
What is a Star?

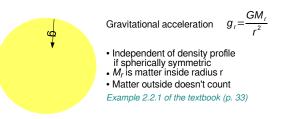
Big ball of gas

Self-gravity high pressure high temperature \Rightarrow high pressure inside, \Rightarrow high temperature inside, \Rightarrow emit light.

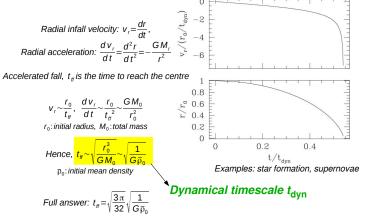
Star's life: Protracted battle with gravity

To support weight:

- \Rightarrow need high pressure
- ⇒ need high temperature
- \Rightarrow will loose energy
- ⇒ need energy source:
 Gravitational contraction
- Nuclear fusion


Ultimately, Can something else than thermal pressure balance gravity?

Physical Ingredients for Constructing a Star (or Planet)


- 1. Support against gravity
 - Locally: Pressure balance: hydrostatic equilibrium Requires equation of state
 - Globally: Energy balance: virial theorem
- 2. Source of energy
 - Contraction
 - Nuclear fusion
- 3. Energy transport
 - Photon propagation
 - Convection

What supports the star against its self-gravity?

- I. What happens if there is no support?
- II. What provides support?
- III. What is sufficient support?

I. No support: hydrodynamic collapse

Can also derive as 'half an orbit'

Collapse timescale: only density matters, not size

	Size	mass	mean density	t _{dyn}
Earth	$\sim 10^{-2} R_{\odot}$	~10 ⁻⁶ M⊙	5.5 g/cm ³	· ·
Jupiter	$\sim 10^{-1} \text{ R}_{\odot}$	~10 ⁻³ M₀	1.3 g/cm ³	~1 hr
Sun	R_{\odot}	M₀	1.4 g/cm ³	
White dwarf	~10 ⁻² R _☉	M₀	1.4x10 ⁶ g/cm ³	~3 s
Neutron star	10 km	$1.4~\text{M}_{\odot}$	7x10 ¹⁴ g/cm ³	~0.2 ms
giant molecular cloud globular cluster of stars cluster of galaxies the observable universe	~3 Mpc	$^{-10^{6}}M_{\odot}$ $^{10^{6}}M_{\odot}$ $^{10^{16}}M_{\odot}$ $^{10^{22}}M_{\odot}$	~10 ⁻²² g/cm ³ ~3x10 ⁻¹⁸ g/cm ³ ~10 ⁻²⁵ g/cm ³ ~3x10 ⁻³⁰ g/cm ³	~10 ⁷ yr ~10 ⁵ yr ~10 ⁸ yr ~10 ¹¹ yr

Dynamical timescale:

if no support against self-gravity, object collapses in dynamical timescale.

Relevant for: solar oscillation, stellar pulsation, star formation in molecular clouds...

What prevents the Sun from collapse?

II. Stars are supported against self-gravity by gas pressure.

Gas exerts pressure on its surrounding; it resists being compressed.

Pressure arises from kinetic energy of the gas particles; exert force (momentum exchange) when they are reflected

Pressure: force/unit area

For stars, the plasma is well described as as an Ideal Gas

Ideal gas: no correlation between particles.

All particles are energetically indistinguishable mean kinetic energy per particle = $3/2 k_B T$ = <average over time for one particle> = <average over all particles at one time>

$P = n k_B T$ (see textbook § 10.2)

n = N/V, number density

Non-ideal gas: correlation between particles

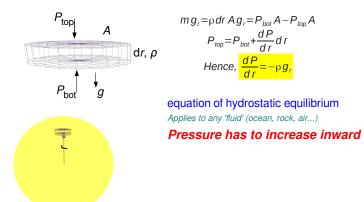
particles are also waves, correlate if wavelengths overlap

 Fermion gas 	P = P(n)	electrons, protons, neutrons, quarks ("degenerate gas")
2) Boson gas	P = P(T)	photons, gravitons, strong/weak gauge bosons

Pressure of Ideal Gas:

n: number density, number of all particles per unit volume

Can be written in another form using mass density ρ (mass per unit volume)


$P = n k_B T = (\rho/\mu m_H) k_B T$

Mean molecular weight (μ): $\rho/n = \mu m_H$ Average mass of molecules/atoms measured in the unit of hydrogen atomic mass

III. Pressure support and Hydrostatic Equilibrium

Actually need pressure gradient to support star against gravity.

H.E. in the astronomer's toolkit

$$\frac{dP}{dr} = -\frac{GM_r\rho}{r^2}$$

$$P \approx \frac{GM^2}{R^4} \text{ or } P \propto M^2/R^4$$

$$\rho \approx \overline{\rho} \text{ or } \rho \propto M/R^3$$
With ideal gas law, $P = \frac{\rho}{\mu m_H} k_B T$,
$$kT \approx \frac{GM\mu m_H}{R} \text{ or } T \propto M/R$$