

- 1) Heat escapes from the Sun as photons
- 2) The journey from the centre to the surface
- ---- What happens if photons can travel freely from solar center to us? $t_{cross} \sim R_{\odot}/c \sim 2$ sec? (neutrinos do...)
- ---- Actual travelling time ~ 10⁷ yrs:

On the way, photons encounter many obstacles; this causes them to lose energy (downgrade in frequency) & to multiply in number, and it takes a **long** time to get out Centre: keV photons surface: eV photons

random walk

Astronomy is based on observing photons from celestial bodies.

We obtain information on temperature,

chemical composition

How?

This lecture

- 1) diffusion and random walk
- 2) blackbody and temperature
- 3) Photosphere of the Sun

next lecture

- 4) stellar spectrum
- 5) atomic & molecular transitions
- 6) equation of radiative transport

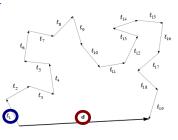
Random Walk

'photon mean free path' Imfp

- Imp -- distance between obstacles;
 Photon changes direction randomly after encountering an obstacle;
 d: net distance traveled

$$|\boldsymbol{I}_i| = \boldsymbol{I}_{mfp} \qquad \boldsymbol{d} = \sum_{i=1}^N \boldsymbol{I}_i$$

$$\mathbf{d} \cdot \mathbf{d} = \sum_{i=1}^{N} \mathbf{I}_{i} \cdot \mathbf{I}_{i} + \sum_{i \neq j} \mathbf{I}_{i} \cdot \mathbf{I}_{j}$$


$$\begin{aligned} d^2 &= N I_{mfp}^2 + I_{mfp}^2 (\cos \theta_{12} + \cos \theta_{13} +) \\ &= [N + N(N - 1) \langle \cos \theta \rangle | I_{mfp}^2 \approx N I_{mfp}^2 \end{aligned}$$

$$\rightarrow d \approx \sqrt{N} I_{mfp}$$

So the travel time for the distance d is

$$= \frac{d}{c} \qquad if \ I_{mtp} \ge 0$$

$$= N \frac{I_{mtp}}{c} = \frac{d^2}{I_{mtp}c} \qquad if \ I_{mtp} < d$$

What is an obstacle (Or: how does a photon interact with matter)?

- 1) Photon A (an electro-magnetic wave) generates an oscillating EM field
- 2) matter (e⁻, ions, atoms, molecules) is shaken by this fluctuating EM field (absorption of the photon A)

--- reverse of absorption

Their shaking is itself an fluctuating field, and this radiates EM wave – photon B
 types of obstacles

Scattering

A & B are equal in frequency but differ in direction
---- matter absorbs momentum but hardly any energy (hv/m_ec²)
---- photon loses hardly any energy but changes in direction

Absorption

no B is radiated
---- matter absorbs energy, something happens to it

sometimes matter decides to emit B (when or when not A)

What is 'temperature' of radiation?

Emission

Temperature is defined for an ideal body (black body):
which radiates a universal spectrum of light
- blackbody radiation that depends only on the 'temperature'
(independent of material property, environment...)

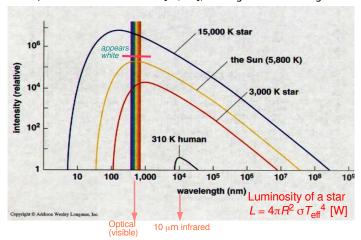
To do so, it must absorb all light incident upon it --- 'black'

"guarantee no reflected light pollutes the blackbody signal" but its own radiation has a 'color'

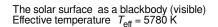
Suppose each obstacle has a cross-sectional area of σ (m²) number density n (m⁻³)

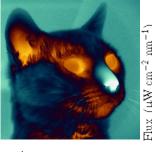
/_{mfp} [m]:

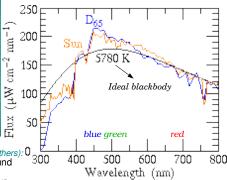
 $1/(n \sigma), \sigma^2 n, n^{-1/3}, ...$


- 2) Physical argument: photon = bullet obstacles = balloons on a wall wall has area A, will hit one if $N \sigma = A$, where $N = n \mid A$ so $I_{mfn} = 1/(n \sigma)$
- 3) How big are the balloons inside a star? σ lies between 10^{-28} m² (size of e⁻) and 10^{-20} m² (size of H atom) $n \sim 10^{30}$ m⁻³ if $\rho = 10^3$ kg/m³

Actual diffusion time across the Sun ~ 107 yr


Note: if diffusion is too slow, strong temperature gradients build up, which lead to convection.


Universal Radiation of a blackbody (only depends on T)


- 1) blackbody peak at $\lambda = 0.0029/T$ [m], color of things..
- 2) radiation flux $F = \sigma T^4$ [W/m²], brightness of things...

A cat as a black-body (seen in infrared)

Examples (some more perfect than others): 0 3K cosmic microwave background surface/interior of a star, human skin, candle, volcanic lava...

http://casa.colorado.edu/~ajsh/colour/Tspectrum.html

counter-examples: neon lights, fluorescent bulbs...

Where is the "surface" of a star at which we measure T_{eff}?

The **photosphere**

--> Outermost layer where photons can escape freely without further interaction (photons have just one last mean-free-path)
This is the layer where stellar conditions are last imprinted on the photons

Photosphere of the Sun in Hα

Hydrostatic equilibrium:
$$\frac{dP}{dr} = -g_P$$

$$H \sim \left(\frac{1}{P} \frac{dP}{dr}\right)^{-1} \sim \frac{P}{g_P}$$

At photosphere:
$$P \sim g_P H \sim \frac{g_P}{n\sigma} \sim \frac{g_\mu m_H}{\sigma}$$

 $P \sim 10^7 N m^{-2}$ for the Sun

