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1.1 Synopsis

Transient stars sometimes appear on the sky. In this course, we will dis-
cuss �transient observables,� the mechanisms by which transients release the
radiation we observe. It is a follow up of the mini-course on the transient
physics required to understand known types of transients � novae, kilonovae,
supernovae, hypernovae, X-ray and $γ$-ray bursts � and their aftermath.

1.1.1 Transient Observables

� Known causes: mass ejection, interaction with shells, power from nu-
clear decay or other sources;

� Expected lightcurves, focussing on semi-analytic approximations;

� Nature of di�erent power sources;

� Evolution of remnants.

1.1.2 Course texts

There is no speci�c book, though I will make use of Supernovae and nu-

cleosynthesis, by Arnett (Princeton Univ. Press, 1996), which is partially
based on his initial set of papers on semi-analytic approximations [links to
come], as well as other review articles.

1.1.3 Evaluation

� One problem set (30%)

� Investigation of a particular type of transient, and discussing this with
the instructor (40%).

� Presentation to the class about the transient (30%)

2 Introduction

2.1 What determines how a transient evolves?

For cases where mass is ejected due to strong energy deposition (dealt with
in previous mini-course), the evolution usually includes the following stages:

1. Shock break-out;
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2. Expansion (and thus cooling) with radiative losses (what we see!), pos-
sibly compensated with heating, e.g., by radioactive decay, recombina-
tion, a possible central power source, and/or internal shocks;

3. Interaction with surrounding matter (and thus reheating), e.g., a com-
panion, left-over accretion disks, previously ejected shells, or simply
the interstellar medium.

Exceptions to the above include transients where matter is con�ned. E.g.,

� Accretion disk instabilities (mostly con�ned gravitationally);

� X-ray bursts (idem);

� Magnetar �are afterglows (pair plasma con�ned magnetically).

2.2 Basics

At maximum brightness, a supernova has a typical luminosity of ∼1011 L⊙
and temperatures of $∼\!104$\,K. Thus the e�ective radius of the emitting
region is ∼(105/4)R⊙ ≃ 2× 1015 cm ≃ 100AU.

The typical velocities are 2 to 10Mm/s, implying large kinetic energy
∼ 1B (M/M⊙)(v/10Mm/s)2 (recall, 1B ≡ 1051 erg). It also implies an
expansion time of ∼2× 106 s, similar to the observed durations.

For this duration, the total radiated energy is ∼ 0.1B, i.e., large, but
quite a bit smaller than the kinetic energy.

Since the radius is substantially larger than even the largest possible
progenitors (say a red supergiant with a radius of ∼ 103R⊙), the gas must
have cooled quite a bit. Indeed, for a small progenitor such as a white dwarf,
essentially no thermal energy would be left: thus there must be a longer-lived
power source such as radio-active decay.

More generally, one can conclude that to obtain a transient as bright as
a supernova, one needs to either

1. Start from a large star;

2. Have an internal energy source (lasting for of order weeks); or

3. Have external matter to interact with (at ∼100AU).
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2.3 Timescales

2.3.1 Expansion

texp =
R

v
≃ 1 d

(
R

1015 cm

)(
v

109 cm/s

)−1

.

Typically, the velocity v will soon approach a constant, and the radius R
and thus the expansion timescale will increase linearly with time.

2.3.2 Di�usion

tdiff =
κM

βcR
≃ 0.6 yr

(
κ

0.4 cm2/g

)(
M

M⊙

)(
R

1014 cm

)−1

,

where β is a factor that depends on the density distribution (13.8 for constant
density, used above).

One can derive the scaling from radiative di�usion:

L

4πr2
= −1

3
cℓmfp∇U =

c

3κρ

∂aT 4

∂r
≃ cE

3κM
,

where E =
∫
V aT 4d3x ≃ aT 4V is the total energy in radiation, we used that

M ≃ ρV , and one identi�es the di�usion time with E/L.

2.3.3 Heating

theat =
E

ϵM
.

For nuclear decay with some half-time t1/2, the heating time equal to the de-
cay time for an energy of 1 B, mass of 1M⊙, and decay energy of 0.5MeV/nucleon.

2.4 Overall evolution

Given the timescales, without heating, one would expect a transient to be at
its brightest when the di�usion and expansion times match. With heating, as
it becomes transparent, the luminosity will start to track the input heating
rate.

3 Arnett's semi-analytic evolution

We follow A96 (which in turn follows Arnett 1979ApJ...230L..37, 1980ApJ.
..237..541A, 1982ApJ...253..785A; a nice recent write-up for SN I � which
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have little e�ects od recombination � is in 2017ApJ...846...33A) and con-
sider a ball of gas with initial radius R0 that is homologously expanding at
constant velocity vsc, and has an initial thermal energy E0. The �rst law of
thermodynamics can be written as,

Ė + PV̇ = ϵM − L,

where E is the total energy, V ≡ 4π
3 R3 is the volume, P the pressure, ϵ the

energy generation rate (by radioactive decay) per unit mass, M the ejecta
mass, and L the luminosity.

Assume the energy and pressure are dominated by radiation, i.e., E ≃ E ,
and P ≃ 1

3E/V . Dividing by E on both sides and using homology, one �nds,

4
Ṫ

T
+ 3

Ṙ

R
+

1

3
3
Ṙ

R
= 4

(
Ṫ

T
+

Ṙ

R

)
=

1

τheat
− 1

τdiff
,

where the heating timescale τh = E/ϵM and the di�usion timescale, which
leads to a lumunosity Ldiff = E/τdiff , is also given by,

τdiff =
κM

βcR
= τdiff,0

R0

R
,

where in the second equality one implicitly assumes constant opacity. For a
constant density ball, β = 13.8.

The above suggests to consider the evolution of the product (TR)4. We
assume its spatial (x ≡ r/R) and time dependence can be split,

R4(t)T 4(x, t) = R4
0T

4
0 ϕ(t)Ψ(x).

For constant density ρ = M/4
3πR

3 and constant opacity κ,

Ψ(x) =
sin(πx)

πx
.

In terms of these functions, the thermal energy can be written as,

E =

∫ R

0
aT (r, t)44πr2 dr = 4πR3aT (0, t)4

∫ 1

0
Ψ(x)x2 dx =

4

π
R3

0aT
4
0

R0

R
ϕ(t) = E0

R0

R
ϕ(t)

where we used that
∫ 1
0 Ψ(x)x2 dx = 1/π2. The factor R0/R accounts for adi-

abatic expansion and ϕ(t) for radiation loss and radioactive heating. Given
this, the luminosity is given by

L =
E

τdiff
=

E0R0
R ϕ(t)

τdiff,0
R0
R

= L0ϕ(t).
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Supposing the initial thermal energy is of order the kinetic energy, i.e., E0 ≃
1
2Mv2sc, the initial lumonosity L0 = E0/τdiff,0 ∝ v2scR/κ is independent of
mass, but proportional to radius. Faster ejections (larger energy) from larger
stars (faster di�usion) give more luminous transients.

3.1 Di�usion and heating

With just di�usion and heating, one has

d
dt(TR)4

(TR)4
=

ϕ̇

ϕ
=

1

τheat
− 1

τdiff
⇔ ϕ̇

ϕ
=

[
ϵ/ϵ0

τheat,0ϕ
− 1

τdiff,0

]
R

R0
,

where we tried to write in terms of ratios on the right-hand side, with ϵ/ϵ0
capturing the time dependence of the heating process (and where we again
implicitly assumed constant opacity).

Ignoring heating, an analytic solution is possible. Using that τdiff =
τdiff,0(R0/R) = τdiff/(1 + vsct/R0), and de�ning an expansion timescale
τexp = R/vsc, one �nds

ϕ = exp

(
− t

τdiff,0
− t2

2τexpτdiff,0

)
.

Generally, τdiff,0 ≫ τexp, and thus for t > τexp, the lightcurve is essentially a
Gaussian, with a timescale that is the geometric mean of the expansion and
di�usion times scales, τlc =

√
τexpτdiff,0 ∝

√
κM/vsc. Slower, more massive

ejections lead to longer transients.
Including heating, the integration needs to be done numerically. How-

ever, generally, one expects maximum to occur when ϕ̇ = 0, i.e., when
1/τheat = 1/τdiff (of course, if heating is too small, this maximum after ex-
plosion never happens). From their de�nitions, the timescales match when
L = ϵM . Thus, maximum luminosity gives a measure of the total amount
of radioactive decay � �Arnett's rule.� (This will be an underestimate if the
opacity is decreasing with time � or if this is happening e�ectively due to
recombination.)

3.2 Including recombination

At some temperature Ti, material will recombine and become essentially
transparent. If this happens inside the cloud, then this will e�ectively be at
optical depth zero, and the photosphere would be at T 4

eff ≃ 2T 4
i . As more

matter recombines, the photosphere will move in, with recombination and
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advection (�freed� radiation) giving additional sources of luminosity. At this
time, one will have,

Ldiff + Ladv + Lrec = Lmin = 4πR2
i σ2T

4
i ,

where Ri = xiR is the radius of the recombination front, and where we used
the subscript �min� as a reminder that the luminosity cannot be lower than
this value for this radius.

The luminosity due to recombination is

Lrec = −4πR2
i ṘiρQ = −3x2i ẋi

4π

3
R3ρQ = −3x2i ẋiMQ,

where Q is the energy release per unit mass due to recombination.
For the advection and di�usion terms, the results depend on whether

the front moves slow or fast compared to the time to adjust the overall
temperature structure. Generally, though, Ldiff = E/τdiff and,

Ladv = −ẋi
∂E
∂xi

but the total thermal energy E and di�usion timescale τdiff may now depend
on xi. In consequence, not only the di�erential equation for ϕ has to be
solved, but also one for the recombination front position xi. The latter can
be derived from the constraint that the additional luminosity Lrec+Ladv has
to match the excess luminosity Lmin − Ldiff , or

−ẋi

[
3x2iMQ+

∂E
∂xi

]
= 4πR2x2i 2σT

4
i − E

τdiff

Below, we will also use the timescale on which the initial energy would be
radiated at an e�ective temperature of 21/4Ti,

τi,0 ≡
E0

Lmin,0
=

4
πR

3
0aT

4
0

4πR2
02

ac
4 T

4
i

=
4R0

π2c

T 4
0

2T 4
i

.

3.2.1 Slow recombination front

If the recombination front moves slowly, photon di�usion inside it will ensure
the temperature structure adjusts to its new outer boundary, Ri = xiR, with
the same spatial structure ([T (x)/T (0)]4 = Ψ(x)). Thus, the total thermal
energy will be

E = 4πR3aT (0, t)4
∫ xi

0
Ψ(x/xi)x

2dx = E0
R0

R
ϕ(t)x3i ,
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Figure 1: Fast and slow approximation to a recombination wave. From A96,
his Fig.~13.7.

where ϕ(t) accounts for changes in central properties due to the recombina-
tion wave and associated energy loss. Given this, the advection luminosity
is given by,

Ladv = −ẋi
∂E
∂xi

= −3x2i ẋiE0
R0

R
ϕ(t).

Since the size is decreasing, the luminosity due to photon di�usion also
changes, becoming

Ldiff =
E

τdiff
=

E0
τdiff,0

ϕ(t)xi,

where we used that τdiff = τdiff,0(R0/R)x2i , with the dependence on x2i re�ect-
ing the dependence of τdiff on M/R (for constant density the mass enclosed
within the recombination front scales with x3i ). The di�erential equations to
be solved thus become,

ϕ̇

ϕ
=

ϵM

E0ϕx3i
R

R0
− 1

τdiff,0xi

2 R

R0
,

−3x2i ẋi

[
MQ+ E0

R0

R
ϕ

]
= 4πR2x2i 2σT

4
i − E0

τdiff,0
ϕxi.
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Simplifying,
ϕ̇

ϕ
=

[
ϵ/ϵ0

τheat,0ϕx
3
i

− 1

τdiff,0x
2
i

]
R

R0
,

−3x2i ẋi =

x2i
τi,0

(
R

R0

)2

− ϕxi
τdiff,0

MQ

E0
+

R0

R
ϕ

3.2.2 Fast recombination front

For a fast-moving recombination front, the temperature structure inside will
not react to the fact that the outer parts are being chopped o�. The total
thermal energy inside the recombination wave is,

Ex<xi = 4πR3aT (0, t)4
∫ xi

0
Ψ(x)x2 dx = E0

R0

R
ϕ(t)π2

∫ xi

0
Ψ(x)x2 dx,

and thus the advection luminosity is given by,

Ladv = −ẋi
∂Ex<xi

∂xi
= −3x2i ẋi

π2

3
Ψ(xi)E0

R0

R
ϕ(t).

The luminosity due to photon di�usion from the inside now changes only
because we are evaluating it at a di�erent position, becoming

Ldiff = L0
diff

∣∣−x2∂Ψ/∂x
∣∣
xi

|−x2∂Ψ/∂x|1
=

E0
τdiff,0

ϕ(t)

∣∣∣∣−x2
∂Ψ

∂x

∣∣∣∣
xi

=
E0

τdiff,0
ϕ(t)π2I(xi).

where L0
diff is the di�usion luminosity we would obtain ignoring the recombi-

nation wave, and where we have used that [−x2∂Ψ/∂x]xi = (1/π) sin(πxi)−
xi cos(πxi) = π2I(xi) (where π2I(xi) = π2

∫ xi

0 Ψ(x)x2dx is the normalised
integral).

The di�erential equations to be solved now become,

ϕ̇

ϕ
=

ϵM

E0ϕπ2I(xi)

R

R0
− 1

τdiff,0

R

R0
,

−3x2i ẋi

[
MQ+ E0

R0

R
ϕ
π2

3
Ψ(xi)

]
= 4πR2x2i 2σT

4
i − E0

τdiff,0
ϕπ2I(xi).

Simplifying,
ϕ̇

ϕ
=

[
ϵ/ϵ0

τheat,0π2I(xi)
− 1

τdiff,0

]
R

R0
,
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−3x2i ẋi =

x2i
τi,0

(
R

R0

)2

− ϕπ2I(xi)

τdiff,0

MQ

E0
+

R0

R
ϕ
π2

3
Ψ(xi)

Figure 2: Comparison of explosions with and without recombination and
heating by radioactive decay. Note that I could not reproduce all curves in
A96 in detail, in particular not for the �slow� case. Still, the general trends
are clear and should be correct.

4 Supernova remnants

Three phases can be distinguished before the ejecta become subsonic relative
to the surrounding circum- or interstellar medium and a supernova remnant
merges in with it:

� Free expansion, which lasts until the mass of the circum- or interstel-
lar medium swept up by the ejecta is roughly the ejecta mass. In this
phase, mass and kinetic energy are roughly conserved, and the velocity
is thus roughly constant.
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Figure 3: Semi-analytic lightcurves for supernovae with varying properties.
Those not varied are held �xed at those inferred for SN 1987A by A96 (his
Table 13.2): Mej = 15M⊙, ESN = 1.7B, R0 = 3 × 1012 cm, κ = 0.2 cm2 g1 ,
MNi = 0.075M⊙, Tion = 4500K, Qion = 13.6 eV nucleon−1. Ignored is losses
of gamma rays, and hence the luminosity at late times is overestimated.
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� Blastwave (Sedov-Taylor), in which radiative losses from shocked
ejecta and interstellar mediais not signi�cant, so that the while the
mass increases, total energy is roughly conserved.

� Snow plow, in which radiate energy losses are sign�cant, but momen-
tum remains conserved.

4.1 Sedov-Taylor phase

A full self-similar solution is possible for this phase, but the expected scaling
can be seen from a one-zone model and energy conservation:

1

2
Mtotv

2
s = E0,

where Mtot is the total mass and vs = dRs/dt the shock velocity. Assuming
the mass is dominated by swept up material with constant density ρ,

Mtot =
4π

3
R3

sρ,

one �nds,
1

2

4π

3
ρR3

s

(
dRs

dt

)2

= E0,

which can be integrated to give,

Rs =

(
75

8π

E0

ρ

)1/2

t2/5.

A more detailed calculation gives Rs ≃ (2.026E0/ρ)
1/5t2/5. For the shock

velocity, one �nds,

vs =
2R

5t
.

4.2 Snow-plow phase

Assuming the energy from the shock is immediately radiated away, all that
happens is that matter is slowed down as momentum is shared, i.e., Mtotvs
is constant. Inserting Mtot as above, one �nds,

Rs ∝ t1/4,

where the constant of proportionality depends on when the transition from
the Sedov-Taylor solution happens.
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