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Physical constants
(http://physics.nist.gov/cuu/Constants)

speed of light in vacuo c = 2.99792458× 108 m s−1 (exact)
Gravitational constant G = 6.67430(15)× 10−11 N m2 kg−2

Planck’s constant h = 6.62607015× 10−34 J s (exact)
[h/2π] h̄ = 1.0545718176 . . .× 10−34 J s (exact)

Boltzmann’s constant k = 1.380649× 10−23 J K−1 (exact)
Stefan-Boltzmann constant

[ 1
60π

2k4/h̄3c2 = ac/4] σSB = 5.670374419 . . .× 10−8 W m−2 K−4 (exact)
Avogadro’s number NA = 6.02214076× 1023 mol−1 (exact)
Molar gas constant [kNA] R = 8.314462618 . . . J mol−1 K−1 (exact)
electron mass me = 9.1093837015(28)× 10−31 kg
proton mass mp = 1.6726219237(5)× 10−27 kg

Other units

atomic mass unit [ 1
12m(12C)] mu = 1.6605390666(5)× 10−27 kg

hydrogen mass mH = 1.67353284× 10−27 kg
electric charge e = 1.602176634× 10−19 C (exact)
electron volt eV = 1.602176634× 10−19 J (exact)
Ångstrom Å = 10−10 m

Astronomical units
(IAU 2015 resolution B3)

Solar mass GM� = 1.3271244× 1020 m3 s−2 (nominal)
M� = 1.98841(4)× 1030 kg

Solar radius R� = 6.957× 108 m (nominal)
Solar luminosity L� = 3.828× 1026 W (nominal)
Solar temperature Teff,� = 5772 K (nominal)
astronomical unit AU = 1.49597870700× 1011 m (nominal)
parsec pc = 3600× 180/πAU = 3.0856776× 1016 m
Julian year yr = 365.25× 84600 s (∼π 107 s)

Some formulae

ideal gas P = nkT , n = ρ/µmH

cv = 3
2Nk, cp/cv = 5/3

non-relativistic degenerate gas P = K1n
5/3
e , ne = ρ/µemH, K1 = 1

5 (3π2)2/3(h̄2/me)

K1/m
5/3
H = 9.91× 106 (SI)

relativistic degenerate gas P = K2n
4/3
e , ne = ρ/µemH, K2 = 1

4 (3π2)1/3h̄c

K2/m
4/3
H = 1.231× 1010 (SI)

scale height H = kT/µmHg
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1. Stars: Hydrostatic equilibrium and the virial theorem

Textbook: CO 10.1, 2.4, 10.3 (K-H timescale), 12.2 / KWW 1.1, 2.4, 3.1, 26.2–26.3

Assumed known: gravitational field (CO 2.1–2.3 / KWW 1.3); adiabatic processes (CO, bottom
of p. 317 to p. 321 / KWW 4.1).

What is a Star?

Wikipedia: A massive, luminous sphere of plasma held together by gravity.

Equation of motion in spherical symmetry

ρ
d2r

dt2
= −GMrρ

r2
− dP

dr
(1.1)

Hydrostatic equilibrium

dP

dr
= −GMrρ

r2
(1.2)

Mass conservation

dMr

dr
= 4πr2ρ (1.3)

Virial Theorem

Epot = −2Ekin or Etot = Epot + Ekin =
1

2
Epot (1.4)

Derivation for gaseous spheres: multiply equation of hydrostatic equilibrium by r on both sides,
integrate over sphere, and relate pressure to kinetic energy – easiest to verify for ideal gas.

Dynamical or free-fall timescale

tff '
√

R3

GM

(
exact:

√
3π

32Gρ
; often also: ∼

√
1

Gρ

)
. (1.5)

Pulsation time scale

tpuls '
R

cs
'
√

1

γGρ

(
usually simply: ∼

√
1

Gρ

)
. (1.6)

Contraction or Kelvin-Helmholtz timescale

tKH =
−Etot

L
' GM2

RL
(1.7)
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Basics of star formation

Start with a clump in a molecular clouds with external pressure Pext. In equilibrium 2Ekin =
−Epot + 4πR3Pext (easy extension of derivation of virial theorem). For Pext → 0 and given ρ, T ,
no equilibrium is possible beyond the Jeans Mass and Radius,

MJ =

(
3

4π

)1/2(
5k

GµmH

)3/2
T 3/2

ρ1/2
= 29M� µ

−2

(
T

10 K

)3/2 ( n

104 cm−3

)−1/2

, (1.8)

RJ =

(
3

4π

5k

GµmH

)1/2
T 1/2

ρ1/2
= 0.30 pc µ−1

(
T

10 K

)1/2 ( n

104 cm−3

)−1/2

. (1.9)

Note: the prefactors depend on details of the assumptions.
Clumps will collapse (and possibly fragment) on the free-fall timescale as long as they can

radiate any energy gained on a timescale faster than the free-fall timescale. Once they become
optically thick and can no longer radiate fast enough, evolution becomes adiabatic, with pressure
increasing faster. Eventually hydrostatic equilibrium is (re)gained and a star is formed.

Basics of a star’s life

Any star must have high pressure. If ideal-gas pressure, this implies high temperature. Hence, it
will lose heat. If nothing compensates, the star will contract on the thermal timescale, increasing
pressure and temperature until fusion ignites and the loss of heat can be compensated (for a
while) or the density increases so much that degeneracy pressure takes over.

To think about

– Consider the basics of a star’s life using the Virial Theorem.
– Look at the color-magnitude diagrammes on the next pages and consider limits. Why are no

regular stars hotter & dimmer than the main sequence? (Think what would happen to the
Sun if one were to shrink it.) And why do white dwarfs exist there? Why are there no very
cool stars at higher luminosity? (Is there something specific about the coolest stars? We’ll get
to this!) Why does there appear to be a luminosity limit? (The answer is different for each
Figure, but the most interesting case is Fig. 1.3.)

– What roughly determines the initial mass-radius relation (and thus the main sequence)?

For next time

– Remind yourself of relativistic energy and momentum (CO 4.4 / KWW around eqs 15.5
and 15.6).

– Remind yourself about pressure integral and mean molecular weight (CO 10.2, in particular
eq. 10.9 / KWW 4.2 and around eq. 15.9).
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Fig. 1.1. Color-absolute magni-
tude diagramme of stars within
100 pc, as measured by the GAIA
satellite. Most stars are on the
main sequence, some on the gi-
ant branch, and some are cooling
white dwarfs. Taken from GAIA
collaboration (2018, A&A 616,
A10, their Fig. 6).
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Fig. 1.2. Observed color-
magnitude diagramme of the
stars in the globular cluster
NGC 6397, which all formed at
more or less the same time. Taken
from D’Antona (1999, in “The
Galactic Halo: from Globular
Clusters to Field Stars”, 35th
Liege Int. Astroph. Colloquium).

Fig. 1.3. Color-magnitude diagramme of the brightest stars in the LMC, with observed spectral
types and magnitudes transformed to temperatures and luminosities. Overdrawn is the empirical
upper limit to the luminosity, as well as a theoretical main sequence. Taken from the paper that
first identified the limit: Humphreys & Davidson (1979, ApJ 232, 409).
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Fig. 1.4. (top) Images towards
the dark globule Barnard 68 in B,
V, I, J, H, and K (clockwise from
upper left to lower left). The im-
ages are 4.′9 on the side; North is
up, East to the left.

Fig. 1.5. (left) Inferred extinction
through Barnard 68. Contours of
V-band optical depth are shown,
starting at 4 and increasing in
steps of 2. Both pictures are taken
from ESO press release 29/99.
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2. Equation of state

Textbook: CO 10.2, 16.3–4 / KWW 15 (except 15.4)

Assumed known: Ideal gas law and mean molecular weight (part of CO 10.2 / KWW 4.2).

General expressions for number density, pressure, and energy

Given a momentum distribution n(p)dp, then the particle density n, kinetic energy density U ,
and pressure P are given by

n =

∫ ∞
0

n(p)dp, (2.1)

U =

∫ ∞
0

n(p)εp dp, (2.2)

P =
1

3

∫ ∞
0

n(p)vpp dp. (2.3)

For non-relativistic particles, vp = p/m and εp = p2/2m, while for (extremely) relativistic parti-
cles, vp ' c, and εp = pc. Hence,

PNR =
1

3

∫ ∞
0

2εpn(p)dp ⇒ P =
2

3
U, (2.4)

PER =
1

3

∫ ∞
0

εpn(p)dp ⇒ P =
1

3
U. (2.5)

General momentum distribution

n(p)dp = n(ε)
g

h3
4πp2dp (where g is the statistical weight). (2.6)

Here, n(ε) depends on the nature of the particles:

n(ε) =


1

e(ε−µ)/kT + 0
classical; Maxwell-Boltzmann statistics,

1

e(ε−µ)/kT + 1
fermions; Fermi-Dirac statistics,

1

e(ε−µ)/kT − 1
bosons; Bose-Einstein statistics.

(2.7)

Here, µ is the chemical potential; one can view the latter as a normalisation term that ensures∫∞
0
n(p)dp = n. (For a nice physical description, see The elusive chemical potential µ by Baierlein,

2001, Am. J. Ph. 69, 423.)

Classical: Maxwellian

After solving for µ, one recovers the Maxwellian momentum distribution:

n(p)dp = n
4πp2dp

(2πmkT )3/2
e−p

2/2mkT (2.8)
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Bosons: application to photons

For photons, the normalisation is not by total number of particles, but by energy; one finds µ = 0.
The statistical weight is g = 2 (two senses of polarisation). With ε = hν and p = hν/c, one finds
for n(ν)dν and U(ν)dν = hνn(ν)dν,

n(ν)dν =
4πν2dν

c3
2

ehν/kT − 1
; (2.9)

U(ν)dν =
8πhν3

c3
dν

ehν/kT − 1
. (2.10)

Fermions: application to electrons

n(p)dp =
g

h3

4πp2dp

e(ε−µ)/kT + 1
. (2.11)

Complete degeneracy

n(ε) =

{
1 for ε < εF

0 for ε > εF

}
⇔ n(p) =

{ g

h3
4πp2dp for p < pF

0 for p > pF

. (2.12)

Expressing pF as a function of the number density n,

pF = h

(
3n

4πg

)1/3

. (2.13)

NRCD: non-relativistic complete degeneracy

For non-relativistic particles, one has εp = p2/2m, and thus P = 2
3U . Hence,

P =
2

3

∫ pF

0

n(p)εp dp =
1

20

(
3

π

)2/3
h2

m
n5/3. (2.14)

For electrons: Pe = K1(ρ/µemH)5/3 with K1/m
5/3
H = 9.91× 1012 (cgs). (2.15)

ERCD: extremely relativistic complete degeneracy

For relativistic particles, εp = pc, and thus P = 1
3U (Eq. 2.5). Hence,

P =
1

3

∫ pF

0

n(p)εp dp =
1

8

(
3

π

)1/3

hc n4/3. (2.16)

For electrons: Pe = K2(ρ/µemH)4/3 with K2/m
4/3
H = 1.231× 1015 (cgs). (2.17)

For next time

– Think about how radius scales with mass for degenerate objects (non-relativistic and relativis-
tic; use the scaling relations for pressure and density).

– Is degeneracy importantant for daily materials?
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Fig. 2.1. The distribution of
the number of particles n(p)
as a function of momentum
p for a number of values of
µ/kT .

Fig. 2.2. The T, ρ diagram
for X = 0.7 and Z =
0.02, with the areas indicated
where matter behaves as an
ideal gas (P ∝ nT ), non-
relativistic degenerate gas

(P ∝ n
5/3
e ), relativistic de-

generate gas (P ∝ n
4/3
e ),

or radiation-dominated gas.
Note that these are not
“sharp” boundaries. Also, at
high enough T relativistic ef-
fects will become significant
at all densities, not just for
degenerate matter.
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Fig. 2.3. T, ρ diagram for X = 0.7 and Z = 0.02 from Pols et al. (1995, MNRAS 274, 964). Dashed
lines indicates where radiation pressure equals the gas pressure (Pg = Pr), and where degeneracy
becomes important (ψ = 0); note that the latter is defined differently. The shaded regions indicate
regions where various ions become ionised. None of the other lines were discussed in the text. Dash-
dotted lines indicate constant plasma-interaction parameter Γ; dotted lines constant contribution
from Coulomb interactions; thin solid lines constant contribution from pressure ionisation. The
thick solid lines indicate the run of temperature as a function of temperature as found in zero-age
main sequence (ZAMS) stellar models for several masses.
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3. Simple stellar models

Textbook: CO p. 334–340, applications in §16.4 / KWW 19.1–4, 19.7, 19.9 (and scan through rest
except 19.11),

Polytropic models

Mr = − r2

ρG

dP

dr
⇒ dMr

dr
= − 1

G

d

dr

(
r2

ρ

dP

dr

)
dMr

dr
= 4πr2ρ

P = Kργ


⇒ 1

ρr2

d

dr

(
r2ργ−2 dρ

dr

)
= −4πG

Kγ
. (3.1)

Making the equation dimensionless, we derive the Lane-Emden equation of index n,

ρ = ρcθ
n with n =

1

γ − 1

(
i.e.,γ = 1 +

1

n

)
r = αξ with α =

(
n+ 1

4πG
Kρ(1/n)−1

c

)1/2

 ⇒ 1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
= −θn. (3.2)

The boundary conditions are θc = 1 and (dθ/dξ)c = 0.

Solutions of the Lane-Emden equations

In general, the Lane-Emden equation does not have an analytic solution, but needs to be solved
numerically. The exceptions are n = 0, 1, and 5, for which,

n = 0 (γ =∞) : θ = 1− ξ2

6
⇒ ρ = ρc,

n = 1 (γ = 2) : θ =
sin ξ

ξ
⇒ ρ = ρc

sinαr

αr
,

n = 5 (γ = 1.20) : θ =

(
1 +

ξ2

3

)−1/2

⇒ ρ = ρc

(
1 +

(αr)2

3

)−5/2

.

(3.3)

The stellar radius

Since one has r = αξ, the stellar radius is given by

R = αξ1 =

[
(n+ 1)K

4πG

]1/2

ρ(1−n)/2n
c ξ1, (3.4)

where ξ1 is the value of ξ for which θ(ξ) reaches its first zero. In Table 3.1, values of ξ1 are listed
for various n.

The total mass

Integration of ρ(r) gives the total mass of the star,

M = 4πα3ρc

∫ ξ1

0

ξ2θndξ = 4πα3ρc

∫ ξ1

0

d

(
−ξ2 dθ

dξ

)
= 4π

[
(n+ 1)K

4πG

]3/2

ρ(3−n)/2n
c

(
−ξ2 dθ

dξ

)
ξ1

(3.5)
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Table 3.1. Constants for the Lane-Emden functions

n γ ξ1 −ξ2 dθn
dξ

∣∣∣∣
ξ1

ρc

ρ
K

R(n−3)/n

GM (n−1)/n

Pc

GM2/R4

Epot

−GM2/R

0.0 ∞ 2.4494 4.8988 1.0000 . . . 0.119366 3/5
0.5 3 3.7528 3.7871 1.8361 2.270 0.26227 6/9
1.0 2 3.14159 3.14159 3.28987 0.63662 0.392699 3/4
1.5 5/3 3.65375 2.71406 5.99071 0.42422 0.770140 6/7
2.0 3/2 4.35287 2.41105 11.40254 0.36475 1.63818 1
2.5 7/5 5.35528 2.18720 23.40646 0.35150 3.90906 6/5
3.0 4/3 6.89685 2.01824 54.1825 0.36394 11.05066 3/2
3.5 9/7 9.53581 1.89056 152.884 0.40104 40.9098 2
4.0 5/4 14.97155 1.79723 622.408 0.47720 247.558 3
4.5 11/9 31.83646 1.73780 6189.47 0.65798 4922.125 6
5.0 6/5 ∞ 1.73205 ∞ ∞ ∞ ∞

Adapted from Chandrasekar, 1967, Introduction to the study of stellar structure
(Dover: New York), p. 96

where we used the Lane-Emden equation to substitute for θn. Values of (−ξ2dθ/dξ)ξ1 are again
listed in Table 3.1. By combining the relations for the radius and the mass, one also derives a
relation between the radius, mass, and K, which, for given K, gives the mass-radius relation. The
appropriate numbers are listed in the table.

The central density and pressure

We can express the central density ρc in terms of the mean density ρ = M/4
3πR

3 using the
relations for the mass and radius. Solving K from the expressions for the mass and radius, one
can also find the ratio of the central pressure to GM2/R4. Values of ρc/ρ and Pc/(GM

2/R4) are
listed in Table 3.1.

The potential energy

Given the polytropic relation, one can also calculate the total potential energy. We just list the
result here:

Epot = − 3

5− n
GM2

R
. (3.6)

For next time

– Remind yourself of mean-free path and of basic radiation processes (CO 9.2, esp. example
9.2.1, pp 239–247 / KWW 5.1, esp. 5.1.1, KWW 17.1–5).
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Fig. 3.1. (top) Run of θ(ξ) as a
function of ξ for n = 1.5 and n = 3
(i.e., γ = 5

3 and γ = 4
3 ). Note

that ξ ∝ r and θn ∝ ρ. For non-
degenerate stars, T ∝ θ. (middle)
Corresponding run of ρ(r)/ρc as a
function of r/R. The black dots in-
dicate the values appropriate for
the Sun; see Table 3.2. (bottom)
Run of Mr/M as a function of
r/R. Note how much more cen-
trally condensed the n = 3 poly-
trope is compared to the n = 1.5
one.

Table 3.2. The run of density of a polytropic model with n = 3 and γ = 4
3

ξ 0 1 2 3 4 5 6 6.9011

θ 1 0.855 0.583 0.359 0.209 0.111 0.044 0
r/R∗ 0 0.145 0.290 0.435 0.580 0.725 0.869 1
ρ/ρc 1 0.625 0.198 0.0463 0.00913 0.00137 0.0000858 0
(ρ/ρc)� 1 0.67 0.19 0.037 0.0065 0.0011 0.00015 0

14



Fig. 3.2. Mass-radius relation for white dwarfs of various compositions. The dashed curves indi-
cate Chandrasekhar models for µe = 2 (upper) and 2.15 (lower), in which simple estimates like
those discussed in class are used, except that the mildly relativistic regime is treated correctly.
The models deviate from these idealized curves because the elements are not become completely
ionized, and at very high densities, inverse beta decay becomes important (the curve labelled ‘equ’
takes into account the resulting changes in elemental abundances). For both reasons, there are
variations in µe. The arrows indicate the effects of adding a hydrogen atmosphere. The dotted
curve is a mass-radius relation for neutron stars. Taken from Hamada & Salpeter (1961, ApJ 134,
683).
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4. Diffusive energy transport, Ionisation/excitation, Opacity

Textbook: CO 9.2, 9.3, 8.1, and 10.4, up to p. 316 / KWW 5 (except 5.4), 14.1, 14.2 and 17 (and
scan through the rest of chapter 14, esp. 14.6).

Radiative and conductive energy transport

Radiative flux

Frad = −1

3

c

κρ

dUrad

dr
= −4ac

3

T 3

κρ

dT

dr
. (4.1)

Eddington equation

dT

dr
= − 3

4ac

κρ

T 3

Lr
4πr2

, (4.2)

where Lr = 4πr2Frad.

Rosseland mean

1

κ
=

1

κR
≡ π

acT 3

∫ ∞
0

1

κν

dBν
dT

dν , where Bν ≡
c

4π
U(ν) =

2hν3

c2
1

ehν/kT − 1
(4.3)

Since
∫

(dBν/dT )dν = acT 3/π, the Rosseland mean is the harmonic mean of κν weighted by
dBν/dT .

Conduction

Usually, conduction is irrelevant. The exception is degenerate cores, where it dominates, making
the cores isothermal. One can combine conduction with radiative transport by defining

F = Frad + Fcond = −(krad + kcond)∇T. (4.4)

If we define a conductive opacity κcond via

kcond ≡
4ac

3

T 3

κcond
, (4.5)

and by redefining 1/κ = 1/κR+1/κcond, we can include conduction also in this way in the radiative
transport equation.

Excitation and Ionisation

In general, the different states of ions and atoms will be populated according to the Boltzmann
equation,

Nb
Na

=
gb
ga

e−(χb−χa)/kT . (4.6)

Here, ga,b are the statistical weights (e.g., g = 2n2 for level n in Hydrogen), and χa,b are the
excitation potentials.
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Comparing the ground state of one ionisation stage with the ground state of the next one,
one has to take into account that the electron can have a range of kinetic energies and associated
states. One finds

dni+1,0(p)

ni,0
=
gi+1,0dge(p)

gi,0
e−(χi+pe/2me)/kT (4.7)

where dni+1,0(p) is the number density of atoms in the ground state of ionisation stage i+ 1 with
an electron with momentum p, ni,0 the number density of atoms in the ground state of ionisation
stage i, and ge(p) the statistical weight of the electron at momentum p. The latter is given by

dge(p) =
2

h3

1

ne
4πp2 dp. (4.8)

Integrating over all possible electron momenta and summing over all possible excitation states n
(using the “partition function” Z =

∑
n gn exp(−χn/kT )), one finds the Saha equation,

ni+1

ni
ne =

Zi+1

Zi
2

(2πmekT )3/2

h3
e−χi/kT . (4.9)

Opacity

In general, the opacity is a complicated function of density, temperature and abundances. Three
main processes dominate the continuum opacity at temperatures typically encountered in stars.

Electron scattering

σT =
8π

3

(
e2

mec2

)2

= 6.65 10−29 m2 ⇒ κes = σT
1 +X

2mH
= 0.0200(1 +X) m2 kg−1. (4.10)

Free-free absorption

The free-free cross section for a certain ion i is given by

σff
ν,i =

(
2me

πkT

)1/2

ne
4π

3
√

3

Z2
i e

6

hcm2
eν

3
gff
ν . (4.11)

For a general mixture of ions, one has to add over all constituents and their corresponding Z2
i :

nionZ2 =
∑ ρXi

mHAi
Z2
i =

ρ

mH

X + Y +
∑
i≥3

Xi

Ai
Z2
i

 , (4.12)

where hydrogen and helium are assumed to be completely ionised.
In the integration over frequency required to calculate the Rosseland mean, one finds that the

dependence on ν leads to the introduction of a T−3 term. The result is the so-called Kramers
free-free opacity,

κff = 3.8 1021 m2 kg−1 ρT−7/2gff(1 +X) (X + Y +B), (4.13)

where B is the sum in Eq. 4.12 and the Gaunt factor gff is a suitably averaged value of gff
ν .

17



Bound-free absorption

The semi-classical Kramers cross section for an ion with charge Zi with an electron in state n is
given by

σbf
ν,i,n =

64π4

3
√

3

mee
10

ch6

Z4
i

n5ν3
gbf
ν,i,n = 2.82 1025 cm2 Z4

i

n5ν3
gbf
ν,i,n. (4.14)

Most of the ions will be in an ionisation state i+ 1 which cannot be ionised by a typical photon
with hν ' kT � χi+1; the relevant ions for the opacity are the somewhat rarer ions in ionisation
state i. Combining the Boltzmann and Saha equations, and writing ni,n explicitly in terms of
ni+1,1,

ni,n = ni+1,1ne
n2

2

(
h2

2πmekT

)3/2

eχi,n/kT , (4.15)

where the hydrogenic approximation (gn = 2n2) was made.
For the Rosseland mean, one needs to add all states of all ions. For stellar interiors, hydrogen

and helium will be completely ionised, so the mean opacity will be proportional to the metallic-
ity Z. One finds the Kramers bound-free opacity,

κbf = 4.3 1024 cm2 g−1 gbf

t
Z(1 +X)ρT−7/2, (4.16)

where g is a mean Gaunt factor and t the “guillotine” factor that accounts for the number of
different ions being available.

Negative hydrogen ion

Hydrogen atom has a bound state for a second electron in the field of the proton, though it has a
very low ionisation potential, χH− = 0.75 eV. The number density of negative hydrogen ions will
be proportional to the electron density, which, in all but the most metal-poor stars, will be set by
ionisation of the metals (which have much lower ionisation potentials that hydrogen and helium).
Thus, the H− opacity will scale as κH− ∝ ρXZ at low temperatures; H− is of course easily ionized
at higher temperatures, and at it very low temperatures even metals will not be ionized, so there
will be no electrons to form H− by combining with H.

To think about

– Apply Eq. 4.2 to whole star, and use the virial theorem to estimate T ; how does L depend on
M and R? Why is it independent of the source of energy?

For next time

– Read ahead about convection (CO 10.4 / KWW 6, 7–7.1)
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Fig. 4.1. Opacities as a function of temperature. (left) Low-temperature regime, from Alexander
& Ferguson (1994, ApJ 437, 879). Opacities are shown for densities from 10−13 to 10−6 g cm−3 in
factors of ten, with lower densities corresponding to lower opacities. The sequence in line types is
short-dashed, long-dashed, solid, dotted. The bump on the left is due to dust, that in the middle
mostly to water, and that on the right to H−. (right) High-temperature regime, for densities from
10−9 to 102 g cm−3, from the opal group (Iglesias & Rogers, 1996, ApJ 464, 943). The bump at
the right is due to bound-free and free-free absorption, and the lower level at the left to electron
scattering. Note the difference in scale between the two panels.
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Fig. 4.2. Opacities as a function of temperature as estimated with the Kramers formulae (short-
dashed lines) compared to those calculated by the opal group, for densities 10−6, 10−3, and
1 g cm−3. (left) Z = 0: opal vs. the Kramers free-free opacity; (right) Z = 0.02: opal vs. the
Kramers bound-free opacity.
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5. Convection, Mixing Length Theory

Textbook: CO 10.4 / KWW 6 (up to 6.5), 7 (up to 7.1, glance at rest)

General stability criterion

− 1

γ

1

P

dP

dr
> −1

ρ

dρ

dr
. (5.1)

Schwarzschild instability criterion

d lnT

d lnP

∣∣∣∣
ad

<
d lnT

d lnP

∣∣∣∣
rad

⇔ ∇ad < ∇rad. (5.2)

Ledoux instability criterion

γ − 1

γ
<

d lnT

d lnP
− (∂ ln ρ/∂ lnµ)

(−∂ ln ρ/∂ lnT )

d lnµ

d lnP
, ⇔ ∇ad < ∇rad −

(∂ ln ρ/∂ lnµ)

(−∂ ln ρ/∂ lnT )
∇µ, (5.3)

where we have defined ∇µ = d lnµ/d lnP to be the changes in µ due to changes in composition
Xi only, and where for a fully-ionised ideal gas, the term with the partial derivatives equals unity.

Efficiency of convection

A general expression for the convective flux is

Fconv = ρvconv∆q = ρvconvcP∆T = ρvconvcPT
`mix

2HP
(∇−∇ad) , (5.4)

where `mix is the mixing length, usually parametrized as a fraction of the scale height, i.e., `mix ≡
αmixHP , with αmix the mixing length parameter.

To estimate vconv, we use a method different from those used in CO and KWW (though they
all give roughly the same answer): balance buoyancy (V g∆ρ = ρV g∆T/T ) and friction (−Aρv2);
evaluate velocity at lmix/2; define V/A = β`mix, where β is a shape factor; and find

v2
conv =

βg

HP

`2mix

2
(∇−∇ad) . (5.5)

This leads to a convective flux given by

Fconv = ρcPTα
2
mix

√
βgHP

8
(∇−∇ad)

3/2
. (5.6)

If one were to insert numbers, then one finds that for stellar interiors, where ρcPT is large, the
temperature gradient needs to be only very slightly superadiabatic for substantial luminosities to
be transported. Hence, for the stellar structure it is fine to take ∇ = ∇ad in convective regions.
But this breaks down near the stellar surface, where ρcPT no longer is large. There, the “super-
adiabatic gradient” ∇−∇ad no longer is negligible, and calculating it involves all the uncertainties
in how convection actually works.

Finally, sometimes it is easier to think of the convective flux as transporting some amount of
kinetic energy ρv2

conv at some velocity vconv, i.e., Fconv = ρv3
conv (taking cPT ∼ gHP in Eq. 5.6).

For deep interiors, one then finds vconv � cs, while near the surface the velocities approach the
speed of sound.
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To think about

– What sets the luminosity of a cooling, completely convective pre-MS star?

Fig. 5.1. True, adiabatic and radiative temperature gradient as a function of pressure for a model
of the Sun (top), and the corresponding convective velocities in units of the speed of sound (bot-
tom). The strong depressions in∇ad are due to hydrogen and helium ionisation zones temperature,
at logP ' 6 (H), 8 (He), and 10 (He+), while near the surface the bump in the true gradient ∇
reflects that convection becomes inefficient. The radiative gradient is mostly off the scale in the
convection zone. Fig. 29.5 from KWW.
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6. Completely convective stars and the Hayashi line

Textbook: CO: –, KWW 24 (on which the below is largely based).

Generalities

For completely convective stars, the temperature gradient needs to be only very slightly superadi-
abatic for substantial luminosities to be transported. The implication is that whatever luminosity
the star manages to radiate away, will be brought to the surface without any problem by a
corresponding energy flux in the convective regions. Thus, the actual luminosity of the star is
determined in the only radiative region in the star, the photosphere.

A completely convective star

To find a solution for the whole star, we need to match a photosphere to the interior solution,
where the latter is given by a polytrope P = Kρ5/3. Matching the two solutions will set K, and
for fixed K one knows how the radius depends on mass. For the run of pressure in the atmosphere,
we have

dP

dr
= −GM

R2
ρ or

dP

dh
= −gρ,

where h is the height above some reference level. For the photosphere, τ = κρh = 2
3 , or

h =
2

3κρ
⇒ Pphot =

2g

3κ
. (6.1)

Now, assume that the opacity is given by a law of the form

κ = κ0P
aT b, (6.2)

where in general a will be a positive number of order unity, while for cool temperatures b will be
a relatively large positive number. Given this general opacity law, one has

P 1+a
phot =

2

3κ0T beff

g ⇒ Pphot =

(
2

3κ0G

M

R2T beff

)1/(1+a)

. (6.3)

For the interior, we write the polytropic relation in terms of pressure and temperature, and
combine it with the mass-radius relation for polytropes of n = 1.5 (Table 3.1),

P = Kρ5/3

P =
ρ

µmH
kT

 ⇒ P = K

(
PµmH

kT

)5/3

K = C1.5GM
1/3R with C1.5 = 0.42422

 ⇒ Pint =
M−1/2

(RC1.5G)
−3/2

(
kT

µmH

)5/2

. (6.4)

Equating Pint with Pphot, raising to the 2(1 + a) power, and sorting, one finds(
2

3κ0

)2

G1+3aM3+aR−1+3a = C−3−3a
1.5

(
k

µmH

)5+5a

T 5+5a+2b. (6.5)

Solving for Teff ,

Teff = CRM
3+a

5+5a+2bR
−1+3a

5+5a+2b with CR =

[(
2

3κ0

)2

G1+3aC3+3a
1.5

(
k

µmH

)−5−5a
] 1

5+5a+2b

. (6.6)
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For a of order unity and large positive b one thus sees that Teff depends only very weakly on the
mass and radius. With L = 4πR2σT 4

eff , we can determine the dependencies on M and L, and thus
where the star would be in the HRD. One finds(

2

3κ0

)2

G1+3aM3+a

(
L

4πσ

)(3a−1)/2

= C−3−3a
1.5

(
k

µmH

)5+5a

T 3+11a+2b, (6.7)

Teff = CLM
6+2a

6+22a+4bL
3a−1

6+22a+4b with CL =

[(
2

3κ0

)2

G1+3aC3+3a
1.5

(
k

µmH

)−5−5a
] 2

6+22a+4b

. (6.8)

Again, for a of order unity and large b, Teff depends extremely weakly on the luminosity, and thus
one expects nearly vertical lines in the HRD. Given the slight positive dependence on M , one
expects the lines to move slightly towards higher temperatures for larger masses.

Complications

The scaling that one finds from the above relations is reasonable. If one were to calculate numer-
ical values, however, the answers would be very puzzling. The reason is that the assumption of a
polytrope breaks down near the surface. Going towards the surface, it first fails in the ionisation
zone, where recombination is an additional source of heat. Due to the recombination, the temper-
ature of an adiabatically expanding blob does not decrease as it would otherwise, and therefore,
above the ionisation zone the temperatures will be higher than would be the case if recombination
were ignored. The effect can be seen Fig. 6.1.

Just below the photosphere, the convective energy transport becomes much less efficient, i.e.,
the superadiabatic gradient becomes substantial, while in the assumption of a n = 1.5 polytrope
it is assumed to be negligible. With less efficient energy transport, the temperature will decrease
more rapidly than adiabatic. Thus, the substantially superadiabatic region near the photosphere
counteracts the effects of the ionisation zone. Net, the ionisation zone is more important.

Contraction along the Hayashi track

The star needs to contract in order to provide the energy it radiates away. Since it is completely
convective, the entropy remains constant through the star, but decreases (increasing the entropy
of the universe in order not to violate the second law). Since dq = Tds, the energy generated per
gram is proportional to the local temperature. Therefore, the increase in luminosity in a shell dMr

is dLr ∝ TdMr. With this, and with P ∝ T 5/2, we can estimate whether the radiative gradient
decreases towards the surface or towards the centre of the star. We assume again an opacity law
of the form κ ∝ P aT b, with a = 1, b = −4.5 for a Kramers-type law. We find

d ln∇rad

d ln r
=

d lnLr
d ln r

− d lnMr

d ln r
+

d lnκ

d ln r
+

d lnP

d ln r
− 4

d lnT

d ln r

=
d lnLr
d ln r

− d lnMr

d ln r
+ [b− 4 + 2.5(a+ 1)]

d lnT

d ln r
. (6.9)

Generally, one has Mr =
∫
ρr2dr and Lr ∝

∫
Tρr2dr. With the polytropic relations, therefore,

Mr ∝
∫
θnξ2dξ and Lr ∝

∫
θn+1ξ2dξ. Thus, one can use the solution θ(ξ) for a polytropic star

to calculate d ln (Mr, Lr, T )/d ln r. The result for n = 1.5 is shown in Fig. 6.2. Also drawn is
d ln∇rad/d ln r, assuming a = 1 and b = −4.5. One sees that it is always larger than zero, i.e., the
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radiative gradient decreases inwards. This is true for any reasonable opacity law. In consequence,
the interior is always the first part of the star to become radiative.

We can also estimate how the radiative gradient scales scales with the stellar parameters in
the core. There, the temperature hardly varies, and one has Lr ∝ (L/M)TcMr. Furthermore, for
any two stars with the same structure, Tc ∝M/R and Pc ∝M2/R4, with the same constants of
proportionality. Taking again κ ∝ P aT b, one finds for the radiative gradient in the core,

∇rad,c ∝
LrκP

MrT 4
∝ L

M
T 1+b−4P a+1 ∝ LM−2+b+2aR−1−b−4a ∝ LM−4.5R−0.5 (6.10)

where in the last proportionality we used a = 1, b = −4.5 (Kramers). From Eqs. 6.6, 6.8, one sees
that for given mass, L ∝ Rα, with α = (6 + 22a + 4b)/(5 + 5a + 2b), where a and b are now the
coefficients in the atmospheric opacity law. Generally, a ' 1 and b large, hence, α ' 2. Thus, the
radiative gradient decreases as one descends the Hayashi track. At constant luminosity, one has
R ∝ Mβ , with β = (6 + 2a)/(7 − a + 2b) <∼ 1. Hence, the radiative gradient is smaller for larger
masses, and more massive stars will become radiative in their core sooner.

For next time

– Think about why a star cannot be to the right of Hayashi limit.
– Read ahead on stellar energy sources (CO 10.3, KWW 4.4,1 8)

25



Fig. 6.1. Adiabatic gradient
(top), temperature (middle) and
T/P 2/5 (bottom) as a function
of pressure, calculated using the
opal equation of state for a solar
mixture. The effect of the hydro-
gen and helium ionisation zones
is clearly seen in the depressions
in ∇ad and the changes in slope
in the other panels. As a result,
a completely convective star will
have a higher surface temperature
than would be expected if the
ionisation zone were ignored. The
effect is partly undone by the
superadiabatic gradient becom-
ing substantial just below the
photosphere.

Fig. 6.2. (Bottom) Run of mass
(solid line), luminosity (dotted
line), and temperature (dashed
line) as a function of radius for
a contracting polytrope with n =
1.5 (i.e., the local energy gen-
eration per unit mass is pro-
portional to temperature). (Top)
Logarithmic derivatives of mass
(solid line), luminosity (dotted
line), temperature (short-dashed
line), and radiative gradient (long-
dashed line) as a function of ra-
dius. A Kramers-type opacity law
was assumed.
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Fig. 6.3. Theoretical tracks for the pre-main sequence contraction phase for several different
masses (as indicated). Overdrawn are observed temperatures and luminosities for pre-main se-
quence stars in two star-forming regions with rather different properties. In both, stars first
appear along a very similar “birth line” (indicated with the thick line). Taken from Shu, Adams
& Lizano (1987, ARA&A 25, 81; their Fig. 4).
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7. Energy balance: Contraction/expansion and nuclear processes

Textbook: CO 10.3 / KWW 4.4, 18

Energy Balance

dLr
dr

= 4πr2ρ ε ⇔ dLr
dMr

= ε, (7.1)

where ε is the energy generated per unit mass. In general,

ε = εgrav + εnuc − εν , (7.2)

where εgrav is the energy liberated or lost by contraction or expansion, εnuc is the energy produced
(or lost) in nuclear processes, and εν is that part of the latter that escapes the star immediately
in the form of neutrinos.

Contraction or expansion

The energy gained or lost in mass movements inside the star can be derived from the first law of
thermodynamics, and written in various equivalent forms as

εgrav = −dQ

dt
= −T dS

dt
= −du

dt
− P dV

dt
, (7.3)

where V ≡ 1/ρ and u is the energy density per unit mass.

Nuclear processes

The main source of energy in stars is nuclear fusion, which we will now treat in more detail than
in CO, § 10.3 (KWW 18 was used extensively below).

Basic considerations

The energy gained or lost in nuclear processes is related to the mass defect ∆m:

E = ∆mc2 =

∑
i

minit,i −
∑
j

mfinal,j

 c2. (7.4)

The mass defect reflects the different binding energies per nucleon in different nuclei,

Ebind

A
=

1

A
(Zmp + (A− Z)mn −mnucleus) c

2 . (7.5)

The binding energy per nucleon increases steeply from hydrogen, then flattens out and starts to
decrease, having reached a maximum at 56Fe; see Fig. 7.1. Defining hydrogen to have zero binding
energy, helium has 7.07 MeV per nucleon, carbon 7.68 MeV, and iron 8.73 MeV.

For fusion, nuclei must be brought close enough together that the short-range strong nuclear
force can dominate over the weaker, but long-range repulsive Coulomb force. The range of the
strong nuclear force is set by the Compton wavelength of its carrier, the pi meson, h̄/mπc =
1.41 fm. The repulsive Coulomb potential at a distance of∼1 fm (10−13 cm) is ECoul = Z1Z2e

2/r '
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1.44 MeV
(

1 fm
r

)
Z1Z2 , where Z1 and Z2 are the atomic numbers of the colliding nuclei. This

should be compared with typical kinetic energy of a particle, of order kT = 0.86T7 keV, where T7

is the temperature in units of 107 K. Thus, classically, in the centre of the Sun (where T7 ≈ 1.5),
particles trying to interact should be turned around by the Coulomb force at ∼103 fm; as a result,
no reactions would be expected.

From quantum mechanics, however, a particle has a certain finite probability of “tunneling”
through the Coulomb barrier (see CO, p. 147–148, which is perhaps more insightful than the
motivation on p. 335-338). The reaction cross section per nucleus is usually written as,

σ(E) =
S(E)

E
e−b/

√
E with b =

1

h
2π2
√

2m′Z1Z2e
2 and m′ =

m1m2

m1 +m2
. (7.6)

Here, the term 1/E reflect the effective area for the interaction (for which one can take πλ2 ∝
1/p2 ∝ 1/E), and the exponential term the penetration probability; effects from the nuclear force
are absorbed into a function S(E) which is, under most conditions, a relatively slowly varying
function of the interaction energy E (but see “resonances” below).

The fusion product is at first a compound nucleus in an excited state with positive total
energy. Often, this compound nucleus will decay into the same particles that formed it – i.e., the
incoming particle is just scattered by the collision. The cases in which the decay products are
different define the net reaction rate, the details of which are hidden in S(E). The rates S(E)
can be calculated (with great difficulty!), or one can extrapolate from measurements (which are
typically done at far larger energies than those relevant to stellar conditions).

In general, the compound nucleus has several discrete bound states at negative energies in
the nuclear potential well, the stable ground state of the nucleus and some excited states that
can decay into lower-energy states by emission of photons (γ-rays). These states are similar to
the bound states of electrons in an atom, but comprising nucleons instead of electrons. However,
the compound nucleus may also have quasi-stable excited states of positive energy (below the
top of the Coulomb barrier), which can decay by emission of particles (by quantum tunnelling
outwards through the Coulomb barrier) as well as by emission of a photon. Incoming particles
with “resonant” energy corresponding to such a quasi-stable state can form a compound nucleus
much more easily, leading to a greatly enhanced reaction rate.

Given the cross section σ(E), the reaction rate between particles of types a and b (at a given
energy E) is given by

ra,b(E) dE = nanbvσ(E)f(E) dE , (7.7)

where na and nb are the number densities of a and b, v is the relative velocity between a and b
(corresponding to energy E), f(E) is the energy probability distribution, and σ(E) is the cross
section defined above. The factor v accounts for the fact that for larger velocities v, more particles
pass each other per unit time. Note that if particles a and b are identical, we need to multiply the
above by 1

2 in order to avoid counting double. Including that in the integrated reaction rate, we
find a rate

ra,b =
1

1 + δa,b
nanb 〈σv〉 , where 〈σv〉 ≡

∫ ∞
0

v(E)σ(E)f(E) dE (7.8)

is the average reaction rate per pair of particles, i.e., 〈σv〉 is an effective cross-section.

If the velocity probability distributions are Maxwellian for both particles (i.e., particles have
momenta as in Eq. 2.8, divided by n), the distribution of the relative velocity of the particles is
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also Maxwellian, but with m = m′ = mamb/(ma +mb) [verify this]. We can rewrite the Maxwell
distribution in Eq. 2.8 as a function of energy using p =

√
2mE and dp = 1

2

√
2m/E dE,

f(E) dE =
2π
√
E

(πkT )3/2
e−E/kT dE . (7.9)

Hence, for the effective cross section (using v(E) = p/m =
√

2E/m ),

〈σv〉 =

(
8

m′π

)1/2(
1

kT

)3/2 ∫ ∞
0

S(E)e−E/kT e−b/
√
E dE . (7.10)

The integrand will be small everywhere but near where the two exponentials cross, which is
called the “Gamow peak”; see Fig. 7.2. Assuming S(E) is a slowly varying function, the maximum
of the integrand will be where the term h(E) ≡ −E/kT − b/

√
E in the exponential reaches a

maximum; this position E0 is thus obtained via:

dh(E)

dE
=

d

dE
(−E/kT − b/

√
E) = 0 ⇒

E0 =

(
bkT

2

)2/3

= 5.665 keV (Z1Z2)2/3

(
m′

mu

)1/3

T
2/3
7 , (7.11)

where mu is the atomic unit mass. Using a Taylor expansion of h(E) around its maximum,

h(E) = h0 + h′0(E − E0) +
1

2
h′′0(E − E0)2 + . . . ' −τ − 1

4
τ

(
E

E0
− 1

)2

+ . . . , (7.12)

where we have used the fact that the first derivative h′0 must be zero (since we are expanding
around the maximum), and where we have defined

τ =
3E0

kT
= 19.721 (Z1Z2)2/3

(
m′

mu

)1/3

T
−1/3
7 . (7.13)

Using this in the integral, the exponential is approximately a Gaussian, as one can see by substi-
tuting ξ = (E/E0 − 1)

√
τ/2,∫ ∞

0

eh(E) dE =

∫ ∞
0

e−τ−
1
4 τ(E/E0−1)2

dE =
2

3
kTτ1/2e−τ

∫ ∞
−
√
τ/2

e−ξ
2

dξ . (7.14)

Since τ is relatively large and the main contribution to the integral comes from the range close to
E0 (i.e., ξ = 0), the error introduced by extending the integration to −∞ is small, i.e., the integral
is approximately

√
π. For the Gaussian, the fractional full width at half maximum ∆E/E0 is

∆E

E0
= 4

(
ln 2

τ

)1/2

= 0.750 (Z1Z2)−1/3

(
m′

mu

)−1/6

T
1/6
7 . (7.15)

Doing the integration using the Gaussian and inserting the result in Eq. 7.10 (after taking out
the slowly varying S(E)), one obtains

〈σv〉 =
4

3

(
2

m′

)1/2(
1

kT

)1/2

S0τ
1/2e−τ , (7.16)

where S0 = S(E0). Since T ∝ τ−3 (Eq. 7.13), one thus has that 〈σv〉 ∝ τ2e−τ . It is the exponential,
however, that really determines the reaction speeds. The dependences on Z1, Z2, and m′ ensure
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that more massive, more highly charged ions hardly react at all as long as the fusion processes of
the lighter elements still are taking place.

It is often useful to know the temperature dependence of the reaction rate, given by

ν ≡ ∂ ln 〈σν〉
∂ lnT

=
1

3
(τ − 2) = 6.574 (Z1Z2)2/3

(
m′

mu

)1/3

T
−1/3
7 − 2

3
(7.17)

(note that, for a given reaction, ν usually becomes smaller with increasing temperature). For the
fusion of two protons in the centre of the Sun, Z1 = Z2 = 1, m′ = 1

2 , T7 ' 1.5, hence ν ' 4, which
is a relatively mild temperature dependence. For other fusion processes, we will find exponents of
ν ∼ 20 and above, making these processes among the most strongly varying functions in physics.

Corrections to the above rate formulae

A few corrections are usually made in more detailed derivations. The first is a small correction
factor ga,b to account for any temperature dependence of S0 and for the inaccuracy of approxi-
mating the Gamow peak by a Gaussian. The second is more physical, and is a correction fa,b for
the effect of electron screening — due to the presence of electrons, the effective potential that two
ions see is slightly reduced (“screened”); as a result, the reaction will be faster. This correction
is more important at higher densities, and at very high densities burning starts to depend more
sensitively on the density than on the temperature. (For this case, one speaks of pycnonuclear
reactions.) Also, separate terms may be added to account for resonances.

Timescales

For a reaction of particles a and b, the number densities decrease with time. We define a timescale
for each type of particle

τa ≡ −
na

dna/dt
=

na
(1 + δa,b)ra,b

=
1

nb 〈σv〉a,b
. (7.18)

With this definition, na ∝ e−t/τa . Note that when two particles of the same type react (i.e., when
b = a), the rate as defined in Eq. 7.7 above is a factor two smaller, but two particles of type a are
destroyed per reaction, so the final expression for the timescale does not contain the factor 1+δa,b.
[Show that when there are multiple reactions, the timescale is given by τ−1

a =
∑
b(1/τa,b).]

Hydrogen burning

In principle, many nuclear reactions can occur at the same time. As we saw above, however, the
weighting of the exponential with (Z1Z2)2/3 strongly inhibits processes involving more massive,
more highly charged particles. In combination with the initial abundances of stars, with the largest
fraction of the mass being hydrogen, generally only a small number of fusion processes turn out
to be relevant in a given evolutionary stage.
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P-P chain

In less massive stars (M <∼ 1.2 M�), the fusion of hydrogen to helium on the main sequence is
mostly by the proton-proton chain (p-p chain). The possible variants of the p-p chain are:

1H + 1H → 2D + e+ + ν

2D + 1H → 3He + γ

3He + 3He → 4He + 2 1H

������9
XXXXXXz

or 3He + 4He → 7Be + γ

pp1

7Be + e− → 7Li + ν

������9 AAU
or 7Be + 1H → 8B + γ

7Li + 1H → 4He + 4He 8B → 8Be + e+ + ν

pp2 8Be → 4He + 4He

pp3

In these chains, the positrons made will meet an electron and annihilate, adding 1.022 MeV of
photon energy. Note that while the total energy released (per 4He produced) for the three chains
is equal, the fraction of that energy put in neutrinos is not the same. The net energy put into the
local medium per 4He nucleus produced is 26.20 MeV for pp1, 25.67 for pp2, and 19.20 for pp3.

The relative frequency of the branches depends on the temperature, density, and chemical
composition. Since the reduced mass is slightly larger for the 3He + 4He reaction than it is for
the 3He + 3He reaction, it will have a slightly larger temperature sensitivity. With increasing
temperature, pp2 and pp3 will therefore start to dominate over pp1 if 4He is present in appreciable
amounts. Similarly, with increasing temperature, the importance of proton capture on 7Be will
start to dominate over the electron capture.

For low temperatures, say T7 <∼ 0.8, one has to calculate all the reactions independently and
keep track of relative abundances. For higher temperatures, the intermediate reactions will be in
equilibrium, and the energy generation can be taken to be proportional to the first step, which
is the slowest. This is because it involves the weak nuclear force in the decay of a proton to a
neutron during the short time the two protons are together. Indeed, in by far most cases, the
compound two-proton nucleus that is formed at first, will simply break apart into two protons
again. As a result, the effective cross-section is very small, ∼10−21 fm2. For the energy, one finds

εpp = 254 W kg−1 ψf1,1 g1,1X
2
1 ρ T

−2/3
6 e−33.81/T

1/3
6 , (7.19)

with an uncertainty of about 5%. Here, g1,1 ' 1 + 0.00382T6, f1,1 ' 1 for electron screening, and
ψ corrects for the relative contributions of the different chains. At T7 <∼ 1, ψ ' 1, but at T7 = 2,
it varies between 1.4 for Y = 0.3 to nearly 2 for Y = 0.9. At still higher temperatures, when pp3
starts to dominate, it goes to 1.5 almost independent of Y . The temperature dependence of the
reaction, as calculated from Eq. 7.17, is relatively mild: ν ' 4 (i.e., εpp ∝ T 4, much less steep
than we will find below for other reactions).
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CNO cycle

At sufficiently high temperatures, hydrogen can be burned to helium via the CNO cycle, in which
carbon, nitrogen, and oxygen act more or less as catalysts (these have to be present, of course).
The reactions are split in a main cycle (CN cycle) and a secondary cycle (ON cycle), as follows:

M1. 12C + 1H → 13N + γ

M2. 13N → 13C + e+ + ν

M3. 13C + 1H → 14N + γ

M4. 14N + 1H → 15O + γ

M5. 15O → 15N + e+ + ν

M6. 15N + 1H →

{
12C + 4He and back to line M1 (main CN cycle).

16O + γ (secondary ON cycle):

S1. 16O + 1H → 17F + γ

S2. 17F → 17O + e+ + ν

S3. 17O + 1H →

{
14N + 4He and back to line M4.

18F + γ

S4. 18F → 18O + e+ + ν

S5. 18O + 1H → 15N + 4He and back to line M6.

The branch to the ON cycle (at line M6) is roughly 10−3 to 10−4 times less likely than the main
branch back to the beginning of the CN cycle. The ON cycle is important, however, since it results
in oxygen being converted to nitrogen (which takes part in the CN cycle) — the branching inside
the ON cycle (at line S3) does not strongly favor one branch over the other, but both branches
lead to the CN cycle. The beta-decay times are of order 102 . . . 103 seconds, much shorter than
typical nuclear reaction timescales.

Again, for high enough temperatures the reaction cycle will reach equilibrium, and the reaction
rate will be set by the slowest link in the CN cycle, which is the proton-capture on 14N. Because
of this bottleneck in the CN cycle, and due to the small branching ratio into the ON cycle, most
of the CNO originally present will be turned into 14N. The energy gain of the whole cycle, after
taking out neutrino losses, is 24.97 MeV, and one finds

εCNO = 7.48 1023 W kg−1 g14,1 f14,1XCNOX1 ρ T
−2/3
6 e−152.31/T

1/3
6 −(T6/800)2

(7.20)

(with an uncertainty of ±10%), where g14,1 ' 1 − 0.002T6, f14,1 ∼ 1 for electron screening, and
XCNO = XC +XN +XO. At somewhat lower temperatures, the CN cycle can reach equilibrium,
but the burning of 16O proceeds slowly; Eq. 7.20 is still quite a good approximation, but with
XCNO = XC +XN + |∆XO→N(t)|, where |∆XO→N(t)| is the amount of 16O that has been burned
to nitrogen as of time t (note that the intermediate 17O stage may also slow down the conversion
of 16O to nitrogen, since the reaction rates of 16O and 17O may be comparable).

Inside stars that burn predominantly via the CNO cycle, the nitrogen abundance will be
far larger than it normally is, while carbon and oxygen will be correspondingly underabundant.
Indeed, such abundance patterns are observed in massive stars which have lost a lot of mass, so
that processed material reaches the surface. Examples of these are the ON stars and Wolf-Rayet
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stars of type WN. (In carbon-rich Wolf-Rayet stars, one even sees the products of helium fusion.)
Also, in lower-mass red giants, some CNO-processed material is mixed to the surface.

For the CNO cycle, the temperature sensitivity is high, ν = 23 . . . 13 for T6 = 10 . . . 50. As a
result, the p-p chain dominates at low temperatures, and the CNO cycle at high temperatures, as
is illustrated in Fig. 7.3. Furthermore, because of the steep temperature dependence, the energy
production will be highly concentrated towards the centre. Therefore, Lr/r

2 will be large, and
thus ∇rad will be large as well. This is why massive stars have convective cores.

Helium burning

When all the hydrogen has been fused into helium, it is difficult to continue, because until
one reaches carbon, the elements following helium have lower binding energy per nucleon (see
Fig. 7.1). As a result, the fusion of two helium nuclei leads to a 8Be nucleus whose ground state
is nearly 100 keV lower in energy; therefore, it decays back into two alpha particles in a few
10−16 s. Nevertheless, this is still about 105 times longer than the encounter time — in fact, a 8Be
abundance of about 10−9 builds up in stellar matter. Occasionally, it will happen that another
alpha particle comes by so that a carbon nucleus can be formed. This whole process is called the
triple-alpha reaction because it almost is a three-body interaction. Writing out the reactions,

4He + 4He ⇀↽ 8Be

8Be + 4He → 12C + γ

The total energy released per carbon nucleus formed is 7.274 MeV. For these reactions, it is much
less straightforward to derive an energy generation rate, because “resonances” (as described above)
are important for both the above steps. Roughly, the energy generation rate is

ε3α = 4.99 107 W kg−1 f3α Y
3 ρ2 T−3

8

(
1 + 0.00354T−0.65

8

)
e−43.92/T8 (7.21)

(with an uncertainty of ±14%), where f3α = f4,4f8,4 is the combined electron screening factor.
For this reaction, the temperature sensitivity is very high, ν = 40 . . . 19 for T8 = 1 . . . 2.

Other fusion processes can occur simultaneously (energy gain in MeV is shown to the right):

12C + 4He → 16O + γ 7.162

16O + 4He → 20Ne + γ 4.730

14N + 4He → 18F + γ , 18F → 18O + e+ + ν 5.635 (total, excluding neutrino energy)

18O + 4He → 22Ne + γ 9.667

The second of these is slow, and for the last two 14N is not very abundant (and thus its product
18O is not very abundant either). The first reaction is therefore the most important one. It is
rather complicated (and has an uncertainty of ±40%); approximately,

ε12,α ' 9.58 1022 W kg−1 f12,4X12 Y ρT
−2
8

[(
1 + 0.254T8 + 0.00104T 2

8 − 0.000226T 3
8

)
e−(T8/46)2

+
(
0.985 + 0.9091T8 − 0.1349T 2

8 + 0.00729T 3
8

)
e−(T8/13)2

]
e−71.361/T

1/3
8 . (7.22)
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Carbon burning and onward

After helium has been exhausted, the next processes to start are those of carbon burning, at
temperatures of order T9 = 0.5 . . . 1. The situation is very complicated, since the excited 24Mg
nucleus that is produced is unstable and can decay in a number of different ways:
12C + 12C → 24Mg + γ 13.931

→ 23Mg + n −2.605

→ 23Na + p 2.238

→ 20Ne + α 4.616

→ 16O + 2α −0.114

The last column lists the energy gain in MeV. Here, the most probable reactions are those leaving
23Na and 20Ne. The next complication that arises, is that the proton and alpha particle produced
in these two reactions immediately fuse with other particles (since for them, the temperatures are
extremely high). As a result of these complications, the energy rate is rather uncertain. For some
approximate values, see Kippenhahn & Weigert, p. 167.

For temperatures above 109 K, the photon energies become so large that they can lead to
the break-up of not-so-tightly bound nuclei. Reaction rates analogous to the Saha equation for
ionization can be written to determine equilibrium conditions. Generally, however, equilibrium
will not be reached as time is most definitely running out if a star reaches these stages. A reaction
which is important subsequent to Carbon burning is 20Ne+γ → 16O+α (the reverse of the helium
burning reaction). The alpha particles resulting from this photo-disintegration are captured faster
by Neon (via 20Ne + α → 24Mg + γ) than by the Oxygen nuclei, and hence the net reaction is
2 20Ne + γ → 16O + 24Mg + γ, with an energy gain of 4.583 MeV. This is called Neon burning.

The next phase is oxygen burning, for which temperatures in excess of 109 K are required. As
for carbon burning, the reaction can proceed via a number of channels:
16O + 16O → 32S + γ 16.541

→ 31S + n 1.453

→ 31P + p 7.677

→ 28Si + α 9.593

→ 24Mg + 2α −0.393

For these reactions, the most frequent product is 31P; next most frequent is 28Si. Again, the small
particles immediately lead to a multitude of other reactions. Among the end products will be a
large amount of 28Si.

At the end of Oxygen burning, photo-disintegration becomes more and more important. In par-
ticular, photo-disintegration of 28Si leads to the ejection of protons, neutrons and alpha particles,
which fuse with other 28Si particles to form bigger nuclei that in turn are subjected to photo-
disintegration. Still, gradually larger nuclei are built up, up to 56Fe. Since iron is so strongly
bound, it may survive as the dominant species. The whole process is called silicon burning.

For next time

– Think about what happens when the core has turned into Iron.
– Read about stellar models: CO 10.5 and Appendix H / KWW 12–12.3.
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Fig. 7.1. Binding energy per nucleon for the different elements. In the right-hand panel an en-
largement of the plot is shown and the elements are labeled. From Verbunt (2000, first-year lecture
notes, Utrecht University).

Fig. 7.2. Gamow peak result-
ing from the competing ex-
ponential terms: (1) from the
Maxwellian (short-dashed line:
∝ exp(−E/kT ), with kT = 0.2E0

here), and (2) from the penetra-
tion probability (long-dashed line:
∝ exp(−b/

√
E), with b = 10

√
E0

here). The solid line indicates the
product, and the dotted line the
approximating Gaussian discussed
in the text. Upper panel: logarith-
mic scale; lower panel: linear scale.
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Fig. 7.3. Energy generation rates
for matter with ρ = 10 g cm−3,
X1 = 0.7, XCNO = 0.01, and a
range of temperatures. The contri-
butions from the p-p chain (short-
dashed) and CNO cycle (long-
dashed) are also indicated sepa-
rately.

37



8. Stellar Models

Textbook: CO 10.5, App. H / KWW 10–12 (on which the below is partially based).

The problem

To calculate a star’s structure, we need to solve the equations of hydrostatic equilibrium, mass
continuity, energy balance, and energy transport. It makes most sense to write these in terms of
fractional mass Mr rather than fractional radius r (since composition profiles are determined by
the position in terms of Mr, which, unlike r, does not change when the star expands or contracts).
The mass continuity equation (Eq. 1.3) can be used to put the equations into the following form:

[mass continuity (Eq. 1.3)]:
dr

dMr
=

1

4πr2ρ
, (8.1)

[hydrostatic equilibrium (Eq. 1.2)]:
dP

dMr
= −GMr

4πr4
, (8.2)

[energy balance (Eq. 7.1)]:
dLr
dMr

= εnuc − εν + εgrav , (8.3)

[generalized Eddington equation]:
dT

dMr
= −GMrT

4πr4P
∇∗ . (8.4)

In Eq. 8.4, depending on whether the layer is radiative or convective, one has

∇∗ =

∇rad =
3

16πacG

κLrP

MrT 4
(radiative layers) ,

∇ad +∇sa (convective layers) .
(8.5)

Here, ∇sa is the super-adiabatic part of the gradient (i.e., ∇sa ≡ ∇conv−∇ad); ∇sa can be neglected
in the interior (where ∇conv ' ∇ad) but not near the surface (where ∇conv > ∇ad). The condition
for convection can either be the Ledoux or the Schwarzschild criterion.

Evolution consists of thermal adjustments (via εgrav) and changes in the abundances, due to
the fusion reactions that proceed with rates ra,b (Eq. 7.8 — note that 〈σv〉 is a function of T ):

dXi

dt
=
mi

ρ

∑
j,k

rj,k(→i) −
∑
k′

(1 + δi,k′) ri,k′

 , i = 1, . . . , I , (8.6)

where i labels all isotopes being considered, rj,k(→i) are reactions that produce isotope i (from j
and k), and ri,k′ are reactions that destroy i (and also k′). One of the relations can be replaced
by the normalization condition,

∑
iXi = 1 (or this condition can be used to check that you

have coded the nuclear reactions correctly!). Furthermore, the abundances should be mixed in
convective (and semi-convective) zones, taking account of possible overshooting.

In the above equations, we assume that the equation of state, the opacity, and the nuclear
reactions are known functions of composition, temperature, and either density or pressure – these
are equivalent, as the usual expression of the equation of state P = P (ρ, T,Xi) can be inverted
and expressed as ρ = ρ(P, T,Xi) instead. In other words, as functions of (ρ, T,Xi) or (P, T,Xi),
we have:

Equation of state: { P (ρ, T,Xi) or ρ(P, T,Xi) }, ∇ad, s, CV , CP ,
(
∂ lnP
∂ lnT

)
ρ
,
(
∂ lnP
∂ ln ρ

)
T

Opacity (incl. conduction): κ

Nuclear reaction rates: rj,k, εnuc, εν
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[Note that equation-of-state quantities s, CV , CP ,
(
∂ lnP
∂ lnT

)
ρ
, and

(
∂ lnP
∂ ln ρ

)
T

enter into εgrav and the

formulae that can be used to obtain ∇conv in regions where ∇sa is not negligible.] With the above
given, there are as many differential equations as unknowns.

While the equations can be expressed equally well in terms of (ρ, T,Xi), for simplicity, we will
assume hereafter that the above are expressed as functions of (P, T,Xi). The unknowns are then
(P, r, Lr, T,X1, . . . , XI), whose dependence as a function of Mr and t is to be determined. For
this purpose, we need boundary conditions at Mr = 0 and Mr = M and initial values for the
composition Xi and gravitational energy (e.g., an entropy profile).

Boundary conditions

The inner boundary condition is simple: r = 0, Lr = 0 for Mr = 0. Unfortunately, we cannot
put any a priori constraints on Pc and Tc, so that integrating from the centre outwards we have
families of two-parameter solutions r(Pc, Tc) and Lr(Pc, Tc). For small Mr, we can write these
functions as expansions in Mr,

r(Pc, Tc) =

(
3

4πρc

)1/3

M1/3
r , (8.7)

Lr(Pc, Tc) = (εnuc,c − εν,c + εgrav,c)Mr , (8.8)

where ρc and the various εc are known functions of (Pc, Tc). These expansions are often more
useful than the Mr = 0 conditions, since Eqs. 8.1, 8.2, and 8.4 become indeterminate at Mr = 0.

At the surface, we will have conditions for P and T , but R and L are unknown a priori,
leading to a situation similar to that in the centre: for given M , R, and L, one can calculate
log g and Teff , which determine the run of pressure and temperature in the atmosphere. Thus,
integrating from the surface downwards we have families of two-parameter solutions P (R,L) and
T (R,L). Unfortunately, the surface condition is not simple. One could use P = 0, T = 0 for
Mr = M , but for convective envelopes this leads to gross errors. Somewhat more elegant is to use
the photosphere, where Teff = (L/4πR2σ)1/4 and Pphot = 2g/3κ. The condition for the pressure
is derived from requiring τ = 2

3 at the photosphere, as was done in the discussion of the Hayashi
line (Eq. 6.1); for κ, a suitably chosen average of the opacity above the photosphere has to be
used in order to get an accurate value for Pphot (see Fig. 8.1).

The main problem with these simple boundary conditions is that near the surface the assump-
tions underlying the energy transport equation break down: the photon mean-free path becomes
substantial. In these regions, much more detailed radiative transfer calculations are required. One
can use a simple “grey atmosphere” approximation (in which one assumes that the opacity κν
is equal to the Rosseland value, independent of wavelength) to perform an approximate integral
over the atmosphere. An alternate solution to this problem is to leave it to those interested in
detailed stellar atmospheres, and use a grid of their results. For given (R,L), one calculates Teff

and log g, and uses this to to interpolate in the (R,L,M) grid of model atmosphere results to find
P∗, T∗ at the bottom of the atmosphere.

Computational methods

There are several ways one could attempt to calculate stellar models and evolution numerically.
First consider the case where Xi(Mr) and εgrav(Mr) are known, i.e., where we have to solve just
the structure of the star.
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In principle, one could simply start integrating from both sides for trial values of (Pc, Tc) and
(R,L), and try to match the two solutions at some intermediate fitting point, by varying the trial
values. This is called the shooting method. In general, given a good scheme, the solution converges
quickly (the program statstar in CO, App. H, is a simple example; see Numerical Recipes,
§ 17.2 for more details). It is not very efficient, however, if one wants to calculate the evolution,
in which the star evolves through a series of spatial models which are very similar. For this case,
it is better to use a method which uses the spatial model from a previous step as an initial guess
and makes small adjustments in order to find the new equilibrium. Most commonly used for this
purpose is the Henyey method, which is especially well-suited for solving differential equations
with boundary conditions on both sides.

The method works as follows. Take a grid of points M
(j)
r , with j = 1, . . . , N . Then, discretise

the differential equations, bring both sides to the left-hand side, and call these A
(j)
i . Then, a

solution will be given by

A
(j)
i =

y
(j+1)
i − y(j)

i

M
(j+1)
r −M (j)

r

− fi(M
(j+ 1

2 )
r , y

(j+ 1
2 )

1 , y
(j+ 1

2 )
2 , y

(j+ 1
2 )

3 , y
(j+ 1

2 )
4 ) = 0 ,

i = 1, . . . , 4 , j = 1, . . . , N − 1 (8.9)

where y1, . . . , y4 are the four variables of interest (e.g., y1 = r, y2 = P , y3 = Lr, y4 = T ), the index
i numbers the four equations, and f1, . . . , f4 are the right–hand side functions in the differential
equations. The superscript j+ 1

2 is meant to indicate that a suitable average of the values at grid
points j and j + 1 is taken (e.g., just a straight mean).

At the inner and outer boundaries, we have

B
(in)
1 = r(1) − r(Pc, Tc) = y

(1)
1 − f (in)

1 (y
(1)
2 , y

(1)
4 ) = 0 ,

B
(in)
3 = L

(1)
r − Lr(Pc, Tc) = y

(1)
3 − f (in)

3 (y
(1)
2 , y

(1)
4 ) = 0 ,

B
(out)
2 = P (N) − P (R,L) = y

(N)
2 − f (out)

2 (y
(N)
1 , y

(N)
3 ) = 0 ,

B
(out)
4 = T (N) − T (R,L) = y

(N)
4 − f (out)

4 (y
(N)
2 , y

(N)
4 ) = 0 ,

(8.10)

where we assumed one could determine (Pc, Tc) from the values at the first grid point and (R,L)

from those at the last. Note that for the simple case for which M
(1)
r = 0, the functions r(P, T ) and

Lr(P, T ) are identical to zero. If one choses to work in logarithmic units for {ρ, P, r, T}, however,
the first point cannot be at Mr = 0, and therefore the inner boundary conditions are written
in their more general form above. Thus, with the above definitions of A,B, a solution for the

problem requires A
(j)
i = 0, Bi = 0.

Considering the whole grid, we have 4N unknowns y
(j)
i and 4(N − 1) + 2 + 2 = 4N equations.

Now suppose that we have a first approximation y
(j)
i (1) to the solution. For this initial guess, the

constraints will not be met, i.e., A
(j)
i (1) 6= 0, Bi(1) 6= 0, and we need to find corrections δy

(j)
i such

that a second approximation y
(j)
i (2) = y

(j)
i (1) + δy

(j)
i does give a solution, i.e., we are looking for

changes δy
(j)
i that imply changes δA

(j)
i , δBi, such that A

(j)
i (1) + δA

(j)
i = 0, Bi(1) + δBi = 0, or

δB
(in)
i = −B(in)

i (1) , i = 1, 3

δA
(j)
i = −A(j)

i (1) , i = 1, . . . , 4 , j = 1, . . . , N − 1

δB
(out)
i = −B(out)

i (1) , i = 2, 4 .

(8.11)
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For small enough corrections, we can expand the A and B linearly in δy
(j)
i , and write

4∑
k=1

∂B
(in)
i

∂y
(1)
k

δy
(1)
k = −B(in)

i , i = 1, 3

4∑
k=1

∂A
(j)
i

∂y
(j)
k

δy
(j)
k +

4∑
k=1

∂A
(j)
i

∂y
(j+1)
k

δy
(j+1)
k = −A(j)

i , i = 1, . . . , 4 , j = 1, . . . , N − 1

4∑
k=1

∂B
(out)
i

∂y
(N)
k

δy
(N)
k = −B(out)

i , i = 2, 4

(8.12)

[we have dropped the (1) numbering the 1st approximation]. This system has 2+4(N−1)+2 = 4N

equations which need to be solved for the 4N unknown corrections δy
(j)
i . In matrix form,

H



δy
(1)
1
...

δy
(j)
i
...

δy
(N)
4


= −



B
(in)
1
...

A
(j)
i
...

B
(out)
4


, (8.13)

where H is called the Henyey matrix. Generally, this matrix equation can be solved (detH 6= 0),
but since we used a first-order expansion, the next approximation y + δy will still not fulfill the
conditions accurately. Thus, one iterates, until a certain pre-set convergence criterion is met.

Note that Henyey matrix has a relatively simple form, as can be seen by writing out which
elements are actually used for the case N = 3,

• • • •
• • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • •
• • • •





δy
(1)
1

δy
(1)
2

δy
(1)
3

δy
(1)
4

δy
(2)
1

δy
(2)
2

δy
(2)
3

δy
(2)
4

δy
(3)
1

δy
(3)
2

δy
(3)
3

δy
(3)
4



= −



B
(in)
1

B
(in)
3

A
(1)
1

A
(1)
2

A
(1)
3

A
(1)
4

A
(2)
1

A
(2)
2

A
(2)
3

A
(2)
4

B
(out)
2

B
(out)
4



.

Here, the bullets indicate the elements that are used; all others are zero. Because of the sim-
ple structure, the solution can be found in a relative straightforward manner. See Numerical
Recipes, § 17.3, for details, and for a method that is fast and minimizes storage.
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Evolution

So far, we have ignored the chemical evolution and assumed that εgrav was a known function. The
latter function can be estimated easily once we have made an initial model and want to compute
a model one time step later, by approximating

ε
(j+ 1

2 )
grav = −T (j+ 1

2 ) d

dt
s(j+ 1

2 ) = −T
(j+ 1

2 )

∆t

(
s(j+ 1

2 ) − s(j+ 1
2 )

prev

)
, (8.14)

Here, we expressed εgrav in terms of the entropy change, but the other expressions in Eq. 7.3 can
be used in the same way. The point to note is that sprev, which is the entropy that the element had
in the previous model, is known. Since the current entropy is a known function s(P, T,Xi) (from
the equation of state), also ds/dt is a known function of (P, T,Xi). Thus, εgrav is a known function
of (P, T,Xi) and can be used without problems in deriving the stellar structure. [A complication
arises in convective regions, especially ones that are advancing into regions of different chemical
composition. Mixing at constant pressure has no energy cost, but since it is an irreversible process,
it results in an increase of entropy (which of course does not contribute towards εgrav). On the
other hand, when one is mixing the products of nuclear burning (i.e., heavy nuclei) outwards
against gravity while mixing unburned stellar material (i.e., light nuclei) downwards, there is an
energy cost involved in doing this (which is incurred throughout the region where material mixed
upwards has a higher mean molecular weight than material mixed downwards). These effects may
need to be accounted for correctly during stages when the star is evolving on a short timescale,
which involves some modification of Eq. 7.3 for εgrav.]

A scheme like the above for including a variable that changes in time is usually called an
implicit scheme, since the time derivative is calculated implicitly, using parameters from the new
model one is trying to determine. Schemes which rely only on previous model(s) are called explicit;
these are often easier to code but in order to keep good accuracy small timesteps need to be taken.

For the abundances, an explicit scheme is simpler. In such a scheme, one determine the time
derivatives (dXi/dt)prev from the previous models according to Eq. 8.6 and then for the next
model uses

Xi = Xi,prev + ∆t

(
dXi

dt

)
prev

. (8.15)

Note that it is also possible to calculate the chemical evolution using an implicit scheme. For a
more detailed but quite readable discussion, see Eggleton (1971, MNRAS 151, 351). In the same
reference, another choice of independent grid variable is discussed, which allows one to regrid the
model automatically so that fine grid spacing is used where required.
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Fig. 8.1. Effect on the stellar envelope of choosing an incorrect value of Pphot in main sequence
stars of solar metallicity, for a massive star with a fully radiative envelope (O8 V: Teff ≈ 37,000 K,
M ≈ 15 M�), an intermediate mass star with very small convective zones in ionization regions
(B8 V: Teff ≈ 12,000 K, M ≈ 2.5 M�), and a relatively low-mass star with a convective envelope
of non-negligible extent (F0 V: Teff ≈ 7,200 K, M ≈ 1.2 M�). Star symbols (“∗”) indicate choices
for Pphot at the relevant Teff , and lines indicate run of T with P inside the photosphere (solid
lines indicate radiative regions, dashed lines indicate convective regions). Heavy symbols and
lines indicate the correct models.
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9. Main Sequence Stars and Brown Dwarfs

Textbook: CO 10.6, 13.1 (p. 446–451) / KWW 22

Contraction to the Main Sequence

A pre–main sequence star contracts on the thermal timescale. As long as its mostly convective,
it follows a Hayashi track (§6) where its surface temperatures remains roughly constant, while
its luminosities decrease as its radius shrinks. In the core, density scales as R−3 and pressure as
R−4 and hence, as long as the conditions are close to those of an ideal gas, the core temperature

increases as Tc ∝ Pc/ρc ∝ R−1 ∝ ρ
1/3
c . This stops only when the core becomes degenerate or

when fusion is ignited.

Brown Dwarfs

Stars of masses <∼ 0.08 M� become degenerate before they can ignite hydrogen burning in their
cores (except possibly for the brief deuterium-burning stage; see the dashed lines in Fig. 9.1). Such
stars are known as brown dwarfs and continue to cool and dim. A large number of them have
been studied, and the spectral classes L, T, and Y were defined to distinguish them via features
in their infrared spectra.

Zero-age main sequence

The zero-age main sequence (ZAMS) is defined as the beginning of the long, stable period of
core hydrogen burning during the star’s lifetime. Stars burn up their (primordial) deuterium via
2D+p→ 3He+γ before this point, while they are still contracting towards the main sequence (see
Fig. 9.1). Also, the initial carbon abundance in stars is much larger than the CN-cycle equilibrium
value. For stars of solar metallicity of mass >∼ 1 M�, the reactions that convert 12C to 14N (part
of the CN-cycle) can supply the star’s total luminosity for a brief period at the start of hydrogen-
burning. This stage is so short that it is often ignored — e.g., it is not shown in the evolutionary
tracks of Fig. 9.2 below. In the pre–main-sequence evolutionary tracks of Fig. 6.3, this 12C→ 14N
stage causes the last, small upwards-and-downwards wiggle at the end (at left).

Zero-age main sequence luminosity

For a crude estimate of the luminosity1, we use the energy transport equation in terms of mass
(Eq. 8.4), and apply it at T ' 1

2Tc, where we assume Lr ' L [why?], r ' 1
4R, (see Fig. 3.1 for

n = 3 and also CO, Fig. 11.4), and take some appropriately averaged opacity κ. Furthermore, we
approximate dT/dMr ' Tc/M . Thus,

Tc

M
' 3

64π2ac

κL

( 1
4R)4( 1

2Tc)3
' 96

π2ac

κL

R4T 3
c

⇒ L ' π2ac

96

R4T 4
c

κM
. (9.1)

Expressing the central temperature in terms of the central pressure and density using the ideal
gas law, and using the expressions for Pc and ρc appropriate for a polytrope with n = 3,

Tc =
µmH

k

Pc,gas

ρc
= 1.95 107 K µβ

(
M

M�

)(
R

R�

)−1

, (9.2)

1 See KWW, chapter 20, for somewhat less crude approximations.
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where β was defined as the ratio of the gas pressure and the total pressure. Inserting this in
Eq. 9.1,

L

L�
' 10

µ4β4

κ

(
M

M�

)3

. (9.3)

Hot zero-age main-sequence stars

For a hot star, electron scattering dominates in the interior. Thus, κ ' 0.2(1 + X) cm2 g−1

(Eq. 4.10). For a star with solar abundaces which has just arrived on the main sequence, µ ' 0.613,
and L ' 4L� (M/M�)3. For an intermediate-mass stars, this estimate agrees reasonably well with
detailed models (see Fig. 9.2). The slope, however (L ∝ M3) is slightly too shallow between 2
and 8M�, where the detailed models give L ∝M3.7; above 8M� it is too steep. These effects are
due to the presence of a central convection zone (which decreases the effective opacity) and the
contribution of radiation pressure (which decreases β). The convection zone increases in size with
increasing mass (see Fig. 9.3 and Table 9.1), and radiation pressure stars to become important
for higher masses.

Cool zero-age main-sequence stars

For stars withM <∼ 1M�, the opacity is dominated by bound-free processes. Inserting the estimate
Eq. 4.16 in Eq. 9.3, and using ρ ' 1

8ρc ' 7 ρ (for an n = 3 polytrope) as well as Eq. 9.2,

L

L�
' 0.07

µ7.5

Z(1 +X)

(
M

M�

)5.5(
R

R�

)−0.5

. (9.4)

Thus, given that R depends approximately linearly on M , we find a very steep mass-luminosity
relation, much steeper than that observed or inferred from models. Furthermore, the luminosity
of the Sun is underestimated (L ' 0.05L� for µ = 0.613, Z = 0.02, X = 0.708). The reason this
does not work as well as for the massive stars, is that with decreasing mass, more and more of the
outer region becomes convective (see Fig. 9.3), lowering the effective opacity. Only ∼ 2% of the
Sun’s mass is convective (although this is nearly the outer ∼ 30% of the Sun’s radius), so a n = 3
polytrope is not completely unreasonable, but stars of M <∼ 0.2M� are completely convective (so
a n = 1.5 polytrope would be more appropriate). Furthermore, for very low masses, degeneracy
becomes important (implying the contribution β of ideal-gas pressure decreases).

Evolution on the main sequence

For both hot and cool stars, the luminosity scales with a high power of the mean molecular weight.
As hydrogen is burnt, µ increases, and therefore the luminosity will increase as well, as can be seen
in Fig. 9.2. Numbers for parameters at the beginning and end of the main sequence for massive
stars are given in Table 9.1.

To think about

– Ensure you understand why the estimated slopes are different from those from detailed models.
– What happens once Hydrogen is exhausted? How this will depends on mass?
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Table 9.1. Fractional sizes of the convective core in main-sequence stars

. . . . . . . . . . . . . . ZAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . TAMS . . . . . . . . . . . . .
M∗ logL log Teff Mcc Mcc/M t M∗ Mcc Mcc/M

(M�) (L�) (K) (M�) (yr) (M�) (M�)

120 6.254 4.739 102.4 0.853 2.9 106 80.9 63.6 0.786
60 5.731 4.693 46.3 0.772 3.7 106 43.0 27.5 0.640
20 4.643 4.552 10.8 0.540 8.8 106 19.1 6.5 0.339
5 2.720 4.244 1.52 0.304 9.9 107 5 0.39 0.078
2 1.177 3.952 0.46 0.229 1.7 109 2 0.13 0.065
1 −0.207 3.732 0 0 9.7 109 1 0 0

Fig. 9.1. Luminosity as a function of time for very low mass stars (solid lines) and brown dwarfs
(dashed lines). The horizontal plateaus in the tracks at upper left show where the period of
deuterium burning halts the pre–main-sequence luminosity decline (for a period of up to a few
million years) in very low mass stars, as well as in brown dwarfs. Brown dwarfs models of mass
< 0.015 M� (i.e., less than about 15 Jupiter masses) have been designated as “planets” (dot-
dashed lines) in this figure.

46



Fig. 9.2. HRD for the ZAMS and sev-
eral evolutionary tracks, calculated with
the Eggleton evolutionary code. The la-
bels are masses in solar units. The sym-
bols indicate components of binaries for
which the masses, radii, and luminosi-
ties were determined observationally. For
the tracks, the solid, dotted, and dashed
portions indicate where evolution is on a
nuclear, thermal, and intermediate time
scale, respectively (evolution is upwards
and rightwards from the ZAMS; the brief
initial 12C → 14N stage is not shown).
For masses ≥ 2 M�, the end of the
main sequence occurs at the first wiggle
in the tracks, a bit to the right of the
ZAMS. From Pols et al. (1995, MNRAS
274, 964).
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Fig. 9.3. Mass fraction m/M ≡Mr/M as a function of stellar mass M at the ZAMS. Convective
regions are indicated with the curls. The solid lines indicate the fractional masses at which r/R =
0.25 and 0.5, and the dashed ones those at which Lr/L = 0.5 and 0.9. Taken from KW (their
Fig. 22.7).
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10. The end of the main sequence

Textbook: CO 13.1, p. 451ff / KWW 30 (and remind yourself of KWW 26.2 or problem set 1)

Hydrogen exhaustion in the core

For more massive stars, hydrogen exhaustion will happen in a larger region at the same time,
while for less massive stars, it will initially just be the centre itself. Since in the core one gets
Lr = 0, also the temperature gradient dT/dr = 0, i.e., the core will become isothermal.

From our discussion of polytropes, it was clear that completely isothermal stars cannot exist
(γ = 1 and n = ∞), but is it possible to have an isothermal core? In the context of polytropes,
one could rephrase this as the requirement that averaged over the whole star one has γ > 1.2
(n < 5). The result is that for a star in hydrostatic equilibrium, only a relatively small fraction
of its mass can be in an isothermal core.

Schönberg-Chandrasekhar limit

For the isothermal core, one can rederive the virial theorem for the case that the pressure external
to the object under consideration is not equal to zero. One finds

2Ucore = −Ωcore + 4πR3
corePcore, (10.1)

where Pcore is the pressure at the outer boundary of the core.
For an isothermal core (and ideal gas), the internal energy is simply Ucore = 3

2NcorekTcore, with
Ncore = Mcore/mHµcore the number of particles in the core. Writing Ωcore = −qcoreGM

2
core/Rcore,

and solving for Pcore, one finds,

Pcore =
3

4π

kTcore

mHµcore

Mcore

R3
core

− qcore

4π

GM2
core

R4
core

. (10.2)

Thus, the expression contains two competing terms, the thermal pressure (∼ρTcore) and the self-
gravity (∼Rcoreρg). Now consider an isothermal core with fixed mass Mcore. For very low external
pressure Penv, the core can provide a matching Pcore for relatively large radius where the thermal
term dominates. For increasing external pressure, the radius has to decrease, but clearly at some
point the self-gravity will become important, and it becomes impossible to provide a matching
Pcore. This maximum pressure can be determined by taking the derivative of Eq. 10.2 with respect
to radius2, and setting it equal to zero. One finds,

Rcore =
4

9
qcoreGMcore

mHµcore

kTcore
⇒ Pcore,max =

3

16π

(
9

4

)3(
kTcore

mHµcore

)4
1

q3
coreG

3M2
core

. (10.3)

Thus, Pcore,max ∝ T 4
core/µ

4
coreM

2
core, i.e., the maximum pressure an isothermal core can withstand

decreases with increasing core mass.
For the pressure exerted by the envelope, generally P ≈ GM2/R4, ρ ≈M/R3, and, since also

Penv = kTenvρenv/mHµenv, Tenv ≈ (mHµenv/k)(GM/R). Combining,

Penv = Cenv
1

G3M2

(
kTenv

mHµenv

)4

, (10.4)

2 In CO, p. 492, the derivative is taken with respect to mass. This is rather illogical.

49



where Cenv is a constant depending on the precise structure of the envelope.
At the boundary, Tenv = Tcore and Penv < Pcore,max, i.e.,

Cenv
1

G3M2

(
kTcore

mHµenv

)4

< Ccore

(
kTcore

mHµcore

)4
1

G3M2
core

. (10.5)

Inserting numerical values of Ccore and Cenv obtained from more detailed studies, one finds

Mcore

M
<∼ 0.37

(
µenv

µcore

)2

, (10.6)

For a helium core (µcore ' 4
3 ) and an envelope with roughly solar abundances3 (µenv ' 0.6), one

thus finds a limiting fractional mass MSC ' 0.08M .

As a function of mass

With the above, we can describe what will happen when hydrogen is exhausted in the core,

– For massive stars (M >∼ 6M�), the convective core at hydrogen exhaustion exceeds 8% of
the total mass (see Table 9.1). Thus, an isothermal core cannot form. Instead, the core will
contract until helium fusion starts. This happens on a thermal timescale, and causes the star
to become a red giant (see next chapter).

– For intermediate-mass stars (1.4 <∼M <∼ 6M�), an isothermal core will form once hydrogen is
exhausted in the centre. Around this core, hydrogen burning will continue, leading to growth
of the core. This phase of the evolution is called the sub-giant branch. It will continue until
the mass of the core exceeds 8% of the total mass, at which time the core has to contract,
and the star becomes a red giant on the thermal timescale, as above. For stars more massive
than M >∼ 2.4M�, the contraction will be stopped by the ignition of helium burning, while
for lower masses degeneracy sets in.

– For low-mass stars (M <∼ 1.4M�), the isothermal core becomes degenerate before the critical
mass fraction is reached, and no rapid phase of contraction occurs. Thus, the star moves to
the red-giant branch on the nuclear time scale of the shell around the core.

To think about

– What sets the burning rates around isothermal cores?
– Remind yourself of why burning on the main sequence is stable. What is different for burning

in a shell around a core?

3 In general, some processed material will be present in the envelope as well.
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11. The various giant branches

Textbook: CO 13.2 (though this supplements(and partly replaces it) / KWW 31–34

General considerations

From observations, we see that stars which have left the main sequence, cluster predominantly
near low temperatures, but high luminosity. Thus, their radii are large, i.e., they are giants.
From observations of globular clusters, one finds that even low-mass stars can become extremely
luminous in this phase (see Fig. 1.2). The two basic questions to be addressed are why stars
become so cool, and how they can become so much more luminous than they were on the main
sequence. Both properties are reproduced in stellar models, but it is not always simple to point to
a specific reason why a star behaves as it does. Indeed, articles continue to appear with titles like
“why stars inflate to and deflate from red giant dimensions” (Renzini et al. 1992, ApJ 400, 280),
“on why intermediate-mass stars become giants after the exhaustion of hydrogen in their cores”
(Iben 1993, ApJ 415, 767), and “a red giant’s toy store” (Miller Bertolami 2022, ApJ 941:149).
Out of necessity, therefore, the discussion in this chapter will be somewhat vague. To give a
framework, schematic evolutionary tracks for a low-mass (1M�), an intermediate-mass (5M�),
and a high-mass (25M�) star are shown in Fig. 11.1. One sees that intermediate-mass stars go
through the most contorted track. Therefore, the track for the 5M� case is shown in more detail
as well, with the important physical processes in the various phases indicated; since this track
was taken from an early (less accurate) computation, more recent evolutionary tracks are shown
in Fig. 11.2, plus a schematic 5M� case (Fig. 11.3) and 1M� case (Fig. 11.4) with insets showing
schematically the abundance profiles at various stages during the star’s evolution.

Regarding the question of the increase in luminosity seen for giants, it is worthwhile to think
back to what determines the luminosity on the main sequence. There, in essence, the luminosity
is determined by how quickly the envelope can transfer and radiate energy; the star will contract
until nuclear fusion generates a matching amount of energy in the core. The principal difference
for a giant is that the burning occurs in a shell, whose properties are not just determined by the
envelope above, but also by the core below.

As a star’s envelope expands and it becomes a red giant (approaching the Hayashi track), the
convective envelope eventually comprises most of the tenuous envelope. In other words, the base
of the convective envelope moves inwards in mass Mr (though not necessarily in radius), reaching
into regions that had been partially processed by nuclear burning on the main sequence (CN-
cycle and p-p chain reactions). This processed material is thus mixed throughout the convective
envelope to become visible at the star’s surface, a process known as “first dredge-up” (this
stage is indicated in Figs. 11.3 and 11.4). This yields reduced 12C/13C and C/N ratios at the
stellar surface; observations of these ratios in stars during this stage of evolution are in fairly good
agreement with what is predicted by computational models.

Low mass giants

For low-mass stars, the contraction of the core after hydrogen exhaustion is stopped by elec-
tron degeneracy pressure before the core becomes hot enough for helium ignition. Therefore, the
Schönberg-Chandrasekhar limit becomes irrelevant, and the core can grow until something more
drastic happens. Since no energy is generated within the core, the temperature in the whole core
will equilibrate with that in the surrounding hydrogen-burning shell.
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Shell burning around a degenerate core

In the layers near the dense, concentrated core, the pressure structure is dominated by the strong
gravitational attraction of the core rather than by the pressure of the overlying envelope. The core
becomes more and more dominant as the star evolves, since the core grows in mass and shrinks
in size, while the envelope becomes more and more tenuous.

In the limit that the envelope can be considered weightless, and the shell contains a mass
much smaller than that of the core (and provided also that the base of the convective envelope
does not actually reach into the burning shell — see “hot bottom burning” below), the properties
of the shell depend only on the mass Mcore and radius Rcore of the core. This implies that
the length scale in the shell will be set by Rcore, i.e., that if one compares models for different
(Mcore, Rcore), the run of pressure, density, etc., with r/Rcore will be very similar. For instance,
if in a given model, P/Pcore = f(r/Rcore), where Pcore is the pressure at the bottom of the shell
(i.e., the outer boundary of the core) and f(r/Rcore) a functional dependence on r/Rcore, one
then expects that in another model P ′/P ′core = f(r′/R′core). This expectation is confirmed by real
models (see Fig. 11.5). Refsdal & Weigert (1970, A&A 6, 426) used such assumptions to derive the
dependencies of ρ(r/Rcore), T (r/Rcore), P (r/Rcore), and Lr(r/Rcore) on Mcore and Rcore (see also
KWW 32.2). They assumed the ideal gas law, an opacity law κ = κ0P

aT b, and energy production
ε = ε0ρ

η−1T ν (via reactions with η reactants, where η = 2 except for the 3α reaction), and found

ρ(r/Rcore) ∝ Mα1
coreR

α2
core, α1 = −ν−4+a+b

η+1+a , α2 = ν−6+a+b
η+1+a ,

T (r/Rcore) ∝ Mβ1
coreR

β2
core, β1 = 1, β2 = −1,

P (r/Rcore) ∝ Mγ1
coreR

γ2
core, γ1 = 1− ν−4+a+b

η+1+a , γ2 = −1 + ν−6+a+b
η+1+a ,

Lr(r/Rcore) ∝ Mδ1
coreR

δ2
core, δ1 = ν − η ν−4+a+b

η+1+a , δ2 = −ν + 3 + η ν−6+a+b
η+1+a .

(11.1)

One sees that the temperature scales with Mcore/Rcore independent of details (a, b, n, ν) of the
energy generation process and the opacity law (indeed, the scaling follows directly from hydrostatic

equilibrium and the ideal gas law). For a degenerate core with Rcore ∝M−1/3
core , one would expect

T ∝ M
4/3
core. A more detailed analysis (Miller Bertolami 2022, ApJ 941:149) yields T ∝ Mcore,

because the radius of the shell does not vary much – the degenerate core shrinks but the non-
degenerate layer of Helium between it and the shell extends as the core mass increases.

Since fusion depends strongly on temperture, one expects a strong increase in luminosity with
increasing core mass. This is only partly offset by the fact that the pressure and density actually
decrease with increasing Mcore. Indeed, from numerical values (see Table 11.1), one sees that one
has stellar luminosity L ∝M∼9

core for a shell in which hydrogen is burned via the CNO cycle; this
is confirmed by detailed models, which find L ∝M∼8

core on the upper RGB (where the envelope is
the most extended).

Thus, we see that the luminosity increases very steeply with increasing core mass. Since the
envelope is almost completely convective, and the star is close to the Hayashi line, the effective
temperature cannot increase much. In the HR diagram, the star therefore moves almost straight
up, along the so-called ascending or red giant branch (RGB). As the hydrogen shell burns its
way outwards in mass Mr, the convective envelope retreats ahead of it: deepest first dredge-up
occurs not far above the base of the RGB (see Fig. 11.4).

On the upper RGB of low mass stars (subsequent to first dredge-up), there is evidence of
some further CNO-cycle processing of envelope material, in spite of the fact that the base of the
convective envelope is at temperatures far too low for such nuclear processing. This indicates
that a slow “extra” mixing mechanism is at work (probably driven by rotation effects), mixing
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Table 11.1. Dependencies of ρ, T , P , and L in a shell on Mcore and Rcore.

case η ν α1 α2 β1 β2 γ1 γ2 δ1 δ2

CNO, hot 2 13 −3 2.33 1 −1 −2 1.33 7 −5.33

CNO, cool 2 16 −4 3.33 1 −1 −3 2.33 8 −6.33

triple-α 3 22 −4.5 4 1 −1 −3.5 3 8.5 −7

Taken from Refsdal & Weigert (1970, A&A 6, 426). For all cases, it is assumed
that electron scattering dominates the opacity (i.e., a = b = 0).

some material between the convective envelope and the hydrogen-burning shell. (This is a similar
mechanism to that which causes the main-sequence lithium depletion in stars like the Sun.)

Evolution of the degenerate core

While the core grows, it remains approximately isothermal, and at the temperature of the shell
surrounding it. In principle, the increase in temperature goes towards lifting the degeneracy, but
this is more than compensated for by the increase in core density, ρcore ∝ Mcore/R

3
core ∝ M2

core;
see Fig. 2.2.

As one increases the density and temperature, however, the helium ions (which are not degen-
erate) start approaching each other more and more closely during interactions, and will start to
fuse when the core mass increases to 0.45M� (and Tcore ' 108 K). [Verify that you understand
why this is independent of the total mass of the star.] The fusion will increase the temperature
in the core, but will not reduce the density at first, since the pressure exerted by the ions is small
compared to the electron degeneracy pressure. With increasing temperature and constant density,
energy generation increases exponentially, until finally the thermal pressure becomes high enough
to force the core to expand. By this time, the luminosity from the core has become ∼1011 L�, i.e.,
roughly equal to that from the entire Galaxy! Unfortunately, it does not seem possible to observe
this helium core flash: the energy is used to expand the envelope.

From detailed models, it turns out that as the degenerate core grows hotter, in its centre
the pressure and temperature are sufficiently high that energy is lost in neutrino creation. As a
result, the centre will be slightly cooler, and helium core flash ignition will be in a shell around
it. Burning will move inwards as the core is heated (possibly in a succession of mini-core-flashes
following the main core flash), until degeneracy is lifted throughout the core.

After the helium core flash

The evolution during the helium flash is not very well understood, but it appears to be followed by
a phase of quiet helium burning in a non-degenerate core. This core will still haveMcore ' 0.45M�,
but its radius will have increased significantly. Thus, one expects that the luminosity contributed
by the hydrogen shell will be much smaller, ∼100L� (down from ∼1000L�). During this time,
the position of the star in the HR diagram depends on its metallicity, which determines the opacity
in the envelope as well as the efficiency of energy generation in the CNO cycle (via XCNO). For
solar metallicity, stars remains near the Hayashi track, in the so-called red clump (see the 2 M�
track in Fig. 11.2, and the 1 and 2 M� tracks in Fig. 9.2). For lower metallicities, stars will move
to the horizontal branch (see Figs 11.1, 11.4, 1.1 and 1.2). The position on the horizontal branch is
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determined by the envelope mass as well as the metallicity. Mass loss of order 0.2 M� appears to
take place between the main sequence and the horizontal branch; possibly there is a mass ejection
episode due to the helium core flash (although pure stellar wind mass loss on the RGB has not
been ruled out). Some such low mass stars traverse a region of the HR diagram where their outer
envelopes are pulsationally unstable, becoming RR Lyrae variables.

After helium is exhausted in the core, the core, now composed of carbon and oxygen, will
become degenerate, and burning will continue in a helium shell. This shell will become brighter as
the core mass increases, and the star starts to move up the asymptotic giant branch (AGB).
During the later phases, the burning in the helium shell becomes unstable, leading to so-called he-
lium shell flashes, which will be discussed below. During this phase, the envelope mass is reduced
by nuclear burning and mass loss. The latter becomes especially important at very high lumi-
nosities, when the envelope becomes pulsationally unstable (becoming, e.g., Mira variables, with
large pulsation amplitudes). At that time, a so-called “super-wind” starts. Once the hydrogen-rich
envelope has dwindled to <∼1% of the total mass, it deflates, and the star moves towards the blue
at essentially constant luminosity, burning what little material remains. (After the star has left
the AGB, there is a period when its surface is hot enough to yield UV radiation that ionizes the
material lost most recently, which is then visible as a glowing “planetary nebula” — a misnomer,
since it has nothing to do with planets). The star will be left with roughly 10−2M� of helium and
10−4M� of hydrogen, around a carbon-oxygen white dwarf. From observations of white dwarfs,
one finds masses mostly in the range 0.55–0.60M�. Apparently, the remainder of the envelope
mass of low-mass stars is lost in their latest stages.

Intermediate mass giants

For an intermediate-mass star, after hydrogen is exhausted in the core, burning continues in a
thick shell around an isothermal core. This can be seen in Fig. 11.6 (following point C), where
the changing interior structure of a 5M� star is shown. This corresponds to the phase between
points 4 and 5 in Fig. 11.1. A while after point C, the isothermal core reaches the Schönberg-
Chandrasekhar limit, and the star moves rapidly towards the red. During this phase, the surface
luminosity drops, but this is mostly because part of the energy generated in the core is used for
the expansion of the envelope (see below). The star stabilizes again when helium is ignited in the
core, and the envelope has become largely convective (point E in Fig. 11.6, point 7 in Fig. 11.1,
point 9 in Fig. 11.3 — this is the point of deepest first dredge-up in intermediate mass stars).

At this phase, the core (which initially has mass ∼ 0.75M� in a 5M� star) hardly notices
that there is another 4M� of shell and envelope around it, and its structure and luminosity are
very similar to what they would have been if the core had been an isolated 0.75M� helium main-
sequence star. This reflects the fact that the envelope has become so dilute that it exerts negligible
pressure. Like for the low-mass stars, the conditions in the hydrogen-burning shell depend almost
completely on the properties of the helium-burning core.

When the helium core evolves, its “effective temperature” will at first, like that of a hydrogen
main-sequence star, become slightly lower, and its radius will become slightly bigger. As a result,
the hydrogen shell becomes less luminous. Since the shell produces most of the star’s luminosity,
the luminosity will drop somewhat (just after point E in Fig. 11.6, between 7 and 8 in Fig. 11.1).
The mass of the helium core, however, will increase, and this causes the core to move upward in
mass along the helium main-sequence, towards somewhat larger radius and higher temperature.
The higher temperature causes an increase in the energy production in the shell, and therewith
a rise in the star’s luminosity. This corresponds to the increase in luminosity up to point G seen
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in Fig. 11.6 (between 9 and 10 in Fig. 11.1). During portions of these “blueward loops” in the
HR diagram, intermediate mass stars may also lie in regions of the HR diagram where their outer
envelopes are pulsationally unstable, becoming Cepheid variables.

When helium is exhausted in the centre, an isothermal carbon-oxygen core forms, and around
it helium is burnt in a thick shell (F to G in Fig. 11.6; 10 to 11 in Fig. 11.1). When the core
reaches the Schönberg-Chandrasekhar limit, it will collapse (note that the mass of the carbon-
oxygen core should be measured relative to the mass of the helium star). As a result, the helium
shell will become much more luminous, the layers above it will expand, and the hydrogen shell
will be extinguished (H–K, 13–14; note that the extra loop in the HR diagram shown in Fig. 11.1
between points 11 and 14 is probably spurious, as it does not show up in more recent stellar
models such as those in Figs. 9.2 and 11.2). This expansion causes the convective envelope to
engulf hydrogen-exhausted material that the hydrogen shell had left behind, in a process known
as “second dredge-up”. (This occurs near point 15 in Fig. 11.3. Low mass stars, where the
hydrogen-burning shell is not extinguished, do not experience second dredge-up.) The core becomes
degenerate, and at first there is only a helium shell around it. As the shell eats outwards, it comes
close to the position where second dredge-up has left hydrogen-rich material, and the hydrogen
shell is re-ignited.

From here on, the evolution becomes similar to the late evolution of low-mass stars. The helium
shell becomes unstable, and near the top of the asymptotic giant branch a super wind sets in,
which limits the growth of the degenerate core. When the envelope has become too tenuous, it
deflates, the star moves to the blue, and a white dwarf is formed.

High mass giants

For even more massive stars, after hydrogen exhaustion the core contracts immediately to helium
ignition. This slows down, but does not stop the star from moving across the HR diagram. For
the 25M� star shown in Fig. 11.1, helium is exhausted while the star is only midway over to
the red-giant branch. At that point, the core contracts further, and carbon is ignited. After that,
things move on very fast, and the star soon explodes as a supernova.

The evolution of these massive stars is complicated greatly by mass loss, even on the main
sequence. Due to mass loss, the whole hydrogen-rich envelope may disappear, in which case the
star becomes a helium star, and moves to high temperatures in the HR diagram. Indeed, for
very massive stars, this is virtually unavoidable, as their luminosity on the way to the red giant
branch exceeds the Eddington luminosity, and their envelopes are rapidly blown off. This results
in an empty region in the top right of the HR diagram, above and to the right of the Humphreys-
Davidson limit (see Fig. 1.3). Stars close to this limit indeed are observed to have extremely large
and variable mass-loss rates; these are the so-called luminous blue variables.

Helium shell flashes (also called “thermal pulses”)

Above, it was mentioned that the helium shell could become unstable. To see how this arises, we
do a stability analysis for a thin shell and compare this with a similar analysis for a core (which
should be stable). For a core, the mass of the burning region goes as m ∼ ρr3, and expansion
in reaction to an energy perturbation corresponds to a small increase δr. For a thin shell at
radius r0 and with thickness D, the mass in the burning region goes as m ∼ ρr2

0D. For a small
expansion of the shell, the thickness will increase by δD but r0 will be approximately constant.
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The corresponding change in density for the two cases (assuming no change in mass of the burning
region) can be written in fractional units as

core:
δρ

ρ
= −3

δr

r
shell:

δρ

ρ
= −δD

D
= − r

D

δr

r
. (11.2)

In the last equality, we used δr to indicate the change in the outer radius of the shell. Assuming
the layers outside the expanding core or shell change homologously with the outer radius, we have
for both that P ∝ r−4, or δP/P ∝ −4δr/r. For an ideal gas, the temperature T ∝ P/ρ, and thus
the fractional temperature change is δT/T = δP/P − δρ/ρ. Similarly, given an energy generation
rate ε ∝ ρλT ν , the fractional change in energy generation rate is δε/ε = λδρ/ρ+ νδT/T . For the
two cases, these fractional changes can be expressed in terms of the fractional change in radius by

core:
δT

T
= (−4 + 3)

δr

r
, shell:

δT

T
=
(
−4 +

r

D

) δr
r
,

δε

ε
= (−3λ+ ν(−4 + 3))

δr

r
,

δε

ε
=
(
−λ r

D
+ ν

(
−4 +

r

D

)) δr
r
.

(11.3)

For the core, a small expansion (δr > 0) leads to a decrease in temperature and energy generation
rate (δT < 0, δε < 0), i.e., the burning is stable. However, for a shell with D � r (and ν > λ), a
small expansion leads to increases in T and ε, i.e., burning in a thin shell is unstable.

While a shell is eating its way out, it tends to become thinner and thus closer to instability.
And indeed the instability also occurs in real and model stars, as can be seen in Fig. 11.7.
In the left panel, one sees that at the start of the instability, the density decreases and the
temperature increases sharply. As a result, the local luminosity becomes several times the total
stellar luminosity. This continues until the shell expands sufficiently (i.e., its thickness is no longer
much smaller than the radius). Then it gently settles back, until the instability sets in again.

Note that while the luminosity in the shell becomes very high, that at the top of the shell
does not increase so dramatically. This is because most of the energy is used to expand the
shell. Furthermore, as the helium shell expands, the temperature in the hydrogen shell drops, and
hydrogen burning is temporarily extinguished. Therefore, the luminosity of the star actually goes
down during a shell flash. As on the RGB, for stars where envelope convection does not reach
into the hydrogen-burning shell, the star’s (interflash) surface luminosity is determined only by
the star’s core mass (and metallicity) — after the first few helium shell flashes, a “universal”
core-mass–luminosity relation is approached, which is almost linear in the core mass (which
one can reproduce using a derivation analogous to that of the core-luminosity relation above, but
including the effects of radiation pressure; see KWW 34.4).

In the right-hand panels of Fig. 11.7, one sees that a small convection zone appears during the
shell flash. This will distribute processed material all through the region between the hydrogen
and helium shells. While the shell flash is occurring, the lower boundary of the outer (envelope)
convection zone retreats somewhat, in response to the lower hydrogen shell luminosity, and then
descends again. Fig. 11.8 shows a case where “third dredge-up” occurs, in which the envelope
convection descends below the position of the (extinguished) hydrogen shell into the intershell
region, and can thus bring up highly processed material to the surface. Observationally, this
leads to the formation of S stars (enriched in “s-process” isotopes, that result from slow neutron
irradiation) and carbon stars (where the surface C/O ratio exceeds unity).

Surface carbon enrichment (possibly yielding a carbon star) is fairly straightforward, as the
3α reaction during the earlier helium shell flash has enriched the intershell region with 12C.
Formation of S stars is less simple. The observed s-process isotopes at the surface of low mass
S stars (and carbon stars) would have required slow irradiation of iron nuclei by a fairly large
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number of neutrons (the iron is present in the original stellar composition, part of the metallicity).
The 22Ne(α,n) reaction can produce a few neutrons during the helium shell flash, but not enough
— the helium-burning temperature is not high enough for this reaction to be significant. On
the other hand, the 13C(α,n) reaction would occur at lower temperatures, but the CNO-cycle
burning leaves behind almost no 13C. This problem could be solved if, during the third dredge-up,
a relatively small amount of hydrogen was mixed downwards into the carbon-rich intershell region
(computational models do not exhibit such behavior, but there are several hard-to-model processes
that might yield such a result, e.g., semiconvection, partial convective overshoot, rotation-induced
mixing, etc.). As this region heated up again, it would burn up the hydrogen via the 12C(p, γ)
reaction, yielding a region with a relatively large 13C abundance. Later, this region would grow
hot enough for the 13C(α,n) reaction to burn up the 13C and irradiate the local material with
neutrons, yielding s-process isotopes. These would be engulfed by the next flash-driven intershell
convective region, which would mix them throughout the intershell region; some would then be
mixed to the surface in the following dredge-up episode (see Fig. 11.8).

Hot bottom burning

In stars of mass >∼ 4 M�, the base of the convective envelope eventually reaches into the hydrogen-
burning shell during the interflash period (“hot bottom burning”). This can result in CNO-cycle
processing of the envelope, affecting the envelope CNO isotope ratios. When hot bottom burning
occurs, the shell’s properties no longer depend only on the core mass: it is also linked to the
surface via the envelope convection. The star’s luminosity increases significantly above the value
that would have been expected from the core-mass–luminosity relation mentioned above.

The envelope

In the above, we have mostly ignored the envelope. This is not unreasonable if it is as tenuous as
it has to be when the star has swollen to giant dimensions, but we have not yet addressed why this
swelling actually happens. It is clear that real stars do it, and their behavior can be reproduced by
models, but it is not so clear what physical mechanism dominates this process (indeed, as noted
at the start, this question is still debated; see the references there).

Partly, it seems related to the way the opacity varies with density and temperature. Fenerally,
as a star becomes more luminous, its radius increases and effective temperature decreases a little.
This in itself is not enough to become a giant, but as the temperature in the outer layers decreases,
the opacity there increases quite strongly, since it is dominated by bound-free processes. Therefore,
the luminosity cannot easily be transported anymore, and part of it is trapped, leading to further
expansion. At some point, this apparently can become a runaway process, in which the envelope
cools more and more, becomes more and more opaque, traps more and more of the luminosity, and
expands to larger and larger radii. It only stops when the star reaches the Hayashi line, where the
envelope has become almost completely convective, and energy can be transported more easily.

This runaway expansion may be responsible for intermediate-mass stars crossing the HR dia-
gram very fast. Observationally, this results in a lack of stars between the main sequence and the
giant branches, in the so-called Hertzsprung gap. When the luminosity decreases, it appears the
inverse instability can happen, where the envelope heats a little, becomes less opaque, therefore
shrinks a little, releasing energy which increases the temperature, etc. This deflation instability
might be responsible for the blue loops seen in the evolutionary tracks of intermediate-mass stars.
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Fig. 11.1. (Left) Schematic evolutionary
tracks in the HR diagram for stars of low, in-
termediate, and high mass. Heavy portions
indicates phases where the evolution pro-
ceeds on a slow, nuclear timescale. Indicated
are the first and second “dredge up,” phases
in which the outer convection zone reaches
down to layers with processed material. A
third dredge-up occurs during the thermal-
pulse phase, which is also indicated. Note
that the luminosity at which a star leaves
the AGB is a conjecture based on observed
white-dwarf masses. (Bottom) Evolutionary
track of a 5M� star in detail, with im-
portant physical processes for the differ-
ent phases indicated (note that the loop
from point 11 to point 14 is probably spu-
rious — this track was taken from a less
accurate computation, performed several
decades earlier). Both figures taken from the
review of Iben (1991, ApJS 76, 55).
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Fig. 11.3. Schematic evolution of a 5 M� star (from Lattanzio & Boothroyd 1995).
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Fig. 11.5. Run of pressure as a function of
radius in units of the core radius for two
RGB models with M = 1.4M� but differ-
ent core masses and radii. Note how similar
the two curves are, apart from a constant
offset (which is a function of the core prop-
erties only). The striped area indicates the
extension of the burning region within the
shell (0 < Lr < 0.99L). Taken from Refsdal
& Weigert (1970, A&A 6, 426).

Fig. 11.6. (Upper left) Interior structure of a 5M� star during its evolution. “Clouds” indicate
convective regions, heavy shading energy generation at rates ε > 103 erg g−1 s−1, and stippling
variable chemical composition. (Lower left) Corresponding track in the HRD. (Right) Radial
evolution of different mass shells for a 7M� star. The letters A,. . . ,E correspond to the same
evolutionary phases as in the left-hand panels. Taken from KWW, their Figs 31.2, 3.
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Fig. 11.7. Shell flashes. (Left) The four panels give the evolution of the temperature and density
in the shell at the position of maximum energy generation, luminosity at that position and of the
shell as a whole, and surface luminosity. (Top right) Details of the star’s structure near the shell
during two shell flashes. (Bottom right) Evolution of the star’s structure during a series of shell
flashes. Taken from KWW, their Figs 33.3, 4, 5.
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12. The end of a star’s life

Textbook: CO 15.1, 15.3 (up to p. 534; different emphasis) / KWW 35, 36 (much more detailed
than here, including discussion of type Ia supernovae in skip 36.2)

Dwindling into oblivion . . .

A very simple picture of the evolution of a star can be obtained from looking just at the changes
in central density and temperature, as is done in Fig. 12.1. While a star contracts more or less
homologously, and the core is not degenerate, one has ρ ∝ R−3 and T ∝ R−1, from which it
follows that T ∝ ρ1/3. This behaviour can indeed be seen in the lower left corner of the figure.

The demarcation between the regions in ρ, T space where the ideal gas law holds and where
degeneracy is important, is described by a line T ∝ ρ2/3. Therefore, during contraction, the core
of a star comes closer and closer to being degenerate. Before doing so, however, it may reach
conditions sufficient to start nuclear processing, indicated by the various ignition lines in the
figure. If it does not even reach hydrogen ignition, it becomes a brown dwarf.

When hydrogen is ignited, the properties can remain similar, while the star is on the main
sequence. When hydrogen is exhausted, however, the core starts to contract again. For low-mass
stars, we saw that the core becomes degenerate before helium is ignited. If the star does not have
sufficient mass, the core cannot grow up to 0.45M�, and helium will not be ignited; the star will
dwindle, and become a helium white dwarf.4

For both low and intermediate-mass stars, the carbon-oxygen cores become degenerate after
helium burning. In principle, if the star were massive enough, the core might grow sufficiently
due to shell burning to ignite carbon burning. If so, the star would likely explode, leaving no
remnant. In practice, however, it seems the super wind intervenes, and no carbon-oxygen cores
above ∼1.2M� are formed.

For high-mass stars, the carbon-oxygen cores do not become degenerate, igniting core carbon
burning instead. Some stars in a narrow mass range near 8M� may proceed no farther than
carbon burning, becoming “super-AGB” stars and leave oxygen-neon white dwarfs.

. . . or going out with a bang

For stars above ∼8M�, also neon fusion happens and after that degeneracy can no longer prevent
them from proceding with all further burning stages described in §7: their core mass is always
above the Chandrasekhar mass so even though they can become highly degenerate, degeneracy
pressure cannot be high enough to prevent them from contracting and heating up once a given
burning stage is over.

The burning stages follow each other more and more rapidly, as neutrino losses become more
and more important, while the energy gain from the fusion dwindles (Fig. 7.1). Some typical
numbers are listed in Table 12.1.

While the next stage starts in the core, the burning of lighter elements will still continue in
shells. As a result, the structure of a high-mass star near the end of its life becomes somewhat

4 Such low mass stars have not yet had time to finish their main-sequence lives even if they were formed
very early on — the universe has not lived long enough. In binaries, however, somewhat more massive
stars can be “stripped” of their envelopes by mass transfer onto a binary companion while they are on
the red giant branch, and these can indeed leave helium white dwarfs.
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Table 12.1. Neutrino luminosities and timescales of late burning phases

Burning . . . . . . . .15M� . . . . . . . . . . . . . . . . 25M� . . . . . . . .
stage Lν/L τ Lν/L τ

(L ' 104 L�) (yr) (L ' 3 105 L�) (yr)

C 1.0 6.3 103 8.3 1.7 102

Ne 1.8 103 7 6.5 103 1.2
O 2.1 104 1.7 1.9 104 0.51
Si 9.2 105 0.017 3.2 106 0.004

Taken from KW (first edition), their Table 33.1

akin to that of an onion, in which regions with different chemical compositions are separated by
burning shells (see Fig. 12.2).

When an iron core is formed, no further energy can be gained by fusion, since iron has the
largest binding energy of all elements. In order to match the neutrino losses, therefore, the core has
to shrink. This will cause the temperature to rise, and at T > 5 109 K the photons become energetic
enough to break up the iron nuclei, into α particles, protons and neutrons. These reactions are
endothermic and thus cool the core. As a result, the pressure drops, the core shrinks further,
more iron becomes disintegrated, etc. At the same time, neutrinos keep on removing energy.
Furthermore, as the density increases, the highly degenerate electrons are being captured by
remaining heavy nuclei (leading to neutronisation, i.e., converting a proton into a neutron, with
the emission of a neutrino), thus reducing the pressure further. All these processes quicken the
collapse.

At first, the core collapses roughly homologously (i.e., velocity proportional to radius), but
soon this would require speeds in excess of the free-fall speed in the outer region. Thus, one has
an inner collapsing core, with the outer core following on the free-fall time. The latter is of order
one second. The collapse of the inner core will stop only when the neutrons become degenerate
and the density increases so much that the repulsive part of the strong force comes into play,
at ρ >∼ ρnuc ' 1014 g cm−3. The outer layers are still falling in, however, which leads to the
development of a strong shock wave, which will start to move outward. At the same time, the
inner core will become more massive and, since it is degenerate, smaller.

We now estimate a few quantities for the core, taking M ' 1.4M� and ρ ' 1014 g cm−3, and,
therefore, R ' 2× 106 cm. For these numbers, the potential energy is roughly

Epot '
GM2

R
' 3× 1053 erg. (12.1)

Since the core was much larger before the collapse, we see that a couple 1053 erg has to be liberated.
We can compare this with the energy required to dissociate the iron in the core. For every nucleon,
εdiss ' 9 MeV ' 1.4 10−5 erg is required (see Fig. 7.1). Thus,

Ediss = εdiss
M

mH
' 2× 1052 erg (12.2)

which is substantially less than the total energy available. Next, compare the potential energy
with the kinetic energy given to the envelope in a supernova explosion. With an envelope mass of
10M� and a typical (observed) velocity of ∼ 104 km s−1, the total kinetic energy is,

Ekin =
1

2
Menvv

2
env ' 1052 erg. (12.3)
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Thus, there is ample energy available to expel the envelope. The energy emitted in optical light is
∼1049 erg, negligible in comparison, but leads to a luminosity similar to that of an entire galaxy
during the roughly one month it lasts. By far most of the energy is lost in neutrinos.

While there is enough energy to expel the envelope, it has proven very difficult to reproduce
the expulsion in models. There are three effects which can help.

1. The shock. There is enough energy in the shock for expulsion, but a lot of the energy is lost as
the shock goes through the relatively dense inner part of the envelope (which is still falling in).
This is because material is shock-heated to such an extend that neutrino losses and dissociation
become important. From simulations, it seems only a very strong shock could cross through
these layers and lead to a prompt hydrodynamic explosion.

2. Neutrino radiation pressure. The core is so dense that it is optically thick to neutrinos. As a
result, the neutrinos have to diffuse out, and for a few seconds the core is a strong neutrino
source (with Lν ' 1053 erg s−1). Above the “neutrinosphere”, a fraction of the neutrinos
will still be scattered, causing a radiation pressure term just like that due to photons. By
equating the force due to neutrino scattering, fν = κν(Lν/4πR

2c), with that due to gravity,
fg = GMρ/R2, one can define a neutrino equivalent of the Eddington luminosity, Ledd,ν =
4πGMc/κν . From calculations, it appears that the pressure due to the neutrinos in itself is
insufficient to expel the outer layers, but that an explosion can be produced in combination
with the shock, via strong heating and convective motion, in the so-called delayed explosion
mechanism.

3. Thermonuclear reactions. When the shock arrives outside the original iron core, the shock
heating will increase the speed of the fusion reactions in those regions dramatically. At the
increased temperature, Si-burning results mostly in 56

28Ni. This is an unstable isotope, which
decays to 56

27Co through β-decay, with a half-life time of 6.1 d. 56
27Co is unstable as well, and

decays to 56
26Fe (half-life 77.7 d). These and other decay processes keep the supernova bright

for a longer time.

Note that the above description of the explosion of a massive star applies to a Type II
supernova (classified as such by virtue of possessing hydrogen lines in its spectrum). Type I
supernovae show no hydrogen lines in their spectra. Type Ia supernovae (with a strong Si II
line at 6150 Å) result from a different mechanism: the explosion of a carbon-oxygen white dwarf,
which has ignited due to accretion from a binary companion. Type Ib supernovae (with helium
lines) and Type Ic supernovae (with no helium lines) appear to be the explosions of massive
stars, similar to those described above, but which have lost their hydrogen envelope, or even their
helium envelope, by the time of their explosion.

Enrichment of the interstellar medium

Supernovae are a major source of heavy elements in the interstellar medium, contributing some
helium, carbon, nitrogen, oxygen, iron, and many other elements. Intermediate mass stars (and
even low mass stars) contribute some heavy elements due to the mass loss that removes their
envelopes, yielding mainly helium, carbon, nitrogen, and s-process elements. There are other
sources as well, including merging neutron stars (in which some material is lost, forming heavy
elements like gold), novae (recurrent thermonuclear explosions on the surfaces of accreting white
dwarfs in binary systems) and cosmic rays (which produce beryllium, boron, and lithium by
spallation as they hit heavier nuclei such as carbon in the interstellar medium).
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Fig. 12.1. Variation of central
density and temperature during
the course of the evolution of stars
of various masses. Taken from
KW, their Fig. 35.2.

Fig. 12.2. “Onion-skin” structure
of a massive star in the very
last stages of its life (not to
scale). Typical fractional masses,
temperatures (K), and densities
(g cm−3) are indicated along the
axes. Taken from KWW, their
Fig. 35.1.
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13. Newtonian Cosmology

Textbook: CO 29.1

Olbers paradox

Why is the sky dark?

With reference to stars, the main answer is “the finite age of the universe” (plus the fact that
the speed of light is finite).

Cosmological principle

The universe is isotropic and homogeneous (on large scales).

Expansion of the universe, Hubble constant

Given the cosmological principle, expansion can only be by way of a Hubble-like law, in which
the current positions

x(t) = R(t)$ , (13.1)

with $ co-moving positions that do not depend on time (on large scales) and R(t) a time-
dependent scale factor. For the Hubble constant,

v(t) = ẋ(t) = H(t)x(t) ⇒ H(t) =
Ṙ(t)

R(t)
. (13.2)

Note that H0 = H(t0) is the present value of the Hubble constant (t0 = “now”), and by definition
R(t0) = 1.

Friedmann equation(
H2 − 8

3
πGρ

)
R2 = −kc2 with

 k > 0 ⇒ closed
k = 0 ⇒ flat
k < 0 ⇒ open

(13.3)

Critical density

The density required to yield a flat universe:

ρc =
3H2

8πG
(13.4)

Associated is a density parameter, the density relative to the critical density:

Ω(t) ≡ ρ(t)

ρc(t)
(13.5)
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Redshifts, wavelengths, and temperatures

1 + z =
λobs

λem
⇒ λ ∝ R (13.6)

p ∝ 1

λ
∝ 1

R
⇒


ε ∝ 1

R
⇒ T ∝ 1

R
∝ 1 + z (relativistic)

ε ∝ 1

R2
⇒ T ∝ 1

R2
∝ (1 + z)2 (non-relativistic)

(13.7)

Matter-dominated, flat Universe

R = (6πGρc)
1/3

t2/3 =

(
3t

2tH

)2/3

⇒ t

tH
=

2

3

(
1

1 + z

)3/2

(13.8)

To think about:

– If we found some stars or other objects that had ages tstar > tH , what would this imply?
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14. Relativistic Cosmology

Textbook: CO 29.3

Robertson-Walker metric

The most general metric possible for describing an isotropic and homogeneous Universe,

(ds)2 = (cdt)2 −R2(t)

[(
d$√

1− k$2

)2

+ ($dθ)
2

+ ($ sin θ dφ)
2

]
(14.1)

where k is the current curvature of the Universe (as a function of time: K(t) = k/R2(t)).

Friedmann equation

Solving Einstein’s field equations for an isotropic, homogeneous universe leads to exactly the same
Friedmann equation as we found for the Newtonian case, so all the results derived there remain
valid — only the interpretation of k has changed. The density ρ combines rest mass and the
mass-equivalent of energy.

For non-relativistic particles, the kinetic energy of a particle is negligible compared to its rest
mass, and thus,

matter: ρm = ρm,0R
−3 , where ρm,0 is constant. (14.2)

For photons and extreme-relativistic particles, not only is the number density diluted by 1/R3,
the wavelength is stretched proportionally to R (as one can see also from ργ = u/c2, where the
radiation energy density is u = aT 4, combined with T ∝ 1/R). Thus,

radiation: ργ = ργ,0R
−4 , where ργ,0 is constant (14.3)

Note that the above relations assume that matter and radiation are decoupled, and can have
different temperatures. At present, ργ � ρm, but with ρm dominated by dark matter.

Observations of distant supernovae and of the cosmic microwave background indicate an addi-
tional, more exotic contribution than the previously-assumed photons, baryonic matter, neutrinos,
and dark matter. This exotic dark energy appears to be causing the expansion of the universe to
accelerate. The simplest way to obtain such an effect in the Friedmann equation is to insert a
cosmological constant Λ, as follows,

[
H2 − 8

3
πGρ− 1

3
Λc2
]
R2 = −kc2 (with H =

Ṙ

R
, tH ≡

1

H0
as before), (14.4)

where for simplicity we assume that Λ is a constant, independent of t (unlike R, ρ, and H). Since
ρm ∝ 1/R3, the cosmological constant Λ must be negligible at early times. And since ργ ∝ 1/R4,
radiation dominates over matter at early enough times (of course, at high enough temperatures
particles can also become extremely relativistic).
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It is often useful to write the Friedmann equation in terms of current values of ΩM, ΩΛ, etc.,
as follows:

(
Ṙ

R

)2

= H2 = H2
0

(
Ωrad,0

R4
+

ΩM,0

R3
+

Ωk,0
R2

+ ΩΛ,0

)
with



Ωrad,0 =
8πGaT 4

0

3c2H2
0

,

ΩM,0 =
8πGρM,0

3H2
0

,

Ωk,0 =
kc2

H2
0

,

ΩΛ,0 =
Λc2

3H2
0

.

(14.5)

Note that Ωrad,0 + ΩM,0 + Ωk,0 + ΩΛ,0 = 1.

Solutions for special cases

The Friedmann equation can often be solved for flat Universes (k = 0). Examples are (below,
tH ≡ 1/H is the Hubble time):

– k = 0, ΩM = 1 (flat, matter-dominated):

R = (6πGρc)
1/3

t2/3 =

(
3t

2tH

)2/3

⇒ t

tH
=

2

3

(
1

1 + z

)3/2

(14.6)

– k = 0, ΩΛ = 1: (flat, cosmological-constant dominated):

R = exp

(
(t− t0)

√
1

3
Λc2

)
= exp

(
t− t0
tH

)
(14.7)

– k = 0, ΩM + ΩΛ = 1 (flat universe with both matter and cosmological constant):

R =

(
ΩM,0

ΩΛ,0

)1/3

sinh2/3

(
3t

2tH,0
Ω

1/2
Λ,0

)
, (14.8)

where now we have to write this in terms of the current values of H, ΩM and ΩΛ, since these
values change with time. (In case you want to derive this yourself: start with Eq. 14.5, subsitute
x2 = R3ΩΛ,0/ΩM,0 and use that d arcsinhx/dx = (1 + x2)−1/2.)
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15. Observational Cosmology

Textbook: CO 27.4

Co-moving coordinate as a function of redshift

Photon path has ds = 0. Hence,

∫ t0

te

cdt

R(t)
=

∫ $

0

d$√
1− k$2

=



1√
k

arcsin($
√
k) (k > 0)

$ (k = 0)

1√
|k|

arcsinh($
√
|k|) (k < 0)

(15.1)

Writing the integral over time in terms of R for ρm � ργ , we have∫ t0

te

cdt

R(t)
=

∫ R(t0)

R(te)

cdR

RṘ
=

∫ R(t0)

R(te)

cdR

H0R2
√

ΩM,0/R3 + Ωk,0/R2 + ΩΛ,0

, (15.2)

where we used the Friedmann equation and defined Ωk,0 ≡ −kc2/H2
0 .

Two solutions for flat Universes:

k = 0, ΩM = 1, ΩΛ = 0 ⇒ $e =
2c

H0

(√
R(t0)−

√
R(te)

)
=

2c

H0

(
1−

√
1

1 + z

)
, (15.3)

k = 0, ΩM = 0, ΩΛ = 1 ⇒ $e =
c

H0

(
1

R(te)
− 1

R(t0)

)
=

cz

H0
, (15.4)

where for the last equalities we assumed R(t0) = 1 and used R(te) = 1/(1 + z). Note that for the
latter case of a pure cosmological constant with no matter or radiation, the universe is infinitely
old.

Horizon distance

With the above, we can ask for any time from what distance photons arrive that were emitted at
the Big Bang. This is,

dh(t) = R(t)

∫ t

0

cdt′

R(t′)
(15.5)

For a flat, matter-dominated Universe (i.e., ΩM = 1, ΩΛ = 0), one finds from the above dh(t) = 3ct
(using that t = 2

3 tH = 2/3H).
For a flat, Λ-dominated Universe, the horizon is at infinity (though also infinitely redshifted).

This is because in this model the Universe was very close together for an infinitely long time (as
t→ −∞).

Angular size

The angular size for an object with perpendicular diameter D is given by

θ =
D

R(te)$e
=
D(1 + z)

$e
. (15.6)
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For the two solutions given above, one finds

k = 0, ΩM = 1, ΩΛ = 0 ⇒ θ =
H0D(1 + z)

2c
(

1−
√

1/(1 + z)
) , (15.7)

k = 0, ΩM = 0, ΩΛ = 1 ⇒ θ =
H0D(1 + z)

cz
. (15.8)

For local (i.e., z not too large), an expansion in terms of q0 = 1
2ΩM−ΩΛ is often more useful. See

CO.

Standard candles

The luminosity distance dL is defined such that

F =
L

4π$2
e (1 + z)2

=
L

4πd2
L

⇒ dL = $e(1 + z) . (15.9)

Again, one can write a local expansion in terms of q0 (see CO), or find general solutions. For the
two cases listed above,

k = 0, ΩM = 1, ΩΛ = 0 ⇒ dL =
2c

H0

(
1 + z −

√
1 + z

)
(15.10)

k = 0, ΩM = 0, ΩΛ = 1 ⇒ dL =
c

H0
(z + z2). (15.11)

This way of measuring cosmological parameters has been applied most successfully, using
supernovae of type Ia: see Figs. 15.1, and 15.2. For a review, see Leibundgut (2001, ARA&A 39,
67); for more recent results, see results from the SNLS survey, e.g., Astier et al. (2006, A&A,
447, 31) and Sullivan et al. (2011, ApJ, 737:102).

Note that in general the “dark energy” discussed in §14 (and included above in ΩΛ) need
not be a cosmological constant per se, but something with an exotic “equation of state” which
yields a pressure pΛ = wρΛ, where negative values of w yield acceleration of the expansion of the
universe. A cosmological constant is equivalent to w = −1 (which is often simply assumed to be
the case), but other values of w (possibly varying with time) correspond to other forms for Λ
(varying with time). From supernova data from the last decade, combined with other constraints,
Sullivan et al. (2011, ApJ, 737:102) inferred w = −1.06± 0.07, i.e., the data are consistent with a
cosmological constant. To contrain this more accurately is a major goal of the dark energy survey
(mostly via supernovae), CHIME (via Baryon Accoustic Oscillations, which we will return to),
and next-generation CMB experiments.
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16. Big Bang Nucleosynthesis

Textbook: CO 29.2, p. 1177–1180

Ratio of photons to baryons

The number density of photons is given by,

nγ =

∫ ∞
0

4πν2dν

c3
2

ehν/kT − 1
= 8π

(
kT

hc

)3 ∫ ∞
0

x2dx

ex − 1
= 4.2× 108 m−3

(
T

2.736 K

)3

, (16.1)

where we used
∫∞

0
[x2/(ex − 1)] dx = 2ζ(3) ' 2.40411, from a table of integrals.

The present baryon number density is

nB,0 =
ΩB,0 ρc,0

mH
= 6.3 m−3 ΩB,0

(
H0

75 km s−1 Mpc−1

)2

. (16.2)

Thus, the present ratio of baryons to photons (and past, back to e+e− annihilation!) is

η ≡ nB,0

nγ,0
' 1.5× 10−8 ΩB,0

(
H0

75 km s−1 Mpc−1

)2

. (16.3)

Radiation-dominated period

For radiation, the equivalent density is ρrad = aT 4/c2. Since ρrad ∝ R−4, it dominates at early
times; then,

Ṙ

R
=

(
8πG

3

aT 4

c2

)1/2

. (16.4)

For radiation, T ∝ R−1 (see Eq. 13.7: relativistic case), so Ṫ /T = −Ṙ/R; integrating, we get

T =

(
3c2

32πGa

)1/4

t−1/2 . (16.5)

The above is not quite right, as one should include the contribution from neutrinos, as well as, at
early times, the sea of e+e− pairs. For each neutrino family the energy density is uν,ν̄ = 7

8aT
4;

relativistic electrons or positron (which have two spin states) have ue+ = ue− = 7
8aT

4. These can
be included by taking a′ = a(1 + 7

8 [Nν + 2]) instead of a in the radiation energy density above,
where Nν = 3 is the number of neutrino families (one can include in Nν possible other weakly
interacting particles that are relativistic at early times). A further complication is the energy
dumped in the radiation field as the e+e− pairs annihilate. Neutrinos do not share in this added
energy, so that one must then use a′ = a(1 + 7

8Nν(Tν/T )4), where Tν/T ≈ (4/11)1/3.

Neutron to proton ratio

At high T , the reactions changing proton into neutrons and vice versa proceed quickly, and hence
the number densities follow their equilibrium ratio:

nn

np
= e−Q/kT with Q = (mn −mp)c2 = 1.293 MeV. (16.6)

This ratio will ‘freeze out’ at T ' 1010 K, when the reaction speeds become too slow.
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Deuterium formation

Deuterium is formed and broken apart by the reaction

p + n↔ 2H + γ . (16.7)

In equilibrium, the abundance can be described by the Saha equation,

npnn

nD
=
UpUn

UD

(2πkT )3/2

h3

(
mpmn

mD

)3/2

e−B/kT , with B = (mp+mn−mD)c2 = 2.225 MeV.(16.8)

The statistical weights are Up = Un = 2, and UD = 3.

Formation of light elements

Once Deuterium becomes present in significant abundances, it is rapidly burned to Helium; thus
most remaining neutrons are funnelled though D to end up in 4He (see Figs. 16.1 and 16.2), via
the following reactions (see Mukhanov 2003, astro-ph/0303073):

p,n D

p,n

DD2

 DD1

     

T

He

He

Be

Li

3

7

4

7

He  HeHe D   

 T D

Li  p  

3

3

D p

He n  Be n       

He T

3  

  4

7  

4 

7

D γ

[Note that D = 2H (deuterium) and T = 3H (tritium).] A little 7Li is also formed. Since 7Be is
unstable to electron capture, any 7Be created will eventually (much later!) be converted into 7Li,
either by a free electron or, after recombination, by the usual K-shell electron capture (when the
universe has cooled off enough that electrons combine with ions to yield neutral atoms, 7Be will
have an electron-capture half-life of 53.28 days). Any leftover neutrons will of course decay into
protons, while leftover tritium will decay into 3He.

Heavier elements do not form because 3-body reactions (such as the triple-α reaction) are too
slow at these densities and timescales.

Dependencies

If nB is very small (small η), then all reactions are too slow, and almost nothing forms. If nB is
very big (large η), one still has to wait until the temperature is low enough that D can form, so
the final 4He abundance is not very different; however, the D + D and D + p reactions are faster
at high density, so less D is left at the end (see Fig. 16.2).
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Fig. 16.1. Big bang nucleosynthesis: light element abundances (mass fractions) as a function of
time (upper scale) or temperature (lower scale) in the early uinverse, for a case with present
ΩB = 0.05 and H0 = 75 km s−1 Mpc−1, i.e., η = 7.5 × 10−10, just slightly higher than the
“best” value of η ' 6 × 10−10 (note that D is deuterium, T is tritium). Note the sharp peak in
the D abundance at t ≈ 4 minutes (T ≈ 9 × 108 K), corresponding to the time when the 4He
abundance rises to its final value. From Mukhanov (2003), astro-ph/0303073.
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Fig. 16.2. Expected final abundances (mass fractions) for the light elements from big bang nucle-
osynthesis, as a function of baryon-to-photon ratio η (in units of 10−10: note that η10 ≡ η/10−10).
From Mukhanov (2003), astro-ph/0303073.
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17. Inflation and the Cosmic Microwave Background (CMB)

Textbook: CO 29.2, 30.2

End of the radiation era

The end of the radiation era occurs when ρm = ργ , i.e.,

ρ0(1 + z)3 =
aT 4

0

c2
(1 + z)4 ⇒ 1 + z =

3Ω0H
2
0 c

2

8πGaT 4
0

' 2.2× 104Ω0

(
H0

75 km s−1 Mpc−1

)2

, (17.1)

where T0 = 2.736 K is the present photon temperature, i.e., the temperature of the cosmic
microwave background (CMB) radiation. Including the neutrinos in the energy in relativistic
particles at early times, one should change a into a′ = a(1 + 7

8Nν(Tν/T )4) = 1.68a, where Nν = 3

and Tν/T ≈ (4/11)1/3 (neutrinos have a lower temperature because of the extra energy put into
the photons when the electrons and positrons annihilated). The current best estimate is that the
period when matter and radiation densities were equal occurred at zeq ' 3400.

Decoupling

Suppose there was no recombination. Consider a flat universe at early enough times that the

cosmological constant term can be neglected, i.e., for R3 � 1, and thus t ≈ 2
3H
−1
0 Ω

−1/2
0 (1+z)−3/2.

Then the optical depth to electron scattering (over ∼ct, i.e., of order a horizon size) is

τes = σTnect ≈ σT
ρB,0(1 + z)3

mH

2c(1 + z)−3/2

3H0Ω
1/2
0

≈ 0.035(1 + z)3/2ΩB,0

Ω
1/2
0

(
H0

75 km s−1 Mpc−1

)
. (17.2)

For ΩB,0 ≈ 0.04, Ω0 ≈ 0.3, and H0 ≈ 71 km s−1 Mpc−1, it follows that the optical depth to
electron scattering over a horizon size drops to unity (τes = 1) at the point 1 + z ' 56. At that
point, however, the CMB temperature would be T ≈ 150 K and Hydrogen would already have
recombined long since.

Recombination

For simplicity, assume pure Hydrogen. Then, from the Saha equation (Eq. 4.9), scaling to nB =
ρB,0(1 + z)3/mH, and writing in terms of the ionized fraction x ≡ np/nB,

x2

1− x
=

npne
nH0nB

=
mH

ρB,0(1 + z)3

(2πmekT0(1 + z))3/2

h3
e−χ/kT0(1+z) , (17.3)

where nH0 is the number density of neutral hydrogen. Solving this for ΩB,0 ≈ 0.04 and x = 0.5,
gives 1 + z ≈ 103. In reality, recombination will be a little delayed as photons produced in the
recombination can excite and ionize other atoms: current estimates yield 1 + z ≈ 1090 for the
typical redshift at the time a CMB photon last scattered. Moreover, this “surface of last scattering”
has a finite thickness ∆z ≈ 200.

Reionization

The first generation of luminous stars and/or quasars at z ∼ 10 produced enough UV radiation
to reionize the intergalactic medium. However, the density at this point had become low enough
that the optical depth to electron scattering remained small.
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Smoothness and flatness problems

Smoothness or horizon problem: The CMB radiation is very nearly isotropic (after one corrects
for the dipole induced by our relative motion). However, at the time of recombination, the horizon
size (in terms of comoving coordinates $) was much smaller than it is now — regions that are
now separated by more than a couple of degrees should never have been in causal contact before
the time when the CMB was forming. How then could they “know” how to have such very similar
temperatures and densities (to about a part in 105)?

Flatness problem: For some time, it has been known that the present observed density of the
universe is close to the critical value (within an order of magnitude), which implies it must have
been very close to the critical value at early times. During the era when matter density dominates
over radiation density (ρ = ρ0/R

3), we can write the ratio of the density to the critical density as
a function of scale factor R, using the Freedmann equation:

Ω ≡ ρ

ρc
=

8πGρ0

3R3H2
=

Ω0H
2
0

R3H2
=

Ω0H
2
0

R3H2
0 (Ω0/R3 + ΩΛ,0 − kc2/R2)

=
1

1 +R3 ΩΛ,0

Ω0
+R

Ωk,0

Ω0

, (17.4)

where Ω0, ΩΛ,0, and Ωk,0 = −kc2/H2
0 are present values as in section 16. But this suggests that

there ought to be some reason why the universe was so very close to flat at early times.

Inflation

Both of the above problems can be solved by invoking “inflation”. At present, we have a good
theory describing how, at high enough energies, the weak force and the electromagnetic force are
“unified” into the electroweak force (i.e., they can no longer be distinguished at higher energies).
A similar unification between the electroweak force and the strong force is expected in a grand
unified theory (GUT), at a much higher energy (see CO Fig. 30.2, p. 1235), though the theories
are not quite as well developed. As the temperature in the early universe drops, this GUT energy
scale is encountered, and one would expect the symmetry between the strong and electroweak
forces to be broken. However, under some conditions, this symmetry breaking would not occur
immediately: the universe (or some portion thereof) could enter a metastable “supercooled” state,
where the temperature was lower than the GUT unification scale but the phase transition from
GUT symmetry to separate strong and electroweak forces had not yet taken place. This state
behaves as if there is a very strong cosmological constant (driven by the scalar field connected with
the GUT symmetry breaking), and the size of (that portion of) the universe grows exponentially
with time, on a very short timescale — this is known as “inflation”. The energy density also
approaches exponentially close to the critical density: this fixes the flatness problem.

Due to inflation, a causally connected region is rapidly stretched by many orders of magnitude;
even the present horizon size sees only a tiny fraction of this original causally-connected region.
Thus, wherever you look on the sky, what you see originated essentially in the same place as any
other patch of the sky, so it is not surprising that it looks the same: this fixes the smoothness
problem. The rapid inflation dilutes any original particle density essentially to zero, but when the
GUT phase transition occurs (dropping from the metastable state to the ground state), the energy
of this transition “reheats” the universe, generating copious amounts of photons and particle–
anti-particle pairs. GUT theories inply a slight asymmetry between particles and anti-particles,
so at the later time when the photon energy drops below twice the particles’ rest energy (and
the particles annihilate with antiparticles without being regenerated) there is a small excess of
particles left over.
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Inflation also blows up the scale of quantum fluctuations in the scalar field that drives inflation
and eventually the re-heating. Thus inflation predicts stochastic fluctions of the temperature,
density, and gravitational potential that have a particular form. Since the exponential expansion
is self-similar in time, these fluctuations are scale-invariant, i.e., in each logarithmic interval in
scale the contribution to the variance of the fluctuations is equal. (Note that often one considers
the power spectrum, i.e., the square of the amplitudes of the fluctuations.) Such fluctuations are
essentially ‘frozen in’ as long as they are larger than the horizon.

After inflation has ended, the horizon size again starts to grow (in terms of comoving coordi-
nates). As fluctuations of larger and larger size become encompassed by the horizon, they start to
evolve. For example, cold dark matter (CDM) interacts only very weakly, and thus has essentially
no pressure. In overdense region it will thus tend to collapse, due to self-gravitation; this appears
to be the original source of much of the observed structure in the universe, at least of galactic scale
and larger. Ordinary matter likewise tends to collapse into the gravitational potential produced
(largely) by the cold dark matter, eventually yielding galaxies inside halos of cold dark matter.
Note that smaller-sized fluctuations start to collapse first, since they are the first to become en-
compassed by the growing horizon: galaxies and clusters tend to grow through mergers of smaller
structures.

Cosmic Microwave Background Radiation

After recombination, the cosmic microwave background (CMB) radiation streams essentially freely
through space from the “surface of last scattering” described above. It therefore preserves essen-
tially unchanged the effects of the temperature and density fluctuations that existed at that time.

Fluctuations in the microwave background are generally presented in terms of coefficients C`
for fluctuations of a given angular size on the sky — for (Gaussian) temperature fluctuations as a
function of position on the sky ∆T/T = Θ(θ, φ), the multipole moments of the CMB temperature

Θ`m =

∫
sin θdθdφY ∗`m Θ(θ, φ) (17.5)

are fully characterized by their power spectrum

〈Θ∗`mΘ`′m′〉 = δ``′δmm′C` . (17.6)

Note that a given wavelength on the sky θ corresponds to 2π/`. The power spectrum is frequently
presented in terms of

∆2
T ≡

`(`+ 1)

2π
C` T

2 (17.7)

(which for `� 1 is the power per logarithmic interval in wavenumber k).

Cosmic variance

Note that the C` are measurements of the variance of the CMB fluctuations, a statistical quantity
whose accuracy is limited by sample size. For a given ` value, the range of m values is −` ≤ m ≤ `,
thus there are only (2`+ 1) samples at a given `. This implies an inevitable error due to “cosmic
variance” of

∆C` =

√
2

2`+ 1
C` . (17.8)
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(Since one cannot use the entire sky, because of foreground emission in and near the galactic plane,
this error is increased slightly.) There is no way we can determine any monopole term (` = 0), nor
can a dipole term be distinguished from the dipole that results from our motion relative to the
CMB frame, and other low-` terms have large uncertainties. On the other hand, at higher ` one
can bin the data, averaging over ` in bands of size ∆` ∝ `, in order to obtain final uncertainties
at a given ` that are of order `−1 (provided there are no other sources of uncertainty). Fig. 17.1
shows the final results from Planck. The origin of the peaks at large ` (small angular size) are
discussed further below.

Large scales are an unchanged record of inflation

Relatively large-scale fluctuations (more than a couple of degrees across on the sky, as noted
above), were larger than the horizon size at the time of recombination. Thus they underwent no
evolution prior to the recombination era, retaining the scale-invariant form left behind by inflation.

The fluctuations from inflation can be described as small deviations in the (Newtonian) gravita-
tional potential Ψ. These yield small deviations in how fast time ran: δt/t = Ψ. The scale factor R
depends on t: when radiation dominates, R ∝ t1/2, and when matter dominates R ∝ t2/3. Of
course, we also have T ∝ R−1 for the cosmic background radiation (from Eq. 13.7). As noted
above, recombination occurs after the end of the radiation-dominated era; thus we may describe
the intrinsic temperature fluctuations as

Θ ≡
(
δT

T

)
intrinsic

= −δR
R

= −2

3

δt

t
= −2

3
Ψ . (17.9)

However, at recombination, the photons have to climb out of the gravitational potential Ψ (Sachs-
Wolfe effect), and thus are red-shifted accordingly (or blue-shifted, if the region is underdense).
What we actually see on the sky is thus

Θobs ≡
(
δT

T

)
obs

=

(
δT

T

)
i

+ Ψ = Θ + Ψ =
1

3
Ψ , (17.10)

i.e., the underdense regions at recombination on the sky are observed to be brighter than the
intrinsically-hotter overdense regions, since the radiation has been blue-shifted to higher temper-
ature in the former case and red-shifted in the latter.

Smaller scales evolved, yielding peaks in CMB power spectrum

Evolution of the ’frozen-in’ fluctuations actually occurs when the relevant region is in causal
contact in the hydrodynamic sense, i.e., within the “sound horizon”, the distance

s =

∫ t

0

cs
dt′

R(t′)
, where cs =

√
∂P

∂ρ
=

√
∂ 1

3 aT
4

∂ aT 4/cc
=

c√
3

(17.11)

is the sound speed in the radiation-dominated era. In this approximation, the Virial Theorem for
relativistic particles implies,

Θ + Ψ =
∆T

T
+ Ψ = 0 . (17.12)

However, the initial temperature fluctuations are just the intrinsic ones described above, namely
Θ = − 2

3Ψ. Thus, initially the system is not in equilibrium, and in the absence of damping,
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the evolution of temperature at any point will be an oscillation as a function of time around
the equilibrium value, i.e., − 2

3Ψ ≤ Θ ≤ −4
3Ψ, yielding − 1

3Ψ ≤ Θobs ≤ 1
3Ψ at recombination

depending on the phase of the oscillation at that point.
Since all fluctuations of a given angular size enter the horizon at the same time, they all start

evolving in phase. Small regions will evolve faster due to having shorter sound travel timescales (as
well as beginning to evolve earlier). Large regions will have time to go through only a small fraction
of an oscillation cycle before recombination, and will be somewhat reduced in amplitude. However,
a somewhat smaller region, of such a size that it has time to go through half an oscillation cycle,
will regain its original amplitude (though of opposite sign, i.e., an overdensity is converted into
an underdensity, and vice versa); this yields a peak in the power spectrum at the corresponding
` value. The next peak in the power spectrum results from regions that regain their original
amplitude by going through a full oscillation cycle: see Fig. 17.2, part (a). Thus the existence of
peaks on the CMB power spectrum is a generic prediction of the inflationary paradigm.

The above idealized description requires some modification, however. There is damping of the
oscillations: for the smaller sizes, photons can diffuse into and out of the relevant regions, smearing
out the fluctuations. Consequently, the CMB power spectrum drops off at higher ` values, as may
be seen in the actual observations in Fig. 17.1, as well as perhaps more clearly in the theoretical
predictions of Fig. 17.3 (which extend to higher ` and are on a logarithmic scale).

The presence of baryons shifts the zero-point of the oscillations downwards, to

Θ + (1 +R)Ψ =
∆T

T
+ (1 +R)Ψ = 0 , where R =

pB/c
2 + ρB

pγ/c2 + ργ
, (17.13)

i.e., R is the baryon momentum density ratio; thus the first, third, fifth, etc. peaks should have
larger amplitudes than the second, fourth, sixth, etc. peaks, as may be seen from Fig. 17.2,
part (b). Baryons also reduce the sound speed to cs = c/

√
3(1 +R). The actual effect of baryons

on the CMB power spectrum is shown in Fig. 17.3, part (c); the above alternate-peak effect is
superimposed on the overall decline in power with increasing `.

The position of the peaks depends on the curvature of the universe. In a closed universe, the
circumference of a circle is less than 2π times its radius; thus, at a fixed coordinate distance, a
given angular scale corresponds to a smaller spatial scale. Thus the acoustic peaks would appear at
larger angles (smaller `) for a closed universe Ωtot > 1, and conversely at smaller angles (larger `)
for an open universe Ωtot < 1. This sensitivity to curvature is shown (for 0.1 ≤ Ωtot ≤ 1) in
Fig. 17.3, part (a). On the other hand, the CMB power spectrum is not very sensitive to dark
energy (a cosmological constant), which does not influence the early evolution much, as is shown
in Fig. 17.3, part (b).

In essence, cold dark matter particles are coupled with photons, baryons, and other cold
dark matter particles only by gravity, and exert no pressure. Thus the presence of cold dark
matter reduces the oscillations, and therefore also the amplitudes of the peaks in the CMB power
spectrum, as shown in Fig. 17.3, part (d).

Estimation of Cosmic Parameters

The CMB power spectrum can be used to estimate various cosmological parameters, as shown in
Fig. 17.4, which gives the cosmological parameters extracted from the results of Planck, as well
as those data combined with results from other cosmological probes (which yields even tighter
constraints)
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Fig. 17.1. Temperature fluctuations in the CMB as measured by the Planck collaboration (2018,
A&A 641, A6), and residuals to the best-fit ΛCDM cosmology. Note that the vertical scale of the
residuals changes at ` = 30, where the horizontal axis switches from logarithmic to linear

Fig. 17.2. From Hu & Dodelson (2002), ARAA, 40, 171: Idealized acoustic oscillations, with time
measured in terms of the extent s of the sound horizon relative to its extent s∗ at recombination.
(a) Peak scales: the wavemode that completes half an oscillation by recombination sets the physical
scale of the first peak in the CMB power spectrum. Both maxima and minima in Θ+Ψ correspond
to peaks in power (dashed lines give the absolute value of the amplitude), so subsequent peaks
in the CMB power spectrum would be at integral multiples of this scale, with equal amplitude
in this idealized case. (b) Baryon loading : the presence of baryons reduces the sound speed and
also changes the zero point of the oscillation, thus boosting the amplitude of alternate peaks.
Plotted here is an idealization of a case for the third peak, with baryon momentum density ratio
R ≡ R = (pB + ρB)/(pγ + ργ) = 1/6, in units where the speed of light c = 1 (note that in this
figure R is not the scale factor of the universe).
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Fig. 17.3. From Hu & Dodelson (2002), ARAA, 40, 171: Sensitivity of the acoustic CMB tem-
perature spectrum to four fundamental cosmological parameters. (a) The curvature, as quantified
by Ωtot. (b) The dark energy, as quantified by the cosmological constant ΩΛ (i.e., dark energy
equation of state with w = −1). (c) The physical baryon density Ωbh

2, where Ωb ≡ ΩB and
h ≡ H0/(100 km s−1 Mpc−1). (d) The physical matter density Ωmh

2, where Ωm ≡ Ω0. All are
varied around a fiducial model of Ωtot = 1, ΩΛ = 0.65, Ωbh

2 = 0.02, and Ωmh
2 = 0.147, with

spectral index n = 1.
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Fig. 17.4. Cosmological parameters from Planck (Planck collaboration, 2018, A&A 641, A6; their
Table 2), both from CMB alone (left) and including lensing and baryon-accoustic oscillations seen
in large-scale structure (but not supernovae).
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