
Problem Set IV: Darwin instability due 17 Nov 2017

For general comments about problem sets, see problem set I. For this specific one, you may find
it useful to read CO, §19.2, “Tidal forces.”. Note that there are only two parts, but each is longer
than typical for previous problem sets.

IV.1. Darwin instability: derivation

In class, we discussed how tidal friction will cause a very small body inside a planet’s corotation
radius to spiral in eventually. We will here consider a more general case. We start with two objects,
a bigger one with mass M1, and a smaller one, with mass M2, where initially everything is in
corotation, i.e., Porb = P1 = P2. As a measure of how difficult it is to change the rotation of
object 1, we will write results in terms of its moment of intertia, I1 (we will ignore the rotation
of object 2, i.e., we assume I2 = 0).

To test whether the corotation state is stable, we will consider a very slight deviation, in which
the bigger object has spun down slightly and its spin period P1 is thus ever so slightly longer than
the orbital period Porb..

1. To get started, what are the rotational energy E1 and angular momentum J1 of object 1?
What are the orbital energy Eorb and angular momentum Jorb? Write all results in terms of
M1, M2, I1, P1 and Porb.

2. In general, for tidal interaction, J1+Jorb is conserved, but E1+Eorb is not. What other source
or sink of energy is present?

3. Now consider our starting situation, with object 1 rotating slightly slower than the orbital
period.
(a) In which direction will energy and angular momentum flow, from the orbit to the rotation

of 1, or vice versa? Illustrate your answer with a sketch of the situation, indicating tidal
bulges, forces, etc.

(b) Supposing a new equilibrium can be reached, will object 2 be further or less far away from
object 1? And will the rotation of object 1 be faster or slower than before?

4. To determine whether a new equilibrium can in fact be reached, show
(a) That conservation of angular momentum implies J1(Ṗ1/P1) =

1

3
Jorb(Ṗorb/Porb);

(b) That, for stability, you thus require Jorb > 3J1.



IV.2. Darwin instability: application

We now apply the Darwin instability criterion. In order to calculate the angular momentum of
the spinning object 1, we will express its moment of intertia as I1 = kM1R

2
1
, with k a constant;

you can use that k ≃ 0.33 for Earth, 0.26 for Jupiter, and 0.06 for the Sun.

1. We first consider k.
(a) What is k for a constant-density sphere?
(b) Explain qualitively why this is larger than the values for Earth, Jupiter, and the Sun.
(c) Explain qualitatively the relative ranking of Earth, Jupiter, and the Sun, based on the

properties of their interiors.
2. Apply the stability criterion to the X-ray binary Cen X-3, which is composed of a massive,

20M⊙, 12R⊙ star, orbited by a 1.4M⊙ neutron star (Porb = 2.087 d; pick a reasonable k, and
assume P1 ≃ Porb). Do you think astronomers were surprised when they found the orbit was
decaying on a 105 yr timescale?

3. Now we consider Mars (again pick a reasonable k, and assume Porb ≃ PMars).
(a) Derive a general expression for the minimum mass M2 required for stability for the case

that M2 ≪ M1.
(b) Now insert numbers for Mars. How does this compare with Phobos?

4. Many Hot Jupiters, with masses of ∼1MJ , are in ∼4 day orbits with their Sun-like hosts.
(a) Are these systems Darwin-unstable? (Feel free to use the relation you derived for 3a.).
(b) Does your answer leave you surprised about their existence? If so, what could explain the

apparent discrepancy?


