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Abstract. The 17 th-century English astronomer Ed-
mond Halley studied ancient observations of lunar and
solar eclipses and concluded that the month is getting
shorter. We now know that this conclusion is incorrect.
On the basis of a simple model for the Earth-Moon sys-
tem, a possible explanation for Halley’s mistake may be
found. An extension of the same model predicts incor-
rectly that the Moon was very close to the Earth about
1.2 Gyr ago. At such a short distance, tidal forces would
cause catastrophic melting of the crust of the Earth. The
geologic record show no evidence for this.

To investigate this problem further, we take a look at
measurements of the rotation velocity of the Earth, now
and in the past. We end with a brief description of the
formation of the Moon.

1. Halley and the orbit of the Moon

”And if any curious Traveller, or Merchant residing there,
would please to observe, with due care, the Phases of the
Moon’s eclipses at Bagdat, Aleppo and Alexandria, thereby
to determine their Longitudes, they could not do the Sci-
ence of Astronomy a greater Service: For in and near these
Places were made all the Observations whereby the Mid-
dle Motions of the Sun and Moon are limited: And I could
then pronounce in what Proportion the Moon’s motion
does Accelerate; which that it does, I think I can demon-
strate, and shall (God willing) one day make it appear to
the Publick.”

The above sentence occurs at the end of an article
that Edmond Halley4 wrote in the November/December
issue of 1695 of the Philosophical Transactions, a journal
’Giving some account of the present undertakings, studies
and labours of the ingenious, in many considerable parts
of the world’ as its cover indicates. Apparently, Halley had
concluded that the motion of the Moon along the sky is
getting faster, which means that the length of the month
is getting shorter. From Kepler’s law, a shorter month
implies a shorter distance of the Moon to the Earth. 1

1 Alan Cook, in his 1998 biography of Halley1, and Anton
Pannekoek, in his 1951 History of Astronomy10, agree on this

Halley’s idea that the Moon was further from the Earth
in the past than it is now, is remarkable, because in reality
the reverse is true. It is possible to guess how Halley ar-
rived at his conclusion from the above statement, and from
the fact that Halley had written about the astronomical
observations of al-Battani3, an arabic astronomer referred
to by Halley with the latinized name of Albategnius, who
flourished around 890. The work by al-Battani had been
translated from the arabic into latin by a certain Plato
Tiburtinus who – in Halley’s words – ‘neither knew enough
of the language, nor was instructed in the science of As-
tronomy’. Halley therefore emended the Latin edition, in
the October 1693 issue of the Philosophical Transactions.
The observations of al-Battani include several solar and
lunar eclipses.

Since Halley never published the details of his reason-
ing, I will illustrate his probable line of argument with
a hypothetical example. Because solar eclipses always oc-
cur at new Moon, the time difference between two eclipses
is always an integer number of Months. Halley knew the
length of the Month in his time quite accurately, and thus
could compute the times on which al-Battani could have
observed an eclipse. Suppose that Halley computed the
time of an eclipse 800 year or about 104 months before his
time, and found that at that time the city of Alexandria,
about 15 degrees west of Bagdad, would be exactly on the
line connecting the centers of the Sun and the Moon, i.e.
the eclipse would be seen in this place; whereas al-Battani
tells us that the eclipse on that day was seen in Bagdad.
To explain this Halley would first note that due to the
rotation of the Earth, Bagdad arrived on the line between
the Sun and Moon one hour earlier than Alexandria. Ap-
parently, the eclipse occurred one hour earlier than Halley
computed. The conclusion is that the average month dur-
ing the 800 yr interval was 10−4 hr longer than the month
in Halley’s time. For an assumed linear increase in the
length of the month, the month 400 yr before Halleys time
was at this average length, so that the rate of change in
the length of the Month is 10−4 hr/400 yr, or 9 s in 10 000
yr.

interpretation. They mention that Laplace tried to explain it
by computing the effect of the Sun on the orbit of the Moon,
and that the computations of Laplace were shown to be in error
by Adams.



Table 1. Measured parameters of the Earth and Moon system.
Note that on should use the sidereal day, 86164.1 s, and the
sidereal month, 27.32166 d, for the computation of the angular
velocities of the Earth and of the lunar orbit. Data mainly from
Dickey et al. 19942.

parameters of the Earth and Moon
Earth Moon

mass M = 5.9734 1027 g m = M/81.33
radius R = 6.37103 108 cm r = 1.7379 108 cm
angular rotation
velocity Ω = 2π/(86164.1 )s ωm = ω
dimensionless ang.

momentum radius rg,e =
√

0.331 rg,m =
√

0.394

current orbital parameters
semi-major axis a = 3.8440 1010 cm
derivative ȧ = 3.82 cm/yr
angular velocity ω = 2π/(27.32166 d)
eccentricity e = 0.05490

2. A simple description of the Earth-Moon system

The next step is to see in how far Halley’s result can be
understood in a very simple model for the Earth and the
Moon. In this model, the Earth and Moon revolve around
one another in a circle, and their rotation axes are assumed
perpendicular to the orbital plane. We further assume that
the Earth and the Moon are perfect spheres, and that their
relative orbit is not perturbed by the Sun or by any of the
planets.

The total angular momentum J of the Earth-Moon
system then can be written

J =
Mm

M + m
a2ω + r2

g,eMR2Ω + r2

g,mmr2ωm (1)

The quantities occurring in this equation are explained,
and their values listed, in Table 1. Since the Moon has
much smaller mass and radius than the Earth, we ignore
its angular momentum in what follows. In our assumption
of no external perturbers, J is a constant, and its value is
found by entering the values listed in Table 1 in eq. 1.

In eq. 1 a, ω and Ω are functions of time. We define

I ≡ r2

g,eMR2 (2)

and eliminate ω from eq. 1 using Kepler’s law

ω2 =
G(M + m)

a3
(3)

to find

J = Mm

√

Ga

M + m
+ IΩ (4)

The tidal forces of the Moon slow down the rotation of
the Earth, i.e. Ω is getting smaller. Eq. 4 shows that the
angular momentum thus lost by the Earth is added to the

angular momentum of the lunar orbit, which implies that
the distance a between the Earth and the Moon increases.

We write a in terms of its current value an. To obtain
the number of days per month, Ω/ω, we divide eq. 1 by
ω, use Kepler’s law again, and enter the numerical values
for M , m, rg,e and an to find

Ω

ω
' 161

(

a

an

)3/2

− 134

(

a

an

)2

(5)

Eqs. 3 and 5 enable us to compute ω and Ω as a function
of a, as illustrated in Figure 1.

Fig. 1. The rotation velocity of the Earth Ω (in units of the
current value Ωn), and the number of days per month Ω/ω,
as a function of the distance a between the Earth and Moon
(in units of the current value an). The vertical dashed line
indicates the distance at which tidal forces of the Earth would
destroy the Moon. A circular orbit has been assumed.

By definition, the Earth-Moon system is now at a =
an, and a is increasing. Figure 1 then tells us that the
number of days per month is decreasing! The angular ve-
locity of the rotation of the Earth is decreasing, i.e. the
length of the day is increasing. Thus, even as the length
of the month as measured in days is decreasing, its length
as measured in constant units of time, for example in sec-
onds, is increasing.

This I suggest is the origin of Halley’s error. Halley
found correctly that the number of days per month is de-



creasing; he assumed that the length of the day is con-
stant, and thus concluded incorrectly that the length of
the month decreases.

3. History of the orbit of the Moon: a simple de-

scription

Figure 1 shows that there would be one day per month,
i.e. the length of the day would be equal to the length
of the month, if the Moon and the Earth were very close
to one another. Solving eq. 5 for Ω/ω = 1 we find a =
0.038an or about 14600 km; and with eq. 3 it follows that
the corresponding length of the month/day is 4.9 hr. Has
this actually occurred in the past? To know this we must
compute the distance a as a function of time, and for that
we need a theory for the tidal forces. One such theory has
been devised by George Darwin, the son of the famous
biologist, in a series of articles starting in 1879. (A very
clear recent description of this theory has been given by
Piet Hut6, and I follow his notation to a large extent.)

Fig. 2. The bulge caused by the Moon on the Earth, in the
‘small friction’ model (not to scale) leads the orbital motion
by a constant angle.

The gravitational attraction of the Moon causes the
Earth to bulge, both in the direction of the Moon and
away from it. In Darwin’s description, this bulge is not
directed towards the Moon, but leads it by a constant

angle, as shown in Figure 2. This angle is determined by
the time scale of energy dissipation due to the tidal forces.
Each of the bulges contains a mass µ given by

µ =
1

2
km

(

R

a

)3

(6)

where k is a constant which depends on the mass distribu-
tion within the Earth. By integration of the forces exerted
by the two bulges over the orbit, the time derivative of the
semi-major axis may be computed. The result is

ȧ ≡
da

dt
= 6

k

T

m

M

(

1 +
m

M

)

(

R

a

)8

a

(

Ω

ω
− 1

)

(7)

where T is a time scale proportional to the time scale of
the energy dissipation. In principle k/T should be derived
from a detailed theory; in practice it is easier to determine
k/T from the measured value of ȧ.

Fig. 3. The distance between the Earth and the Moon, the
rotation velocity of the Earth, and the number of days per
Month, in the weak friction model. The solid lines show the
approximation for a circular orbit, the dashed lines include
eccentricity.

In the last decades ȧ has been measured accurately
with lunar ranging. The Apollo 11, 14 and 15 astronauts
have put mirrors on the Moon; one mirror was put in
place by the Lunakhod 2. Pulses of laser light are sent
towards the Moon, and the time intervals are measured
until the detection of the returning pulses. This is not a
simple measurement! Even a laser beam spreads out at
the distance of the Moon, and only 1 of every 109 photons
hits the mirrors; from these, only a similar fraction hits
the telescope on Earth. With further losses in detection
efficiency, in the end only about 1 of every 1021 photons
sent to the Moon are detected after return. It is therefore a
stunning achievement that the average change in distance
towards the Moon has been measured2; its value is given
in Table 1.



The differential equation 7 can be solved numerically,
together with eqs. 3 and 5. The resulting evolutions of a,
ω and Ω are shown in Figure 3.

For comparison, I also show the numerical solution to
the equations that take into account the eccentricity of the
orbit of the Moon (these equations are given by Hut6). An
interesting aspect of the numerical solution is that the ec-
centricity of the lunar orbit is increasing with time, i.e.
it was smaller in the past (Figure 4). The reason for this
is that the transfer of angular momentum from the Earth
to the lunar orbit corresponds to a transfer of energy; this
energy is used partially in increasing the distance, and par-
tially in increasing the eccentricity. (For the same angular
momentum, eccentric orbits have a higher energy than cir-
cular orbits.) The small current and past eccentricity of
the lunar orbit leads us to expect that the differences be-
tween the analytic solution of the simplest equation and
the numerical solution are small, and this indeed is the
case15.

In particular, both numerical solutions show that the
Moon was very close to the Earth about 1.2 Gyr ago. At
the time of George Darwin, this was an argument for an
origin of the Moon as a fragment from the Earth; once
this fragment was dissociated from the Earth, the excess
rotational energy of the Earth, combined with tidal forces,
would expell the Moon to the larger distance where we
now observe it.

4. The tidal catastrophe

To see that such a close distance has catastrophic conse-
quences, we consider the energy equation. The total en-
ergy (again assuming a circular orbit) of the binary is

E = −
GMm

2a
+

1

2
IΩ2 (8)

The change in energy is

Ė =
GMm

2a2
ȧ + IΩΩ̇ (9)

We use the time derivative of the angular momentum
equation 4

J̇ = 0 =
Mm

2

√

Ga

M + m

ȧ

a
+ IΩ̇ (10)

to eliminate ȧ from eq. 9 and find:

Ė = IΩ̇(Ω − ω) (11)

This form of the equation shows nicely that the energy
change is zero in corotation, i.e. when Ω = ω; in other
words, corotation is a minimum energy situation.

If we use the value of ȧ measured by lunar ranging,
we derive a required current energy dissipation of about
3.5 terawatt (i.e. 3.5 1012 Watt). To get some idea of the

importance of the energy dissipation, we compare it with
the amount of solar radiation intercepted by the Earth:

Ė� =
L�

4πA.U.2
πR2

' 1.75 1017 Watt (12)

where L� is the solar luminosity and A.U. the distance
of the Earth to the Sun. Since we know Ω and Ω̇ as a
function of time, we can plot the energy dissipation also,
and this is done in Figure 4.

Fig. 4. Eccentricity of the lunar orbit, and the energy dissipa-
tion on the Earth associated with the tidal forces of the Moon,
in the weak friction model, as a function of time.

It is seen that the tidal energy dissipation increases
dramatically as the distance between the Earth and the
Moon decreases; close to the smallest distance in the past
the tidal energy dissipation was a thousand times higher
than the energy received from the Sun. We can estimate
the temperature of the crust with the black body temper-
ature required to emit such an energy:

L ' 103Ė� = 4πR2σTc
4
⇒ Tc ' 1600 K (13)

This value is high enough to completely melt the crust of
the Earth. The geological record contains rock layers with
ages of about 3 Gyr, however, so that we know that no
such catastrophic melting can have occurred since then.

Another catastrophe may be expected at such a short
distance of the Moon: the tidal force of the Earth will
disrupt the Moon. A rough estimate of the distance at
which this happens may be found by considering the forces
on a test mass on the surface of the Moon facing the Earth.
By equating the difference in the gravitational force of the



Earth on the test mass and the center of the Moon to the
force exerted by the Moon on the testmass, we get:

GM

(a − r)2
−

GM

a2
' 2

GM

a3
r =

Gm

r2
⇒

r

a
'

( m

2M

)1/3

(14)

Solving this equation for a we get the distance at at which
the Earth will disrupt the Moon: at ' 5.5r ' 0.025an. A
more accurate estimate, due to Roche, gives at ' 0.043an,
or about 16 500 km. Thus, the distance at which the tidal
forces of the Moon wreak havoc with the surface of the
Earth is similar to the distance at which the Earth de-
stroys the Moon.

5. The rotation of the Earth

Since the simple model leads to a wrong conclusion, we
consider another aspect of it, the rotation of the Earth.
With a current value of ȧ as measured with lunar rang-
ing (Table 1), Eq. 10 predicts a value for the change in
rotational velocity of the Earth Ω̇ = −5.60 10−22/s2. If we
write the length of the day as P ≡ 2π/Ω, we get for the
change in the length of the day

∆P = −
2π

Ω2
∆Ω = −

2π

Ω2
Ω̇∆t (15)

Thus, the current change of the length of the day is 0.002 s
per century, according to our simple theory.

The Sun also exerts a tidal force on the Earth, and
dissipation of the tides caused by the Sun also leads to
a slowdown of the Earth rotation – and a corresponding
increase in the orbit of the Earth around the Sun. The
angular momentum of the Earth orbit is so much big-
ger than the rotational momentum of the Earth, that the
change in the orbit is imperceptible, but the rotation of
the Earth is perceptably affected. We can make a quick
estimate of the change in the distance of the Earth to the
Sun ȦU (the astronomical unit) due to tides by replacing
the mass of the Moon in eq.7 with the mass of the Sun
M� = 1.9891 × 1033 g. Dividing the two versions of eq.7
for the Sun and the Moon (which eliminates the factor
k/T ), and noting that M� � M � m, Ω � ω and that a
day is much shorter than a year, we obtain

ȦU '
M�

m

M�

M

( a

AU

)7 1year

1month
ȧ ' 0.9 × 10−4ȧ

' 3.4× 10−4 cm/yr (16)

which is indeed negligible even on a time scale of a bil-
lion years. Entering ȦU according to Eq.16 in Eq.10, and
replacing m with M� in the same equation, we find the
relative effects of Sun and Moon on the rotation of the
Earth as

Ω̇S

Ω̇
'

M

m

√

M�a

MAU

ȦU

ȧ
' 0.2 (17)

Thus the Sun adds some 20% to the slowdown value that
we derived for the Moon. (Note that we have ignored here

the effect of the tides raised by the Earth on the Sun on
the rotation of the Sun. This neglect can be justified by
use of Eq.7, using the Earth mass for m and the mass and
rotation of the Sun for M and Ω.)

A full computation, taking into account that Earth is
not a perfect sphere, that its rotation axis is not perpen-
dicular to the orbit of the Moon, and the contribution of
the Sun leads to a predicted decrease of the rotation of
the Earth of approximately 2.3 milliseconds per century.

Our simple theory comes remarkably close to this, and
thus apparently describes the main contributions to the
slowdown of the Earth rotation. We now proceed to com-
pare this theoretical prescription with four types of mea-
surements, on four time scales: highly accurate measure-
ments using radio telescopes and lunar ranging during
the last decades, solar eclipse measurements going back
two thousand years, layer counts in shells and corals go-
ing back 400 milion year, and counting layers in mud-
depositions going back 900 million year.

6. Modern measurements of the rotation of the

Earth

Due to the rotation of the Earth, stars appear to move
across the sky. By measuring the time interval between
two moments that a star is exactly south from the observer
(in the technical jargon, between two ’southern meridian
passages’) one can determine the length of a day. More
generally, the length of the day can be derived from the
speed with which a star appears to move. The larger the
telescope, the more accurate the measurement of the posi-
tion of a star. Not only stars, but all celestial objects may
be used for such measurements, in particular also black
holes in the cores of faraway galaxies, that are strong ra-
dio sources. The most accurate measurements of the rota-
tion of the Earth are made by connecting radio telescopes
across the world (’Very Long Baseline Interferometry’ or
VLBI) to measure the position of quasars. The advantage
of using such faraway objects is that any motion that these
sources themselves may have is too small to have an effect
on the measurement.

The lunar ranging already discussed can be used sim-
ilarly, albeit that it has to be taken into account that the
Moon itself also moves. Such measurements therefore give
a measurement of the sum of the rotation speed of the
Earth and the revolution speed of the moon. Similar tech-
niques may be used with artificial satellites.

Combining the three types of measurement – VLBI, lu-
nar ranging, and satellite ranging – a very accurate record
of the rotation speed of the Earth can be constructed from
1963 onwards, when these measurements were started. In
discussing these, I follow a review by Hide and Dickey5.
In Figure 5 the difference is shown between the measured
length of each day since 1963 and the length of the day
computed from its value at the beginning of the mea-
surements and the assumption that the length of the day



increases 1.7 millisecond per century. (Why this value is
taken rather than the 2.3 milliseconds per century of the
previous chapter is discussed in the next section. The off-
set of ∼ 2ms is due to the definition that dayo-dayc was
zero around 1860.)

Fig. 5. Differences in milliseconds between observed length of
the day, as derived from modern measurements, and the length
of the day computed assuming a constant change of 1.7 mil-
lisecond per century. The top curve (a) shows the actual mea-
surements, with a running five-year average (b) drawn through
it. The curve (c) below it shows the changes from year to year,
computed by taking the difference between a one-year running
average and a five year average of curve (a). The variations
that return every year are shown as curve (d), and enlarged
in the lower frame; they are computed by subtracting curves
(b) and (c) from curve (a), and by folding the remainder on a
one-year period. Finally, the irregular variations (e) are found
by subtracting curves (b), (c) and (d) from (a). For clarity,
curves (d,e) have been shifted down by 1 and 3 ms, respec-
tively. Data kindly provided by Dr. J.O. Dickey. Adapted from
Fig. 2 of Hide & Dickey5 (1991).

To analyse these differences, we first take a five-year
running mean. This gives the mean change on a time scale
of five years, and is shown as curve b) in the figure. In the

second step, we subtract the five-year running mean from
the one-year running mean, to determine the year-to-year
variations, shown as curve c). We then subtract curves b)
and c) from the measured values. The remaining values
are averaged for each time in the year over all years dur-
ing which measurements were made – the result gives the
seasonal variation shown as curve d). Finally, the differ-
ence between this average and the values for each day is
shown as curve e).

The first thing we note from the data in Figure 5 is
that at a time scale of twenty years and shorter all kinds
of variations are present, which prevent us from deter-
mining an accurate value for the changes on longer time
scales. To put it differently, if we had subtracted 1.5 or
1.9 instead of 1.7 milliseconds per century from the mea-
sured values, Fig. 5 would still look pretty similar. We are
faced with the disappointing result that we cannot derive

the long-term change in the rotation of the Earth from

the extremely accurate modern measurements! This disap-
pointment, however, is more than compensated for by the
wonderful physics that we can derive from the observed
variations.

To do this, we abandon our simple model that the
Earth is a single solid sphere, and acknowledge that the
Earth is composed of different interacting layers. These
layers and their relative contribution to the total angular
momentum of the Earth are from inside out the solid core
(7 × 10−4), the fluid interior (0.1), the solid crust (0.9),
the oceans (3 × 10−4), and the atmosphere (10−6).

All variations on short time scales are due to exchange
of angular momentum between the solid crust and the at-
mosphere (and to a lesser extent the oceans). This can be
verified directly because the measurements of pressure and
velocity of the atmosphere are good enough to enable the
meteorologists to compute the angular momentum in the
atmosphere from day to day. Comparison of this momen-
tum with that derived from the rotation velocity of the
crust shows that the two vary in tandem, with opposite
sign. The seasonal variations (curve d) are due to seasonal
variations in the wind directions: to visualize this, think
of a seasonal wind that blows on one side of a mountain
during one half of the year and on the other side the other
half, thus in turn braking and speeding up the rotation
of the Earth crust. The other short-term variations cor-
respond to changes in the pattern of the weather of the
world, on time scales of years (curve c) and from day to
day (curve e). The well-known change in weather pattern
known as El Niño is evident in these curves both in 1977-
1978 and in 1982-1983, the latter one giving rise to the
largest changes in the angular momentum of the Earth
rotation ever measured!

From the changes in angular momentum of the atmo-
sphere, as found from meteorological data, we can com-
pute predicted changes in the rotation of the crust; com-
paring these with the observed changes one finds dif-
ferences of about 0.2 milliseconds. Recently it has been



shown that these differences correlate well with variations
in the angular momentum of the oceans, as computed from
oceanographic data8.

The variation on a time scale of 5 yr (curve b in Fig. 5)
is thought to be due to exchange of angular momentum
between the fluid interior of the Earth and the solid crust.
At the moment the measurements of the velocities of the
fluid interior are not good enough to verify this directly.

7. Historical eclipses of Sun and Moon

Let us return for a moment to the hypothetical example in
Sect. 1. From the fact that the eclipse occurred in Bagdad
and not in Alexandria Halley derived that the Month was
longer in the past than now. However, the same observa-
tion may be explained with a different assumption, viz.
that the rotation of the Earth was faster in the past. In
general, the difference between a computed and observed
eclipse location is due to the combined effect of changes
in the rotation velocity of the Earth and the revolution
velocity of the Moon.

In analyzing historical records of eclipses it is nowadays
common to assume that the change in the revolution of
the Moon is constant, and given from eq. 3 by

ω̇ = −
3ω

2a
ȧ ' −1.26 10−23rad s−2

' −25.83 arcsec cy−2 (18)

The argument underlying this assumption is that the time
scale for the variation in the lunar orbit is set by the en-
ergy dissipation (see eq. 7); that this dissipation occurs in
the oceans; and that there is no evidence that the oceanic
currents have changed in historical times. Thus, one com-
putes the times and locations of past eclipses taking into
account the change in the length of the Month, and then
interprets the remaining differences as due to changes in
the length of the day.

Our information of the lunar orbit for the last three
hundred years is quite accurate, thanks to the telescope.
Measurements are made of the exact time that the Moon
occults a star. Thus, an accurate clock is required, and
such clocks were indeed available. The changes in the
length of day derived from these data are shown in Fig-
ure 6. The average change between 1660 and 1980 is slower
than the 2.3ms/cy expected from theory, viz. 0.73ms.cy.
On top of this an average trend we note irregular varia-
tions. Between 1860 and 1900, in hardly forty years, the
length of the day varied by 7ms with respect to the aver-
age change, from 3 ms shorter to 4 ms longer. This vari-
ation is stronger than any seen in the modern data of
Figure 5, and it would be interesting to know whether it
is caused by dramatic changes in the weather.

Information of solar eclipses over the last two thou-
sand years has been collected by Richard Stephenson14

from records of Babylonian, Chinese, Greek and Arabic
astronomers as well as European chronicles. Taking into

Fig. 6. Differences in milliseconds between observed length
of the day, as derived from occultations of stars by the Moon
observed with telescopes, and the length of the day computed
assuming a constant change of 0.73 millisecond per century.
Data taken from McCarthy & Babcock9 (1986).

account the change of the lunar orbit, but assuming that
the day has a constant length, one can predict at what
time (and in which location!) historical eclipses should be
seen. The differences between the predicted times and the
times at which the eclipses actually were seen are shown
in Figure 7.

Fig. 7. Top: Differences in observed and computed time of
eclipses from before the invention of the telescope, where the
computed time takes into account the variation in the lunar
orbit, but assumes a day of constant length. The solid line gives
the differences expected if the day changes 1.7 ms/cy; dashed
lines are for 1.6, 1.8 and 2.3 ms/cy. Below: Difference between
observed and computed time of eclipse assuming that the day
changes 1.7 ms/cy. Data taken from Stephenson (1998).

The oldest dated solar eclipse in China and lunar
eclipse in Babylon, at 708 and 665 BC respectively, were
observed almost six hours later than predicted for con-
stant rotation of the Earth. From this one derives that



the average change in the length of the day over the last
2700 yr is 1.7 millisecond per century. The differences be-
tween observed and computed eclipse times for this value
are also shown in Figure 7, as are curves for 1.6, 1.8 and
2.3 ms/cy.

Some points are far from the curve for 1.7 ms/cy. Ex-
amples include the lunar eclipse in Babylon 214 BC, and
the solar eclipse in China 1 BC. These points appear to be
too far from the other observations to be explained with
irregular variations in the rotation of the Earth (like those
between 1860 and 1900 in Figure 6). Something must be
wrong with these points: the observation itself may be
wrong, its report inaccurate, or the identification with a
computed date and location incorrect.

Stephenson suggests that the difference between the
predicted 2.3 and the observed 1.7 ms/cy is due to the
last ice age. During an ice age a thick layer of ice weighs
on the poles, causing the Earth to bulge at the equator
and thus increasing its angular momentum. As the ice
melts, the Earth reverts to a more spherical form, and
the reduction of angular momentum increases the rotation
velocity. Thus, the dissipation of the tides of Moon and
Sun lengthens the day by 2.3 ms/cy, and the change in
form of the earth compensates for 0,6 ms/cy.

It appears to me that this cannot be the full explana-
tion. In Figure 7 we see that the change in the length of
the day varies appreciably from the average over the last
2700 years. Thus most points in the centuries surrounding
500 AD and 1000 AD lie above and below the 1.7 ms/cy
curve, respectively. The latter points are shown on an ex-
panded scale in Figure 8, together with curves for 2.3 1.7
and 0.73 ms/cy. We see that the average change over the
last 1000 years lies between 0.73 and 1.7 ms/cy. Thus the
changes on time scales of 1000 yr are larger in size than
the 0,6 ms/cy that Stephenson seeks to explain with the
end of the last ice age a hundred thousand years ago. This
suggests that other, short-term effects, are at work. Per-
haps changes in large oceanic streams are involved: it is
known for example that the gulf-stream stopped during
the so-called little ice age of 1645 to 1715.

8. Growth layers in shells and corals; mud layers

Corals and shells grow by the addition of new layers. It is
thought that one layer is added each day, perhaps under
the influence of the change in light. Since the amount of
light at night changes with the phase of the Moon one
could imagine that there is a monthly variation too, and
such a variation is indeed found in fossils of corals as well
as shells, going back to some 400 million year. Annual
variations are also found. By carefully counting growth
rings we can thus determine the number of days per month
and per year.

The study of these growth rings is not without prob-
lems. For example, not all corals show yearly variation,
and it is rather puzzling that no annual variation is found

Fig. 8. As the previous figure, but enlarged for the middle
ages. The solid line is for a change in length of day of 1.7
ms/cy; dashed lines for 0.73 and 2.3 ms/cy. Data taken from
Stephenson (1998).

in present day relatives of those types of coral that show
clear annual change in paleological times. It is not known
whether the ring thickness is larger in winter or in sum-
mer. If a ring is added each day, it could be that on a
day with particularly bad weather no ring is added, which
would leave the month with one ring short. In the absence
of good understanding of the process of growth, it is clear
that the data have to be interpreted with care.

Various authors have made counts and determined the
number of days per month in corals and shells from dif-
ferent paleological periods. In Figure 9 I show the best
data available, taken from a review by C.T. Scrutton12.
I include only those measurements for which the authors
give error estimates – without which data are essentially
useless.

We are now faced with a subtlety that I have so far
managed to avoid: the difference between sidereal and syn-
odic days and months (see Figure 10). Consider a place on
earth which has the Sun in its Zenith. During the time
that this place completes one rotation with respect to the
stars around the center of the Earth, the Earth has moved
a bit in it orbit around the Sun. Therefore the Earth has
to rotate a bit more before our place has the Sun again
in its zenith: the solar day (technically called the synodic
day) is slightly longer than the stellar day (the sidereal
day). The number of stellar days n in a year is exactly
one higher than the number of solar days ns = n − 1. A
wholly analogous reasoning tells us that the number of
stellar (sidereal) months in a year m is exactly one higher
than the number of solar (synodic) months ms = m − 1.
At present the solar day Ds is 24 hours, the sidereal day
D is about 4 minutes shorter; the synodic months Ms is



Fig. 9. Top: Number of days per month as a function of time,
as derived from bivalve shells, corals, and nautilus. The solid
curve gives the theoretical prediction as in Figure 3, the dashed
curve gives the number of solar days per solar month. The
values derived from fossil nautilus clearly are not acceptable.
Data taken from Scrutton12 (1978). Middle: enlargement of
top figure. Below: rotation velocity of the Earth (in units of
the current rotation velocity) according to theory (solid curve
as in Figure 3) and as derived from fossil mud layers. The two
points at −900 Myr indicate the difference between two pub-
lished analyses.

about 29.5 (synodic) days, the sidereal month M about
27.3.

The shells and corals in the sea regulate their varia-
tions on the synodic periods. We thus must convert the
number of sidereal days per sidereal month, as given by
Eq. 5 to the number of synodic days per synodic month
for comparison with the data from shells and corals. The
conversion is given by
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The result is given by the dashed line in Figure 9. We see
that the data are close to the line, and also that the errors

Fig. 10. Schematic drawing to explain the difference between
solar and sidereal days (not to scale). When the centre of the
Earth is at E, it is mid-solar-day in P; S is the center of the
Sun. P rotates counter-clockwise around E, and simultaneously
E moves counter-clockwise around S. After a sidereal day P
has made exactly one revolution, and the centre of the Earth
has arrived in E’. It is then mid-solar-day in Q; in P it is
before mid-day. Only after some extra rotation will P be at
mid-solar-day; the solar day thus is longer than the sidereal
day.

are relatively large. A straight line fitted to the data of
shells and corals has a slope of 2.5±2.0 Gyr−1 (1-σ error),
i.e. the data themselves do not provide significant proof
for any change in the length of the day.

Virtually all ring counts have been made by eye, and
this raises the question how reliable they are. As pointed
out by Scrutton12, most publications lack details about
the mode of counting and about the actual numbers of
layers and days counted. It appears that the use of shells
and corals for the determination of the length of the day,
after a promising start in the 1970s, has come to a stand-
still. Little news has been published on the topic sinds
1980. It is remarkable that the one animal in which rings
can be counted easily11 gives results that contradict those
for bi-valve shells and corals. The living nautilus adds a
ring every day to its shell, and a section wall every month.
By counting rings between walls for fossilised nautilus, one
thus may determine the number of days per month in pa-
leological times. The results are shown in Figure 9. It is
seen that the nautilus had 9 days between section walls
400 Myr ago. The conclusion that the month had nine days
so recently is unacceptable, however: such a fast change
exacerbates the problems discussed in Sect.4.

Data for even older epochs can be obtained from vari-
ations in the thickness of mudlayers in old sediments. In
some estuaria each tide is accompanied by the deposition
of a layer of mud: the receding water at low-tide carries



some mud and deposits it in in slightly deeper water. At
spring tide, when Moon and Sun are aligned, a stronger
stream may lead to extra mud deposition. This line of rea-
soning explains the regular variations in thickness of old
sediments like those near Adelaide16 (Australia) of 600
Myr ago, and in the Big Cottonwood Canyon13 (Utah) of
900 Myr ago. Counting the number of layers between two
extra thick layers gives the number of days per month.
Yearly variations in thickness are also found, perhaps due
to seasonal variations in the local sea flow.

Because the length of the year hasn’t changed signif-
icantly, the number of days per year directly gives the
rotation velocity of the earth. As with the shells, how-
ever, interpretation of the data is not without ambigui-
ties, as witnessed by the fact that two different values have
been derived from the same material from Big Cottonwood
Canyon. Nonetheless, as shown in Figure 9, all results in-
dicate a slower change in the rotation of the Earth in the
geologic past than derived from the current rate of change.
This is good news, as it implies that it is more than 1,2
Gyr ago that the Moon was very close to the Earth. More
data are required for a more accurate history of the ro-
tation of the Earth, and these may be forthcoming from
suitable mud depositions.

What is the cause for the geologic variation in the rate
of change of the distance to the Moon and the related
change in the rotation of the Earth? Most likely it is the
change in the form of the oceans, due to the drift of the
continents. Maps of the location of the continents show
that the form of the oceans varied dramatically over the
last 500 Myr. A different form of the oceans implies a
different rate of dissipation of the ocean flow. As shown
by Eq. 11 this immediately affects the change in rotation
of the Earth. Our simple treatment of Darwin’s theory for
the tides in Section 3 didn’t take this into account.

9. The history of the Moon

In the last decade scientists have come to the conclusion
that the Moon most probably formed after an object –
possibly as big as Mars – collided with the Earth. The
object was completely disrupted in the collision, together
with part of the crust of the Earth. The debris moved in
orbit around the Earth, the bits and pieces with higher
specific weight (like iron) fell on Earth, those with lower
specific weight (silicates) coagulated to form the Moon,
just outside the Roche limit7. The model explains that the
Moon has no iron core. Even though the Moon is much
smaller than Mars, impact of a large body is required to
explain the large angular momentum in the Earth-Moon
system.

This angular momentum resided mainly in rapid ro-
tation of the Earth, but has been transferred by tidal
forces to the orbit of the Moon. Thus, the Moon which
was formed at about 17 000 km from the Earth is now at
380 000 km. The rate of expansion must have been rather

irregular: at first there were no oceans on the Earth. Only
after the Earth cooled down, could oceans be formed and
energy dissipation pick up, and each change in form and
depth of the oceans has been accompanied by a change in
the rate with which the Moon receded.
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