stellar systems
Large N systems interacting with long-range forces

F=GMm/r*2

planetary system;
galactic nucleus star cluster;
globular cluster;
galaxy;
cluster of galaxy...



First classification: collisional vs. collisionless

stars are in general collision-less;
galaxies may not be.



Collisionless separated into: relaxed vs. unrelaxed
(sometimes confusingly called ‘collisional vs. collisionless’)

un-relaxed system preserves initial memory,
— tidal stream, halo star,...

while relaxed system don’t. They are thermalized.
— globular cluster;
— group/cluster of galaxies;

relaxation processes:
2-body relaxation, violent relaxation...



First consider a test particle’s
motion in ‘smooth’ potentials

spherical potentials

potential-density pair
circular motion
non-circular motion & precession

BT 2.2, 3.1
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Plummer potential

1s analytic solution of hydrostatic support for
polytropic stellar system of index 35;

(r) matches GCs well, but is too steep at large r for Ellipticals ( rs).
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isothermal sphere

~N

1.5

1

Vere Varelf) = 1.0]

0.3




NFW (Navarro, Frenk & White '95)
for dark matter halos

_ Po
A1) = Ty + r/a)?

~ flat rotation curve

The density of a NFW dark matter halo is shown
color coded, along with its circular rotation curve.

This results from fits to n-body codes that follow
the cosmological evolution of dark matter, and its
hierarchical merging to form dark matter halos.
Perhaps surprisingly, no matter what the size of
the halo, roughly the same universal density law
arises, from dwarf galaxy mass, through galaxy
mass, to cluster mass.
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Although the rotation curves ultimately decline,
they appear flat over a large region which is
sampled by the HI disks




Two-power density models
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Figure 3.9 Path of the star of Figure 3.7, viewed from above the Galactic plane; the orbit
started with (R = 1.3, ¢ = 0) and (R = 0, R¢ = 0.4574).



Non-spherical potential:
axisymmetric

d=P(R,2)

homoeoid
circular motion
non-circular motion & precession

BT 2.3, 3.2



halo star orbits (green)

N : / bulge star orbits (red)

« disk star orbits (yellow)
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*/a"+z"/b"=(1+4p)
Figure 2.12 A homoeoid of density
p is bounded by the surfaces R?/a*+
z2/b? =1 and R?/a® + 22/b% = (1 +
2 2,2 63)2. The perpendicular distance s
/o742 /b= between the bounding surfaces varies

with position around the homoeoid.
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Figure 2.11 Curves of constant u and v in the (R, z) plane. Semi-ellipses are curves of
constant u, and hyperbolae are curves of constant v. The common focus of all curves is

marked by a dot. In order to ensure that each point has a unique v-coordinate, we exclude
the disk (z =0, R < A) from the space to be considered.



for a thin-disk mid-plane circular velocity
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What if one writes:
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Figure 2.17 The circular-speed curves of: an exponential disk (full curve); a point with

the same total mass (dotted curve); the spherical body for which M(r) is given by equation
(2.166) (dashed curve).



why under-estimate velocity!?

all rings contribute

R'S(R)
2 . /
2(R) = —4G/ da _a2da/ dR\/ T (2.157)

individual ring: all homoeoids with a > R contributes

Y(R) = Z 0% (a, R) /oo da \/Eo(a) : (2.148a)

5 _ Do
a>R a* — R

However, one is still allowed to (and indeed one does)

write  2(R) ~ GMSR)




logarithmic potential (spheroidal)
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Figure 3.3 Level contours of the effective potential of equation (3.70) when vg = 1,
L, = 0.2. Contours are shown for ®.g = —1, —0.5, 0, 0.5, 1, 1.5, 2, 3, 5. The axis ratio
is ¢ = 0.9 in the left panel and ¢ = 0.5 in the right.

different zvc for orbits of different energy



3D motion --> (E/Lz conservation) ---> 2D motion

different orbits even with the same E/L;
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Figure 3.4 Two orbits in the potential of equation (3.70) with ¢ = 0.9. Both orbits are
at energy F = —0.8 and angular momentum L, = 0.2, and we assume vg = 1.

. gradual precession of the orbital plane
.space allowed by ZVC not filled up -- 3rd integral



3-D

graphing the orbit:
---> 2D --->1-D

strobe (surface of section)
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re 3.5 Points generated by the orbit of the left panel of Figure 3.4 in the (R,pR)
ce of section. If the total angular momentum L of the orbit were conserved, the points
1 fall on the dashed curve. The full curve is the zero-velocity curve at the energy of
rbit. The X marks the consequent of the shell orbit.
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Figure 8.2: Surface of section for five orbits in the logarithmic potential (8.1:
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Figure 3.6 The total angular momentum is almost constant along the orbit shown in tk
left panel of Figure 3.5. For clarity L(t) is plotted only at the beginning and end of a lon
integration.
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Surface of section depends

dx/dt
o

dx/dt
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on: potential form; E, L;

regular orbits: 3 integrals of
motion

chaotic orbits: too few
integrals, motion “ergodic”

resonant orbits: special regular
orbits with commensurable
frequencies
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