
Contraction: Until ignition or ignominy due 13 Feb 2023

In this problem set, we will derive the minimum mass required to become a star powered by
hydrogen fusion (rather than a brown dwarf). Note: do not be overly put off by its length – it is
easier than it perhaps looks. If stuck, do ask at office hours!

Evolution of Central Properties

1. How does central temperature scale with central density as a star contracts during phases in
which ideal-gas pressure dominates? Does contraction bring the star closer or further away
from degeneracy?

2. Use your results to describe qualitatively what happens as a pre–main sequence star with a
mass well below the Chandrasekhar mass contracts, ignoring nuclear processes.

3. What would happen for a pre–main sequence star with a mass well above the Chandrasekhar
mass?

A rough estimate of the maximum temperature

1. A contracting low-mass pre–main sequence star is almost completely convective, and hence its
interior structure is described well by a polytrope with index n = 1.5. Write out the central
density and pressure in terms of mass and radius, and calculate numbers scaling mass and
radius to solar units.

2. Assume degeneracy starts to dominate approximately when the pressure expected from a
completely degenerate electron gas equals that expected from an ideal gas (and their sum
equals the total pressure, i.e., Pdeg,c = Pideal,c = 1

2Pc). Show that the temperature at that
point, which we assume will be the maximum reached, is given by

Tmax = 7.7× 107 K µµ5/3
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3. Given the above maximum temperature, it is a surprise the Sun is powered by fusion? Do you
expect the gas in the Sun’s core to be close to degenerate? To verify, look up the central density
and temperature of the Sun and calculate the corresponding ideal-gas and degenerate-electron
pressures.

Using a better approximation to the EoS

We will need maximum temperatures to estimate maximum fusion luminosities below. Since fusion
is very sensitive to temperature, a precise estimate helps. In our estimate above, we approximated
P ' Pideal + Pe,deg, which is not very precise. A better approximation is given by (Paczynski,
1983, ApJ, 267, 315),
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For our application to low-mass stars, we can ignore both radiation and ERCD components, i.e.,
we have

P = Pion +
√
P 2
e,ideal + P 2

e,NRCD.

Below, we will use that for given ratio of the electron degeneracy pressure to total pressure
xdeg = Pe,deg/P (and thus for given P and ρ), the ratio of ideal-gas pressure to total pressure
xideal = (Pion + Pe,ideal)/P = (ρ/µmH)kT/P is given by1

xideal =
1− x2deg

1− fe +
√
f2e + (1− 2fe)x2deg

with fe = µ/µe.

1. Use the above equation to calculate central temperatures for constracting stars of mass 0.03,
0.1, 0.3, and 1.0M�. Assume they can be described by n = 1.5 polytropes and have abundances
X = 0.7, Y = 0.28 and Z = 0.02 (as in Fig. 2.3). Make a plot with curves of central temperature
as a function of central density for all four stars. (Here, easiest may be to take a range of radii,
say from 0.01 to 10R�, calculate ρc and Pc for those, and then infer Tc only for radii for
which Pe,deg ≤ Pc.)

2. Overdraw on the plot the central densities and temperatures for the three masses for which
curves are shown in Fig. 2.3. Discuss whether the (mis)matches make sense (you also measured
these in problem set 1; does what you find here confirm your previous conclusions?).

3. Use your solutions to calculate the maximum temperatures, as well as the radii and densities
at which these are reached. Overplot on your figure, and verify that they follow,
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4. What are the fractions xdeg = Pe,deg/P and xideal = (ρ/µmH)kT/P for the maximum-
temperature cases? Do those depend on mass? Why, or why not?

5. Also calculate the Tc− ρc relation you would get if you made our previous, sloppy assumption
that Pideal = P−Pe,deg. Overdraw with a dotted line (for one mass is fine). Does the maximum
match what you would expect from our first estimate of Tmax?

6. Consider a completely convective object just at the degenerate boundary. Will the outer layers
be more, similarly, or less degenerate than the core? For this purpose, consider how Pideal/Pdeg

varies with radius. Hint: If the answer seems far from obvious, consider first a place where the
density has dropped by a factor two, and use scaling relations to calculate temperature, etc. If
still stuck, check using the stellar models you construct below.

1 In case you are interested, you can derive as follows: write Pe,ideal = fePideal, Pion = (1 − fe)Pideal,
divide by P on both sides, take the ion term to the left, square both sides, and solve the resulting quadratic
equation in xideal (using Muller’s method instead of the usual quadratic formula to avoid getting a solution
that has numeric problems at fe = 0.5).



Luminosities

We now use simple star to calculate luminosities for completely convective stars. For this pur-
pose, use the p-p energy generation rate given by KWW, Eq. 18.63, taking ψ = 1 as appropriate
for lower temperatures, and calculating the shielding correction f1,1 using Eqs. 18.56 and 18.57.

1. We first revisit the cases of 0.1 and 0.3M� stars from problem set 1 to check we can reproduce
their properties. Here, start with assuming radii of 0.13 and 0.33R�, respectively, to estimate
the central density and pressure, and use those to calculate the stellar structure. Verify that
you get the correct radius. Next, use the equation for xideal above to infer the temperature
at each radius. Verify that the central temperatures and densities are consistent with those of
Fig. 2.3.

2. Use the structures you created above to calculate the hydrogen-burning luminosity Lr, by
calculating the energy generation rate at each radius and summing appropriately.2 You should
find total luminosities L ' 0.001 and 0.007L�, respectively. Show that the implied effective
temperatures are both be close to 2900 K (as is generally the case for stars at the Hayashi
limit).

3. Plot Mr/M , T/Tc, and Lr/L as a function of r/R. You should find that the mass and tem-
perature distributions are identical for the two models, but that the luminosity is generated
slightly closer to the centre for the 0.1M� case. Why is this the case?

4. Now generate models for a range of masses, with radii chosen to be those that gives maximum
central temperature. Calculate the generated luminosities for all your models and plot those
as a function of mass.

5. Overdraw the radiated luminosity, assuming an effective temperature of 2900 K. At what mass
does the maximum luminosity drops below the radiated one? Do you recover that the minimum
mass for being a star is approximately 0.08M�?

2 You could also add the energy balance equation to the structure equations that are integrated by
Polytrope.


