
Laws of Gravity II

Kepler's three laws applicable if m<<M  (one moving body, 1-body)

What if m & M are comparable?

Two moving bodies (2-body)
Use 'reduced mass'

applications: binary stars, galaxies, (dwarf) planets (pluto-charon),
detecting extra-solar planets, ...

Three-body... 

N-body...

General problem

Nx3 coupled second-order diferential equations!
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Two-body problem:
reduce it to an equivalent one-body problem 
using the concept of 'reduced mass':
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An imaginary particle of mass μ,
distance r away from CM (center of mass)
'the reduced mass particle'

CM

Let r m=r1−r 2 , M=m1+m2

Let r m , r 1 , r2 be measured from CM 

with m1 r 1+m2 r 2=0
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2-body:   Energy,  Angular Momentum & Kepler's Laws 
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General problem

Nx3 coupled second-order diferential equations!

1-body:

2-body:
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Kepler in the astronomer's toolkit
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Determine masses in binary systems M
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 + M
charon 
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E
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Three-body gravitational interaction: 

not reducible to one-body
In general, motion no longer periodic (quasi-periodic or chaotic)

our closest neighbour α-Centauri (a triple system)

triple star encounter simulation
(Hut)



Sun (M⊙)

Earth

Jupiter (10-3 M⊙)

3-body (practical applications): 

 Stability of the Solar system
very rich phenomenology & analytical theory    --  Planetary Dynamics

 Climate changes on Earth
 

Orbital evolution of near-earth
asteroids and comets. 

Voyagers getting swings from outer planets -- 
gravity-assist 

Space travel

N-body 

intractable analytically
relies on numerical integration

globular cluster ~ 106 stars

cluster of galaxies ~ 103 galaxies

Universe ~ 1011  galaxies

Globular Cluster M4
(~ 2 kpc)

Quiz:  cannibalism in close binary stars

star m
1
 bloats up,  part (d m) of its envelope becomes dominated by 

the gravity of m
2 
and is transferred from m

1
 to m

2

  
-- does the binary unbind or spiral-in?

How to estimate?
● Use energy conservation?
● Use angular momentum conservation? 

Cataclysmic Variable

m1

m2
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