One World, One Sky, One Amazing Universe!

John R. Percy

Professor Emeritus
Department of Astronomy and Astrophysics
University of Toronto
This presentation was inspired by International Year of Astronomy 2009

- A 148-country celebration of Galileo's development and first use of the astronomical telescope
- In Canada: over 3,600 events reaching millions of people in schools, libraries, parks etc.
- Success due to partnerships, and thousands of volunteers

International Astronomical Union
Beyond IYA

- Astronomers around the world will continue their outreach to the public
- In Canada: focus on reaching new audiences, especially youth in underserved populations – inner-city, rural/remote, Aboriginal, Black etc.
- Strategy: partnership with schools, libraries, parks, communities – partners with knowledge and experience
Reaching the Underserved

and other new audiences through inspiration, diversity, culture

- Inspire every young (and old) person through the excitement of the universe, and the wonder of the night sky
- Demonstrate that astronomy is done by diverse people of both genders and all cultures
- Connect all people with the astronomy which is deeply rooted in their culture
We Are All Starstuff

- The atoms of life were created in the birth of the universe, and inside stars, and recycled into the clouds from which planetary systems are born – including our earth and sun

- All life on Earth is related; extraterrestrialists, if they exist, are our “cosmic cousins”
Earth – Our Amazing Home

- Life has developed and existed on our planet for 4 billion years
- We share our planet with billions of other people, and countless other living organisms
- We all share a cosmic origin, and a common history – one world, one sky!
Astronomy and Civilization

- Every civilization has used the sky as a clock, calendar, and compass, for practical and ceremonial purposes.
- This includes the great old-world (China, Egypt, India) and new-world (Inca, Maya) civilizations.
- Astronomy is part of the technology and culture of these civilizations, and should be studied as such.

Chichen Itza: Cesar Ramirez

Great Pyramid: Paul James Cowie
Astronomy and Aboriginal Civilizations

- Aboriginal civilizations, including those in North America, have also used astronomy for practical and ceremonial purposes.
- Astronomy is part of their deep understanding of their environment, as well as part of their spiritual world -- as it is for other civilizations.
Integrative Science

- Integrative science brings together knowledges and ways of knowing from indigenous and Western science
- It was developed at Cape Breton University by scientists and elders from Mi'kmaq College Institute
- It enhances education, outreach, research, and application

Gerald Gloade
The Starry Sky

- The stars form arbitrary patterns which are defined and named differently by different civilizations – according to their needs, beliefs, and culture.

- We use Graeco-Roman constellations, plus southern constellations named during the industrial revolution – 88 in all ...

- ... but there is nothing “special” about our constellation patterns.

The constellation Orion
The Sky Clock

- The earth's daily rotation, and the light of the sun define a day-night cycle
- The sun is highest in the sky at noon; this (or midnight) defines a starting point
- The celestial equator can be divided into “hours”
- The rising and setting of these, and the sun, further divide day and night

Professor C. Seligman
The sun's daily path in different seasons

- As a result of the tilt of the earth's axis, the sun moves north and south during the year.
- This affects the number of hours of daylight, and the height of the noonday sun; this causes the seasonal changes in temperature.
- It also affects the position of sunrise and sunset; they can be used to keep track of the seasons.
Seasons and Sunrises/sets

- Sunrise and sunset points move northward and southward during the year.
- Early astronomers could determine the time of year (seasons) by observing the rising or setting point of the sun on the horizon.
- This was done by many civilizations, in many parts of the earth.

Stonehenge: British Tourist Board
The Sky Calendar

- The earth's rotation axis is tilted; this and the earth's revolution produce seasonal changes in temperature which had crucial effects for every civilization.

- As a result of the earth's revolution around the sun, the constellations visible in the night sky change during the year, and can be used to keep track of, and predict the seasons.
The Sky Compass

- The earth's rotation axis defines directions on earth: the north and south poles and equator
- Their projections on the sky – the celestial poles and equator – define the same directions
- And the sun is due south or north when highest in the sky at noon
The Moon

- The moon revolves around the earth; this and its illumination by the sun produce a 29.5-day cycle of phases.
- The moon provides light for night-time activities, and also affects the monthly cycle of the tides.
- Humans, 70,000 years ago, may have used moon observations to predict when to collect shellfish.

Antonio Cidadao
Calendars Today

- **Problem**: the lengths of the day and month (29.53 days) do not divide evenly into the length of the year (365.2422 days)

- The Islamic calendar is based on the moon; the month and year begin with the crescent moon, and the year is 12 “moons” long.

- The Christian calendar (used in Canada for civil purposes) is based on the sun: the year begins (approximately) on the first day of northern winter.

- Many Asian calendars are luni-solar; they are based on the sun and moon. The year begins with the new moon, but the year may be 12 or 13 “moons” long, to keep it in step with the solar year.
Inuit Astronomy

- At high Arctic latitudes, the sky moves more parallel to the horizon; rising and setting are less apparent
- The sun is below the horizon for many weeks in winter, and above the horizon for many weeks in summer ("the midnight sun")
- The Inuit used the day and night sky, and other observations of the environment, for practical and ceremonial purposes
Polynesian Astronomy

- For their long sea voyages between islands, the Polynesians needed to be able to navigate.

- They used the night and day sky, including the rising and setting points of equatorial stars and other observations to do this.

- Their knowledge and traditions were handed down from generation to generation.
Pre-technological societies did science!

They used the sky for practical purposes.

They made observations of the sky.

They passed down their knowledge, often orally.
Explaining Things -- The Planets

- The sun, moon, and five naked-eye planets move in a complex way against the background of the stars.
- They therefore became associated supernatural effects and beings – the gods.
- The seven days of the week are named after these seven bodies.

John French
Explaining Things -- Astrology?

- Lacking any natural explanation for earthly events, civilizations developed supernatural explanations (or religions), including astrology; this is still true today!
- These were connected with the sun, moon, and five naked-eye planets
- Perhaps their motions could explain – and even predict – events on earth, a hypothesis not supported by evidence
Explaining Things -- Comets?

- Comets are icy objects from the outer solar system which appear in the sky for a period of weeks, unpredicted -- unlike the planets.

- They were regarded as omens, especially by civilizations (such as the Chinese) whose culture attached significance to unpredicted events.
The aurora is produced by solar particles which energize atoms in the upper atmosphere, and make them glow; it is most common at high latitudes.

For cultures such as the Inuit and Sami, living under dark northern skies, it was especially striking; they developed their own explanations and meanings for it.

Terence Dickinson
Astronomical Science -- Babylonian

- Western astronomy, including systematic observation and record-keeping, is descended, though Greek astronomy, from Babylonian astronomy
- Predictions of the positions and motions of the sun, moon, and planets were developed (mostly for astrology) and verified by observation, starting over 3000 years ago

Babylonian stone with astronomical Inscriptions: British Museum
Astronomical Science -- Greek

- Using the geometry developed by Euclid and others, the Greeks developed a good understanding of the geometry of the earth-moon-sun system.

- Their cosmology, developed by Aristotle and others, was incorrectly earth-centered, and incorrectly assumed celestial objects to be perfect and unchanging.
Astronomical Science -- Chinese

- Chinese astronomers built sophisticated (and beautiful) instruments for observing the sky.
- They made careful observations of the sky – especially for unexpected phenomena.
- They kept records, over more than 2000 years, that are still used today.

Armillary Sphere: Beijing Ancient Observatory
Astronomical Science -- Islamic

- Islamic astronomers preserved astronomical knowledge through the European “Dark Ages”
- They built sophisticated instruments, and used them to make careful, sustained observations
- They made significant contributions to the mathematics needed in astronomy and the other sciences
Galileo, the motivation for IYA, developed and used the first astronomical telescope.

His observations of the moons of Jupiter showed that not all objects orbit the earth.

His observations of Venus supported the sun-centered model of the solar system.

His observations of the moon and sun demonstrated their non-perfect, non-Aristotelian nature.
Astronomers use large, expensive telescopes on the ground and in space to observe and study the nature of the universe and celestial objects in it.

They compare their observations with powerful computer simulations to understand the universe, and develop and test new theories about its nature and origin.
Astronomy is Not Done Just by NASA!

- There's a misconception that most astronomy is done by NASA (and ESA) with the Hubble Space Telescope
- Astronomy is also done with ground-based telescopes by many countries, including Canada
- Space astronomy is also done by the European, Russian, Japanese, Chinese, Indian, and Canadian space agencies
Astronomy Today – A Broader Picture

- Modern astronomy continues to **excite** and **inspire** people of all ages
- People are also interested in the **cultural** and **practical** aspects of astronomy
- There are powerful **connections** between astronomy, the arts, history, and **philosophy**
- **Astronomy education and outreach to non-astronomers are important!**
Astronomy and the Arts
Tafelmusik Baroque Orchestra's Galileo Project

- The Galileo Project is a stunning multimedia program about science and music in Galileo's time; it includes music, narration, images, and choreography.
- It has been performed in Canada, the US, and Mexico, is now touring Asia (including a Chinese adaption) and will tour Australia, New Zealand, and Europe in future.
Big Science, Small Science

- “Big Science” including astronomy can be very expensive, with telescopes and satellites costing a billion dollars.
- “Small Science” astronomy can be and is done by schools, amateur astronomers, or developing countries for a few thousand dollars.
- You can do “citizen science” through the Ontario Science Centre!

Reverend Robert Evans, Australia
Diversifying Amateur Astronomy

Mary Lou Whitehorne: National President, RASC

Ralph Chou: U Waterloo: President, Toronto Centre RASC

• Most amateur astronomers in North America are grey-haired white males!

• We must develop ways for all Canadians, especially young people, to continue their interest in astronomy.

• Happily: the RASC national president, and the president of the Toronto branch, are not gray-haired white males!
And We're Not So Smart!

- Most North Americans do not understand the causes of seasons, and the phases of the moon.
- About half of North Americans believe in pseudo-science: astrology, young-earth creationism, and that space aliens have landed (and kidnapped millions of people).
Astronomy in Developing Countries
The Work of the International Astronomical Union

- The **International Astronomical Union**, founded in 1919, exists to promote and safeguard astronomy ... through international cooperation
- Its Commission on Education and Development has several flagship programs:
 - **International Schools for Young Astronomers**
 - **Teaching for Astronomical Development**: education is the first step to science and technology
 - **World-Wide Development of Astronomy**: taking the first steps toward the teaching of astronomy – and beyond
“The Lone Astronomer”

- In many countries or areas, only one astronomer is the resource for universities, schools, amateur astronomers, and the public.

- **Mazlan Othman** was Malaysia's first astrophysicist, developed university and school astronomy curricula, founded the Kuala Lumpur Planetarium, was Director of the Malaysian Space Agency, and is now Director of the UN Office of Outer Space Affairs.
The Southern African Large Telescope

- SALT: One of the world's largest telescopes, but cost-effective: a copy of a simple design
- According to Nelson Mandela: a symbol, to African youth, that they can participate in frontier science and technology
- Astronomy can attract young people to science and technology!
Astronomy in China Today

- China was one of the first countries to launch a satellite, and is increasingly active in space science and technology.
- China is engaged in major ground-based astronomical projects.
- The recent reform of science and China combines some of the best of Chinese and western approaches.

LAMOST: Chinese Academy of Sciences
Astronomy in India Today

- India's Inter-University Centre for Astronomy & Astrophysics, founded by cosmologist Jayant Narlikar (left) is a leading research institute with an excellent public education and outreach program.

- Some of Canada's satellites are launched by the Indian Space Agency!
Role Models!

Astronomy is done around the world by people of both genders, and many cultures.
Our Amazing Sun!

- Its core temperature is 15,000,000 C and its core density is 150 times water.
- The sun's power is 400 million million million million Watts; its age is 4.5 billion years, and it is only halfway through its life!
Amazing Worlds

- Telescopes and spacecraft have explored strange worlds – the planets and moons in our solar system.
- Titan, the large moon of Saturn, has an earthlike atmosphere, but its temperature is -180°C!
Amazing Exoplanets!

- Astronomers have discovered hundreds of planets around other stars – exoplanets!
- Some exoplanets may be like Earth; some may have life!
Amazing Starbirth!

- **Nebulas** are clouds of gas and dust between the stars.
- Astronomers have observed stars and planetary systems forming in nebulae like the Orion Nebula.
Amazing Stellar Explosions!

- Rare massive stars explode at the end of their lives – supernovas
- The explosions create the heavy chemical elements, and recycle these and other elements into the space between the stars
Amazing Black Holes!

- **Black holes** are objects whose gravity is so strong that nothing can escape – not even light.
- Black holes are created in the deaths of very rare massive stars.
- They can be detected and measured if they have a star orbiting around them.
Amazing Galaxies!

- Our sun is one of 300 billion stars in a galaxy called the Milky Way – so big that it would take light 100,000 years to cross it.
- There are tens of billions of galaxies in the universe.
The Amazing Expanding Universe!

- This image of a small part of the sky shows thousands of galaxies.
- The faintest and smallest are so far away that their light has taken 10 billion years to reach us.
- We see them as they were, 10 billion years ago; we can look back in time!
The Amazing Big Bang!

- The universe began 13.7 billion years ago: space and matter were hot, dense, and expanding; it was called the Big Bang.
- On your old TV set, some of the static is from the left-over radiation from the Big Bang!
The Stars belong to Everyone

- Everyone can be excited by the universe, and by our cosmic origins
- Everyone can be a knowledgeable stargazer
- Everyone can do astronomy

Orion: Besser Museum
Epilogue

- “Astronomy is the stuff of dreams and youthful fascination. This is true for us in the developing countries as much as in countries like the USA. Our youth are interested in astronomy and space as much as youth elsewhere. And when you in the developed countries achieve your dreams, we hope not to be too far behind you”.
 -- Mazlan Othman

- And the same is true of youth everywhere, including in underserved communities.