Disk Properties, Accretion and Lifetimes: An Observer's View

Ray Jayawardhana University of Toronto

t=0 b) + 10 000 AU Gravitational collapse

Hogerheijde 1998, after Shu et al. 1987

From Clouds to Planets

(schematic with spatial and temporal scales)

Classifying Young Stellar Objects from their SEDs

Class I (& flat sp.): $\alpha \ge -0.3$ Class II: $-0.3 > \alpha \ge -1.6$ Class III: $\alpha < -1.6$

Spectral index $\alpha = dlog(\lambda F_{\lambda})/dlog(\lambda).$

- λ (μm) 41. g 1000 100 10 2.2 Class I Protostar 7 Blackbody Class II PMS Star With Circumstellar Disk UV Excess og [v F. Blackbody Class III Classical PMS or ZAMS STAR [vFv] go-Blackbody T=4000 K 11 12 13 Log v ----

cf. Lada (1987)

Class 0 YSOs: true protostars?

(André, Ward-Thompson, & Barsony 1993) SEDs that peak at sub-mm λ invisible at $\lambda < 10 \ \mu m$

 $M_{env} > M_*$

strong outflows (e.g., in CO)

infall rates $\geq 10^{-4} M_{Sun}/yr$

(Jayawardhana, Hartmann & Calvet 2001)

How do we know disks exist?

Spectral energy distributions

- Adams, Lada, & Shu 1988, Ap. J., **326**, 865.

(Lada et al. 2000)

Images of disks provided "proof"

Images of disks provided "proof"

Many resolved disks in Orion

(O'Dell & Wen 1992; McCaughrean & O'Dell 1996)

NICMOS Images of Protoplanetary Disks in Taurus

Padgett et al. (1999)

Detection of an Edge-On Disk in MBM12 with Gemini AO

Disk is 150 AU in radius

Seen just 3 degrees from edge-on

Evidence for dust settling to the midplane? (Jayawardhana et al. 2002)

TW Hydra H-Band Dual Imaging Polarimetry

Observations taken by Dan Potter (UH) with the 36 element curvature AO system "Hokupa'a" mounted on the Gemini North Telescope.

Disks in Binary Systems

GG Tau in scattered light with AO

Detecting Gas in Disks

Difficult to detect H₂
Depend on CO, which is a tracer species
Possible to trace Keplerian rotation
But CO could "freeze out" on to grains and deplete

LkCa 15 (Qi et al. 2003)

How are T Tauri disks heated?

"Standard" flat disks (with or without accretion) Lynden-Bell & Pringle (1974) Adams, Lada & Shu (1987, 1988)

How does T_{disk} vary with r? What's the resulting SED? HOMEWORK PROBLEM!

Geometrical changes: Flaring Kenyon & Hartmann 1987, Ap. J., 323, 714.

$\begin{array}{l} \mathsf{BUT}\\ \rightarrow \mathsf{cannot} \ \mathsf{account} \ \mathsf{for} \ \mathit{flat} \ \mathsf{SEDs}\\ \rightarrow \mathsf{needs} \ \mathsf{radiative} \ \mathsf{transfer}, \ \mathsf{too}. \end{array}$

Steven Bedkwith, MPI für Astronomie

Radiative transfer Chiang & Goldreich 1997, Ap. J., 490, 368. Star luminosity, L* angle θ' Δ1

 \Rightarrow optical light absorbed $\tau_v \sim 1$, $\tau_{IR} \ll 1$ \Rightarrow small grains "bare" => T_{grain} > T_{blackbody} \Rightarrow disk emission $\tau_{IR} < 1$ (5 - 100 µm)

11

still cannot account for *very flat* SEDs but does fit majority.

 $\frac{h}{r} \approx 0.9 \left(\frac{r}{209 AU}\right)^{\frac{15}{45}}$

in infrared

Prediction: infrared emission is optically thin.

Steven Beckwith, MPI für Astronomie

Optically thin \Rightarrow emission features

Inner holes produce flux deficits

How do we observe mass?

0

BSCG 1990, AJ, **99**, 924.

We want to observe where the disk is transparent (to see all the material)

For long enough wavelengths (λ > 200 μ m), the dust τ < 1.

- F
 - $F_{v} \sim (A_{d}/D^{2}) B_{v}(T_{d}) (1 e^{-\gamma})$
 - ~ $(A_d/D^2) kT_d v^2 \tau_v$
 - ~ $(A_d/D^2) T_d v^2 \kappa_v (M_d/A_d)$
 - ~ $D^{-2} T_d v^2 \kappa_v M_d$

 $\kappa_\nu \sim \kappa_0 \, (\nu/\nu_0)^\beta$

 $F_{\nu} \thicksim \kappa_0 v^{2 \ast \beta} T_d \ M_d$

 $\begin{array}{l} A_d \equiv disk \ projected \ area \\ D \equiv distance \ to \ source \\ T_d \equiv disk \ particle \ temperature \\ \tau_v \equiv \ optical \ depth \ at \ v \\ M_d \equiv \ mass \ of \ disk \\ \kappa_v \equiv \ mass \ opacity \ (cm^2 \ g^{-1}) \end{array}$

Disks can build planets

similar mass distribution for NGC 2071 by E. Lada 1998 but *not* Orion HST disks (E. Lada *et al.*, Bally *et al.*, unpublished) Steven Bedwith, MPI für Astronomie

silicate emission from T Tauri disks in Cha I

--> constaints on grain composition and size

Meeus et al. (2003)

Signatures of Accretion

Continuum excess (or "veiling") in optical spectra

measure veiling --> accretion luminosity --> accretion rate

Evidence for Disk Evolution

Mineralogy of disks in the TW Hydrae group Hen 3-600 @ 10 Myrs

Mineralogy of planet-forming disks

Sitko et al. (2000)

