What is a Star?

Big ball of gas

Self-gravity

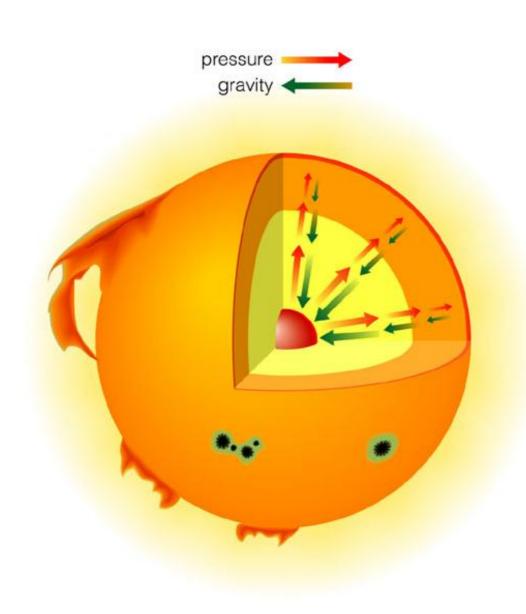
⇒ high pressure inside,

high pressure

⇒ high temperature inside,

high temperature \Rightarrow emit light.

Star's life: Protracted battle with gravity



To support weight:

⇒ need high pressure

> ⇒ need high temperature

⇒ will loose energy

⇒ need energy source:

- Gravitational contraction

- Nuclear fusion

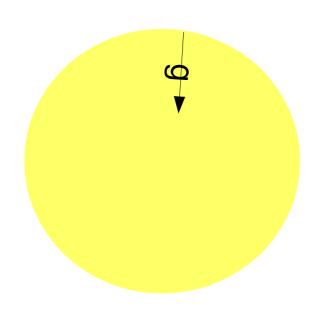
Ultimately, Can something else than thermal pressure balance gravity?

Physical Ingredients for Constructing a Star (or Planet)

- 1. Support against gravity
 - Locally: Pressure balance: hydrostatic equilibrium Requires equation of state
 - Globally: Energy balance: virial theorem
- 2. Source of energy
 - Contraction
 - Nuclear fusion
- 3. Energy transport
 - Photon propagation
 - Convection

What supports the star against its self-gravity?

- . What happens if there is no support?
- II. What provides support?
- III. What is sufficient support?



Gravitational acceleration

$$g_r = \frac{GM_r}{r^2}$$

- Independent of density profile if spherically symmetric
- M_r is matter inside radius r
- Matter outside doesn't count

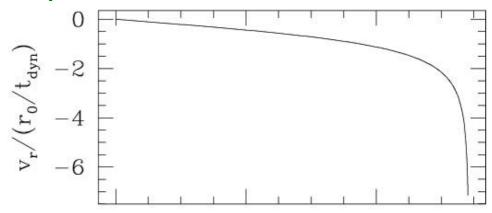
Example 2.2.1 of the textbook (p. 33)

I. No support: hydrodynamic collapse

Radial infall velocity:
$$v_r = \frac{dr}{dt}$$
,

Radial acceleration: $\frac{dv_r}{dt} = \frac{d^2r}{dt^2} = -\frac{GM_r}{r^2}$

Selerated fall, t_{ff} is the time to reach the centre



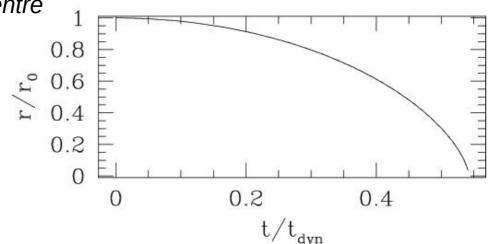
Accelerated fall, t_{ff} is the time to reach the centre

$$V_r \sim \frac{r_0}{t_{ff}}, \quad \frac{dV_r}{dt} \sim \frac{r_0}{t_{ff}^2} \sim \frac{GM_0}{r_0^2}$$
 r_0 : initial radius, M_0 : total mass

 $\overline{\rho}_0$: initial mean density

Full answer:
$$t_{\rm ff} = \sqrt{\frac{3\pi}{32}} \sqrt{\frac{1}{G\overline{\rho}_0}}$$

Can also derive as 'half an orbit'



Examples: star formation, supernovae

Dynamical timescale t_{dvn}

Collapse timescale: only density matters, not size

+	1
$t_{dyn} \sim \sqrt{}$	<mark>G</mark> ρ

	Size	mass	mean density	<i>t</i> _{dyn}
Earth	${\sim}10^{\text{-2}}\mathrm{R}_{\odot}$	$\sim\!10^{\text{-}6}~\text{M}_\odot$	5.5 g/cm ³	
Jupiter	$^{\sim}10^{-1}~R_{\odot}$	$^{\sim}10^{-3} M_{\odot}$	1.3 g/cm ³	~1 hr
Sun	R_{\odot}	M_{\odot}	1.4 g/cm ³	
White dwarf	\sim 10 ⁻² R $_{\odot}$	M_{\odot}	1.4x10 ⁶ g/cm ³	~3 s
Neutron star	10 km	$1.4~M_{\odot}$	7x10 ¹⁴ g/cm ³	~0.2 ms
giant molecular cloud	~100 pc	$\sim \! 10^6 M_\odot$	~10 ⁻²² g/cm ³	~10 ⁷ yr
globular cluster of stars	~3 pc	$\sim\!10^6{\rm M}_\odot$	~3x10 ⁻¹⁸ g/cm ³	~10 ⁵ yr
cluster of galaxies	~3 Mpc	$\sim\!10^{16}\mathrm{M}_\odot$	~10 ⁻²⁵ g/cm ³	~10 ⁸ yr
the observable universe	~14Gly	$\sim \! 10^{22} \mathrm{M}_{\odot}$	~3x10 ⁻³⁰ g/cm ³	~10 ¹¹ yr

Dynamical timescale:

if no support against self-gravity, object collapses in dynamical timescale.

Relevant for: solar oscillation, stellar pulsation, star formation in molecular clouds...

What prevents the Sun from collapse?

II. Stars are supported against self-gravity by gas pressure.

Gas exerts pressure on its surrounding; it resists being compressed.

Pressure arises from kinetic energy of the gas particles; exert force (momentum exchange) when they are reflected

Pressure: force/unit area

For stars, the plasma is well described as as an Ideal Gas

Ideal gas: no correlation between particles.

All particles are energetically indistinguishable mean kinetic energy per particle = $3/2 k_B T$

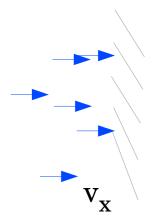
- = <average over time for one particle>
- = <average over all particles at one time>

$$P = n k_B T$$
 (see textbook § 10.2)
 $n = N/V$, number density

Non-ideal gas: correlation between particles

particles are also waves, correlate if wavelengths overlap

- 1) Fermion gas P = P(n) electrons, protons, neutrons, quarks ("degenerate gas")
- 2) Boson gas P = P(T) photons, gravitons, strong/weak gauge bosons



Pressure of Ideal Gas:

$$P = n k_B T$$

n: number density, number of all particles per unit volume

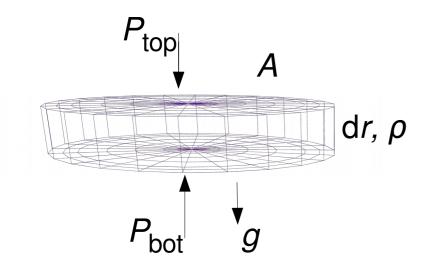
Can be written in another form using mass density ρ (mass per unit volume)

$$P = n k_B T = (\rho/\mu m_H) k_B T$$

Mean molecular weight (μ): $\rho/n = \mu m_H$ Average mass of molecules/atoms measured in the unit of hydrogen atomic mass

III. Pressure support and Hydrostatic Equilibrium

Actually need pressure gradient to support star against gravity.



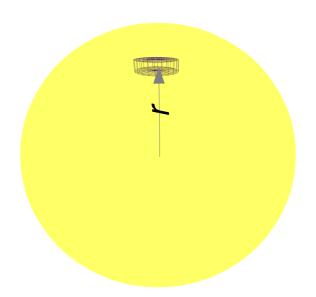
$$mg_{r} = \rho dr Ag_{r} = P_{bot} A - P_{top} A$$

$$P_{top} = P_{bot} + \frac{dP}{dr} dr$$

$$Hence, \frac{dP}{dr} = -\rho g_{r}$$

Applies to any 'fluid' (ocean, rock, air...)

Pressure has to increase inward



H.E. in the astronomer's toolkit

$$\frac{dP}{dr} = -\frac{GM_r\rho}{r^2}$$

$$P \approx \frac{GM^2}{R^4} \text{ or } P \propto M^2/R^4$$

$$\rho \approx \bar{\rho} \text{ or } \rho \propto M/R^3$$
With ideal gas law, $P = \frac{\rho}{\mu m_H} k_B T$,

 $kT \approx \frac{GM\mu m_H}{R}$ or $T \propto M/R$