Star's life: Protracted battle with gravity

To supp

To support weight:

⇒ need high pressure

• ⇒ n

> ⇒ need high temperature

⇒ will loose energy

⇒ need energy source:

- Gravitational contraction
- Nuclear fusion

Ultimately, Can something else than thermal pressure balance gravity?

Evolutionary tracks: what happens depends on mass

Open issues

have to form planets in ~ few Myrs

- 1) how did the gas disk disperse?
- 2) how are planetesimals made? Are dust grains sufficiently sticky?
- 3) what makes chrondrules?
- 4) How do planetesimals survive collisions?
- 5) What is Jupiter's role in the fate of other planets?
- 6) Do giant planets only form outside frost lines? If so, how to explain the extra-solar hot Jupiters?
- 7)....

Distance $d[pc]=1/\pi[arcsec]$ magnitudes $m = C - 2.5 \log f$; $m_1 - m_2 = -2.5 \log (f_1/f_2)$; $M - m = 5 - 5 \log d$ Doppler shift $\frac{\Delta \lambda}{\lambda} = \frac{V_{rad}}{V_{rad}}$ Gravity & tides $a = \frac{GM}{r^2}$; $a_{tide} \approx \frac{GM}{r^2} \frac{2R}{r}$ Kepler $GM = \Omega^2 a^3 = \left(\frac{2\pi}{P}\right)^2 a^3$; $\frac{a_1}{a} = \frac{v_1}{v} = \frac{m_2}{M}$; for circular orbit, $v = \sqrt{\frac{GM}{a}}$ Virial Theorem $E_{kin} = -\frac{1}{2}E_{pot}$; $E_{tot} = E_{kin} + E_{pot} = \frac{1}{2}E_{pot}$ [where $E_{pot,bin} = -\frac{GM_1M_2}{2}$ and $E_{pot,star} \approx -\frac{GM^2}{2}$] Ideal gas $P = nkT = \frac{\rho}{\mu m_H} kT$; typical kin. en. per particle $\langle e \rangle = \frac{3}{2}kT$; en. density $e = \frac{3}{2}nkT = \frac{2}{3}P$ Degenerate gas $\Delta x \Delta p \sim \hbar$; $E_F = \frac{1}{2} \frac{p_F^2}{m_e} \propto n_e^{2/3}$; $P \propto n_e E_F \propto n_e^{5/3} \propto (\rho/\mu)^{5/3} \rightarrow R \propto M^{-1/3}$ Photon propagation $I_{mfp} = 1/\sigma n = 1/\kappa \rho$; $t_{random} = \frac{R}{I} \frac{R}{C}$ Black body $L = 4 \pi R^2 \sigma T_{eff}^4$; $\lambda_{peak} \propto 1/T$ Hydrostatic eq. $\frac{dP}{dr} = -\rho \frac{GM}{r^2}$; $\rightarrow P \propto M^2/R^4$ Radiative transfer $\frac{dT}{dr} = \frac{3 \kappa \rho}{16 \sigma T^3} \frac{L_r}{4 \sigma r^2}$; $\rightarrow L \propto T_c^4 R^2 \frac{I_{mfp}}{R}$ Timescales $\tau_{ff} \sim \sqrt{\frac{r^3}{GM}} \sim \sqrt{\frac{1}{G\Omega}}$: $\tau_{KH} \sim \frac{GM^2/R}{I}$

Hydrogen fusion
$$E=mc^2$$
; p - p start with $p+p \rightarrow D+e^++v_e$; CNO catalyst, start with $^{12}C+p \rightarrow ^{13}N+\gamma$

Hydrogen atom $E_n = -13.6 \text{ eV}/n^2$