
planetary system;	


galactic nucleus star cluster; 	



globular cluster;	


galaxy;	



cluster of galaxy…

stellar systems 
Large N systems interacting with long-range forces

F = G M m /r^2



First classification: collisional vs. collisionless

stars are in general collision-less; 	


galaxies may not be.



Collisionless separated into:  relaxed vs. unrelaxed	


(sometimes confusingly called ‘collisional vs. collisionless’)

!

un-relaxed system preserves initial memory, 	


	

 	

 	

 	

 — tidal stream, halo star,…	


!

while relaxed system don’t.  They are thermalized.	


	

 	

 	

 	

 — globular cluster; 	


	

 	

 	

 	

 — group/cluster of galaxies;	


!

relaxation processes:	


  2-body relaxation, violent relaxation…	





spherical potentials 

First consider a test particle’s 
motion in ‘smooth’ potentials

potential-density pair	


circular motion	


non-circular motion & precession	


!

BT 2.2, 3.1



uniform sphere

point mass (Keplerian)



Plummer potential is analytic solution of hydrostatic support for  
polytropic stellar system of index 5; 
(r) matches GCs well, but is too steep at large r for Ellipticals (  r-5).



isothermal sphere



NFW (Navarro, Frenk & White ’95) 	


for dark matter halos 

The density of a NFW dark matter halo is shown 
color coded, along with its circular rotation curve.!

 This results from fits to n-body codes that follow 
the cosmological evolution of dark matter, and its 
hierarchical merging to form dark matter halos. 
Perhaps surprisingly, no matter what the size of 
the halo, roughly the same universal density law 
arises, from dwarf galaxy mass, through galaxy 
mass, to cluster mass.!

Although the rotation curves ultimately decline, 
they appear flat over a large region which is 
sampled by the HI disks!



Two-power density models

(↵ = 2,� = 4)

(↵ = 1,� = 4)

(↵ ⇡ 1,� = 3)

NFW (’96) showed that larger	


halos are more massive, 	



a scales with R200





Orbits in a spherical potential stay in a plane.





Non-spherical potential: 
axisymmetric

homoeoid	


circular motion	


non-circular motion & precession	


!

BT 2.3, 3.2

� = �(R, z)



orbits are not simple Keplerian ellipses





GM(<R)/R

true one

why under-estimate velocity?

for a thin-disk mid-plane circular velocity

v2c (R) = R @�(R,z)
@R

���
z=0

What if one writes:

v2c (R) =

GM(<R)
R ?



why under-estimate velocity?

individual ring: all homoeoids with a > R contributes 

all rings contribute

However, one is still allowed to (and indeed one does) 
write 

mid-plane circular velocity

v2c (R) = R @�(R,z)
@R

���
z=0

What if one writes:

v2c (R) ⇡ GM(<R)
R ?



logarithmic potential (spheroidal)

steep potential wall; Lz conservation 
means all orbits avoid center

guiding centre:
minimum in �e↵ .
@�eff
@R = 0

@�eff
@z = 0

different zvc for orbits of different energy



different orbits even with the same E/Lz

3D motion  --> (E/Lz conservation)  ---> 2D motion

. gradual precession of the orbital plane	



. space allowed by ZVC not filled up -- 3rd integral



strobe (surface of section) 	


e.g., when   z=0,  pz > 0

graphing the orbit:	


3-D    ---->     2-D     ----> 1-D

true motion

motion if |L| conserved

zero velocity curve	


(pz = 0)

true motion close to conserving |L|



Barnes

same E/Lz	


non-crossing in surface of section	


bound by a 3rd integral

total L almost conserved



Surface of section of Pluto’s moon, Nix



Surface of section depends on: potential form; E, Lz

regular orbits: 3 integrals of 
motion	


!
chaotic orbits: too few 
integrals, motion “ergodic”	


!
resonant orbits: special regular 
orbits with commensurable 
frequencies




