Photons

Astronomy is based on observing photons from celestial bodies.

Annular solar eclipse 2005 Oct. 3rd (Spain)

Astronomy is based on observing photons from celestial bodies.

We obtain information on temperature, density, chemical composition

-

How?

This lecture

- diffusion and random walk
 blackbody and temperature
- 3) Photosphere of the Sun

next lecture

- 4) stellar spectrum
- 5) atomic & molecular transitions
- 6) equation of radiative transport

1) Heat escapes from the Sun as photons

2) The journey from the centre to the surface

- ---- What happens if photons can travel freely from solar center to us? $t_{cross} \sim R_{\odot}/c \sim 2 \text{ sec}$? (neutrinos do...)
- ---- Actual travelling time ~ 10^7 yrs:

On the way, photons encounter many obstacles; this causes them to lose energy (downgrade in frequency) & to multiply in number, and it takes a **long** time to get out Centre: keV photons surface: eV photons

random walk

Random Walk

d

'photon mean free path' Imfp

- 1) **I**_{mfp} --- distance between obstacles;
- 2) Photon changes direction randomly after encountering an obstacle;
- 3) d: net distance traveled

$$|I_{i}| = I_{mfp} \quad d = \sum_{i=1}^{N} I_{i}$$
$$d \cdot d = \sum_{i=1}^{N} I_{i} \cdot I_{i} + \sum_{i \neq j} I_{i} \cdot I_{j}$$
$$^{2} = N I_{mfp}^{2} + I_{mfp}^{2} (\cos \theta_{12} + \cos \theta_{13} +)$$
$$= (N + N(N - 1) \langle \cos \theta \rangle) I_{mfp}^{2} \approx N I_{mfp}^{2}$$
$$\Rightarrow d \approx \sqrt{N} I_{mfp}$$

So the travel time for the distance d is

What is an obstacle (Or: how does a photon interact with matter)?

- 1) Photon A (an electro-magnetic wave) generates an oscillating EM field
- 2) matter (e⁻, ions, atoms, molecules) is shaken by this fluctuating EM field (absorption of the photon A)
- 3) Their shaking is itself an fluctuating field, and this radiates EM wave photon B

Incident Photon

3 types of obstacles

Scattering	A & B are equal in frequency but differ in direction matter absorbs momentum but hardly any energy (hv/m _e c ²) photon loses hardly any energy but changes in direction
Absorption	no B is radiated matter absorbs energy, something happens to it
Emission	sometimes matter decides to emit B (when or when not A) reverse of absorption

Suppose each obstacle has a cross-sectional area of σ (m²) number density n (m⁻³)

bullet

How large is *I_{mfp}*?

- 1) Dimensional analysis: I_{mfp} [m]: $1/(n \sigma)$, $\sigma^2 n$, $n^{-1/3}$,
- 2) Physical argument: photon = bullet obstacles = balloons on a wall wall has area A, will hit one if $N \sigma = A$, where N = n I Aso $I_{mfp} = 1/(n \sigma)$

3) How big are the balloons inside a star? σ lies between 10^{-28} m^2 (size of e⁻) and 10^{-20} m^2 (size of H atom) $n \sim 10^{30} \text{ m}^{-3} \text{if } \rho = 10^3 \text{ kg/m}^3$ $l_{mfp} \sim 10^{-10} \text{ m} - 10^{-2} \text{ m} (<< \text{R}_{\odot} \sim 10^9 \text{ m})$ If $l_{mfp} \sim 10^{-2} \text{ m} \xrightarrow{-->} t_{\text{diffusion}} \sim \text{R}_{\odot}^2 / l_{mfp} c \sim 5000 \text{ years } [N \sim (R_{\odot} / l_{mfp})^2 \sim 10^{22}]$ If $l_{mfp} \sim 10^{-10} \text{ m} \xrightarrow{-->} t_{\text{diffusion}} \sim \text{R}_{\odot}^2 / l_{mfp} c \sim 5x10^{11} \text{ years}$ $[N \sim (R_{\odot} / l_{mfp})^2 \sim 10^{38}]$

Actual diffusion time across the Sun $\sim 10^7$ yr

Note: if diffusion is too slow, strong temperature gradients build up, which lead to convection.

What is 'temperature' of radiation?

Temperature is defined for an ideal body (black body): which radiates a universal spectrum of light – blackbody radiation – that depends only on the 'temperature' (independent of material property, environment,...)

To do so, it must absorb all light incident upon it --- 'black'

"guarantee no reflected light pollutes the blackbody signal"

but its own radiation has a 'color'

Universal Radiation of a blackbody (only depends on *T*) 1) blackbody peak at $\lambda = 0.0029/T$ [m], color of things... 2) radiation flux $F = \sigma T^4$ [W/m²], brightness of things...

A cat as a black-body (seen in infrared)

The solar surface as a blackbody (visible) Effective temperature $T_{eff} = 5780$ K

counter-examples:

neon lights, fluorescent bulbs...

http://casa.colorado.edu/~ajsh/colour/Tspectrum.html

NGC 2266 star cluster

Where is the "surface" of a star at which we measure T_{eff} ?

The photosphere

--> Outermost layer where photons can escape freely without further interaction (photons have just one last mean-free-path) This is the layer where stellar conditions are last imprinted on the photons

Photosphere of the Sun in $\text{H}\alpha$

$$I_{mfp} \sim \frac{1}{n\sigma} \sim \text{ pressure scale height } H$$

where $n = \frac{\rho}{\mu m_{H}}$, (ρ is gas density)
Hydrostatic equilibrium: $\frac{dP}{dr} = -g\rho$
 $H \sim \left(\frac{1}{P} \frac{dP}{dr}\right)^{-1} \sim \frac{P}{g\rho}$
At photosphere: $P \sim g\rho H \sim \frac{g\rho}{n\sigma} \sim \frac{g\mu m_{H}}{\sigma}$
 $P \sim 10^{7} N m^{-2}$ for the Sun