 6838. Am. A. S. Pub., v. 10, p. 122.
- 1952 Sawyer, H. B. Variable stars in the globular cluster NGC 6838. A. J., v. 57, p. 26.
- 1954 Becker, W. Bemerkung zum Farben-Helligkeits-Diagramm des Kugelhaufens M 71 = NGC 6838. Z. f. Ap., v. 34, pp. 107-109; Ast.-Met. Anstalt Univ. Basel Mitt., Astr. Reihe, no. 1.
- 1954 Rosino, L. Ricerche sugli ammassi globulari XI. Su alcuni ammassi stellari di dubbia classificazione. Asiago Cont., no. 52, with photo.
- 1956 Artjuchina, N. M. Die Eigenbewegungen von Sternen in der Umgebung der Haufen M 71 und H 20. Astr. Sternberg-Inst. Pub., v. 27, pp. 3-35. (Catalogue of 1372 stars).
- 1959 Cuffey, J. NGC 6838. A. J., v. 64, p. 327. Summ., Sky and Tel., v. 19, p. 93.
- 1960 Der ungewöhnliche Sternhaufen M 71. Nachrichtenblatt der Vereinigung der Sternfreunde, Berlin, v. 9, pp. 134-135.
- 1960 Messier 71. Urania, København, v. 17, pp. 15-16.
- 1961 Stephenson, C. B. Possible M-star members of NGC 6838. A. J., v. 66, pp. 85-87, with plate.

1947 Parenago, 1947*abcd* (photo, error in cluster no.) Sawyer, 1948*a* Perek, 1953 Dreyer, 1953 Sawyer, 1954 Gingerich, 1954 Perek, 1954*I* Zagar, 1955*IIbcd* Sawyer, 1956*a* Morgan, 1956*a* Schmidt, 1958 Alter, Ruprecht, Vanýsek, 1958*I, II* Kinman, 1958 Maffei (photo), 1958*Ia, II* Sawyer Hogg, 1959*Id, IIi, III* Kinman, 1959*a* Larsson-Leander, 1959*bc* Morgan, 1959 Sandage, 1959*Igip* Sawyer Hogg, 1960 Bowen, 1960 Ikhsanov, 1960*acdfik* Kron and Mayall, 1960 Sandage and Wallerstein, 1960*bcg* Wilkens, 1961*a* Haffner, 1961 Lohmann, 1961 Preston, 1961*I, III* Sawyer Hogg, 1962 van den Bergh and Henry, 1962 Fernie, 1962*II* Rosino, 1962 Sawyer Hogg. *See also*: 5272 1953 Sandage. **NGC 6864** (Messier 75) $\alpha 20^{h} 03^{m}2, \ \delta - 22^{\circ} 04'$ $l^{11}20^{\circ}.31, \ b^{11} - 25^{\circ}.76$

1928a Ludendorff, 1947 Parenago, 1947*abcd* Sawyer, 1948 Becker, 1948b Perek, 1949*ade* Parenago, Kukarkin, Florja, 1949*ce* Shapley, 1952*Iabd* Lohmann, 1953 Dreyer, 1953*ad* Rosino, 1954 Blamont, 1954 Gingerich, 1954*I* Zagar, 1955 von Hoerner, 1955*IIbd* Sawyer, 1956 Baum, 1956 van den Bergh, 1956*b* Schmidt, 1957 Rosino, 1957 Shapley, 1958 Alter, Ruprecht, Vanýsek, 1958*I, II* Kinman, 1958*II* Sawyer Hogg, 1959 Dufay and Bigay, 1959 Dzigvashvili, 1959*Iabd, IIbi* Kinman, 1959 Matsunami *et al.*, 1959*Icip* Sawyer Hogg, 1960*acdefik* Kron and Mayall, 1960 Kurth, 1960*b* Roberts, 1960*bcg* Wilkens, 1961 Hénon, 1961*I, III* Sawyer Hogg, 1962 van den Bergh and Henry, 1962 Fernie, 1962 Sawyer Hogg.

NGC 6934 $\alpha \ 20^{h} \ 31^{m} 7, \ \delta + 07^{\circ} \ 14'$

 $l^{11}52^{\circ}.10, b^{11} - 18^{\circ}.88$

1947 Parenago, 1947abd Sawyer, 1948 Becker, 1948 Fehrenbach (error in no.), 1948b Perek, 1948I Sawyer, 1949abde Parenago, Kukarkin, Florja, 1949ce Shapley, 1952Iabd Lohmann, 1953 Dreyer, 1953 Lohmann, 1953d Rosino, 1954 Blamont, 1954I Zagar, 1955 von Hoerner, 1955IIbd Sawyer, 1956c Baum, 1956 van den Bergh, 1956b Schmidt, 1957 van den Bergh, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1958II Sawyer Hogg, 1959 Dufay and Bigay, 1959 Dzigvashvili, 1959Id, II Kinman, 1959 Matsunami et al., 1959Iib, III Sawyer, 1960acfik Kron and Mayall, 1960 Kurth, 1960bcg Wilkens, 1961I, III Sawyer Hogg, 1962 van den Bergh and Henry, 1962 Fernie, 1962 Sawyer Hogg.

NGC 6981 (Messier 72) $\alpha 20^{h} 50^{m}7, \ \delta - 12^{\circ} 44' \qquad l^{11}35^{\circ}.15, \ b^{11} - 32^{\circ}.68$

1953 Rosino, L. Ricerche sugli ammassi globulari IX. Osservazioni fotografiche di variabili e determinazione dei periodi e curve di luce di 16 cefeidi appartenenti all'ammasso globulare M 72. Univ. Bologna Oss. Pub., v. VI, no. 2, pp. 49-64.

1953 Sawyer, H. B. Thirty-eight new variable stars in eleven globular clusters. R. A. S. C. Jour., v. 47, pp. 229-236; Dunlap Comm., no. 34.

1957 Nobili, F. Elementi e curve di luce di tre stelle variabili nell'ammasso globulare M 72. Soc. Astr. Ital. Mem., v. 28, no. 1-2, pp. 141-145; Asiago Cont., no. 83.

1928a Ludendorff, 1946 Miczaika, 1947 Parenago, 1947abcd Sawyer, 1948 Becker, 1948b Perek, 1949abde Parenago, Kukarkin, Florja, 1949ce Shapley, 1952Iabd Lohmann, 1953 Dreyer, 1953 Lohmann, 1953defi Rosino, 1953 Sawyer, 1954 Gingerich, 1954I Zagar, 1955 von Hoerner, 1955IIbd Sawyer, 1956c Baum, 1956 van den Bergh, 1956b Schmidt, 1957 van den Bergh, 1958 Alter, Ruprecht, Vanýsek, 1958e Arp, 1958I, II Kinman, 1958 Maffei (photo), 1958I Sandage, 1958II Sawyer Hogg, 1959 van Agt and Oosterhoff, 1959 Dufay and Bigay, 1959 Dzigvashvili, 1959Id, IIi Kinman, 1959 Kurochkin, 1959 Matsunami et al., 1959b Morgan, 1959 Preston, 1959Iip Sawyer Hogg, 1960acdefik Kron and Mayall, 1960 Kurth, 1960bceg Wilkens, 1961b Haffner, 1961 Hénon, 1961 Payne-Gaposchkin, 1961I Sawyer Hogg, 1962 Fernie, 1962II Rosino, 1962 Sawyer Hogg.

NGC 7006

$\alpha 20^{h} 59^{m}1, \ \delta + 16^{\circ} 00'$

$$l^{11}63^{\circ}.77, b^{11} - 19^{\circ}.39$$

1954 Sandage, A. R. Variable stars found by Edwin Hubble in the globular cluster NGC 7006. A. S. P. Pub., v. 66, pp. 324-326; Die Sterne, v. 31, p. 187.

- 1955 Rosino, L., and Mannino, G. Ricerche sugli ammassi globulari XII. Distanza
 e stelle variabili d'un remotissimo ammasso globulare: NGC 7006. Asiago Cont., no. 59, with plate.
- 1956 Lidt om Kuglehoben N.G.C. 7006. Urania, København, v. 13, pp. 57-58.
- 1957 Mannino, G. Periodi e curve di luce di 19 stelle variabili del tipo RR Lyrae dell'ammasso globulare NGC 7006. Soc. Astr. Ital. Mem., v. 28, no. 3; Asiago Cont., no. 84.

NGC 7006 (cont'd)

1928a Ludendorff, 1947 Parenago, 1947abd Sawyer, 1948 Becker, 1948b Perek, 1948I Sawyer, 1949abde Parenago, Kukarkin, Florja, 1949ce Shapley, 1952Iabd, II Lohmann, 1953 Dreyer, 1953 Lohmann, 1953cd Rosino, 1954I Zagar, 1955 von Hoerner, 1955IIbcd Sawyer, 1956c Baum, 1956 van den Bergh, 1956b Schmidt, 1957 Shapley, 1958 Alter, Ruprecht, Vanýsek, 1958 Heckmann, 1958I, II Kinman, 1958 Rosino, 1958II Sawyer Hogg, 1959 van Agt and Oosterhoff, 1959 Dufay and Bigay, 1959 Dzigvashvili, 1959 Johnson, 1959Id, IIi, III Kinman, 1959 Matsunami et al., 1959b Morgan, 1959Icip, IIc Sawyer Hogg, 1960acfikl Kron and Mayall, 1960 Kurth, 1960bceg Wilkens, 1961a Hafiner, 1961 Kurochkin, 1961I, III Sawyer Hogg, 1962 van den Bergh and Henry, 1962 Fernie, 1962II Rosino, 1962 Sawyer Hogg.

- **NGC 7078** (Messier 15) $\alpha 21^{h} 27^{m} 6, \delta + 11^{\circ} 57'$ $l^{11} 65^{\circ} .02, b^{11} 27^{\circ} .32$
- 1949 Sawyer, H. B. The early discovery of four globular clusters. R. A. S. C. Jour., v. 43, p. 45.
- 1950 Rosino, L. Twenty-nine new variable stars in the globular cluster M 15. Ap. J., v. 112, p. 221, with plate.
- 1951 Brown, A. The color magnitude array for stars in the globular cluster M 15. *Ap. J.*, v. 113, pp. 344-366; Abs., *A. J.*, v. 55, p. 165.
- 1951 Johnson, H. L., and Schwarzschild, M. On the color-magnitude diagram for M 15. Ap. J., v. 113, pp. 630-636.
- 1952 Izsak, I. Three new variable stars in the globular cluster M 15. Budapest Mitt., no. 28 (plate).
- 1955 Arp, H. C. Cepheids of period greater than one day in globular clusters. A. J., v. 60, pp. 1–17.
- 1955 Kholopov, P. N. The space distribution of red giants and variable stars of RR Lyrae type in the globular cluster M 15. Var. Stars (Russ.), v. 10, no. 5, pp. 253-261.
- 1956 Mannino, G. Le stelle variabili dell'ammasso globulare M 15. I. Studio di 14 cefeidi del tipo RR Lyrae (N. 2-15). Soc. Astr. Ital. Mem., v. 27, no. 2; Asiago Cont., no. 74.
- 1956 Mannino, G. Le stelle variabili dell'ammasso globulare M 15. II. Studio di 10 note cefeide del tipo RR Lyrae (N. 17, 18, 22, 24, 30, 32, 35, 38, 39, 40) e di una nuova variabilie (N. 99). Soc. Astr. Ital. Mem., v. 27, no. 3; Asiago Cont., no. 75.
- 1956 Grubissich, C. Le stelle variabili dell'ammasso globulare M 15. III. Studio delle dieci variabili No. 19, 23, 25-29, 31, 42, 43. Soc. Astr. Ital. Mem., v. 27, p. 3; Asiago Cont., no. 76.
- 1956 Pallas and M 15. Sky and Tel., v. 15, p. 444.
- 1957 Izsak, I. Untersuchungen über die Periodänderungen der Veränderlichen im Kugelsternhaufen M 15. Konferenz über Veranderliche Sterne, Budapest, 1956, 63-69; Stern. Ungar. Akad. Wiss. Mitt., no. 42.
- 1957 Nobili, F. Le stelle variabili dell'ammasso globulare M 15. IV. Studio delle otto variabili N. 1, 44, 50-54, 66. Soc. Astr. Ital. Mem., v. 28, nos. 1-2, pp. 105-120; Asiago Cont., no. 81.
- 1958 Bachmann, G. Die Periode des Veränderlichen Nr. 19 im Kugelhaufen M 15. A. N., v. 284, p. 191; Berlin-Babelsberg Mitt., no. 7.
- 1958 Notni, P., and Oleak, H. Der Lichtwechsel von 25 Veränderlichen des Kugelhaufens M 15. A. N., v. 284, pp. 49-56.

NGC 7078 (cont'd)

- 1959 Bronkalla, W. Periodenänderungen von RR Lyrae-Sterne in Kugelhaufen. Remeis-Sternw. Bamberg Kl. Veröff., no. 27, p. 28.
- 1959 Mannino, G. Sulla variabile N. 99 dell'ammasso globulare M 15. Soc. Astr. Ital. Mem., v. 30, no. 3-4; Asiago Cont., no. 110.
- 1960 Bronkalla, W. Die Periodenänderungen von 27 Veränderlichen des Kugelhaufens M 15. Berlin-Babelsberg Mitt., no. 10; A. N., v. 285, pp. 181–190, 1960.
- 1961 King, I. Star distribution in the globular cluster M 15. A. J., v. 66, pp. 47–48. See also, Globular cluster densities, Sky and Tel., v. 21, pp. 210–211.
- 1961 Preston, G. W. Low-dispersion spectra of RR Lyrae stars in globular clusters. Ap. J., v. 134, no. 2, pp. 651–652; Lick Cont., no. 119.
- 1961 Tsoo, Yu-hua. Three new variable stars in the globular cluster Messier 15. Acta Astr. Sinica, v. 9, no. 1, 2, pp. 70-71, with plate.

1928a Ludendorff, 1935 Walters, 1938ac Payne-Gaposchkin and Gaposchkin, 1946 Miczaika, 1947 Parenago, 1947abcd Sawyer, 1948 BAAJ, 1948 Becker, 1948 Gamalej, 1948b Perek, 1948I Sawyer, 1949 Gialanella, 1949 Joy, 1949abde Parenago, Kukarkin, Florja, 1949cdef Shapley, 1950cdfg Becker, 1950 Kurth, 1950 Stebbins, 1951I, II Kurth, 1952 Camm, 1952Iabd Lohmann, 1953b Deutsch, 1953 Dreyer, 1953 Kholopov, 1953 Lohmann, 1953dfi Rosino, 1953 Shapley and McKibben, 1954 Blamont, 1954 Cimino, 1954 Gingerich, 1954a Payne-Gaposchkin, 1954b Rosino, 1954a Sandage, 1954I Zagar, 1955I, II Arp, 1955 von Hoerner, 1955II Reddish, 1955I, IIbcd Sawyer, 1956ac Baum, 1956 van den Bergh, 1956 Kourganoff, 1956cd Morgan, 1956 Roberts, 1956ab Schmidt, 1957 van den Bergh, 1957 Ferrari d'Occhieppo, 1957 Kholopov, 1957 Rosino, 1957 Stohl, 1958 Alter, Ruprecht, Vanýsek, 1958abdej Arp, 1958 Burbidge and Sandage, 1958 Heckmann, 1958 Kholopov, 1958I, II Kinman, 1958 Maffei (photo), 1958 Náprstková, 1958 Rosino, 1958I, II Sandage, 1958Ich, II Sawyer Hogg, 1958 Wallerstein, 1959 van Agt and Oosterhoff, 1959 Dzigvashvili, 1959 Johnson, 1959 Preston, 1959Ifgijklop, IIa, III Sawyer Hogg, 1960 Bowen, 1960acdfgijkl Kron and Mayall, 1960 Kurth, 1960 Markarian, 1960 Bowen, 1960hacdfgijkl Kron and Mayall, 1960 Surth, 1960 Markarian, 1960 Bowen, 1960hacdfgijkl Kron and Mayall, 1960 Kurth, 1960 Markarian, 1960 Bowen, 1960hacdfgijkl Kron and Mayall, 1960 Kurth, 1960 Markarian, 1960 Bowen, 1960hacdfgijkl Kron and Mayall, 1960 Kurth, 1960 Markarian, 1960 Bowen, 1960hacdfgijkl Kron and Mayall, 1960 Kurth, 1960 Markarian, 1961 Beylowskaya, 1960bh Roberts, 1962 Sandage and Wallerstein, 1960beg Wilkens, 1961ab Haffner, 1961 Hénon, 1961 Payne-Gaposchkin, 1961 Slettebak, Bahner and Stock, 1961I, III Sawyer Hogg, 1962I, IIe Arp, 1962 van den Bergh and Henry, 1962 Eggen and Sandage, 1962 Fernie, 1962 King, 1962 Kinman, 1962II Rosino, 1962I Sandage, 1962 Sawyer Hogg.

See also: 6779 1949 Rosino, 6341 1953 Arp, Baum, Sandage, 5272 1953 Sandage, 6205 1954 Baum, 5272 1954 Sandage, 6205 1955 Brown, 5272 1955 Roberts and Sandage, 104 1957 Gascoigne and Burr, 6656 1959 Arp and Melbourne, 5272 1959 Oort and van Kerk, 6522 1961 Whitford, 6712 1962 Smith and Sandage, 6356 1962 Wallerstein.

NGC 7089 (Messier 2) $\alpha 21^{h} 30^{m}9, \ \delta = 01^{\circ} 03'$ $l^{11}53^{\circ}.37, \ b^{11} = 35^{\circ}.78$

1897 Soc. Astr. Fr. Bull., Dec., p. 485. (New variable by Chevremont).

- 1949 Sawyer, H. B. Two RV Tauri-type variables in globular clusters. R. A. S. C. Jour., v. 43, pp. 38-44; Dunlap Comm., no. 18.
- 1949 Sawyer, H. B. The early discovery of four globular clusters. *R. A. S. C. Jour.*, v. 43, p. 45.
- 1955 Arp, H. C. Cepheids of period greater than one day in globular clusters. A. J., v. 60, pp. 1-17.
- 1956 Arp, H. C., and Wallerstein, G. Cepheids in M 2. A. J., v. 61, p. 272.

NGC 7089 (cont'd)

- 1956 Kreiken, E. A. A statistical study of pulsating stars. VII. The variables in M 2. Dept. Astr. Univ. Ankara Comm., no. 14, pp. 79-82.
- 1957 Wallerstein, G. Note on the behavior of the RV Tauri-type star No. 11 in Messier 2. A. J., v. 62, p. 168.
- 1961 Kulikov, V. I. Variable stars in the globular cluster M 2. Var. Stars (Russ.), v. 13, no. 6, pp. 400-406.
- 1961 Mantegazza, G. Fabbri. Periodi di 4 stelle variabili del tipo RR Lyrae dell' ammasso globulare NGC 7089. Univ. Bologna Oss. Pub., v. 8, no. 5.

1935 Walters, 1947 Fricke, 1947 Parenago, 1947abcd Sawyer, 1948 BAAJ, 1948
Becker, 1948 Gamalej, 1948b Perek, 1948II Sawyer, 1949 Gialanella, 1949 Joy, 1949abde Parenago, Kukarkin, Florja, 1949ce Shapley, 1950df Becker, 1950 Kurth, 1950 Stebbins, 1951I, II Kurth, 1951b Payne-Gaposchkin, 1952Iabd Lohmann, 1953b Deutsch, 1953 Dreyer, 1953 Kholopov, 1953 Lohmann, 1953dj Rosino, 1953
Shapley and McKibben, 1954 Bidelman, 1954 Blamont, 1954 Cimino, 1954 Gingerich, 1954b Payne-Gaposchkin, 1955II Reddish, 1955IIbcd Sawyer, 1956ac Baum, 1956 van den Bergh, 1956 Kourganoff, 1956 Roberts, 1956ab Schmidt, 1957 van den Bergh, 1957 Ferrari d'Occhieppo, 1958 Alter, Ruprecht, Vanýsek, 1958abej Arp, 1958 Burbidge and Sandage, 1958I, II Kinman, 1958 Lohmann, 1958abej Arp, 1959 Daigvashvili, 1959 Johnson, 1959Iabd, IIabfhij Kinman, 1959 Matsunami et al., 1959b Morgan, 1959 Payne-Gaposchkin, 1960 Kurth, 1960h Roberts, 1960 Markarian, 1960 Knon, 1960
acfgijkl Kron and Mayall, 1960 Kurth, 1960h Roberts, 1960bcg Wilkens, 1961ab Haffner, 1961 Hénon, 1961 Lohmann, 1961 Payne-Gaposchkin, 1961 Payne-Gaposchkin, 1961 Payne-Gaposchkin, 1961 Payne-Gaposchkin, 1961 Payne-Gaposchkin, 1959 Fernie, 1962II Rosino, 1962I, II Sandage, 1962I Arp, 1962 Bahner, Hiltner and Kraft, 1962 Sawyer Hogg.

Fernie, 1962 II Rosino, 1962I, II Sandage, 1962 Van der beige and Heily, 1962 See also: 5272 1947 Lohmann, 6205 1954 Baum, 5272 1954 Sandage, 5904 1958 Wallerstein, 6656 1959 Arp and Melbourne, 5272 1961 Smak, 6522 1961 Whitford, 6397 1961 Woolley et al.

NGC 7099 (Messier 30) $\alpha 21^{h} 37^{m}_{...5}, \delta - 23^{\circ} 25'$ $l^{11}27^{\circ}_{...16}, b^{11} - 46^{\circ}_{...83}$

- 1949 Rosino, L. Ricerche sugli ammassi globulari. I. Distribuzione e variabilita delle stelle dell'ammasso M 30 e valutazione della sua distanza. Univ. Bologna Oss. Pub., v. V, no. 9, with plate. Summ., Sternenwelt, v. 3, p. 109, 1951.
- 1961 Rosino, L. Osservazioni di due variabili peculiari e d'una variable tipo RR Lyrae en ammassi stellare. Accad. Patavina di SS LL AA Mem., v. 74, 1960-61; Asiago Cont., no. 117.

1915 Stone, 1940 Shapley and Paraskevopoulos, 1947 Parenago, 1947 abcdSawyer, 1948 Becker, 1948b Perek, 1949abcde Parenago, Kukarkin, Florja, 1952Iabde Lohmann, 1953 Dreyer, 1953 Kholopov, 1953 Lohmann, 1953bcefi Rosino, 1954 Blamont, 1954 Cimino, 1954 Gingerich, 1954b Rosino, 1954J Zagar, 1955 von Hoerner, 1955IIbcd Sawyer, 1956c Baum, 1956 van den Bergh, 1956ab Schmidt, 1957 Rosino, 1958 Alter, Ruprecht, Vanýsek, 1958I, II Kinman, 1958 Maffei (photo), 1959 van Agt and Oosterhoff, 1959 Dzigvashvili, 1959 Johnson, 1959Iabd, IIbi, III Kinman, 1950 Matsunami et al., 1959Iip Sawyer Hogg, 1960acfikl Kron and Mayall, 1960 Kurth, 1960bcg Wilkens, 1961 Hénon, 1961I Sawyer Hogg, 1962 van den Bergh and Henry, 1962 Fernie, 1962 Sawyer Hogg.

Palomar 12
$$\alpha 21^{h} 43^{m}7, \delta - 21^{\circ} 28'$$
 $l^{11}30^{\circ}.52, b^{11} - 47^{\circ}.64$

1955 Abell, G. O. Globular clusters and planetary nebulae discovered on the National Geographic Society-Palomar Observatory sky survey. A. S. P. Pub., v. 67, pp. 258-261. (Discovery by Harrington and Zwicky).
Palomar 12 (cont'd)

- 1957 Zwicky, F. Morphological Astronomy. Springer-Berlin. Page 205, Dwarf galaxy in Capricorn (photo). Identification of first variable.
- 1962 Kinman, T. D., and Rosino, L. Notes on faint star clusters. A. S. P. Pub., v. 74, pp. 499–506, with print.

1958 Alter, Ruprecht, Vanýsek, 1958 Burbidge and Sandage, 1958 Heckmann, 1959*Ip* Sawyer Hogg, 1961*III* Sawyer Hogg, 1962 Kinman, 1962*I* Rosino.

Palomar 13 $\alpha 23^{h} 04^{m}2, \delta + 12^{\circ}28'$ $l^{11}87^{\circ}.07, b^{11} - 42^{\circ}.72$

- 1955 Wilson, A. G. Sculptor-type systems in the local group of galaxies. A. S. P. Pub., v. 67, pp. 27–29. (Discovery by Wilson).
- 1957 Rosino, L. Sopra due ammassi globulari del catalogo di Abell (no. 4 e no. 13). Asiago Cont., no. 85, with plate.

1955 Abell (No. 13), 1957 Rosino, 1958 Alter, Ruprecht, Vanýsek, 1958 van den Bergh, 1958 Burbidge and Sandage, 1958 Heckmann, 1958*II* Sawyer Hogg, 1959*Iip*, *III* Sawyer Hogg, 1961*I*, *III* Sawyer Hogg, 1962 Kinman, 1962*I* Rosino, 1962 Sawyer Hogg.

See also: Pal 1 1962 Kinman and Rosino.

NGC 7492	$\alpha 23^{h} 05^{m}.7, \delta - 15^{\circ}.54'$	$l^{11}53^{\circ}.32, b^{11} - 63^{\circ}.46$
----------	---	---

- 1957 Cuffey, J. Color-magnitude relations in Messier 53 and N.G.C. 7492. A. J., v. 62, p. 91.
- 1961 Cuffey, J. NGC 7492. M. N., v. 122, pp. 363-370; Summ., Quarterly Jour., v. 2, no. 3, p. 222.
- 1962 Kinman, T. D., and Rosino, L. Notes on faint star clusters. A. S. P. Pub., v. 74, pp. 499-506.

1928a Ludendorff, 1947abd Sawyer, 1949abde Parenago, Kukarkin, Florja, 1949ce Shapley, 1952Iabd Lohmann, 1953 Dreyer, 1953def Rosino, 1954 Cuffey, 1954I Zagar, 1955IIbd Sawyer, 1956c Baum, 1957 Shapley, 1958 Alter, Ruprecht, Vanýsek, 1958 Heckmann, 1958 Maffei (photo), 1959 Johnson, 1959 Matsunami et al., 1959 Ibcip, III Sawyer Hogg, 1960bcg Wilkens, 1961a Haffner, 1961III Sawyer Hogg, 1962 Kinman, 1962 Sawyer Hogg.

See also: Pal 5 1951 Rosino.

SECTION B

References

References which Pre-date Bibliography of 1947

- 1789 WOLLASTON, F. A General Catalogue of stars, nebulae and clusters of stars, whose positions have been ascertained by different astronomers, arranged in order of Right Ascension, in their respective zones of North Polar Distance of January 1, 1790.
- 1912 KNOX-SHAW, H. Observations of nebulae made during 1909-1911. Helwan Bull., no. 9, pp. 69-78.
- 1915 KNOX-SHAW, H. Observations of nebulae made during 1912-1914. Helwan Bull., no. 15, pp. 129-138.
- 1915 STONE, O. Southern Nebulae. Leander McCormick Pub., v. 1, pt. 6, pp. 175-241. (Stone nos. 652, 656, 741, 825).
- 1921 I GREGORY, C. C. L. Third list of nebulae photographed with the Reynolds reflector. Helwan Bull., no. 21, pp. 201-218.
- 1921*II* GREGORY, C. C. L. Fourth list of nebulae photographed with the Reynolds reflector. *Helwan Bull.*, no. 22, pp. 219-235.
- 1928 LUDENDORFF, H. Die Veränderlichen Sterne. Handbuch der Astrophysik, v. 6, pp. 49-250.
 - a. Page 233. Veränderliche in kugelförmigen Sternhaufen.
 - b. Page 238. Veränderliche in der nächsten Umgebung von kugelförmigen Sternhaufen.
- 1928 SHAPLEY, H. Studies of the galactic center. III. The absolute magnitudes of long period variables. Nat. Acad. Sci. Wash. Proc., v. 14, pp. 958-962.
- 1935 WALTERS, M. H. H. Globular clusters. Neill & Co. Edinburgh, pp. 35.
- 1936 KUIPER, G. P. On the hydrogen content of clusters, binaries, and Cepheids. Harv. Bull., no. 903, pp. 1-11.
- 1938 РАУNE-GAPOSCHKIN, C. H., and GAPOSCHKIN, S. Variable Stars. Cambridge. Chap. IV, The Cepheid variables, pp. 153–191.
 - a. Page 158. Table IV, V. Relation of light curve to period for variables in clusters.
 - b. Page 163. Table IV, VII. Light curve and period for Cepheids in extragalactic systems.
 - c. Page 165. Period luminosity relation.
- 1940 OORT, J. H. Some problems concerning the structure and dynamics of the galactic system and the elliptical nebulae NGC 3115 and 4494. Ap. J., v. 91, pp. 273-306.
- 1940 SHAPLEY, H., and PARASKEVOPOULOS, J. S. Galactic and extragalactic studies. III. Photographs of thirty southern nebulae and clusters. Nat. Acad. Sci. Wash. Proc., v. 26, pp. 31-36; Harv. Repr., no. 184.
- 1941 MERRILL, P. The radial velocities of long-period variable stars. Second paper. *Ap. J.*, v. 94, pp. 171–214.
- 1943 РАУNE-GAPOSCHKIN, C., BRENTON, V. K., and GAPOSCHKIN, S. The variables of RV Tauri type. *Harv. Ann.*, v. 113, no. 1, pp. 1–65.

1944 WALLENQUIST, A., and LUNDBY, A. Integrated photographic magnitudes of twenty-four globular clusters in the Sagittarius and Ophiuchus regions. Ark. Mat. Astr. Fys., v. 31, A. no. 6; Astr. Obs. Uppsala Medd., no. 86.

References received after printing of Bibliography of 1947

- 1946 MICZAIKA, G. R. Die Periodenhäufigkeitsverteilung der kurzperiodischen Cepheiden in Kugelhaufen. Bad. Landes Sternw. Heidelberg-Königstuhl Veröff., v. 14, no. 8, pp. 69-76.
- 1946 VOGT, H. Ueber die Auslösung der kurzperiodischen δ Cephei-veränderlichen in Kugelsternhaufen. Bad. Landes Sternw. Heidelberg-Königstuhl Veröff., v. 14, no. 6, pp. 61-62.
- 1947 FRICKE, W. Neuere Arbeiten über die Struktur kugelförmiger Sternhaufen. Himmelswelt, v. 55, pp. 34-36.
- 1947 VON DER PAHLEN, E. Ueber die Entstehung der sphärischen Sternhaufen. Z. f. Ap., v. 24, pp. 68-120; Astrophys. Obs. Potsdam Mitt., no. 18.
- 1947 PARENAGO, P. P. The motions of globular clusters. A. J. UdSSR, v. 24, pp. 167–177.
- 1947 SAWYER, H. B. A bibliography of individual globular clusters. *Dunlap Pub.*, v. 1, no. 20. Ref., *Sky and Tel.*, v. 7, p. 203.
 - a. Pages 388-391. Catalogue of 99 globular clusters.
 - b. Page 392. Discoverers of globular clusters.
 - c. Page 395. Identification of Messier-Méchain with NGC numbers.
 - d. Page 396 et seq. References to individual globular clusters.
- 1948 BAAJ Messier's Catalogue. B. A. A. Jour., v. 59, pp. 49-50.
- 1948 BECKER, W. Bemerkungen über Farbe und Spektraltypus von Kugelhaufen. Himmelswelt, v. 55, pp. 177–179.
- 1948 FEHRENBACH, C. Quelques mesures de magnitudes intégrales d'amas globulaires. Haute-Provence Pub., Ser. A, no. 17; Ann. d'Ap., v. 11, pp. 225-227.
- 1948 GAMALEJ, N. W. Eigenbewegungen von acht kugelförmigen Sternhaufen. Pulkova Mitt., v. 17, no. 6, pp. 27-57.
- 1948 Joy, A. H. The spectra of the brighter variables in the globular clusters. A. J., v. 53, pp. 113-114.
- 1948 KING, I. The dynamics of globular clusters. *I. A. U. Trans.*, v. 7, pp. 410–411, 1950.
- 1948 MAITRE, V. Répartitions des magnitudes, couleurs et masses dans les amas globulaires. *Jour. des Observateurs*, v. 31, pp. 129–137.
- 1948 PEREK, L. Sur la rotation galactique des amas globulaires. Ann. d'Ap., v. 11, pp. 185-192.

a. Page 185. Clusters excluded.

b. Pages 190-191. Table of velocities.

- 1948I SAWYER HOGG, H. Variable stars in globular clusters. I. A. U. Trans., v. 7, pp. 408-409, 1950.
- 1948II SAWYER, H. B. Globular clusters of stars. A. S. P. Leaflet, no. 231.
- 1949 GIALANELLA, L. Sul problema dei due corpi di masse variabili in cui la forza attrativa e' proporzionale alla distanza. Applicazione agli ammassi globulari di stelle. Soc. Astr. Ital. Mem. (NS), v. 20, pp. 93-105; Oss. Astr. Roma Monte Mario Cont. Sci., no. 145; Ref. Math. Rev., v. 11, p. 408.

- 1949 Joy, A. H. Spectra of the brighter variables in globular clusters. Ap. J., v. 110, pp. 105-116; Mt. W. and Pal. Repr., no. 5.
- 1949 KHOLOPOV, P. N. Ein numerisches Verfahren zur Bestimmung der räumlichen Sterndichte in einem elliptischen Sternhaufen. A. J. UdSSR, v. 26, no. 5, pp. 298-304; Ref. Math. Rev., v. 11, p. 467.
- 1949 PARENAGO, P. P., KUKARKIN, B. W., FLORJA, N. F. The system of globular clusters. Astr. Sternberg-Inst. Trudy, v. 16, pp. 47-70.
 - a. Page 49. Moduli of 94 globular clusters.
 - b. Page 53. Relation of absolute magnitude to concentration class.
 - c. Page 56. Absorption for nine clusters.
 - d. Pages 58-60. Diameters and absorption for globular clusters.
 - e. Pages 67-68. Space co-ordinates of globular clusters.
 - f. Page 69. Diagram of local cluster.
- 1949 SHAPLEY, H. A half century of globular clusters. Pop. Astr., v. 57, pp. 203-229; Summ., Soc. Astr. Fr., Bull., v. 63, p. 224.
 - a. Pages 203-205. Historical.
 - b. Page 206. Special clusters.
 - c. Pages 211-212. Distances and absolute magnitudes of 31 high latitude clusters.
 - d. Pages 212-216. Spectral types and colours; star population of a new kind.
 - e. Pages 217-220. Angular and linear diameters of 31 clusters.
 - f. Pages 221-224. Variables in clusters.
 - g. Page 242. Motions and structure.
 - h. Page 227. Relation to other objects.
- 1950 BECKER, W. Sterne und Sternsysteme. Dresden and Leipzig. Theodor Steinkopff. Die kugelförmigen Sternhaufen, pp. 164-174.
 - a. Page 165. Photo NGC 6205.
 - b. Page 166. Apparent diameters.
 - c. Page 167. Ellipticities.
 - d. Pages 168-169. Distances and physical data for 15 clusters.
 - e. Pages 169-170. Star counts and stellar density.
 - f. Pages 170-172. Colour-magnitude diagrams.
 - g. Pages 172-174. Variables in clusters.
- 1950 KURTH, R. Massenabschätzung der kugelförmigen Stern- und Nebelhaufen auf dynamischer Grundlage. Z. f. Ap., v. 28, pp. 1-16; Ast. Inst. Univ. Bern. Veröff., no. 6.
- 1950 SHAPLEV, H. Report of meeting of Commission 37, Star Clusters. I. A. U. Trans., v. 7, pp. 407-413.
- 1950 STEBBINS, J. The electrical photometry of stars and nebulae. M. N., v. 110, pp. 416-428. Globular clusters, p. 420.
- 1951 Вок, В. J. Dynamics and evolution of star clusters. *Sky and Tel.*, v. 10, pp. 211-213, 239-240.
 - a. Page 211. Photo ω Cen.
 - b. Page 239. Photo NGC 4372.
- 1951I KURTH, R. Die Masse der Kugelsternhaufen. Z. f. Ap., v. 29, pp. 26-28; Ast. Inst. Univ. Bern Veröff., no. 8.

- 1951II KURTH, R. Die Entwicklung der Kugelsternhaufen. Z. f. Ap., v. 29, pp. 33-65; Ast. Inst. Univ. Bern Veröff., no. 9. Masses of globular clusters, p. 63.
- 1951 PAYNE-GAPOSCHKIN, C. The intrinsic variable stars, Astrophysics, ed. by J. A. Hynek, McGraw-Hill, pp. 495–525.
 - a. Pages 507-510. The cluster type stars.
 - b. Pages 510-514. The Type II Cepheids.
 - c. Page 513. Velocity curves.
 - d. Page 516. RV Tauri stars in globular clusters.
 - e. Page 519. Long-period variables in isolated systems.
- 1951 THACKERAY, A. D. Proceedings of Observatories, Radcliffe Observatory, Pretoria. M. N., v. 111, pp. 206-208.
- 1952 BAADE, W. Report of president of Commission 37, Star Clusters. I. A. U. Trans., v. 8, p. 596.
- 1952 Самм, G. L. Self-gravitating star systems. II. M. N., v. 112, pp. 155-176.
- 1952 JOHNSON, H. M. The forms, orientations, and masses of globular clusters. Ap. J., v. 115, pp. 124–128.
- 1952 Кноlopov, P. N. The ellipticity of globular clusters. A. J. UdSSR, v. 29, pp. 671–681.
- 1952I LOHMANN, W. Die Entfernungen der kugelförmigen Sternhaufen. Z. f. Ap., v. 30, pp. 234–247.
 - a. Page 238. Interstellar absorption for globular clusters.
 - b. Pages 242-243. Collection of distance moduli.
 - c. Pages 245-246. Comments on distance moduli.
 - d. Page 246. True distance moduli.
- 1952II LOHMANN, W. Bestimmung der Masse des Milchstrassensystems aus den Radialgeschwindigkeiten kugelförmigen Sternhaufen. Z. f. Ap., v. 30, pp. 305-307.
- 1952III LOHMANN, W. Die kugelförmigen Sternhaufen. Sternenwelt, v. 4, pp. 134–142.
 - a. Page 142. Table of number of stars and total mass.
 - b. Photo.
 - c. Reference.
- 1953 DEUTSCH, A. J. Quelques problèmes sur le spectre des étoiles d'amas. Paris Conference, Principes Fondamentaux de Classification Stellaire. Centre National de la Recherche Scientifique. 1955.
 - a. Pages 32-37. Individual spectra reproduced in Fig. 15.
 - b. Page 35. Other clusters mentioned.
- 1953 DREYER, J. L. E. New General Catalogue of Nebulae and Clusters of Stars (1888), Index Catalogue (1895), Second Index Catalogue (1908). London, *Roy. Ast. Soc. Mem.*, 1953, 378 pp. Reprint, with corrections, of all material in original NGC, and two IC's.
- 1953 GINGERICH, O. Messier and his catalogue. Sky and Tel., v. 12, pp. 255–257, 265, 288–291.
- 1953 KHOLOPOV, P. N. Die scheinbare Verteilung der Sterne in zwanzig kugelförmigen Sternhaufen. Astr. Sternberg-Inst. Pub., v. 23, pp. 250-301; Summ., Ast. News Letter, no. 97, p. 35, 1959.

- 1953. LOHMANN, W. Die Durchmesser der kugelförmigen Sternhaufen. Z. f. Ap., v. 32, pp. 298-302.
- 1953 ROSINO, L. Orientamenti e problemi nello studio degli ammassi globulari di stelle. Univ. Bologna Oss. Pub., v. 6, no. 1, pp. 1-48. Reprint of articles from Coelum.
 - a. Page 1. Historical.
 - b. Page 6. Distances.
 - c. Page 9. Diameters.
 - d. Page 18. Distance table of 31 high latitude clusters.
 - e. Page 24. Classification types.
 - f. Tav. IV. Plates.
 - g. Page 25. Integrated brightness and linear diameter.
 - h. Page 31. Limiting magnitudes.
 - i. Page 34. Variable stars.
 - *i*. Page 42. H-R diagrams and evolution.
- 1953 SAWYER, H. B. Thirty-eight new variable stars in eleven globular clusters. R. A. S. C. Jour., v. 47, pp. 229-236; Dunlap Comm., no. 34.
- 1953 SHAPLEY, H., and MCKIBBEN NAIL, V. Magellanic Clouds VI. Revised distances and luminosities. Nat. Acad. Sci. Wash. Proc., v. 39, no. 5, pp. 349-362; Harv. Repr., no. 372. The brighter variable stars in 13 globular clusters, pp. 351-352.
- 1954 BELSERENE, E. P. The period-amplitude relation in globular clusters. A. J., v. 59, pp. 406-409.
- 1954 BIDELMAN, W. P. Catalogue and bibliography of emission-line stars of types later than B. Ap. J. Supp., v. 1, no. 7, pp. 175-268. Intrinsic variables of types F, G, and K, p. 205.
- 1954 BLAMONT, J-E., and COURTÈS, G. Polarization des amas globulaires. Ann. d'Ap., v. 17, pp. 312-313; Haute-Provence Pub., v. 3, no. 14. Ref., Pop. A. Tids., v. 37, p. 76, 1956.
- 1954 CIMINO, M. Sulla distribuzione de equilibrio della materia gassosa negli ammassi globulari. Rend. Accad. Nazionale Lincei Cl. Sci. fis., mat. nat. (8) v. 16, pp. 215-221; Oss. Astr. Roma Monte Mario Cont. Sci. (NS) no. 201.
- 1954 CUFFEY, J. Distribution of globular clusters in high north and south galactic latitude. A. J., v. 59, pp. 319-320.
- 1954 GINGERICH, O. Observing the Messier catalogue. Sky and Tel., v. 13, pp. 157-159.
- 1954 HUANG, S-S. A note on globular clusters. A. J., v. 59, pp. 241-243; Berkeley Repr., no. 67.
- 1954 MARKARIAN, B. E. Ueber die Entwicklung der offenen Sternhaufen. Bjurakan Obs. Mitt., no. 12, 22 pp.
- 1954 PAYNE-GAPOSCHKIN, C. Variable stars and galactic structure. University of London.
 - a. Page 20. Distribution of periods of RR Lyrae stars.
 - b. Page 38. The W Virginis stars (Population II Cepheids).
- 1954 PEREK, L. A note on the galactic orbits of globular clusters. Astr. Inst. Brno Cont., v. 1, no. 12, pp. 1-10.
- 1954 ROSINO, L. Le Popolazioni Stellari. Univ. Bologna Oss. Pub., v. 6, no. 4.
 - a. Figs. 2, 3, 4. Colour-magnitude diagrams.
 - b. Pages 8-16. Discussion of variables.

a. Page 255. Colour magnitude diagrams.

b. Page 259. Luminosity function.

c. Page 260. Evolutionary significance.

d. Page 272. Masses of cluster variables.

- 1954 SCHWARZSCHILD, M. Mass distribution and mass-luminosity ratio in galaxies. A. J., v. 59, pp. 273-284.
- 1954 WOOLLEY, R. v. d. R. A study of the equilibrium of globular clusters. M. N., v. 114, pp. 191–209.
- 1954I ZAGAR, F. Gli ammassi globulari di stelle. Oss. Astr. Milano-Merate Cont., NS no. 50, pp. 1-24. Catalogue of 102 globular clusters.
- 1954II ZAGAR, F. Sulla stabilita degli ammassi globulari di stelle. Oss. Astr. Milano-Merate Cont., NS no. 46, pp. 1–14.
- 1955 ABELL, G. O. Globular clusters and planetary nebulae discovered on the National Geographic Society-Palomar Observatory sky survey. A. S. P. Pub., v. 67, pp. 258-261.
- 1955*I* ARP, H. C. Cepheids of period greater than one day in globular clusters. *A. J.*, v. 60, pp. 1–17, with prints.
- 1955*II* ARP, H. C. Color-magnitude diagrams for seven globular clusters. A. J., v. 60, pp. 317-337.
- 1955 BAUM, W. A. The main sequence of population II. A. S. P. Pub., v. 67, p. 114.
- 1955 von HOERNER, S. Ueber die Bahnform der kugelförmigen Sternhaufen. Z. f. Ap., v. 35, pp. 255–264.
- 1955 HOYLE, F., and SCHWARZSCHILD, M. On the evolution of type II stars. *Ap. J. Supp.*, v. 2, no. 13, pp. 1-40.
- 1955J REDDISH, V. C. The absolute magnitude of the RR Lyrae variables. Obs., v. 75, pp. 124-125.
- 1955II REDDISH, V. C. The period-luminosity relation in population 11. M. N., v. 115, pp. 480-486.
- 1955I SAWYER, H. B. A summary of variable stars in globular star clusters. R. A. S. C. Jour., v. 49, pp. 114-116.
- 1955*II* SAWYER, H. B. A second catalogue of variable stars in globular clusters, comprising 1,421 entries. *Dunlap Pub.*, v. 2, no. 2, pp. 33-93.
 - a. Page 36. Thirty-four globular clusters not searched for variables.

b. Pages 38-39. Summary of variables in 72 globular clusters.

c. Pages 43-45. Clusters containing variables not RR Lyrae stars.

d. Pages 48-93. Catalogue of variable stars in globular clusters.

1955I STRUVE, O. Globular clusters and their history. Sky and Tel., v. 14, pp. 326-328.

a. Pages 326-327. Photos.

b. Pages 327-329. Structure and motion.

1955II STRUVE, O. More on globular clusters. Sky and Tel., v. 14, pp. 366-369.

- a. Pages 367-368. Large-scale photos.
- b. Page 366. Small-scale photos.
- c. Page 366. Position.
- d. Pages 367-368. Absolute magnitudes.

- 1956 BAUM, W. A. Globular clusters observed through a crystal ball. New Horizons in Astronomy. Smithsonian Cont. Astrophysics, v. 1, pp. 165-175.
 - a. Pages 165-169. Discussion of colour-magnitude diagrams.
 - b. Page 169. Interesting clusters in low latitudes.
 - c. Page 170. Table of data on high latitude clusters.
 - d. Pages 170-172. Comparison of spectral differences.
- 1956 VAN DEN BERGH, S. The diameter of globular clusters. Z. f. Ap., v. 41, pp. 61-65.

Table I. Cluster radii derived from the co-ordinates of cluster-type variables.

- 1956 HASELGROVE, C. B., and HOYLE, F. A preliminary determination of the age of type II stars. *M. N.*, v. 116, pp. 527-532.
- 1956 KOURGANOFF, V. Les galaxies. II, La galaxie. 2, Amas et associations stellaires. Le Ciel et la Terre, Paris.
- 1956 KREIKEN, E. A. A statistical study of pulsating stars. Sixth paper. Variables in miscellaneous clusters. Fac. Sci. Univ. Ankara Comm., v. 8, no. 1; Dept. Astr. Ankara Univ. Comm., no. 13, pp. 72-78.
- 1956 MORGAN, W. W. The integrated spectral types of globular clusters. A. S. P. Pub., v. 68, pp. 509-516.
 - a. Page 511. Globular clusters of later type.
 - b. Pages 511-512. Other globular clusters near nucleus.
 - c. Pages 512-514. Classification of McDonald spectrograms.
 - d. Plate I, and page 515. Photos of integrated spectra.
- 1956 ROBERTS, M. S. A theoretical luminosity function for the elliptical nebula M 32. A. J., v. 61, pp. 195–199.
- 1956 SCHMIDT, M. A model of the distribution of mass in the galactic system. B. A. N., v. 13, no. 468, pp. 15-41.
 - a. Pages 36-37. The distribution of globular clusters, with distance components.
 - b. Page 38. Radial velocities and rotational components of globular clusters.
- 1956 WOOLLEY, R. V. D. R. The equilibrium of globular clusters. Obs., v. 76, pp. 53-54.
- 1956 WOOLLEY, R. V. D. R., and ROBERTSON, D. A. Studies in the equilibrium of globular clusters. II. M. N., v. 116, pp. 288-295.
- 1957 VAN DEN BERGH, S. RR Lyrae stars and galactic structure. Perkins Cont., Ser. II, no. 9; A. J., v. 62, pp. 334-339. Sec. 1. RR Lyrae stars in globular clusters.
- 1957 FERRARI D'OCCHIEPPO. Zur Periode-Radius-Beziehung der Delta Cephei-Sterne. Univ. Sternw. Wien Mitt., v. 9, no. 7, pp. 143-152.
- 19571 VON HOERNER, S. Der innere Aufbau der Kugelsternhaufen. A. G. Mitt., 1956, pp. 18–19.
- 1957II VON HOERNER, S. The internal structure of globular clusters. Ap. J., v. 125, pp. 451-469.
- 1957 JOHNSON, H. L. The relation between U-B and absolute magnitude of F-type stars. A. S. P. Pub., v. 69, pp. 404-408.
- 1957 KHOLOPOV, P. N. Density distribution of RR Lyrae variables in globular clusters and phenomena of stratification in these systems. Var. Stars (Russ.), v. 11, no. 3, pp. 202–209.

- 1957 POVEDA, A. La energia potencial de la esfera politropica n = 5. Tonantzintla and Tacubaya Bol., no. 17, pp. 8–14.
- 1957 ROMAN, N. G. High velocity stars as Population I objects. A. J., v. 62, p. 146.
- 1957 ROSINO, L. Problems of variable stars in globular clusters. Konferenz über Veränderliche Sterne, Budapest, 1956. Mitt. Sternw. Ungar. Akad. Wiss., no. 42.
- 1957I SANDAGE, A. Observational approach to evolution. I. Luminosity functions. Ap. J., v. 125, pp. 422-434.
- 1957II SANDAGE, A. Observational approach to evolution. II. A computed luminosity function for KO-K2 stars from Mv = +5 to Mv = -4.5. Ap. J., v. 125, pp. 435-444.
- 1957 SELJACH, G. E. Die Berechnung der Massen der kugelförmigen Sternhaufen. Abh. Shdanow-Staatsuniv. Leningrad, no. 190 (Math. no. 29), pp. 52–58; Astr. Obs. Leningrad Pub., v. 17, pp. 52–58.
- 1957 SHAPLEY, H. *The Inner Metagalaxy*. Yale Univ. Press. The thickness of our galaxy, pp. 167–169. (Clusters farthest from galactic plane).
- 1957 STOHL, J. Gul'ové hviezdokopy. (Globular star clusters). Casopis, v. 7, pp. 45-52.
- 1958 ALTER, G., RUPRECHT, J., and VANÝSEK, V. Catalogue of Star Clusters and Associations. Publishing House of the Czechoslovak Academy of Sciences, Prague. Individual cards of references and data for each cluster.
- 1958 ARP, H. C. The Hertzsprung-Russell Diagram. Handbuch der Physik, v. 51, pp. 75-133. The H-R diagram for globular clusters, pp. 107-123.
 - a. Page 109, sec. 34, 35. RR Lyrae colours and gap.
 - b. Page 110, sec. 36. Fit of colour-magnitude diagrams.
 - c. Page 112, sec. 37. Stars off the main sequence.
 - d. Page 112, sec. 38. Position of giant sequence.
 - e. Page 113, sec. 39. Correlation with RR Lyrae periods.
 - f. Page 113, sec. 40. Spectra and chemical abundances.
 - g. Page 114, sec. 41. Observed main sequences.
 - h. Page 116, sec. 42. Ultraviolet colour indices.
 - i. Page 118, sec. 44. Zero point of absolute magnitude.
 - j. Page 120, sec. 46. Cepheids in globular clusters.
 - k. Page 123, sec. 49. Long period variables.
- l. Page 128, sec. 54. Population type and chemical composition.
- 1958 VAN DEN BERGH, S. Intergalactic globular clusters. Obs., v. 78, p. 85.
- 1958 BURBIDGE, E. M., and BURBIDGE, G. Stellar evolution. Handbuch der Physik,
 v. 51, pp. 134-295. Sec. III. Colour-magnitude diagrams of globular clusters.
 - a. Page 213. Colour-magnitude diagrams of globular clusters.
 - b. Page 216. Luminosity functions of field stars and clusters.
 - c. Page 234. Stellar evolution in the local group.
- 1958 BURBIDGE, E. M., and SANDAGE, A. Properties of two intergalactic globular clusters. *Ap. J.*, v. 127, pp. 527–538, with plates.
- HECKMANN, O. Report of commission on star clusters and associations. I. A. U. Draft Report, v. 10, pp. 360–361; I. A. U. Trans., v. 10, pp. 575–590, 1960.
- 1958 KHOLOPOV, P. N. See the reference for 1957 Kholopov; Summ., Ast. News Letter no. 98, 1960.

- 1958I KINMAN, T. D. A revision of the distance moduli of the galactic globular clusters. M. N. A. S. S. A., v. 17, no. 3, pp. 19-23; Radcliffe Repr., no. 9.
- 1958II KINMAN, T. D. A revision of the distance moduli of seventy-five globular clusters. Obs., v. 78, pp. 122-123.
- 1958 LEDOUX, P., and WALRAVEN, TH. Variable Stars. Handbuch der Astrophysik, v. 51, pp. 353-604.
 - a. Page 366. Form of light curves and relation to period.
 - b. Page 405. Long period variable stars.
 - c. Page 582. The RR Lyrae stars.
 - d. Page 583. The short period Cepheids in clusters, the W Virginis stars and the RV Tauri stars.
- 1958 MAFFEI, P. Venti anni di attivita della stazione astronomica dell' Universita di Bologna a Loiano. Univ. Bologna Oss., Pub., v. 7, no. 1, pp. 1-58. Photographs with Loiano reflector.
- 1958 NÁPRSTKOVÁ, J. Globular clusters. Ríŝe hvězd, v. 39, pp. 155-157.
- 1958 ROSINO, L. Ricerche astronomiche ed astrofisiche all' Osservatorio dell' Universita di Padova—Parte I. Asiago Cont., no. 111; La Ricerca Scientifica anno 28, no. 6.
- 1958I SANDAGE, A. The color-magnitude diagrams of galactic and globular clusters and their interpretation as age groups. Conf. Stellar Populations, Vatican Obs., 1957. *Ric. Astr. Vaticano*, v. 5, pp. 41-68.
- 1958II SANDAGE, A. Luminosity function of galactic clusters, globular clusters, and elliptical galaxies. Conf. Stellar Populations, Vatican Obs., 1957. Ric. Astr. Vaticano, v. 5, pp. 75–93.

1958 SAURER, J.-M. Les amas globulaires. Soc. Astr. Fr., Bull., v. 72, pp. 359-365. 1958 J SAWYER HOGG, H. Globular star clusters. R. A. S. C. Jour., v. 52, pp. 97-108.

- a. Page 98. Recently added globular clusters.
- b. Page 99. Intergalactic globular clusters.
- c. Page 100. Surface brightness curve.
- d. Page 101. Star counts.
- e. Pages 102-103. Colour-magnitude diagrams.
- f. Pages 102-105. Spectra.
- g. Page 105. Direct photo and integrated spectrum.
- h. Pages 104-106. Variables.
- i. Pages 106-107. Motions.
- 1958II SAWYER HOGG, H. Report of president of Sub-commission 27b, Variable stars in globular clusters. I. A. U. Draft Reports, v. 10, pp. 242-245; I. A. U. Trans., v. 10, pp. 424-427, 1960.
- 1958 VANDEKERKHOVE, E. The reddening of the extragalactic nebulae. Obs., v. 78, pp. 206-211; Obs. Roy. Belgique, Comm., no. 149, 1959.
- 1958 WALLERSTEIN, G. Note on the population II Cepheid region in the colormagnitude diagram of globular clusters. Ap. J., v. 128, pp. 141-142.
- 1959 VAN AGT, S. L. TH., and OOSTERHOFF, P. TH. Observations of variable stars in the globular clusters NGC 4590 (M 68) and NGC 6266 (M 62). *Leiden Ann.*, v. 21, pt. 4, pp. 253-290. Section 4. The frequency distribution of the variables in NGC 4590 and NGC 6266 as compared with that in other globular clusters.

- 1959 ALTER, G., HOGG, H. S., RUPRECHT, J., and VANÝSEK, V. Catalogue of star clusters and associations, Supplement I. Astr. Inst. Czechoslovakia, Bull., v. 10, no. 3, App.
- 1959 ARP, H. The absolute magnitudes, colors, and metal abundance of stars in globular clusters. A. J., v. 64, pp. 441-447.
 - a. Pages 441-442. General.
 - b. Pages 442-444. Absolute magnitudes and colours.
 - c. Pages 444-446. Metal abundance. Table I.
 - d. Pages 446-447. Discussion.
- 1959 BAUM, W. A. The Hertzsprung-Russell diagrams of old stellar populations.
 I. A. U. Symposium no. 10, Aug. 1958; Ann. d'Ap., Supp., no. 8, pp. 23-32, 1959.
- 1959 DUFAY, J., and BIGAY, J. H. Mesure photoélectrique des indices de couleur de 21 amas globulaires. C. R. Acad. Sci. Fr., v. 248, no. 15, pp. 2162– 2164; Haute-Provence Pub., v. 4, no. 41.
- 1959 DZIGVASHVILI, R. M. The determination of parameters of the velocity distribution function for the globular clusters on the base of the maximum likelihood principle. *Abastumani Astrophys. Obs. Bull.*, no. 24, pp. 129-142.
- 1959 JOHNSON, H. L. The integrated magnitudes and colors of globular clusters. Lowell Bull., v. 4, no. 99, pp. 117-121.
- 1959I KINMAN, T. D. Globular clusters. I. The radial velocities of southern globular clusters. M. N., v. 119, no. 2, pp. 157–173; Radcliffe Comm., no. 47.
 - a. Page 160. Table III. Radial velocities from Cassegrain spectra.
 - b. Page 168. Table V. A comparison of globular cluster velocities.
 - c. Page 170. Table VII. Radial velocities from Newtonian spectra.
 - d. Page 171. Table VIII. Velocities and distances for seventy globular clusters.
- 195911 KINMAN, T. D. Globular clusters. II. The spectral types of individual stars and of the integrated light. M. N., v. 119, pp. 538-558.
 - a. Page 540. Table Ia. Classification of spectra of globular cluster giants.
 - b. Page 540. Table Ib. Spectral types for integrated Cassegrain spectra.
 - c. Page 540. Table Ic. Spectral types for integrated Newtonian spectra.
 - d. Plate 9. Representative spectra of cluster giants.
 - e. Plate 10. Representative integrated cluster spectra.
 - f. Pages 542-543. Composite colour-magnitude diagram.
 - g. Pages 545-549. Metal line strengths in globular cluster giants.
 - h. Pages 549-553. Interpretation of integrated spectra.
 - *i*. Page 553. Table V. Spectral type and distance from galactic plane and galactic centre for 63 clusters.
 - j. Page 557. Correlations of numbers of RR Lyrae stars.
- 1959/III KINMAN, T. D. Globular clusters. III. An analysis of the cluster radial velocities. M. N., v. 119, pp. 559-575.
- 1959 KRAFT, R. P., CAMP, D. C., and HUGHES, W. T. The hydrogen emission lines in population II variable stars. Ap. J., v. 130, pp. 90-98; Goethe Link Pub., no. 32; McDonald Cont., no. 305.
- 1959 KRON, G. E., and MAYALL, N. U. Photoelectric photometry of galactic and extragalactic star clusters. A. J., v. 64, pp. 428-431.
- 1959 КИROCHKIN, N. E. Period-amplitude diagram for the stars of RR Lyrae-type. A. J. UdSSR v. 36, pp. 816–824; Summ., Ast. News Letter no. 99, 1960.

- 1959 LARSSON-LEANDER, G. The galaxy. Second Conference on Co-ordination of Galactic Research. I. A. U. Symposium no. 7. The galactic disk.
 - a. Page 35. Globular clusters.
 - b. Page 37. Long period variables.
- MATSUNAMI, N., OBI, S., SHIMODA, M., TAKASE, B., and TAKEBE, H. Evolution of globular clusters. Ast. Soc. Japan, Pub., v. 11, no. 1, pp. 9-34. See also: TAKASE, B., MATSUNAMI, N., and SHIMODA, M. Note on the evolution of globular clusters. Ast. Soc. Japan, Pub., v. 12, no. 2, pp. 293-296, 1960: Tokyo Obs. Repr., no. 177; Ref., Astr. Herald v. 52, p. 178. Table of 94 globular clusters.
- 1959 MORGAN, W. W. The integrated spectra of globular clusters. A. J., v. 64, pp. 432-436.
 - a. Page 432. Introduction.
 - b. Page 434. Table I. Classification of spectra by groups.
 - c. Page 434. Nucleus-disk clusters.
 - d. Pages 435-436. Appendix and discussion.
- 1959 PAYNE-GAPOSCHKIN, C. Cepheid variables and the period-luminosity relation. Wash. Acad. Sci., Jour., v. 49, no. 10, pp. 333-350; Harv. Repr. no. 536.
- 1959 PRESTON, G. C. A spectroscopic study of the RR Lyrae stars. Ap. J., v. 130, pp. 507-538.
- 1959 PRESTON, G. W., and SPINRAD, H. On the intrinsic colors of the RR Lyrae stars. A. S. P. Pub., v. 71, pp. 497-502.
- 1959 SANDAGE, A. Symposium: The differences among globular clusters. General discussion. A. J., v. 64, pp. 447-450.
- 1959I SAWYER HOGG, H. Star clusters. Handbuch der Physik, v. 53, pp. 129-207. a. Page 130. Historical.
 - b. Pages 168-170. Absolute magnitudes, colours, dianieters, absorption.
 - c. Page 170. Structure and concentration class.
 - d. Pages 172-174. Distances.
 - Pages 174–177. Density distribution, luminosity function, photo NGC 6205.
 - f. Pages 146, 177-178. Colour-magnitude diagrams.
 - g. Page 179. Integrated spectra.
 - h. Page 181. Individual spectra.
 - i. Pages 181-184. Variables.
 - j. Pages 184-185. Planetary nebula, diffuse nebulosity.
 - k. Pages 185-187. Motions.
 - l. Pages 187-188. Radial velocities of individual stars.
 - m. Pages 188-190. Masses and densities.
 - n. Page 190. Evolution and age.
 - o. Page 192. Relation to elliptical galaxies.
 - p. Page 205. App. B. Catalogue of globular clusters.
- 1959II SAWYER HOGG, H. Variable stars in star clusters. R. A. S. C. Jour., v. 53, pp. 97-108.
 - a. Page 97, Numbers of variables.
 - b. Page 98. Photo IC 1276.
 - c. Page 99. RR Lyrae stars.
 - d. Page 100. Slow variables.
 - e. Page 101. Variables in intergalactic clusters.

- 1959*III* SAWYER HOGG, H. The areas of difference among globular clusters. A. J., v. 64, pp. 425–428.
- 1959 SPINRAD, H. Photoelectric observations of RR Lyrae stars. Ap. J., v. 130, pp. 539–559; Berkeley Repr., no. 156.
- 1959 STRUVE, O. Observational data of interest in the study of stellar evolution. Modèles d'étoiles et évolution stellaire. Univ. Liège Inst. d'Astrophy. 8°; Mem. Roy. Soc. Liège, 5th Ser. v. 3, pp. 17-40.
- 1959 THACKERAY, A. D. Comparison of globular clusters in the galaxy and in the Magellanic Clouds. A. J., v. 64, pp. 437-441; Radcliffe Repr., no. 14.
 - a. Pages 439-440. Brightest stars.
 - b. Page 441. Discussion.
- WALLERSTEIN, G. The brightest main sequence star in M 67. A. S. P. Pub.,
 v. 71, pp. 451-454.
- 1959 WILSON, O. C. A color-magnitude diagram for late-type stars near the sun. Ap. J., v. 130, pp. 496-499. (Comparison).
- 1960 ALTER, G., RUPRECHT, J., and VANÝSEK, V. Catalogue of star clusters and associations, Supplement 2. Astr. Inst. Czechoslovakia, Bull., v. 11, no. 1, App.
- 1960 BOWEN, I. S. Annual report of the director, Mount Wilson and Palomar Observatories. Carnegie Inst. Wash., Year Book 59. Globular and galactic clusters, pp. 17-18.
- 1960 BURBIDGE, G. R. The formation of stars by the condensation of diffuse matter. Die Entstehung von Sternen. Springer, Berlin. Chap. III. Associations and clusters, pp. 51-78.
 - a. Page 72. Colour-magnitude diagrams of globular clusters.
 - b. Page 73. Effect of chemical composition: fitting of main sequences of globular and galactic clusters.
 - c. Page 75. Horizontal branch stars in clusters.
 - d. Page 77. Luminosity functions of clusters.
- 1960 CHALONGE, D. Détermination spectrophotométrique des types, des luminosités et des âges des étoiles. Ann. d'Ap., v. 23, pp. 439-443. (Münch's comments on blue stars in M 13).
- 1960 EBERT, R., VON HOERNER, S., and TEMESVÁRY, ST. Die Entstehung von Sternen durch Kondensation diffuser Materie. Die Entstehung von Sternen. Springer, Berlin. Massenbestimmung, p. 240.
- 1960 EGGEN, O. J. The two-colour relation for horizontal branch stars in globular clusters. M. N. A. S. S. A., v. 19, no. 9, pp. 115–117.
- 1960 FEAST, M. W., THACKERAY, A. D., and WESSELINK, A. J. The brightest stars in the Magellanic Clouds. M. N., v. 121, no. 4, pp. 337–385. (Comparison of velocity determination with 47 Tuc, p. 341).
- 1960 GINGERICH, O. Abbé Lacaille's list of clusters and nebulae. Sky and Tel., v. 19, no. 4, pp. 207–208; Harv. Repr. Ser. 11, no. 156.
- 1960I HODGE, P. W. Studies of the Large Magellanic Cloud. II. The globular cluster NGC 1846. Ap. J., v. 132, pp. 341-345. (Giant branch similar to that of NGC 6356).
- 1960/I HODGE, P. W. Studies of the Large Magellanic Cloud. III. The globular cluster NGC 1978. Ap. J., v. 132, pp. 346-352. (Comparison).
- 1960*III* HODGE, P. W. Studies of the Large Magellanic Cloud. IV. The globular cluster Anonymous 4. *Ap. J.*, v. 132, pp. 351–353. (Comparison).

- 1960 IKHSANOV, R. N. Some problems of the interrelation of stars and nebulae and their evolution. A. J. UdSSR, v. 37, no. 4, pp. 642–658; Soviet Astr. AJ, v. 4, pp. 613–628, 1961.
- 1960 JOHNSON, H. L. On the determination of photometric distance moduli for star clusters. *Lowell Bull.*, v. 5, no. 2, pp. 17–22.
- 1960 KRON, G. E. Multiple color photometry. Vistas in Astronomy, vol. III, ed. A. Beer, pp. 171-183. Reddening, p. 179.
- 1960 KRON, G. E., and MAYALL, N. U. Photoelectric photometry of galactic and extragalactic star clusters. A. J., v. 65, no. 10, pp. 581-620.
 - a. Page 586. Table IV. Magnitudes and related diameters of 67 galactic globular clusters.
 - b. Page 589. Table V. Comparison of infrared filters.
 - c. Page 590. Table VIa. Colours of star clusters in the galaxy.
 - Pages 598–599. Table VIII. Spectral types and comparison of spectral type estimates.
 - e. Page 599. Colour excess and absorption.
 - f. Page 601. Table X. Revised spectral types, colour excesses, and absorptions.
 - g. Page 604. Table XI. Comparison of colour excesses.
 - h. Page 604. Luminosities, colours, distances, diameters.
 - *i.* Page 605. Table XIII. App. moduli, luminosities, colours and magnitudes.
 - j. Page 606. Table XIV. Comparison of total abs. vis. magnitudes.
 - k. Page 608. Table XVII. Corrected moduli.
 - 1. Page 617. Table XXI. Comparison of results for galactic globulars.
 - m. Page 617. Galactic centre.
 - n. Page 618. Addendum.
- 1960 KURTH, R. Ueber die Bahnformen der kugelförmigen Sternhaufen. Z. f. Ap., v. 50, pp. 215–224.
- 1960 MARKARIAN, B. E. Discussion of the nature of population of star systems from partial luminosities. *Bjurakan Obs. Comm.*, v. 28, pp. 52-74.
- 1960 MORGAN, W. W. Yerkes Observatory and McDonald Observatory report. A. J., v. 65, p. 577. Integrated spectra.
- 1960 PAVLOVSKAYA, E. D. The periods of short-period Cepheids in the direction to the galactic center. Var. Stars (Russ.), v. 13, no. 1, pp. 8-25.
- 1960 ROBERTS, M. S. Dust and gas in globular clusters. A. J., v. 65, pp. 457-466, with plates. Summary, discussion, and photos, O. STRUVE, Sky and Tel., v. 10, pp. 456, 458, 1060.
 - v. 19, pp. 456–458, 1960.
 - a. Page 457. Obscuring matter.
 - b. Page 458. Table I. Globular clusters containing dark regions or lanes.
 - c. Page 458. Statistical fluctuations.
 - d. Figs. 1 and 2. Red and blue photos of globular clusters showing obscured regions.
 - e. Page 459. Mass of intraglobular clouds.
 - f. Page 460. Emission from possible H I and H II regions in globular clusters.
 - g. Page 461. Formation and removal of intraglobular matter.
 - h. Page 462. Effects on stellar population of a cluster.

- 1960 SANDAGE, A. R., and EGGEN, O. J. Photometry in the Magellanic Clouds. III. The cluster NGC 1783. M. N., v. 121, pp. 232–237. Composite diagram, p. 236.
- 1960 SANDAGE, A., and WALLERSTEIN, G. Color-magnitude diagram for the disk globular cluster NGC 6356 compared with halo clusters. Ap. J., v. 131, no. 3, pp. 598–609, with plates. Characteristics of many clusters, Table 4, p. 607.
- 1960 WALLERSTEIN, G., and CARLSON, M. On the ultraviolet excess in G dwarfs. Ap. J., v. 132, pp. 276-277.
- 1960 WILKENS, H. Leuchtkraft und Durchmesser der Kugelhaufen. Obs. Astr. Univ. Nacional La Plata, Circ., no. 16.
 - a. Table Ia. Distance modulus for 54 clusters in positive galactic latitude.
 - b. Table Ib. Distance modulus for 54 clusters in negative galactic latitude.
 - c. Table 2a. 65 well observed clusters.
 - d. Table 2b. 43 poorly observed clusters.
 - e. Discussion.
 - f. Table 3a. Determination of constant for 31 clusters, positive latitude.
 - g. Table 3b. Determination of constant for 31 clusters, negative latitude.
- 1961 ALTER, G., HOGG, H. S., RUPRECHT, J., and VANÝSEK, V. Catalogue of Star Clusters and Associations, Supplement 3. Astr. Inst. Czechoslovakia, Bull., v. 12, no. 1, App. pp. 21.
- 1961 VAN DEN BERGH, S. The halo phase of galactic evolution. A. S. P. Pub., v. 73, pp. 135–142.
- 1961 HAFFNER, H. Report of Commission 37. Star clusters and associations. I. A. U. Trans., v. XI A, pp. 419–449.
 - a. Table 3. Globular clusters photometrically studied.
 - b. Special investigations.
- 1961 HÉNON, M. Sur l'évolution dynamique des amas globulaires. Ann. d'Ap., v. 24, no. 5, pp. 369-419. Pp. 42-45, Masses and radii.
- 1961 КUROCHKIN, N. E. RR Lyr type stars in the distant vicinities of globular clusters. Var. Stars (Russ.), v. 13, no. 4, pp. 248–254.
- 1961 LOHMANN, W. Die Helligkeitsverteilungen in 16 kugelförmigen Sternhaufen. Z. f. Ap., v. 53, no. 4, pp. 247–255.
- 1961 MICHIE, R. W. Structure and evolution of globular clusters. *Ap. J.*, v. 133, pp. 781–793; Summ., *A. J.*, v. 66, p. 49.
- 1961 РАУNE-GAPOSCHKIN, C. The absolute magnitudes of RR Lyrae stars. A. S. P. Pub., v. 73, pp. 100–102.
- 1961 POVEDA, A. A mass-luminosity relation for dust-poor stellar systems. Ap. J., v. 134, pp. 910–915.
- 1961 PRESTON, G. W. A coarse analysis of three RR Lyrae stars. *Ap. J.*, v. 134, pp. 633–649.
- 1961I SAWYER HOGG, H. Star clusters with variable stars. A. S. P. Leaflet, no. 385.
- 1961II SAWYER HOGG, H. The role of star clusters in our understanding of the galaxy. Roy. Soc. Canada, Trans., 3rd Ser., v. 55, Sec. III, pp. 1-14.
 a. Photos.
 - b. Clusters mentioned.
- 1961*III* SAWYER HOGG, H. Report of Sub-commission 27b, Variable stars in star clusters. *I. A. U. Trans.*, v. XI A, pp. 271–279.

- 1961 SHAROV, A. S., and PAVLOVSKAYA, E. D. On the kinematics of the globular clusters. A. J. UdSSR, v. 38, pp. 939-945; Soviet Astronomy AJ, v. 5, pp. 716-721, 1962.
- 1961 SLETTEBAK, A., BAHNER, K., and STOCK, J. Spectra and colors of early-type stars near the north galactic pole. Ap. J., v. 134, pp. 195–206. Page 205, Spectra in globular clusters by G. Münch.
- 1961 STOTHERS, R. B., and SCHWARZSCHILD, M. On the periods of long-period variables in globular clusters. *Ap. J.*, v. 133, pp. 343-346.
- 1961 WOOLLEY, R. V. D. R. Globular clusters. Obs., v. 81, no. 924, pp. 161-182.
- 1961I WOOLLEY, R. V. D. R., and DICKENS, R. J. Studies in the equilibrium of globular clusters. IV. Surface photometry compared with theory. *Roy. Obs. Bull.*, no. 42, pp. 291-300.
- 1961II WOOLLEY, R. V. D. R., and DICKENS, R. J. Studies in the equilibrium of globular clusters. V. Rotation. Roy. Obs. Bull., no. 46, pp. 377-386.
- 1962 ALLER, L. H. Spectrophotometry of southern objects. A. S. P. Pub., v. 73, p. 398.
- 1962 ALTER, G., HOGG, H. S., RUPRECHT, J. Catalogue of star clusters and associations, Supplement 4. Astr. Inst. Czechoslovakia, Bull., v. 13, no. 1, App., pp. 28.
- 1962I Arp, H. The effect of reddening on the derived ages of globular clusters and the absolute magnitudes of RR Lyrae cepheids. Ap. J., v. 135, pp. 971-975.
- 1962II Arp, H. C. Intrinsic variables and stellar evolution. Symposium on Stellar Evolution, Nov. 7-11, 1960. Ast. Obs. Univ. La Plata, pp. 87-117.
 - a. Page 90. Regions of variability.
 - b. Page 91. Long period variables in globular clusters.
 - c. Page 93. The RR Lyrae stars.
 - d. Page 94. The long period globular cluster Cepheids.
 - e. Pages 107-117. Discussion.
- 1962 BAHNER, K., HILTNER, W. A., and KRAFT, R. P. Colors and magnitudes for 45 Cepheids of the northern Milky Way. Ap. J. Supp., v. VI, no. 59, pp. 319-356.
- 1962 VAN DEN BERGH, S. The color-magnitude diagram of high-velocity stars. A. S. P. Pub., v. 74, pp. 308-311.
- 1962 VAN DEN BERGH, S., and HENRY, R. C. Photoelectric spectrophotometry of globular clusters. *Dunlap Pub.*, v. 2, no. 10, pp. 281-313.
- 1962 EGGEN, O. J., and SANDAGE, A. R. On the existence of subdwarfs in the (Mbol, log T_e)-Plane. II. Ap. J., v. 136, pp. 735-747.
- 1962 FERNIE, J. D. Distance to the galactic center from globular clusters. A. J., v. 67, no. 10, pp. 769–774. Table of X, Y, Z for 74 clusters.
- 1962 HAFFNER, H. Report of meetings of I. A. U. Commission 37, Star Clusters and Associations. I. A. U. Trans., v. XI B, pp. 341-346.
- 1962 KING, I. The structure of star clusters. I. An empirical density law. A. J., v. 67, no. 8, pp. 471-485.
- 1962 KINMAN, T. D. Limiting radii of stellar systems in the neighborhood of the galaxy. A. S. P. Pub., v. 74, pp. 424-429; Lick Cont., no. 138.
- 1962 KUMAR, S. S. On the age of the galaxy. Obs., v. 82, no. 926, pp. 34-36.

- 1962 MICHIE, R. W. Dynamics of spherical stellar systems: properties of theoretical models, and comparison with clusters and elliptical galaxies. A. J., v. 67, no. 9, p. 582.
- 1962*I* ROSINO, L. Work being carried out at the Asiago Observatory. *I. A. U. Trans.*, v. XI B, pp. 300–301.
- 1962II ROSINO, L. Ricerche astronomiche nell'emisfero australe III. Stelle variabili negli ammassi globulari NGC 5986, 6304, 6558, 6569, 6637 (M 69), 6681 (M 70) e zone attigue. Soc. Astr. Ital. Mem., v. XXXIII no. 4; Asiago Cont. no. 132. Table 14. Morgan's spectral classes and numbers of variables.
- 1962 ROSINO, L., and SAWYER HOGG, H. Report of meeting of Sub-Commission 27b, Variable stars in star clusters, 22 August 1961. I. A. U. Trans., v. XI B, pp. 301–302.
- 1962I SANDAGE, A. Introductory report. Symposium on Stellar Evolution, Nov. 7-11, 1960. Ast. Obs. Univ. La Plata, pp. 1-22.
- 1962II SANDAGE, A. The age of the oldest stars in the galaxy compared with the cosmic expansion time. Symposium on Stellar Evolution, Nov. 7–11, 1960. Ast. Obs. Univ. La Plata, pp. 119–135.
- 1962 SAWYER HOGG, H. Numbers and kinds of variables in globular clusters. Remeis-Sternw. Bamberg, Kl. Veröff., no. 34, pp. 8-10.
- 1962 STRUVE, O. The oldest star clusters. Sky and Tel., v. 24, pp. 261-263.

-

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

NUMBER 13

DISTANCES OF 97 OB STARS

BY HARRY H. GUETTER

1964 Toronto, canada

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

DISTANCES OF 97 OB STARS

By HARRY H. GUETTER*

Abstract

Equivalent widths of the H_{γ} line are determined for 97 stars of spectral range B3 and earlier which have been observed spectroscopically at the David Dunlap Observatory. All the equivalent widths were reduced to the system of the Dominion Astrophysical Observatory, Victoria, B.C. The distances of these stars were obtained by the use of the H_{γ} -M_V calibration determined by Johnson and Iriarte (1958) and the assumption that the ratio of total to selective absorption is 3.0.

The distances of various association members are compared to one another, and it is concluded that the luminosity calibration may be incorrect for very bright stars.

Finally, the effect of duplicity among OB stars on the $H\gamma$ -M_V calibration is briefly examined.

INTRODUCTION

The basis of this study is the correlation between the equivalent width of the $H\gamma$ line of an early-type stellar spectrum and the star's absolute magnitude, to which attention has been directed by Petrie (1953). This relation has been recalibrated by Johnson and Iriarte (1958) with cluster stars whose luminosities have been determined by zero-age main sequence fits. By a combination of this estimate of absolute magnitude with the apparent magnitude and colour of the star, the distance of the star can be computed.

Observational Data

Stars of spectral type no later than B3 and fainter than apparent magnitude 6.0 were considered in this investigation. With these criteria 97 stars were selected from spectrograms already available in the plate files of the David Dunlap Observatory. Upwards to eight usable spectrograms were available for each star.

The spectrograms had all been obtained on Eastman 103aO emulsion with the one-prism spectrograph of the 74-inch telescope at the David Dunlap Observatory. The spectrograph has two cameras giving dispersions at H γ of 33 A./mm. and 66 A./mm. respectively. The former was used for many stars brighter than $m_{pg} = 7.0$, while the latter was used to obtain fainter spectra. The slit width was chosen between 0.02 mm. and 0.04 mm., depending on the brightness of the star and the seeing and transparency during the time of observation.

*Now at the U.S. Naval Observatory, Flagstaff, Arizona.

CALIBRATION AND ERROR DETERMINATION

The measurement of the spectra was carried out with the Dunlap microphotometer (Oke 1957) with the aid of tube sensitometer calibrations. The sensitometer spots, exposed on each plate beforehand, are used to transform density to intensity. The intensity steps were taken from the work of Armstrong (1933), checked by Wellmann (1957).

The mechanical magnification of the microphotometer was calculated from the iron arc comparison lines to be 45.5.

The spectra usually were traced from $\lambda 4250$ to $\lambda 4450$ centred about $H\gamma$ so that the continuum could be estimated fairly accurately. The mean of density readings taken on the unexposed parts of the plate adjacent to the $H\gamma$ line was considered to be zero intensity since many plates showed uneven fog density.

To obtain the line profile, the best-determined side of the H γ line was drawn, the centre of the profile estimated, and the opposite side of the profile drawn symmetrically to the first. In this way the effects are minimized of other lines which are close to the H γ line, for example OII λ 4349 and λ 4351, and also photographic irregularities.

The plates were given weights from zero to unity to denote the quality of the spectrogram. Similarly, the tracings were also given weights from zero to unity. The two weights were then multiplied to give the final weight for a particular measurement. In case of more than one measurement, the square of the final weight was taken to equal the sum of the squares of the individual weights. The weights of spectra obtained with the 33 A./mm. dispersion were doubled with respect to those of the 66 A./mm. dispersion.

Calibration of the Equivalent Widths

The $H\gamma$ -M_v calibration by Johnson and Iriarte (1958) is based on Victoria equivalent widths. It was therefore necessary to determine the transformation required to convert the Dunlap equivalent widths to the Victoria system. From twenty-one stars in common, it was found for the 33 A./mm. dispersion that

 $H\gamma_{\text{Victoria}} = (1.08 \pm 0.07) H\gamma_{\text{Dunlap}}$

From twenty-five stars in common, it was found for the 66 A./mm. dispersion that

 $H\gamma_{Victoria} = (1.07 \pm 0.08) H\gamma_{Dunlap}$. The individual points are shown in figures 1 and 2.

FIG. 1—Comparison of the H_{γ} equivalent widths from spectra obtained at the David Dunlap Observatory and the Dominion Astrophysical Observatory (Victoria) for the 33 A./mm. dispersion.

FIG. 2—Comparison of the H_{γ} equivalent widths from spectra obtained at the Dunlap Observatory and Victoria for the 66 A./mm. dispersion.

Absolute Magnitudes

The data for the stars which were studied in the present programme are listed in Table I. The designations of the columns are self-explanatory except for the following. Column 8 (Ref.), is the reference to the source of the photometric data: (a) Hiltner (1956), (b) Hiltner and Johnson (1956), (c) Hiltner and Iriarte (1955), (d) Author's observations obtained with the photometer attached to the 19-inch reflector at the David Dunlap Observatory (Marlborough 1964); column 9 (W), is the equivalent width of the H γ line; column 10(Wt.), is the combined weights of the plate-tracing combination; column 11 ($\pm \Delta W$), is the standard error of the equivalent width in units of 0.01 A.

DISTANCES OF VARIOUS ASSOCIATIONS

Some of the stars in the present programme are members of associations. Since most associations are fairly rich in early-type stars, only a few stars in each association were studied spectroscopically.

The information obtained for four associations is given in Table II. First the name of the association and its distance (as determined by other workers) are given. For each association, the individual stars are listed as to: the spectral type; the equivalent width of the H γ line; the total weight given to the spectrum-tracing combination; the number of plates used; the internal dispersion or standard error of the equivalent width in milliangstroms; the distance modulus; and the distance in kiloparsecs.

Table II shows that the four stars of III Cygni agree fairly well with one another, giving an average distance of 1.6 kpc., which is only a little smaller than the distance given by Schmidt (1958). The three stars of III Cephei yield an average distance of 0.85 kpc., corresponding closely to that estimated by Blaauw, Hiltner and Johnson (1959). For the other two associations significant discrepancies are found, in that the computed distances of the three stars with equivalent widths smaller than about 2.0 angstroms are much greater than those with larger equivalent widths. Three possible explanations suggest themselves: (a) that the Johnson and Iriarte calibration is over-luminous for small equivalent widths, (b) that the three discordant stars are not association members, but background stars and (c) that incipient emission at $H\gamma$ in the spectra of these stars has reduced the value of the equivalent widths. It is not possible to choose among these explanations because of the small sampling.

	Dist. (kpc.)	3.60	4.32	0.20	1.72	1.85	1.20	1.69	0.23	0.51	0.88	1.14	2.33	1.15	1.70	2.17	3.19	2.47	1.07	1.28	3.10	1.54	3.75	5.10	
	ΔW (0.01А.)		20	35	10	13	53	36	\$	61	85	35	18	s	20	53	10	16				15			
	Wt.	0.9	1.4	1.8	1.0	0.7	1.1	1.4	1.0	0.9	1.2	1.5	1.1	1.0	0.8	1.2	1.2	1.3	0.7	0.9	0.9	0.8	0.6	0.6	.1961
	W (A.)	2.0	2.3	9.2	2.8	2.0	3.9	3.9	7.9	4.7	5.3	5.1	2.3	2.8	2.0	5.3 7	त. त	6 10 10	2.9	50 100	1.3	4.5	1.8	1.5	p. 510,
	Ref.	a	9	þ	5	8	9	v	р	а	р	р	а	ы	а	q	þ	р	v	u	р	ч	a	u	. part 7.
	U—B	-0.75	-0.51	-0.63	-0.16	-0.36	-0.65	-0.56	-0.51	-0.33	-0.28	-0.38	-0.66	-0.78	-0.69	-1.04	-0.80	-0.67	-0.29	-0.88	-0.66	-0.70	-0.42	-0.39	Obs., vol. 17
	B−√	+0.30	+0.47	-0.05	+0.72	+0.62	+0.23	+0.26	+0.14	+0.35	+0.49	+0.45	+0.32	+0.20	+0.29	-0.19	+0.05	+0.23	+0.59	+0.01	+0.30	+0.30	+0.68	+0.61	U.S. Naval (
	. 1	8.52	9.55	7.50	8.50	7.71	7.37	8.57	7.46	7.03	9.30	9.43	8.04	6.81	6.92	6.44	7.81	7.89	7.17	5.98	6.82	9.44	9.54	9.38	lix of Publ.
	Sp.	B0.5V	B2p1-11	B2V	B31a	B1.51b	B21b	B1II-III	B3V	B3111	B3111	B3111	B0.5IV	09.5111	B011	09V	B0.5111	B0.5111	B3Ia	1160	B0Ib	09.5V	OSIV	BHI	isted in append
	\mathbf{b}^{11}	-0°.2	-0.2	-14.2	+ 1.7	+ 0.9	- 3.9	- 4.4	+ 2.2	-21.3	+ 7.6	+ 7.7	-0.2	+ 0.6	+ 3.9	+2.6	+26.7	+13.1	-0.5	- 1.6	-1.5	+ 0.8	+ 1.3	- 0·+	ourth stars
	111	119°.3	119.3	120.3	122.8	123.7	134.4	135.1	140.2	158.9	143.7	143.7	173.2	172.8	188.5	224.4	9.8	23.6	11.3	10.8	12.7	17.0	18.6	16.7	third and f
B.D.	or H.D.	$+ 61^{\circ} 39$	$+ 61^{\circ} 40$	3261	4694	5551	13841	14302	20134	21483	1502 #3*	1502 #4*	35633	35921	43818	57682	149363	161961	166628	167263	168021	$-13^{\circ} 4930$	168161	168894	*NGC 1502.

TABLE I Data for the OB Stars Distances of 97 OB Stars

409

	ΔW Dist.	0.01A.) (kpc.)	40 2.13	1.5 2.37	41 0.81	4.23	26 3.22	4 4.45	0.83	10 3.25	26 1.31	14 1.28	35 3.03	13 1.25	0.67	0.82	24 2.49	52 0.74	4 1.37	75 0.50	37 0.49	35 1.45	8 1.67	15 1.68	60 1.64	10 1.95	
		Wt. ((0.9	1.2	1.3	0.6	0.7	1.1	0.6	1.0	1.5	1.2	1.3	1.5	0.8	0.7	1.0	1.5	0.9	0.9	1.6	0.8	1.1	0.9	1.0	0 8	2.2
	M	(·V)	2.6	1.4	4.2	2.4	2.3	2.0	4.2	2.6	5.3	2.3	2.6	5.6	4.5	4.5	2.6	5.7	4.0	5.2	5.5	3.1	2.4	2.3	2.5	2.6	2
		Ref.	c	Ч	р	C	q	С	а	a	u	а	а	а	р	a	a	a	u	р	р	n,	13	u	3	C	5
		U—B	-0.34	-0.57	-0.26	-0.66	-0.52	-0.64	-0.45	-0.71	-0.70	-0.29	-0.78	-0.57	-0.86	-0.31	-0.45	-0.62	-0.63	-0.66	-0.42	-0.15	-0.19	-0.06	-0.15	-0.97	2.1
		13 - V	+0.80	+0.45	+0.55	+0.28	+0.51	+0.36	+0.59	+0.20	+0.01	+0.79	+0.20	+0.10	-0.10	+0.63	+0.46	+0.19	+0.34	-0.09	+0.27	+0.80	+0.77	+0.90	+0.87	40.75	
		Λ	9.44	6.82	7.83	9.35	9.31	8.92	8.59	8.50	8.93	7.85	8.77	9.40	6.30	8.94	8.70	8.85	8.60	6.46	7.78	9.38	8.92	8.88	8.92	0,10	DT.P
		Sp.	B0.5Ia	B0.5Ia	B3H	B1V	160	B0.5Ia	08:Vnn	B1Ibp	B2IV	B1Ia	07.5	B2V:n	B0.511	BIIII	B11b	B0.5V	B0III	B2V	B2III	B0II	09.5111	B01b	B1Iab	ROTH	111001
		\mathbf{p}^{1i}	- 1.2	- 4.4	+ 2.8	-2.5	- 3.4	- 2.3	+ 3.4	+ 3.2	+ 2.9	- 0.3	+ 1.7	+ 1.6	+ 7.8	-2.6	+ 0.5	+ 2.0	+ 1.5	+ 5.8	+ 1.4	+ 0.6	+ 0.6	+ 0.6	+ 0.6	+ 3 1	1.5
		111	18.3	14.5	31.0	25.3	24.2	26.9	41.7	64.3	64.2	60.4	64.1	8.40	77.4	64.4	69.4	72.6	72.0	82.8	77.0	76.9	76.9	76.9	76.9	84.5	0.10
B.D.	or	H.D.	170177	171012	172028	173637	173783	173987	175514	$+28^{\circ}3434$	$+28^{\circ}3438$	186841	$+27^{\circ}3512$	$+28^{\circ}3485$	188439	$+25^{\circ} 4083$	$+31^{\circ}3921$	$+35^{\circ}3956$	227704	193536	193855	229227	229234	229238	229239	$+45^{\circ}3230$	0020 01 -

TABLE I (continued)

410

Publications of the David Dunlap Observatory

B.D.											
01								M		AW A	l)ist.
H.D.	111	\mathbf{b}^{11}	Sp.	Λ	B-V	U—B	Ref.	(·V.)	Wt.	(0.01A.)	(kpc.)
199140	72.8	-10.5	B2III	6.52	-0.12	-0.80	р	4.7	1.5	88	0.71
$+45^{\circ}3339$	86.8	+ 0.6	BIIV	9.93	+0.42	-0.42	а	5.2	1.0	27	1.14
201345	78.5	-9.5	B0IV	7.66	-0.13	-0.95	р	3.3	1.2	53	2.14
202349	82.5	- 7.5	B0.5V	7.37	-0.20	-0.95	р	5.2	1.0	29	0.81
239767	99.7	+ 2.7	B0.5V:p	9.25	+0.70	-0.35	a	4.4	0.9	22	0.92
235618	98.7	+ 1.4	BHV	9.66	+0.68	-0.31	а	3.4	1.1	러	1.85
207563	75.4	-25.I	B3V	6.31	-0.10	-0.64	р	6.0	0.9		0.36
235673	98.4	- 1.6	07	9.14	+0.21	-0.77	a	3.0	1.3	26	2.95
209008	65.9	-36.5	B3V	5.97	-0.04	-0.50	р	5.7	0.9		0.33
$+53^{\circ}2790$	100.6	- 1.1	09.5111	9.86	+0.25	-0.71	a	2.8	1.0	15	4.38
210809	99.9	- 3.1	09.5111	7.54	+0.05	-0.89	a	2.1	1.2	x	3.01
$+53^{\circ}2820$	101.3	-1.7	B0IV:n	9.95	+0.10	-0.78	a	3.4	0.7		4.47
$+54^{\circ}2718$	102.0	-0.9	B2III	10.15	+0.19	-0.62	a	4.2	0.6		3.40
$+54^{\circ}2726$	102.2	- 1.0	B111	9.38	+0.33	-0.54	a	3.1	0.9	20	2.98
235783	101.6	- 1.9	B11b	8.68	+0.17	-0.71	a	3.4	1.0	6	2.67
$+53^{\circ}2843$	101.7	+2.2	08	9.50	+0.21	-0.75	ŋ	1.8	0.8	<u>:</u> 1	7.05
$+60^{\circ} 2380$	105.4	+ 3.2	B2HI	9.04	+0.39	-0.50	a	2.9	1.0	. 1 8	2.69
239923	104.4	+ 1.6	B3Ib	8.89	+0.83	-0.12	а	1.7	0.8	26	3.37
235807	102.7	- 1.3	B0.5IVn	9.56	+0.21	-0.67	а	2.7	0.8	~~	4.34
235813	102.3	- 2.0	B0111	8.84	+0.22	-0.74	a	1.8	0.9	C1	5.20
T.B. 5-21†	103.0	- 1.3	05	10.29	+0.27	-0.73	а	2.9	0.4		4.83
235825	102.9	-1.7	$\Lambda 60$	9.28	+0.24	-0.73	લ	2.2	0.4		4.63
$+54^{\circ}2761$	103.2	- 1.4	05f	9.98	+0.34	-0.68	а	2.3	1.0	11	5.25
$+54^{\circ}2764$	103.0	- 1.6	B11b	9.54	+0.28	-0.62	a	3.1	0.6		3.73
†Boletin de lu	os Observato	rios Tonantzi	intla y Tacubayo	t, no. 5.							

TABLE I (continued)

Distances of 97 OB Stars

411

B.D.											
or								M		ΔW	Dist.
I-I.1).	11]	p11	Sp.	\sim	B-V	U—B	Ref.	('V')	Wt.	(0.01Λ)	(kpc.)
$+55^{\circ}2748$	103.7	- 1.0	B0.5V	9.96	+0.44	-0.52	в	2.9	0.8	21	3.47
$+60^{\circ} 2405$	107.1	+ 3.2	B3nnV	16.6	+0.54	-0.19	а	6.4	0.6		0.69
$+55^{\circ} 2770_{\rm p}$	104.8	- 1.4	BIII	10.10	+0.37	-0.54	a	6.6	0.5		0.75
$+55^{\circ} 2770^{\circ}$	104.8	- 1.4	B1.5111	9.70	+0.35	-0.54	ų	5.2	0.7		1.15
$+55^{\circ}2771$	105.0	- 1.3	B1IV	9.70	+0.48	-0.45	a	3.0	0.7		2.86
214240	101.8	- 7.2	B3V	6.30	-0.06	-0.53	q	5.8	0.8		0.38
214652	96.1	-17.8	B3V	6.81	-0.15	-0.71	р	6.6	1.1	23	0.39
240068	107.3	-0.5	B0III	9.64	+0.49	-0.52	ч	4.4	0.6		1,43
216658	109.7	+ 2.3	BOV	8.89	+0.70	-0.29	a	-1.6	1.5	21	0.66
216711	109.9	+ 2.7	BIV	9.05	+0.62	-0.33	ч	4.7	1.4	13	0.76
218407	104.8	+13.0	B3HV	6.62	-0.02	-0.71	р	5.2	0.9		0.54
218941	0.011	+ 0.1	B1.51I	9.71	+0.83	-0.20	a	1.4	0.4		5.08
$+61^{\circ} 2408$	111.9	+ 1.2	B01112p?	9.7	+0.79	-0.21	а	2.6	0.5		1.1
$+63^{\circ} 1962$	112.8	+ 2.8	BIIII	8.40	+0.32	-0.56	ы	4.3	1.5	<u>1</u> 2	1.13
$+63^{\circ}1964$	112.9	+ 3.1	B0H	8.46	+0.71	-0.38	ų	1.5	1.5	13	2.83
$+60^{\circ} 2553$	113.2	+ 0.0 +	B211	10.08	+0.45	-0.43	ч	4.1	1.0	73	2.59
T.B. 5–36†	114.9	- 0.3	B0.5IV	9.78	+0.53	-0.45	પ્ર	3.6	0.7	17	2.14
$+61^{\circ} 2509$	115.1	+ 0.3	B0.51b	8.42	+0.46	-0.55	9	2.5	1.1	30	2.23
$+60^{\circ} 2615$	115.1	- 0.1	B0.51b	9.10	+0.60	-0.45	u	1.9	1.1	13	3.63
$+61^{\circ} 2515$	115.4	+ 0.4	B0.5V	9.95	+0.43	-0.51	u	4.6	0.9	0ŀ	1.60
$+61^{\circ} 2526$	115.5	+ 0.1	B2Ib	8.77	+0.39	-0.50	ы	3.4	1.1	5	2.21
$+61^{\circ} 2529$	115.5	+ 0.1	B11b	8.65	+0.53	-0.47	9	2.7	1.2	22	2.11
$+61^{\circ} 2550$	116.1	+ 0.0	B0IV	9.29	+0.33	-0.63	9	2.7	1.1	16	3.16
$+61^{\circ} 2559$	116.3	+ 0.3	$\Lambda 60$	9.72	+0.29	-0.66	a	3.4	1.2	11	3.05
T.B. 5-39†	116.6	- 1.1	B1V	10.22	+0.29	-0.59	а	6.0	0.9	21	1.08
+Boletin de le	os Observata	vios Tonantz	inlla y Tacubaye	a, no. 5.							

TABLE I (continued)

412

TABLE II	ΤA	Bl	LE	II	
----------	----	----	----	----	--

	Spectral						Distance
Star Number	Туре	W	wt.	n	ΔW	$m_0 - M$	(kpc.)
III Cygni, distance	e = 1.93 kpc. (Schmidt	1958)				
H.D.E. 229227	BOII	3.1	0.8	2	35	10.8	1.45
H.D.E. 229234	O9.5III	2.4	1.1	3	8	11.1	1.67
H.D.E. 229238	B0Ib	2.3	0.9	3	15	11.1	1.68
H.D.E. 229239	B1Iab	2.5	1.0	3	60	11.1	1.64
II CEPHEI, distance	e = 3.9 kpc. (S	Schmidt 1	958)				
H.D.E. 235673	07	3.0	1.3	3	26	12.4	2.95
B.D. +54°2726	BIII	3.1	0.9	3	29	12.4	2.98
H.D.E. 235783	B1Ib	3.4	1.0	3	9	12.1	2.67
B.D. +53°2843	08	1.8	0.8	2	2	14.2	7.05
H.D.E. 235813	BOIII	1.8	0.9	2	2	13.6	5.20
H.D.E. 235825	O9V	2.2	0.4	1		13.3	-4.63
B.D. +54°2764	B1lb	3.1	0.6	1		12.9	3.73
III СЕРНЕІ, distan	ce = 0.725 kpc	c. (Blaauv	v, Hiltne	er, and	d John	son 1959)	
H.D. 216658	B0V	4.6	1.5	5	21	9.1	0.66
H.D. 216711	B1V	4.7	1.4	-1	13	9.4	0.76
B.D. +63°1962	BIIII	4.3	1.5	5	42	10.3	1.13
I CASSIOPEIAE, dis	tance = 2.5 kp	oc. (Morg	an, Code	e and	Whitf	ord 1953)	
B.D. +61°2509	B0.5Ib	2.5	1.1	3	30	11.7	2.23
B.D. +60°2615	B0.5Ib	1.9	1.1	4	13	12.8	3.63
B.D. +61°2526	B2Ib	3.4	1.1	3	2	11.7	2.21
B.D. +61°2529	BIIb	2.7	1.2	3	22	11.6	2.11
B.D. +61°2550	BOIV	2.7	1.1	3	16	12.5	3.16
D.D. LOIDOFFO	0017	9.4	1.0	0	* *	10.4	9.05

Distances of Various Associations by Means of Individual Stellar Distances

Conclusions

The conclusions reached in this paper are only tentative. The derived distances may be incorrect for the following reasons: First, the spectra of some stars may have at $H\gamma$ a little emission which is difficult to distinguish on the tracings from the grain of the photographic emulsion. This would cause the equivalent width to be under-estimated and the distances obtained would be too large. Secondly, there is the fact that according to Blaauw and van Albada (1963) approximately half the stars of the nearest associations are spectroscopic binaries.

Heard (private communication), in a study of five stars in the association III Cephei, found one definite, and three probable spectroscopic binaries. It may be shown that in the present method of determining absolute magnitude, the effect of an unresolved binary is to lead to an absolute magnitude which is intermediate between the absolute magnitudes of the two components. The distance of such a binary is therefore underestimated.

However, due to the high incidence of spectroscopic binaries among OB stars and the relative frequency of line emission, it seems doubtful that the stars used for their calibration by Johnson and Iriarte were all single stars without any $H\gamma$ emission. Hence the $H\gamma$ - M_v relation is probably overluminous where derived from single stars, and underluminous where derived from binaries. Therefore, by assuming that the sample of stars used in this paper is similar to those used by Johnson and Iriarte, one would expect that on the average their calibration is valid for use in this study. This statistical conclusion, however, may be invalid for the most luminous stars because of the small number of such objects.

Acknowledgements

The author would like to express his gratitude to the following persons: to Dr. J. F. Heard for providing the necessary facilities at the David Dunlap Observatory; to Mr. J. M. Marlborough for obtaining some photometric observations; to Dr. A. A. Hoag for several valuable discussions; and especially to Dr. J. D. Fernie for suggesting this problem and for his guidance and advice throughout. This research was supported in part by a grant from the National Research Council, Ottawa.

References

Armstrong, W. S. 1933, M.A. Thesis, University of Toronto.

Blaauw, A., Hiltner, W. A., Johnson, H. L. 1959, Ap. J., vol. 130, p. 69.

Blaauw, A., and Albada, T. S. 1963, Ap. J., vol. 137, p. 791.

- Hiltner, W. A. 1956, Ap. J. Suppl. vol. 2, p. 389.
- Hiltner, W. A., and Iriarte, B. 1955, Ap. J., vol. 122, p. 185.
- Hiltner, W. A., and Johnson, H. L. 1956, Ap. J., vol. 124, p. 367.

Johnson, H. L., and Iriarte, B. 1958, Low. Obs. Bull., vol. 4, p. 47.

Marlborough, J. M. 1964, A. J., vol. 69, p. 215.

Morgan, W. W., Code, A. D. and Whitford, A. E. 1953, Ap. J., vol. 118, p. 318.

Oke, J. B. 1957, R.A.S.C. Journal, vol. 51, p. 133.

Petrie, R. M. 1953, Publ. D.A.O. vol. 9, p. 251.

Schmidt, K. H. 1958, A. N., vol. 284, p. 76.

Wellmann, P. 1957, Ap. J., vol. 126, p. 30.

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

Number 14

SPECTROGRAPHIC ORBITS OF THE ECLIPSING SYSTEMS V822 AQUILAE, BV 241, BV 342, BV 374

PIM FITZGERALD

1964 TORONTO, CANADA

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

SPECTROGRAPHIC ORBITS OF THE ECLIPSING SYSTEMS V 822 AQUILAE, BV 241, BV 342, BV 374

By Pim FitzGerald

These four eclipsing systems have been studied spectrographically at this observatory in the years 1962 and 1963. Earlier observations of the star V 822 Aquilae, made between the years 1936 and 1939, have also been employed in the spectrographic study of this star.

Photometric studies made of V 822 Aquilae by Nicolini at Naples, and of the other three systems by the observers at Bamberg, had identified the stars as eclipsing systems. Periods were established by these observers, though not the other photometric elements.

The secondary component is visible in each spectrum, but it is too weak for accurate estimation of the mass-ratio except in the case of BV 241. Some indication of the mass-ratio is given with the spectrographic elements of each. The spectra of each system have been classified according to the MK system.

V 822 Aquilae

The star V 822 Aquilae, H.D. 183794, $\alpha(1900)$ 19^h 26^m, $\delta(1900) - 02^{\circ}$ 19', m_{pg} 6.7—7.3, sp. B8V, had been observed spectroscopically at this observatory by the late F. S. Hogg between 1936 and 1939.

TA	BI	LE	Ι

	Vo	$V_o - V_c$	Phase from	Dispersion
J.D.	km./sec.	km./sec.	final T	A./mm.
2428272.676	- 14.6	-23.9	2.187	33
282.874	+ 96.2	+34.0	1.795	33
296.832	+ 12.0	-22.1	5.369	33
310.850	-108.2	+7.0	3.294	66
311.866	-105.2	- 1.1	4.310	66
314.673	+ 53.8	- 4.7	1.917	66
317.800	- 11.8	- 5.7	4.951	66
323.846	+140.5	+24.2	0.408	66
325.816	- 2.2	+14.2	2.378	66
328,800	+ 87.7	+18.3	0.063	66
355,693	+119.3	- 4.2	0.482	66
362.641	+ 7.0	- 9.4	2.134	66
400.639	- 96.7	+ 0.4	2.071	66
407.608	- 56.2	-12.2	4.744	66
800.544	+ 97.1	-31.2	0.545	66
2429165.514	+ 93.4	+ 9.8	0.154	66
176.507	+117.8	-11.2	0.561	66
183.494	+ 3.3	+ 2.3	2.235	66
432.793	- 55.8	- 0.7	2.679	66
465.719	-129.2	+ 2.1	3.834	66
469.648	- 36.0	- 7.6	2.468	66
486.663	-114.5	+15.0	3.580	66
2437558.566	+ 99.3	-23.3	0.471	33
563.553	+ 97.4	+12.2	0.164	33
569.516	+134.5	- 3.8	4.522	33
570.535	+ 41.8	-13.2	1.853	33
572.534	-145.5	-14.6	3.839	33
816.778	- 82.6	- 3.8	4.522	33
823,838	+154.7	+18.9	0.990	33
824.785	+ 50.7	+7.1	1.938	33
840.750	+ 23.3	- 9.5	2.017	33
843.749	+ 16.8	+10.8	5.014	33
864.694	+ 26.6	+10.9	4.781	33
891.653	+ 57.3	+ 4.9	1.075	33
892.579	+142.9	+ 4.9	0.895	33
898.565	+ 92.9	+ 4.8	1.583	33

RADIAL VELOCITY OBSERVATIONS OF V 822 AQUILAE

Observation was recommenced in 1962 by J. F. Heard as a result of the photoelectric observations of Nicolini (Fresa 1961), which identified the star as an eclipsing system of period 2.6477 days. A total of thirtysix measurable plates have been used to determine the spectrographic

TABLE II

Element	Preliminary	Final	m.e.
Period	P 5.2949 days	5.29510	0.00004
Eccentricity	e 0.0	0.089	0.028
Angle of periastron	ω	294°	19°
Epoch of mean longitude	T. J.D. 2432227.020	J.D. 2432226,900	0.022
Epoch of periastron	Т	J.D. 2432225.924	0.279
Velocity of the system	$\gamma + 4.0$ km./sec.	-1.6	2.7
Semi-amplitude	K 138.0 km./sec.	135.0	4.1
$a \sin i$		9.8×10^{6} km.	0.4×10^{6}
Mass-ratio		1.0:	0.1:
m sin ³ i		$5: \odot$	2:

Orbital Elements of V 822 Aquilae

orbit. The spectral lines are broad, and on most plates only the lines of hydrogen and sometimes λ 4481 of Mg II are measurable. Lines of the secondary spectrum appear on a few plates, but ought only to be used to give a rough indication of the mass-ratio, since they are very weak and indistinct.

Since the spectrographic observations cover a long interval (between 1936 and 1963), the period determined by Nicolini has not been used in the solution. The period obtained here, 5.29510 days, is close to double that of Nicolini. This may be explained by his observing primary and secondary minima of equal depth, and by his making the reasonable assumption that he had observed only one of two eclipses.

The six elements were obtained from the pre-computed curves of R. K. Young (1936), and then corrected by a computer programme of least squares employing the method of Sterne (1941) for zero eccentricity. The mass-ratio was estimated from the method of Wilson (1941). The velocity of the interstellar medium, determined from the Ca II lines λ 3933 and λ 3968, was found to be -9.8 ± 1.0 km./sec.

Table I lists the observed velocities and velocity residuals; Table II lists the preliminary and final elements; and figure 1 shows the velocity curve of the system. The average internal probable error of a single velocity determination is about 5 km./sec.

BV 241

The star BV 241, H.D. 190020, $\alpha(1900)$ 19^h 57^m.9, $\delta(1900)$ 73° 21′, m_{pg} 9.4–10.3, sp. F5V, F5V, was identified as an eclipsing variable of period 1.682000 days by the Bamberg observers from photographic

FIGURE 3
	Prim	ary	Secon	dary	DL		
J.D.	V. km.	<i>V₀−V c</i> /sec.	V. km./	$V_o - V_c$ /sec.	from final T _o	Weight	
2437843.785	+ 68.7	+4.4	- 59.3	+ 3.0	2.870	0.7	
7844.741	+ 63.7	+0.9	-67.4	- 6.7	0.462	1.0	
7847.741	+ 93.9	-2.1	- 99.6	- 5.3	0.152	1.0	
7855.733	-89.2	-6.8	+ 93.4	+7.6	1.362	1.0	
7858.797	-49.6	-7.5	+ 52.1	+7.0	1.062	1.0	
7860.768	+ 83.4	-1.4	-82.4	+ 0.6	3.033	1.0	
7865.802	-77.9	+2.2	+73.6	- 9.9	1.339	0.7	
7879.678	- 94.7	+1.3	+102.8	+ 3.2	1.759	1.0	
7884.723	+ 96.3	-3.3	-91.7	+ 6.3	0.076	1.0	
7892.702	- 82.9	-4.1	+ 84.2	-2.0	1.327	1.0	
7894.685	+100.1	-1.0	-107.1	-7.6	3.310	1.0	
7898.679	+ 51.5	+6.8	- 43.3	- 0.7	0.576	0.7	
7906.647	-95.6	-2.0	+ 97.4	+ 0.2	1.816	1.0	
7911.606	+ 96.3	-4.2	- 97.7	+ 1.1	0.047	1.0	
7915.559	+ 43.8	+9.4	-23.0	+ 9.2	0.636	0.5	
8161.852	- 74.0	+7.9	+74.5	-10.8	1.357	0.7	
8166.808	+ 80.3	+5.2	-64.9	+ 8.3	2.949	1.0	

TABLE III

RADIAL VELOCITY OBSERVATIONS FOR BV 241

TABLE I	V
---------	---

Orbital Elements for BV 241

Element		Preliminary	Final	m.e.
Period	Р	3.364000 days	3.364000	
Eccentricity	e	0.0	0.0	0.014
Epoch of mean longitude	T.	J.D. 2437891.320	J.D. 2437891.375	0.025
Velocity of the system	γ	0.0 km./sec.	+1.3	1.0
Semi-amplitude, primary	K_1	100.0 km./sec.	99.4	1.7
Semi-amplitude, secondary	K_2	105.0 km./sec.	100.4	1.7
a1 sin <i>i</i> , primary			4.60×10^{6} km.	0.08×10^{6}
$a_2 \sin i$, secondary			4.65×10^{6} km.	0.08×10^{6}
Mass-ratio			1.01	0.02
$m_1 \sin^3 i$, primary			$1.38 \odot$	0.03
$m_2 \sin^3 i$, secondary			$1.37 \odot$	0.03

photometry (Strohmeier 1959). Spectrographic observation was started at this observatory in 1962. Nineteen usable plates were obtained during the summers of 1962 and 1963 using a dispersion of 33 A./mm. Both spectra are visible and are of approximately equal strength. The number of lines in the spectrum of each component which could be measured was about fifteen on plates of normal exposure and reasonably large doublet separation, and about five on those of weak exposure or those on which the double lines were close. Weights based on the plate quality and velocity separation were assigned to the individual velocity determinations and these are given in Table III. The average internal probable error of a velocity measure from a well exposed plate is 2 km./sec., and from a weak plate is 5 km./sec.

Exactly double the period obtained from the photometric investigation has been used in the solution for the elements, since it fitted our observations well. The explanation for the difference in period is the same as that given for V 822 Aquilae. The remaining elements were obtained from the pre-computed curves of R. K. Young (1936), and then corrected by a computer programme of least squares following the method of Sterne (1941) for double-line binaries of zero eccentricity.

The mass-ratio was estimated from the ratio of semi-amplitudes and by the method of Wilson (1941). Agreement was found within the mean error for both the mass-ratio and the velocity of the system as found from each method. The mass-ratio and velocity of the system given by the least-squares solution were, respectively; 1.01 ± 0.02 , and $+1.3 \pm 1.0$ km./sec., and by Wilson's method: 1.03 ± 0.02 , and $+1.2 \pm 0.8$ km./sec.

Table III lists the observed velocities and velocity residuals; Table IV lists the preliminary and final elements; figure 2 shows the velocity curves of both components of the system; and figure 3 shows the diagram for Wilson's method of obtaining the mass-ratio.

BV 342

This star, BV 342, H.D. 204038, $\alpha(1900)$ 21^h 20^m8, $\delta(1900)$ 33° 16', m_{pg} (1931–1939) 8.6–9.1, m_{pg} (1952–1960) 8.35–8.85, sp. A3Vm, was identified as an eclipsing variable of period 0.7858620 days by the Bamberg observers from photographic photometry (Strohmeier, Knigge and Ott 1962). They have pointed out that the character of the light curve and photographic magnitude of the system have changed considerably between 1931 and 1960. Twenty-seven spectrograms of the system were obtained during 1962 at this observatory using a dispersion of 33 A./mm. The mean exposure time was about 0.06 days.

The spectrum of the primary component is that of a metallic line A-star having very wide absorption lines. The classification of A3V

422

FIGURE 5

TA	BI	LE	V
~ ~ *			

	Prin	nary	I	51
	17	17 17	Secondary	Phase
LD	Vo Isma /saas		V o	from
J.D.	km./sec.	km./sec.	km./sec.	nnal I
2437831.799	-49.0	+ 3.7		0.104
840.790	- 9.5	-11.8		0.451
844.817	+52.3	+11.5	-212.2	0.549
852.782	+47.2	-12.2		0.655
855.658	-32.9	- 8.7		0.388
858.709	-53.6	+ 3.4		0.295
861.808	-76.8	- 9.4		0.251
869.674	-66.3	- 0.3	+166.9	0.258
878.760	+56.4	+ 4.1		0.700
886.043	+42.0	- 1.7		0.724
888.870	+67.1	+13.7	-195.3	0.594
891.691	-66.6	- 3.4		0.271
895.749	-22.0	- 2.7		0.400
898.613	-57.8	+ 1.1		0.120
898.888	- 6.5	- 6.5		0.395
899.847	+48.3	+ 1.3	-127.7	0.568
904.658	+66.3	+7.4	-269.3	0.664
906.703	- 1.8	+36.5		0.351
907.716	+52.3	+ 2.5		0.579
907.818	+54.2	-2.5	-187.1	0.681
911.664	+41.7	-12.5	-217.0	0.597
915.669	+52.3	- 4.6		0.673
915.818	-12.0	+ 2.5		0.036
918.674	+48.5	+12.5	-175.5	0.535
938.706	-68.7	-5.2	+160.8	0.134*
954.642	-46.4	- 8.7		0.353
955.533	-25.8	-31.2		0.458

RADIAL VELOCITY OBSERVATIONS OF BV 342

*Secondary given only half weight.

was based on the hydrogen line strength in the spectrum. The measured line broadening of 150 km./sec. for the iron lines coincides well with the value given by Babcock (1960) for rotational broadening in an early A-star with a period of the order of 0.8 days. This indicates that the orbital and rotational periods of the primary component may be synchronized.

The spectrum of the secondary component is visible on several of the plates, but is extremely weak and diffuse, being measurable on only a few of the plates near phases of extreme velocities. Between fifteen and twenty-five lines were measured on each plate for the primary com-

TABLE VI

Element	Preliminary	Final	m.e.	
Period	P 0.7858620 days	0.7858620		
Eccentricity	e 0.21	0.115	0.053	
Angle of periastron	120°	76°	34°	
Epoch of periastron	T J.D. 2437831.800	J.D. 2437831.695	0.076	
Velocity of the system	$\gamma = -4.5 \text{ km}$./sec.	-8.1	2.8	
Semi-amplitude, primary	K ₁ 71.0 km./sec.	65.9	3.8	
$a_1 \sin i$, primary		7.03×10^{5} km.	0.43×10^{5}	
Mass-ratio		2.95	0.12	
$m_1 \sin^3 i$, primary		$1.02 \odot$	0.36	
$m_2 \sin^3 i$, secondary		$0.35 \odot$	0.24	

Orbital Elements for BV 342

ponent, giving an average internal probable error for one velocity determination of 3 km./sec. On the nine plates measured for the secondary component, only the lines of hydrogen, H β and H γ , could be measured, giving an average internal probable error of 9 km./sec. for one velocity determination.

Strohmeier's period fitted our observations well, and it was therefore used in the solution for the orbit. The remaining elements were obtained from the pre-computed curves of R. K. Young (1936), and then adjusted by a computer programme of least squares employing the method of Lehmann-Filhés (1894) for a single-line binary.

The mass-ratio has been estimated using the method of Wilson (1941). Agreement was found within the mean errors between the velocity of the system as determined from Wilson's method $(-9.5 \pm 1.0 \text{ km./sec.})$ and from the Lehmann-Filhés method $(-8.1 \pm 2.8 \text{ km./sec.})$.

Table V lists the observed radial velocities and the velocity residuals; Table VI lists the preliminary and final elements; figure 4 shows the velocity curve of the primary component; and figure 5 shows the diagram for Wilson's method of obtaining the mass-ratio.

BV 374

This star, BV 374, H.D. 217224, $\alpha(1900)$ 22^h 54^m2, $\delta(1900)$ 67° 52′, m_{pg} 8.2–8.8, sp. B3V, was found to be an eclipsing variable of period 4.908756 days by the Bamberg observers from photographic photometry (Strohmeier, Knigge and Ott 1962). Nineteen usable spectrograms have been obtained at this observatory in the summer of 1962 with a dispersion of 33 A./mm.

FIGURE 6

TABLE	V	I	
-------	---	---	--

-	Primary		Second	Secondary		
J.D.	V。 km./sec.	V _o -V _c km./sec.	V. km./sec.	Weight	from final T	
2437840.830	+35.0	+ 2.8	-174.6	1.0	0.951	
844.817	+70.6	+ 2.2			0.029	
855.817	+ 9.7	0.0	-176.1	1.0	1.212	
860.862	-12.2	- 9.2			1.355	
864.814	+52.4	-14.1	-158.6	1.0	0.391	
878.810	+48.7	- 2.7			4.570	
882.817	-25.5	+ 2.2			3.668	
884.833	+45.7	- 0.2			0.775	
895.793	-40.2	+ 6.1	+121.0	0.5	1.917	
898.793	+63.9	- 2.5	-147.1	0.7	4.864	
899.773	+33.2	+ 4.1	-123.1	0.7	0.949	
900.796	-48.4	+ 3.5	+118.9	1.0	2.012	
905.750	-60.8	- 6.4	+130.0	1.0	2.057	
906.779	-55.9	+7.5	+207.7	0.7	3.086	
907.767	+ 9.4	+ 0.4	-112.2	0.7	4.074	
911.730	-64.8	- 3.0	+159.3	0.5	3.129	
915.743	-58.1	+ 4.3	+160.3	0.5	2.233	
918.720	+82.2	+ 2.1	-232.8	0.7	0.301	
955.661	-78.4	- 9.2	+212.0	1.0	2.881	

Radial Velocity Observations for BV 374

TABLE VIII

Orbital Elements of BV 374

Element	Preliminary	Final	m.e.
Period	P 4.908756 days	4.908756	
Eccentricity	e 0.060	0.063	0.037
Angle of periastron	ω 45°	346°	34°
Epoch of mean longitude	T _o J.D. 2437834.547	J.D. 2437835.170	0.030
Epoch of periastron	Т	J.D. 2437834.970	0.484
Velocity of the system	$\gamma = -5.0$ km./sec.	-4.9	1.8
Semi-amplitude, primary	K_1 70.0 km./sec.	70.5	2.4
$a_1 \sin i$, primary		4.66×10^{6} km.	0.17×10^{6}
Mass-ratio		2.94	0.27
$m_1 \sin^3 i$, primary		$7.58 \odot$	0.96
$m_2 \sin^3 i$, secondary		$2.58 \odot$	0.21

The spectral lines are well defined in the primary component, the most prominent being those of hydrogen, helium, and ionized oxygen. About ten lines were measured on each plate, yielding an average internal probable error of 3 km./sec. for each velocity determination. The secondary component is visible on many of the plates, but is considerably weaker than the primary and consequently gave high internal probable errors of about 9 km./sec. for individual velocity determinations.

The Bamberg period fitted our observations well, and was therefore used here. The remaining elements were obtained from the pre-computed curves of R. K. Young (1936), and then adjusted by a computer programme of least squares employing the method of Sterne (1941) for a single-line binary of non-zero eccentricity.

The method of Wilson (1941) has been employed to estimate the mass-ratio, using the observations weighted according to the probable error of the velocity determination for the secondary component. Agreement within the mean errors was found between the velocity of the system as determined from Wilson's method $(-7.8 \pm 3.7 \text{ km./sec.})$ and from Sterne's method $(-4.9 \pm 1.8 \text{ km./sec.})$.

Table VII lists the observed radial velocities and velocity residuals; Table VIII lists the preliminary and final elements; figure 6 shows the velocity curve of the primary component; and figure 7 shows the diagram for Wilson's method of obtaining the mass-ratio.

Acknowledgements

The author would like to thank Dr. J. F. Heard for suggesting the study of these systems, and him and Dr. J. D. Fernie for their help and encouragement. This research was supported in part by a grant from the National Research Council.

References

- Babcock, H. W. 1960, "Stellar Atmospheres", p. 309 (vol. 6, "Stars and Stellar Systems"), Univ. Chicago Press.
- Fresa, A. 1961, Annali dell' Istituto Universitario Navale di Napoli, vol. 30.
- Lehmann-Filhés, R. 1894, A.N., no. 3242, p. 136.

Sterne, T. E. 1941, Proc. of Nat. Acad. of Sci., vol. 27, p. 175.

Strohmeier, W. 1959, Kleine Veroffentichungen der Remeis-Sternwarte Bamberg, no. 24, p. 2.

Strohmeier, W., Knigge, R. and Ott, H. 1962, Veraffentichungen der Remeis-Sternwarte Bamberg, vol. 5, no. 13, pp. 3, 10.

Wilson, O. C. 1941, Ap. J., vol. 125, p. 661.

Young, R. K. 1936, Pre-computed Curves for Orbital Elements, unpublished.

428

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

Number 15

SPECTROSCOPIC AND PHOTOMETRIC ORBITS OF EE PEGASI

GUSTAV A. BAKOS

1965

TORONTO, CANADA

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

SPECTROSCOPIC AND PHOTOMETRIC ORBITS OF EE PEGASI

By Gustav A. Bakos*

Abstract

Spectroscopic and photoelectric observations of this binary system made in 1953 and earlier are recorded here. Improved orbital elements have been obtained as compared with those derived by Wellmann and Beyer (1953). The photometric observations were made in three colours, but the individual observations are of low quality. For this reason the means of the three colour observations have been tabulated.

INTRODUCTION

The eclipsing system of EE Peg (H.D. 206155, $\alpha(1900) 213^{h}5^{m}1$, $\delta(1900) 8^{\circ}44'$) was discovered by Hoffmeister (1935) and has been described as an Algol-type variable. From visual observations by Gomi (1940) a preliminary period of 5.256 days has been found. Both spectroscopic and visual observations by Wellmann and Beyer (1953) have shown that the actual period is half of that derived by Gomi.

Wellmann's orbital elements were based on 44 blue-sensitive spectrograms with a dispersion of 65 A./mm. at H γ and on ten redsensitive plates with a dispersion of 156 A./mm. at H α covering the period from June 12, 1951, to January 5, 1952. Furthermore, with the aid of 211 visual estimates within the same time interval a light-curve was derived.

The present observations were made at the David Dunlap Observatory. The spectroscopic material consisted of 48 plates with a dispersion of 66 A./mm. at H γ of which 26 were taken by the late F. S. Hogg in 1936–39. The remaining plates were taken in 1952 and 1953. In addition, the star was observed photoelectrically with the earliest version of a photometer attached to the 19-inch reflector. Because an unstabilized power supply was used and the intensity measures were read off a galvanometer the scatter of individual measurements is larger than expected in photoelectric photometry.

THE SPECTROGRAPHIC ORBIT

The radial velocity measurements have been summarized in Table I. It gives the plate number, the Julian date of observation and the *Dearborn Observatory, Evanston, Illinois

		Radial		
Plate		Velocity	Phase	0-C
No.	J.D.	km./sec.	P^{-1}	km./sec.
1001	0400000 750	50.4	044	0 1
1081	2428360.776	- 52.4	.844	- 8.1
1094	302.788	-102.9	.001	- 4.5
1160	3/0.//4	- 95.8	.001	- 0.7
1168	377.770	+ 28.2	.312	+ 9.0
1186	380.736	- 40.5	.439	- 7.5
1195	381.723	- 69.9	.814	-11.0
1208	387.706	+ 60.0	.091	- 8.5
1221	389.732	-27.4	.862	+ 7.9
1296	400.692	+46.2	.032	- 5.0
1304	404.711	- 95.5	. 563	- 3.8
1315	408.654	+ 50.0	.061	-11.2
1359	425.576	- 89.4	.500	-15.6
1390	431.628	- 54.4	.802	+ 9.0
1422	440.601	+ 51.0	.216	- 9.3
1556	503.456	+ 68.0	.132	-4.8
1565	510.469	-72.1	.800	- 7.7
2514	800.697	+ 60.8	.227	+ 4.1
2742	8864.458	-62.6	.488	+ 6.7
3821	9179.508	-00.6	.359	+ 5.8
4590	432.843	- 86.8	.749	- 4.2
4714	465.826	+ 24.5	.299	-0.8
4735	469.744	-65.0	.790	+ 2.9
4741	470.732	+72.0	.166	+ 1.0
4747	472.781	+ 5.4	.945	-4.0
4753	476.749	-54.4	.455	+ 1.2
4790	2429486.755	+ 43.0	.262	0.0
19329	2434217.864	- 27.8	.377	-11.4
20151	551.854	-50.0	.455	+ 5.6
20168	555.853	+ 42.9	.977	+17.2
20177	557.858	- 88.4	.740	- 3.3
20185	561.855	+ 43.3	.260	-0.5
20193	563.808	+ 46.0	.004	+ 6.0
20203	565.866	- 50.2	.787	+18.6
20223	569.867	+ 28.0	. 309	+7.8
20297	576.869	+ 16.0	.973	- 8.3
20321	580.875	- 62.0	.497	+10.7
20337	583.874	- 96.6	.638	+ 2.9
20339	584.772	+ 33.9	.980	+ 6.2
20345	586.883	- 64.4	.783	+ 6.6
20352	589.889	- 6.5	.927	- 6.2
20392	600.624	+ 60.5	.012	+17.6
20400	600.866	+79.3	.104	+ 8.7

TABLE I

TABLE I—(Concluded)						
Plate No.	J.D.	Radial Velocity km./sec.	Phase P ⁻¹	O−C km./sec.		
20405 20410 20418 20445 20454 20526	$2434601.668\\601.872\\603.891\\609.624\\610.810\\2434622.640$	$\begin{array}{r} - 34.4 \\ - 67.1 \\ + 45.0 \\ - 48.8 \\ - 21.0 \\ - 30.0 \end{array}$.409 .486 .255 .436 .887 .388	$ \begin{array}{r} -1.1 \\ +1.4 \\ -0.9 \\ -2.0 \\ +1.1 \\ -7.9 \end{array} $		

TABLE I—(Concluded)

radial velocity reduced to the sun. The phase was calculated by means of the formula

Phase =
$$(J.D - .2400000)P^{-1}$$

where $P^{-1} = 0.3804848$ /day corresponding to the period P = 2.6282253 days. This period was found from both photometric and spectroscopic data. The last column gives the O - C's.

According to Wellmann the spectral type of EE Peg is A4V. On an average about 15 lines were measured for radial velocity determination including the K line, the calcium line at λ 4227, the Mg II line at λ 4481, and a large number of iron lines. The hydrogen lines were generally broad and therefore less suitable for accurate measurements.

Preliminary orbital elements have been obtained graphically. For a definitive orbit differential corrections to the elements have been calculated by the method of least squares. The final elements and their mean errors are given in Table II. The velocity curve has been plotted in figure 1.

The calculated velocity curve gives a good representation of the observed velocities by both Wellmann and the writer. However, Wellmann's points exhibit a much larger scatter. The run of the writer's O-C's as a function of time has been plotted in figure 2. The mean value of Wellmann's O-C's has been indicated by an open circle at J.D. 3800. It appears from figure 2 that the earlier O-C's are predominantly negative while the later are positive as shown by the crosses, their mean values. On the other hand, Wellmann's mean of 44 observations is definitely negative. At any rate it would require only a slight adjustment of the adopted period to make the mean O-C's zero.

PHOTOMETRIC ORBIT

A single comparison star was used, H.D. 205923 of spectral type A2 and magnitude 8.2 about 40 minutes of arc north of the variable. The

FIG. 1-The velocity curve of EE Pegasi.

observations were made in three colours: blue, green and yellow spectral range. The effective wave-lengths of these colours were $\lambda\lambda 4300$, 4900 and 5200. Originally the inclusion of two more regions, the UV and the red, was planned; however, the measured deflections were small and the measurements unreliable. Since the photometer had no provision for selective shunting of the galvanometer, the sensitivity of the instrument was adjusted by changing the voltage of the photomultiplier tube on practically every night. Because the

ΤA	BI	LE	H	

Sileikookiiiiie	ELEMENTS OF EE FEORS
Periastron passage	$T = 2429486^{d}_{\cdot}408 \pm .023$
Period	$P = 2^{d}_{\cdot}6282253$
Velocity of the system	$\gamma = -13.43$ km./sec.
Semi-amplitude	$K = 86.15 \text{ km}./\text{sec.} \pm 0.29$

SPECTROGR	PHIC	FLEMENTS	OF	FF	PEGASI

γ	=	-13.43 km./sec
K	=	86.15 km./sec. :
		0

ω	=	35	6	- 1	1	土	3	٠	16	3

- Eccentricity $e = 0.03 \pm 0.003$ Semi-major axis a sini = $3 \cdot 11.10^{6}$ km.
- Mass-function $f(m) = 0.174 \odot$

Longitude of periastron

colour difference between the variable and the comparison stars is zero and observations were limited to moderate hour angles no correction for differential extinction appeared to be necessary. Also, since the light curves in all three colours appeared to be identical they were combined into a single light curve for which the individual points as a function of phase can be found in Table III. In figure 3 the mean light curve has been plotted, the Δm versus the phase. The latter was computed by the same formula as in the previous section.

J.D.	Phase	Δm	J.D.	Phase	Δm
2434582.677	0.183	-1.272	2434595.744	0.154	-1.263
.693	.189	-1.269	4600.739	. 055	-1.272
.713	. 193	-1.271	.758	.062	-1.274
.730	.203	-1.276	.775	.069	-1.281
.747	.209	-1.269	.792	.075	-1.275
.762	.215	-1.266	.814	.083	-1.277
4582.779	.222	-1.272	.829	.089	-1.286
4583.739	. 587	-1.276	. 845	. 095	-1.278
.756	. 593	-1.276	. 863	.102	-1.278
.774	. 600	-1.286	4600.881	.109	-1.279
.791	. 607	-1.284	4603.733	. 194	-1.275
.823	.619	-1.290	.747	.199	-1.275
.839	.625	-1.276	.762	.205	-1.271
4583.857	. 632	-1.263	.776	.210	-1.265
4586.638	. 690	-1.274	.791	.216	-1.277
. 654	. 696	-1.268	. 804	.221	-1.280
.670	.702	-1.270	. 820	.227	-1.272
.686	.708	-1.265	. 836	.233	-1.272
4586.704	.715	-1.270	.851	.239	-1.271
4595.687	.133	-1.255	4603.872	.247	-1.264
.708	. 141	-1.272	4605.715	.948	-1.272
.729	. 149	-1.278	.731	. 954	-1.279

ΓA	BI	LE	H	I

J.D.	Phase	Δm	J.D.	Phase	Δm
2434605.748	0.961	-1.278	2434621.644	0.009	-1.283
.764	. 967	-1.278	. 661	.015	-1.296
.790	.977	-1.280	.680	.023	-1.295
. 807	. 983	-1.280	. 693	.028	-1.288
.826	. 990	-1.282	.709	.034	-1.286
4606.629	.296	-1.273	.724	.039	-1.293
4606.648	. 303	-1.261	.741	. 046	-1.290
.684	.317	-1.273	.756	.051	-1.284
.715	. 329	-1.270	.772	.058	-1.272
.730	. 334	-1.262	.786	. 063	-1.274
.746	.341	-1.246	4622.561	.358	-1.051
.764	.347	-1.199	4622.573	.362	-0.925
.780	.353	-1.132	. 588	.368	-0.838
.802	.362	-1.001	. 602	.373	-0.762
.818	.368	-0.840	.617	.379	-0.654
.833	.374	-0.688	. 633	.385	-0.598
.849	. 380	-0.610	. 647	.390	-0.601
.866	.386	-0.595	.681	.403	-0.892
4606.881	.392	-0.617	. 693	. 408	-0.981
4607.724	.713	-1.272	.706	.413	-1.059
.742	.719	-1.272	.720	.418	-1.142
.756	.725	-1.269	.735	.424	-1.200
.771	.730	-1.262	.748	. 429	-1.234
.786	.736	-1.264	.763	.435	-1.261
. 801	.742	-1.271	.777	.440	-1.270
.819	.749	-1.270	.793	.446	-1.276
4607.835	.755	-1.274	. 807	.451	-1.272
4614.764	. 391	-0.611	4622.822	.457	-1.270
.779	. 397	-0.716	4623.573	.743	-1.260
. 795	. 403	-0.879	. 586	.748	-1.255
.811	.409	-0.972	. 602	.754	-1.266
. 831	. 417	-1.124	. 615	.759	-1.267
4614.849	. 424	-1.218	. 632	.765	-1.262
4618.588	.846	-1.236	. 646	.771	-1.273
. 602	.851	-1.196	. 661	.776	-1.270
. 620	.858	-1.155	. 681	.784	-1.270
. 638	.865	-1.140	. 696	.790	-1.270
.652	.870	-1.127	.709	.795	-1.268
. 668	.877	-1.091	.722	.799	-1.273
.718	. 896	-1.115	.735	.804	-1.276
4618.732	. 901	-1.157	.749	.810	-1.258
4621.586	. 987	-1.273	. 762	.815	-1.266
. 600	. 992	-1.251	.776	.820	-1.235
. 614	. 997	-1.266	.805	.831	-1.236
. 627	.002	-1.276	4623.818	.836	-1.227

TABLE III-Continued

J.D.	Phase	Δm	J.D.	Phase	Δm
2434626.617	0.901	-1.158	2434630.716	0.461	-1.275
.634	.907	-1.223	.729	.465	-1.267
.653	.915	-1.237	.743	.471	-1.272
.669	.921	-1.258	.756	.476	-1.279
. 686	.927	-1.248	.772	.482	-1.272
. 699	.932	-1.278	.785	.487	-1.270
.712	.937	-1.280	.798	.492	-1.282
.725	.942	-1.284	.812	.497	-1.275
.744	. 949	-1.274	4630.827	. 503	-1.275
.758	.955	-1.295	4631.580	.789	-1.275
.776	.961	-1.305	. 592	.794	-1.281
.791	.967	-1.297	. 606	.799	-1.281
.806	.973	-1.278	. 620	.805	-1.281
4626,820	.978	-1.279	.641	.813	-1.275
4628.556	.639	-1.276	.656	.818	-1.246
.572	.645	-1.279	.670	.824	-1.257
.591	.652	-1.278	. 682	.828	-1.242
.606	.658	-1.275	. 697	.834	-1.259
.624	.665	-1.274	.711	.839	-1.229
.640	.671	-1.274	.727	.845	-1.221
.659	.678	-1.290	.740	. 850	-1.195
.672	. 683	-1.274	.756	.856	-1.172
. 686	.688	-1.274	4631.788	.868	-1.116
. 697	.692	-1.272	4635.546	. 298	-1.266
.708	.697	-1.274	. 558	. 303	-1.260
.720	.701	-1.264	.575	. 309	-1.260
.737	.708	-1.277	. 583	.312	-1.256
.753	.714	-1.277	. 597	.318	-1.260
.768	.719	-1.274	.611	.323	-1.257
.782	.725	-1.270	. 628	.329	-1.260
.797	.730	-1.269	. 639	.334	-1.260
.813	.737	-1.283	. 656	.340	-1.245
4628.828	.742	-1.262	.667	.344	-1.235
4630.551	.398	-0.753	. 680	.349	-1.191
. 563	.402	-0.910	. 690	.353	-1.153
.577	.408	-1.028	.704	.358	-1.051
.589	.412	-1.100	.717	.363	-0.945
. 606	.419	-1.157	.729	.368	-0.858
.619	.424	-1.184	.740	.372	-0.776
.638	.431	-1.234	4635.754	.377	-0.686
.649	. 435	-1.262	4637.692	.115	-1.281
.663	.440	-1.261	.704	.119	-1.275
.675	.445	-1.270	.718	.125	-1.272
.687	. 450	-1.276	.733	.130	-1.283
. 699	.454	-1.270	.763	.142	-1.280

TABLE III-Continued

J.D.	Phase	Δm	J.D.	Phase	Δm
2434637.774	0.146	-1.292	2434647.605	0.886	-1.078
.788	. 151	-1.268	. 616	.891	-1.110
4638.548	. 440	-1.275	. 629	. 896	-1.124
. 562	. 446	-1.283	. 640	.900	-1.139
. 615	. 466	-1.265	4647.652	.904	-1.197
. 627	.471	-1.261	4648.538	.241	-1.273
. 638	.475	-1.261	. 550	.246	-1.274
. 649	.479	-1.261	. 565	.252	-1.278
. 663	. 484	-1.268	. 580	.257	-1.270
. 674	.488	-1.269	. 613	.270	-1.263
.688	. 494	-1.269	. 624	.274	-1.270
. 699	.498	-1.274	. 636	.279	-1.273
.715	. 504	-1.274	. 642	.281	-1.273
.726	. 508	-1.268	.660	.288	-1.273
.738	. 513	-1.270	. 672	.292	-1.276
.749	. 517	-1.275	. 686	.298	-1.273
.763	.522	-1.272	. 697	.302	-1.266
.774	. 526	-1.269	.714	.308	-1.266
4638.788	.532	-1.279	.726	.313	-1.256
4643.545	.342	-1.192	.739	.318	-1.268
.579	.355	-1.090	.752	.323	-1.260
. 595	.361	-0.958	.765	.328	-1.262
. 609	. 366	-0.856	4648.778	.333	-1.273
.620	.370	-0.778	4649.536	.621	-1.273
.631	.374	-0.692	. 547	.625	-1.267
.644	.379	-0.627	. 562	.631	-1.269
,668	. 389	-0.593	. 576	.636	-1.266
.680	. 393	-0.642	. 594	.643	-1.271
,697	.400	-0.754	. 606	.648	-1.274
.711	.405	-0.927	.618	.652	-1.268
,724	. 410	-1.025	. 629	.657	-1.268
.736	. 414	-1.119	. 648	. 664	-1.269
4643.788	. 434	-1.260	. 660	. 668	-1.277
4647.527	.857	-1.193	. 674	. 674	-1.273
. 539	.861	-1.145	. 684	.677	-1.274
.552	. 866	-1.138	. 699	. 683	-1.270
.563	.870	-1.116	.713	. 689	-1.265
.581	.877	-1.086	4649.727	. 694	-1.271
. 593	.882	-1.076			

TABLE III-Concluded

There are 12 epochs of primary minima available including those observed by Wellmann covering a total of 290 periods. These have been listed in Table IV, together with the O-C's based on the period derived by the writer. The systematically decreasing deviations in

FIG. 3-The mean light curve of EE Pegasi.

TABLE IV

EPOCHS OF PRIMARY MINIMA

J. D.	No. of Periods Elapsed	O-C
243 3881.509	-290	+0.038
889.394	-287	+0.039
910.400	279	+0.019
923.537	274	+0.015
931.417	271	+0.010
939.297	268	+0.005
947.176	265	0.000
3960.316	260	-0.001
4606.863	14	+0.002
622.633	-8	+0.003
635.770	-3	-0.001
643.656	0	0.000

Wellmann's observations are within the uncertainty of visual estimates of the times of minima.

The light curve shows two unequal minima, the secondary minumum being quite shallow and, in addition, not too well observed. Consequently, only the primary minimum was used for a solution of the photometric orbit, with the added information for the depth of the secondary minimum. It appears that the eclipse is either partial or grazing. Outside eclipses the brightness remains constant.

Following the Russell-Merrill (1950, 1952) method for the derivation of preliminary orbital elements, it appears that the primary eclipse is a transit with α_0 very close to 1. Assuming a limb-darkening coefficient x = 0.6 the light curve during the primary minimum can be represented by the following elements:

k :	=	0.85	$L_g =$	0.784
r _g :	=	0.166	$L_s =$	0.216
r _s	=	0.141	$\Delta M =$	1^{m}_{40}
i	=	88°57		

Since the spectral type of the primary component is A4V, the secondary component is of the spectral type about F5V.

It should be pointed out that the new orbital elements differ from those derived by Wellmann. It has been found that for the same value of α_0 and the limb-darkening coefficient Wellmann's ratio of the radii, k = 0.666, is too small to match the observed and the computed light curve adequately. The deviations are quite large in the wings of the primary minimum. On the other hand, the present value for kshould be considered as tentative until a more accurate light curve has been derived.

CONCLUSION

There is a need for new and more accurate photometric observations of this eclipsing system. Although this writer's data are better than the visual estimates of Wellmann, sections of the light curve have been covered inadequately or not at all. Also, new observations would provide additional epochs for improving the period of the system.

References

Gomi, K. 1940, Beob. Zirk., vol. 22, p. 39.
Hoffmeister, C. 1935, Astr. Nach., vol. 255, p. 401.
Merrill, J. E. 1950, Princeton Contr., no. 23.
Russell, H. N. and Merrill, J. E. 1952, Princeton Contr., no. 26.
Wellmann, P. 1953, Zs. f. Ap., vol. 32, p. 81.

440

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

Number 16

THE RADIAL VELOCITIES AND SPECTRAL CLASSES OF 55 KAPTEYN AREA FUNDAMENTAL STARS IN HIGH GALACTIC LATITUDES

JOHN F. HEARD

1965

TORONTO, CANADA

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

THE RADIAL VELOCITIES AND SPECTRAL CLASSES OF 55 KAPTEYN AREA FUNDAMENTAL STARS IN HIGH GALACTIC LATITUDES

By John F. Heard

Abstract

In 1954 a programme was set up for the determination of the radial velocities of 55 fundamental stars in Kapteyn's Selected Areas 13-15, 29-35, 53-60, that is, in the selected areas near the north galactic pole. The stars selected were those brighter than photographic magnitude 10.01 (on the *Bergedorfer Spectral-Durchmusterung* scale) which are listed in Hins' (1934) Catalogue in the stated areas and for which no radial velocities were known in 1954. Observations were obtained over a period of ten years and the results both of radial velocity and of MK spectral classification are presented here.

OBSERVATIONS AND RESULTS

Spectrograms. The instrument used to obtain the spectrograms was the one-prism Hilger spectrograph with a camera lens of 12.5 inches focal length giving a dispersion of 66 A./mm. at H γ . With a slit which gave a projected width of 20 μ the spectra of these 9th to 10th magnitude stars required exposures of two hours or more. The rule was to observe the stars at least four times in different seasons. Actually most of the stars were observed more than four times.

Radial Velocities. The spectrograms were measured for radial velocity by the standard technique used at this Observatory. In addition to the writer the following persons did appreciable shares of the measuring: Miss Küli Milles, Messrs. W. Russell, S. C. Morris, D. Crampton, M. P. FitzGerald, H. Mairo. As a general rule between 10 and 20 star lines were measured except for the B- and A-type stars, and the probable errors of the means mostly ranged between 1 and 4 km./sec. as computed from the inter-agreement of the lines. Decisions as to constancy or variability of the velocities were made not by any fixed rule but by judgement based on experience in measuring similar spectrograms on other programmes.

Spectral Classification. All spectra were classified by the writer on the MK system with the aid of an almost complete set of spectrograms of the MK standards taken with the same dispersion.

The Tabulations. Table I lists the stars. Column 1 gives the Kapteyn Selected Area number and the star number in Hins' (1934) catalogue.

S.A. and Hins No.	H.D. or B.D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec.)	P.E.	Pl.	Ref.
53/567 53/568 53/569 53/570 53/571	82011 82069 29°1907 29°1908 30°1875	h m 9 27.1 9 27.5 9 27.6 9 28.2 9 29.6		$10.09 \\ 9.45 \\ 9.89 \\ 9.93 \\ 9.73$	B9 111 F8 V F5 V K0 111 F3 V	+31.1 v? Var. Var - 1.2 Var.	2.7 0.8	$5 \\ 6 \\ 8 \\ 4 \\ 6$	II II II II
53/573 29/301 29/302 29/303 29/304	82570 83697 44°1898 45°1753 84059	$9\ 30.6$ 9 38.4 9 39.8 9 39.9 9 40.6	$\begin{array}{rrrr} +29 & 06 \\ 44 & 26 \\ 44 & 04 \\ 45 & 16 \\ 44 & 56 \end{array}$	$10.02 \\ 9.72 \\ 9.85 \\ 9.87 \\ 7.50$	G8 III: G8 III G0 V A2 V F0 III	+11.0 v? +29.0 v? -10.0 Var. Var.	$2.8 \\ 2.1 \\ 2.6$		II II II II
29/306 29/307 29/308 29/310 29/311	84219 45°1758 45°1761 45°1763 44°1904	$\begin{array}{c} 9 \ 41.7 \\ 9 \ 41.9 \\ 9 \ 43.4 \\ 9 \ 43.6 \\ 9 \ 44.2 \end{array}$	$\begin{array}{r} +44 & 39 \\ 45 & 10 \\ 44 & 36 \\ 45 & 18 \\ 44 & 28 \end{array}$	8.52 9.99 9.88 9.95 9.39	G0V F8 V F8 V F8 V F8 V A9 III	-28.5 Var.+ 4.5-26.0+ 0.4 v?	2.0 2.9 0.9 3.2	56545	II
54/579 30/312 30/317 13/117 13/118	30°2024 92124 45°1859 95866 95975	$\begin{array}{c} 10 \ 26 . 9 \\ 10 \ 36 . 0 \\ 10 \ 41 . 3 \\ 11 \ 01 . 6 \\ 11 \ 02 . 2 \end{array}$	$\begin{array}{rrrr} +29 & 46 \\ 45 & 06 \\ 44 & 56 \\ 59 & 10 \\ 59 & 50 \end{array}$	$9.66 \\ 9.76 \\ 9.59 \\ 9.86 \\ 9.85$	F8 V K5 111 F3 V G0 1V F7 IV	-9.0 +58.9 Var. +87.4 -31.1	$3.0 \\ 2.9 \\ 1.0 \\ 2.1$	$\begin{array}{c}4\\8\\21\\5\\4\end{array}$	N N
13/119 13/122 13/124 13/125 55/587	$96093 \\ 96950 \\ 97420 \\ 97438 \\ 30^{\circ}2175$	$\begin{array}{c} 11 \ 02.9 \\ 11 \ 07.7 \\ 11 \ 10.6 \\ 11 \ 10.7 \\ 11 \ 32.4 \end{array}$	$\begin{array}{c} +60 & 06 \\ 59 & 10 \\ 59 & 25 \\ 60 & 01 \\ 29 & 42 \end{array}$	$9.56 \\ 10.08 \\ 9.32 \\ 9.81 \\ 9.78$	F5 III G8 IV F6 V F0 III G0 V	$- 1.6 \\ -52.6 \\ + 6.0 \\ -29.6 \\ Var.$	$1.8 \\ 2.0 \\ 3.3 \\ 1.3$	$ \frac{4}{5} \frac{4}{4} 8 $	11
$31/322 \\ 31/327 \\ 56/596 \\ 32/333 \\ 32/335$	44°2112 101674 105020 111851 112297	$\begin{array}{c} 11 \ 35.9 \\ 11 \ 39.6 \\ 12 \ 03.0 \\ 12 \ 49.4 \\ 12 \ 52.9 \end{array}$	$\begin{array}{r} +44 \ 22 \\ 44 \ 25 \\ 28 \ 47 \\ 44 \ 18 \\ 44 \ 34 \end{array}$	$9.65 \\ 9.12 \\ 8.91 \\ 9.27 \\ 9.48$	F6 V F6 III K3 III F6 IV F8 V	$\begin{array}{r} -32.2 \text{ v?} \\ -29.5 \\ -38.7 \text{ v?} \\ -6.6 \\ -5.6 \end{array}$	$2.4 \\ 1.4 \\ 1.7 \\ 2.1 \\ 3.1$	$ \begin{array}{c} 7 \\ 6 \\ 9 \\ 5 \\ 5 \end{array} $	II II
57/600 57/601 57/602 14/133 33/341	113995 114059 114071 117845 45°2134	$\begin{array}{c} 13 \ 04.8 \\ 13 \ 05.3 \\ 13 \ 05.3 \\ 13 \ 29.7 \\ 13 \ 48.8 \end{array}$	$^{+28.59}_{29 \ 43}_{29 \ 44}_{59 \ 13}_{44 \ 37}$	9.76 10.06 10.08 8.36 9.90	K3 111 G8 V: F7 V G2 V F8 IV	$-23.9 \\ -21.8 \\ Var. \\ + 3.4 \\ -23.7$	$1.7 \\ 1.1 \\ 2.8 \\ 1.9$	$\begin{array}{c} 4\\ 3\\ 7\\ 6\\ 6\end{array}$	П
$33/344 \\ 33/347 \\ 58/617 \\ 34/349 \\ 34/352$	45°2137 121933 29°2495 130988 131381	$\begin{array}{c} 13 \ 52.1 \\ 13 \ 55.6 \\ 14 \ 04.8 \\ 14 \ 47.8 \\ 14 \ 50.0 \end{array}$	$\begin{array}{r} +44 & 58 \\ 45 & 24 \\ 29 & 30 \\ 45 & 05 \\ 45 & 23 \end{array}$	9.57 9.28 10.00 9.17 9.68	F5 V F3 V F7 IV G8 V F6 IV	+ 2.2 - 4.0 Var. +19.8 -33.4	$2.2 \\ 2.9 \\ 1.3 \\ 1.6$		11
$34/353 \\ 34/355 \\ 34/356 \\ 59/625 \\ 15/134$	$\begin{array}{c} 131447 \\ 131861 \\ 132046 \\ 133965 \\ 135721 \end{array}$	$\begin{array}{c} 14 \ 50.4 \\ 14 \ 52.6 \\ 14 \ 53.8 \\ 15 \ 04.3 \\ 15 \ 12.6 \end{array}$	$\begin{array}{r} +44 & 26 \\ 45 & 30 \\ 45 & 06 \\ 29 & 23 \\ 60 & 08 \end{array}$	$9.88 \\ 7.64 \\ 9.13 \\ 9.42 \\ 9.60$	K0 IV F5 V F0 III F6 V F2 II	-46.6 Var. - 7.8 -19.8 Var.	$2.2 \\ 0.3 \\ 1.6$	$5\\20\\4\\8\\6$	N H

TABLE I

S.A. and Hins No.	H.D. or B.D.	R.A. (1950)	Dec. (1950)	Ptg. Mag.	Class	Velocity (km./sec.)	P.E.	P1.	Ref.
$\begin{array}{c} 15/135\\ 15/136\\ 15/137\\ 15/138\\ 15/140 \end{array}$	$\begin{array}{c} 135741 \\ 135962 \\ 60^\circ 1598 \\ 136244 \\ 136617 \end{array}$	h m 15 12.8 15 14.1 15 15.4 15 15.6 15 17.7		9.45 9.69 9.84 9.08 9.75	F5 V G8 II F5 II K3 III K5 V	Var. -13.1 v? -31.1 Var. -64.3	$2.7 \\ 0.9 \\ 1.4$	75484	II II II N
$\begin{array}{c} 15/144\\ 35/360\\ 35/364\\ 60/634\\ 60/635\end{array}$	60°1611 45°2344 142592 143585 29°2751	$\begin{array}{c} 15\ 22.9\\ 15\ 50.2\\ 15\ 51.9\\ 15\ 58.2\\ 15\ 58.7\end{array}$	$+60 \ 05 \\ 44 \ 51 \\ 45 \ 06 \\ 30 \ 15 \\ 29 \ 42$	9.98 9.67 9.25 10.08 9.99	F8 V F3 V A4 V K0 III A9 III:	-20.5 v? -38.0 v? Var. - 1.9 -20.4	$3.1 \\ 3.3 \\ 2.3 \\ 2.0$	$5\\6\\10\\4\\6$	II II II

TABLE I-Continued

NOTES TO TABLE I

- H.D.92124 Exclusion of one discordant measure (of 76.4 km./sec.) would change the mean velocity to +55.8 km./sec. and would reduce the P.E. to 0.7 km./sec.
- B.D.45°1859 Twenty-one observations show the velocity to be variable; the period seems to be about 22.7 days, the half-range 26 km./sec., and the velocity of the system—81 km./sec. This would make this star a rare combination of high-velocity and binary.
- H.D.131861 Twenty observations show the velocity to be variable; preliminary elements are: period 3.55 days, half-range 72 km./sec., velocity of the system—20 km./sec.

H.D.136617 The G-band is weak.

Columns 2 to 4 are self-explanatory. Column 5 gives the photographic magnitudes as listed in the *Bergedorfer Spectral-Durchmusterung*. Column 6 is our MK classification. Column 7 lists the mean radial velocities for those stars which are believed to have constant velocities and for stars whose velocities *may* be variable (v?), but no mean velocities are listed for those stars which are more certainly variable. (The individual velocity measures are tabulated in Table II both for stars which are of doubtful and of certain velocity variability.) Column 7 lists the probable errors of the means computed from the interagreement of plate measures, and column 8 gives the number of plates measured. Column 9 refers to the notes (N) and to inclusion of the star in Table II.

Star H.D. or B.D.	Julian Day (243)	Velocity km./sec.	Star H.D. or B.D.	Julian Day . (243)	Velocity km./sec.
82011	5559.639	+ 17.1	45°1753	5553.651	- 67.7
(DOSS.)	5783.892	+ 28.7	(def.)	5583.623	- 63.7
(poss.)	6222 819	+44.7		6309.594	-29.1
	7747.662	+43.0		6646.702	+75.5
	8061.806	+ 22.1]	7335.778	+117.4
	00021000			7742.684	+ 38.8
\$2069	5146.788	+ 9.0			
(def)	5514 867	+ 26.6	84059	5215.540	-20.0
(uci.)	6255.708	+ 6.9	(def.)	5538.631	- 38.0
	6323 583	+ 96	(den.)	7044.578	-42.0
	7734 726	- 3.6		8085 753	- 18.8
	8045.791	+ 14.0		8473.680	- 35.5
		10.0	4=01==0		10.0
29°1907	5527.731	- 19.2	45~17.5%	0210.000	- 10.8
(def.)	0874.805	- 31.0	(def.)	5557.704	- 10.0
double lines	6271.772	- 28.5		0000.047	- 39.2
	6650.749	- 41.1		1140.008	- 51.0
	7771.622	- 97.7		7779.600	- 22.2
		+95.8		(180.644	- 17.4
	7997.850	-106.2			
	0.010.00.	+ 68.7	44°1904	5141.786	- 2.7
	8046.891	- 21.4	(poss.)	2601.604	+ 13.2
				6638.688	- 15.0
30°1875	5573.631	- 8.0		7341.814	+ 5.6
(def.)	5587.605	- 12.0		7726.699	+ 0.8
	6644.696	+ 3.4			
	6672.658	- 27.8	30°2175	5527.829	+ 13.0
	7750.631	- 5.2	(def.)	5551.755	+ 53.0
	8046.762	- 20.0		6222.897	+ 1.6
				6624.823	+46.2
82570	5551.659	+ 10.2		7410.731	+ 40.1
(poss.)	5881.768	+ 11.2		7412.717	+ 52.7
	6655.633	+ 20.8		8058.894	+ 30.6
	6673.576	+ 1.9		8461.786	+ 7.6
83697	5533.713	+ 33.5	44°2112	4883.626	- 21.8
(poss.)	5564.660	+ 32.8	(poss.)	5533.858	- 27.5
	6302.610	+ 33.7		5602.626	- 21.0
	6635.635	+ 12.3		6309.708	- 41.9
	7410.603	+ 32.5		7427.642	- 35.4
	8453.732	+ 24.5		7751.831	- 34.3
	8478.695	+ 33.9		8500.725	- 43.2

TABLE II

STARS WITH DEFINITELY (DEF.) OR POSSIBLY (POSS.) VARIABLE VELOCITY

Star H.D. or B.D.	Julian Day (243)	Velocity km./sec.		Star H.D. or B.D.	Julian Day (243)	Velocity km./sec
105020	2989.760	- 31.9		135962	4881.793	- 20.5
(poss.)	3015.697	- 37.0		(poss.)	5261.722	- 5.7
	3031.646	-28.9			6308.892	- 7.2
	4089.776	- 44.4			6637.891	- 25.0
	4558.635	- 33.8			7416.864	- 7.0
	4562.624	- 40.4				
	5142.934	- 53.5		136244	-1880.677	-51.5
	5559.757	- 35.7		(def.)	5283.649	- 48.3
	5587.708	- 43.1			6672.848	- 29.2
					7087.738	- 60.7
114071	5251.663	- 6.9			7761.842	-51.4
(det.)	5552.865	- 24.4			7765.781	- 49.9
	5890.923	-27.1			8134.726	- 56.9
	6308.866	-12.5			8486.802	- 35.6
	6635.865	- 34.2				
	7378.842	- 22.3		60°1611	4922.685	-24.8
	7749.839	-22.9		(poss.)	5285.685	-4.8
	1000 007				6644.846	-16.4
29°2495	4908.625	- 37.5			6680.848	-32.2
(def.)	5226.790	- 58.4			7791.775	-24.2
	0000.868	- 39.9				
	0271.876	- 43.6		45°2344	4886.796	- 27.3
	7037.031	- 74.8	1	(poss.)	5260.708	-39.5
	1393.830	- 07.7			5601.797	- 41.0
107701	1000 = 1=	10.0			060S.S02	-25.4
1.00721	4580.747	- 13.5			8467.857	-48.6
(det.)	0201.020	- 7.5			\$489.880	- 46.0
	0309.884	- 30.0		1.40700	1	
	0073.780	- 4.9		142592	4881.856	-16.1
	7007.807	-28.6		(def.)	5215.887	- 10.4
	(389.832	- ə.0			5283.689	- 79.3
195741	1001 -00	10. 1			5602.819	-46.9
100741 (dof.)	4001.720	- 10.8			7056.839	- 46.3
(der.)	0290.000 6697 096	- 28.5			1051.685	-19.2
	0007.900	- 55.0			8129.832	+ 0.7
	7416 796	- 17.1			5411.881	+ 1.3
	7410.780	- 9.2			5002.811	+ 36.3
	8486.885	-12.5 -0.6			8912.176	- 23.4

TABLE II-Continued

ACKNOWLEDGEMENTS

The writer gratefully acknowledges the help of many observers in obtaining the spectrograms over the past ten years and that of the student assistants listed above who helped with the measurements while receiving financial support from grants made to the writer by the National Research Council of Canada.

Reference

Hins, C. H., 1934, Leiden Observatory Annals, vol. 15, part 4.

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

Number 17

A STUDY OF THE VARIABLE STARS IN THE GLOBULAR CLUSTER MESSIER 14

I. PERIODS AND LIGHT CURVES OF TWENTY VARIABLES

HELEN SAWYER HOGG AND AMELIA WEHLAU

> 1966 TORONTO, CANADA

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

A STUDY OF THE VARIABLE STARS IN THE GLOBULAR CLUSTER MESSIER 14

I. Periods and Light Curves of Twenty Variables

BY HELEN SAWYER HOGG AND AMELIA WEHLAU

The globular cluster Messier 14, NGC 6402, (R.A. $17^{h} 35^{m}_{..}0$, Dec. $-03^{\circ} 15'$, 1950) is one of the clusters very rich in variable stars. It is exceeded in number of variables by only seven other clusters at present. Seventy-two variables were discovered by H. B. Sawyer (1938) from a series of plates taken with the 72-inch reflector of the Dominion Astrophysical Observatory at Victoria. A preliminary report of work on their periods appeared at the same time (Sawyer 1937), but circumstances delayed publication of further work until now.

For the past three years we have been making a study of the variables in the cluster to determine their periods and the form of their light curves. A total of 258 plates is now available, virtually all of which have been taken by one of us (H.S.H.). Of these, 31 were taken with the 72-inch reflector of the Dominion Astrophysical Observatory, 211 with the 74-inch reflector and 9 with the 19-inch of the David Dunlap Observatory, 2 with the 36-inch Steward Observatory reflector, and 5 early Mount Wilson plates were taken by F. G. Pease and H. Shapley. These plates span an interval of 52 years.

Four additional variables have now been found by Amelia Wehlau, bringing the total to 76. These are indicated on figure 1, and are given in Table I of this paper. The first 72 variables were identified in the original paper. One of the first results of the renewed study was the discovery of a nova (by A.W.) on the plates of 1938 taken with the David Dunlap Observatory 74-inch (Sawyer Hogg and Wehlau 1964).

All the available plates have been measured (by A.W.) with the Becker iris photometer at the Hume Cronyn Memorial Observatory of the University of Western Ontario. The magnitudes of the sequence previously published have now been revised from five plates taken with superimposed exposures on both the cluster and Kapteyn Area 61, one of the areas where the magnitude values have been standarized to the fainter magnitudes (Stebbins, Whitford and Johnson 1950). The comparison stars are identified on figure I, and their revised magnitudes are given in Table II, which includes four auxiliary stars added to the original sequence.

FIG. 1—The globular cluster Messier 14, photographed with the 74-inch reflector of the David Dunlap Observatory on June 23, 1938, when the nova was visible. (Plate 3263, exp. 40 min.) Four new variables, and comparison stars are also identified. Scale of the figure, 7".0/mm.

The variables in this paper are mainly those for which preliminary results were given in 1937, with many additional observations obtained since. They have large ranges, and three bright Cepheids with periods over one day are among them. Many of the preliminary periods derived

NEW VARIABLE STARS						
Variable	Co-ord	inates	λ	lagnitud	les	
No.	x''	У″	Max.	Min.	Mean	Remarks
73	+05	+07	16.5	18.0	17.25	Bright irregular?
74	+07	+91	16.5	17.2	16.85	Bright irregular?
75	+35	-12	16.7	18.5	17.60	RR Lyrae
76	-105	+03	16.1	17.0	16.55	Short period Cepheid
Nova	+30	+04	16 (ob	served)		Found only on plates of 1938

TABLE 1	
---------	--

	Co-ord	Mean Mag	
Star	x''	y''	(pg)
а	-43	-86	14.52
b	-146	-150	14.70
С	-39	-57	15.35
d		-71	15.85
е	-9	-104	16.17
f	+110	-42	16.71
g	+11	-92	17.46
h	+21	93	17.98
j	+2	- 99	18.42
W	-80	-152	16.20
х	-105	-115	17.40
У	-139	-138	17.55
Z	+24	-79	17.56

TABLE II Magnitudes of Sequence Stars

some years ago are being brought up to date with the help of the IBM 7040 at the University of Western Ontario. Even though the magnitudes have been determined with the photometer it will be difficult to get periods for many of the stars with small ranges, located in the congested central region of the cluster, where background corrections are large; the congestion in the central region, even on a scale of 22".43 to the millimetre, is severe. Although the cluster has a relatively large angular diameter of 6'.7, the stars are faint, with the RR Lyrae stars ranging mostly from the 17th magnitude at maximum to the 18th at minimum. Since the twenty stars which appear in this paper have been selected for large ranges and unobscured position, this

material alone is not suitable for a discussion of the frequency of periods in this cluster.

Table III gives the observations on all available plates for the following twenty variables, numbers 1, 2, 4, 5, 7, 9, 10, 11, 15, 16, 19, 22, 23, 24, 25, 30, 32, 33, 36 and 43, giving the number of the plate, the Julian Date, and the observation derived from photometer readings. There are fewer plates listed in the second section of Table III for the stars with numbers 19 to 43 since on some of the poorer quality plates none of these stars could be measured.

Table IV gives for these variables the maximum, minimum and mean magnitudes, the epoch of maximum (chosen as the nearest maximum just before J.D. 2438200 in the 1963 series of observations), and the period, followed by remarks when pertinent.

The light curves of these twenty variables, in order of decreasing length of period, are shown in figures 2 and 3. The points are the computed weighted means of all observations at intervals in phase of 0.04 of the period of the star. Observations with colons in Table III have been assigned half weight. A filled circle represents at least three good observations, but averages about ten such. Open circles represent mean points derived from observations which are few in number or of low weight.

Of this first group of stars, three are Cepheids with periods longer than one day. Sixteen are type ab RR Lyrae stars with periods between 0.48 and 0.68 days, and one is a type c with period 0.36 days. A period change is noticeable only for Var. 1, the Cepheid with longest period in the cluster, 18.730 days, whose period seems to be steadily shortening at the rate of $\beta = 14 \times 10^{-7}$ days/day.

In figure 2 two light curves are given for this star to illustrate graphically the change in period from an earlier to a later interval. In the case of this star, the figure shows many open circles which do not represent uncertainty in the magnitudes, but rather fewer observations in the means because of the division of material.

Joy (1949) studied spectroscopically variables 1, 2, 7, and 17 in this cluster. For Var. 1, his classification from two spectrograms was G2 and G0, with an average radial velocity of -115 km/sec, indicating cluster membership.

Variable 2, with period 2.79468 days, is the type of short period Cepheid in clusters mentioned by Joy and C. Payne Gaposchkin (1954). Joy gives the spectrum from one plate as F8, and the radial velocity as -129 km/sec.

Variable 7 seems to be a typical W Virginis star with period 13.596
			OBSERV	ATIONS OF	VARIABLI	E STARS IN	NGC 640	20			
Plate	Julian Day*	No. 1	No. 2	No. 4	No. 5	No. 7	No. 9	No. 10	No. 11	No. 15	No. 16
$\frac{103}{2617}$	19536.939 96795.811	16.0 15.05	16.45			15.0 16.05					
2637	26.750	15.05	16.05	18.7	18.7	16.15	18.15	18.9	18.0	18.6	18.2
2649	48.705	15.15	15.8	18.15	18.5	15.7	18.4	18.1	18.2	18.9:	18.2
4397	1690.895	15.85	16.0			16.3			18.1:		17.2:
20544	6915.824	15.1	16.85	18.4	16.9	15.85	17.1	17.2	17.1	18.3:	17.8
20559	21.824	15.95	15.85	17.6	17.9	15.55	17.7	18.0	16.6	17.45	17.5
20571	23.785	16.9:	17.0:			15.7:					
20584	24.758	16.2	15.9			16.4	18.8:	18.2:	18.4:		
20587	.824	16.8:	15.8		18.0:	16.5;	18.2:		16.85:		
70500	25 776	16 05	16.5	17 6.		16 55		17 6:		-6-71	
20647	44.781	15.95	15.95	17.75:		15.45		17.9:	16.5	18.35:	
20675	46.742	15.5	16.9:			15.4	17.8:		17.8:	18.5:	
21377	7272.784	15.1	16.65	17.8:	18.5;	15.6	18.5	17.8	18.1	18.2	
21380	F98.	15.0	16.9;	17.95:	18.9	15.5	18.1	18.4	18.6	18.05	
21386	73.788	15.0	16.4	18 4	17.7	15.55	18.0	17.7	17.7	17.8	17.9
21399	74.776	15.1	16.0:	17.45	17.5	15.4	18.05	18.3:	16.35	17.15	16.9
21406	168.	15.1	16.25	18.5	18.4	15.55	$\frac{1}{x}$	18.8:	17.4	18.1	17.7
21412	75.768	15.15	16.7	18.75	18.85	15.7	17.3	17.9:	18.45	18.95;	17.85
21416	.856	15.25	17.1	18.6	17.35	15.6	17.6	18.9	18.2	17.45	18.7
21515	306.776	14.7	16.9	18.1:	18.5	16.15	18.0;		16.6		
21538	07.700	14.85	15,85	18.0:	18.4	16.2	18.1	17.0	18.5:	18.1	17.5
21556	08,800	14.85	16.3:			15.9			17.2:		
23178	639.790	16.05	16.95	18.6	18.45	15.55	18.4	18.15	18.0	18.8	18.7
23237	6F7.82	15.65	16.85	18.9	19.1:	16.4	18.9	17.25	17.45	18.35	17.55
*Helic	centric										

TABLE III

Plate	Julian Day	No. 1	No. 2	No. 4	No. 5	No. 7	No. 9	No. 10	No. 11	No. 15	No. 16
0 1 55555 555555 555555 555555 55555 55555 5555	27658, 811 59, 760 823 840 64, 765	15.65 15.1 15.15 15.05 14.85	16.75; 15.95 15.95 15.95 16.95	18.55 17.9 18.3 18.3 18.3 18.3	$\begin{array}{c} 19.0;\\ 18.7\\ 18.6\\ 18.5;\\ 18.5$	16.3 16.5 16.8 15.45	122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 123.5	$\begin{array}{c} 17.6\\ 18.4\\ 18.3\\ 18.3\\ 18.25\\ 18.0\\ 18.0\end{array}$	$17.5 \\ 16.5 \\ 16.65 \\ 17.4 \\ 17.4$	$\frac{18.5}{18.1}$	$\frac{18.1}{17.15}$ $\frac{17.15}{17.5}$
23308 23309 23529 23529 23538	.802 85.730 713.649 14.663 15.661	$\begin{array}{c} 14.75\\ 15.15\\ 16.0\\ 15.95\\ 15.65\end{array}$	$\begin{array}{c} 17.4 \\ 16.45; \\ 17.4 \\ 15.75; \end{array}$	$\frac{18.5}{18.45}$	18.25	$\begin{array}{c} 15.45\\ 16.0;\\ 16.5;\\ 16.5;\\ 16.6\\ 16.45\end{array}$	17.0	18.5 18.4 17.1:	$\frac{17.45}{16.9};$	18.1 18.4:	17.7 17.9 17.2
$23600 \\ 91 \\ 92 \\ 100 \\ 101 $	28.630 8015.608 677 16.610 16.610	$ \begin{array}{c} 15.85\\ 15.35\\ 15.3\\ 14.9\\ 15.0\\ 15.0 \end{array} $	$\begin{array}{c} 16.8;\\ 16.3\\ 16.3\\ 16.9\\ 17.0\\ 17.0 \end{array}$	$\frac{18.05}{17.25}$	17.3 19.0:	$\begin{array}{c} 16.3\\ 16.0\\ 15.95\\ 15.95\\ 15.9\end{array}$	17.4 17.65 17.2	17.4 18.5	$\begin{array}{c} 17.2 \\ 18.0 \\ 17.7 \\ 17.7 \\ 17.7 \\ 17.8 \end{array}$	$\frac{17.85}{17.6}$	18.0 17.6 17.1
102 103 103 103 103 103 103	$\begin{array}{c} 674 \\ 693 \\ 711 \\ 732 \\ 37, 599 \end{array}$	$\begin{array}{c} 14.55; \\ 14.7 \\ 14.75 \\$	$\frac{17.2}{17.25}$		$\frac{17.8}{17.5}$	15.9 15.8 15.9 15.0 15.0	$\begin{array}{c} 17.0;\\ 17.2\\ 17.55;\\ 17.9;\end{array}$	18.3: 18.0:	$\begin{array}{c} 17.55;\\ 17.8;\\ 18.3;\\ 16.6\end{array}$		17.4 18.0 17.7 16.8
$170 \\ 186 \\ 186 \\ 187 \\ 189 \\ 189 \\ 180 $		$\begin{array}{c} 14.5 \\ 14.85 \\ 14.75 \\ $	$16.1 \\ 16.7 \\ 16.75 \\ 16.7 \\ 16.95;$	$\frac{19.5}{18.7}$	19.5: 18.5 17.2:	$\begin{array}{c} 15.6\\ 15.75\\ 15.8\\ 15.8\\ 15.75\\ 15.9\end{array}$	$\frac{18.25}{18.3}$	18.0 17.9:	17.85 17.85	19.0:	18.3 19.2 5:
$\begin{array}{c} 192\\ 2119\\ 223\\ 820\\ 820\\ 820\\ 820\\ 820\\ 820\\ 820\\ 820$	$\begin{array}{c} 701 \\ 43.571 \\ .610 \\ .677 \\ 308.751 \end{array}$	$\begin{array}{c} 14.75\\ 15.05\\ 15.05\\ 15.05\\ 15.4;\\ 15.4;\end{array}$	17.0: 16.35 16.3 16.1 16.1	1212	17.6:17.9:17.05 17.5	15.85 15.9 16.0 16.1 15.6	$17.0 \\ 16.95 \\ 17.3 $	$18.6; 19.0 \\ 17.15$	$\begin{array}{c} 17.3:\\ 16.45\\ 16.5\\ 16.55\\ 16.55\end{array}$	19.0: 18.45 18.5	17.3: 17.1 16.9 16.8

No. 16	17.2	17.3: 17.9 18.1:	17.9:	17.2 17.7 17.6	16.7 16.9 17.5	18.5 17.5 17.5
No. 15		$\begin{array}{c} 17.65;\\ 17.1;\\ 17.5;\\ 17.5;\\ 17.4;\\ 17.4;\end{array}$	18.4: 18.6: 18.5:	17.8 18.1 18.1 18.1	$\begin{array}{c} 17.0;\\ 17.15;\\ 18.0;\\ 17.95;\end{array}$	18.5 18.8 16.8 18.8 18.6 18.6 18.6 18.6 18.6
No. 11	$\frac{17.45}{18.0}$	18.3: 17.4 16.9: 16.65	17.5 17.8 19.0 19.0 19.0	$\frac{18}{12}, \frac{18}{5}, \frac{12}{5}, 1$	17.5: 17.6: 17.4: 18.1:	$\frac{16.5}{16.55}$ 17.6
No. 10	17.45 17.9:	18.05: 18.45 18.15:	17.25	$\frac{19}{18}.05\\17.85;$	18.0: 18.9:	18.35 18.35 18.3; 17.7;
No. 9	17.2 16.7: 17.2	18.35 18.7: 17:75:	18.25 18.25 18.25	$\begin{array}{c} 16.75\\ 16.9;\\ 18.8;\\ 17.95\\ 17.85;\\ 17.85;\\ \end{array}$	$\begin{array}{c} 18.05; \\ 18.0; \\ 18.2; \\ 17.5; \\ 17.5; \end{array}$	18.4 18.15 17.9: 18.8:
No. 7	15.65 15.65 15.65 15.65	$\begin{array}{c} 15.9\\ 16.1\\ 16.0\\ 15.95\\ 15.95\end{array}$	16.35 16.15 16.4 15.6 15.6	15.8 15.8 15.9 15.9 15.9	16.1: 15.75 15.75 15.7	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
No. 5	17.0 18.05:	18.3: 19.0: 17.35: 17.35: 17.35:	18.45; 19.0; 19.0; 17.5; 17.9;	$\begin{array}{c} 19.0;\\ 17.85\\ 17.7;\\ 17.65\end{array}$	17.15	18.8 19.0: 19.5:
No. 4	17.85	18.5: 17.2 17.6: 18.15:		18 18 18 18 18 18 18 18 18 18 18 18 18 1		$\frac{17.25}{17.25}$
No. 2	$\begin{array}{c} 16.2 \\ 16.1 \\ 17.15 \\ 17.5 \\ 17.05 \end{array}$	$\frac{17}{15}$	$\begin{array}{c} 16.05\\ 15.95\\ 15.85\\ 17.05\\ 16.5\end{array}$	16.5 16.2 16.15 16.15 16.15	$\begin{array}{c} 16.25 \\ 16.3 \\ 16.5 \\ 16.5 \\ 16.4 \end{array}$	$\begin{array}{c} 17.25\\ 17.05\\ 15.95\\ 15.95\\ 16.05\\ 16.05\\ 16.05\\ 17$
No. 1	15.15 15.25 15.35 15.75	15.35 15.45 15.45 15.45	15.6 15.55 15.05 15.05	14.9 15.1 14.65 14.65	14.7: 14.95 14.95 14.95 15.0	$\begin{array}{c} 14.95\\ 15.05\\ 15.8\\ 15.$
Julian Day	28308, 769 843 09, 767 781 781 835	65 737 656 728 770	66.631 .653 .729 91.592 .613	678 699 623 695 695	93.623 98.587 .609 .653 .679	99, 582 630 695 688, 713 688, 713
Plate	824 825 825 825 825 825 825 825 825 825 825		1123 1124 1127 1226	$ \begin{array}{c} 1229\\ 1230\\ 1241\\ 1244\\ 1244 \end{array} $	1267 1267 1271 1271	1284 1287 1280 1980 1980

No. 16	18.0 18.6 17.5 17.7	$\frac{18.7}{16.75}$	$\begin{array}{c} 17.4 \\ 18.0 \\ 18.1 \\ 18.3 \\ 17.35 \\ 17.35 \end{array}$	8-88 1111111	18.1 16.8	18.3 17.9 17.9
No. 15	$\frac{17.1}{17.75}$	$\begin{array}{c} 17.9 \\ 19.0 \\ 18.3 \\ 18.8 \\ 18.8 \end{array}$	$\begin{array}{c} 18.6\\ 18.05\\ 17.4\\ 18.45\\ 18.45\\ 18.5\end{array}$	18.7 18.2 18.6	$\begin{array}{c} 16.9 \\ 18.7 \\ 18.1 \\ 18.4 \\ 18.8 \\ 18.8 \\ 18.8 \end{array}$	19.0: 19.0 17.35 17.6 17.6
No. 11	18.0: 16.55 17.0 16.4	17.5 18.1 16.8 16.7 16.7	$\begin{array}{c} 17.15\\ 16.5\\ 17.05\\ 18.1\\ 17.55\\ 17.55\end{array}$	17.7 17.4 17.35 18.0 17.1:	$\begin{array}{c} 18.05;\\ 16.6\\ 17.9\\ 18.05\\ 17.0\end{array}$	$\begin{array}{c} 17.8 \\ 17.9 \\ 17.1 \\ 17.1 \\ 17.35 \\ 17.35 \\ 17.35 \end{array}$
No. 10	17.35: 18.6 18.8 18.8	18.2 18.6 17.0	$\begin{array}{c} 17.05\\ 17.95\\ 18.1\\ 18.1\\ 18.05\\ 18.1\end{array}$	$\frac{17.2}{17.75}$ 18.65	$\frac{18.05}{18.3}$.	$\frac{18.1}{18.45}$ $\frac{18.45}{17.85}$
No. 9	18.0: 17.9 18.2 18.2	$\begin{array}{c} 17.45;\\ 17.8\\ 17.8\\ 17.8;\\ 17.8;\\ 17.8;\\ \end{array}$	$\frac{18.2}{17.25}$	0-+++	$\begin{array}{c} 17.9 \\ 18.2 \\ 18.05 \\ 17.9 \\ 17.9 \end{array}$	$ \begin{array}{c} 18.0\\ 18.8\\ 18.25\\ 17.8\\ 17.8\\ 17.8\\ 17.8\\ 17.8\\ 18.0 25\\ 18.25\\$
No. 7	$\begin{array}{c} 15.35\\ 15.45\\ 15.45\\ 15.4\\ 16.3\\ 16.15\\ 16.15\end{array}$	$\begin{array}{c} 16.05\\ 15.95\\ 16.1\\ 15.3\\ 15.3\\ 15.35 \end{array}$	$\begin{array}{c} 15.4 \\ 15.7 \\ 15.95 \\ 16.15 \\ 16.35 \\ 16.35 \end{array}$	$\begin{array}{c} 16.45\\ 15.8\\ 15.8\\ 15.75\\ 15.55\\ 15.55\end{array}$	15.2 15.8 15.4 15.4 15.6	$\begin{array}{c} 15.35\\ 15.4\\ 15.4\\ 15.55\\ 15.55\\ 15.45\end{array}$
No. 5	12 12 12 12 12 12 12 12 12 12 12 12 12 1	17.0: 17.6: 18.0 19.0: 19.0:	18.8 18.1 18.3 17.6	17.8 19.5 18.6 18.6	17.8 18.6 19.0 18.8 18.8 19.0	$\begin{array}{c} 18.6;\\ 17.35\\ 18.35\\ 18.5\\ 17.7\end{array}$
No. 4	17.9: 18.8 18.5:	$\begin{array}{c} 17.6;\\ 18.2;\\ 18.3;\\ 18$	$\begin{array}{c} 18.8 \\ 17.4 \\ 18.25 \\ 17.3 \\ 17.3 \end{array}$	18.0 17.9 18.3	$\begin{array}{c} 18.65;\\ 18.4\\ 17.7\\ 19.0\\ 18.5;\\ 18.5; \end{array}$	$\begin{array}{c} 18.0;\\ 18.8\\ 18.05\\ 18.05\\ 17.9;\end{array}$
No. 2	$\begin{array}{c} 16.25\\ 16.7\\ 16.95\\ 15.9\\ 15.9\\ 16.95\\ 16.95 \end{array}$	16.0 15.85 17.0 16.8 16.8	$\begin{array}{c} 16.6\\ 16.2\\ 16.1\\ 17.0\\ 16.1\end{array}$	$\begin{array}{c} 15.95\\ 15.9\\ 16.5\\ 17.1\\ 16.5\\ 16.55; \end{array}$	$\begin{array}{c} 16.05\\ 16.9\\ 16.05\\ 16.65\\ 16.65\\ 16.85\\ 16.85 \end{array}$	$\begin{array}{c} 15.9 \\ 16.85 \\ 15.95 \\ 16.65 \\ 16.65 \\ 16.95 \end{array}$
No. 1	$\frac{15.7}{15.75}$	$\begin{array}{c} 14.9 \\ 14.85 \\ 14.85 \\ 14.85 \\ 14.85 \\ 15.0 \end{array}$	$\begin{array}{c} 15.0 \\ 14.75 \\ 14.95 \\ 14.95 \\ 14.85 \end{array}$	$\begin{array}{c} 14.95\\ 15.1\\ 15.35\\ 15.35\\ 14.6\\ 14.6\end{array}$	$\frac{14}{15.1}$	$\begin{array}{c} 15.1 \\ 15.6 \\ 15.65 \\ 14.65 \\ 15.05 \\ 15.05 \end{array}$
Julian Day	28688.822 89.720 804 93.746 95.759	96.679 722 715.675 747	$\begin{array}{c} 770\\ 000\\ 720\\ 720\\ 720\\ 730\\ 700\\ 770\\ 700\\ 770\\ 770\\ 770\\ 77$	76.742 77.702 78.722 405.920	06.956 30.738 62.653 63.648 64.653	87.614 89.702 90.657 519.568 785.764
Plate	1984 1994 2013 2013	2033 2035 2111 2111	2115 3249 3252 3252 3252 3275	3278 3290 3303 3318 4209	4228 4584 4684 4693 4703	$\begin{array}{r} 4795 \\ 4807 \\ 4819 \\ 4973 \\ 5702 \end{array}$

No. 16	$\frac{16.75}{17.1}$	1.71 1.71 1.71	141-14 17-15 17-17	16.6 17.3 17.8 17.8 17.8 16.85	1212 1212 1212 1212 1212 1212 1212 121	17.1
No. 15	17.3 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9	$ \begin{array}{c} 16.9\\ 17.55\\ 18.9\\ 18.9\\ 18.8\\ 18.9\\ 18.8\\ 18.8\\ 18.9\\ 18.8\\ 18.8\\ 18.9\\ 18.8\\ 18.8\\ 18.9\\ 18.8\\ 18.$	$\frac{18.7}{18.45}$	17.55 17.55 18.65 19.05 19.05	18 18 18 18 18 18 18 18 18 18 br>18 18 18 18 18 18 18 18 18 18 18 1	17.3 18.7
No. 11	16.85 18.05 18.05 18.05 18.05 18.05 18.05 18.05	17.4 17.9 16.8 18.7		$\begin{array}{c} 16.95\\ 17.9;\\ 17.8;\\ 18.8;\\ 18.8; \end{array}$	$\frac{18}{120}$	18.0 18.3: 17.5
No. 10	17.4 18.3 18.8 17.15	19.2: 18.4 18.05 18.25	$\frac{17.05}{17.45}$	17.0 18.1: 18.1: 19.0: 18.4: 18.4: 18.4: 18.4:	84448 84448 8446	18.2 16.8 16.8
No. 9	$\begin{array}{c} 17.65\\ 17.35\\ 17.5\\ 17.5\\ 18.3\\ 18.3\end{array}$	$\frac{18.5}{17.25}$ $\frac{18.25}{18.7}$	$\frac{18}{18}, \frac{75}{15}$	18.8 18.8 18.8 18.4 18.4	$ \begin{array}{c} 18.5 \\ 18.5 \\ 18.35 \\ 17.6 \\ $	17.9 18.1: 17.8
No. 7	15.25 15.4 15.25 15.25 15.25	15.3 15.4 15.55 15.25 15.45	$\begin{array}{c} 15.35\\ 15.45\\ 15.45\\ 15.5\\ 15.5\end{array}$	$\begin{array}{c} 15.45\\ 15.45\\ 15.35\\ 15.3\\ 15.4\\ 15.4\\ 15.4\end{array}$	15.4 15.4 15.3 15.5 15.5	15.65 15.55 15.65 15.7 15.35
No. 5	$\begin{array}{c} 17.7;\\ 17.75\\ 18.2\\ 19.0;\\ 19.0;\\ 19.0; \end{array}$	17.45 18.4 17.8 19.0	18.65 17.65 18.35 18.35 18.35 18.35	$\begin{array}{c} 17.35\\ 17.45\\ 17.25\\ 17.9\\ 17.9\\ 17.8\end{array}$	$\begin{array}{c} 18.4 \\ 17.45 \\ 18.6 \\ 17.95 \\ 18.7 \end{array}$	18.5 18.35
No. 4	14 18 18 18 18 18 18 18 19 14 14 14 14 14 14 14 14 14 14 14 14 14	19.5: 18.5: 18.15	18.45 19.0 17.8 17.8	17.8: 18.4: 18.6:	$\begin{array}{c} 18.4;\\ 18.45;\\ 18.5\\ 17.65\\ 17.9\end{array}$	18.1
No. 2	15.9 16.55 16.6 17.0 16.85	$\begin{array}{c} 15.9 \\ 16.05 \\ 16.45 \\ 16.45 \\ 16.65 \end{array}$	$\begin{array}{c} 16.7\\ 16.8\\ 16.95\\ 16.95\\ 15.95\end{array}$	16.4 16.45 16.05 16.0 16.0	$\begin{array}{c} 16.05\\ 16.75\\ 17.0\\ 16.9\\ 16.9\\ 16.9\end{array}$	16.0 15.5 16.8 16.8 16.0
No. 1	15.0 15.3 15.4 15.75 15.9	15.5 15.7 15.15 14.9 14.65	$\begin{array}{c} 14.65\\ 14.65\\ 14.8\\ 15.05\\ 15.05\end{array}$	15.3 15.25 15.6 15.7	15.65 15.5 15.05 15.05 15.0	14.6 14.9: 15.35 15.35 14.9
Julian Day	29786.812 87.784 .810 813.677 .784	14.672 770 15.657 11 16.631	.690 .733 41.688 42.703	$\begin{array}{c} 43.623\\ -732\\ 30169.693\\ -722\\ -751\end{array}$	$70, 715 \\ 71, 730 \\ 72, 642 \\ 72, 642 \\$	97 722 99 705 200 696 549 662
Plate	5717 5728 5729 5808 5812	5820 5825 5835 5836 5836 5836	5843 5846 5848 5948 5964	5974 5980 6836 6837 6838	$6839 \\ 6847 \\ 6861 \\ 6864 \\ 6864 \\ 6870 \\ $	6875 6930 6938 6951 7923

Plate	Julian Day	No. 1	No. 2	No. 4	No. 5	No. 7	No. 9	No. 10	No. 11	No. 15	No. 16
7927 7937 7940 7943 7949	30549.750 50.686 727 806 52.679	$\begin{array}{c} 14.95\\ 14.95\\ 15.05\\ 15.05\\ 15.0\end{array}$	$\begin{array}{c} 15.85\\ 16.4\\ 16.45\\ 16.45\\ 15.9\end{array}$	18.0 18.55 18.15 18.15 18.15 18.15	$\begin{array}{c} 18.6\\ 18.05\\ 18.15\\ 18.15\\ 17.1\\ 17.1\end{array}$	$\begin{array}{c} 15.35\\ 15.65\\ 15.65\\ 15.35\\ 15.45\\ 15.6\end{array}$	17.2 18.05 17.9 17.9	$17.4 \\ 18.45 \\ 18.55 \\ 17.65 \\ 17.4$	$\begin{array}{c} 17.6 \\ 16.55 \\ 16.55 \\ 17.35 \\ 17.4 \end{array}$	16.85 18.25 18.24 18.24 17.8 17.8	17.6 17.8 17.9 18.6;
7955 7961 7964 7974 7979	53.644 720 54.656 54.656	$\begin{array}{c} 15.1 \\ 15.05 \\ 14.95 \\ 15.05 \\ 15.0 \end{array}$	$\begin{array}{c} 16.65\\ 16.75\\ 16.65\\ 16.65\\ 16.6\\ 16.35\\ 16.35 \end{array}$	$\frac{18.0}{17.85}$	$\begin{array}{c} 18.55\\ 18.3\\ 17.05\\ 18.6\\ 18.25\\ 18.25\end{array}$	$\begin{array}{c} 15.55\\ 15.65\\ 15.65\\ 15.6\\ 15.75\\ 15.75\end{array}$	18.0 18.0 17.95 17.55	18.5 17.7 17.25 18.35 18.1 18.1	$\begin{array}{c} 18.15\\ 16.35\\ 17.0\\ 18.05\\ 17.5\end{array}$	$\begin{array}{c} 16.8 \\ 17.35 \\ 17.4 \\ 18.75 \\ 16.95 \end{array}$	$\begin{array}{c} 17.35\\ 17.8\\ 17.9\\ 18.2\\ 17.1\\ 17.1\end{array}$
8014 8020 8117 8895 8902 8902	56.686 748 86.604 899.685 754	$\begin{array}{c} 15.3 \\ 15.35 \\ 14.8 \\ 16.15 \\ 16.3 \end{array}$	$\begin{array}{c} 16.85\\ 16.85\\ 16.05\\ 16.2\\ 16.2\\ 16.3 \end{array}$	$\begin{array}{c} 17.55\\ 17.35\\ 18.4\\ 18.35\\ 18.35\\ 18.35\\ 18.35\end{array}$	$\frac{18.5}{18.25}$	$\begin{array}{c} 16.3\\ 16.5\\ 15.9\\ 15.95\\ 15.85\end{array}$	17.25 17.2 18.2 18.25 18.25 18.25	${}^{17.05}_{17.8}_{18.2}_{18.2}_{18.2}_{18.2}_{18.2}_{18.2}$	$\begin{array}{c} 17.9 \\ 16.25 \\ 17.7 \\ 17.7 \\ 17.9 \\ 17.9 \end{array}$	18.35 18.45 17.1 18.25 18.25	$\begin{array}{c} 17.25\\ 18.05\\ 17.0\\ 17.6\\ 18.2\\ 18.2\end{array}$
8907 8919 8926 8930 9002	811 900.675 766 32.617	$\begin{array}{c} 16.35\\ 16.05\\ 16.0\\ 16.0\\ 16.0\\ 15.75\\ 15.75\end{array}$	$\begin{array}{c} 16.35\\ 16.9\\ 17.1\\ 17.05\\ 15.9\\ 15.9\end{array}$	$\begin{array}{c} 18.7 \\ 17.75 \\ 17.75 \\ 17.85 \\ 17.95 \end{array}$	$\begin{array}{c} 19.0\\ 17.45\\ 17.9\\ 17.55\\ 18.4\end{array}$	$\begin{array}{c} 15.85\\ 15.65\\ 15.7\\ 15.65\\ 15.45\\ 15.45\end{array}$	$\begin{array}{c} 18.4 \\ 18.4 \\ 18.4 \\ 17.95 \\ 18.25 \\ 18.25 \end{array}$	$\frac{18.5}{17.3}$ $\frac{17.85}{18.4}$ 18.4	$\begin{array}{c} 18.1 \\ 16.55 \\ 17.15 \\ 17.45 \\ 17.85 \\ 17.85 \end{array}$	19.0 17.95 18.15 18.15 18.15	17.9: 17.35 17.3 17.3 17.3
9003 9005 9008 9008 9008	652 652 661 685 694	$\frac{15.6}{15.65}$	15.95 15.8 15.85 15.85 15.95	8.35 18.25 1	18.65 18.35 18.35 18.25 18.25 18.25 18.25 18.25	$\begin{array}{c} 15.35\\ 15.45\\ 15.55\\ 15.55\\ 15.45\\ 15.45\end{array}$	$\begin{array}{c} 18.4 \\ 18.3 \\ 18.15 \\ 18.45 \\ 18.45 \\ 18.65 \\ 18.65 \end{array}$	18.1 18.1 18.25 18.25 18.25 18.25	$\begin{array}{c} 17.95\\ 17.15\\ 16.75\\ 16.4\\ 16.4\\ 16.4\end{array}$	18.55 18.65 18.3 18.65 18.65	$\begin{array}{c} 17.6 \\ 17.35 \\ 17.4 \\ 17.65 \\ 17.55 \end{array}$
9013 9013 9023 9023 9023	724 724 734 333 600 610	$\begin{array}{c} 15.8 \\ 15.75 \\ 15.75 \\ 15.95 \\ 15.8 \end{array}$	15.85 15.8 15.85 16.5 16.5	$\begin{array}{c} 18.7\\ 18.45\\ 18.45\\ 18.45\\ 18.1\\ 18.1\end{array}$	$\frac{18.75}{18.35}$	15.45 15.5 15.55 15.55 15.6	$\begin{array}{c} 18.7\\ 18.4\\ 18.35\\ 18.35\\ 18.0\\ 18.0\end{array}$	18.3 18.3 18.3 18.3 17.9	$16.4 \\16.65 \\16.75 \\17.65 \\17.6$	18.85 18.65 18.95 18.2 18.2 17.9	$\begin{array}{c} 17.95\\ 17.75\\ 18.05\\ 18.2\\ 18.2\\ 18.2\\ 18.2 \end{array}$

Plate	Julian Day	No. 1	No. 2	No. 4	No. 5	No. 7	No. 9	No. 10	No. 11	No. 15	No. 16
9025 9027	30933.635 .658	15.9 15.9	16.55 16.5	$19.0 \\ 18.65$	17.5 17.6	15.7 15.65	18.5 18.15	18.15 18.25	18.1 18.15	18.25 18.25	18.1 18.05
9030 9033	.687	15.9 55	16.5 16.6	$\frac{18}{25}$	18, 15 18, 0 18	15.65 15.65	18.25 18.0	18.5 18.5 25	18.1	18,65 18,35	18.25
10134	1259.731	14.8	16.0		18.9	15.6	19.0:	18.1:	16.7	17.05	18.0
12045 12045 12051	$\begin{array}{c} 969.756 \\ .817 \\ .729 \end{array}$	15.95 15.8 15.8	16.1 16.15 16.85:	18.5:	17.7:	$\frac{16.65}{16.4}$	17.8:	17.7: 18.3:	17.25:	17.6:	16.55
12143	77.736 99.693	15.15 15.35	16.0 15.95	$\frac{18.75}{17.9}$	18,45 19,2;	15.6	$17.85 \\ 17.6 $	17.95:	$16.2 \\ 17.35$	$\frac{18.25}{18.9}$	$17.3 \\ 18.4$
12345 12349 12364 12364	2005.706 .758 06.641 .677 .747	$\begin{array}{c} 16.0\\ 16.1\\ 16.1\\ 16.05\\ 16.05\\ 16.05\\ 16.05\end{array}$	$\begin{array}{c} 15.85\\ 15.85\\ 16.45\\ 16.45\\ 16.45\\ 16.75\\ 16.75\\ 16.75\\ 10$	18.5 18.45 17.85 1	18.6 18.4 18.4 18.65 18.65	15.5 15.55 15.75 15.65	17.45 17.75 18.77 18.77 18.77 18.77 19.77	17.55 17.55 18.85 18.35 18.35	$\begin{array}{c} 17.45\\ 17.5\\ 18.0\\ 17.8$	18.35 18.5 17.95 18.15 18.15	18.2 18.05 18.05 18.05 18.05 18.05 18.05 18.05 18.05
13424 13431 13431 13445 13445 13445	355.697 756 828 56.657 710	15.25 15.25 15.85	16.25 16.15 16.1 16.85 17.0	5175 2175 2175 2175 2175 2175 2175 2175	12.55 12.55 17.65 17.65 17.95	15.45 15.45 15.35 15.45 15.45	$\begin{array}{c} 18.2 \\ 18.15 \\ 18.15 \\ 18.17 \\ 18.05 \\ 18.05 \end{array}$	$ \begin{array}{c} 18.7\\ 18.15\\ 17.25\\ 17.65 \end{array} $	a ² 22-a 1222-9	8222 8222 8222 8222 8222 822 822 82 82 8	18.1 18.15 17.25 17.45
13460 13464 13484 13488 13492 13492	$\begin{array}{c} 57.655\\ 701\\ 60.659\\ .723\\ .793\\ .793\end{array}$	$\begin{array}{c} 15.95\\ 15.75\\ 16.15\\ 16.1\\ 16.1\\ 16.1\\ 16.1\end{array}$	$\begin{array}{c} 15.75\\ 15.45\\ 15.95\\ 15.85\\ 16.0\\ 16.0 \end{array}$	$\begin{array}{c} 17.55\\ 17.9\\ 18.4\\ 18.5\\ 18.5\end{array}$	$\frac{17}{188} \frac{55}{188} \frac{17}{158} \frac{55}{158} \frac{17}{158} \frac{55}{158} \frac{55}{158$	$\frac{15.55}{15.7}$	$17.8 \\ 18.25 \\ 18.45 \\ 17.4 $	18.6 18.75 17.75 17.15 17.15	6.6.6.8.8 6.6.2.2 7.1.1.2 7.1.	18.55 18.95 17.95 17.5 17.9	18.05 18.7 18.15 17.2 17.2
14580 14584 14584 14591 14604 14609	740.637 683 41.683 41.638	917-1998 1917-1917-1918 1917-1917-1917-1917-1917-1917-1917-1917	15.75 15.85 15.85 16.35 16.35	$\frac{17.35}{18.55}$	18.5 18.6 17.05 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.	15.75 15.75 15.75 15.95	17.45 17.55 17.8 17.8 17.8	17.95 18.2 17.25 17.25 17.25	$\begin{array}{c} 17.1 \\ 17.45 \\ 17.6 \\ 17.75 \\ 16.35 \\ 16.35 \end{array}$	$\begin{array}{c} 17.9 \\ 18.1 \\ 18.45 \\ 17.15 \\ 17.7 \end{array}$	$\begin{array}{c} 17.95\\ 17.95\\ 18.15\\ 17.15\\ 17.4\end{array}$

Plate	Julian Day	No. 1	No. 2	No. 4	No. 5	No. 7	No. 9	No. 10	No. 11	No. 15	No. 16
14624 14629 14638 14756 14756	32742.621 673 70.616 .607	$\begin{array}{c} 14.95\\ 14.95\\ 14.95\\ 15.95\\ 15.95\\ 16.05\end{array}$	$\begin{array}{c} 17.0 \\ 16.95 \\ 16.75 \\ 16.75 \\ 16.8 \\ 16.8 \end{array}$	8 7 25 1 7 25 1 7 25 1 7 25	18.5 18.7 18.55 18.55 18.55 18.55	$\begin{array}{c} 16.15\\ 16.25\\ 16.1\\ 16.1\\ 16.4\\ 16.45\end{array}$	18.3 17.25 18.4 18.1 18.1	18.55 17.15 18.05 18.05 18.15	18.0 17.9 18.05 16.5	18.65 17.5 17.5 17.5	18.1 18.35 17.6 17.85 18.05
21395 21402 21426 21426 22343	4929, 638 752 31, 665 5273, 697	$\begin{array}{c} 15.65\\ 15.85\\ 15.2\\ 15.2\\ 14.95\\ 14.95\end{array}$	$\begin{array}{c} 16.25\\ 16.35\\ 15.8\\ 15.8\\ 16.5\\ 16.5\end{array}$	17.4 18.05 17.95 18.3	$ \begin{array}{c} 18.6 \\ 18.2 \\ 17.55 \\ 19.0 \\ 19.0 \\ 19.1 \\ 19.1 \\ 10.1 \\ $	$\begin{array}{c} 15.5\\ 15.6\\ 16.05\\ 16.25\\ 16.25\end{array}$	17.6 17.8 17.55 17.05	18.1 18.4 18.25 16.9 18.25 18.25	17.65 16.6 17.25 16.8 17.25	17.7 17.95 19.0 17.25	17.05: 17.45 17.3: 18.5: 18.5: 18.3:
22348 22363 22351 22385	74.601 75.701 814	$\begin{array}{c} 14.9\\ 15.0\\ 15.0\\ 15.1\\ 15.1\end{array}$	$\begin{array}{c} 16.55\\ 16.85\\ 16.95\\ 16.0\\ 16.0\end{array}$	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	18.25 19.05 18.25 17.9 18.25 18.25	$\begin{array}{c} 16.45 \\ 16.1 \\ 16.25 \\ 16.1 \\ 16.1 \end{array}$	$\frac{17.8}{17.95}$ 17.95	$\frac{18.4}{17.45}$	17.1 18.0 17.6 17.6	17.8 18.8 18.45 18.45	18.05 18.0: 18.7 17.6 17.7:
22516 22521 22251 232540 233215 23315	309.632 	$ \begin{array}{c} 14.85\\ 14.8\\ 14.8\\ 14.9 14.9 14.9 14.9 14.$	$\begin{array}{c} 16.05\\ 16.15\\ 17.05\\ 16.75\\ 16.65\end{array}$	$\frac{18.7}{18.45}$ $\frac{18.45}{17.65}$ $\frac{17.65}{18.65}$ $\frac{18.65}{18.65}$	18.4 17.25 18.6 18.55 18.55	15.45 15.45 15.55 15.95 15.9	$ \begin{array}{c} 18.5 \\ 18.5 \\ 18.05 \\ 17.75 \\ 17.75 \\ \end{array} $	$\begin{array}{c} 17.15\\ 17.4\\ 18.45\\ 18.05\\ 17.35\\ 17.35\end{array}$	$\begin{array}{c} 17.75\\17.65\\17.05\\17.05\\16.7\\16.7\end{array}$	18.9 18.55 18.15 18.05 17.7	18.2 18.25 17.85 17.05 17.05
23332 233909 23913 B1691 B1705	88.633 6044.661 49.660 51.660	14.95 15.0 15.05 15.7: 15.7:	8.97 8.99 91 91 91 91 91 91 91 91 91 91 91 91 9	17.95 17.95 17.2	18.6 18.6 18.15	15.35 15.5 15.45 16.65 16.25	17.3 17.95 17.15	19.0 18.35 18.2	18.1 17.65 17.65 17.65 1	$ \begin{array}{c} 16.75 \\ 18.4 \\ 18.5 \end{array} $	17.8 18.25 17.8
B1715 B1722 B1722 B1742 B1752 B1752	52,669 53,640 67,646 68,663 70,652	15.55: 16.2: 15.8 15.65: 15.95	15.9: 16.7:		17.55: 17.8:	16.15: 15.8: 15.5: 15.5:	17.2:	18.0: 17.9:	17.6: 18.25: 17.45:	17.5:	

Plate	Julian Day	No. 1	No. 2	No. 4	No. 5	No. 7	No. 9	No. 10	No. 11	No. 15	No. 16
B1782 B1789 24773 24779 24779	36072.686 73.640 750.679 52.640	15.75 15.4 14.6 14.8 14.8 14.8	16.15: 16.05 16.0 16.95	$\begin{array}{c} 17.4;\\ 17.95\\ 16.65\\ 17.75\end{array}$	$\begin{array}{c} 17.9;\\ 18.3\\ 18.45\\ 18.45\end{array}$	15.7 15.6 15.35 15.35	17.25 17.25 17.95	18.5: 17.1: 18.05 18.45 18.45	16.35 17.5: 17.35 16.3 16.3 16.3	18.15 18.15 18.25 18.25 18.25 18.25 18.25	$\frac{17.05}{17.6}$
24793 24808 24813 24813 26203 26203	53, 648 53, 648 7849, 648 .661	$14.9\\14.95\\16.1\\16.1\\16.1$	$\begin{array}{c} 17.05\\ 15.9\\ 15.85\\ 15.85\\ 15.85\\ 15.9\end{array}$	$\begin{array}{c} 17.7\\ 18.45\\ 18.45\\ 18.15\\ 18.15\\ 18.05\end{array}$	18.3 18.3 18.65 18.65 18.65 18.65 18.65 19.65 1	15.65 15.65 15.6 15.6 15.25 15.35	$\begin{array}{c} 17.3 \\ 18.65 \\ $	$\begin{array}{c} 17.0\\ 18.4\\ 17.45\\ 17.45\\ 17.45\end{array}$	16.95 17.6 16.25 16.25	$\begin{array}{c} 17.35\\ 18.55\\ 19.05\\ 18.35\\ 18$	$\begin{array}{c} 17.85\\ 18.2;\\ 17.1\\ 18.15;\\ 18.0\\ 18.0\end{array}$
26205 26207 26210 26225 26225	. 682 707 707 750 50,672 700	$\begin{array}{c} 16.15 \\ 16.2 \\ 16.0 \\ 16.05 \\ 16.05 \\ 16.05 \\ 16.05 \\ 16.05 \\ 16.05 \\ 16.05 \\ 16.05 \\ 16.05 \\ 16.05 \\ 16.05 \\ 10.05 \\ 1$	$\begin{array}{c} 16.0\\ 16.15\\ 16.15\\ 16.65\\ 16.8\end{array}$	88888 88888 89999	12 2 2 3 2 1 2 1 2 2 3 2 1 2 2 3 2 1 2 2 3 2 1 2 2 3 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	202255 202255 202255	18.3 18.3 17.6 18.05 18.05	17.55 18.35 18.0 18.0 17.95 18.0	$\begin{array}{c} 16.4 \\ 16.65 \\ 17.15 \\ 17.6 \\ 17.85 \\ 17.85 \end{array}$	18.4 18.6 18.0 18.3 18.3 18.3 15.3	18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2
26227 26835 26835 26837 26837 26837 26837 26853	8198.704 8198.704 8198.704 810.600 90.600	$\begin{array}{c} 15.9 \\ 14.95 \\ 15.15 \\ 15.1 \\ 15.15 \\ 1$	15.88 15.888 15.8888 15.8888 15.8888 15.8888 15.8888 15.8888 15.8888 15.8888 15.8888 15.8888 15.8888 15.8888 15.88888 15.8888 15.88888 15.88888 15.888888 15.88888 10	882113 882110 8821100 882110000000000	14 19 19 19 19 19 19 19 19 19 19 19 19 19	15.35 16.15 16.15 16.15 16.1 16.1 15.9	$\begin{array}{c} 17.85\\ 18.25\\ 18.45\\ 18$	22 20 22 22 22 22 22 22 22 22 22 22 22 2	$\begin{array}{c} 17.2\\ 17.5\\ 16.9\\ 17.05\\ 16.9\\ 17.05\\ 10.05\\$	19.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.000	$\begin{bmatrix} 8 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\$
27559 27559 Plate	587,693 Julian Day	19.2 14.85 No. 19	10. 5 16. 1 No. 22	18.4: 18.4: No. 23	17.65 No. 24	15.45 15.45 No. 25	18.0 18.0 No. 30	15.8 18.8: No. 32	16.8 16.8 No. 33	17.3 17.3 No. 36	14.5 No. 43
2637 2649 4397 20544 20559	20726, 750 48, 705 1690, 895 6915, 824 21, 824	18.5 19.0: 18.4 18.05	18.4 18.15 18.1: 18.1: 18.5	17.8 18.7: 18.65	19.0: 16.85 18.1: 17.9 18.2: 18.2:	8.8 2.5	18.9; 18.9; 17.0 17.0 17.0	18.3 17.0 18.65; 18.65; 18.65;	18.0 18.2: 17.8: 17.4:	18.3 17.5 17.25	$\frac{18.1}{17.7}$

Plate	Julian Day	No. 19	No. 22	No. 23	No. 24	No. 25	No. 30	No. 32	No. 33	No. 36	No. 43
20571 20584 20587 20587 20587	26923.785 24.755 25.776 25.776 44.781		17.8: 17.3: 18.2:	$\begin{array}{c} 17.45;\\ 17.0;\\ 17.7;\\ 18.05;\end{array}$	17.7: 19.0:		17.9: 18.0: 17.5	18.2:		16.45:	$\begin{array}{c} 18.2;\\ 18.0;\\ 17.7;\\ 17.75;\end{array}$
20675 21377 21380 21386 21399	1272-742 7272-784 73-786 73-788 74-776	18.0 17.3 18.6 18.8	$\begin{array}{c} 17.8; \\ 18.55; \\ 17.45; \\ 18.7 \end{array}$	18.0; 18.3; 17.55 18.8; 17.55 18.8; 18.8; 18.8; 17.55	$\frac{18.3}{19.0}$	18.25: 18.05: 17.5 18.0	18.3: 17.7 17.9 17.45 17.45	18.5: 18.55: 17.5 18.25	18.1 18.0 18.7	18.0: 17.8 18.35	18.0: 17.8: 18.55: 17.65 18.05
21406 21412 21416 21515 21538	$\begin{array}{c} 891\\ 75.768\\ 306.776\\ 306.776\\ 306.776\\ 907.799\\ \end{array}$	19.5: 18.3 19.0: 17.6	18.5 17.9 18.1:	17.7 18.7 18.8 18.8 18.8	18.9 19.2 178.3 178.3 178.3 178.3 178.3	18.8; 18.0; 17.6	$\begin{array}{c} 17.4 \\ 18.15 \\ 16.9 \\ 18.1; \\ 18.1; \\ 17.9; \end{array}$	18.3 17.9 18.2 18.2	$\frac{18.15}{18.4}$	$\frac{17.4}{18.25}$	$\begin{array}{c} 18.3;\\ 17.85\\ 17.55\\ 17.75\\ 17.75 \end{array}$
21556 23178 23237 23237 23237 23252 23252	08.800 639.790 58.749 58.749 59.760	$\frac{18.65}{17.9}$	18.0 17.2 17.65 18.55 18.55 18.55	18.6 18.4: 16.95 18.5	18.45 17.65 18.15 17.3	$\frac{17.7}{18.55}$	18.5; 18.3 18.3 18.6 18.6 18.6	$\frac{17.7}{17.45}$	17.8; 18.6 18.6	18.0 17.75 18.25 18.25	1322 1225 1225 1225 1225 1225 1225 1225
23255 23256 23306 23308 23522	.823 64.765 713.649	17.9 18.6 17.95 17.95	18.7 18.0	18 18 18 19 18 19 19 br>19 19 19 19 19 19 19 19 19 19 19 1	17.9 18.55 19.0	18.05 17.9: 17.9 17.9	$\begin{array}{c} 17.8 \\ 18.8 \\ 16.95 \\ 17.15 \\ 18.0 \end{array}$	$\begin{array}{c} 18.05\\ 17.9;\\ 17.6\\ 17.45\end{array}$	$\begin{array}{c} 17.9 \\ 18.8 \\ 17.6 \\ 17.6 \\ 17.65 \end{array}$	18.2: 17.9: 17.4 17.35	17.85 17.9: 17.85 17.85
23520 23538 91 92 91	14 663 15 661 28 630 8015 608 677	18.7 17.6 17.8:	$\begin{array}{c} 18.15; \\ 19.0; \\ 17.35 \end{array}$	$\begin{array}{c} 17.65\\ 18.0;\\ 18.0;\\ 16.95\end{array}$	18.4 18.2	18.6: 17.95	18.1 17.6 18.1	18.1 17.0	17.6	18.6 16.95: 18.15:	18.0 17.35: 17.55 17.5:

No. 43	17.35 17.45	17.5: 17.35 17.65	17.1: 17.3: 17.4: 17.6:	16.5: 16.75: 16.9: 16.9:	$\begin{array}{c} 17.5;\\ 17.95;\\ 17.95;\\ 17.45;\\ 17.0;\\ 17.0; \end{array}$	17.05 17.25 17.45 16.955 17.055
No. 36	$\frac{17.3}{17.2}$	17.4: 18.3 17.8	18.0: 17.75: 19.0	17.2:	$\begin{array}{c} 18.7; \\ 18.5; \\ 17.75; \\ 17.9; \end{array}$	$\frac{17.4:}{17.8:}$
No. 33	17.0	$\frac{18.5}{18.0}$	15.3 17.8 17.8	17.6:	17.8:	
No. 32	17.8 17.8 18.5	17.2	17.1: 18.8: 17.9	17.5: 17.75:	17.9: 19.0: 17.9:	17.55
No. 30	18.1 17.9 18.0 18.0	$ \begin{array}{c} 17.9\\ 18.5\\ 18.5\\ 18.5\\ 18.5 \end{array} $	$\begin{array}{c} 17.9 \\ 17.9 \\ 18.0 \\ 16.9 \\ 17.2 \\ 17.2 \end{array}$	17.6 17.7 18.4 18.4 18.4 17.4	17.5: 16.8 16.8 17.7: 18.3:	17.2: 17.2: 17.0: 17.0:
No. 25	18.3 18.2	18.05	19.0:	17.65	19.0: 17.4	17.9:
No. 24	18.5 19.0: 18.5:	19.5: 18.5	18.6: 18.7	18.15:	$\begin{array}{c} 17.9;\\ 17.25\\ 17.0;\\ 17.3;\\ 17.3;\\ 19.5;\\ 19.5;\\ 19.5;\\ 19.5;\\ 10$	18.8: 17.8: 19.0: 19.0:
No. 23	18.3 18.6: 17.65: 17.55:	17.15: 19.0: 18.3:	19.0: 19.0:	19.0: 17.9:	18,55 19,00 17,60 19,00	18.8: 18.0: 19.0:
No. 22	18.1	17.6 17.75	17.6: 19.0: 19.0:	$\begin{array}{c} 17.65\\ 17.85;\\ 17.75;\end{array}$	18-35 19-0: 17-5: 18-15:	17.7 18.2: 17.8:
· No. 19	$\begin{array}{c} 16.95\\ 17.25\\ 17.6;\\ 17.8;\\ 17.8; \end{array}$	17.7: 18.4 18.0	17.7 17.6 18.3 18.3	18.5 17.4 18.5	18.1 18.1:	19.0; 17.5; 18.0;
Julian Day	28016.610 .628 .674 .693 .711	37, 732 817, 599 38, 569 38, 569		767 102 102 102 102 103 103 103 103 103 103 103 103 103 103	022 052 062 052 052 052 052 052 052 052 052 052 05	
Plate	101 102 103 103 104	105 1120 1120 1120 1120 1120	$ \begin{array}{c} 187 \\ 189 \\ 211 \\ $	223 836 837 840 1109	1112 1115 1115 1115 1115	$\begin{array}{c} 1124 \\ 1127 \\ 1226 \\ 1227 \\ 1229 \\ 1229 \end{array}$

⁷ ariable Stars	in Globular	Cluster	Messier 14	
----------------------------	-------------	---------	------------	--

Plate	Julian Day	No. 19	No. 22	No. 23	No. 24	No. 25	No. 30	No. 32	No. 33	No. 36	No. 43
1230	$\frac{28391.699}{92.603}$	x 1 1 - 1	18.1	18.3:	18.5: 18.5:	18.05	17.8	17.85	17.9:	18.3	17.2:17.65
1241 1244 1267	623 695 98,587	18.4	17.35: 17.35:	13.4: 19.0: 18.05:	18.6 17.65:	:0.01	0.21 12.6 18.0	17.2	12.55	$17.85 \\ 19.0;$	$\frac{17.9}{17.15}$
1268 1271 1272 1284 1284	. 609 . 653 . 679 . 679 . 630	$\begin{array}{c} 117\\18&0\\17&6\\17&7\end{array}$	$\begin{array}{c} 17.05; \\ 17.9 \\ 18.7 \\ 17.8 \end{array}$	$\begin{array}{c} 18.5\\ 18.6\\ 19.6\\ 18.0\\ 17.95 \end{array}$	$\frac{18.5}{17.5}$	$\begin{array}{c} 17.9 \\ 17.6; \\ 17.35 \\ 18.25 \\ 18.25 \end{array}$	17.9: 18.4: 18.0 18.1 17.9	$\begin{array}{c} 17.3;\\ 17.65\\ 18.15\\ 18.0;\\ 18.0;\end{array}$	17.2 17.7:	$\begin{array}{c} 18.1;\\ 18.1;\\ 18.35;\\ 17.3\end{array}$	$\begin{array}{c} 17.75\\ 17.35;\\ 18.0\\ 17.3\\ 17.3\\ 17.65\end{array}$
1980 1982 1984 1994	688.713 .759 .822 .822 .804 .804	88.00 88.00 88.80 88.00 88.80 80 88.80 80 88.80 80 88.80 80 80 80 80 80 80 80 80 80 80 80 80 8	$\begin{array}{c} 17.8 \\ 17.5 \\ 19.5 \\ 17.4 \\ 17.4 \end{array}$	18.4: 19.0: 18.8: 18.8: 18.8: 18.8: 18.8: 18.8: 18.8: 18.8: 18.8: 18.8: 18.8: 19.0:	$\begin{array}{c} 17.8;\\ 18.8;\\ 19.5;\\ 17.8;\\ 18.55\\ 18.55\end{array}$	$\begin{array}{c} 17.2;\\ 17.65\\ 19.0;\\ 17.6\end{array}$	19.5: 18.0: 17.9 18.3	17.5: 17.9: 18.9	18.1: 18.5	18.8: 17.6: 17.6: 17.6	$\begin{array}{c} 18.6;\\ 17.6;\\ 17.9\\ 17.75\end{array}$
2013 2021 2033 2035 2037	93.746 95.759 96.679 .722 .776	17.3: 18.6: 17.9 17.9 17.9	$\begin{array}{c} 16.85;\\ 17.5;\\ 18.8\\ 18.8\end{array}$	$\frac{18.5}{17.2}$	$\frac{18.3}{18.2}$ $\frac{18.2}{19.0}$	18.0 18.05	$\begin{array}{c} 17.0 \\ 18.5 \\ 18.3 \\ 18.0 \\ 18$	$\frac{17.15}{18.0}$	$\frac{17.4:}{17.5:}$	17.2: 17.2: 17.85	$\begin{array}{c} 16.85;\\ 17.55;\\ 17.4;\\ 17.5;\\ 17.95\end{array}$
2111 2114 2115 3249 3252	715.675 747 770 9071.710 798	17.8 18.2 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	$\begin{array}{c} 18.5;\\ 18.5;\\ 17.5\\ 18.45\\ 18.45\end{array}$	8888171 8888171	$\begin{array}{c} 17.5;\\ 19.0;\\ 18.35\\ 17.8\\ 17.8 \end{array}$	18.2: 18.05: 18.25 17.6	0.21 6.21 1.81 0.21	$\frac{18.1}{17.15}$	$\frac{18.2}{17.9}$	$\begin{array}{c} 17.75;\\ 17.9\\ 17.9\\ 18.0\\ 17.85\end{array}$	$\begin{array}{c} 16.95;\\ 17.7;\\ 17.95\\ 17.65\\ 17.7\end{array}$
3263 3275 3278 3290 3303	$\begin{array}{c} 72.780\\ 73.709\\ 76.742\\ 77.702\end{array}$	18.5 18.5 18.3 18.6 18.6 18.6	$\begin{array}{c} 18.35 \\ 18.15 \\ 17.45 \\ 17.45 \\ 17.45 \end{array}$	$\frac{17.7}{18.5}$	$\begin{array}{c} 17.25 \\ 19.0 \\ 18.7 \\ 19.5 \\ 18.5 \\ 18.5 \end{array}$	$\begin{array}{c} 18.15\\ 17.9\\ 18.15\\ 18.1;\\ 18.1;\\ 18.1;\\ 18.0 \end{array}$	$\frac{18.1}{17.8}$ $\frac{18.2}{18.2}$ $\frac{18.2}{18.3}$	18.0 17.95 17.4:	18.3 18.2 18.3; 17.5	$\begin{array}{c} 18.15\\ 17.75\\ 18.10\\ 18.3\\ 17.6\\ 17.6\end{array}$	$18.1 \\ 17.7 \\ 18.0 \\ 17.05; \\18.7 \\ 18.7$

Plate	Julian Day	No. 19	No. 22	No. 23	No. 24	No. 25	No. 30	No. 32	No. 33	No. 36	No. 43
3318 4209	29078.722 405.920	18.8:	17.8	$18.25 \\ 18.3;$	18.2	18.0	18.6 17.3:	18.0	17.7	17.9	18.0 18.0:
4228 4584 4684	406.956 30.738 62.653	12.5 18.1 12.3	17.9: 18.5 17.2	17.9:17.15 17.85	18.4 18.5:	17.7: 18.0:	17.1: 18.0 17.6:	18.05	$\frac{18.1}{17.7}$:	18.6 18.1:	18.2: 17.85 17.85 18.0: 18.0: 18.0: 19.0: 19.0: 10.0:
4693 4703 4795 4807 4819	63, 648 64, 653 89, 702 89, 702 90, 657	18.7 19.0: 18.15	18.4 18.3 18.6 18.9 17.35	$\begin{array}{c} 19.0;\\ 19.0;\\ 17.0;\\ 18.7\\ 18.35\end{array}$	$\begin{array}{c} 18.65\\ 18.9;\\ 19.0;\\ 18.5\\ 18.4\\ 18.4\end{array}$	$\frac{18.5}{17.9}$	$\begin{array}{c} 17.6\\ 17.15\\ 17.1\\ 16.85\\ 18.6\\ 18.6 \end{array}$	17.75 17.35 17.85 18.85 18.85 18.85	17.1 17.7 17.9:	$\begin{array}{c} 18.0\\ 18.5\\ 19.0\\ 18.9\\ 17.65\\ 17.65\end{array}$	18.8 18.8 18.0 17.7
4973 5712 5717 5728 5729	519.568 785.764 86.812 87.784 810	18.6 18.1 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17	$\frac{17.7}{17.9}$	18.9 18.5: 18.5: 18.5: 18.5:	$\begin{array}{c} 18.25\\ 18.0;\\ 18.9;\\ 17.9\\ 17.9\end{array}$	$\begin{array}{c} 18.25\\ 17.75\\ 18.0\\ 117.75\\ 117.75\\ 18.05\end{array}$	$\begin{array}{c} 18.6\\ 17.1\\ 16.8\\ 16.8\\ 16.8\end{array}$	$\begin{array}{c} 18.2 \\ 17.55 \\ 17.35 \\ 17.95 \\ 18.2 \\ 18.2 \end{array}$	$\frac{18.3}{17.0}$	$ \begin{array}{c} 18.5 \\ 17.25 \\ 18.25 \\ 18.3 \\ $	$\begin{array}{c} 17.75\\ 17.1\\ 17.1\\ 18.2$
5808 5812 5820 5825 5835	813.677 784 14.672 15.657	18.6 18.5 17.6 18.5	$\begin{array}{c} 19.0 \\ 18.4 \\ 17.7 \\ 17$	$\frac{18.15}{18.7}$ $\frac{17.4}{17.65}$	$17.2 \\ 17.1 \\ $	$\begin{array}{c} 18.4;\\ 18.0\\ 18.9\\ 17.75\end{array}$	17.9 17.9 17.0 17.0 17.0	$\begin{array}{c} 17.45\\ 17.9\\ 18.15\\ 17.9\end{array}$	17.7 18.4 17.65 17.9	$\begin{array}{c} 18.9 \\ 17.6 \\ 17.6 \\ 17.6 \end{array}$	18.0 17.9 18.0
5836 5840 5843 5848 5848	$16.631 \\ 6.631 \\ 6.630 \\ 7.33 \\ 7.780 \\ 7.78$	$\frac{17.2}{17.25}$	$\begin{array}{c} 18.7\\ 18.05\\ 17.65\\ 17.95\\ 18.0\end{array}$	$\begin{array}{c} 17.4 \\ 18.7 \\ 19.1; \\ 18.85 \\ 18.15 \\ 18.15 \end{array}$	$\frac{17.5}{18.25}$ $\frac{18.75}{18.25}$ $\frac{18.25}{17.15}$	$ \begin{array}{c} 18.5\\ 18.6\\ 17.7\\ 18.1$	$\begin{array}{c} 18.0\\ 17.15\\ 16.95\\ 17.4\\ 17.7\end{array}$	$\begin{array}{c} 18.05\\ 18.55\\ 18.05\\ 18.0\\ 18.5\\ 18.15\\ 18.15\end{array}$	81888 818 81888 81	$\begin{array}{c} 18.25\\ 17.65\\ 17.85\\ 17.7\end{array}$	$\begin{array}{c} 17.8 \\ 17.2 \\ 17.2 \\ 18.1 \\ 18.1 \\ 18.0 \end{array}$
5948 5964 5974 5980 6836	$\begin{array}{c} 41.688\\ 42.703\\ 43.632\\ 732\\ 732\\ 30169.693\end{array}$	18.7 18.1 18.3 18.3	$\begin{array}{c} 17.45\\ 17.6\\ 18.0\\ 18.2\\ 18.2\\ \end{array}$	$\begin{array}{c} 17.05\\ 18.6\\ 18.0\\ 18.6\\ 18.6\end{array}$	$\begin{array}{c} 17.75\\ 19.5;\\ 18.2\\ 18.8;\\ 19.0;\\ 19.0; \end{array}$	$\frac{18.2}{18.0}$	18.5 18.5 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	$\begin{array}{c} 17.65\\ 18.05\\ 17.6;\\ 17.4;\\ 17.4; \end{array}$	$\begin{array}{c} 17.5;\\ 18.1;\\ 17.1;\\ 17.8;\\ 17.8;\end{array}$	17.6: 18.5 18.9: 17.6:	$\frac{17.4}{18.3}$

Plate	Julian Day	No. 19	No. 22	No. 23	No. 24	No. 25	No. 30	No. 32	No. 33	No. 36	No. 43
6887 7686	30169.722	19.0:	19.0; 19.0;	<u>x</u> 2 x 2	19.0;	18.0	18.8:	11.8	17.5:	18.1	17.4
0220	107 ·	<u>c 1-</u>	9.2		17.0		16.9	16.95	12.0	18.4:	0.71
6847	70.715	XX	18.25	12.1	18.9	18.45	18.6	17.65	17.7:	18.05	18.0
6861	71.730	18.5	18.1	18.4	18.5	18, 15	18.15	17.1	18.1:	18.3	17.75
6864	262.	18.2	18.35	18 6	18,85	18.4	18.4	17.4	18.2:	18.5	18.25
6870	72.642	17.9	18, 15	17.25	18.4	17.85	17.75	17.7		17.5	
6875	242	+ x	17,95	18.15	18 6:	17.85	18.0	17.9	18.1:	17.8	18.15
6938	507,00			17.6:	18.5:	17.6;	16.9			17.1:	18.3:
7923	549.662	17.75	17.95	18.2	18.7	17.9	17.2	17.0	18.25;	17.5	17.7
7927	750	18.2	18.1	17.4	18.2	18.05	18.1	17.6	17.65:	17.8	17.7
78.67	50.686	16.91	17.45	18.4	18.4	17.55	16.75	17.65	18.0;	18.25	17.3
7940	727	17.3	17.8	18,15	18.31	17.7	17.25	17.9	17.7	18.3	17.5
20-02	806	18.0	18.0	18.55	18.21	18.25	17.85	17.6	17.35	18.6	11.8
$6 h 6 \frac{1}{2}$	52.679	18.9:	17.55	17.45	18 6	18,35	18.4	11.8	17.3	18.05	18.0
7955	53,644	18.5	18.3	17.05	18.1	17.85	18.25	17.3	17.2	17.25	17.75
7961	.720	18.6	18.2	17.05	18.25	18.2	18.25	17.45	17.4	17.6	17.45
7964	6221	18.4:	х. х Т	17.5	18.0:	:	1 <u>×</u> .3	17.7	17.7:	17.85	17.15
F707	54,656	18.05	17.7	18.4	6721		18.05	18,05	17.3	+ . X	11. X
6262	. 739	18.5	17.9	17.0	18.0:	17,85	18.35	17.8	17.6:	17.95	$\frac{1}{x}$
F108	56.686	16.9	17.65	18.05	18.0	18.5	17.55	17.85	17.6:	18.1	17.65
8020	.748	17.45	18.25	18.4	18.0	17.85	17.85	17.3	18.15:		18.05
×114	86.604	18.5	18.3	18.05	18.25	12.15	17.9	17.55	18.15	18.15	X. N
SSEE	899.685	18.25	17.7	18.21	17.9	67. 21	6.71	17.85	17.0	18.1	17.15
8902	.754	18.5	18.3	18.7	17.2	6.71	18.2	18.3	17.5	18,15	17.2
2068	118.	18.3	17.9	18.65	17.9	18.0	18.4	17.35	17.75	18.5	17.5
6168	900.675	18.6	18,35	6721	18.55	18.25	17.3	17.7	17.3	18.1	17.5
8926	.766	18.6	19.0	<u></u>	6.9 1	$\frac{1}{2}$	1-1-1	17.5	17.85	17.25	17.1
8020	SIS.	10	17.95:		:0.71	1.5		14.661	10 05.	14.55	
2006	210.22	11.20	12.0	17.33	10.6	00.71	11.10	0.71	10.001	(07.11	11.10

No. 33 No. 36 No. 43	18.2: 17.2 17.1 17.3 17.65		17.65: 17.1 17.35	17.65: 17.1 17.35 17.85 17.3 17.65 17.05 17.6 17.65	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7.4 18.2: 17.2	7.15 17.3	7.15 17.65: 17.1		7.05 17.05 17.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.15 17.65: 17.		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 00 11 (m)		.55 17.7 17.	55 17.7 17.4 5 17.55 17.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4 18.2; 115 17.65; 05 17.85; 05 17.95;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.55 17.7	L	.a. 17. a.	.a 17.25
17.4 18.1 17.15 17.1 17.15 17.1 17.05 17.3 17.05 17.3 17.05 17.3	17.15 17.15 17.05 17.3 17.05 17.3 17.05 17.3	17.05 17.8 17.05 17.9 17.55 17.1	17.55 17.7	17.55 17.7	1	17.5 17.1	17.35 17.3	
17.15 17.15 17.15 17.15 17.05 17.05 17.55 17.55 17.55	5 17.15 5 17.05 17.05 17.05 17.55 17.55 17.55 17.55	5 17.05 5 17.05 7 17.55 17.5 7 35	17.55 17.55 17.5 23	17.55	17.5	17 35	(11(1) 1)	17.6
17.15 17.15 17.15 17.15 17.15 17.15	17.15 17.15 17.75 17.75 17.75	17.3 17.6 17.5 17.5	17.6 17.7 17.7	17.6	17.5	17.5		$\frac{1}{2}$
$\begin{array}{c} 17.85\\ 17.45\\ 17.65\\ 17$	17.25 17.65 17.65 17.65	17.6 17.65 17.65	17.65 17.65	17.65 17.65	17 65		21. X	18.81
17.9 18.35 18.35 18.55 18.55	18, 35 18, 35 18, 35 18, 35 18, 35	18, 55 18, 55			18.6	18.5	18.25	17.55
17.8 18.3 18.3	18,25		$\frac{18.2}{18.15}$	101 ° 110	18.6	+:	18.0	N N
18.3 18.6		18.6	18. 65 18. 75	101 ° 101	19.1:	18.55	18.19	2 i 2 i
17.7	00.01	17.05	17.15	T T	17.45	17.6	17.7	18.4
30932.627	.652	199	- 1685 - 1685 - 1685	L/0.	.714	124	124	33,600
	9003 9005	9006	8006 8006	1917111	1106	6106	9013	9022

Plate	Julian Day	No. 19	No. 22	No. 23	No. 24	No. 25	No. 30	No. 32	No. 33	No. 36	No. 43
$\begin{array}{c} 13460 \\ 13464 \\ 13488 \\ 13492 \\ 13492 \\ 13492 \\ 13497 \end{array}$	32357.655 701 60.659 723 793	81118 18817178 14941	$\begin{array}{c} 17.4 \\ 17.6 \\ 19.0 \\ 18.75 \\ 18.85 \\ 18$	17.5 17.75 18.5 18.5 18.5 17.55 17.55 18.55 17.55 17.55 17.55 17.55 17.55 18.55 18.55 19.5	18.55 18.45 17.2 18.35 17.2 18.35	$\frac{18.4}{17.45}$	18.3 18.5 17.05 17.6	17.75 17.75 17.75 17.75	17.8: 17.35 17.6: 17.6:	1212 1215 1213 1213 1213 1213 1213 1213	$\frac{18.0}{17.9}$
$\begin{array}{c} 14580 \\ 14584 \\ 14591 \\ 14604 \\ 14609 \\ 14609 \end{array}$	740.637 .683 .41.638 .692	18.3 17.14 18.3 18.4 19.14 19.	$\frac{18}{17}, \frac{45}{45}$	$\frac{17}{18} \frac{95}{17} \frac{17}{15}$	$\begin{array}{c} 18.45\\ 17.05\\ 17.05\\ 18.45\\ 18.45\\ 18.25\end{array}$	17.9 18.1 17.5 17.5 17.5 17.5	$\begin{array}{c} 17.7\\ 18.0\\ 18.3\\ 17.6\\ 17.95\end{array}$	17.15 17.5 17.9 17.9	$\begin{array}{c} 17.45\\ 16.85\\ 17.6\\ 17.0\\ 17.05 \end{array}$	$\begin{array}{c} 18.1 \\ 18.15 \\ 17.6 \\ 17.35 \\ 17.35 \\ 17.45 \end{array}$	$\begin{array}{c} 17.85\\ 18.25\\ 18.35\\ 18.35\\ 17.95\\ 17.95\end{array}$
$\begin{array}{c} 14624 \\ 14629 \\ 14638 \\ 14756 \\ 14764 \end{array}$	$\begin{array}{c} 42.621 \\ .673 \\ .779 \\ .70.616 \\ .697 \end{array}$	$\begin{array}{c} 17.35\\ 17.1\\ 18.15\\ 18.0\\ 18.25\\ 18.25\end{array}$	<u>- 8 8 2 5 8 8 9 7 8 8 8 9 7 8 8 8 9 7 8 8 8 9 7 8 8 8 9 7 8 8 8 9 7 8 8 8 9 7 8 8 8 9 7 8</u>	17.15 18.6 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	$\begin{array}{c} 18.45\\ 18.75\\ 16.75\\ 18.4\\ 18.4\\ 18.6\\ 18.6\end{array}$	17.95 17.7 17.8 17.8 17.95 17.95	$\begin{array}{c} 16.9\\ 17.4\\ 18.1\\ 18.15\\ 18.5\end{array}$	$\begin{array}{c} 17.35\\ 17.45\\ 17.85\\ 18.0\\ 18.0\\ 16.95 \end{array}$	16,95 17.2 18,25 18,25 18,25 18,25	$\frac{17.95}{15.2}$	$\begin{array}{c} 17.55\\ 17.5\\ 18.0\\ 18.15\\ 17.1\\ 17.1\end{array}$
21395 21402 21426 21431 22343	4929.638 31.665 5273.697	15.55 15.55 18.33 17.33 17.33 17.33 17.33 17.33	$\begin{array}{c} 17.55\\ 18.1\\ 18.25\\ 17.05;\\ 18.3\\ 18.3\end{array}$	18.55 17.9 18.35 17.85 18.35	$\frac{18}{128} \frac{18}{15} \frac{15}{15}$	17.55 17.8 18.7 18.7 18.7 17.8 17.8 17.8 17.8		$\begin{array}{c} 17.4 \\ 17.45 \\ 17.6 \\ 17.85 \\ 17.85 \end{array}$	17.9: 18.1: 18.25:	$\begin{array}{c} 17.5 \\ 17.95 \\ 18.0 \\ 17.95 \\ 18.2 \\ 18.0 \\ 18.0 \\ 17.95 \\ 17.9$	17.2 18.0 18.55 17.8 18.3
22348 22363 22371 22380 22385	$\frac{74.691}{75.701}$	$\frac{18.65}{17.9}$ $\frac{18.85}{17.55}$	18.05 17.35 18.1: 18.1: 18.2: 17.0:	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	$\begin{array}{c} 18.0\\ 17.0\\ 17.55\\ 17.55\\ 17.3; \end{array}$	$\begin{array}{c} 17.7 \\ 18.05 \\ 17.8; \\ 17.9; \\ 17.9; \end{array}$	17.5 18.6 18.7 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2	$\begin{array}{c} 17.8 \\ 17.2 \\ 17.8 \\ 17.8 \\ 17.4 \end{array}$	18.35: 18.1: 18.1:	4.171 1.71 1.8 1.71 1.7 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	18.2 18.2 17.6 17.9
22516 22521 22540 23295 23315	$\begin{array}{c} 309.632\\ 679\\ 10.624\\ 685.610\\ 87.621\end{array}$	18.05 17.72 17.72 17.72 17.72	18.3 18.3 18.4 18.3 18.4 18.5 19.4 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	$\frac{18.65}{17.7}$	$\begin{array}{c} 17.95\\ 18.15\\ 17.6\\ 19.1\\ 17.9\end{array}$	18.25 18.25 17.5 18.0 18.0	17.5 17.65 17.3 18.35 18.35	$\begin{array}{c} 18.1 \\ 17.95 \\ 17.2 \\ 18.05 \\ 18.05 \end{array}$	17.9: 17.8: 17.85: 17.9: 17.9:	18.15 17.75 17.5 17.5 17.5	$\begin{array}{c} 18.0\\ 17.75\\ 17.2\\ 17.95\\ 18.0\\ 18.0 \end{array}$

48 633	01.00		07 OKT	F	NO. 29	NO. 001	110.01	N0. 00	NO. 30	No. 43
135	18.35 18.7 18.05	17.9 17.9 17.75	18.5 18.5 18.1	18.0 17.1 17.15	F-21 29-21 22-21	18.6: 17.15 17.45	17.3 17.2 16.9	17.4: 18.2: 17.9:	$ \begin{array}{c} 18.15 \\ 17.35 \\ 16.9 \\ 16.9 \\ \end{array} $	18.35 17.35 17.45
00 946		17.65:	17.0:	17.3:	18.1:	17.2:	16.35:			17.9:
652 652		18.9: 18-9:	17.9:	17.0; 18.9:	17.6:	18.0:	17.65: 17.55	17-6-	17.15:	17.35:
679	17.6		0.61	1111	17.8 18.05	17.95	12.6	17.05:	17.45	010 12 X
640	18.5	18.25	17.35	19 [°] 0;	6.71	17.85	17.55	17.15	17.15	17.05
. 733	18.3	18.25	18.05	17.9	17.55	$\frac{18.15}{12.00}$	17.9	17.7	17.6	17.45
.648 762	6.7 18 18	17.6 17.95	17.55	18, 55	- x x 1-	12.2	17.45	17.855	18 20	12.89
661 661	17.45	17.6	17.75	19.5: 19.5:	17.45	18.3 18.6	•	18.35: 18.25	$17.3 \\ 17.65$	18.2 18.1
682	1.1	17.5	17.9	18.65	17.75	18.3	17.95	17.95	17.45	18.1
202	N 11	18. 2	18.5	18.6	17.75	18.6	18.0	11 21 11	17.65	18.35
.750 679	18.35 16.85	x o 11	12.3	0 X 2 X 1 X	1.1	$\frac{1}{2}$	17.25	17.20 17.6	18:0	0.01
200	17.4	18.25	17.35	18,35	17.45	18.4	17.5	17.8:	18.15	
.733	17.8	18.55	17.4	19.5:	17.75	18.5	17.25	17.85;	17.95	18.15
104		17.3	17.0	18.55	18.45:	17.2	17.75	1	17.0	17.85
:92	17.7	17.85	11.1	18.45 19.13	17.55	17.5	18.0	14.15	17.2	$\frac{1}{2}$
(690 (690	18.6	18.55	18.35	17.8	18.55	18.3	17.15	17.8:	18.65	18.35
215	18.7	18.3	17.45	17.55	18.2	1.1	17.7	:9.21	17.9	18.05
. 693	18.5:	18.2 17.95:	16.95 18.2	18.6 18.6	12.0	17.4	12.93	17.0	17.85	17.85

NOTES TO TABLE III

- Plates 103-4397 taken by F. G. Pease and H. Shapley with Mt. Wilson 60-inch reflector.
- Plates 20544-23600 taken by H. Sawyer Hogg with Dominion Astrophysical Observatory, 72-inch reflector.
- Plates 4209 and 4228 taken by H. Sawyer Hogg with 36-inch reflector, Steward Observatory, University of Arizona.
- Plates B 1691 to B 1789 taken by various observers with 19-inch David Dunlap reflector.

All other plates taken by H. Sawyer Hogg with 74-inch David Dunlap reflector.

				F 1	D 1 1
		Magnitude		Epoch	Period
Var.	Max.	Min.	Mean	of Maximum	days
1	14.65	16.1	15.35	38191.8	18.730
2	15.8	17.0	16.4	38198.58	2.79468
4	17.2	18.6	17.9	38199.23	0.651313
5	17.1	18.7	17.9	38199.61	0.548796
7	15.4	16.5	15.95	38189.56	13.596
9	17.0	18.4	17.7	$3\overline{8}199.47$	0.538831
10	17.1	18.5	17.8	38199.34	0.585914
11	16.4	18.0	17.2	38199.59	0.604417
15	16.9	18.6	17.75	38199.51	0.557727
16	16.8	18.2	17.5	38199.40	0.600617
19	17.0	18.6	17.8	38199.34	0.545671
22	17.3	18.5	17.9	38199.23	0.655916
23	17.1	18.5	17.8	38199.72	0.552342
24	17.0	18.7	17.85	38199.64	0.519901
25	17.65	18.4	18.0	38199.48	0.360707
30	16.9	18.3	17.6	38199.72	0.534226
32	17.0	18.1	17.55	38199.55	0.655975
33	17.3	18.3	17.8	38199.59	0.479946
36	17.2	18.3	17.75	38199.33	0.677990
43	17.0	18.2	17.6	38199.46	0.521747

TABLE IV

Remarks to Table IV

- Var. 1 The period seems to be steadily shortening rapidly, and may be expressed as $P = 18^{4}.730 14 \times 10^{-7} (T T_0)$, where $T_0 = 2438200.00$, over the interval of 52 years represented by the observations.
- Var. 11 This variable, on the outskirts of the cluster, is more than half a magnitude brighter than the average of the other cluster-type variables.
- Var. 25 The period of 0.360350 days satisfied our observations almost as well, and it is difficult to determine which is the true period.
- Var. 33 The accuracy of measures for this star is less than average because it is a blended double.

FIG. 2—Mean light curves for the nine stars of longest period in this group of 20. Two curves are given for Var. 1 to show the change in period.

days, very similar to Var. 29 in Omega Centauri (Martin 1938), whose period is comparable. From two plates, Joy gives spectral types of F5 and G2e3, with an average radial velocity of -136 km/sec.

Our comments on the total picture of the variables in this cluster will be reserved till the final paper. The second paper of this series is

FIG. 3--Mean light curves for 11 variables, arranged by decreasing length of period.

in preparation. A summary of the results for the first forty periods determined in this cluster was presented at the Michigan meetings of the American Astronomical Society in August 1965 (Sawyer Hogg and Wehlau 1965).

It is a pleasure to express our appreciation to the National Research Council of Canada for generous support of this program, and to many observers at the David Dunlap Observatory who assisted with the telescopic part of the program, especially the late Dr. Frank S. Hogg and Mr. G. F. Longworth.

April 27, 1966

References

Joy, A. H. 1949, Ap. J., vol. 110, p. 105.

- Martin, W. Chr. 1938, Leiden Ann., vol. 17, pt. 2.
- Payne-Gaposchkin, C. 1954, "Variable Stars and Galactic Structure," p. 37. University of London.

Sawyer, H. B. 1937, R.A.S.C. Jour., vol. 31, pp. 57-59.

Sawyer, H. B. 1938, Dom. Ap. Obs. Pub., vol. VII, no. 5.

Sawyer Hogg, H. and Wehlau, A. 1964, A.J., vol. 69, no. 2, p. 141; R.A.S.C. Jour., vol. 58, no. 4, pp. 163–166; D.D.O. Comm., no. 97.

Stebbins, J., Whitford, A. E., and Johnson, H. L. 1950, Ap. J., vol. 112, p. 475.

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

NUMBER 18

ABSOLUTE ENERGY DISTRIBUTIONS FOR STARS OF SPECTRAL TYPES F, G AND K

GRETCHEN L. HAGEN AND SIDNEY VAN DEN BERGH

> 1967 TORONTO, CANADA

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

ABSOLUTE ENERGY DISTRIBUTIONS FOR STARS OF SPECTRAL TYPES F, G AND K

BY GRETCHEN L. HAGEN AND SIDNEY VAN DEN BERGH

Abstract

Absolute energy distributions over the range $3600 \le \lambda \le 4500$ A, are given for 154 stars of spectral types F, G and K. The spectral energy distributions of these stars are compared to those of globular clusters and galaxies. Globular clusters are found to resemble metal-poor high-velocity stars. The spectral energy distributions of the nuclei of M31 and M32 are obviously composite. M32 appears to be either dwarf-enriched or moderately metal-poor.

The observations reported in this paper were obtained with a spectrum scanner which is located at the Cassegrain focus of the 74-inch telescope. The dispersing element of this instrument is a Bausch and Lomb replica reflection grating with 600 grooves per millimetre. The centre of its blaze is at λ 3750 in the second order, which was the order used. A refrigerated 1P21 photomultiplier was employed as a light detector.

Tracings of a large number of stars covering the range $3600 \le \lambda \le 4500$ A, were available from previous observing programmes (van den Bergh 1963, 1966, and van den Bergh and Sackmann 1965). All tracings were made at an effective resolution (spectral purity) of 20 A.

Observations of early-type standard stars (Oke 1960) were used to transform the observed deflections to absolute energy units. The mean wave-length-dependence of atmospheric extinction was taken from van den Bergh and Henry (1962).

It should be emphasized that the observations used for the present programme were originally made to measure narrow-band parameters. Such measurements do not require nights of the highest photometric quality. The accuracy of the results is therefore lower than that which could have been obtained in a programme devoted exclusively to studies of the spectral energy distributions of stars. The present study includes only those stars for which at least four tracings obtained during two or more nights were available. The average *internal* mean error of the combined data for each star is found to be 0.02 mag, at λ 4000, 0.03 mag, at λ 3800 and 0.04 mag, at λ 3600. Within the accuracy of the data these errors are found to be independent of apparent magnitude and spectral type.

FIG. 1—Spectrum scan at 20 A. resolution of the F6 IV star θ UMa. The dashed line indicates the adopted schematic continuum.

FIG. 2—Spectrum scan at 20 A. resolution of the G8 V star 61 UMa. The dashed line indicates the adopted schematic continuum.

Typical tracings of stars are shown in figures 1 and 2 where the dashed line represents the adopted schematic continuum. Except near the G-band and the H γ and H δ lines the adopted schematic continuum in the region $\lambda > 4000$ A. coincides with the observed pseudo-continuum. For $\lambda < 4000$ A, the adopted schematic continuum represents the strongly smoothed mean of the actually observed pseudo-continuum. The only reason for drawing the schematic continuum in this particular fashion is that it yields consistent and easily reproducible results.

For all of the programme stars the observed values of $m(1/\lambda)$, at 100 A, intervals along the schematic continuum, are given in Table 1. In the table *n* is the number of tracings on which the tabulated values of $m(1/\lambda)$ are based. Stars whose H.D. numbers are marked with an asterisk have spectral types which were determined by Mr. Peter Hagen using 74-inch spectra having dispersions of 33, 40 or 66 A./mm. The spectral types for H.D.208110 and H.D.22211 are uncertain.* Figures 3 and 4 show sample plots of the schematic spectral energy distributions of stars of different spectral types and luminosity classes.

The data in Table 1 may be used to form monochromatic colour indices. For example a monochromatic colour index C(41-45) can be defined by the equation

$$C(41-45) = m(1 \ \lambda)(4100) - m(1 \ \lambda)(4500).$$

Figure 5 shows a plot of the observations of the colour index C(41-45) versus C(38-45) for main sequence stars (dots) and subgiants (crosses). Binaries and metal-poor stars with ultraviolet excess $\delta(U-B) > 0.10$ have not been plotted. Figure 6 shows that such metal-poor stars (dots) lie above the monochromatic colour-colour curve for stars of normal metal abundance.

Using the wave-length dependence of interstellar reddening given by Whitford (1958) and the globular cluster reddening values given by van den Bergh (1967) it is possible to obtain the monochromatic intrinsic colour indices of globular clusters (van den Bergh and Henry

*H.D.208110. Peter Hagen classifies this star as G0 IV, HI with the following comments: (1) the star rotates very slowly. (2) the standards available at D.D.O. in this region are not complete. (3) Sr II (λ 4077) is very sharp and indicates a much higher luminosity than given by other criteria. (4) Ca II (λ 4227) gives an earlier spectral class than do the H lines.

H.D.22211. The spectral type is uncertain because all the lines appear to be rotationally broadened to an extent which may be inconsistent with the classification of G0 111.

1962). In figure 6 the intrinsic colours so obtained are plotted as crosses. The figure shows that globular clusters fall in the same region of the monochromatic two-colour diagram as do high-velocity stars.

Monochromatic intrinsic colours of the nuclear regions of M31 and M32 were derived by assuming a reddening $E_{B-V} = 0.12$. The positions of M31 and M32 in figure 6 suggest that their spectral energy

FIG. 3—Comparison of the absolute energy distributions of the following main sequence stars: H.D.58946 (F0), H.D.34411 (G0) and H.D.75732 (K0).

distributions are composite. Table II shows that the combination G0 V + K2 III (with the G star contributing one third of the light at λ 4500) gives a reasonably good representation of the spectral energy distribution of the nucleus of M31 over the range $3600 < \lambda < 4500$ A. It should be emphasized that this type of synthesis is not unique. Nevertheless the data suggest that stars near the main-sequence turn-off

F1G. 4—Comparison of the absolute energy distributions of H.D.20630 (G5 V) and H.D.27022 (G5 III).

FIG. 5—Monochromatic colour-colour plot for main sequence stars (*dots*) and subgiants (*crosses*). Metal-poor stars with $\delta(U-B) > 0.10$ have not been plotted.

FIG. 6—The figure shows the positions of metal-poor high-velocity stars (*dots*), globular clusters (*crosses*) and of the nuclei of M31 and M32 relative to the intrinsic colour-colour relation of figure 5. The data for M31, M32 and the globular clusters have been corrected for interstellar reddening.

x 4 9 5
× + 1 + × × × × × × × × × × × × × × × ×
51 4 12 12 12 12 12 12 12 12 12 12 12 12 12
4 4 6 4 6 4 6 6 0 9 10 8 8 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0.00 0.1 6 0.00 0.1 4 0.00 0.1 4 0.00 0.1 4 0.00 0.1

Gretchen L. Hagen and Sidney van den Hergh

3600	$1.12 \\ 1.92 \\ 1.15 \\ $	$\begin{array}{c} 0.99\\ 1.21\\ 1.15\\ 1.15\\ 1.09\end{array}$	1.10 1.19 1.19 1.19 1.10	1.05 1.05 1.05 1.05	1.35 1.13 1.24 1.18 1.18	95219 19219
:37()()	10 10 10 10 10 10	$\begin{array}{c} 0.88 \\ 1.09 \\ 1.02 \\ 1.04 \\ 1.02 \\ 1.04 \\ 1.04 \\ 1.04 \\ 1.05 \\ 1.$	$\begin{array}{c} 0.96\\ 1.11\\ 1.06\\ 1.13\\ 0.99\end{array}$	+6.0 96.0 10.1 10.1	$\frac{1}{02}$	1.26
3800	$\begin{array}{c} 1.05 \\ 1.13 \\ 1.02 \\ 1.02 \\ 0.98 \\ 0.98 \\ \end{array}$	0.88 1.08 1.08 1.08 1.08 1.08 1.08	$\begin{array}{c} 0.96\\ 1.10\\ 1.13\\ 0.95\end{array}$	$\begin{array}{c} 0.93 \\ 0.94 \\ 0.98 \\ 0.$	<u>22838</u>	299 <u>1</u> 988
3900	1.05 1.12 1.02 0.97	$\begin{array}{c} 0.86\\ 1.01\\ 0.98\\ 0.02\\ 0.01\\ 0.02\\$	$\begin{array}{c} 0.96 \\ 1.07 \\ 1.10 \\ 0.92 \\ 0.92 \end{array}$	$\begin{array}{c} 0.93\\ 0.94\\ 0.51\\ 0.96\\ 0.96 \end{array}$	1.27 1.15 1.00 1.00 0.99	14119 25123 25123
4000	$\begin{array}{c} 0.52\\ 0.55\\ 0.55\\ 0.56\\ 0.46\\ 0.46\end{array}$	$\begin{array}{c} 0.44 \\ 0.51 \\ 0.48 \\ 0.46 \\ 0.46 \\ 0.50 \end{array}$	$\begin{array}{c} 0.45 \\ 0.50 \\ 0.51 \\ 0.44 \\ 0.44 \end{array}$	$ \begin{array}{c} 0.44\\ 0.43\\ 0.42\\ 0.20\\ 0.45\\ \end{array} $	$\begin{array}{c} 0.64 \\ 0.56 \\ 0.50 \\ 0.48 \\ 0.48 \end{array}$	0.47
4100	$\begin{array}{c} 0.44 \\ 0.48 \\ 0.43 \\ 0.43 \\ 0.40 \\ 0.40 \end{array}$	0.37 0.40 0.40 0.40 0.40	$\begin{array}{c} 0.40 \\ 0.45 \\ 0.45 \\ 0.38 \\ 0.38 \end{array}$	$\begin{array}{c} 0.38\\ 0.40\\ 0.35\\ 0.16\\ 0.40\end{array}$	$ \begin{array}{c} 0.54 \\ 0.47 \\ 0.43 \\ 0.43 \\ 0.40 \\ 0.43 \\ 0.40 \\ 0$	$\begin{array}{c} 0.42\\ 0.64\\ 0.90\\ 0.48\\ 0.49\\ 0.49\end{array}$
4200		00000 85888	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 55 60 19 19 19 19 19 19 19 19 19 19 19 19 19
4300	0.20 0.20 0.41 0.22 0.25 0.25 0.25 0.25 0.25 0.25 0.25	$\begin{array}{c} 0.22\\ 0.24\\ 0.24\\ 0.24\\ 0.24\end{array}$	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.000.0 12.02 12.02 12.02	$ \begin{array}{c} 0.31\\ 0.25\\ 0.25\\ 0.25 \end{array} $	$\begin{array}{c} 0.25 \\ 0.40 \\ 0.53 \\ 0.53 \\ 0.30 \end{array}$
4400	0.000.15	0.12 0.16 0.13 0.13 0.13	FI .0 51 .0 11 .0 11 .0	0.15 0.116 0.11 0.01 0.04	0.15 0.15 0.17 0.13	$\begin{array}{c} 0.15 \\ 0.26 \\ 0.18 \\ 0.18 \\ 0.16 \\ 0.16 \\ 0.16 \end{array}$
4500	00.00 00.00 00.00 00.00	00.00 00.00 00.00 00.00	00.0 00.0 00.0 00.0 00.0	00000 00000 00000	00.000	00000000000000000000000000000000000000
Ξ	00700	トレキロキ	いったいせい	077X10	चचचेच∞	4%040
Sp.	GI V C2 K0 III C2 V C2 V (SB)	GI V=VI GI N G2 G0 C4 C4 C4	G0 V G0 V G4 V G6 V G6 V	G0 G0 F8 V F8 V	GS V GS V G0 V G0 V	G0 HI K0 IV G3 K2 III K2 III K0 V
11.D.	28068 28099 28305 28305 28305 28305 28305 28305 28305 28305 28305 28305 28305 28305 28305 28305 28068 28068 28068 28068 28068 28068 28068 28068 28068 28058 20057 200570	30649 32923AB* 32923AB* 4 4 1 334411 338858 38855	30587 39881 42618 42618 42607 42807 42807	50692 d 52711 d 55711 d 55575 58946 60803	62613 d 65583 66542* 66242* 70110 72905	74874AB 75732* 76151 77236 79096

487

H.D.	Sp.	u	4500	4400	4300	4200	4100	4000	3900	3800	3700	3600
\$1105*	GS IV	÷	0.00	0.19	0.36	0.51	0.63	0.74	1.49	1.47	1.42	1.52
60X1Z	G2 V (SB)	9	00'0	0.16	0.26	0.36	0.44	0.51	1.06	1.03	I.03	1.16
SUBUS	F6 IV	+	(0, 00)	0.08	0.15	0.21	0.27	(0.33)	0.70	0.76	0.92	1.09
122.202	GS IV-V	9	(0, 0)	0.20	0.37	(0.49)	0.58	0.62	1.34	1.39	1.36	1.46
24737	G2 V	Ŧ	(0, 0)	0.14	0.25	0.33	().4()	0.48	1.01	1.03	1.05	1.18
No.198	G4 V.	01	0 00	0.16	0.28	0.38	0.46	0.54	1, 16	1.17	1.14	1.24
80025	F0 111	-	00.00	0.06	0.08	0.13	0.17	0.18	0.50	0.60	1.16	14.1
90508	GI V.	9	0.00	0.13	0.24	0.34	(), 4()	0.47	0.96	0.97	0.98	1.10
95128	G0 V	2	0.00	0.12	0.24	0.33	(0.39)	0.46	1.00	1.02	1.03	1.16
F8870	G() V.	x	(0, 0)	0.13	0.24	0.34	$()^{+}(0)$	0.46	0.98	0.99	1.00	1.11
97561AB	G7~W	4	0.00	0.18	0.35	0.46	0.55	0.61	1.21	1.26	1.28	1.35
*10100	OS IV	9	00.00	0.18	0.37	0.51	0.61	0.67	1.34	1.43	1.42	1.56
101501	GS V	<u>1</u>	00.00	0.16	0.30	0.40	0.48	0.56	1.20	12.1	1.19	97.1
102870	FS V	r0	0.00	0.12	0.22	0.29	0.36	0.42	0.92	0.94	1.00	1.16
103095	G8 VI	2	(0, 0)	0.13	0.27	0.38	0.48	0.58	1.11	1.10	1.08	1.14
100358	$G_0 V$	01	00_0	0.11	0.22	0.30	0.36	0.42	00.00	06.0	0.92	1.04
110807	G0 V	x	00.00	0.11	0.20	0.27	0.34	0.39	0.80	0.81	0.85	0.97
111395	G7 V	4	(0, 00)	(1, 14)	0.20	0.40	0.48	0.56	1.15	1.18	1.16	1.26
113226	G9 11-111	4	0.00	0.18	0.36	0.55	0.70	0.75	1.65	1.72	1.62	1.85
114174	G5 IV	÷Ţ	0.00	0.14	0.28	0.38	0.46	0.52	1.06	1.08	1.08	1.17
114710	G0 V	1-	00.00	0.12	0.22	0.29	0.36	(), 4()	(68.0)	0.80	0.93	1.04
115043	GLV	X	0.00	0.13	0.24	0.31	0.39	0.46	0.96	0.96	0.98	1.09
115383	G0V	ţ	(0, 00)	0.12	0.22	0.30	0.37	0.41	0.90	0.92	0.97	1.08
117176	G5 V	10	00.00	0.16	0.29	(33.0)	147	0.55	1.17	1.17	1.16	1.27
121370	G0 IV (SB)	Ŧ	0.00	0.13	0.23	0.32	0.40	0.45	1.01	1.07	1.10	Se. 1
12254S	K()	Ŧ	00.00	0.24	0.48	0.66	(0.79)	0.87	1.82	1.89	1.88	1.94
122742	GS V	÷	0.00	0.18	0.34	0.45	0.54	0.61	87. – 87. –	1.28	1.26	1.30
124553	dFS		()() ()	0, 12	0.24	0.33	(1, 42)	0.48	26.0	0.09	1.01	1.14
125184	G0	1.7	(0, 00)	0.1s	0.33	1+ ()	0.50	0.53	1.16	1.20	1.20	1.29
126053	dG3	9	0.00	0.13	0.25	0.33	().4I	0.48	0.98	0.98	0.95	S0.1

Gretchen L. Hagen and van den Bergh

Sp.	u	4500	()()††	()()(1)	4200	1001	4000	3900	3800	3700	3600
F2 V dG2 (SB) dG1 dG2	च च च	00.0 00.0 00.0	0.06	$0.10 \\ 0.22 \\ 0.22 \\ 0.25 \\ 0.22 \\ $	0.16 0.31 0.34	0.21 0.37 14 0	000 8월9	0.51	6.0 89.0 88.0	98.0 98.0 00	0.99 1.07 51
67 62 V	6 4 9	0.00	0.15	1800 1800	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.36	$0.58 \\ 0.40$	$1.21 \\ 0.87$	0 <u>8</u> 8		1.29
K2 111 G0 V F9 1V, V F6 1V (SB) G0 V	99446	0.000 0.000 0.000 0.000 0.000	0.00 1970 1970 1970 1970 1970 1970 1970 19	00000 88000 10000	$\begin{array}{c} 0.30\\ 0.32\\$	0.40	$\begin{array}{c} 1.04 \\ 0.46 \\ 0.39 \\ 0.39 \\ 0.46 \end{array}$	$\begin{array}{c} 2.17\\ 0.92\\ 0.77\\ 0.77\\ 0.96 \end{array}$	$\begin{array}{c} 2.3\\ 0.82\\ $	2.27 0.96 1.02 0.95	2.43 1.11 1.11 1.11
GS V K0 111 (SB) K0 IV G0 IV	キャッキキャン	0.00000000000000000000000000000000000	$\begin{array}{c} 0.15 \\ 0.21 \\ 0.15 \\ 0.15 \\ 0.15 \end{array}$	0.000 2400 2400 2400 2400 2400 2400 2400	$\begin{array}{c} 0.30\\ 0.57\\ 0.37\\ 0.37\\ 0.34\end{array}$	$\begin{array}{c} 0.48 \\ 0.76 \\ 0.68 \\ 0.46 \\ 0.46 \\ 0.41 \\ 0.$	$\begin{array}{c} 0.56 \\ 0.88 \\ 0.74 \\ 0.52 \\ 0.46 \end{array}$	1.17 1.78 1.10 1.01	$ \begin{array}{c} 1.16\\ 1.88\\ 1.16\\ 1.03$	$ \begin{array}{c} 1.15\\ 1.83\\ 1.16\\ 1.11\\ 0.6 \end{array} $	$1.18 \\ 1.95 \\ 1.21 \\ 1.21 \\ 1.20 \\ $
GS III, IV GS V GS V GS V K3 II	46664	0.00000	0.12 0.17 0.17 0.17 0.17	00000 882 825 825 825 825 825 825 825 825 825	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 0.56\\ 1.26\\ 2.56\\ 1.26\\ 2.56\\ 1.26\\$	$\begin{array}{c} 0.69\\ 0.65\\ 0.45\\ 0.57\\ 1.44\\ \end{array}$	$\frac{1.47}{28}$	1910 1910 1910 1910 1910	$\frac{1}{2}$ $\frac{1}$	2989981 8989981
G0 V G0 V G5 V(SB) G5 V	トレチナナ	0.0000000000000000000000000000000000000	0.10 0.13 0.15 0.16 0.16	$\begin{array}{c} 0 & 18 \\ 0 & 23 \\ 0 & 25 \\ 0 & 25 \\ 0 & 26 \\ 0 & 2$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.034 0.037 0.037 0.037 0.037 0.037	0 0 0 0 1 3 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0.80\\ 1.12\\ 0.88\\ 1.12\\ 0.48\\ 1.12\\ 0.12\\ 0.48\\ 1.12\\ 0.48\\ 1.12\\ 0.48\\ 1.12\\ 0.48\\ 1.12\\ 0.48\\ 1.12\\ 0.48\\ 1.12\\ 0.48\\ 1.12\\ 0.48\\ 1.12\\ 0.48\\ 1.12\\ 0.48\\ 1.12\\ 0.48\\ 1.12\\ 0.48\\ 1.12\\ 0.48\\ 1.12\\ 0.48\\ 1.12\\ 0.48\\ 1.12\\$	$\begin{array}{c} 0.81\\ 0.91\\ 1.14\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ \end{array}$	$\begin{array}{c} 0.86\\ 0.91\\ 1.10\\ 1.27\\ 1.06\end{array}$	$\begin{array}{c} 0.99 \\ 1.18 \\ 1.18 \\ 1.29 \\ 1.16 \\ 1.$
61 V 60 V 63 V 11 E	%i\$400	0.0000000000000000000000000000000000000	0.13 0.11 0.15 0.15 0.13 0.25 0.13		0.32 0.28 0.46 0.46	$\begin{array}{c} 0.40\\ 0.55\\ 0.55\\ 0.95\\ 0.95\end{array}$	$\begin{array}{c} 0.45\\ 0.91\\ 0.42\\ 0.60\\ 1.07\end{array}$	0,96 1,74 2,16 2,16	$0.98 \\ 0.98 \\ 0.87 \\ $	0-0-0 8810 8810 9188 9188 919	$\begin{array}{c} 1.10\\ 1.87\\ 2.38\\ 2.38\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ $

3600	1.49 1.03 1.30 1.30	$\begin{array}{c} 1.49 \\ 1.47 \\ 0.99 \\ 1.37 \\ 1.37 \end{array}$	1.20 1.15 1.47 1.47 1.23	1.40 1.07 1.07 1.07 1.04	$ \begin{array}{c} 1.67\\ 2.25\\ 0.86\\ 1.38\\ 1.07 \end{array} $	1.05 1.62 1.15 1.15 1.15	1.16 1.59
3700	$\begin{array}{c} 1.43 \\ 0.92 \\ 1.22 \\ 1.07 \\ 1.07 \end{array}$	$\begin{array}{c} 1.34\\$	1.09 1.05 1.17 1.17	$\begin{array}{c} 1.34 \\ 0.98 \\ 1.14 \\ 1.86 \\ 1.86 \end{array}$	$\begin{array}{c} 1.56\\ 2.26\\ 0.76\\ 1.16\\ 0.96\end{array}$	$\begin{array}{c} 0.89\\ 0.91\\ 1.07\\ 1.16\\ 1.16\end{array}$	$1.05 \\ 1.49 \\ 1.05 \\ $
3800	$\begin{array}{c} 1.46\\ 0.93\\ 0.75\\ 1.21\\ 1.07\end{array}$	$\begin{array}{c} 1.46\\ 1.44\\ 0.51\\ 1.41\end{array}$	1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08	1,889 1,988 1,988 1,889 1,899 1,999	$\begin{array}{c} 2.28\\ 0.68\\ 0.93\\ 0.93\end{array}$	$\begin{array}{c} 0.73\\ 0.88\\ 1.09\\ 1.15\\ 1.15\end{array}$	1.07 1.50 0.96
3900	$\begin{array}{c} 1.39\\ 0.91\\ 0.71\\ 1.18\\ 1.08\end{array}$	$\begin{array}{c} 1.41 \\ 1.36 \\ 1.37 \\ 1.37 \end{array}$	1.20	$\begin{array}{c} 1.36\\ 0.95\\ 1.14\\ 1.82\\ 1.82 \end{array}$	$\begin{array}{c} 1.58 \\ 2.26 \\ 0.65 \\ 0.90 \end{array}$	0.67 0.88 1.56 1.14	$1.04 \\ 1.51 \\ 0.97 \\ $
4000	$\begin{array}{c} 0.65\\ 0.34\\ 0.54\\ 0.54\\ 0.50\end{array}$	$\begin{array}{c} 0.63 \\ 0.59 \\ 0.36 \\ 0.41 \\ 0.63 \\ \end{array}$	$\begin{array}{c} 0.50\\ 0.48\\ 0.47\\ 0.61\\ 0.58\end{array}$	0.59 0.46 0.96 0.90	$\begin{array}{c} 0.79 \\ 1.30 \\ 0.34 \\ 0.59 \\ 0.43 \end{array}$	$\begin{array}{c} 0.32\\ 0.40\\ 0.75\\ 0.50\\ 0.51\end{array}$	$\begin{array}{c} 0.47\\ 0.72\\ 0.48\end{array}$
4100	$\begin{array}{c} 0 & 57 \\ 0 & 28 \\ 0 & 49 \\ 0 & 4$	$\begin{array}{c} 0.58\\ 0.56\\ 0.31\\ 0.35\\ 0.55\end{array}$	0.57 0.57 0.57 0.57	$\begin{array}{c} 0.55\\ 0.38\\ 0.47\\ 0.47\\ 0.78\end{array}$	$\begin{array}{c} 0.67 \\ 0.29 \\ 0.38 \\ 0.38 \end{array}$	$\begin{array}{c} 0.26\\ 0.34\\ 0.45\\ 0.45\\ 0.45\end{array}$	0.42 0.65 0.41
4200	$\begin{array}{c} 0.46\\ 0.32\\ 0.21\\ 0.41\\ 0.35\end{array}$	$\begin{array}{c} 0.50 \\ 0.48 \\ 0.25 \\ 0.27 \\ 0.$	0.000	$\begin{array}{c} 0.46 \\ 0.38 \\ 0.38 \\ 0.32 \\ 0.52 \\ 0.46 \\ 0.$	$\begin{array}{c} 0.54\\ 0.23\\ 0.40\\ 0.31\\ 0.31\end{array}$	12.0 0.34 0.38 0.38 0.38 0.38	$\begin{array}{c} 0.34 \\ 0.53 \\ 0.34 \end{array}$
4300	$\begin{array}{c} 0.34\\ 0.24\\ 0.31\\ 0.31\end{array}$	$\begin{array}{c} 0.37\\ 0.35\\ 0.20\\ 0.35\end{array}$	$\begin{array}{c} 0 & 0 \\ 0 & 26 \\ 0 & 26 \\ 0 & 26 \\ 0 & 26 \\ 0 & 26 \\ 0 & 26 \\ 0 & 26 \\ 0 & 26 \\ 0 & 26 \\ 0 & 0 $	0.029	$\begin{array}{c} 0 & 34 \\ 0 & 51 \\ 0 & 28 \\ 0 & 2$	$\begin{array}{c} 0.15\\ 0.25\\$	$\begin{array}{c} 0.26\\ 0.37\\ 0.25\end{array}$
4400	$\begin{array}{c} 0.18\\ 0.13\\ 0.15\\ 0.15\\ 0.15\end{array}$	$\begin{array}{c} 0.20\\ 0.18\\ 0.10\\ 0.10\\ 0.18\\ 0.18\\ \end{array}$	$\begin{array}{c} 0.14 \\ 0.14 \\ 0.19 \\ 0.15 \\ 0.15 \end{array}$	$\begin{array}{c} 0.18\\ 0.12\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.12\\ 0.13\\ 0.12\\$	$\begin{array}{c} 0.19 \\ 0.25 \\ 0.15 \\ 0.15 \\ 0.115 \\ 0.115 \\ \end{array}$	$\begin{array}{c} 0.08 \\ 0.10 \\ 0.20 \\ 0.14 \\ 0.15 \end{array}$	$\begin{array}{c} 0.14\\ 0.19\\ 0.14\end{array}$
4500		0.00000000000000000000000000000000000	000000 0000000000000000000000000000000	00.000000000000000000000000000000000000		0.000.000000000000000000000000000000000	0.00
ц	いいキキレ	オオトロオ	5.6 ¹ 3.49	ちらのちず	713404	10 4 + 4 9 11	r: 4 5
Sp.	K0 V C0 V F6 V G4 (SB) C4 V	K0 IV G8 IV G8 V G0 V K0 V	G2 V G5 V G8 IV dG7 IV	G6 IV G5 V G5 IV dG2 K0 III (SB)	K0 HL K5 V F9 V1 F8 V F8 V	F5 V (SB) G2 V K1 H1, IV G5 V G5 V	dG1 G8 H1 G2 V
H.D.	164922 165401* 178428 179057/8	182488* 182572 182572 18499 185144	186408 186427 187923 188512 188512 188512	190360 193664 196735 197076 19708	19191 201091 201891 201802 208110 208776*	210027 211476 215549 215812AB 215812AB	217166AB 219615 224930AB

Gretchen L. Hagen and Sidney van den Bergh
TABLE II

Comparison of the intrinsic spectral energy distribution of the nucleus of M31 with a composite of H.D.109358 = β CVn (G0 V) and H.D.140573 = α Ser (K2 III). In the model one third of the light at 4500 A, is contributed by dwarfs.

λ	G0 V + K2 III	$(M31)_0$	Dwarf light
1700	o ^m oo	m	per cent
4900	0.00	0.00	00
4400	0.21	0,20	37
4300	0.42	0.41	-40
4200	0.58	0.61	43
4100	0.72	0.74	46
4000	0.79	0.80	47
3900	1.57	1.55	62
3800	1.63	1.62	65
3700	1.62	1.63	63
3600	1.77	1.76	65

TABLE III

Comparison of the intrinsic spectral energy distribution of the nucleus of M32 with a composite of H.D.109358 = β CVn (G0 V) and H.D.140573 = α Ser (K2 III). In the model one half of the light at 4500 A, is contributed by dwarfs.

λ	G0 V + K2 III	(M32) ₀	Dwarf light
	m	m	per cent
4500	0.00	0.00	50
4400	0.19	0.17	54
4300	0.36	0.35	57
4200	0.50	0.52	60
4100	0.62	0.64	63
4000	0.69	0.73	64
3900	1.36	1 32	76
3800	1 40	1.37	79
3700	1 40	1 39	78
3600	1,52	1.58	78

point might contribute significantly to the integrated brightness of the nuclear region of M31. Table III shows that a dwarf enriched model, in which G0 V stars and K2 III stars contribute equally at 4500 A., gives a satisfactory representation of the spectral energy distribution of M32 over the range $3600 < \lambda < 4500$ A.

Inspection of individual tracings of M32 shows that the blue cyanogen bands in M32 are much weaker than they are in M31. This is in qualitative agreement with the data in Table II and III which show that giants contribute only 40 per cent of the light in the M32 model at λ 4200, compared to 57 per cent in the M31 model. To account for the quantitative differences between the cyanogen band

strengths in M31 and M32 it may be necessary to assume that some of the giants in the nucleus of M32 are metal-poor objects in which CN is weak.

Some of the tracings used in this investigation were obtained by Inge J. Sackmann, W. E. Greig and R. C. Henry. Thanks are also due to J. Peter Hagen, Jr. for providing MK classifications of a number of programme stars. Generous financial support was provided by the National Research Council, Ottawa.

References

- Bergh, S. van den. 1963, Astron. J., vol. 68, 413; 1966, "Spectral Classification and Multi-colour Photometry," I.A.U. Symposium No. 24, (Academic Press, London) p. 132; 1967, Astron. J., vol. 72 (in press).
- Bergh, S. van den and Henry, R. C. 1962, D.D.O. Pub., vol. 2, 281, no. 10.
- Bergh, S. van den and Sackmann, I. J. 1965, Astron. J., vol. 70, 353.

Oke, J. B. 1960, Ap. J., vol. 131, 358.

Whitford, A. E. 1958, Astron. J., vol. 63, 201.

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

NUMBER 19

A STUDY OF THE VARIABLE STARS IN THE GLOBULAR CLUSTER MESSIER 14

II. PERIODS AND LIGHT CURVES OF THE SECOND GROUP OF TWENTY VARIABLES

HELEN SAWYER HOGG AND AMELIA WEHLAU

1968

TORONTO, CANADA

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

A STUDY OF THE VARIABLE STARS IN THE GLOBULAR CLUSTER MESSIER 14

II. PERIODS AND LIGHT CURVES OF THE SECOND GROUP OF TWENTY VARIABLES

BY HELEN SAWYER HOGG AND AMELIA WEHLAU

The data forming the basis of this program, and its purpose, have already been described in the *Publications of the David Dunlap Observatory*, vol. 11, no. 17, 1966. In the present paper we give the observations for the second group of twenty variables in Messier 14, NGC 6402, with their mean light curves. A summary of this material was presented to the American Astronomical Society (Sawyer Hogg and Wehlau, 1965). The cluster is now shown to contain four longperiod Cepheids, which means that it is exceeded in the number of Cepheids, among globular clusters of our own Galaxy, only by Omega Centauri. Therefore we describe the period-luminosity relation it defines.

This second group consists of the following variables: numbers 3, 8, 12, 13, 14, 17, 18, 20, 27, 31, 34, 37, 51, 59, 61, 62, 68, 71, 75 and 76. Table I gives, for each of these variables, the maximum, minimum and mean magnitudes, the epoch of maximum (usually the nearest maximum just before J.D. 2438200 in the 1963 series of observations), and the period, followed by the value of Beta, and remarks, when pertinent. For several stars for which our observations do not completely rule out an alternate period, the date of maximum is that actually observed.

Of this group of 20 variables, only three are not RR Lyrae stars. One of these is a Cepheid, Variable 76, whose discovery was reported in our first paper. Its period now is calculated as 1.89003 days, and it raises to four the number of Cepheids in the cluster with periods determined.

The other two non-RR Lyrae stars, Variable 17 and Variable 27 are probably not members of the cluster, Variable 17 has a period of 12.097 days with an amplitude of only 0.65 magnitude, a sine-type light curve, and the largest period change so far found among our variables. Its value of Beta is $+35 \times 10^{-7}$ day, day. This variable is about two magnitudes brighter than the RR Lyrae stars. Its spectrum was investigated by Joy (1949) and found to vary between F8 and G2, and his measured radial velocities were +9 and -18 km sec.

1.10000	TA	B	LE	I
---------	----	---	----	---

Elements of Twenty Variables

	2	Magnitude	s	Epoch of	Period	
Var.	Max.	Min.	Mean	Maximum	days	Remarks
3	16.65	17.55	17.1	38199.823	0.522455	$\beta = -23$
8	17.8	18.6	18.2	38199.496	0.686071	R
12	17.1	18.6	17.85	38199.918	0.503952	R
13	17.0	18.6	17.8	38199.690	0.535215	$\beta = +41$
14	17.2	18.1	17.65	38199.931	0.471857	R
17	15.5	16.15	15.8	38204.72	12.097	R
18	16.9	18.15	17.55	38199.885	0.479065	$\beta = -23$
20	17.9	18.55	18.2	38198.734	0.263721	R
27	16.45	17.6	17.0	34936	167.0	R
31	16.8	17.7	17.25	38199.383	0.619636	R
34	17.8	18.8	18.3	38199.854	0.606627	$\beta = +13$
37	17.65	18.9	18.25	38199.654	0.489060	R
51	17.6	18.15	17.9	38198.709	0.367606	R
59	17.4	18.75	18.05	38199.561	0.555634	
61	16.6	17.7	17.15	38199.610	0.569824	R
62	18.0	18.5	18.25	38235.444	0.638460	R
68	17.1	18.7	17.9	38199.958	0.507217	R
71	17.05	18.3	17.7	38199.602	0.525925	
75	16.9	18.1	17.5	38199.737	0.545281	
76	16.15	16.9	16.55	38199.466	1.89003	R

REMARKS TO TABLE I

- Var. 8 Large scatter.
- Var. 12 Maximum seems low in 1940.
- Var. 14 Large scatter.
- Var. 17 Peculiar type of variable. $\beta = +35,000$. P = 0⁴.92131, with $\beta = +210 \times 10^{-10}$ represents the observations nearly as well.
- Var. 20 $P = 0^{d}.35\overline{8}181$ also fits data.
- Var. 27 $P = 308^{d}.3$ almost as good for these observations.
- Var. 31 Large scatter.
- Var. 37 Difficult to measure, near cluster centre.
- Var. 51 $P = 0^{d}.268795$ and $0^{d}.268597$ also represent observations.
- Var. 61 Large scatter.
- Var. 62 $P = 0^4.389254$ also fits observations.
- Var. 68 Large scatter.
- Var. 76 Short period Cepheid.

He compared these values with the cluster velocity of -131 km/sec earlier determined by Mayall (1946). Though Joy noted that his own velocity measures have some uncertainty because the spectral lines

are few and poor, he questioned the cluster membership of the variable both because of the poor velocity agreement, and the distance of the star from the cluster centre. Further data are needed to assign a definite type of variability for this star.

Variable 27 has the second greatest distance from the cluster centre of all the 76 variables. It is a long-period variable, at maximum about one magnitude brighter than the RR Lyrae stars at maximum. A period of 167.0 days seems to represent our observations, but since the distribution of the plates is not favourable for the determination of such long periods, we cannot yet rule out a period of 308.3 days.

Seventeen of the variables are RR Lyrae type, with periods between 0.263721 and 0.686071 days. Four of these stars, Variables 3, 13, 18 and 34, show period changes. Of these changes, two are positive and two negative, with the values of Beta falling between +41 and -23. None of the RR Lyrae stars reported in our first paper showed period changes. For several of the RR Lyrae stars it proved difficult to decide among several related periods, as indicated in the table. In the case of Variable 62, we are greatly indebted to Dr. R. Margoni who generously supplied us with his unpublished measures from his Asiago plates to help in the period selection. Although it is tempting to draw a frequency distribution for the 34 RR Lyrae periods so far determined, this would not be meaningful until a higher proportion of periods have been found for the variable stars in this cluster.

Var.	Max.	Magnitudes Min.	Mean	Period days	Log P
1	14.65	16.1	15.35	18.73*	1.27
2	15.8	17.0	16.4	2.79468	0.45
7	15.4	16.5	15.95	13.596	1.13
76	16.15	16.9	16.55	1.89003	0.28

TABLE 11 Cepheid Variable Stars

*Period changing.

Data for the period-luminosity relation as provided by the four Cepheids are tabulated in Table II; these are plotted in figure 1, along with the mean magnitudes of the 34 RR Lyrae variables. All the stars from our two papers are shown, except Variables 17 and 27, just discussed. Curiously, Variable 17 would lie close to the curve, but since it is probably not a cluster member, and perhaps not a

F1G. 1—The period-luminosity relationship as defined by variable stars in Messier 14. Ordinate, mean apparent photographic magnitude; *abscissa*, logarithm of the period. The large filled circles represent the four recognized long-period Cepheids; the small dots are the 31 RR Lyrae *ab* stars whose periods have thus far been determined.

Cepheid, it is not included. With a mean of the 31 RR Lyrae stars at 17.74 m_{pg} and log P = -0.25, the points indicate a slope of about -1.6, which compares with -1.74 obtained by Dickens and Carey (1967) in their paper discussing globular-cluster Cepheids. Some of the scatter in the magnitudes of the RR Lyrae stars is certainly real; part of it may be due to the effect of image crowding or to inclusion of field stars. Until the period determination of the variables in this cluster is more nearly complete, it cannot be known if more Cepheids are contained in it.

If we assume $M_{pg} = 0.6$ for the RR Lyrae stars in this cluster, from the average mean magnitude of the 31 RR Lyrae *ab* stars, the apparent photographic distance modulus is 17.1. Kron and Mayall (1960) give a visual absorption of 1.5 (Case I) or 1.8 (Case II). Correcting the

F16. 2—The mean light curves for 10 variables, arranged in decreasing length of period.

photographic modulus by -0.6 to a visual modulus of 16.5 and accepting Case II, we obtain a corrected distance modulus of 14.7 corresponding to a distance of 8.5 kpc.

The light curves of these twenty variables, in order of decreasing length of period, are shown in figures 2 and 3. The points are the computed weighted means of all observations at intervals in phase of 0.04 of the period of the star. Observations with colons in Table 111 have

F1G. 3—The mean light curves of 10 variables, arranged in decreasing length of period.

been assigned half weight. A filled circle represents at least three good observations, but averages about ten such. Open circles represent mean points derived from observations which are few in number or of low weight.

The observations for these twenty variables are contained in Table III, which gives the number of the plate, the heliocentric Julian Day,

_
=
Ę
$\overline{\mathbf{z}}$
<u></u>

Observations of Variable Stars in NGC 6402

 $\overline{\overline{}}$ 17.9 17.95 16.9 17.1: 17.1: 16.9: 16.4: 99 12 1875 1975 1771 No. 27 16.5 16.9 16.55 16.25 16.25 16.4: 16.65 16.65 16.3 16.3 16.5 16.5 16.5 ວຕິວລິຍ No. 00001-95555 50 18.1: 18.1 18.1 18.1 18.1 18.3 18.4 ားမံ $\odot \odot \odot \odot$ 9 18.1 ¢¢ $\infty \propto \odot$ No. x $\underline{x} \underline{x}$ $\underline{x} \vdash \underline{x} \times \underline{x}$ ż $\underline{x} \underline{x} \underline{x}$ No. 18 18.0: 282 18.3 5 10.00 17.1 ΩI -1-0 9 \underline{x} X-1-1 $\underline{x} \vdash \underline{x}$ x or-No. 17 15.45 15.35 15.25 15.45 15.65 15.65 15.45 15.45 15.75 16.2 15.55 15.65 $\frac{15.4}{15.65}$ 88664 <u>idididid</u> +1 18.1 18.1 18.1 18.1 17.9 $\tilde{\mathbf{c}} \mathbf{x}$ $\mathfrak{m} := \mathfrak{m} \mathfrak{m} \mathfrak{m} \mathfrak{m}$ \dot{x} $m \odot \Phi$ No. $\mathbb{E}_{\mathbb{N}}$ <u>85885</u> 15 1-1-1-22 18.35: 17.45 ត្តរដ្ឋីរ> $\frac{1}{2}$ ± 1 ż + 10 10 도다일 No. E_{x} 1-8 x 2021x r x x2 8.65: $\frac{17.15}{17.85}$ 19.0: 0.5008 8.1112 8.1112 \overline{T} 17.910 No. SEE. $\dot{\infty}$ x $\frac{[8,35]}{[8,2]}$ 18.0 17.7 18.4 oxxal F 266 άi 13 No. Ś xxxx1- ∞ 21-1-17.2 17.2 17.35: 16.8517.317.40.5: ----21<u>5</u>15 17.9: - 24 55 នកំពុចកើ <u>..</u> No. 55555 EEE $\dot{\infty}$ 1-1-1x $\begin{array}{c} 2419536,939\\ 20726,750\\ 48.705\\ 1690,895\\ 26915,824\end{array}$ 776 891 856 768 768 768 768 ulian Day* 2012 2012 2015 2015 2522232 44.7 46.1 27272.1 282 19 12 74. $\begin{array}{c}
 103 \\
 2637 \\
 2649 \\
 4397 \\
 4397 \\
 20544 \\
 \end{array}$ 21309 21412 21412 21415 21415 20647 20675 21377 21380 21380 2138621538 21536 23178 23178 23237 23237 23237 20559 20551 20584 20587 20587 late

Variable Stars in Globular Cluster Messier 14

-499

*Heliocentric

27 No. 31	17.3	5 17.75 17.4	5 17.4	5 17.1:	5 17.4: 6	5: 17.1:	5 17.0:	55 16.9: 55
20 No. 2	17.55	212	17.0	17.0	12.0 17.0 16.9	1.7.1	16.3	16.6 16.4
8 No. 5	18.6 18.2 18.0	18.1	2.2 18.2 18.2	18.4		18.1		11.8
7 No. 1	17.7	18.2	17.5: 18.9 18.5:	18.2	16.5 16.17	16.6 17.7 18.4	12.0 17.7 17.6 17.6	17.5
No. 17	15.5 15.55 15.65	16.1 16.05	91919 91919 91919 91919	16.2	: 16.2; 16.05 16.0 16.1 16.0	16.2 15.97 15.77 15.77	15.9 16.1: 16.1: 15.8	2222) 22223 22223
No. 14	18.5 18.4 17.9:	16.85 17.3	18.1	18.3	18.0 17.35 17.7:	17.2:	17.6 17.0: 17.0:	18.3 16.9:
No. 13	18.3 18.3 18.1	18.7 18.6	17.0: 17.8	18.0	17.85 17.8	17.55	17.5: 17.5: 17.5: 19.0:	19.0:
No. 12	17.0 17.5 17.6:	18.35 17.35	18.65	17.45	17.25 17.65	19.0: 18.45	8. 8.	:0.01
No. 8	12.51 12.51 17.91 17.91	18.55	18.7 17.8:	17.8		: 17.9: 19.0:	18.7 18.6: 18.8:	17.71
No. 3	17.1	17.4: 16.8	16.8: 17.4: 16.7: 16.8:	17.55	17.1 17.4 17.45	17.35 17.4: 17.2	17.67 17.17 17.33 16.9	16.8 16.8
Julian Day	27659.760 .823 .840	64.765 .802	713.649 14.663 15.661	28.050 8015.608	.677 16.610 .628 .674 .603	711 713 7132 7132 7132 8.569	38.582 .608 .614 .614 .701 .701	019 122 19 19 19 19 19 19 19 19 19 19 19 19 19
Plate	23252 23255 23255	23306 23306	23529 23529 23538	23000 91	201010 1010 1010 1010 1010 1010 1010 10	104 105 170 185	187 1892 1292 2172 2172 2172 2172	219 219 223 219 223 219

500

Helen Sawyer Hogg and Amelia Wehlau

No. 31			16.85: 17.4:	17.9:	
No. 27	17.14 17.05 16.6 16.85 17.05 17.105 17.105 17.105 16.85 16.95	$16.85 \\ 17.2 \\ 16.65$	16.75 17.0 16.4	$\begin{array}{c} 16.55\\ 16.55\\ 16.85\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 10.0\\ 10$	16.45 16.95 17.0
No. 20	2	$\frac{8}{9} \frac{8}{9} \frac{8}$	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}$	$\frac{3}{2} \times \frac{3}{2} \times \frac{3}$	$\frac{8}{2} \frac{8}{2} \frac{8}{2}$
No. 18	17. 15. 15.		17.8 17.1 16.95	17.4: 18.1 17.8: 17.8:	18.3
No. 17	15.55 15.57 16.15 16.15 16.15 16.15 16.15 16.15	$\begin{array}{c} 16.05\\ 16.1\\ 15.85\\ 15.9\\ 15.95\\ 15.95\end{array}$	15.9 15.95 15.85 15.85 15.85	15.75 15.75 15.91 15.95 15.95	16.0: 15.95 15.95 16.0
No. 14	17.5:		17.5: 17.8: 17.7 16.65:	$\begin{array}{c} 17.3;\\ 17.7;\\ 17.9;\\ 17.9;\\ 17.9;\end{array}$	
No. 13	16,755 17,555 17,555 18,75 18,75 19,05 17,255 17,255 17,255	18.2: 17.8:	1.9.1 18.5: 19.0 19.0	17.8 17.15 19.1 18.1	
No. 12	17.65: 19.0:		17.75 17.8: 17.8:	17.05 17.15 17.25	1.71
No. 8	17.65 17.75: 18.8: 18.15 18.05: 18.05 18.05 18.05	$\begin{array}{c} 17.4:\\ 17.45:\\ 17.7:\\ 18.7:\\ 19.5: \end{array}$	18.3 18.2: 18.4	19-00 18-000	17 17 18 17 18 17 18 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 19 19 19 19 19 19 19 19 19 19 19 19
No. 3	16.8 16.8 16.8 16.8 17.5 17.5 17.5 17.05 17.05	17.35: 16.75: 16.9: 16.9:	16.75 16.75 17.0	17.25	17.4: 16.85: 17.55
Julian Day	28309.767 781 781 781 65.637 656 706 770 66.770 66.658 66.658	.729 .613 .613 .613 .613 .613 .613	92.603 .623 .695 93.695 83.623 88.623	05.30 665 679 282 99.55	.695 688.713 .759 .822
Plate	835 837 837 837 837 840 840 840 840 840 840 840 840 840 840	1127 1226 1227 1229 1230	1240 1241 1244 1257	1268 1271 1271 1272 1284 1287	1290 1980 1982

Plate	Julian Day	No. 3	No. 8	No. 12	No. 13	No. 14	No. 17	No. 18	No. 20	No. 27	No. 31
1997 2013 2021 2035 2035	28689.804 93.746 95.759 96.679 .722	$\frac{17.4}{17.5}$	19.0 17.4: 18.5 17.9: 17.9:	18.1 19.5: 19.0	$\begin{array}{c} 17.25\\ 17.35;\\ 17.7;\\ 17.6\end{array}$	18.3 17.3	$16.1 \\ 16.15 \\ 15.7 \\ 15.55 $	17.55 17.7: 17.7:	18.2 17.7: 18.0: 18.6	$\begin{array}{c} 16.95\\ 16.7\\ 17.05\\ 16.65\\ 16.85\\ 16.85\end{array}$	17.4:
2037 2111 2114 2115 3249	$\begin{array}{c} 715.675\\715.675\\.747\\.747\\.770\\9071.710\end{array}$	$\begin{array}{c} 17.3 \\ 17.25 \\ 17.1 \\ 17.1 \\ 17.25 \\ 17.25 \end{array}$	$\begin{array}{c} 17.8 \\ 18.2 \\ 19.5 \\ 18.7 \\ 18.7 \end{array}$	$\begin{array}{c} 18.4;\\ 17.9;\\ 19.0;\\ 18.45\\ 17.85\end{array}$	$\begin{array}{c} 17.35\\ 17.25;\\ 18.2\\ 18.8;\\ 18.8;\\ 18.15\end{array}$	$\begin{array}{c} 17.1 \\ 17.1 \\ 17.4 \\ 18.3 \\ 17.95 \end{array}$	15.5 16.2 16.1 15.25 15.25	17.1: 17.1: 17.9: 17.8: 17.8: 17.8:	18.6 18.6 18.6 18.6 18.6	17.0 16.65 16.55 16.55 16.55	17.15: 17.3:
3252 3263 3275 3275 3276	$\begin{array}{c} 722.798\\ 722.780\\ 73.709\\ 76.783\\ 76.742\end{array}$	17.3 17.65 17.65 17.65 17.65	$\begin{array}{c} 18.75\\ 18.15\\ 18.65\\ 18.25\\ 18.25\\ 18.55\end{array}$	$\begin{array}{c} 18.05\\ 18.35\\ 18.25\\ 18.15\\ 18.15\\ 19.0 \end{array}$	$\begin{array}{c} 18.1 \\ 18.3 \\ 17.85 \\ 18.25 \\ 17.3; \end{array}$	18.7; 18.6 17.2 17.2 8; 17.2	$\begin{array}{c} 15.5.\\ 15.6.\\ 15.7\\ 15.8\\ 16.35\\ 16.35\end{array}$	18.1 18.4 17.7 18.0	$\begin{array}{c} 18.2 \\ 18.3 \\ 17.8 \\ 18.1 \\ 8.4 \\ 18.1 \\ 8.4 \\ 18.1$	$\begin{array}{c} 16.55\\ 16.5\\ 16.5\\ 16.55\\ 16.75\\ 16.75\end{array}$	$\begin{array}{c} 17.3 \\ 16.5 \\ 17.7 \\ 17.3 \end{array}$
3303 3318 4209 4584	$\begin{array}{c} 77.702\\ 78.722\\ 405.920\\ 66.956\\ 30.738\end{array}$	$\frac{17.05}{17.25}$	$\frac{18.7}{18.45}$ $\frac{18.05}{19.0}$	$\begin{array}{c} 18.8;\\ 18.35\\ 17.8;\\ 17.95\end{array}$	$ \begin{array}{c} 18.9\\ 18.6\\ 17.5\\ 18.05\\ 18.05 \end{array} $	17.9: 17.6: 18.1	$\begin{array}{c} 16.1 \\ 15.9 \\ 16.0; \\ 15.55 \end{array}$	17.5: 17.8: 17.9:	17.7 18.0 18.2	$\begin{array}{c} 16.55\\ 16.4\\ 16.65\end{array}$	17.7
$\begin{array}{c} 4684 \\ 4693 \\ 4703 \\ 4795 \\ 4807 \end{array}$	62, 653 63, 648 64, 653 87, 614 89, 702	$\begin{array}{c} 16.65\\ 17.35\\ 17.15\\ 17.11\\ 17.15\\ 17.5\end{array}$	$\frac{18.5}{18.6}$	18.3 18.6 16.5 17.9	$ \begin{array}{c} 17.55\\ 18.2\\ 19.0\\ 18.2\\ 18.2 \end{array} $	17.6: 17.9: 18.0	$\begin{array}{c} 16.6\\ 16.05\\ 15.85\\ 15.85\end{array}$	$\begin{array}{c} 17.2 \\ 18.1 \\ 17.5 \\ 17.5 \\ 18.1 \\ 18.1 \\ 18.1 \end{array}$	18.2 18.3 18.3 18.3 18.2 18.2 18.2 18.2	$16.6 \\ 16.7 \\ 17.4: \\ 16.65 \\ 16.65 \\ 16.65 \\ 10.16 $	17.6: 17.6:
4819 4973 5702 5717 5728	$\begin{array}{c} 90.657\\ 519.568\\ 785.764\\ 86.812\\ 87.784\end{array}$	$\frac{17.35}{17.35}$	$\begin{array}{c} 17.85\\ 18.1\\ 17.95\\ 18.3\\ 18.3\\ 18.15\end{array}$	$ \begin{array}{c} 17.45 \\ 18.7 \\ 18.2 \\ 18.8 \\ $	18.2 18.6 17.75: 18.5	18.1 18.1: 17.6: 17.8	${}^{15.6}_{15.85}$ ${}^{15.55}_{15.8}$ ${}^{15.9}_{15.9}$ ${}^{16.05}_{16.05}$	18.0 17.2 18.0 17.15	17.9 18.3 18.0 17.9: 18.3	$17.1 \\ 17.2 \\ 16.95 \\ 16.65 \\ 16.65 \\ 16.65 \\ 16.65 \\ 17.1 \\ 17$	17.7: 17.8: 16.6

late	Julian Day	No. 3	No. 8	No. 12	No. 13	No. 14	No. 17	No. 18	No. 20	No. 27	No. 31
5729 5808 5812 5820 5820 5825	29787.810 813.677 813.677 14.672 14.672	17.1 17.75 16.95 17.5	18.9 18.7 18.7 19.0 18.7	19.5; 17.4 17.2 17.2 17.2	18.5 17.6 18.5 16.8 16.8	17.7: 17.8 17.9: 17.9:	$\begin{array}{c} 16.05\\ 16.05\\ 16.1\\ 15.85\\ 15.9\\ 15.9\end{array}$	17.2 17.7 18.4 18.4	0.81 18.95 18.85 17.85 18.95 17.85 18.95 17.85 1	$16.6 \\ 16.8 \\ 16.8 \\ 16.8 \\ 16.9 \\ 16.9 \\ 16.9 \\ 16.9 \\ 16.9 \\ 16.9 \\ 10.0 \\ $	17.1: 17.5 17.4: 17.8: 17.8: 17.8:
5835 5836 5840 5843 5843	15.657 15.651 16.631 16.631 1733	$\frac{17.85}{17.55}$	18.2 18.2 18.4: 18.5 18.7	$\frac{18.05}{17.4}$	19.1 18.7 18.5 18.5 18.5	18.0; 18.0; 18.0; 18.0	15.8 15.6 15.6	18.0 17.9 18.3 18.3	18.5 18.0 18.0 18.0	$\begin{array}{c} 16.8 \\ 16.9 \\ 16.75 \\ 16.85 \end{array}$	17.6: 17.8: 17.8:
5848 5948 5964 5974 5980	41.688 42.703 43.623 43.623	17.95 17.9 16.85 17.4	$\begin{array}{c} 18.45\\ 17.95\\ 18.5\\ 19.0\\ 19.5\end{array}$	18.2 18.7 18.6:	18.1 18.1 17.7 17.7 17.7 17.7 17.7 17.7	18.3: 17.6: 18.4:	15.5 15.5 15.5 15.5 15.5 15.5	18.4 18.3 18.3 18.3	81281 49995	$\begin{array}{c} 16.9\\ 17.05\\ 17.05\\ 17.0\\ 17.$	18.3: 17.1: 17.15:
6836 6837 6833 6839 6847 6847	30169, 693 722 761, 751 70, 715	12121 121 12121 11	17.6 17.6 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2	19-19-19 19-19-19-19 19-19-19	17.9 17.9 17.8 17.8 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9	$\begin{array}{c} 17.6;\\ 17.1;\\ 18.1;\\ 17.5;\\ 17.6;\\ 17.6;\end{array}$	15.55 15.55 15.55 15.55	12 0 8 12 8 17 1 8 17	x 0 915- 5 2 2 1- 2 7 2 9 1- 7	17.3 17.3 17.5 17.5	16.85: 17.5:
6861 6864 6875 6875 6930	71.730 72.697 72.642 97.722	17.5 17.5 17.5 17.5	18.3 18.1 18.3 18.3 18.3 18.3 18.3 18.3	$\frac{18}{12} \times \frac{18}{12} \times 18$	16.9 17.35 18.4 18.4	17.65 17.7 17.75	$\begin{array}{c} 15.35\\ 15.45\\ 15.65\\ 15.65\\ 15.65\end{array}$	18.15 18.2 18.1	+ 9.0 8.8 8 8	$\begin{array}{c} 16.95 \\ 16.9 \\ 17.2 \\ 16.9 \\ 16.9 \end{array}$	17.55: 17.6: 16.75
6938 6951 7923 7937	99, 705 200, 696 549, 662 50, 682 50, 686	17.25: 17.4 17.7	$\begin{array}{c} 18.5;\\ 18.9\\ 19.5;\\ 18.4\end{array}$	17.0: 18.65 18.9: 18.25	18.5: 18.1 17.85	17.65 17.65 17.65	16.1 16.3: 16.0 16.05	17.7: 18.0	9.21 9.21 81	$\begin{array}{c} 16.85\\ 17.0\\ 16.85\\ 16.85\\ 16.85\end{array}$	17.5 17.2

503

Plate	Julian Day	No. 3	No. 8	No. 12	No. 13	No. 14	No. 17	No. 18	No. 20	No. 27	No. 31
7940 7943 2040	30550.727 .806 .806	17.55	18.2 18.05 18.05	18.5 18.35 18.35	17.9 18.25 0.05	17.5 17.95:	16.15 16.05 15.85	18.55 18.1 17.0	18.6 17.6	$\frac{16.95}{16.6}$	$\frac{17.05}{17.05}$
7955 7955 7961	53.644 53.644 .720	17.1	18.55	18.3 18.3 18.55	18.5	17.85: 17.85:	15.75 15.65	18.2 18.35	18.3 17.6	16.85 16.85 16.75	$16.9 \\ 17.05$
7964 7974 7979	54.656 779 779	17.3 16.9 17.1	$ \begin{array}{c} 18.05 \\ 17.75 \\ 18.05 \end{array} $	18.8 18.35 18.45 18.45	17.4 18.5	18.1: 18.1 17.8:	15.7 15.45 15.65	18.3 18.1 18.05	18.0 17.8	16.85 16.85 16.85	17.0:
8014 8020	56.686.748	$17.0 \\ 16.95$	17.85	$18.3 \\ 18.55$	18.45 18.55	18.25: 17.8	15.45 15.65	17.8	18.0 18.5	16.9 16.85	18.0: 17.65:
8117 8895 8009	86.608 103.685 151	17.15 17.05 17.3	18.45 17.9 17.75	18.5 16.9 17.35	17.55 18.25 18.35	17.45 18.1 18.1	$\frac{16.05}{15.85}$	$\frac{18.3}{18.1}$	$17.9 \\ 18.2 \\ 17.9 \\ $	16.65 16.9 16.85	$17.0 \\ 16.95; \\17.6$
8907 8919	118. 118. 000.675	17.75	18.1 18.35	18.15 17.3	18.65 17.65	17.5	15.95 16.15	17.25 18.3	18.2	16.8 16.85	17.8: 16.55
8926 8930	.766	17.25 17.4	$\frac{18.05}{18.8}$	17.6	18.25	17.3	16.25 16.0	17.1	$\frac{18.0}{18.0}$	$17.0 \\ 16.75$	17.1:
9002 9003 9005	32.617 .627 .652	17.5	18.25 18.05 18.05	18.55 18.45 18.55	18.8 18.75 118.9 118.9 118.9 118.9 118.9 118.9 118.9 118.9 118.9 118.9 118.9 118.9 118.9	$\frac{17.7}{18.0}$	15.5 15.5 5.5	18.7 17.7: 17.8:	18.2 18.2 17.9	$ \begin{array}{c} 16.8 \\ 16.75 \\ 16.6 \end{array} $	17.35: 17.3: 17.2:
$\begin{array}{c} 9006\\ 9008\\ 9009\\ 9011\\ 9012\end{array}$.661 .685 .694 .714 .724	$\frac{17.6}{17.7}$	18.15 18.15 18.15 18.2 18.3 18.3 19.45 19.	$\begin{array}{c} 18.4 \\ 18.75 \\ 18.8 \\ 18.8 \\ 18.8 \\ 18.45 \\ 18.45 \end{array}$	$\begin{array}{c} 18.75 \\ 18.7 \\ 19.0 \\ 18.5 \\ 18.2 \\ 18.2 \end{array}$	$\begin{array}{c} 18.1 \\ 18.5 \\ 18.2 \\ 18.35 \\ 18.35 \\ 18.0 \\ $	15.55 15.45 15.45 15.4 15.4	18.3 18.2 18.5 18.5	$\begin{array}{c} 18.0\\ 17.8\\ 18.2\\$	$\begin{array}{c} 16.65\\ 16.7\\ 16.65\\ 16.7\\ 16.65\\ 16.65\end{array}$	$\begin{array}{c} 18.05\\ 17.8;\\ 18.0\\ 17.2;\\ 17.$
9013 9023 9025 9025	.734 .33.600 .635 .635 .635	17.55 17.35 17.35 17.55 17.55	8128 818 818 818 818 818 818 818 818 818	18.65 18.2 18.3 18.75 18.75	$\begin{array}{c} 17.95\\ 18.75\\ 18.9\\ 19.0\\ 18.4\\ 18.4\end{array}$	17.8: 18.0: 17.7: 18.1 18.1	$\begin{array}{c} 15.45\\ 15.55\\ 15.55\\ 15.6\\ 15.6\end{array}$	18.6 18.7 18.3 18.05 17.9	18.1 18.5 18.7 18.6 18.6	16.55 16.7 16.7 16.75	17.9 17.15 17.0 17.0 16.85:

504

Helen Sawyer Hogg and Amelia Wehlau

No. 31	17.1: 17.05:	17.3 16.9 17.3	17.55 17.55 17.55 17.55	17-95: 17-7: 17-5: 17-8:	$\frac{17.15}{18.1}$	17.12 17.12 16.9:
No. 27	16.85 16.7 16.95	17.35 17.35 17.9	17.75 17.85 17.75 17.25 16.95	16.95 17.05 17.1 17.1	17.0 17.15 16.8 16.8 16.8	16.75 16.8 16.9 17.05
No. 20	8.1 17.8 8.8 8.8 8.8 8.4 8.4 8.4 8.4 8.4 8.4 8	8.1 8.1 8.2 1.8 8.1 8.2 1.8 8.1 8.2 1.8 8.1 8.2 1.8 8.1	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	$\begin{array}{c} 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 $	4.0	1-888 8-4-9-0-9-
No. 18	18.3 18.4 17.65 18.2:	$\frac{17.35}{17.8}$ 18.05	$ \begin{array}{c} 18.05 \\ 18.1 \\ 18.5 \\ 16.95 \\ 17.2 \\ 17.2 \end{array} $	$\begin{array}{c} 17.3 \\ 17.0 \\ 16.85 \\ 16.85 \\ 17.65 \end{array}$	$\frac{17.75}{18.4}$	18.1 18.5 17.95 17.95 18.15
No. 17	15.5 15.55 15.55 15.65	$\begin{array}{c} 15.7; \\ 16.0 \\ 16.15 \\ 15.35 \\ 15.3 \end{array}$	15.45 15.45 15.45 15.6 15.85	15.45 15.3 15.6 15.75 15.75	15.85 15.85 15.45	15.6 15.6 15.85 15.65
No. 14	18.1: 18.6: 17.9:	18.2 17.9 18.6 18.6	18.3 18.5 18.3 18.3	$\frac{18}{5}$	$\frac{17.05}{17.35}$	$\frac{x}{2} = \frac{x}{2} = \frac{x}$
No. 13	18.55 18.45 17.65: 18.7:	$\begin{array}{c} 19.1;\\ 18.3\\ 18.35\\ 17.45\\ 17.45\end{array}$	18.5 18.55 19.55 1	17.4: 18.35 18.45 18.45 18.6 18.6 18.6	17.65 17.9 17.45 17.45	17.85 18.35
No. 12	$ \frac{18.9}{18.45} $	$\begin{array}{c} 17.45\\ 18.45\\ 18.75\\ 18.75\\ 18.45\\ 18.45\\ \end{array}$	$\begin{array}{c} 18.55\\ 18.5\\ 18.7\\ 17.35\\ 15.35\\ 18.15\end{array}$	$\begin{array}{c} 18.7; \\ 17.15 \\ 17.155 \\ 17.155 \end{array}$	16.95 17.55 17.1 17.1	18.4 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17
No. 8	18.6 18.15 19.0: 18.25: 18.25:	17.9 18.2 18.2 18.45 18.45 18.45	18.5 18.4 18.45 18.45 18.25 18.25 18.25	$\frac{18.7}{18.5}$ $\frac{18.75}{18.15}$ $\frac{18.75}{18.15}$	18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9	81818 81818 81995 818 818 818 818 818 818 818 818 818 81
No. 3	17.25 17.35	777777 200044	$\begin{array}{c} 17.35\\ 17.3\\ 17.35\\ 16.9\\ 17.45\end{array}$	17.75 16.7 16.65 16.85 16.85	$\frac{18.1}{16.5}$	17.15 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.15
Julian Day	30933.687 717 1259.731 1259.736 817 817	70, 779 77, 736 99, 693 2005, 706 758	$\begin{array}{c} 06.641 \\ .677 \\ .747 \\ .755.697 \\ .756 \end{array}$	56. 657 57. 655 57. 655 701	$\begin{array}{c} 60.659\\ .723\\ .723\\ .740.637\\ .683\end{array}$	$\begin{array}{c} 41.562\\ 41.638\\ 42.621\\ .673\end{array}$
Plate	9030 9033 10134 12045 12045	12070 12143 12260 12345 12349	12361 12364 12370 13424 13431	13436 13445 13445 13448 13460 13460 13464	13488 13492 13497 14580 14580	14591 1460 4 14609 14629 14629

No. 31	17.2 18.0: 18.3: 17.6:	17.5: 17.5:	17.3: 17.15	17.1 17.65: 16.9:		17.1: 17.25 17.6:
No. 27	$\begin{array}{c} 16.85\\ 17.15\\ 16.95\\ 16.6\\ 16.55\end{array}$	$\begin{array}{c} 16.45\\ 16.55\\ 16.85\\ 16.85\\ 16.95\\ 16.9\end{array}$	$\frac{16.7}{16.9}$	$\begin{array}{c} 16.95 \\ 17.15 \\ 17.2 \\ 17.15 \\ 17.15 \end{array}$	$\begin{array}{c} 16.95\\ 16.55;\\ 17.05;\\ 16.95;\\ 16.95; \end{array}$	$\begin{array}{c} 16.85\\ 16.75\\ 16.75\\ 16.9\end{array}$
No. 20	18.5 17.5 17.5 17.5 17.5 18.19	18.6 17.9 17.9 18.6 18.6 18.6 18.6	18.0 18.1 18.1 18.1 18.1 18.1	18.35 18.35 18.25 18.55	18.1 18.0: 18.6:	17.9 18.3 18.4 17.8
No. 18	$\frac{17.1}{17.5}$	$\begin{array}{c} 17.6;\\ 16.6;\\ 17.4\\ 17.1\\ 16.7;\\ 16.7;\end{array}$	$\begin{array}{c} 17.5;\\ 17.6;\\ 17.35\\ 17.0\end{array}$	$\begin{array}{c} 16.85\\ 17.45;\\ 17.4;\\ 17.2;\\ 16.85;\\ 16.85; \end{array}$	17.3:	16.9 17.05 17.35
No. 17	$15.5 \\ 15.85 \\ 15.85 \\ 15.45$	15.7 15.8 16.2 16.3	$\begin{array}{c} 16.05\\ 16.05\\ 15.95\\ 16.55\\ 16.45\\ 16.45\end{array}$	$\begin{array}{c} 16.2 \\ 15.85 \\ 15.6 \\ 15.4 \\ 16.25 \\ 16.25 \end{array}$	$\begin{array}{c} 16.3\\ 15.7;\\ 15.65;\\ 15.8;\\ 15.8; \end{array}$	$15.6: 15.9 \\15.7 \\15.7 \\15.45 \\15.5$
No. 14	18.5 18.5 18.3 18.5	18.3: 18.1	$\frac{17.8}{17.85}$	$\begin{array}{c} 17.9;\\ 18.1;\\ 18.3;\\ 17.95;\\ 17.5;\end{array}$	17.6:	$18.1: \\ 17.75: \\ 17.75$
No. 13	$\frac{17.1}{17.75}$	$\begin{array}{c} 18.55\\ 16.85\\ 17.1\\ 17.55\\ 18.7\end{array}$	16.9 18.4 17.7: 17.9 17.9	$\begin{array}{c} 17.3\\ 18.55\\ 18.35\\ 17.6\\ 18.35\\ 18.35\\ 18.6\end{array}$	$\frac{18.2}{17.5}$ $\frac{18.2}{18.2}$	18.3 18.55 18.1 18.1
No. 12	18.1 18.45 18.35 18.35 18.35 18.35	18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8	18.2 18.3 18.65 18.65	18.5 18.5 18.7 18.7 18.7 18.7 18.7 19.0 1	17.65 18.1:	$\frac{17.95}{17.2}$
No. 8	$\frac{18.25}{17.85}$	18.6 17.75 19.1: 18.45 18.3	$\begin{array}{c} 17.9;\\ 18.2\\ 19.0\\ 18.35\\ 18.35\end{array}$	17.7: 19.0: 18.5 18.6	18.45 18.0: 17.75:	18.2 18.25 18.15 18.25
No. 3	$\begin{array}{c} 16.85\\ 17.55\\ 17.6\\ 17.1\\ 17.1\\ 16.95 \end{array}$	$\begin{array}{c} 17.4 \\ 17.1 \\ 17.05 \\ 17.25 \\ 16.85 \end{array}$	$\begin{array}{c} 16.9\\ 16.8\\ 16.8\\ 16.8\\ 16.85\\ 17.15\end{array}$	$\begin{array}{c} 16.7 \\ 17.55 \\ 17.5 \\ 17.25 \\ 17.25 \end{array}$	$\begin{array}{c} 16.75\\ 16.35;\\ 16.9;\\ 17.35;\\ 17.75;\end{array}$	$\begin{array}{c} 16.95\\ 17.25\\ 16.85\\ 17.05\end{array}$
Julian Day	$\begin{array}{c} 32742 & 779 \\ 70.616 \\ 697 \\ 4929.638 \\ 752 \end{array}$	31.665 .719 .719 .765 .765 .765 .765	$\begin{array}{c} 756\\ 75.701\\ 814\\ 309.632\\ .679\end{array}$	10.624 685.610 87.621 88.633 6044.661	$\begin{array}{c} 44.697\\ 52.669\\ 67.646\\ 70.652\\ 72.686\end{array}$	$\begin{array}{c} 73.640\\ 750.679\\ .739\\ 52.640\\ .733\end{array}$
Plate	14638 14756 14764 21395 21395	21426 21431 22343 22348 22363	22371 22380 22385 22516 22516	22540 23295 23315 23332 23332 23332	23913 B1715 B1742 B1742 B1765	B1780 24773 24779 24779 24785 24793

Helen Sawyer Hogg and Amelia Wehlau

506

No. 31	17.25 17.25 17.85 17.85	17.4: 17.4: 17.4: 16.9	17.7:	17.95:	No. 76	16.8 16.6 16.9 16.7	8,525 19,52
No. 27	16.85 16.7 17.35 17.9	17.9 17.6 17.5 17.45	$\begin{array}{c} 17.1 \\ 17.05 \\ 16.95 \\ 17.05 \\ 17.1 \end{array}$	0.71	No. 75	12.02 17.05 17.05 17.05 17.05	17.5 17.5 17.4:
No. 20	81 18 18 18 18 18 18 18 18 18 18 18 18 1	<u>x x x x x x x x x x x x x x x x x x x </u>	1778 1778 1887 1887 1887 1887 1887 1887	8.21 12.8	No. 71	18.7 18.4 18.3	18.4 17.8: 18.2:
No. 18	$\begin{array}{c} 16.75\\ 17.6\\ 17.6\\ 17.8\\ 16.95 \end{array}$	17.0 17.1 16.7 17.25	17.3: 17.9 17.9	17.65	No. 68	19.0: 17.8 18.1:	18.4 18.7 17.1:
No. 17	949998 94868 8688	15.95 15.95 15.6 15.65	$\begin{array}{c} 16.15\\ 16.3\\ 16.25\\ 15.8\\ 15.8\end{array}$	16.0 15.55	No. 62	18.6 18.4	18.1 18.1 18.1 18.1 18.1
No. 14	66488 66488	18.0: 17.6 17.8: 17.8: 17.55:	17.65: 18.1:	18.15:	No. 61	11 12 12 12 12 12 12 12 12 12 12 12 12 1	17.9 17.7:
No. 13	17.6 16.9 16.95 16.95 16.95	$\begin{array}{c} 17.05\\ 17.5\\ 18.65\\ 18.1\\ 18.1\\ 16.65\end{array}$	$\begin{array}{c} 17.55\\ 18.15\\ 18.9\\ 16.75\\ 16.55\\ 16.65\end{array}$	17.15	No. 59	18.4 18.3 19.0	9.21
No. 12	$\begin{array}{c} 17.35\\ 18.15\\ 17.7\\ 17.35\\ 17.35\\ 16.95\end{array}$	$\begin{array}{c} 16.8 \\ 17.05 \\ 17.15 \\ 17.15 \end{array}$	18.2 18.2 18.45 54.45	18.85 18.8	No. 51	18.0 17.85 18.15	
No. 8	18.5 18.5 18.25 18.25 18.05 18.05	18.2 18.45 18.45 18.45 8.845	18.55 18.0 18.4 18.4 18.4 18.3	18.45	No. 37	912 18.8 18.8 18.8	
No. 3	16.85 17.05 17.15 17.15 17.4	$\begin{array}{c} 17.4 \\ 17.0 \\ 17.45 \\ 17.45 \\ 17.3 \\ 16.95 \end{array}$	$\begin{array}{c} 17.5 \\ 17.0 \\ 16.85 \\ 17.5 \\ 17.5 \\ 17.5 \end{array}$	17.45	No. 34	18.6 17.9 18.5	18.4
Julian Day	36753.648 762 7849.648 .661 .682	707 750 50.672 700 733	8198.704 .763 .783 .783 .783 .712	869°289 1921	Julian Day	2419536.939 20726.750 48.705 1690.895 6915.824	21.824 23.785 24.824 25.776 44.781
Plate	24808 24813 26203 26204 26204	26207 26210 26222 26225 26225	26829 26835 26837 26851 26853	26857 27559	Plate	103 2637 2637 2649 4397 20544	20559 20571 20587 20597 20647

Plate	Julian Day	No. 34	No. 37	No. 51	No. 59	No. 61	No. 62	No. 68	No. 71	No. 75	No. 76
20675 21377 21380 21380 21390	26946.742 7272.784 73.788 73.788 74.776	17.6 18.7: 18.4	19.0: 19.5:	$\begin{array}{c} 17.5;\\ 18.5;\\ 17.75\\ 18.45\end{array}$	18.1 18.7 11.9	16.6: 17.7: 17.1: 17.1: 17.4	81888 81888 819 818 819 81 819 81 810 810 81 810 810 810 810 810 810 810 810 810 810	18.7 18.1 18.4 19.5 1	$ \begin{array}{c} 18.25\\ 19.0\\ 18.1\\ 18.1 \end{array} $	$\begin{array}{c} 19.0 \\ 17.1 \\ 18.1 \\ 18.3 \\ 18.3 \end{array}$	16.6: 16.85 16.85 16.85 16.7
21406 21412 21515 21515 21538	$\begin{array}{c} 891 \\ 75.768 \\ 306.776 \\ 07.799 \end{array}$	19.0 18.6 17.5: 18.5:	19.0: 17.3	$\frac{17.7}{18.2}$ 18.2 18.45 18.0	$\begin{array}{c} 18.8;\\ 18.7;\\ 17.7;\\ 18.0;\\ 18.0; \end{array}$	2111 2111 2112 2112 2112 2112 2112 211	>18.1 18.5 18.6	17.8 18.8 18.8 18.0 17.4	18.5: 18.7 18.05 18.3: 18.1:	17.7 18.0 18.2 17.2 17.2 17.0	$\begin{array}{c}17.1\\16.55\\16.8\\17.1\\17.1\\16.45\end{array}$
21556 23178 23237 23240 23252	08.800 639.790 58.749 .811 59.760	18.7 18.05 18.1: 18.1:	18.7 18.9	18-25 17-75 17-8 17-8 17-8	$\frac{17.8}{17.9}$	17.8 18.3 17.8 17.8	18.1 18.1 18.3 18.6	$\frac{18.2}{18.5}$	$\frac{18.45}{18.8}$	17.9 18.2 18.3 18.3 18.3 18.3	17.3; 16.6 16.25 16.25
23255 23255 23206 23306 23308 23522		$\frac{18.0}{17.85}$	18.35 17.4	$\begin{array}{c} 17.7:\\ 17.6:\\ 18.4\\ 18.1\\ 18.1\end{array}$	18.0 17.3 17.6	17.4 17.0 17.0	18.2 18.6 18.6	18.4 18.4 18.1	$\begin{array}{c} 17.85;\\ 17.9;\\ 18.65\\ 17.4 \end{array}$	$18.2 \\ 17.95 \\ 18.0 \\ 17.4; \\ 17.4; \\$	$\begin{array}{c} 16.85\\ 17.0\\ 16.4\\ 16.4\\ 16.3\\ 16.3\end{array}$
23529 23538 23600 91 92	14.663 15.661 28.630 8015.608 .677	17.8: 18.6 18.1:	18.1 17.5 18.7	18.0	19.0: 19.0 18.2:	17.9 17.35 17.85	18.6 18.1 18.2	18.9 17.5: 17.8 17.8	18.8 19.0: 17.25	17.7 16.7 17.7 17.2 17.2	$\begin{array}{c} 16.85\\ 15.95\\ 16.5\\ 16.5\\ 16.55\\ 16.55\end{array}$
93 <u>8</u> 32	16.610 .628 .674 .693 .711	18.1 18.3	18.6:	18.3:	18.4; 18.2:	16.8: 16.7: 16.4:	18.4 18.4 ≻18.3 ≻18.1	17.6	17.2:	16.7 17.15 16.55:	16.45 16.5 16.5 16.5 16.5

Helen Sawyer Hogg and Amelia Wehlau

508

No. 76	16.5: 16.5: 17.1: 16.7 16.5	16.2 16.2 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8	16.9 16.5 16.65 16.65	16.1 16.1 16.2 17.0 17.0	16.7 17.0 16.7 16.7 16.7	17.1 16.5 16.55 16.4 16.7
No. 75	17.3 17.5 17.5	9:21 12:6 112:6 112:7 11	17.7 17.4: 16.5:	4 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	17.4 16.9 17.7: 17.0:	17.5 17.6 17.9
No. 71	18.55	18.6: 17.7		$\begin{array}{c} 17.75;\\ 18.1;\\ 18.5;\\ 18.5;\end{array}$	17.65:	17.85: 17.4:
No. 68	$17.4; \\ 18.5 \\ 18.2 \\$	17.3: 17.0: 18.4	17.1: 16.7: 16.4:	17.8: 17.0: 17.6:	17.4:	1111 1111 1111 1111 1111 1111 1111 1111 1111
No. 62	>18.1 18.1	\scriptstyle	18.0 >18.1 >18.1	$\frac{1}{8} \frac{1}{3} \frac{1}$	$\frac{3}{2} \frac{1}{2} \frac{1}$	$\frac{1}{2} \frac{1}{2} \frac{1}{2}$
No. 61	16.6: 17.0 16.6	16.5 16.4 17.2 16.8	$\begin{array}{c} 16.35 \\ 16.1 \\ 16.1 \\ 16.2 \\ 16.2 \end{array}$	$\begin{array}{c} 16.25;\\ 16.75\\ 16.6\\ 16.6\\ 17.3\\ 17.3\end{array}$	$\begin{array}{c} 17.2:\\ 16.2:\\ 16.5:\\ 16.5: \end{array}$	16.7: 16.8: 16.8: 16.3:
No. 59	17.2 18.9	17.8: 17.6: 18.1: 18.1:				1111 1238 1211
No. 51	17.8 17.6	9.21 7.71	17.6:	18.8	18.05	18.0 17.9: 17.9:
No. 37	19.0: 18.2:	18.5: 18.4:		17.6:		17.6: 17.8: 18.6:
No. 34	18.1 17.5 17.5	19.5: 18.8 18.1:	18.2: 18.7: 19.0:		17.4:	$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$
Julian Day	28016.732 37.589 667 515 .582 .582	.608 164 175 175 1610	783. 187 187 188 188 188 188 188 188 188 188	055 057 057 057 057 057 057 057 057 057	.658 .021 .621 .613 .678	
Plate	105 169 170 185 185	$187 \\ 192 $	835 837 1109 1109		124 127 127 1220 1220 1220	1230 1240 1241 1241 1241

No. 76	16.55 16.55 16.55 16.45 16.45	$\begin{array}{c} 16.7;\\ 16.6\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ \end{array}$	$\begin{array}{c} 17.0 \\ 16.8 \\ 16.3 \\ 16.3 \\ 16.35 \end{array}$	$\begin{array}{c} 16.4 \\ 16.3 \\ 16.65 \\ 16.5 \end{array}$	$\begin{array}{c} 16.8 \\ 16.4 \\ 16.7 \\ 16.8 \\ 16.65 \end{array}$	16.75 16.5 16.6: 16.0: 16.0:
No. 75	17.4: 17.9 17.5 17.5	$\frac{17.5}{17.75}$	18.3 17.5 17.1 17.1 17.1 17.1	0.2255 11257 11257 11257 1257 1257 1257 12	$\begin{array}{c} 17.45\\ 18.1\\ 18.1\\ 18.1\\ 18.4\\ 17.1;\\ 17.1;\end{array}$	17.5: 17.6 18.3
No. 71	$\frac{18.1}{17.5}$	17.4	17.45 18.1	$\begin{array}{c} 17.95\\ 18.35\\ 17.85;\\ 17.35\\ 17.35\end{array}$	$\begin{array}{c} 18.05\\ 17.8\\ 17.7\\ 17.45;\\ 18.0\end{array}$	17.6: 17.85 18.4
No. 68	$\begin{array}{c} 17.1:\\ 17.7:\\ 17.4:\\ 17.8:\\ 17.8: \end{array}$	17.5: 17.6: 17.6:	18.2 16.7: 16.5	$\begin{array}{c} 17.15;\\ 17.25\\ 18.4;\\ 17.7;\\ 17.9;\\ 1$	18.1 18.5 18.0 17.7	17.3: 17.9
No. 62	18.1 18.1: 17.9 18.4 18.4	$\frac{18.5}{18.1}$	18.2 18.5	18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	$\frac{18.1}{18.5}$	18.3 18.2 18.4
No. 61	$\begin{array}{c} 16.8;\\ 16.0;\\ 16.35\\ 16.9\\ 17.2\\ 17.2 \end{array}$	$\begin{array}{c} 16.7;\\ 16.3;\\ 16.3;\\ 17.0\\ 18.3\\ 18.3\end{array}$	17.0 16.6: 16.9: 16.5	16.9 16.4: 17.4 17.3 17.3	$\begin{array}{c} 17.05;\\ 17.3\\ 17.2;\\ 17.75\\ 16.15;\\ 16.15; \end{array}$	16.5: 17.05 17.3
No. 59	18.4 18.5	$\begin{array}{c} 17.6:\\ 17.3:\\ 18.4:\\ 18.6: \end{array}$	19.0 17.5:	18.3 18.4: 18.3: 18.7	$ \begin{array}{c} 18.7 \\ 17.9 \\ 18.7 \\ 18.5; \end{array} $	17.7: 18.5 18.6
No. 51	$\begin{array}{c} 17.75;\\ 17.8;\\ 18.45\\ 17.95\end{array}$	$\begin{array}{c} 17.8;\\ 18.3;\\ 17.9;\\ 18.35\\ 18.35\end{array}$	17.6 17.6 17.8:	$\begin{array}{c} 17.5\\ 18.1;\\ 18.1;\\ 18.1;\\ 18.05\end{array}$	$\frac{17.7}{18.2}$	17.85 17.7 18.5
No. 37	18.8;	18.3:	17.5: 16.9:	17.9 18.4: 18.9:	18.5 17.8	18.7:
No. 34	$17.9 \\ 18.8$	$\frac{17.7}{17.6}:$ 18.3	19.0 18.5:	$\frac{18.1}{18.2}$ $\frac{19.0}{18.7}$	$\begin{array}{c} 18.7\\ 18.6\\ 18.5\\ 19.1;\\ 19.5;\\ 19.5; \end{array}$	19.0 17.9 18.5
Julian Day	28398,609 653 .679 .679 .679 .630	.695 .713 .759 .822 .89.720	.804 93.746 95.759 96.679 .722	715.675 747 747 29071.770	798 73 780 73 700 78 783 76 742	$\begin{array}{c} 77.702 \\ 78.722 \\ 405.920 \\ 06.956 \\ 30.738 \end{array}$
Plate	2221 2221 1221 1221 1221	$1290 \\ 1980 \\ 1984 \\ 1994 \\ $	$\begin{array}{c} 1997 \\ 2013 \\ 2021 \\ 2033 \\ 2035 \\ 2035 \end{array}$	2037 2111 2115 2115 3249	3252 3253 3275 3275 3290	$3303 \\ 3318 \\ 4209 \\ 4528 \\ 4584 \\ 4584 \\ 1000 \\ $

Helen Sawyer Hogg and Amelia Wehlau

No. 76	$\begin{array}{c} 16.65\\ 16.35\\ 16.8\\ 16.8\\ 16.8\\ 16.8\\ 16.8\end{array}$	16.5 16.9 17.0 16.7 16.6	$\begin{array}{c} 16.6 \\ 16.45 \\ 16.35 \\ 17.0 \\ 16.75 \\ 16.75 \end{array}$	16.3 16.3 16.8 16.8 16.8	$\begin{array}{c} 16.85\\ 16.2\\ 16.55\\ 16.15\\ 16.15\\ 16.15\end{array}$	$\begin{array}{c} 16.8\\ 16.6\\ 16.9\\ 16.1\\ 16.1\end{array}$
No. 75	17.8: 18.0 18.2 17.9	17.5 17.55 17.9 17.3	17.9 18.4 18.7: 18.7:	$\begin{array}{c} 17.4:\\ 17.55\\ 16.8\\ 17.45\\ 17.45\\ 17.55\end{array}$	$\frac{17.8}{16.55}$ $\frac{17.8}{17.8}$	17.6 17.5 17.7 17.7 18.8 18.8 18.8 18.8 18.8 18.8
No. 71	17.85 18.1 18.1 18.1 18.0:	$\begin{array}{c} 18.25\\ 18.05\\ 17.15\\ 18.0\end{array}$	$\begin{array}{c} 18.2 \\ 18.1 \\ 17.55 \\ 17.0 \\ 17.0 \end{array}$	18.4 18.55 18.35 18.7	18.35 16.95 17.0: 17.4	18.0 17.4 16.95 17.9 17.9
No. 68	16.8 16.8 17.7	$ \begin{array}{c} 18.0 \\ 18.0 \\ 17.4 \\ 17.5 \\ \end{array} $	$\frac{17.4}{17.5}$	$\begin{array}{c} 17.25;\\ 17.15;\\ 17.6\\ 17.95\end{array}$	18.3: 17.3: 17.7	16.9 17.15 17.05
No. 62	> 18.3 > 18.5 > 18.1	$> 18.2 \\ > 18.2 \\ > 18.1 \\ 17.9 \\ 18.6 \\ 18.6 \\ 12.9 \\ 18.6 \\ 1$	81 88 18 88 18 88 18 18 18 18 18 18 18 1	$ \begin{array}{c} 18.5 \\ 18.4 \\ 18.0 \\ $	18.0 17.9 18.3 18.3	81818 818 81
No. 61	$\begin{array}{c} 16.4:\\ 16.45\\ 17.0\\ 17.0\\ 17.95:\\ 17.9\end{array}$	$\frac{17.55}{17.8}$	18.0 17.5 17.6 17.0 17.0	1712 1713 1813 1816	17.6 16.9 16.8: 17.3 16.35	16.8 16.9 16.1 16.2 16.2 16.2 16.2 16.2 16.2 16.2
No. 59	18.6 19.0	17.85 19.0 18.3: 17.6	17.7 19.0 19.0 18.9	$\begin{array}{c} 17.9;\\ 18.9;\\ 18.4;\\ 17.35\end{array}$	17.5: 17.5: 19.0:	18.55 18.55 18.55
No. 51	17.7: 17.8 18.7: 17.9	18.05 17.8 17.6 17.6 18.1	$\begin{array}{c} 17.95 \\ 18.0 \\ 18.4 \\ 17.9 \\ 17.7 \\ 17.7 \end{array}$	18.25 17.75 18.25 18.25	$\begin{array}{c} 18.05\\ 17.95;\\ 18.4\\ 18.1;\\ 18.1;\end{array}$	18.15 17.95 17.9 17.9
No. 37		18.5 18.2	17.7 18.9 17.8	17.8 18.4 17.7 18.05	18.6: 17.8:	17.4: 17.4: 18.8:
No. 34	18.8 18.5:	17.75 18.6 18.5: 18.7	17.5 18.5 18.5 18.0 18.7	18.0 18.1 18.4 19.0	18.3 18.9 17.8 17.7	18.1: 18.3: 18.4:
Julian Day	29462.653 63.648 61.653 87.614 89.702	90.657 519.568 519.568 77.785 77.784	813.677 170.818 171.1584 14.672 1770	15.657 711 16.631 16.631 733	42.703 42.703 42.703 42.703 42.703 42.703 42.703	$\begin{array}{c} 30169.693\\ 722\\ 751\\ 76.715\\ 70.715\end{array}$
Plate	4684 4693 4703 4703 4795 4807	4819 5702 5717 5728	5729 5808 5812 5825 5825	5835 5836 5840 5848 5848	5848 5948 1-965 8965	6826 6827 6883 6883 6847

Plate	Julian Day	No. 34	No. 37	No. 51	No. 59	No. 61	No. 62	No. 68	No. 71	No. 75	No. 76
6861 6861 6875 6875 6938	30171.730 72.642 747 99.705	$\begin{array}{c} 18.6 \\ 18.05 \\ 18.6 \\ 18.4 \end{array}$	$\frac{17.9}{18.05}$	$ \begin{array}{c} 17.95 \\ 18.3 \\ 17.55 \\ 17.55 \end{array} $	$\frac{17.8}{18.2}$	18.3 17.9 17.6 17.1	18.3 18.3 18.2 18.2 18.2	17.7 17.7 17.8 17.8	$\frac{18.4}{18.5}$ $\frac{17.55}{18.05}$	$\begin{array}{c} 17.5 \\ 17.95 \\ 17.55 \\ 17.55 \\ 17.65 \\ $	$\begin{array}{c} 16.9\\ 17.1\\ 16.3\\ 16.35\\ 16.35\\ 16.45\end{array}$
7923 7927 7937 7940 7943	549.662 5730 50.686 727 .806	18.65 18.65 18.65	19.0 18.0	17.5 17.5 18.3 17.75 18.65 18.65 17.8	$\begin{array}{c} 18.2 \\ 18.4 \\ 17.8 \\ 18.1 \\ 18$	$\frac{17}{17}$	17.9 17.9 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2	18.3 18.4	$\begin{array}{c} 17.55\\ 17.7\\ 17.6\\ 17.8\\ 17.8\\ 17.8\\ 17.65; \end{array}$	17.2 18.2 17.9 17.9	$\begin{array}{c} 16.7\\ 16.85\\ 16.15\\ 16.4\\ 16.2 \end{array}$
7949 7955 7964 7974	52.679 53.644 720 54.656	18.6: 18.6: 18.8 18.6 17.85	18.35 17.9: 17.9:	18.2 18.05 18.18 18.18 18.18 18.18	$\begin{array}{c} 18.5;\\ 18.4\\ 18.6\\ 18.9\\ 17.9\\ 17.9\end{array}$	$\begin{array}{c} 16.7;\\ 18.0\\ 16.9\\ 17.0\\ 17.55\end{array}$	18.2 18.2 18.4 18.4 18.5 18.5	$\frac{17.6}{18.2}$	$\begin{array}{c} 17.1 \\ 18.25 \\ 17.15 \\ 18.25 \\ 18.25 \\ 18.25 \end{array}$	$\begin{array}{c} 17.4 \\ 18.05 \\ 18.3 \\ 17.3 \\ 18.25 \\ 18.25 \end{array}$	$\begin{array}{c} 16.3 \\ 16.9 \\ 16.8 \\ 17.15 \\ 16.3 \end{array}$
7979 8014 8117 8117 8895	.739 56.686 .748 86.604 89.685	18.9 18.9 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	19.0: 18.5 18.8:	$\begin{array}{c} 17.45\\ 18.0\\ 18.1\\ 18.15\\ 18.15\\ 18.05\end{array}$	18.6: 18.8 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3	17.05 17.0: 17.6 17.1	18.0 18.0 18.2 18.2 18.2	17.95: 18.05 17.5 18.15	$\begin{array}{c} 17.65;\\ 17.9\\ 18.15;\\ 17.95\\ 18.25\end{array}$	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	16.3 16.35 16.35 16.35
8902 8907 8919 8930 8930	.754 .815 .766 .765 .766 .768	$\begin{array}{c} 18.1 \\ 17.75 \\ 19.0 \\ 19.0 \\ 19.0 \end{array}$	19.0: 19.0: 18.6 18.4:	$ \begin{array}{c} 18.15 \\ 17.2 \\ 17.2 \\ 17.9 \end{array} $	18.1 18.8 19.0 4.7	$\begin{array}{c} 17.4 \\ 17.75 \\ 16.8 \\ 16.3 \\ 16.3 \end{array}$	18.5 18.6 18.2 18.2 18.2	19.0 18.7 17.3 18.4	$\begin{array}{c} 17.25\\ 17.55\\ 18.4\\ 17.7\\ 16.6\\ 16.6\end{array}$	$\begin{array}{c} 18.0\\ 17.8\\ 16.95\\ 17.45\\ 17.5; \end{array}$	$\begin{array}{c} 16.9\\ 16.7\\ 16.35\\ 16.5\\ 16.6\\ 16.6\end{array}$
9002 9003 9006 9008	82.617 622 622 623 625 653 653 653 653	18.1 18.1 18.15 18.15 18.35	18.9 18.9 17.9	17.65 17.75 17.65 17.45 17.45	18.5 18.5 18.6 19.0	$\begin{array}{c} 17.15 \\ 16.8 \\ 16.8 \\ 16.8 \\ 16.8 \\ 17.0 \\ 17.0 \end{array}$	1811 1812 1812 1813 1813 1813 1813 1813	$\begin{array}{c} 17.75\\ 17.7\\ 17.65\\ 18.4\\ 18.4\end{array}$	8.2.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	18.1 18.0 18.1 18.1 18.2 18.2	16.35 16.4 16.5 16.3 16.3 16.3

Helen Sawyer Hogg and Amelia Wehlau

No. 76	$\begin{array}{c} 16.25\\ 16.35\\ 16.45\\ 16.45\\ 16.9\\ 16.9\end{array}$	$\begin{array}{c} 16.85\\ 16.85\\ 16.75\\ 16.9\\ 16.8\\ 16.9\\ 16.8\end{array}$	16.35 16.4 17.1: 16.4	$\begin{array}{c} 16.75 \\ 16.45 \\ 16.35 \\ 16.7 \\ 16.7 \\ 16.7 \\ 16.7 \\ 16.7 \end{array}$	$16.3 \\ 16.35 \\ 16.35 \\ 16.35 \\ 16.35 \\ 16.15$	16.95 16.15 16.15 17.0
No. 75	18.0 18.5 18.25 18.1 18.1 18.1	$\begin{array}{c} 17.95\\ 18.2\\ 18.3\\ 18.1\\ 18.1\\ 18.5\end{array}$	17.7 17.7 18.2	0.4.1.3.1. 8.1.3.8.1.5.8.1 8.1.3.8.1.5.1 8.1.3.8.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1	$\begin{array}{c} 18.35\\ 17.85\\ 18.15\\ 18.88\\ 18.88\\ 18.05\\ 18.05\\ \end{array}$	24-120 24-120
No. 71	17.95 18.6 18.3 18.1 17.8	$\begin{array}{c} 17.65\\ 18.1\\ 17.9\\ 17.95\\ 17.95\\ 17.95\end{array}$	18.9: 18.5: 18.55	$\frac{17.8}{18.35}$ $\frac{17.8}{18.45}$ $\frac{18.45}{18.45}$	18.55 17.7 17.85 18.75 18.75	$\begin{array}{c} 17.55\\ 16.95\\ 17.3\\ 18.6\\ 18.65\\ 18.65\end{array}$
No. 68	18.3 18.9 17.75: 18.0	18.1 18.1 18.1 18.1 18.1 18.1 18.1	17.1 16.65 19.0	2.81 19.0 18.0 18.0 18.0 18.0	19.0 18.5: 18.7: 18.8	18.9 19.0: 18.6: 18.9
No. 62	18.0 18.0 18.0 18.0 18.0 18.0 18.0	8128 818 818 818 818 818 818 818 818 818	18.4 18.5 18.5	0.0 12 18 18 18 18 18 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	$\frac{8}{2} \frac{8}{2} \frac{8}$	8.9 8.8 8.9 8.9 8.9 8 8.9 8 8.9 8 8.9 8 8.9 8.9
No. 61	$\begin{array}{c} 16.95\\ 16.9\\ 17.25\\ 17.1\\ 17.1\\ 17.7\end{array}$	$\begin{array}{c} 17.3 \\ 17.4 \\ 17.75 \\ 17.35 \\ 17.35 \\ 17.35 \end{array}$	16.7: 16.8: 17.2	17.9 17.05 18.1 18.1	17.25 17.1: 17.5 17.0	17.65: 17.65 17.75 16.9 17.2
No. 59	18.9 19.0 18.8 18.7 18.2 18.2 18.2	18.3 18.3 18.3 18.6 18.6 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9	17.6 17.5 18.6:	19.0 18.6 18.8 18.8 18.8	19.0 18.3: 18.6 18.7	8.4406 8.81 8.81 8.81 8.81 8.81 8.81 8.81 8.8
No. 51	17.65 17.9 18.0 18.15	$\frac{18.1}{18.45}$ $\frac{18.45}{17.8}$ $\frac{17.8}{17.6}$	$\begin{array}{c} 17.4 \\ 17.15; \\ 17.5; \\ 17.4; \end{array}$	$\begin{array}{c} 17.75\\ 17.75\\ 17.95\\ 18.1\\ 18.1\\ 18.0\end{array}$	$\begin{array}{c} 17.65\\ 17.4\\ 17.85\\ 17.85\\ 17.85\\ 17.95\end{array}$	$\begin{array}{c} 17.5 \\ 18.15 \\ 18.35 \\ 18.35 \\ 17.6 \\ 17.6 \end{array}$
No. 37	4.21 12.9 12.9 12.9 12.9 12.9 12.9 12.9 1	$\begin{array}{c} 19.5 \\ 19.0 \\ 18.3 \\ 18.2 \\ 18$	18.3: 19.5:	18.65 18.55 18.55	18.9 19.0:	19.2 19.0 18.3
No. 34	18.5 18.5 19.4 19.4	$\begin{array}{c} 19.5\\ 18.7;\\ 18.55\\ 18.7\\ 18.7\\ 18.6;\\ 18.6;\\ \end{array}$	18.4: 17.7 17.6	812 19.0 20.0 20.0 8 2 8 2 8 2 8 1 8 1 8 1 8 1 8 1 8 1 8 1	19.0 17.9 18.4 18.7:	18.9 18.7 18.7 18.4 18.4
Julian Day	30932.694 714 .724 .734 33.600	.610 .635 .635 .658 	125, 021 125, 021 718, 718, 718, 77, 77	99,693 2005,706 758 06,641	747 355.697 .756 .828 56.657	710 102 102 102 102 102 102 102 102 102 1
Plate	9009 9011 9012 9013 9023	9023 9025 9027 9080 9083	$\begin{array}{c} 10134 \\ 12045 \\ 12051 \\ 12070 \\ 12143 \end{array}$	12260 12345 12349 12361 12364	12370 13424 13431 13431 13436 13445	13448 13460 13464 13484 13488 13482

Plate	Julian Day	No. 34	No. 37	No. 51	No. 59	No. 61	No. 62	No. 68	No. 71	No. 75	No. 76
13497 14580 14580 14584 14591 14604	32360.793 7.40.637 .683 .683 41.638	19.0 18.8 18.7: 18.9 18.9	19.0: 19.5: 19.6 19.0	$\begin{array}{c} 17.5 \\ 17.8 \\ 18.05 \\ 17.95 \\ 17.45 \end{array}$	$\begin{array}{c} 19.0\\ 18.8\\ 18.9\\ 18.7\\ 18.3\\ 18.3\end{array}$	$\begin{array}{c} 17.15\\ 17.9\\ 17.3\\ 16.9\\ 17.85\\ 17.85\end{array}$	$\frac{18.5}{18.4}$	$\begin{array}{c} 19.0;\\ 19.0;\\ 17.65\\ 19.2;\\ 19.2;\end{array}$	$\begin{array}{c} 16.9 \\ 17.45 \\ 17.7 \\ 18.0 \\ 17.1 \\ 17.1 \end{array}$	18.3 18.0 18.6 18.4 18.4 18.4	$16.6 \\ 16.7 \\ 16.7 \\ 16.65 \\ 16.5 \\ 16.5 \\ 10.5 \\$
$\begin{array}{c} 14609 \\ 14624 \\ 14629 \\ 14629 \\ 14638 \\ 14756 \end{array}$	$\begin{array}{c} 692 \\ 42.621 \\ 673 \\ 779 \\ 70.616 \end{array}$	$\begin{array}{c} 19.0\\ 18.6;\\ 17.9\\ 18.5;\\ 18.1\\ \end{array}$	18.4 18.9	$\begin{array}{c} 17.65\\ 18.05\\ 17.65\\ 17.8\\ 17.8\end{array}$	$18.9 \\ 17.65 \\ 18.4 \\ 18.5; 18.5;$	17.4: 17.6 18.1 18.0 17.9:	18.4 18.6 18.6 18.1 18.1 18.1	$ \begin{array}{c} 19.0: \\ 19.5: \\ 18.7 \end{array} $	$\begin{array}{c} 17.25\\ 17.55\\ 17.05\\ 17.8\\ 17.8\\ 17.3\end{array}$	$\begin{array}{c} 18.4 \\ 17.4 \\ 17.65 \\ 18.3 \\ 18.3 \\ 18.3 \end{array}$	$\begin{array}{c} 16.7 \\ 16.7 \\ 16.7 \\ 16.8 \\ 16.85 \\ 16.85 \end{array}$
14764 21395 21402 21426 21431	.697 4929.638 31.665 31.665 .719	18.9 19.0: 18.8	19.0:	$\begin{array}{c} 17.25\\ 17.55\\ 18.25\\ 18.05\\ 17.75\end{array}$	18.7: 18.4:	$\begin{array}{c} 17.55; \\ 17.55\\ 16.6; \end{array}$	$\begin{array}{c} 18.0\\ 8.1\\ 8.2\\ 18.8\\ 18.2\\ 1$	17.95	$\begin{array}{c} 17.65\\ 17.75;\\ 17.65;\\ 17.65;\\ 17.4;\\ 17.4;\end{array}$	18.3 17.3 18.0:	$\begin{array}{c} 16.95\\ 16.4\\ 16.1\\ 16.2\\ 16.25\\ 16.25\end{array}$
$\begin{array}{c} 22343\\ 22348\\ 22363\\ 22363\\ 22371\\ 22380\\ 22380\\ \end{array}$	$\begin{array}{c} 5273.697\\ 74.655\\ 74.691\\ 76.796\\ 75.701\end{array}$	19.0: 19.0 18.4 18.7	:0.01	17.3 17.7 17.7 17.7 17.95	18.4: 18.4: 17.6: 18.3:	$\begin{array}{c} 17.0 \\ 17.15 \\ 16.9 \\ 17.2 \end{array}$	$\frac{18.2}{18.5}$	18.2:	18.1 17.9 18.2 18.5 17.95 17.95	$\frac{17.2}{18.0}$	$\begin{array}{c} 16.2\\ 16.05\\ 16.65\\ 17.0\\ 16.15\end{array}$
22385 22516 22521 22540 23295	.814 309.632 10.624 685.610	18.0: 18.7 18.7 19.0	19.0 19.0:	17.4:17.85 17.85 17.4 18.0 17.6	$ \begin{array}{c} 18.9 \\ 18.25 \\ 18.6 \\ 18.8 \\ \end{array} $	$\begin{array}{c} 16.85;\\ 17.35\\ 17.7\\ 16.95\\ 16.7\end{array}$	$\begin{array}{c} 18.1 \\ 18.3 \\ 18.4 \\ 18.4 \\ 18.1 \\ 18.4 \\ 18.4 \end{array}$	$ \begin{array}{c} 18.5 \\ 18.6 \\ 18.3; \\ \end{array} $	$\begin{array}{c} 17.65\\ 16.95\\ 18.35\\ 18.2\end{array}$	$\begin{array}{c} 18.2 \\ 17.9 \\ 18.1 \\ 17.95 \\ 17.95 \end{array}$	$\begin{array}{c} 16.25\\ 16.2\\ 16.1\\ 16.75\\ 16.8\\ 16.8\end{array}$
23315 23332 23909 23913 B1705	87.621 88.633 88.61 6044.661 51.660 51.660	19.0 18.7: 18.6 18.6:		$\frac{17.6}{18.25}$ 17.55	$\begin{array}{c} 18.4 \\ 18.2; \\ 18.15; \\ 17.9; \end{array}$	17.3: 17.5: 17.05 17.2	18.3 18.3 18.3 18.3	18.0: 17.6:	$\begin{array}{c} 17.9 \\ 17.75 \\ 18.15; \\ 17.45; \end{array}$	17.1 18.05 17.9 17.8	$16.2 \\ 16.7 \\ 16.9 \\ 16.9 \\ 16.9 \\ 16.9 \\ 16.9 \\ 10.9 \\ $

514

Helen Sawyer Hogg and Amelia Wehlau

No. 76	16.6 17.5 17.5 17.3 16.5	16.6: 16.6: 16.75 16.75	16.2 16.15 16.95 16.95 16.9	17.0 16.55 16.65 16.65	$\begin{array}{c} 16.6\\ 16.9\\ 16.9\\ 16.1\\ 16.1\end{array}$	16.25 16.6
No. 75		18.1: 18.7 17.6: 18.15	17.55 17.55 16.9 16.9	$\begin{array}{c} 17.5\\ 17.7\\ 17.9\\ 18.1\\ 18.1\\ 17.35\end{array}$	17.3 17.9 17.65 17.3	17.3 17.95:
No. 71	17.95:	16.9 17.25 17.8 17.8	$\frac{17.9}{18.15}$	$\begin{array}{c} 18.3 \\ 18.15 \\ 18.35 \\ 17.85 \\ 17.85 \end{array}$	$\begin{array}{c} 17.9\\ 17.95\\ 18.1\\ 17.8\\ 17.8\\ 17.6\\ 17.6\\ 17.6\\ 17.6\\ 17.6\\ 17.6\\ 17.6\\ 10.6$	17.8 17.85:
No. 68	16.5:	18.8	18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8	18.7: 17.9: 18.3: 18.4:		
No. 62		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	18.1 8.4 18.5 18.5 18.5 18.5 18.5	$\frac{8}{8}$ $\frac{1}{8}$ $\frac{1}$	18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	18.2 18.5;
No. 61	17.4: 17.6:	16.7 17.4 18.2	$\frac{17.85}{17.55}$	$\frac{17.65}{17.05}$	4400 4400 11111	17.75
No. 59		18.3: 18.4: 18.6 18.25	18.8 18.5 18.9 18.4:	18.7 19.0 18.1 18.1 18.1 18.1	18.3	18.9
No. 51	$\frac{18.1:}{17.25:}$	$\frac{17.45}{17.5}$	4.71 18.1 18.1 1.8 1.8 1.7 7.7	$\frac{18.1}{17.95}$	17.55 17.6 17.55 18.6 18.05	17.65
No. 37		19.0:	19.0: 19.0: 19.0:			
No. 34		18.9 18.9	$\begin{array}{c} 18.05\\ 18.35\\ 19.5\\ 19.6\\ 19.0\\ 19.0 \end{array}$	19.0: 18.6 19.0:	18.1: 18.1: 18.1:	19.1 18.8:
Julian Day	$\begin{array}{c} 36052.669\\ 67.646\\ 72.653\\ 72.656\\ 72.686\end{array}$	$\frac{73}{750} \frac{640}{679}$ $\frac{739}{52} \frac{640}{640}$ $\frac{739}{733}$	53,648 762 7849,648 .661	50.572 50.672 733 733	8198.704 763 763 783 99.690 712	587.693
Plate	B1715 B1715 B1752 B1765 B1782 B1782	B1789 24773 24779 24779 24785 24785	24808 24813 26203 26203 26203	26207 26222 26222 26225 26225	26829 26835 26837 26851 26853	26857 27559

and the magnitude from the photometer reading. Some of these stars in the second group are substantially fainter than any in Paper I. This means that measures for them on many of the early plates, both of the Dominion Astrophysical Observatory and of the David Dunlap Observatory until the mirror was aluminized before the 1942 season, give uncertain results because the variable is close to the limiting magnitude of the plate. We found that in such cases the eye estimates made by one of us (H.S.H.) were as reliable as the photometer measures made by the other (A.W.) and resulted in less scatter in the light curve. Accordingly, for the two variables for which the effect was most noticeable, Variables 20 and 62, the published measures are usually means of photometer and eye estimates.

It is a pleasure to affirm again our appreciation to the National Research Council of Canada for its continuing generous support of this program, and to express once more our gratitude to Dr. R. Margoni who most kindly sent us his unpublished measures from Asiago plates for one variable.

References

Dickens, R. J. and Carey, J. V. 1967, *Roy. Obs. Bull.*, no. 129, p. E 335. Joy, A. H. 1949, *Ap. J.*, vol. 110, p. 105; *Mt. W. and Pal. Repr.*, no. 5. Kron, G. E. and Mayall, N. U. 1960, *A.J.*, vol. 65, no. 10, p. 581. Mayall, N. U. 1946, *Ap. J.*, vol. 104, p. 290; *Lick Cont.*, Ser. 2, no. 15. Sawyer Hogg, H. and Wehlau, A. 1965, *A.J.*, vol. 70, no. 9, p. 678.

BINDING SECT. OCT 15 1971

