AST 3010: Advanced Topics in Stellar Astronomy (2011)
Transients

Lectures Tuesdays 3 PM and Thursdays 1 PM in AB 113 (first class Th, Jan 13).
Lecturer Marten van Kerkwijk, MP 1203B, 416-946-7288, mhvk @astro (utoronto.ca)
Office hours TBD (likely after each class, or by appointment)

Web page http://www.astro.utoronto.ca/~mhvk/AST3010/

Synopsis

Transient stars sometimes appear on the sky. In this course, we will first discuss “transient physics,” the
physics we require to understand known types of transients — novae, supernovae, X-ray and y-ray bursts
— and their aftermath, comparing predicted behaviour with observations. Next, we will turn to “possible
transients,” systematically exploring what systems could lead to transients, discussing which ones might
have possible observational counterparts, and determining how these could be found by the current and next
generations of transients surveys. The goal is to produce a complete review of what one might expect, at a
level that is useful for transient surveys, and ideally is suitable for publication (if so, by the class as a whole;
surprisingly, such a review of expected types of transients does not yet seem to exist).

Transient Physics

— Small Nuclear Runaways: Shell Flashes and Detonations

Large Nuclear Runaways: He Flash, Carbon Deflagration.

Sudden Removal of Pressure Support: Electron Capture, Core Collapse, Pair Instability.
Mergers: Stars, White Dwarfs, and Neutron Stars

Evolution of Ejecta: Expansion and Radioactive Heating

We’ll start with an overview, then go through the evolution of low, intermediate, and high-mass stars, briefly
discuss binary evolution, and end with a discussion of lightcurves.

Possible Transients

We will explore systematically what types of transients one might expect from single stars, binaries, and
clusters of stars. We will focus on binaries, checking for any sensible combination of two types of stars how
they could interact during their evolution, and what final product one might expect. For a rough sense of the
aim, see the outcome grid made by Stephen Justham (KIAA/Beijing).

Course texts

Hopefully, there will be a course text by the end! In the meantime, we will have to do with review articles,
etc. What will be important is to bring a good sense of the structure and evolution of stars and compact
objects. Minimum pre-requisite is the (equivalent of the) undergraduate course AST 320; better, AST 1410
(offered this Fall); see that course web page for suggestions for books (personally, I learned most from Stellar
Structure and Evolution, by Kippenhahn & Weigert [Springer-Verlag, 1990]; also good is Supernovae &
nucleosynthesis, by Arnett [Princeton Univ. Press, 1996]).

Evaluation

Problem sets and mini-research studies (60%), oral presentations (20%), oral exam (20%).


http://www.astro.utoronto.ca/~mhvk/AST3010/
http://www.astro.utoronto.ca/~mhvk/AST3010/outcomes.pdf
http://www.astro.utoronto.ca/~mhvk/AST320
http://www.astro.utoronto.ca/~wu/AST1410/syllabus.html
http://www.astro.utoronto.ca/~wu/AST1410/syllabus.html

Mini Research Projects

All students will investigate some particular types of systems (say, a ONe core white dwarf with a He core
white dwarf companion), research what sort of transients these might produce, write up the results, and
present them in class.

Practically, I hope to divide ourselves in three groups, on white dwarfs (accreting and merging), main-
sequence/giant stars (including mergers with white dwarfs), and neutron stars/black holes (including mergers
with other types). I would be part of all groups. A growing list of source combinations and links to references
can be found at types.html.

For each specific topic, I'd hope to proceed as follows:

Research and write up draft.

Circulate among group for comments.

Circulate among class and present (probably best on the board).
Include further comments in final version.


http://www.astro.utoronto.ca/~mhvk/AST3010/types.html

1. Introduction
What is a transient?

Two possible definitions of an “interesting” transient: (1) large (> 100?) increase in brightness, lasts much
less than human lifetime, and recurs infrequently; (2) A significant fraction (> 1%?) of the total energy
available is used in a short time. One may also want to distinguish between disruption (one-off) and eruption
(can repeat).

Known eruptions, bursts, flashes, and flares

1. Failure of hydrostatic equilibrium (HE): Luminous Blue Variable (LBV) eruptions, AGB shells
2. Run-away fusion: shell flashes, Novae, X-ray bursts.

3. Magnetic reconnection: M star flares, soft gamma-ray repeaters (SGR).

4. Accretion instability: Dwarf novae, X-ray novae, FU Ori outbursts.

Known to occur but not yet(?) observed: helium flash.
We’ll ignore magnetic bursts from here on.

Known disruptions

1. Failure of HE: core-collapse SNe.
2. Run-away fusion: SN Ia.
3. Mergers: (some?) luminous red novae, short gamma-ray bursts (GRB)?

Known to occur but not yet(?) observed: mergers of different types of objects.

Predicted but not yet(?) observed: in single stars, pair-instability supernovae, carbon deflagration supernovae,
electron-capture supernovae; in binaries, accretion-induced collapse of white dwarf to neutron star, accretion-
induced collapse of neutron star to black hole (or quark star).

Basic energetics

Gravitational
GMAM
E ~ (1.1)
R
For main-sequence stars (M,R) = 1Mg,1Ry), white dwarfs (1 My,0.01 Ry), and neutron stars
(1.4 My, 10 km), this corresponds to ~2 X 107%,2x 107, and 2 x 107 ' AMc2.
Core-collapse supernovae and neutron-star mergers : ~10°3 erg.
Main-sequence mergers : ~ 10 erg.
Luminous Blue Variable (M = 50 My, AM =1 Mgy, R = 50Ry): ~10%¥ erg.
Accretion burst (AM = Mt ~ 1073Mg yr~! x 107! yr): ~10* erg for NS, ~ 10" for WD.
Nuclear
AM
E~—0Q, (1.2)
nmp

where Q is the energy released per nucleon, ~ 7MeV for fusing hydrogen to helium, ~ 1 MeV for other
reactions. Thus, one gains ~7 x 107 and 1 x 1073 AMc?, respectively.

SNla : ~10°!"Jerg.



Novae : One might think AM =~ 107 Mg, hence E ~ 10® erg, but in reality much less is emitted: ~
Lggq X 1071 yr =~ 10% erg (radiation dominates the energetics). Material is ejected before it can be fused.

X-ray bursts (AM =~ 10° M, yr‘1 x 10%*s): ~10% erg (now consistent with ~ Lggg X 10 s; no mass leaves the
neutron star).

2. Stability
Dynamical stability

For a star to be stable to a density perturbation (upon, e.g., compression), pressure has to increase faster than
gravity. For a polytrope, P o pI' o« R™!, with T' = (3, ) for the simplest non-relativistic and relativistic
cases. For a star in hydrostatic equilibrium, P oc R~*. Hence, stability requires I' > % (for a star not described
by a polytrope, a suitable average of I').

Ionisation in its most general form causes I' to drop (the work compressing matter goes into ionisation
rather than increasing the kinetic energy of the constituent particles). Examples: molecular dissociation, ion-
isation, pair creation, and nuclear dissociation. Capture of energetic electrons on protons (to form neutrons)
has a similar effect.

Gravothermal specific heat

For a star to be stable to a temperature perturbation, upon, e.g., an increase in fusion rate, the star has
to expand and cool, i.e., have negative gravothermal specific heat (see KW, Ch. 25). For an ideal gas, the
virial theorem shows this is the case; for a degenerate gas, though, Ey;, (like pressure) does not depend on
temperature.

Note that if cooling increases with increasing temperature (like for neutrino cooling, but unlike radiative
losses), the situation reverses: this is unstable for an ideal gas, stable for a degenerate one.

Fig. 2.1. Schematic evolution of the central temperature and
density for different core masses. The dot-dashed line shows
the boundary beyond which degeneracy is so strong (and
non-relativistic) that contraction leads to a temperature de-
crease rather than a temperature increase. Unstable regions
are hashed; that due to pair-instability is labeled y < 4/3.
Taken from KW, their Fig. 34.1.




3. Stability of fusion

For a non-degenerate gas, fusion is stable since a small increase in temperature and hence fusion rate leads
to expansion and net cooling of the core (negative heat capacity). This can be seen from the virial theorem,
or by considering homologous expansion: suppose one increases the temperature and thus pressure in some
small central region. Then, the star will expand until the pressure in the central region and that required to
support the rest of the star match. For homologous expansion, one has 6P/P = —46R/R, and hence in the
inner region, 67 /T = 6P/P — ép/p = —6R/R (where 6p/p = —36R/R). Hence, fusion in cores is stable.

Now consider nuclear fusion in a thin shell around a core with radius r with thickness D < r (think why
shells naturally will tend to become thin). The difference with the above is that now in the shell, which has
mass m ~ 1r’D, §p = —6D/D = —(r/D)dr/r, while the weight to be carried and thus the pressure still scale
as OP/P = —4or/r. Hence, for expansion of a thin shell, the density decreases but the weight of the layers
above hardly changes. Thus, the temperature will change as 6T /T = 6P/P — op/p = (r/D — 4)0R/R, i.e., it
increases for D < r/4. (See KW, §33.2 for more detail.) This instability leads to so-called thermal pulses on
the asymptotic giant branch (see below).

4. Contraction

For optically thin emission, like in molecular cloud (or neutrino emission in a collapsing iron core), the
material is roughly isothermal (P « p,i.e.,[ =1 < %), and hence, once unstable, collapse is inevitable.

Once the cloud becomes optically thick, further collapse is adiabatic and hydrostatic equilibrium will
eventually be attained (for molecular hydrogen, I' = %, so still close to %). Further instabilities set in when
hydrogen is first dissociated and then ionised. ‘

As a star contracts on a thermal timescale (i.e., remaining in hydrostatic equilibrium), p o R~ and
T o R7!, and thus T o« p'/3. Hence, a star approaches degeneracy: Pigear o pT, Pxr & p°/3, hence lines of
constant degeneracy have T « p?/3. Denser (lower-mass) stars will become degenerate earlier, and for brown
dwarfs, this happens before they become hot enough to ignite hydrogen (see Fig. [4.1)).

For radiation-dominated stars, the contraction is along the same direction, but they do not approach
degeneracy: Prq o T, Pgr o p*3, hence lines of constant degeneracy have T o« p'/3. Hence, the lack of
turn-over in Fig. 2.1] of lines starting at lower density (more massive stars).

5. Low mass stars

After the main-sequence, the cores of low-mass stars become degenerate, surrounded by a hydrogen-burning
shell, and the envelopes expand, making the stars red giants.

Fig.4.1. Trajectories of central conditions for low-mass
(M < 0.3 M), fully convective stars as they approach
the main sequence or become brown dwarfs. Note how
for fully convective stars, whose internal structure in well
described by an = 1.5 (I' = %) polytrope, the trajecto-
ries follow the expected T o« p'/? track. Tracks turn over
when the conditions have become fairly degerate: Fermi
0 I 2 3 energy Ep/kT =~ 4. Taken from [Paxton et all (2011), their
log p. (g em™) Fig. 16
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Shell burning

In a shell, the density and pressure drop very quickly, and hence their properties depend mostly on the
properties of the core. Analogously to main-sequence stars, one can use homology arguments to show how
o, P, T, and L scale with M . and R.o. The easiest is the scaling for temperature, which, assuming an ideal
gas and using hydrostatic equilibrium,

(5.1)

where we used that the scalelength H can only scale with R assuming homology. Since fusion is generally
a steep function of temperature, this means the luminosity will depend sensitively on the core properties.
As the envelopes of red giants are mostly convective, and the photospheres have roughly fixed effective
temperature, the radius is also a strong function of core mass.

The other scalings depends on, e.g., the temperature-dependence of the fusion process; if it is very steep,
a small increase in, say, M.y, and thus 7', will lead to a large increase in luminosity, due to which the star
will expand, lowering the density. For details, see KW, §32.2.

Helium flash

The degenerate core will be heated by its surrounding shell, and be nearly isothermal, with a slightly lower
temperature in the centre due to neutrino losses. When M. =~ 0.45 M, the temperature becomes hot enough
for ignition, and runaway fusion starts in a shell. As this region is only moderately degenerate, convection
kicks in relatively quickly, which limits the maximum temperature reached and thus avoids a dynamic event
(timescales for entropy increase always remain larger than the dynamical timescale). In the end, the star
settles down as a core-helium burning giant, with most of the luminosity still due to the hydrogen shell.
We see such sources as red-clump stars in metal-rich populations, and horizontal-branch stars in metal-poor
ones.

Double-shell burning

When two or more shells are present, they do not necessarily evolve at the same rate, leading to changing
separation (in mass coordinates), and to thin shells that are geometrically unstable (see above). This underlies
the thermal pulses on the asymptotic giant branch.
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Fig.5.1. Luminosities during the helium flash.
The initial spike is due to the off-centre helium
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flash. Subsequent spikes occur when inner lay-
ers are heated up sufficiently to ignite. As the
core is expanding, these reach less high temper-
atures and luminosities. Note how the luminos-
ity from the hydrogen shell varies in the opposite
T 4 sense of the helium luminosity, while the luminos-
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Fig. 5.2. Evolution of low-mass stars. One sees the
core density and temperature converge for the dif-
ferent stars, increasing during the red giant branch
up to the helium flash. The flash starts in an outer
layer, at p ~ 4 x 10gem™, ie, logp =~ 5.6
(Mocdk et al] (2008)). This is close to where the
2 M, track takes off and the density and tempera-
ture in the shell should evolve similarly. The cores
of the lower-mass stars first expand at roughly con-
stant degeneracy (i.e., essentially adjusting adiabat-
ically to the decreasing weight of the overlying lay-
ers), before the core is heated such that a run-away
occurs. From [Paxton et all (2011)), their Fig. 14.

Fig.5.3. Evolution of the mass shells around the
two shell sources in a 5 M, tar near the maximum
of the first and sixth thermal pulses. From KW, Fig.
33.4.
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Fig. 5.4. Temperature and density in the CO core of
a 3 M, star after central helium burning. The bro-
ken lines show temperature stratifications at two in-
stances. The core grows until carbon is ignited. In

L A L L real stars, mass loss prevents the core from becom-
3 4 5 6 7 8 9 lgp ing this massive.
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The Carbon flash (that doesn’t happen)

Absent mass loss, for a sufficiently massive star, eventually the core density and temperature would increase
sufficiently to ignite carbon. This happens as one approaches the Chandrasekhar mass, and in the core, which
has a lower ignition temperature due to its very high density (note that the competition between neutrino
cooling and compressional heating also makes the temperature distribution less uniform than was the case
for a helium core). As one is at very high degeneracy, the run-away destroys the whole core (and surrounding
envelope).



6. Ignition masses

A star with mass above the Chandrasekhar mass cannot be supported by degeneracy pressure, hence such
stars continue to contract, becoming hotter, until fusion starts or some other process intervenes. Below the
Chandrasekhar mass, a star heats up until it ignites fusion or becomes degenerate. The maximum temperature
a star can have and still become degenerate is T = 1.3 X 10°K (A, §6.6).

The ignition mass is the minimum mass required to reach ignition. It is ~0.08 M, for hydrogen, ~0.3 M,
for helium, ~0.8 M, for carbon, and ~ 1.36 M, for neon (Nomoto, [1984). All heavier fuels are only burnt by
stars (or cores of stars) above the Chandrasekhar mass.

Burning stages

From Arnett, his table 6.2.

— Hydrogen burning 2x 107 K, (5...8)x 10" erg g=!): mostly helium (via p-p or CNO; all CNO converted
to N).

— Helium burning (1.5x 108 K, 7x10'7 erg g~!): mostly carbon and oxygen (triple alpha, plus '>C(a, y)'®0,
with final abundance ratio strongly dependent on rate, and on extent to which fresh helium is brought in
at late stages (which would lead to more oxygen).

— Carbon burning (8 x 103K, 5 x 10'7 erg g~!): mainly O, Ne, Mg, Si.

— Neon burning (1.5 x 10°K, 1.1 x 107 ergg™!): mainly O, Mg. Starts with photo-desintegration:
20Ne(y, @)'%0, followed by 2°Ne(e, y)**Mg.

— Oxygen burning (2 x 10°K, 5 x 10! erg g~!): mainly Si, S.

— Silicon burning (3.5 x 10°K, (0...3) x 10" erg g™!): iron-peak

7. Intermediate mass stars

A M 2 2 Mg forms a 2 0.3 M helium core and thus reaches ignition before becoming degenerate. Hence,
these stars form lower-luminosity red-clump stars than initially less massive stars (for clusters with a slight
spread in age, “double red clumps” have been observed; see |Girardi et al. 2009). Their further evolution is
similar to that of lower-mass stars, though: they form CO cores and become AGB stars, with the evolution
terminated by fast mass loss in the superwind. (The latter is still poorly understood theoretically; Willson
2009.)

For M 2 8 M, (the mass is uncertain and depends on assumptions about convection, overshoot, etc.),
upon helium exhaustian, a * 0.8 M, carbon core is formed, which reaches carbon ignition before becom-
ing degenerate. Carbon fusion leaves a core composed of mostly oxygen and neon. If this core becomes
degenerate before neon ignition (for core mass <1.37 M), the star becomes a “super AGB” star.
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Fig.7.1. Evolution of central density and temperature of a ONe core that is growing in size (left), and evolu-
tion during collapse due to electron captures (right). From Nomoto (1987), his Figs 4 and 6.

Electron-capture induced collapse

The further evolution of ONe cores depends on how much mass can be accreted. If less than the
Chandrasekhar mass, it will become a white dwarf, while if it is more, it will reach such high densities
that electron captures start, which will lead to collapse. Note that like for CO cores, neutrino cooling pre-
vents the degenerate core from becoming hot enough to ignite the next burning stage. Unlike for CO cores,
however, electron captures start to occur before the density becomes high enough to ignite neon or oxygen
burning. Oxygen burning only starts as the core is already irreverably collapsing (Nomoto, [1987).

In single stars, electron-capture supernovae appear unlikely: after core helium exhaustian and subsequent
core contraction, the envelope expands greatly and so does the extent which is convective. For relatively
low masses, this enters and removes the outer parts of the helium core. As a result, for those, the cores are
left with less than the Chandrasekhar mass and will not explode, while those untouched are so massive that
they do not become degenerate at all and evolve up to iron cores and core-collapse supernovae. It appears
that only in binaries, with timely removal of the hydrogen envelope, electron-capture supernovae are likely
(Podsiadlowski et all, 2004).
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Fig.7.3. Helium core mass as a func-
tion of initial mass for different stel-
lar evolution codes, showing the ef-
fects of second dredge-up. Taken from
Poelarends et all (2008), their Fig. 2.
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Fig. 8.1. Final evolution as a function of mass and metallicity — the latter influences the results mainly through

the mass-loss rates. From [Heger et al! (2003), their Fig. 2.

8. Massive stars

Stars more massive than ~ 8 M, ignite all phases of nuclear burning non-degenerately, and end with iron core

collapse, leading either to a neutron star or a black hole. The details depend not just on initial mass, but also
on the amount of mass loss.

9. Very massive stars

Stars so massive that they produce oxygen cores of * 40 M (this may only be possible for very low-
metallicity stars that experienced little mass loss), pass through the pair-instability region (see figure below
and Fig.[2.1)). There, (y) < %, and the core becomes unstable. It starts to collapse and reaches oxygen ignition.
The collapse may only be halted by the time the oxygen burning timescale is less than the dynamic time,
making the burning explosive. This could lead to partial or total disruption of the star, or, if the explosion is
insufficiently energetic, to later disintegration and (likely) direct collapse to a black hole.
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10. Binary evolution

Most stars increase in radius as they evolve, often drastically. If in a binary, they may at some point overflow
their Roche lobes, leading to mass transfer to the companion. If this is stable, mass transfer will be on the
evolutionary timescale. If unstable, it can be on the dynamical or thermal timescale. Masses transfer ceases
when the star stops trying to expand; in giants, this is when most of the envelope has been transferred, and
the remainder becomes so tenuous that it shrinks. Thus, one generally is left with just the core of the star.
This process, and variations on it, is responsible for most of the more interesting stars we observe.
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Fig. 10.1. Radius evolution of stars of various masses. In the left-hand panel, the one unmarked dotted line
between helium core flash and core helium ignition marks the division between those helium cores (at lower
masses) which evolve to degeneracy if stripped of their envelope, and those (at higher masses) which ig-
nite helium non-degenerately and become helium stars. In the right-hand panel, core masses interior to the
hydrogen-burning shell are indicated with solid lines, and dashed lines those interior to the helium-burning
shell. Solid lines intersecting the base of the giant branch (dash-dotted curve) correspond to helium core
masses of to 0.15, 0.25, 0.35, 0.5, 0.7, 1.0, 1.4, and 2.0 M; those between helium ignition and the initial
thermal pulse to 0.7, 1.0, 1.4, and 2.0 M, and those beyond the initial thermal pulse to 0.7, 1.0, and 1.4 M,
Dashed lines between helium ignition and initial thermal pulse correspond to carbon-oxygen core masses of
0.35,0.5,0.7, 1.0, and 1.4 M. Beyond the initial thermal pulse, helium and carbon-oxygen core masses con-
verge, with the second dredge-up phase reducing helium core masses above ~ (0.8 M, to the carbon-oxygen
core. From [Webbink (2008), his Figs 1 and 2.



Mass loss and tranfer

Consider a star that looses or transfers mass at some rate M.

Effect on orbit
The angular momentum of an orbit is given by J = (M M,/M) VGMa, and thus,

J My M, 1M la
S T 10.1
J M1 M2 2M 2a ( )

Conservative mass transfer: M; = -M,, M =0, J = 0. Thus,

a : M,
g M, =2(q - 1)—=, 10.2
p o, P (g-1 7 (10.2)
where g = M>/M, is the mass ratio between the donor (star 2) and the accretor (star 1). For donors less
massive than the accretor, the orbit expands upon mass transfer (remember that M, < 0).

Looking at the Roche lobe for a less massive donor, for which R; ~ 0.46a(M,/M)"/? (Paczynski, [1971),
one finds
R 1 1M 5\ M

= 10.3
RL a 3 M2 ( )

showing that the Roche lobe, as expected, grows a little slower than the orbital separation. (An analysis valid
for all ¢ would use the approximation of Eggleton (1983), R;/a ~ 0.46¢*/3/[0.6¢%"* + In(1 + ¢'/?)].)

Spherically symmetric wind: M, = M, M; =0, J = (M,/M,)(M,/M)J. Hence,

__M (10.4)

3
" cons
2 Jring 7
. isor
ool —
~wind ) Fig.10.2. i, = dInRy/01In M, as a function of
oo~ S ey mass ratio, with all mass transfer through a sin-
i i gle channel: conservative (cons); isotropic wind
| i from donor star (wind); isotropic re-emission of
- ] matter, from vicinity of ‘accreting’ star (iso-r).
" | | | | 1 (Also shown is a ring formation, indicative of
—15 05 I = =5 mass loss from an outer Lagrange point). From

q = m,/m, Soberman et al! (1997), their Fig. 4.



Spherically re-emitted wind: M, = M, M; = 0, J = (M»/M;)(M,/M)J (idea is that accretor cannot handle
mass transferred to it and re-emits it as a wind). Hence,

a MM M M _2q2—2—qM

+ . 10.5
a MM M, 2M l+q M (10-5)

Hence, orbit expands for ¢ < (1 + V17)/4 = 1.28 (with again a somewhat lower value for increasing Roche-
lobe radius), i.e., it is less quickly unstable than for conservative mass transfer. For a more detailed analysis,
seelSoberman et al. (1997).

Effect on stellar radius

If the mass is lost from the outside of a star, the star becomes initially smaller, but on a hydrodynamic
timescale it will partially re-expand in responds to the decreased pressure. Which effect dominates depends
on the internal structure of the star. Generally, for thermal envelopes, the stars shrinks inside its Roche lobe,
re-expanding only on the thermal timescale, typically to nearly its original size (especially for giants). For
more detail, see Hjellming & Webbink (1987). However, a complication for thermal-timescale mass transfer
is that, if the secondary is substantially less massive, it cannot accrete sufficiently fast and will bloat itself.
For massive stars, for M,/M; < 0.7, this leads to contact, and almost certainly further mass loss and/or a
merger (Pols, [1994; Wellstein et all, 2001); Podsiadlowski, 2010).

Completely convective stars, or stars with deep convective layers, however, increase in size upon mass
loss. For completely convective stars, which are described well by polytropes with P = Kp? withy = % (and

thus n = 1.5), this follows immediately from the mass radius relation: R o« M~!/3 (true for constant X, i.e.,
for constant entropy or completely degenerate, non-relativistic gas). Comparing this to the change in Roche
lobe for conservative mass transfer, one sees that stability requires that

2

3 for n=125. (10.6)

2 > < ! e g<
From the work of [Han & Webbink (1999), it is indeed clear that for low-mass white dwarfs, dynamical
instability sets in for g > % For higher mass accretors (M > 0.3 M), the mass-transfer rate rapidly becomes
super-Eddington, meaning some mass has to leave the system. As shown above, this implies the binary

expands more and it is easier to keep mass transfer stable. [Han & Webbink (1999) find that, roughly, stability
requires ¢ < 0.7 — 0.1(M,/M,,).

Common-envelope evolution

When dynamically unstable mass transfer starts, the stars enter a common envelope. This will lead to a
merger unless one envelope is relatively loosely bound, e.g., if the donor is a red giant. The process is still
very uncertain, and usually an energy criterion is used to decide whether or not a complete merger occurs. We
write the initial orbital energy as Eow,; = GM| M /2a;, the final one as Eor = GM| M3 /ay, and the envelope
binding energy as E = GM M ./AR, .. Taking M, = M, — M, ., aroche-lobe filling star (R, = Rr), and
assuming an efficiency acg = E, /(Eons — Eor.i), One finds a total shrinkage of the orbit,

ﬁ:Ml,c 14 2 ay My — M B

L (10.7)
a; M1 aCE/l RL M2

This shrinkage is usually very large. Tracing back the evolution of double helium white dwarfs,
Nelemans et al! (2000), found that it cannot hold for the first mass-transfer phase. They proposed an al-
ternative description based on angular momentum loss, but this was criticised strongly by Webbink (2008).
Overall, though, the conclusion stands that for not too extreme mass ratios, mass transfer is stabilised some-
how (perhaps by irradiation driven winds; Beer et al!2007).



Angular momentum loss

Two stars can be driven closer by angular-momentum loss. For gravitational radiation (in a circular orbit),

J  32G° M\ My(M, + M)
J 56 at ’
implying a merger time of 1.05 x 107 yr(M/M¢y)2/3(u/My)~' (P/1 hr)8/3, where u = M\ M, /(M + M) is the
reduced mass, and P the orbital period. Thus, to merge within a Hubble time requires P < 0.5 d.

For binaries with low-mass stars, angular momentum can also be lost by “magnetic braking” — a solar-
like wind coupled to a magnetic field. This mechanism is usually described by semi-empirical relations,
which are calibrated using the rotational evolution of single stars and using population synthesis models for
binaries.

(10.8)

Supernova explosions

One can solve the effect of a spherically symmetric supernova explosion by consiering that, for instantaneous
mass loss, the velocities of the two stars remain the same, but their mutual attraction has decreased. Thus,
the instantaneous position will become the periastron of the new orbit. For given mass loss AM,

tperi = i © ag(l —e) = aj, (10.9)
G(My + My—AM) 1+ ¢ _ G(M, + M)

Viperi = Vo < = (10.10)
ag l1-e a;
Solving this yields
AM
(10.11)

T M+ M, —AM

i.e., the orbit is unbound if AM > %(Ml + M>) (as can be seen more easily from the Virial Theorem). The
binary also gets a recoil kick, of

_ M2V2 - (M1 - AM)Vl
M+ M, - AM

Unfortunately, the assumption that supernova explosions are spherically symmetric seems rather poor,
since single radio pulsars have large space velocities, of several 100 km s~!. As a result, binaries likely unbind
even when relatively little mass is lost, and, conversely, may remain bound even if a large amount of mass is
lost (indeed, the latter may be a requirement to understand low-mass X-ray binaries, in which neutron stars
accrete from low-mass companions). There is fairly strong evidence, however, that some supernovae do not
impart (large) kicks, possibly those due to electron capture (van den Heuvel 2010, and references therein).

Ay = evy. (10.12)

Tidal stability

For close binaries, tides will circularise the orbit. This is not possible if the mass ratio is too small. Stability
requires that some angular momentum transfer from the orbit to the star changes the stellar rotation faster
than the orbital one. Since Jop, = (M M>/M)VGMa o< Q'3 and Jyu = I Q o« Q, stability requires that
Jorb > 3Jsar. For low-mass stars, binaries with mass ratio g < 0.09 are unstable (Rasid, [1995).

Rapid rotation

Tidal synchronisation leads to rapid rotation. For low-mass stars, this leads to increased activity, some in-
crease in size, and a larger stellar wind (and thus angular momentum loss; magnetic breaking).

For massive stars, rotation induces mixing (de Mink et all, 2009). For fairly massive stars, just brings up
nitrogen. For M 2 50 M in a P < 2d binary, centrally produced helium is efficiently mixed. As a result,
these stars may burn completely to helium, and a lower-mass companion might evolve faster!
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11. Arnett’s semi-analytical supernova lightcurves

We follow A96 and consider a ball of gas with initial radius R that is homologously expanding at constant
velocity vy, and has an initial thermal energy &y. The first law of thermodynamics can be written as,

E+PV=eM-L, (11.1)

where E is the total energy, V = 43—’TR3 is the volume, P the pressure, € the energy generation rate (by
radioactive decay) per unit mass, M the ejecta mass, and L the luminosity.
Assume the energy and pressure are dominated by radiation, i.e., £ ~ &, and P =~ %8. Dividing by & on

both sides and using homology, one finds,

T R 1_R T R 1 1
4— + 3— =3—=4|= —_ -, (11.2)

T 3 R T R Th Tq
where the heating timescale 7, = &/eM and the luminosity due to cooling timescale due to diffusion of
photons is 74 = &/Lgig. The latter is also given by,

kM R()

Td = 575 = Tdo

R = 0T (11.3)

where in the second equality one implicitly assumes constant opacity. For a constant density ball, 8 = 13.8.
The above suggests to consider the evolution of the product (TR)*. We assume its spatial (x = r/R) and
time dependence can be split,

RYOT*(x,1) = RyTa (P (). (11.4)

For constant density p = M/ %nR3 and constant opacity «,

Wy = S0, (11.5)
X
In terms of these functions, the thermal energy can be written as,
" 4 3 403 raRo
E= f al(r,H)*4nr* dr = 47R%aT (0, 1)* f Y(x)x> dx = —ROaT ¢( ) = 80—¢(t) (11.6)
0

where we used that fo W(x)x*>dx = 1/n%. The factor Ry/R accounts for adiabatic expansion and ¢(¢) for
radiation loss and radioactive heating. Given this, the luminosity is given by

&

L=—-= ¢( ) = Loo(2). (11.7)
Td T4, () R

Supposing the initial thermal energy is of order the kinetic energy, i.e., &y = 1Mvsc, the initial lumonosity

Ly = &y/tao < V2.R/« is independent of mass, but proportional to radius. Faster ejections (larger energy)
from larger stars (faster diffusion) give more luminous transients.

Diffusion and heating

With just diffusion and heating, one has

11.8
Tho®  Tdo (11.8)

TR ¢ ™ 1 ¢ Ry’
where we tried to write in terms of ratios on the right-hand side, with €/¢, capturing the time dependence of

the heating process (and where we again implicitly assumed constant opacity).

TR 4 1 1 ¢_[d@ I]R



Ignoring heating, an analytic solution is possible. Using that g = 740(Ro/R) = 74/(1 + vst/Rp), and
defining an expansion timescale 7. = R/vy, one finds

2
¢=6XP(—L— d ) (11.9)

Ta0  2TeTdo

Generally, 749 > 7., and thus for ¢ > 7., the lightcurve is essentially a Gaussian, with a timescale that is
the geometric mean of the expansion and diffusion times scales, Tex, = /TnTao & VkM/vg.. Slower, more
massive ejections lead to longer transients.

Including heating, the integration needs to be done numerically. However, generally, one expects maxi-
mum to occur when ¢ = 0, i.e., when 1/1, = 1/74 (of course, if heating is too small, this maximum after
explosion never happens). From their definitions, the timescales match when L = eM. Thus, maximum
luminosity gives a measure of the total amount of radioactive decay — “Arnett’s rule.” (This will be an under-
estimate if the opacity is decreasing with time — or if this is happening effectively due to recombination.)

Including recombination

At some temperature 7;, material will recombine and become essentially transparent. If this happens inside
the cloud, then this will effectively be at optical depth zero, and the photosphere would be at Té‘ff ~ 2Tl.4. As
more matter recombines, the photosphere will move in, with recombination and advection (“freed” radiation)
giving additional sources of luminosity. At this time, one will have,

Laift + Lagv + Lrec = Linin = 47TR,'20-2T1'4, (11.10)

where R; = x;R is the radius of the recombination front, and where we used the subscript “min” as a reminder
that the luminosity cannot be lower than this value for this radius.
The luminosity due to recombination is

. 4
Liec = ~41R?RipQ = —Bxizxi?ﬂR%Q = 32 5:MOQ, (11.11)

where Q is the energy release per unit mass due to recombination.
For the advection and diffusion terms, the results depend on whether the front moves slow or fast com-
pared to the time to adjust the overall temperature structure. Generally, though, Lgig = &/74 and,

. 0&E

0 11.12
~ ax,- ( )

Lagv = —

but the total thermal energy & and diffusion timescale 74 may now depend on x;. In consequence, not only the
differential equation for ¢ has to be solved, but also one for the recombination front position x;. The latter can
be derived from the constraint that the additional luminosity L. + L,gy has to match the excess luminosity
Liin — Laifr, OF

E
= 47rR2xl~220'Tl~4 - —. (11.13)

—X; [3x,.2MQ + %
0 T4

Xi

Below, we will also use the timescale on which the initial energy would be radiated at an effective temperature
of 21/4T;,

& _ RdTy _ 4R Ty
Tio = = = . (11.14)
Lininp 47rR%2 & T4 n*c2T?




Slow recombination front

If the recombination front moves slowly, photon diffusion inside it will ensure the temperature structure
adjusts to its new outer boundary, R; = x;R, with the same spatial structure ([7(x)/T(0)]* = ¥(x)). Thus, the
total thermal energy will be

X R
& = 4nR*aT(0,1)* f P(x/x)x* dx = SOEOgb(t)x?, (11.15)
0

where ¢(¢) accounts for changes in central properties due to the recombination wave and associated energy
loss. Given this, the advection luminosity is given by,

05 R
Ly = —i7— = =3x8 — $(0). (11.16)
8x,- R
Since the size is decreasing, the luminosity due to photon diffusion also changes, becoming
E &
Loy = — = ——¢(0)xi, (11.17)
Td  Tdo

where we used that 74 = 740(Ro /R)xl.z, with the dependence on xi2 reflecting the dependence of 74 on M/R (for

constant density the mass enclosed within the recombination front scales with X?)' The differential equations
to be solved thus become,

¢ e R 1 R

7 _ —_ (11.18)
¢ 80¢xi3 Ry Td,())Cl.2 Ro
R &
3374, MQ + 00| = 4rR*20T — g, (11.19)
R Td4,0
Simplifying,
f 1 R
¢ _ [ 6/603 _ zl_ (11.20)
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& TR?

Fast recombination front

For a fast-moving recombination front, the temperature structure inside will not react to the fact that the outer
parts are being chopped off. The total thermal energy inside the recombination wave is,

Xi R Xi
Erex, = 4nR*aT (0, 1)* f P(x)x* dx = 80E0¢(t) n f P(x)x? dx, (11.22)
0 0

and thus the advection luminosity is given by,

0Ex<x,

:—3xl.2x, ‘P(x,)So ¢(z) (11.23)
8x,~

Ladv =—Xi——
The luminosity due to photon diffusion from the inside now changes only because we are evaluating it at a
different position, becoming

|—x28‘I’/6x|xl_ &

Ly =10 — % ’
T 20w 0 Td0¢()

= @qxt)nzl(x,-). (11.24)
Td,0

where Lgﬂ is the diffusion luminosity we would obtain ignoring the recombination wave, and where we
have used that [-x20¥/dx],, = (1/x) sin(x;) — x; cos(rx;) = n°1(x;) (where 721(x;) = n? foxi P(x)x*dx is the
normalised integral).

The differential equations to be solved now become,

b_ M _R_1E 125
¢ Sopml(x;)) Ry 740 Ro
&
—3x7%; [MQ+80—¢ ‘P(xll = 4nR2x20 T} — 2L I(xy). (11.26)
Td,0
Simplifying,
¢ :[i_Llﬁ (11.27)
¢ Tho2I(x;))  Tao | Ro
x; (R )2 )
0 \R
324 = TA;Q OR T (11.28)
T
= ¢ )
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Fig.11.2. Comparison of explosions with and
without recombination and heating by radioac-
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Fig. 11.3. Semi-analytic lightcurves for supernovae with varying properties. Those not varied are held fixed
at those inferred for SN 1987A by A96 (his Table 13.2): M¢j = 15 Mo, Esn = 1.7x10%! erg, Ry = 3x 102 cm,

k = 0.2cm? g', Myi = 0.075 Mg, Tion = 4500K, Qion = 13.6eV nucleon!. Ignored is losses of gamma rays,

and hence the luminosity at late times is overestimated.



References

Beer, M. E., Dray, L. M,, King, A. R., & Wynn, G. A. 2007, MNRAS, 375, 1000

Bhattacharya, D., & van den Heuvel, E. P. J. 1991, Phys. Rep., 203, 1

Bond, J. R., Arnett, W. D., & Carr, B. J. 1984, AplJ, 280, 825

de Mink, S. E., Cantiello, M., Langer, N., Pols, O. R., Brott, ., & Yoon, S. 2009, A&A, 497, 243

Eggleton, P. P. 1983, ApJ, 268, 368

Girardi, L., Rubele, S., & Kerber, L. 2009, MNRAS, 394, L74

Han, Z., & Webbink, R. F. 1999, A&A, 349, L17

Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003, ApJ, 591, 288

Hjellming, M. S., & Webbink, R. F. 1987, ApJ, 318, 794

Mocidk, M., Miiller, E., Weiss, A., & Kifonidis, K. 2008, A&A, 490, 265

Nelemans, G., Verbunt, F., Yungelson, L. R., & Portegies Zwart, S. F. 2000, A&A, 360, 1011

Nomoto, K. 1984, ApJ, 277, 791

—. 1987, ApJ, 322, 206

Paczynski, B. 1971, ARA&A, 9, 183

Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., & Timmes, F. 2011, ApJS, 192, 3

Podsiadlowski, P. 2010, New A Rev., 54, 39

Podsiadlowski, P., Langer, N., Poelarends, A. J. T., Rappaport, S., Heger, A., & Pfahl, E. 2004, ApJ, 612, 1044

Poelarends, A.J. T., Herwig, F.,, Langer, N., & Heger, A. 2008, ApJ, 675, 614

Pols, O. R. 1994, A&A, 290, 119

Rasio, F. A. 1995, ApJ, 444,141

Serenelli, A., & Weiss, A. 2005, A&A, 442, 1041

Soberman, G. E., Phinney, E. S., & van den Heuvel, E. P. J. 1997, A&A, 327, 620

van den Heuvel, E. P. J. 2010, New A Rev., 54, 140

Webbink, R. F. 2008, in Astrophysics and Space Science Library, Vol. 352, Astrophysics and Space Science Library, ed. E. F. Milone,
D. A. Leahy, & D. W. Hobill, 233

Wellstein, S., Langer, N., & Braun, H. 2001, A&A, 369, 939

Willson, L. A. 2009, in Astronomical Society of the Pacific Conference Series, Vol. 412, Astronomical Society of the Pacific Conference
Series, ed. D. G. Luttermoser, B. J. Smith, & R. E. Stencel, 137

Yungelson, L. R. 2005, in American Institute of Physics Conference Series, Vol. 797, Interacting Binaries: Accretion, Evolution, and
Outcomes, ed. L. Burderi, L. A. Antonelli, F. D’ Antona, T. di Salvo, G. L. Israel, L. Piersanti, A. Tornambe, & O. Straniero, 1-10



	Introduction
	Stability
	Stability of fusion
	Contraction
	Low mass stars
	Ignition masses
	Intermediate mass stars
	Massive stars
	Very massive stars
	Binary evolution
	Arnett's semi-analytical supernova lightcurves

